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Abstract

A multitude of structures or infrastructures is damaged or degraded due to, for exam-
ple, a seismic event or the protracted exposure to adverse environmental and atmospheric
conditions. This situation may prevent the construction serviceability and, in even more
serious cases, may determine their collapse. In this context, vibration-based structural
health monitoring became very diffused for the strict relationship existing between dy-
namic properties and stiffness of the structure, that depends on its health state. Damage
detection methods based on data registered by a monitoring system are often supported by
the definition of numerical models. They allow, if properly calibrated, a better knowledge
of the structure, to obtain more reliable results about the structure safety and to identify
possible anomalies through the comparison with the expected behavior. In case of damage,
they further enable localization and quantification of damage itself.
In the present work, several aspects related to damage detection techniques with the sup-
port of numerical models are studied and deepened.
Multi objective approach for model updating, typically necessary in problems of structural
safety, provides a set of optimal solutions, called Pareto front. The preferred solution has
to be selected within this front. In this framework, the author proposes a procedure for
the direct computation of the preferred solution, without the need to determine the whole
front, by means of the minimization of a single objective function defined according to the
criterion of the minimum distance from the equilibrium point. This procedure is validated
on several case studies, including the case of the San Felice sul Panaro fortress, an historical
structure strongly damaged by the Emilia-Romagna seism occurred in 2012.
Bayesian model updating involves the stochastic modelling of model parameters and er-
rors so that the updating result can be expressed also in terms of uncertainty. About the
case of the San Felice sul Panaro fortress, results in terms of both parameters and weights
attributed to frequencies and mode shapes, are compared with those obtained through
bi-objective optimization, analyzing the associated uncertainties. Variants of the classical
methodology are presented with the aim of reducing the computational effort, especially
for the computation of the updated parameter uncertainties.
Model updating methods for damage detection are usually time-consuming and do not
enable the real-time identification of a damaged condition. Instead, artificial neural net-
works ensure a quick identification if they are appropriately calibrated before their use by
means of numerical models able to simulate ordinary conditions and damage scenarios.
To investigate the performance of neural networks for damage identification purposes, two
models of a concrete/steel mixed railway bridge are developed, which differ in detail level.
They simulate the “real” structural behavior and that of “the model”, defined starting
from the identified modal properties. The last model, i.e. the simpler one, is employed for
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the generation of the dataset finalized to the training phase. With the first model, defined
in more detail, the experimental data adopted for the network test are simulated. They
unavoidably differ from those of the simplified model, despite it was calibrated. Results
show how, in order to have accurate network predictions in the test phase, the residual
errors obtained at the end of the calibration must be used to correct the data given in
input to the network.



Abstract

Numerose strutture e infrastrutture si trovano in uno stato di degrado o danneggiamento
causato, per esempio, da un evento sismico o dall’esposizione prolungata a condizioni am-
bientali sfavorevoli. Questa situazione può compromettere la funzionalità dell’opera o, in
casi più gravi, portare al collasso della stessa. In questo contesto, il monitoraggio dello
stato di salute delle strutture mediante prove dinamiche rappresenta un’attività in cres-
cente diffusione. Le metodologie per l’identificazione del danno basate sui dati acquisti dal
sistema di monitoraggio sono spesso supportate dalla definizione di modelli numerici che,
opportunamente calibrati, permettono una migliore conoscenza della struttura, di ottenere
risultati più affidabili in merito alla valutazione della sicurezza delle strutture e di rilevare
possibili condizioni anomale dal confronto con il comportamento atteso. In caso di danno,
permettono inoltre la localizzazione e la quantificazione del danno stesso.
Nel presente lavoro sono stati studiati e approfonditi diversi aspetti riguardanti tecniche
per l’identificazione del danno con l’ausilio di modelli numerici.
L’approccio multi-obiettivo alla calibrazione di modelli numerici, tipicamente necessario in
problemi di sicurezza strutturale, fornisce un insieme di soluzioni ottimali, chiamato fron-
tiera di Pareto, all’interno della quale deve essere scelta la soluzione preferita. In questo
contesto, l’autore propone una procedura che consente il calcolo diretto della soluzione
preferita, senza la necessità di determinare la frontiera, attraverso l’ottimizzazione di
un’unica funzione obiettivo definita sulla base del criterio della minima distanza dal punto
di equilibrio. Tale procedura è stata validata su una serie di casi studio, compreso quello
della Rocca di San Felice sul Panaro, una struttura storica severamente danneggiata dal
sisma dell’Emilia del 2012.
L’approccio Bayesiano consente la modellazione stocastica dei parametri e degli errori in
modo tale che il risultato della calibrazione possa essere espresso anche in termini di in-
certezza. Sul caso della Rocca di San Felice, i risultati, sia in termini di parametri che di
pesi attribuiti a frequenze e forme modali, sono stati confrontati con quelli ottenuti tramite
l’ottimizzazione bi-obiettivo e analizzando le incertezze associate. Sono inoltre presentate
varianti alla metodologia, per cercare di ridurne l’onere computazionale, soprattutto per
la valutazione delle incertezze dei parametri identificati.
Le metodologie di model updating applicate all’identificazione del danno risultano spesso
computazionalmente onerose e non permettono l’identificazione in tempo reale del possibile
stato di danneggiamento. Le reti neurali, invece, permettono una rapida identificazione del
possibile danno, se vengono opportunamente calibrate prima dell’utilizzo tramite modelli
numerici capaci di simulare condizioni ordinarie e scenari di danno. Con riferimento al
caso di un ponte ferroviario in struttura mista acciaio-calcestruzzo, sono stati sviluppati
due modelli che differiscono per grado di dettaglio e permettono di simulare il compor-
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tamento “reale” della struttura e quello “del modello”, definito a partire dai parametri
modali identificati. Quest’ultimo modello, più semplice, viene usato per la generazione
dei dati destinati all’addestramento della rete. Con il primo modello, più dettagliato, si
simulano i dati sperimentali impiegati per il test della rete, i quali inevitabilmente si dis-
costano da quelli del modello semplificato, nonostante sia esso calibrato. I risultati ottenuti
evidenziano come, per avere previsioni accurate nella fase di test, gli errori residui ottenuti
al termine della calibrazione devono essere utilizzati per correggere i dati forniti in input
alla rete.
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Chapter 1

Introduction

Numerous structures and infrastructures are in a state of damage or degradation caused by
several factors, like seismic events, inappropriate human actions or the protracted exposure
to adverse environmental conditions. The lack of knowledge about a damaged state, or its
underestimation, may bring to a dangerous evolution of the situation, that may prevent
the structure serviceability or determine a partial or the complete collapse of the structure.
The implications of these events may involve economical aspects but, in more serious cases,
also physical injuries and loss of human lives. The experimental monitoring of a structure
allows to control its health state and to point out critical situations. In this way, the
possibility of carrying out effective countermeasures before the occurrence of a disaster
is surely enhanced. Structural Health Monitoring (SHM) is the general term indicating
the research field that aims at developing different solutions, in terms of sensor equipment
and procedures, for the detection of changes and anomalies in the integrity of a structural
system [156, 173]. The monitoring of the dynamic behaviour of a structure represents a
very diffused solution since its behaviour depends on the stiffness, that is directly related
to its health state. The monitoring system is composed of a series of accelerometric sensors
disposed over the structure that are able to record its acceleration response due to different
sources of excitation. This system is minimally invasive, so the structure can remain in
operational condition. Modal properties are often used as representative features of the
health state, since they provide information about both the global (natural frequencies)
and the local (mode shapes) behaviour of the structure. Moreover, output-only techniques
of modal extraction can be employed. They exploit environmental sources of excitation
and do not require the knowledge of the input force [27, 138].

Damage detection methods are commonly divided in two main groups: model-based and
data-driven methods. Methods of the first group directly use numerical models describing
the structure for damage identification, localization and quantification. The stiffness re-
duction of an element, or a group of elements, can be detected through the updating of the
model repeated in different measurement epochs [65]. The stiffness reduction represents
the severity of the damage occurred. Model updating allows to reduce as much as possible
the discrepancy between the experimental observations and the same quantity predicted by
the numerical model by adjusting suitable parameters of the model [117]. The discrepancy
is expressed by means of specific functions that, in the case of modal properties, are the
frequency and mode shape residuals. The efficiency of the detection procedure strongly
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depends on several aspects characterizing model updating, that affect the accuracy of its
results. Among them, there are the quality and the quantity of experimental observations
available, the parametrization of the model, the definition of the optimization problem and
the algorithm employed for its resolution.

In this last context, two different approaches are generally distinguished: the single or the
multi objective approach. In the first, a single objective function is defined as the weighted
sum of frequency and mode shape residuals. Despite the rapidity of the approach, very
unbalanced results can be obtained if the weighting factor of the residuals is not properly
selected. The weighting factor measures the relative importance between the residuals.
Indeed, model updating is part of the family of inverse problems, whose characteristic is
ill-conditioning [165]. Therefore, in some cases the modification of the weighting factor may
produce significant variation of the updated parameters. In the multi-objective approach,
each residual, that represents an objective, is separately minimized and a set of optimal
solutions can be obtained, each one having the value of one objective better than that of
others [32]. This set is named Pareto front. The solution that represents the optimal trade-
off between the objectives is selected once the front is computed through a criterion based
on additional features [7, 52, 92, 113, 49]. As concerns the optimization algorithm, classical
solutions are represented by gradient-based [154] or evolutionary algorithms [159]. Both
families, despite positive peculiarities, are characterized by drawbacks. Gradient based
algorithms have efficient convergence rates but may reach local minima depending on the
starting vector. Conversely, evolutionary or genetic algorithms are very robust and the
starting point has a low influence on the optimization results. The main disadvantage is
related to the high number of objective function evaluations required to reach convergence.
For this reason, recent interesting developments in this field involve the implementation of
surrogate models for evolutionary algorithms [142, 119, 169] or the use of hybrid solutions
[109, 134], where the search is initially performed with a non-gradient based method and
after a given number of iterations the best point evaluated is chosen as the starting point
for the gradient-based algorithm.

Uncertainties and errors unavoidably affect model updating problems. They are associated
both to measurement acquisition and elaboration [132, 155, 143] and to modeling assump-
tions [117, 98, 172]. Taking into account also the ill-conditioned nature of model updating,
the reliability of its results may be compromised by these factors. For this reason, treating
the problem in probabilistic terms, reasoning about parameter distributions could be more
appropriate than considering a single optimal parameter vector in deterministic terms.
One of the most diffused method that allows uncertainty quantification is founded on the
Bayes theorem. Reference works about Bayesian model updating in the context of struc-
tural engineering was produced by Beck and Katafygiotis [18, 96], Beck [15], Katafygiotis
et al. [95] and Jaynes [88]. An important application of this method occurred in the field
of structural health monitoring (SHM): the first works about probabilistic damage assess-
ment based on observed modal properties are those of Sohn and Law [157] and Vanik et al.
[166]. Later, different authors improved the method by introducing the concept of system
mode shape [40], system frequencies [178] or by incorporating temperature as a variable
affecting modal properties [11]. Despite the efficiency of the methods, the computation of
the parameter posterior distribution represents a challenging task, since the exact solution
cannot be calculated when the number of updating parameters is sufficiently large. To this
aim, several approximated methods was developed: a distinction can be made between
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analytical method based on asymptotic approximations [18] and numerical methods based
on Markov Chain Monte Carlo (MCMC) algorithms [74, 71, 41].

Model based damage detection methods are usually time-consuming and do not enable the
real-time identification of a damaged condition. On the other hand, data-driven methods
are characterized by a considerable rapidity since they are able to detect a damage state
according to the variation of damage sensitive features extracted directly from the acquired
data. In this regard, the choice of appropriate features plays a fundamental role.

Early data-driven methods were analyzed and summarized by Doebling et al. [54]. In the
following, the main physical parameters used to construct damage indices are discussed.
Natural frequencies and mode shapes were surely the first properties used to create damage
indices thanks to the development of modal analysis technology. Zak et al. [180], for
example, examined the changes in resonant frequencies produced by closing delamination
in a composite plate. Salawu [148] realized a comprehensive review of damage detection
techniques founded on frequency modification. Zhang et al. [184] and Feng and Feng [58]
directly employed mode shapes to determine damage location. Ahmadian et al. [2] used
changes in mode shapes and participation factors for SHM purposes.

Judging benefits and drawbacks, frequencies can be measured with a minimal instrumenta-
tion, but they suffer variations caused by environmental conditions, that are usually larger
or comparable to those caused by damage. Furthermore, they exhibit a low sensitivity to
local damage, allowing only detection and not localization in real structures. On the other
hand, mode shapes enable localization of damage and are less affected by environmental
variation. However, they are identified with more uncertainty compared to frequencies and
need a more dense sensor equipment in order to provide spatial information about damage.

Mode shape curvature [128], modal strain energy [160] and modal flexibility [127] are indices
very sensitive to stiffness variation, more than mode shapes. Several works are founded on
this kind of indices: strain energy methods were developed by Hu et al. [79] and Seyedpoor
[151]. Bernagozzi et al. [22] and Zare Hosseinzadeh [181] focused their attention on modal
flexibility matrix. Radzienski performed a comparative study of damage detection methods
using modal parameter indices [137]. These indices are calculated starting from mode
shapes and, similarly, require a sufficiently high number of sensors acquiring information.
Moreover, their computation through mode shape numerical differentiation magnifies the
effect of noise and errors.

In contrast to modal data, frequency response functions (FRFs) and operational deflec-
tion shapes (ODSs) [150] provide information about a whole frequency range. Limongelli
proposed a damage identification method based on interpolation error of FRFs or ODSs
[107, 108, 51], Zhang et al. introduced a detection algorithm for bridges that is founded
on operating deflection shape curvature extracted from dynamic response of a passing
vehicle [183]. The main drawbacks related to FRF application involve the choice of the
optimum frequency range and the need to measure excitation force and structural response
simultaneously.

Conversely, transmissibility, defined as the ratio between two sets of responses [146], is
independent from input excitation and it can be also defined in random processes [61].
As local quantity, it is highly sensitive to damage. Maia et al. [112] proposed a method
for damage detection and quantification based on the correlations of acceleration response
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transmissibilities . Kong et al. utilized the transmissibility of vehicle responses to identify
damage in a bridge [104].

Results presented in literature, some of which are summed up in a review realized by
Sohn et al. [156], additionally highlight the necessity to develop statistical models for
feature discrimination, since the effect of noise or other external factors over the selected
features may be comparable to that of damage. Machine Learning (ML) techniques are
a widespread solution to this problem since they are capable of working with uncertain
and noise-corrupted data [99]. The application of these techniques to the field of damage
detection is quite recent, but a vast amount of works have been produced. Review works
that aim also at the classification of ML-based damage detection techniques are those
of Avci et al. [6] and Hou and Xia [78]. Numerical models are not directly involved in
the actual identification of a damaged state with data-driven methods, but they may be
employed in previous phases, as the creation of data related to damaged scenarios that
cannot be reproduced in a real situation. Several methods, indeed, have been developed
starting from information generated by models, like the integrated use of spatial Fourier
analysis and artificial neural networks of Pawar et al. [131] or the two-phase detection
method of Yuen and Lam [179].

1.1 Objectives of the thesis

Structural health monitoring is a research field arose some decades ago and a large variety
of solutions have been proposed in function of the type of problem. The same can be stated
focusing only on vibration-based monitoring, that is one of the most diffused approaches
in SHM. In the last decades, the development of soft computing techniques contributed
to a further improvement in this field, enabling the implementation of more complex and
elaborated methods from the computational point of view.

The objective of the thesis is to implement and analyze different methods for structural and
damage identification, most of them based on soft computing techniques, and to improve
some aspects of these procedures. Model-based techniques have been first considered.
The author focuses on the calibration of a single state of the model, related to a single
measurement epoch, that is the central operation to repeat several times in order to monitor
the evolution of the model parameters. Adopting a deterministic approach, uncertainties
affecting the problem are usually accounted for by assigning a different weight to modal
residuals. The choice of the optimal weight is still a discussed theme, subject to several
insights. The multi-objective approach is surely the most general approach, since it enables
to evaluate multiple solutions of the problem and to select the preferred one a posteriori,
according to additional criteria. After the evaluation of some criteria found in literature,
the author proposes a direct procedure for the computation of the preferred solution with
the aim to maintain the accuracy of the classical approach and to considerably reduce the
computational time. Moreover, the weight associated to the preferred solution is estimated
a posteriori giving the opportunity to compare it with the one selected with the classical
approach.

Another family of model-based techniques concerns stochastic modelling of errors and pa-
rameter, enabling uncertainty quantification and damage detection in probabilistic terms.
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Bayesian model updating has been implemented and applied for the calibration of struc-
tural models in some case studies. The influence of the prior distribution and the likelihood
function has to be evaluated. Furthermore, the Bayesian framework enables the selection
of the optimal likelihood coefficients, which can be related to the weights defined in the
deterministic approach. The implemented solution needs to be validated through the com-
parison with the results of the deterministic approach for the same case studies. The exact
computation of the posterior distribution implies a significant computational effort, hence
a Gaussian surrogate is introduced in order to solve this issue.

Model-based methods can be rarely applied for a real time monitoring because they require
a high number of modal analysis to obtain the solution, so data-driven methods represent
more adequate solutions in this perspective. The first objective in this context is to delin-
eate a complete procedure for damage detection. Considering the case study of a railway
bridge, a procedure using artificial neural network is developed. The procedure employs
only simulated data, but includes a series of expedients to approach a real situation, like
the stochastic modelling of measurement errors and the use of two different models to ac-
count for the residual discrepancy between model and reality that exists even at the end of
the calibration (model error). Moreover, different data and feature extraction techniques
are considered, each of one is taken in input by a specific network. The performances of
the networks are analyzed with respect to datasets generated by the two different models,
assessing their effective applicability.

1.2 Outline of the thesis

The thesis is organized as follows. Chapter 2 provides an introduction to the problem of
model updating based on experimental modal properties, treating the main aspects that
characterize the theme, such as the definition of the functions expressing the discrepancy
between experimental data and numerical predictions, the ill-conditioning of the problem
and the need to adopt an adequate parametrization. As concerns the problem resolution,
the single objective approach consisting of the weighted sum of modal residuals is described
as well as the optimization algorithm specifically developed for that aim, which is an
improved surrogate-assisted evolutionary algorithm. At the end of the chapter, the theory
previously presented is applied to the calibration of the 3D FE model of the San Prospero
Bell tower. First, the results of the experimental campaign conducted to characterize the
dynamical behaviour of the structure are showed. Then, the updated model is presented
and validated through a sensitivity analysis.

Chapter 3 addresses the topic of the weight selection in model updating, summarizing
the main approaches proposed in literature, where the selection can be made before the
resolution of the problem or subsequently in a multi-objective optimization context. For
the latter, a multitude of optimal solutions is computed and the preferred solution is
then selected on the basis of specific criteria, based on additional or experience-driven
information. The robustness of four selection criteria found in literature is assessed by
means of the calibration of three numerical case studies. Finally, the author proposes
a direct procedure for the determination of the preferred solution without the need to
compute all the optimal solutions of the problem, enabling a significant reduction in the
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computational effort. The procedure is based on the criterion of the minimum distance
from the equilibrium point, that showed the best performances in the previous analysis.
The validation of the procedure is performed considering the FE model of the San Felice
sul Panaro fortress, an historical masonry structure that suffered serious damage due to
the seismic events occurred in Emilia-Romagna in 2012.

Chapter 4 focuses on Bayesian model updating, motivating the necessity of uncertainty
quantification in the calibration of structural models. The mathematical framework of
this approach is presented along with the principal works on the argument. In particular,
attention is paid to the construction of the prior distribution, of the likelihood function and
to the methods developed for the computation of the posterior distribution. The approach
is implemented and applied to a simple numerical case study and to the FE model of
the San Felice sul Panaro fortress, showing the variation of the results by changing prior
distribution and parameters of the likelihood function.

Chapter 5 treats more specifically the influence of the frequency and mode shape coefficients
of variation constituting the corresponding prediction errors. It is shown the relationship
between these coefficients and the weights of the modal residuals defined in the determinis-
tic approach of chapter 3. The selection of the optimal coefficients of variation is performed
at an additional level of model updating, called Bayesian Model Class Selection. This is
characterized by a high computational complexity, which the author seeks to alleviate by
introducing a surrogate model. The effectiveness of the proposal is tested with two real
case studies, the already presented San Felice sul Panaro fortress and the Ficarolo bell
tower. In addition, a comparison with the deterministic approach is performed in terms of
weights and computational burden.

In chapter 6 a vibration-based damage detection procedure for railway bridges using arti-
ficial neural networks is delineated. A literature review of the main works about damage
identification is first presented, then the feature extraction and pattern recognition tech-
niques used are outlined. The detection of damage is accomplished thanks to a multi-layer
perceptron with the aim to classify the structure condition according to the damage features
provided in input. Different data are employed, such as modal properties, displacement
and acceleration responses caused by the passage of a train over the bridge, and their ap-
plicability as damage feature is tested. In the chapter all the other aspects characterizing
the procure are described in detail, as the the use of two numerical models to simulate
the unavoidable discrepancy between model and reality, the modelling of different sources
of uncertainty affecting measurements, the creation of the network datasets composed by
different damage scenarios and the optimization of the network architecture. Results of
network predictions, related to the datasets generated by the two different models, are
illustrated at the end of the chapter.

Finally, a summary of the main conclusions of the research work as well as recommendations
for future research are presented in chapter 7.



Chapter 2

Model updating: motivations and
single objective approach

Models are fundamental tools for the comprehension and reproduction of a physical phe-
nomenon. For this reason, they are very diffused in all the branches of science and engi-
neering. In the field of structural engineering, the wide diffusion of FE models is due to
the different aims for which they are employed, varying from design to research purposes.
Very common applications are the analysis of a structural condition or the prediction of
the response of a structure due to different type of loading. It is obvious to say that the
reliability of the model results strongly depends on how accurate the model is. Uncertainty
or lack of knowledge about different aspects of modeling, such as boundary conditions, ge-
ometry, material property and load conditions, implies that assumptions and simplification
are necessary for the development of a model. Consequently, the subjective judgment of
an analyst, which cannot be deleted for the previous reasons, affects model results.

Model updating or calibration is a practice finalized to increase the accuracy of a model
employing experimental observations. These methods are also referred as inverse modeling
since a set of uncertain model parameter is calibrated in order that the predicted quantities
match as close as possible the experimental measurements. An optimization problem
is based on the minimization of an objective function defining the discrepancy between
experimental observations and numerical predictions.

The chapter is organized in this way: in section 2.1 the principal contributes to structural
model updating using dynamic data are summed up; the mathematical framework of model
updating as single objective optimization problem is discussed in section 2.2. The specific
optimization algorithm employed for all the applications of the thesis is described in section
2.3. Finally, section 2.4 presents the results of the calibration of the FE model of a real
case study, the San Prospero bell tower.

2.1 Model updating in structural dynamics

Model updating allows to reduce the uncertainties related to a model, and at the same time
to increase the reliability of its predictions, by means of the calibration of a pre-determined

7
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set of model parameters. They are adjusted in such a way that the model predictions are as
similar as possible to the experimental observations used for the updating. This procedure
is carried out applying optimization techniques aimed at the minimization of a function
expressing the discrepancy between experimental observations and numerical predictions.

Focusing the discussion on structural context, dynamic properties obtained by vibration
tests, such as natural frequencies, mode shapes, modal strains or curvatures, are the most
employed data for updating, since they offer information about both global and local behav-
ior of the structure. Moreover, vibration tests can be performed in operational condition
of the structure and can exploit ambient excitation like wind or traffic [138].

Traditional reference works on model updating in structural dynamics are those of Ibrahim
[81], Imregun and Visser [84] and Mottershead and Friswell [117, 66]. A more recent work
comparing deterministic and probabilistic approaches to model updating was realized by
Simoen et al. [152].

Applications of structural FE model updating are numerous. These include damage de-
tection [163], health monitoring and structural assessment [34, 60, 30], structural control
[94], validation of innovative structural designs [68, 124, 135] and evaluation of earthquake
or strong-winds effects [140].

One of the most significant and diffused area of application of model updating is without
doubt that of structural health monitoring (SHM) and damage detection. The motivation
can be attributed to the fact that structural damage causes a local reduction of stiffness
and, consequently, the modification of the dynamic properties of the structure. Reference
works on SHM were realized by Sohn et al. [156] and Worden et al. [173]. Vibration-
based SHM was extensively analyzed by Rytter [147], Doebling et al. [54, 53] and Carden
and Fanning [33]. Rytter proposed a classification in four level of the damage assessment
approach: (i) damage identification, (ii) damage localization, (iii) damage quantification
and (iv) prognosis of the actual safety of the structure. Model-based damage assessment
can fulfill the procedure until the third level: it is able to detect, localize and quantify
damage by means of the calibration of the stiffness parameters of a structure performed
with reference to different measurements epochs regarding the structure. This classification
was resumed by different authors and it was extended to a fifth level of healing for self-
healing smart structures by Park et al. [130]. A recent review on model-based damage
assessment method, in particular concerning the use of evolutionary algorithm, has been
realized by Alkayem et al. [4].

2.2 Single objective approach for model updating

The following section focuses on FE model updating based on modal data, that are surely
the most diffused type of dynamic data in this field. Accelerations time series are not
often used directly, as the input excitation should be precisely known. This rarely happens
for this kind of applications, especially if ambient excitation is considered. Moreover, the
response in time domain predicted by a model is affected by a large number of factors such
as, for example, the degree of detail that characterizes the modeling of the structure and
of the loads. The matching between predicted and measured responses in time domain
can be a very difficult operation. From this point of view, difficulties in matching modal
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properties are surely more limited.

2.2.1 Statement of the optimization problem

As introduced in section 2.1, model updating is performed by minimizing an objective
function expressing the discrepancy between experimental data and numerical predictions.
When dealing with natural frequencies, the objective function corresponds to the frequency
residual error defined in a least squares sense:

eF (x) =
M∑

m=1

(
fnum,m (x)− fexp,m

fexp,m

)2

(2.1)

where x is the vector collecting the updating parameters, M is the number of modes
selected for the calibration, fexp,m and fnum,m are the m-th experimental and numerical
frequencies, respectively. Although some works rely on frequency-based model updating
[86, 126, 82], it was proved how information about the local behaviour of the structure
are fundamental in order to obtain accurate results [62]. In damage detection problems,
furthermore, the localization of damage is improved only if local information are available
[102, 141]. Hence, mode shapes or derived properties like modal curvatures, strains or
flexibilities are included in the updating scheme [86]. In the following, only mode shapes
are discussed, but the same considerations can be made for the other properties. Mode
shape residual error can be expressed with different formulations, some of the more diffused
are:

eM(x) =
N∑
i=1

(
1−MAC(ϕnum,m,ϕexp,m)

MAC(ϕnum,m,ϕexp,m)

)γ

(2.2)

eM(x) =
M∑

m=1

1∥∥ϕexp,m

∥∥2

2

∥∥∥∥∥ ϕexp,m∥∥ϕexp,m

∥∥
2

− lm
ϕnum,m (x)∥∥ϕnum,m (x)

∥∥
2

∥∥∥∥∥
2

2

(2.3)

where ϕexp,m and ϕnum,m are the m-th experimental and numerical mode shapes, respec-
tively. Common values employed for the exponent γ in Eq. (2.2) are 0.5, 1 and 2. Exper-
imental mode shapes are defined with very low components compared to numerical mode
shapes, so it is necessary to retain only the components of ϕnum,i corresponding to the
DOFs (degrees of freedom) of ϕexp,i. MAC is the Modal Assurance Criterion [5] and lm is
a scaling factor computed as:

lm =
ϕT

exp,mϕnum,m (x)∥∥ϕexp,m

∥∥
2

∥∥ϕnum,m (x)
∥∥
2

(2.4)

The symbol ∥·∥2 denotes the Euclidean norm.

When different kinds of residuals are used for the updating, the most common procedure,
at least in the structural engineering field, involves their combination in one single objective
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function through the weighted sum method [101]. The single objective functionH is defined
as:

H(x) = αeF (x) + (1− α)eM(x) (2.5)

where α ∈ [0, 1] is the weighting factor that measures the relative importance between
the residuals. The weighting factor represents a measure of the accuracy of the measured
data at hand. It is usually chosen on the basis of engineering judgment or trial and error
strategy. A review of the main approaches finalized at the weight selection will be presented
in chapter 3, while in chapter 5 a Bayesian approach for weight selection will be described
in detail.

2.2.2 Resolution of the single objective optimization problem

The relationship between modal properties and any kind of mechanical parameter is non-
linear and usually not explicit, so an iterative optimization process must be defined. This
problem can be solved with gradient-based or not gradient-based methods. Gradient-based
methods require the computation of the first and the second order sensitivities of the model
predictions with respect to the model parameters, collected in the Jacobian and Hessian
matrix, respectively.

In this context, sensitivities can be numerically computed with the finite difference method.
This approach is computationally expensive, because the number of modal analysis required
to numerically compute the sensitivities grows exponentially with the number of updating
parameters, and it is only locally accurate. The alternative is to express the sensitivities
with exact or approximated analytical expressions. Modal sensitivities can be computed
analytically through the formulas of Fox and Kapoor [64] or Nelson [121]. Difficulties,
or inability in some cases, may arise when the mass and stiffness matrix are extremely
large or when the FE software does not make them available to be exported. Conventional
gradient-based methods have an efficient convergence rate but they may reach local minima,
depending on the starting vector adopted [170]. Moreover, they may fail or obtain low
accuracy when the objective function has low sensitivities to parameter variation close to
the solution point [66].

On the other hand, non gradient-based methods, like genetic or evolutionary algorithms,
that carry out a global search, are very robust and the starting point has a low influence on
the optimization results. The main disadvantage is related to the high number of objective
function evaluations required to reach convergence. Indeed, they perform a probabilistic
search without information about the shape of the optimization function. When complex
and large FE models are adopted, the effort requested for the model creation and the anal-
ysis at each iteration may practically make the operation unfeasible. In order to reduce the
computational effort, several strategies involves the approximation of the objective func-
tion with efficient models, such as Response Surface (RS) [142], high polynomial functions
[119] or Kriging models [29, 57, 63].

In this work, an improved surrogate-assisted evolutionary algorithm called DE-S [169] is
employed. It combines the robustness of the differential evolution (DE) algorithm with RS
methodology and a proper infill sampling strategy. The architecture of the DE-S algorithm
is described in section 2.3.
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2.2.3 Ill-posedness, parametrization and regularization

Model updating is an inverse problem, whose characteristic is ill-posedness. A problem is
well posed if its solution exist, is unique and continuously depends on the errors present
in the problem formulation [165]. As concerns sensitivity-based FE model updating, the
uniqueness and the stability of the solution depends on the conditioning of the Jacobian
matrix. Near-rank-deficiency of the Jacobian matrix is extremely common, causing the
instability of the solution with respect to small change in the data. The same drawback
occurs using non gradient-based method despite it is not necessary to invert a coefficient
matrix, since the global minimum of the objective function may vary significantly with
small perturbations in the data. In this context, updated parameters are rarely physically
meaningful.

The main cause of ill-conditioning in model updating, in fact, is the low compatibility be-
tween parametrization of the model and experimental data. For example, the modification
of the same parameter in two neighboring elements of a model may have approximately
the same effects on the modal properties [161]. This effect is more pronounced the finer is
the discretization. In general terms, a good parametrization involves the selection of phys-
ically meaningful parameters that affect the structure response. In some model updating
applications, for example finalized at the realization of reliable predictions, the number of
parameters can be limited by a smart choice on the basis of the previous recommendation.

For damage detection purposes, however, the necessity to have local information with
the aim to localize damage implies a more refined parametrization. The so-called over-
parametrization may be avoided adopting proper strategies. The most common is based
on the definition of substructures, groups of finite elements characterized by the same values
of the updating parameters. The parametrization of the stiffness matrix is the following:

K(x) = K0 +

NS∑
i=1

xiKi (2.6)

where NS is the number of substructures used. The whole stiffness matrix K(x) is obtained
by the sum of a matrix K0, independent from the updating parameter vector x, and the
matrices Ki, representing the contributes of the substructures, scaled by the updating
parameter xi. In this case, the updating parameter has the role of multiplication factor of
a specific property that is the same for all the elements of the substructure.

Other more advanced approaches involve the definition of functions describing the variation
of a parameter inside a substructure [163], defined damage functions by the authors, or a
two stage procedure where the parametrization is initially coarse and in the second stage
it is refined in the damaged region identified in the first stage [133].

Another pure mathematical approach relies on the introduction of regularization tech-
niques. The main concept is to modify the objective function adding a term, commonly
named regularization term, that depends on the parameter variation with respect to a
given value, determined on the basis of engineering assumptions, but does not depend on
the experimental data involved in the calibration. This term is weighted in the objective
function by a regularization parameter. This parameter has a large influence on the updat-
ing results and its selection must be made with accuracy: if the regularization parameter
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is too small the problem will be still prone to ill-posedness, while if the parameter is too
large the solution will have no connection with the original physical problem.

A wide literature exists about the regularization of ill-posed problems, among which the
works of Tikhonov [164] and Hansen [75] are milestones. The theme of regularization in
model updating has been addressed by Titurus and Friswell [165] and Ahmadian et al. [3].
They have analyzed several methods for the selection of the regularization parameter, such
as the L-curve method, the generalized cross validation and the generalized singular value
decomposition.

2.3 DE-S algorithm

In section 2.2.2 it has been treated the resolution of an updating problem as a single
objective optimization, highlighting benefits and drawbacks associated to gradient-based
or not gradient-based methods. The main disadvantage of this last class of methods, namely
the high number of objective function evaluations required to find the solution, motivated
the development of strategies aimed at approximating the objective function with efficient
models. In this section, it will be described the optimization algorithm, named DE-S
algorithm, employed for the resolution of the case studies presented in this thesis. The
DE-S algorithm is an improved surrogate-assisted evolutionary algorithm, which adopts a
smart strategy of sampling. It is an enhancement of the original DE algorithm [159] in
terms of speed performance without neglecting the accuracy in the search of the solution.
The main stages of the algorithm are briefly described in the following.

It simultaneously evaluates NP vectors denoted as xi,G for i=1,2,...,NP , where G indicates
the G-th generation of parameters, called population. Each vector xi,G has dimension D
and contains the parameters to be optimized during the process. The number of vectors
NP is maintained constant during the process. The layout of the algorithm is shown in the
flow chart of Fig.2.1.

First, the initial population is randomly selected starting from an uniform distribution
defined over the parameter space and the objective function associated to each vector is
computed. Then, and at each new iteration, a subset of NS vector is chosen in order to
calibrate a quadratic response surface. If the surface is convex, the new vector, called
mutant vector (vi,G) is defined as the one who minimizes the response surface. Otherwise,
if the surface is concave, the classical operation of mutation is carried out, generating the
mutant vectors vi,G as linear combination of vectors of the same population. During the
following operation of crossover, vector components are shuffled with the aim to obtain
a grater variability, forming the so-called trial vector. The introduction of the response
surface is the distinctive feature of the first enhancement of the DE algorithm, called DE-Q
algorithm [170].

The peculiarity of the latest version (DE-S), that distinguishes it from the DE-Q, is the
introduction of a new sampling strategy focused on the assignment of a weight w at each
candidate vector. Only a limited number NH of candidates is selected for new evaluations
according to the assigned score. The resulting vector will be included in the subsequent
generation only if the related objective function value is lower than the value associated
to the vector of the previous generation (selection operation). The iterative procedure
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Figure 2.1: Flow chart of the DE-S algorithm [169].

ends when convergence, defined on the basis of specific criteria, is reached. The extensive
description of each stage of the algorithm is addressed hereinafter.

2.3.1 Response surface (RS) method

The core concept of the RS method is the approximation of the objective function H with
explicit and simpler interpolation functions. When dealing with engineering problem which
involves the execution of complex codes, this method enables to alleviate the computational
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effort. The objective function H is approximated with an analytic function Ĥ

Ĥ = g(x) (2.7)

where x is the vector of dimension D that contains the unknown parameters to be de-
termined and g(x) is the response function. The latter can be defined in different ways:
commonly it is obtained combining polynomials of first and second order approximating
the objective function in a set of sampling point. Second order approximations are com-
monly used in structural engineering problems as they provide computational efficiency
together with a reasonable accuracy. Polynomials of higher order are rarely employed
because the number of coefficients to be determined strongly grows with the polynomial
order. Adopting a second order approximation Eq.(2.7) can be rewritten as:

Ĥ =
1

2
xTQx+ LTx+ β0 (2.8)

where Q is a D ×D matrix containing the quadratic terms, L is a D × 1 vector of linear
terms and β0 a constant. According to the procedure proposed by Khuri and Cornell
[100], a limited number of numerical simulations, called experiments, is used to determine
an analytical relationship between the parameters to be identified and the approximated
objective function. Without loss of generality, but only for reasons of simplicity, we can
consider only two unknown parameters x={x1, x2}. Eq. (2.8) can be formulated as:

Ĥ = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 (2.9)

where the coefficients βi are unknown. If NS observations, namely NS evaluations of the
approximated function starting from NS different vectors, are available, Eq.(2.9) gives:

Ĥ = Zβ (2.10)

The vector β = {β0, β1, ..., β5} contains the RS unknown coefficients, Z is the matrix of
components Zi(xi) which collects polynomials with constant, linear, quadratic and cross
terms, and Ĥ is a vector containing the objective function values computed for the vectors
x1, ...,xNS

.

The number NS of observations is generally larger than the dimension of vector β. For
this reason, the latter is obtained by applying the least square estimate method:

β =
(
ZTZ

)−1
ZT Ĥ (2.11)

Eq.(2.11) refers to the case of equal weight for all observations. A more accurate RS can
be computed by increasing the weight of points close to the solution point, so having:

β =
(
ZTWZ

)−1
ZTWĤ (2.12)

where W is a NS × NS diagonal matrix of weight coefficients. Once the vector β is
calculated, the optimal vector that minimize Ĥ is easily found as:

x∗ = −Q−1L (2.13)

A detailed description of sampling strategies for the RS method, necessary in order to ob-
tain a response function representing the objective function to minimize as well as possible,
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is provided by Khuri e Cornell [100]. A quadratic RS can identify a single minimum even
when the objective function presents multiple local minima. Hence, in the DE-S algorithm
RS method is employed as surrogate model in the mutation operation. Once the RS coeffi-
cients βi are calculated (Eq. (2.11) or Eq. (2.12)), the shape of the RS function is checked,
and two possibilities may occur. If the function is convex, the new parameter vector is
defined as the one minimizing the RS surface through Eq. (2.13). Otherwise, the classical
mutation operation is performed.

2.3.2 Mutation operation

For each vector xi,G of the G-th population, the mutant vector is obtained by summing to
xi,G the weighted difference between other two vectors of the same population. Three dif-
ferent strategies, called “random”, “best” and “best-to-rand”, can be chosen. The random
strategy generates the mutant vector based on the following expression:

vi,G+1 = xq1,G + F (xq2,G − xq3,G) (2.14)

where indexes q1, q2, q3 ∈ {1, 2, ..., NP} are selected in a random way provided that there
they is not the repetition of the same index and F is a positive constant, defined scale
parameter, controlling the amplitude of the mutation. In all the applications presented F
takes the value of 0.6.

In the “best” strategy the mutant vector is always generated starting from the best member
of the previous population, called xbest,G, on the basis of the expression:

vi,G+1 = xbest,G + F (xq1,G − xq2,G) (2.15)

Finally, in the “best-to-rand” strategy the mutant vector is generated as:

vi,G+1 = xi,G + F (xq1,G − xq2,G) + F (xbest,G − xi,G) (2.16)

combining both randomly selected vectors and vectors selected according to the best mem-
ber of the G-th population.

The efficiency of a strategy depends on the type of problem, specifically on the regularity
of the objective function. For regular functions, characterized by the presence of a single
minimum, the “best” strategy converges more quickly than the others, since the subsequent
populations are completely generated from the point having the minimum value of the
objective function. When the objective function has local minima or it has a low sensitivity
with respect to the parameters, “random” and “best-to-rand” strategies are recommended
because they avoid the convergence towards local minima.

2.3.3 Crossover operation

The crossover operation is introduced in order to increase the variability of vectors com-
posing a population. The trial vector ui,G+1 is obtained by shuffling in a random way the
components of the mutant vector vi,G+1 with those of the original vector, according to the
rule:

ui,G+1 = {u1i,G+1, u2i,G+1, ..., uDi,G+1} (2.17)
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Figure 2.2: Crossover operation [167].

uji,G+1 =

{
vji,G+1 if rand(j) ≤ CR

xji,G if rand(j) > CR
(2.18)

Crossover operation is schematically represented in Fig.2.2. In Eq. (2.18) uji is the j − th
component of the vector ui, with j = 1, 2, ..., D. rand(j) is a random number extracted
from a uniform distribution defined in the interval [0; 1] and CR, called crossover constant,
indicates the percentage of mutations considered in the trial vector. In all the applications
presented we set CR equal to 0.5.

2.3.4 Bound constraint

In engineering problems, the search of the parameters to be optimized is commonly signif-
icant inside a specific interval of values which can be defined with physical considerations

xj ∈ [xj,min; xj,max] (2.19)

Different method can be used to introduce constraint over parameters. In this algorithm,
vectors that are located outside the parameter domain due to the mutation operation are
projected onto the bound of this domain (see Fig. 2.3).
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Figure 2.3: Projection of vectors onto the bound of the parameter domain [167].

2.3.5 Sampling strategy

The improvement that characterizes the DE-S algorithm relies on a proper sampling strat-
egy finalized to create an efficient set of sampling points and to evaluate only a given subset
of it. In this way, the number of objective function evaluations is reduced but, at the same
time, the accuracy of the solution is preserved. This strategy involves the introduction of
scoring criteria that allow to select a limited number NH of candidates to evaluate at each
iteration. NH is set at the beginning of the process and maintained constant during the
optimization.

For each candidate vi,G the score is defined as the weighted sum of two criteria. The first
depends on the value of the objective function predicted by the surrogate, while the second
depends on the distances of candidates from the points already evaluated, for which the
objective function value is known. Criteria are combined in this way:

W (vi,G) = wRVR(vi,G) + wDVD(vi,G) (2.20)

where VR(vi,G) and VD(vi,G) are the scores, while wR and wD are the weights. Candidate
points with low values of W are preferred. VR is computed on the basis of the objective
function value provided by the surrogate. For the i-th candidate point vi,G, VR is defined
as:

VR(vi,G) = 1− exp

(
s2f

HbestHmin,s

)
(2.21)

where sf is the minimum of the quadratic approximation Ĥ, Hbest is the best value of the
objective function at the current iteration and Hmin,s is the minimum value of the function
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considering only the NS points selected for the calibration of the response surface. The
lower is the predicted value sf compared to the global or local optimum, the lower is the
score VR and the whole score W , hence the candidate will be preferred.

The score VD derives from distances of candidate points from the n points for which
the objective function has been already evaluated, starting from the beginning of the
optimization until the previous generation G − 1. For this reason, a database of all the
considered points, including both coordinates and the associated objective function value,
is created. For the i-th candidate vi,G, first the Euclidean distance d(vi,G,xp,G) from a
generic point xp,G is computed. The score VD is defined as:

VD(vi,G) = 1− ∆min

∆max

(2.22)

where ∆min and ∆max are the minimum and maximum weighted distance D(vi,G,xp,G),
respectively, whose expression is:

∆min = min
p=1,...,n

D(vi,G,xp,G) (2.23)

∆max = max
p=1,...,n

D(vi,G,xp,G) (2.24)

Two different formulations for the weighted distance have been proposed. The first one
defines it equal to the Euclidean distance:

D(vi,G,xp,G) = d(vi,G,xp,G) (2.25)

Alternatively, it can be defined also considering the objective function value:

D(vi,G,xp,G) = d(vi,G,xp,G)

√
Hbest

H(xp,G)
(2.26)

Hbest has already been defined in Eq. (2.21) and H(xp,G) is the evaluation for the p-th
vector xp,G. Preferred candidates are located far from the points already evaluated or in
an intermediate location. Consequently, it may be correct to select a point situated in
an unexplored region of the domain. Furthermore, if the formulation (2.26) is adopted,
the score VD increase if the candidate is close to a point with high value of the objective
function. On the other hand, if the point is far from points with a high objective function
value, the score VD as well as the whole score W decreases.

The weights wR and wD are chosen in the range [0; 1] provided that wR + wD=1. If wD

approaches 1, the global search has more influence than the local one, so candidates located
in an unexplored region of the parameter domain are preferred. Conversely, if the value of
wR is high, the local search is emphasized and preferred points have a low estimated value
of the objective function.

In this algorithm two different sets of weights are employed based on the convexity of the
response function. In case A (surrogate has a minimum and the minimizer of the response
function is the candidate for the subsequent generation) could be appropriate to investigate
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the region close to the optimal value predicted by the surrogate, so performing a local
search. A large value has to be assigned to the criterion based on the value predicted by
the surrogate (wR,A ≥ wD,A). The author set the weight value as wR,A=2/3 and wD,A=1/3
on the basis of the study conducted by Vincenzi and Gambarelli [169]. In case B (search
performed by the surrogate fails) global exploration of the domain is preferred and only
the distance criterion is maintained. Weights are fixed as wR,B=0 and wD,B=1.

2.3.6 Selection operation

Each vector ui of the G+1-th generation is compared to the vector xi,G of the previous
generation. ui,G+1 will be part of the new population if the associated objective function
value is lower than the value of H associated to xi,G. In this case, ui,G+1 substitutes xi,G,
otherwise xi,G remains member of the subsequent population. The selection operation is
analytically defined by the rule:

xi,G+1 =

{
ui,G+1 if H(ui,G+1) < H(xi,G)

xi,G if H(ui,G+1) ≥ H(xi,G)
(2.27)

with i=1,2,...,NP .

2.3.7 Convergence criteria

The first operation needed to evaluate if convergence is reached involves the ordering of
the vectors belonging to the G+1-th population on the basis of their objective function
value, following the relationship:

x̃1,G+1 ≺ x̃2,G+1 ≺ ... ≺ x̃NP,G+1 (2.28)

such that

H (x̃1,G+1) < H (x̃2,G+1) < ... < H (x̃NP,G+1) (2.29)

Convergence is reached when two conditions for the first NC vectors are simultaneously
satisfied:

� the relative difference among the objective function values associated to the first NC

vectors is lower than a predefined constant (V TR1);

� the relative distance among the same NC vectors is lower than a second constant
(V TR2).

These conditions are analytically expressed as:

∆H
i =

|H (x̃i,G+1)−H (x̃i+1,G+1)|
|H (x̃i,G+1)|

< V TR1 (2.30)

∆x
ij =

∥x̃i,G+1 − x̃i+1,G+1∥
∥x̃i,G+1∥

< V TR2 (2.31)
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The only check of the objective function value is not always sufficient, like in the case where
the objective function has small values of the gradient in the vicinity of the solution. For
this reason, convergence is deemed to be reached when also the distances among the first
NC vectors are sufficiently small. Constants V TR1 and V TR2 values are chosen according
to the complexity of the problem under consideration, namely the number of updating
parameters and the extension of the FE model. The number NC of vectors considered is
set to 4 for all the applications.

2.4 The San Prospero bell tower

In this section an example of FE model calibration is provided in order to show the whole
procedure of updating, to test the DE-S algorithm introduced in section 2.3 and to validate
its results by means of hand-operated computations. The structure under consideration
is the San Prospero bell tower. The updating of its FE model is based on the weighted
sum of frequency and mode shape residuals (Eq. (2.5)) for a given value of the weighting
factor, determined according to engineering judgment.

2.4.1 Description of the case study

The case study is represented by a bell tower located in Saint Prospero Square (Reggio
Emilia, Italy) next to the Basilica of Saint Prospero, an architectural evidence of baroque
style. The tower, characterized by an octagonal plan, dates back to the 1571 and lies on
the right side of the church façade (see Fig.2.4(a)).

The tower of Saint Prospero shows some constructive peculiarities. The masonry is com-
posed of two layers: the inner part, made up of brick and mortar with maximum thickness
of about 1.30 m, and a stone coating that encases the brick inner part and varies in thick-
ness between 0.08 m and 0.24 m. Problems were reported by historians about marble
covering and stones supplied from the nearby central Apennines and the combined use
of bricks and living stones for the structural walls. Moreover, the use of inhomogeneous
recycled material was also discovered in the lower part of the structure. Finally, some
concentrations of vertical load on the relatively thin stone coating and the discontinuity of
materials could be critical in the event of earthquakes with possible detaching phenomena
or breaks. Internally, two octagonal vaulted rooms are found (see Fig.2.4(b)). At the top
of the tower, the third room constitutes the bell cell, where five bronze bells are mounted
on a contemporary wooden castle, of the same age as the bells (Fig.2.4(c)). The five bells,
characterized by a weight ranging from 2.4 tons to 0.2 tons and major diameter between
1.5 m and 0.6 m, were established in 1796. Atmospheric and seismic events have caused
damage to the masonry tower across the centuries. Due to this damage, the sound of
bells was interrupted in 1822 to avoid further failures. Two main restorations were car-
ried out in 1840 and later in 1977. The latter constitutes a complete restoration works,
involving both the structures and the stone façades. Despite this, in the recent years some
detachments from the sandstone coating have been reported and, following such events, a
technical committee for the restoration has been nominated.
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(a) (b) (c)

Figure 2.4: The Tower of Saint Prospero in Reggio Emilia (Northern Italy): (a) picture of the
tower from the adjacent square, (b) internal geometry of the bell tower and (c) picture of the
major bell in its upside-down position during the traditional “suonata distesa”.

2.4.2 Ambient vibration test

The ambient vibration testing was carried out in July 2018 by measuring the structural
response of the tower in operational conditions, from which the modal properties of the
tower are estimated. Dynamic tests were performed adopting two types of accelerometer-
based acquisition systems: one relied on piezoelectric accelerometers and the other one
built on micro electro-mechanical systems (MEMS) technology. The first dynamic acqui-
sition system is composed of 12 uniaxial piezoelectric accelerometers PCB/393B12 with a
dynamic range of ±0.5 g (where g denotes the gravity acceleration), a bandwidth rang-
ing from 0.15 to 1000 Hz and a resolution of 8 µg. The accelerometers are connected to
a National Instruments acquisition system for data storage and management. The main
feature of this system is the high signal-to-noise ratio, which allows for a clear acquisition
of the structural response in operational conditions even when the excitation is low. On
the other hand, the analogic data transmission is very sensitive to external disturbance.
The MEMS-based acquisition system (SHM602, Teleco SpA manufacturing) is composed a
control and storage unit and six digital bus-connected sensing units, assuring a high degree
of reliability and prevention against electromagnetic interferences. Each sensing unit can
record the accelerations along two orthogonal axes as well as the temperature while the
sampling frequency can be chosen in the range 20-80 Hz. Thanks to local digital filtering
techniques and oversampling rates implemented, these units relied on MEMS sensors can
exhibit a noise floor of about 0.3-0.5 mg [73, 12]. Moreover, the possibility of performing
some system analyses directly on-board of the sensors allows transmitting only the pro-
cessed synthetic data to the main computer. The main drawback of this system lies in the
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limited frequency range, not suitable for very stiff structures. The higher dynamic range
associated to the low noise floor value makes the MEMS-based system a suitable tool for
the monitoring of tower accelerations during the bell concert. On the contrary, due to the
high signal-to-noise ratio of the piezoelectric accelerometers, the dynamic identification in
operational conditions is performed with reference to the accelerations measured from the
piezoelectric system.

The dynamic response of the tower is recorded simultaneously in seven points belonging
to five levels (L1-L5 in Fig. 2.5). In each measuring point (except for those at levels L1
and L5), two uniaxial piezoelectric sensors and a biaxial MEMS accelerometer are placed
in order to compare the accelerations acquired from the two measuring systems and to
measure valuable information in the measurement conditions. Level L1 is monitored using
only piezoelectric accelerometers (Fig. 2.6(a)), while the accelerometer M6 is placed on a
beam of the wooden frame that supports the bells (Fig. 2.6(e)). A total of 12 piezoelectric
accelerometers (A1-A12 in Fig. 2.6) and 6 MEMS accelerometers (M1-M6 in Fig. 2.6)
are employed. Except for the accelerometer M6, the others are installed on the inner
walls by means of metal plates and screws, as shown in Fig. 2.7. The layout of the
accelerometers has not been designed only to identify the main natural modes, but also to
compare the performances of the MEMS-based and the piezoelectric accelerometers and
to measure the structural response during a traditional concert of bells. Results of the
comparison between MEMS and piezoelectric accelerometers, which are not of interest for
this thesis, can be found in [35]. As far as the modal identification is concerned, the first
two bending (both in X and Y directions) and torsional modes could be identified thanks
to the sensors placed at levels L2 and L4 only. Sensors at levels L1 and L3 allow for a
more accurate definition of the tower deformation during the bell concert while the sensor
M6 is placed at level L5 to evaluate the displacements of the wooden frame supporting
the bells. The sampling frequency is set to 200 Hz and 80 Hz for the piezoelectric and the
MEMS accelerometers, respectively. Starting from the acquired accelerations, the modal
identification is performed through the enhanced frequency domain decomposition (EFDD)
method [139, 28]. The EFDD method is based on a singular value decomposition (SVD) of
the power spectral density (PSD) matrix of the acquired accelerations. The j-th natural
frequency is identified from the peak of the PSD graph while the singular vector of the
PSD matrix and the corresponding singular value represent, respectively, the j-th mode
shape and the amplification factor.

The identification procedure allows for a clear identification of the six natural modes listed
in Table 2.1, characterized by natural frequencies ranging from 1.38 Hz to 9.80 Hz. Fig.
2.8 shows a 3D representation of the corresponding mode shapes. The first bending modes
in Y (Fig. 2.8(a)) and X (Fig. 2.8(b)) direction are both identified at frequencies of about
1.4 Hz, due to the symmetry of stiffness in the two directions. However, because of the
walkway connecting the tower to the adjacent church, the structure is slightly stiffer in
X direction than in Y direction. The third natural mode (Fig. 2.8(c)) mainly involves
torsion of the tower while the fourth and fifth modes (Fig. 2.8(d) and 2.8(e)) are second
bending modes in X and Y direction, respectively. Finally, the sixth mode (Fig. 2.8(f))
exhibits deformation of the horizontal cross section at the tower mid-height. In Table 2.1,
this mode is referred to as “cylindrical”, meaning that the cross-section gets tight in one
direction and extends in the other one. This kind of deformation can be better observed
from the corresponding numerical mode (Fig. 2.8(f)). A full representation of the mode



Model updating: motivations and single objective approach 23

Figure 2.5: San Prospero bell tower: instrumented levels L1-L5..

Table 2.1: San Prospero bell tower: description of the experimental modes.

Mode number Mode type Experimental Frequency [Hz]

1 First bending - Y dir. 1.38
2 First bending - X dir. 1.44
3 Torsional 4.27
4 Second bending - X dir. 5.30
5 Second bending - Y dir. 5.36
6 Cylindrical 9.80

shapes can be found in Fig. 2.8, where the numerical mode shapes are presented.

2.4.3 FE model and calibration

A detailed FE model of the Saint Prospero bell tower (Fig. 2.9) is developed starting
from a 3D geometrical model created by the Geomatics research group of the University
of Modena and Reggio Emilia. Details about the creation procedure, that begins with
an integrated survey combining terrestrial laser scanning (TLS) and photogrammetry by
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(a) Level L1 (b) Level L2 (c) Level L3

(d) Level L4 (e) Level L5

Figure 2.6: San Prospero bell tower: layout of the piezoelectric (A1-A12) and MEMS-based
(M1-M6) accelerometers.

Figure 2.7: San Prospero bell tower: typical installation of piezoelectric and MEMS accelerom-
eters.
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(a) f1 = 1.39 Hz (b) f2 = 1.44 Hz (c) f3 = 4.27 Hz

(d) f4 = 5.30 Hz (e) f5 = 5.36 Hz (f) f6 = 9.80 Hz

Figure 2.8: San Prospero bell tower: experimental mode shapes.

means of an unmanned aerial vehicle (UAV), are found in [168].

As concerns the FE model, a simplified geometrical model is first built considering forty
sections of the detailed 3D model with a step size of 1 m and assuming a linear variation
of the geometry between following sections. After that, openings are modeled thanks
to the results of the geometrical survey. The simplified geometrical model is considered
rather than the detailed model developed starting from the integrated survey, as the latter
includes many architectural details which do not affect the structural behaviour but would
only increase the complexity of the meshing process as well as the computational cost. The
solid model is then imported in ABAQUS software and meshed using 10-node quadratic
tetrahedron to properly represent the wall and the vault thickness while the wooden roof
is modeled through an equivalent diaphragm highly deformable in its plane. Being the
mesh generated from a solid model, it presents the same accuracy over the whole thickness
of the structure. On the contrary, the mean size of the mesh changes where significant
modifications in the geometry occur. The masonry walkway connecting the tower to the
church is modeled in order to account for the interaction with the adjacent structures.

The tower is fixed at the ground level and at the end of the walkway. Although the walkway
is fixed at the end, the effects of the interaction between the tower and the adjacent church
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Figure 2.9: San Prospero bell tower: FE model of the structure.

are accounted for by assigning an equivalent elastic modulus to the walkway as shown
in the following. For the masonry elements, a linear elastic material with density equal
to 1800 kg/m3 is adopted, while the Young’s modulus and Poisson’s ratio are identified
through the tuning procedure described in the following. Finally, the bells are considered
as concentrated mass on the tower top elements.

Thanks to the geometric survey, physical dimensions of masonry elements and floors are
modeled with significant accuracy while the mechanical properties of the structural el-
ements are affected by higher uncertainties. The FE model is calibrated so that the
numerical frequencies and mode shapes of the tower agree as close as possible with the
experimental ones. To this aim, a set of unknown structural parameters is evaluated from
the minimization of an objective function representing the difference between numerical
and experimental modal properties. The objective function is defined by Eq. (2.5), where
the frequency eF and mode shape eM residuals are defined by Eqs. (2.1) and (2.2) with
γ=1, respectively. The same weight is adopted for the two residuals.

A sensitivity analysis showed that the structural parameters mainly influencing the dy-
namic behaviour of the tower are the Young’s modulus of the masonry walls EM and of the
walkway EW , the Poisson’s ratio of the masonry walls ν and the effective deep of the base
constraint L. As concerns this last parameter, it is highlighted that although the model
has been built considering the tower fixed at the ground level, the foundation of the tower
consists of the tower walls that continue below the ground level. Moreover, the simplified
assumption of ideal constraint at the base of a structure is rarely verified in real cases, due
to a complex interaction between the structure and the surrounding elements (in this case
the masonry foundation, several layers of the road stone paving placed during the centuries,
the effect of the soil below the tower, etc.). The effective deep of the base constraint L
represents an ideal height where the deformation and rotation of the tower can be assumed
negligible. For this reason, it may be also deeper than the effective base of the tower and
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Table 2.2: San Prospero bell tower: Identified structural parameters: Young’s modulus of the
masonry walls EM and of the walkway EW , Poisson’s ratio ν and effective deep L.

EM [106Pa] EW [106Pa] ν [-] L [m]

2430 255 0.43 1.55

it may not belong to the tower itself. The sensitivity of the first three numerical modes to
the structural parameter L is evaluated by repeating the modal analysis considering dif-
ferent models characterized by a different deep of the base constraint, and, consequently,
a different total height of the tower. From the results presented in Fig.2.10, it can be
observed that the minimum differences between experimental and numerical frequencies
are obtained for a deep L of about 1.5 m, while the mode shapes are barely affected from
this parameter. The Young’s modulus of the walkway EW is chosen to represent the effects
of the connection between the church and the tower. Fig. 2.11 shows that this parameter
mainly influences the natural frequency of mode no.2 and the mode shape of mode no.1
and 2 when EW is lower than about 200 MPa. The relative error of the second natural
frequency is minimum when EW is about 250 MPa. Finally, the Poisson’s ratio ν is ad-
justed to evaluate the correct shear modulus of the masonry walls. Figure 2.12 shows that
the natural frequencies of the first two modes are almost unaffected by the value of the
Poisson’s ratio ν while the third natural frequency is closer to the experimental one when
ν is equal to about 0.4.

The first three experimentally identified modes (modes 1-3 in Table 2.1) are considered
in the calibration procedure, adopting the same weights for frequency and mode shape
residuals (i.e., α = 0.5), whereas modes 4-6 are adopted for the purpose of validation of the
updated FE model. Indeed, as the higher modes are often identified with less accuracy than
the lower ones, minimizing the difference between experimental and numerical properties
for higher modes may prevent matching the lower vibration modes. The optimization
procedure is performed with the DE-S algorithm, described in section 2.3.

The identified structural parameters are listed in Table 2.2, while numerical and experi-
mental modes are compared in Table 2.3, and the numerical mode shapes are shown in
Fig. 2.13. The optimal value of the masonry elastic modulus EM is higher than the one
proposed by the Italian Codes [1] for masonry elements made of solid bricks and lime
mortar, which is expected to lie in the range [1200; 1800] MPa. Indeed, the tower walls
are composed of masonry elements covered by a stone layer and EM represents the elastic
modulus of an equivalent material with properties between the masonry and the stone. As
far as the calibrated modes (1-3) are concerned, a large agreement between numerical and
experimental modes can be observed, with frequency errors lower than 0.25%. A pretty
good match can be observed also for modes 4-6, stating the goodness of fit of the calibrated
model.
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Figure 2.10: San Prospero bell tower: variation of (a) the frequency relative error and (b) the
MAC value with the parameter L.
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Figure 2.11: San Prospero bell tower: variation of (a) the frequency relative error and (b) the
MAC value with the parameter EW .
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Figure 2.12: San Prospero bell tower: variation of (a) the frequency relative error and (b) the
MAC value with the parameter ν.

Table 2.3: San Prospero bell tower: comparison between experimental and numerical modes

Mode number Exp. Freq. [Hz] Num. Freq. [Hz] Freq. Error [%] MAC [%]

1 1.38 1.383 0.25 98
2 1.44 1.438 -0.14 100
3 4.27 4.263 -0.17 97
4 5.30 5.790 9.24 77
5 5.36 5.668 5.74 97
6 9.80 9.852 0.53 84

2.5 Concluding remarks

In this chapter, some of the main aspects related to model updating have been presented.
The theme has been assessed both from the physical and the numerical point of view.
About the latter, section 2.3 has been dedicated to the description of an optimization
algorithm specifically developed for the calibration of FE models, named DE-S. It combines
the robustness of the evolutionary algorithms with the RS methodology and a proper infill
sampling strategy, that allow an improvement of the speed performance without neglecting
the accuracy in the search of the solution.

An example of model updating has been provided in section 2.4, where the model of the San
Felice sul Panaro bell tower is calibrated with respect to the experimental modal properties
determined thanks to an ambient vibration test. In the author’s opinion, the example is
particularly interesting for the extension and the complexity of the FE model. Indeed,
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(a) Mode no.1 (b) Mode no.2 (c) Mode no.3 (d) Mode no.4 (e) Mode no.5 (f) Mode no.6

Figure 2.13: San Prospero bell tower: numerical mode shapes.

the detailed three-dimensional model has been built starting from an integrated survey
combining terrestrial laser scanning and photogrammetry by means of an unmanned aerial
vehicle. The calibration of the model has been performed with the DE-S algorithm and
its results have been then validated by a sensitivity analysis showing the variation of the
frequency error and of the MAC value with the updating parameters.



Chapter 3

Multi-objective optimization
approach for model updating

The single-objective approach described in chapter 2 is traditionally the most diffused in
the structural engineering context since it is easily understandable and it can be promptly
solved. Furthermore, the weighting factor represents a quantitative measure of the impor-
tance of the modal properties in the optimization process. The choice of the weighting
factor is a challenging problem: if it is not carried out in a proper way, unbalanced results
in terms of frequency and mode shape residuals can be obtained at the end of the updat-
ing process. This is especially true when the updated parameters may vary significantly
according to the chosen weighting factor.

The main approaches to the weight selection found in literature are discussed in section
3.1. The more general approach, based on the resolution of a multi-objective optimization
problem and the selection of the preferred solution with specific criteria, is described in
section 3.2. The robustness of the selection criteria previously introduced is assessed with
specific tests, whose description is found in section 3.3. In the same section, the case studies
considered for the execution of the tests are illustrated.

A direct procedure for the selection of the preferred solution is presented in section 3.4.
This is developed in order to alleviate the computational effort of the classical procedure,
consisting of the resolution of a multi-objective optimization problem. Finally, the direct
and the classical procedure are compared in section 3.5 considering the calibration of the
FE model of the San Felice sul Panaro fortress, an historical masonry structure that was
severely damaged by the seismic event that occurred in 2012 in the Emilia-Romagna region.

3.1 Weight selection approaches

Different approaches to the weight selection have been proposed and a possible classifica-
tion can be founded on whether the selection is carried out before the updating (a priori
approach) or if it is part of the optimization process or a subsequent operation (a posteriori
approach).

The possibility to fix a priori the weight value implies an obvious rapidity in the problem
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resolution. The first approach of this kind involves engineering judgement for the weight
selection according to the specific problem under examination. For example, the calibration
of the FE model of the San Prospero bell tower, presented in section 2.4, has been performed
with the same weights for both frequency and mode shape residuals. This approach may
conduct to very unbalanced results if insufficient attention is paid to relative magnitude
between residuals or if the variability of residuals is not well known, though. Teughels and
De Roeck [162] set the mode shape weight as one tenth of the frequency weight because of
the high number of mode shape residuals compared to the frequency residuals. Vincenzi
and Savoia [170] set the mode shape weight equal to one hundredth of the frequency weight
due to the high variability of the mode shape residuals. In this regard, the appropriate
balance can be obtained with a trial-and-error approach modifying iteratively the weighting
factor. Numerous runs could be needed to reach the aim and the rapidity of the method
would be compromised.

The weighting factor denotes the confidence degree attributed to the measured data avail-
able. For this reason, when information about the measurement accuracy is available,
weights can be taken inversely proportional to modal property standard deviation, which
yields to the optimal estimate at least for linear prediction models following the Gauss-
Markov theorem [14]. In practice, statistical characterization of identified modal properties
is complex to compute [144] and not always available [162].

Following the interpretation of weight as a confidence measure, another rational choice
is to select the weights to be inversely proportional to the values of the corresponding
residual, so that a modal property with small residuals has a larger weight compared
to another property with higher residuals. Since the residuals are not known before the
calibration for a given weighting factor, the selection must be carried out simultaneously
with the updating in a nested optimization problem, like in the procedure proposed by
Christodolou et al. [42]. Finally, the more general approach involves the application of a
multi-objective optimization scheme, that allows to minimize more objectives at the same
time, frequency and mode shape residuals in the cases examined in this thesis. The weight
selection is performed a posteriori among the multiple solutions of the multi-objective
optimization problem, constituting the so-called Pareto front, which have been computed.
In the following section, the relationship between weights and solutions of the front will be
explored and criteria for the selection of the preferred solution introduced.

3.2 Bi-objective optimization for model updating

The framework of multi-objective optimization is described with reference to two objectives.
The discussion does not loss generality and, in addition, results can be easily represented in
two-dimensional plots. However, the same considerations can be drawn considering more
than two objectives. The bi-objective optimization problem reads:{

min{e1(x), e2(x)}
x ∈ S

(3.1)
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where x is the n× 1 vector containing the calibration parameters, S ⊂ Rn denotes the set
of feasible solutions in the decision space and ei is the i-th objective defined as:

ei : S 7→ R, i = 1, 2 (3.2)

In problems involving experimental data the objectives are conflicting, meaning it is not
possible to improve one objective without worsening the other, because of the presence of
measurements and modelling errors influencing the problem resolution. Then, the resolu-
tion of the optimization problem gives rise to a set of optimal solutions forming the Pareto
front, i.e., the set of feasible non-inferior solutions that are not dominated by other solu-
tions. A generic solution xA is said to dominate the solution xB if the following conditions
are observed:{

ei(xA) ≤ ei(xB), for i = 1, 2

ei(xA) < ei(xB), for at least one index i
(3.3)

Hence, a parameter vector x∗ is a Pareto-optimal solution if there does not exist another
vector that dominates x∗ according to Eq.(3.3). A Pareto-optimal solution is a global
optimum because Eq.(3.3) applies over the whole feasible set of the problem. In the case of
vibration-based modal updating, the objectives e1 and e2 can be defined as the frequency
eF and mode shape eM residuals. Their expression has been introduced in chapter 2 with
Eq. (2.1) for eF and Eqs. (2.2) and (2.3) as possible alternatives for eM .

Resolution procedures for multi-objective optimization are numerous and diversified on the
basis of the function and the method used to promote solution diversity. A review of the
principal genetic algorithms developed for this aim is found in [103]. In this work, the
weighted sum method already presented is employed to solve the multi-objective optimiza-
tion problem. Defining the single objective function H as the weighted sum of frequency
and mode shape residuals (Eq. (2.5)) the problem reads:{

minH(x)

x ∈ S
(3.4)

Depending on the value of the weighting factor, the optimization procedure can lead to
different results because of the uncertainties affecting the measurements and the numerical
model. The set of Pareto-optimal solutions can be generated solving the optimization
problem for different values of the weighting factor. Although the well-known drawback
related to the difficulty in the determination of a set of weights able to generate a uniform
distribution of Pareto solutions, the author has decided to implement this method for its
strict connection with the subject of the chapter.

Regardless of the resolution procedure, once the Pareto front is generated, a decision is
still needed to find the preferred solution among the optimal solutions of the front. At the
same time the weight selection is performed, given the relationship between weights and
solutions. The importance of the decision is very meaningful when values of the parameters
contained in the parameter vector x are different among the solutions that form the Pareto
front. The preferred solution is selected on the basis of additional, qualitative, experience-
driven and sometimes subjective, requirements. Indeed, the preferred solution cannot be
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Figure 3.1: Criterion A: minimum distance from the equilibrium point.

identified as the one corresponding to the minimum value of H because different objective
functions H (defined with different values of α) cannot be compared.

In the following, some criteria proposed in literature to define the preferred solution among
those forming the Pareto front are described. These are the minimum distance from the
equilibrium point [7, 52], the maximum bend angle [92], the fuzzy satisfying approach [113]
and the maximum distance from the boundary line [49].

3.2.1 Criterion A: minimum distance from the equilibrium point

The best solution is identified as the point of the Pareto front characterized by the minimum
distance from the equilibrium point Q of the objective function space (see Fig. 3.1). In
this point, both objectives exhibit their optimal values independently on the other one,
so its coordinates are (emin

F , emin
M ). It is a hypothetical point that does not belong to the

Pareto front. Hence, the point of the front closer to the equilibrium point ensures the best
compromise between frequency and mode shape errors. The distance of a generic solution
k from the equilibrium point is expressed as:

d(k,Q) =
√

[eF (k)− emin
F ]2 + [eM(k)− emin

M ]2 (3.5)

3.2.2 Criterion B: maximum bend angle

The best solution is identified as the point of the Pareto front characterized by the max-
imum bend angle. For this solution, a large sacrifice S is needed to make a small gain
G moving to any other solution. The bend angle β of a generic solution k of the Pareto
front depends on the slopes of the two lines connecting k with its adjacent left and right
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Figure 3.2: Criterion B: maximum bend angle.

neighbours (Fig. 3.2). The bend angle of the k-th solution is computed as:

β(k) = βL − βR (3.6)

where:

βL = arctan
eM(k + 1)− eM(k)

eF (k)− eF (k + 1)
(3.7)

βR = arctan
eM(k)− eM(k − 1)

eF (k − 1)− eF (k)
(3.8)

k + 1 and k − 1 are respectively the left and right solution of the considered point k.

3.2.3 Criterion C: fuzzy satisfying approach

The best possible solution is the one that can provide a win-win strategy between the
conflicting objective functions. First, the fuzzy membership of each objective function,
that maps it to the interval [0,1], is determined. The linear membership function of eF and
eM for the k-th solution is expressed as:

Φk,eF =


1 if eF (k) ≤ emin

F
eF (k)−emax

F

emin
F −emax

F
if emin

F ≤ eF (k) ≤ emax
F

0 if eF (k) ≥ emax
F

(3.9)

Φk,eM =


1 if eM(k) ≤ emin

M
eM (k)−emax

M

emin
M −emax

M
if emin

M ≤ eM(k) ≤ emax
M

0 if eM(k) ≥ emax
M

(3.10)
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In Eqs.(3.9) and (3.10), emin
F and emin

M are the minimum values of the objective functions,
while emax

F and emax
M are the maximum ones. Φk,eF and Φk,eM express how optimal the k-th

solution would be for the objectives eF and eM , respectively. The membership function of
the k-th solution is:

Φk = min(Φk,eF ,Φk,eM ) (3.11)

The best possible solution of multi-objective optimization model is the solution with the
weakest membership function.

Φmax = max(Φ1, ...,Φk, ...,Φz) (3.12)

where z is the number of points that form the Pareto front.

3.2.4 Criterion D: maximum distance from the boundary line

Given a Pareto front, the two extreme points P1 and P2 (Fig. 3.3) are used to construct
the boundary line L(P1, P2):

eM = meF + q (3.13)

where:

m =
eM(P2)− eM(P1)

eF (P2)− eF (P1)
(3.14)

is the slope of the boundary line, and:

q = eM(P1)−meF (P1) (3.15)

is the intercept for eF = 0. The best solution is identified as the point with the maximum
distance from the boundary line (Fig. 3.3). The distance of the solution k from the
boundary line is expressed as:

d(k, L) =
|eM(k)− [meF (k) + q]|√

1 +m2
(3.16)

3.3 Assessment of the selection criteria robustness

Three different tests are designed to evaluate the robustness of the selection criteria with
respect to the variability of the optimization algorithm (test I), the choice of the weighting
factor range (test II) and the definition of the objective function (test III). The optimization
process is carried out adopting the DE-S algorithm (section 2.3).

This section first presents three numerical case studies specifically designed to assess the
robustness of the four selection criteria described in 3.2.1, 3.2.2, 3.2.3 and 3.2.4. For
each case study, a set of geometrical and mechanical parameters is defined and the modal
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Figure 3.3: Criterion D: maximum distance from the boundary line.

Selection criterion Description

A Minimum distance from the equilibrium point
B Maximum bend angle
C Fuzzy satisfying approach
D Maximum distance from the boundary line

Case study Description

1 Plane frame with three floors and one bay
2 Simply supported beam with damage at a given location
3 3-D scale-model frame with a damaged pair of braces

Test Description

I Variability of the optimization algorithm
II Choice of the weighting factor range
III Different definitions of the mode shape residuals eM

Table 3.1: Summary of selection criteria, case studies and tests.

analysis of the structure is performed to obtain the exact values of natural frequencies and
mode shapes. In real applications, the optimization process is performed with reference
to the experimentally identified modal properties, which unavoidably differ from the exact
ones. Hence, pseudo-experimental modal properties are defined and assumed as reference
values in the optimization process. These are obtained by varying up to 3.8% and 16% the
exact values of natural frequencies and mode shape components, respectively.

Next, results of the three tests are illustrated. Test I and II are performed for all the
case studies, while test III is performed only for case study 1 and 2. Table 3.1 presents a
summary and a brief description of the different selection criteria, case studies and tests.
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Figure 3.4: Case study 1: layout of the structure.

Floor N. 1 2 3

Height of columns h [m] 4.1 2.4 2.8
Section of columns [m2] 0.3 x 0.45 0.3 x 0.45 0.3 x 0.45
Young’s modulus E [GPa] 30 30 30
Mass m [1× 103kg] 41.0 16.0 16.0

Table 3.2: Case study 1: geometrical and mechanical parameters.

3.3.1 Case study 1

The first case study is a shear-type plane frame composed of three floors and one bay (Fig.
3.4). The structure has three degrees of freedom (DOFs) in total, which are the horizontal
displacements of the three floors. The columns are modelled as Euler-Bernoulli elements.
The distributed masses of the structure are represented as concentrated masses at floor
levels.

In Table 3.2, the geometrical and mechanical parameters of the structure are listed. The
corresponding modal properties and the pseudo-experimental values, assumed as reference
values in the optimization process, are reported in Table 3.3.

Mechanical parameters to be identified with reference to pseudo-experimental values are
the mass concentrated at the first floor level m1 and the height of the first floor h1. The
unknown parameters are searched imposing the following constraints:

m1 +m2 = 57 · 103kg (3.17)

h1 + h2 = 6.5m (3.18)

while values of m3 and h3 are known values. The parameter m1 is searched in the interval
[5; 55] 103kg while h1 in the interval [1.3; 4.8] m.
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Exact Pseudo-experimental

Mode N. 1 2 3 1 2 3

Frequency [Hz] 2.794 10.231 19.999 2.797 10.590 20.059

Mode shape ϕ1 0.8537 -0.5063 -0.2350 0.8023 -0.5131 -0.2102
component ϕ2 0.9340 0.1151 1.0000 0.9639 0.1040 1.0000

[−] ϕ3 1.0000 1.0000 -0.4200 1.0000 1.0000 -0.3519

Table 3.3: Case study 1: exact and pseudo-experimental modal properties. Mode shapes are
normalized to their maximum entry.

Fig. 3.5 shows that the first two natural frequencies are very sensitive to variations of
the structural parameters m1 and h1. The same goes for the third natural frequency, not
presented here for the sake of brevity. The optimal values of m1 and h1 obtained from
the minimization of the objective function H (defined in Eq.(2.5)) for different values of
the weighting factor α are presented in Fig. 3.6. The identified parameters show small
variations with the weighting factor α. Indeed, variations of m1 and h1 produce significant
variations in the natural frequencies and consequently increasing values of the frequency
residuals eF , while the mode shape residuals eM remain almost the same (not presented
here). This causes increasing values of the objective function H, implying that the optimal
values of m1 and h1 are almost the same independently on the weighting factor α.
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Figure 3.5: Case study 1: trend of the first (black line) and second (red line) natural frequency
with the structural parameter (a) m1 and (b) h1.
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Figure 3.6: Case study 1: trend of the structural parameter m1 (black line) and h1 (red line)
with the weighting factor α.

3.3.2 Case study 2

The second case study is a simply supported beam that presents damage at a given location.
The beam is discretized in an high number of elements that are 0.1 m length and the damage
is located at a distance yd from the left end, as highlighted in Fig. 3.7. The elements are
Eulero-Bernoulli 2-node plane beams where each node has vertical displacement and in-
plane rotation as DOFs. Mass is concentrated at nodes obtaining a lumped mass matrix.

The presence of cracks in a structural member introduces local flexibilities, so modifying its
dynamic behaviour. The changes of dynamic characteristics (frequencies and mode shapes)
can be measured and subsequently used for damage detection. With the assumption that
the crack in a structural element is open and remains open during the vibrations, the dam-
age can be simulated by the reduction of the elastic modulus of the damaged element. The
linear elastic cracked beam model is a very simplified theoretical case-study, the dynamic
behaviour of a cracked beam being usually heavy non-linear, varying also in positive and
negative bending oscillations. Nevertheless, even if simpler than real cases, this bench-
mark is of interest because it shows the impact of the weighting factor on the results and
proves the importance of expressively accounting for mode shapes in the objective func-
tion. Therefore, and differently from the first example, a multi-objective optimization is
required to identify the damage in the beam.

Table 3.4 sums up the values of the geometrical and mechanical parameters of the structure.
The corresponding modal properties and the pseudo-experimental properties, assumed as
reference values in the optimization process, are reported in Table 3.5. As regards mode
shapes, only displacements of nodes located every 0.5 meters from the left support are
considered in the updating process, hence only these one are reported in Table 3.5. In
Table 3.5, ϕ1,...ϕ8 indicate the mode shape components measured in point 1 − 8 of Fig.
3.7.

The mechanical parameters to be identified are the reduction factor rd and the position of
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Figure 3.7: Case study 2: layout of the structure.

Total length L [m] 4.5
Dimension of the cross section [m2] 0.3 x 0.4
Undamaged elastic modulus Eund [GPa] 30
Reduction factor rd [-] 0.2
Position of the damage yd [m] 1.25
Mass density ρ [kg/m3] 2500

Table 3.4: Case study 2: geometrical and mechanical parameters.

Exact Pseudo-experimental

Mode N. 1 2 1 2

Frequency [Hz] 29.5075 115.3368 30.6412 118.9535

ϕ1 0.3649 0.6219 0.3368 0.5923
ϕ2 0.6914 1.0000 0.6401 0.9205

Mode ϕ3 0.9114 0.8583 0.8766 0.8436
shape ϕ4 1.0000 0.2614 1.0000 0.3641
comp. ϕ5 0.9795 -0.4138 0.9666 -0.3538
[−] ϕ6 0.8504 -0.8902 0.8329 -0.8846

ϕ7 0.6263 -0.9692 0.6093 -1.0000
ϕ8 0.3318 -0.6210 0.3213 -0.6487

Table 3.5: Case study 2: exact and pseudo-experimental modal properties. Mode shapes are
normalized to their maximum entry.
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the damaged element yd. rd is searched in the interval [0.01; 1.50] while yd in the interval
[0.05; 4.45] m.

The trend of the first two natural frequencies with the calibration parameters rd and yd
is shown in Fig. 3.8. In this case, natural frequencies are very sensitive to values of the
reduction factor rd in the range [0; 0.25], while for values larger than 0.25 the variation is less
pronounced. Also the position of the damaged element yd affects the first two frequencies.
It is possible to observe that values of both frequencies are the same for symmetrical
positions of the damaged element with respect to mid-span (in this example the first for yd
and the second for L−yd). As a matter of fact, in the perfect (exact) identification problem,
if only the natural frequencies are selected in the definition of the objective function H
(for instance after paired the correct experimental and numerical natural frequencies by
the Modal Assurance Criterion), two minima with the same objective function value would
be found. Therefore, the identification of the correct damage location is not possible. In
the case of experimental data, one of the two optima is slighting preferred, depending
on the errors between the experimental and numerical natural frequencies. As depicted
in Fig. 3.9, this case study shows a large variation of the optimal position yd with the
weighting factor α, while the optimal value of the reduction factor rd is less sensitive to α.
In particular, when α is larger than 0.58, the identified value of yd is very different from the
exact (expected) value. This is due to the negligible contribution of the mode shapes to
the objective function H. On the other hand, when α is lower than 0.58, the predominant
contribution of mode shapes ensure that the optimal parameter is close to the expected
value.

In Fig 3.10 contour plots of the objective function H for 3 values of the weighting factor
α are shown. For α = 0.15 the global minimum is easily recognizable (see Fig. 3.10(a)).
When α moves toward 0.58 the values of H corresponding the two minima are very close,
as reported in Fig. 3.10(b) for α = 0.55, but the global minimum is still in the same area
of the case with α = 0.15. For values of α larger than 0.58, the global minimum moves
close to the right end (Fig. 3.10(c)) and the identification of the correct damage position
fails.

3.3.3 Case study 3

The third case study is a steel braced frame, employed as benchmark problem for Structural
Health Monitoring (SHM) purposes by the IASC-ASCE SHMTask Group in the early 2000s
[56, 55]. The structure has four stories with an overall height of 3.6 m and a 2-bay by 2-bay
plan of dimension 2.5 m × 2.5 m. The structural elements are composed of columns, floor
beams and braces, while each floor is composed of four slabs, one for each bay. Fig.3.11
shows the schematic front view of a generic structure side. It remains the same for all the
four sides except for the column orientation. The latter is presented in the schematic plan
view of the first floor (Fig.3.12), where it is also highlighted the numeration of the braces.
Further details about the properties of the structural element sections, that are unusual
because they have been designed for a scale model, and the values of the floor masses can
be found in [93].

The modal properties of the frame are generated by using a FE model with 12 DOFs in
total. Each floor moves as rigid body with three DOFs, the translations u and v along
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Figure 3.8: Case study 2: trend of the first (black line) and second (red line) natural frequency
with the structural parameter (a) rd and (b) yd.
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Figure 3.9: Case study 2: trend of the structural parameter rd (black line) and yd (red line)
with the weighting factor α.
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Figure 3.10: Case study 2: Contour plot multiplied by a factor 104 of the objective function H
for (a) α =0.15, (b) α =0.55 and (c) α =0.75.

the x and y directions, respectively, and the rotation θ around the vertical axis. The
columns are modelled as Euler-Bernoulli elements and the braces as truss elements. The
connections among columns and floor beams are able to transfer the bending moment. The
authors used a MATLAB based FE code, released by the IASC-ASCE SHM Task Group
and available at the web site http://datacenterhub.org/, in order to compute mass and
stiffness matrices. The code provides the implementation of a lumped mass matrix.

The model updating involves the identification of the stiffnesses of the first floor braces
with reference to a damaged state of the structure. Indeed, the axial stiffness of the pair
of braces N.3-N.4, located at the first floor on the East side, is reduced of the 25 %. The
exact and pseudo-experimental values of the modal properties are presented in Table 3.6.

http://datacenterhub.org/
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Figure 3.11: Case study 3: schematic front view of the structure. Dimensions expressed in
meters.

Figure 3.12: Case study 3: schematic plan view of the first floor.

The parameters to update are the four stiffness multipliers ri (i = S,E,N,W ) for the pairs
of braces located at the first floor on the South, East, North and West side, respectively.
Reference is made to Fig.3.12 for the disposition of the braces with respect to the coordinate
system Oxy. All the parameters are searched in the interval [0.50; 1.50].

Fig.3.13 shows the trend of the updated parameters rE and rW with the weighting factor
α. For very low values of α the solution of the optimization problem does not represent the
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Exact Pseudo-experimental

Mode N. 1 2 3 1 2 3

Frequency [Hz] 9.1829 11.7913 16.2092 9.2019 11.7610 16.2145

ϕu,1 0 0.3785 0 0 0.3854 0
ϕv,1 0.4053 0 0.0253 0.3670 0 0.0239

Mode ϕθ,1 0.0172 0 0.3890 0.0151 0 0.3602
shape ϕu,2 0 0.6898 0 0 0.6820 0
comp. ϕv,2 0.7040 0 -0.0081 0.6612 0 -0.0051
[−] ϕθ,2 0.0196 0 0.6949 0.0168 0 0.6899

ϕu,3 0 0.9068 0 0 0.8954 0
ϕv,3 0.9113 0 -0.0383 0.9040 0 -0.0349
ϕθ,3 0.0211 0 0.9080 0.0184 0 0.9032
ϕu,4 0 1.0000 0 0 1.000 0
ϕv,4 1.0000 0 -0.0529 1.0000 0 -0.0475
ϕθ,4 0.0218 0 1.0000 0.0189 0 1.0000

Table 3.6: Case study 3: exact and pseudo-experimental modal properties. Mode shapes are
normalized to their maximum entry. Subscript numbers denote the floor number.

reference damaged state. Indeed, for this solution, the braces on the East side (N.3-N.4)
are identified as undamaged and those on the West side (N.7-N.8) are characterized by a
stiffness increment. Mode shapes of this state of the structure are very similar to those
of the reference damaged state considered for the generation of the pseudo-experimental
data. For this reason, when the contribution of mode shape residuals in the optimization
process is predominant, the previous solution can be obtained. On the contrary, there is
a discrepancy among the natural frequencies of these two states. Consequently, for larger
values of α, when the contribution of frequency residuals becomes significant, a solution
close to the reference damaged one is found.

3.3.4 Test I

Test I consists in the resolution for 100 times of the same optimization problem to assess
the robustness of the selection criteria to the variability of the optimization algorithm.
The algorithm is based on a stochastic research, so it can produce small differences in the
definition of the Pareto front at each repetition. The aim of the test is to evaluate if these
differences affect the choice of the preferred solution among those forming the Pareto front.
This is assessed through the statistics of the results obtained from the 100 resolutions in
terms of weighting factor and structural parameters corresponding to the preferred solution.
For each quantity, the mean value and the coefficient of variation (CV) are reported. Table
3.7, 3.8 and 3.9 present the results of case study 1, 2 and 3, respectively.

Results show that, for all the case studies, the optimal weighting factor α estimated from
the criterion B is highly influenced by the variability of the optimization algorithm, being
it characterized by coefficients of variation higher than 20%. This is because results of
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Figure 3.13: Case study 3: trend of the structural parameter rE (black line) and rW (red line)
with the weighting factor α.

Criterion
α m1 h1

Mean CV Mean CV Mean CV
[-] [%] [103kg] [%] [m] [%]

A 0.386 1.3 41.0 0.02 4.13 0.004
B 0.610 26.4 40.7 0.53 4.13 0.131
B* 0.260 12.3 41.3 0.23 4.13 0.005
C 0.220 0.6 41.4 0.02 4.13 0.004
D 0.286 2.1 41.2 0.03 4.13 0.003

Table 3.7: Case study 1: results of test I.

Criterion
α rd yd

Mean CV Mean CV Mean CV
[-] [%] [-] [%] [m] [%]

A 0.370 10.4 0.373 0.2 1.450 0.0
B 0.452 32.3 0.359 4.5 2.076 49.0
B* 0.571 15.9 0.364 2.2 2.486 47.8
C 0.159 4.3 0.323 1.7 1.765 1.4
D 0.199 6.1 0.334 0.8 1.750 0.0

Table 3.8: Case study 2: results of test I.
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Criterion
α rS rE rN rW

Mean CV Mean CV Mean CV Mean CV Mean CV
[-] [%] [-] [%] [-] [%] [-] [%] [-] [%]

A 0.300 0.0 0.98 0.0 0.81 0.0 0.98 0.0 1.05 0.0
B 0.696 20.7 0.98 0.0 0.78 0.8 0.98 0.0 1.00 0.7
B* 0.477 13.7 0.98 0.0 0.79 0.6 0.98 0.0 1.02 0.6
C 0.126 15.3 0.99 0.1 0.88 1.2 0.99 0.1 1.13 1.1
D 0.141 46.4 0.99 0.1 0.88 2.5 0.99 0.1 1.12 2.3

Table 3.9: Case study 3: results of test I.

criterion B are significantly affected by inaccuracies of the optimization algorithm in the
definition of the Pareto front, that may cause sharp changes of slope, and consequently of
the bend angle β, between following points. In addition, due to these inaccuracies, a point
of the front can be found above the line connecting the previous and following point, as
shown in Fig. 3.14, causing a negative bend angle β.

For this reason, a curve fitting of the Pareto front is introduced in the criterion B. For all
the case studies, the curve that fits the discrete points of the Pareto front is defined as a
power model of equation:

y(x) = axb + c (3.19)

where a, b and c are the model coefficients. The curve fitting allows avoiding the sharp
changes of slope of the Pareto front, although the fitted curve does not exactly represent
the Pareto front but its average trend. The goodness of the fit is guaranteed by the analysis
of the coefficient of determination (R2) and of the sum of squares of residuals (SSR) for
every fitting model. Considering the 100 repetitions of the optimization problem, mean
value and coefficient of variation can be computed for each indicator. The mean values
of R2 are equal to 0.96, 0.98 and 0.99 for case study 1,2 and 3, respectively. In the same
order, the mean values of SSR are 2.3·10−7, 9.5·10−8 and 1.12·10−8, that are low if it is
considered that the order of magnitude of the fitted function is 10−3 for case study 1 and
10−4 for case study 2 and 3. Coefficients of variation for both indicators are small in all
the case studies.

The application of the maximum bend angle criterion to the fitting of the Pareto font is
denoted as criterion B*. Figs. 3.15(a) and 3.15(b) show the values of β corresponding to
the points of the Pareto front shown in Fig. 3.14 obtained from the criterion B and B*,
respectively. The adoption of the criterion B* allows smoothing the trend of β with α and
avoiding negative values of β, although some sharp changes of slope can still be found.
These are due to the non-uniform spacing of eF , and, consequently, to a non-uniform
spacing for the computation of β. Indeed, the fitting of Pareto front is built by calculating
the fitted values of eM , according to Eq.(3.19), from the values of eF of the points forming
the Pareto front, which are not equally spaced.

Tables 3.7, 3.8 and 3.9 show that the coefficient of variation of α obtained from criterion B*
is lower than the one obtained from criterion B, although it is still a large value compared



Multi-objective optimization approach for model updating 49

5 10 15 20 25
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

(a) (b)

Figure 3.14: Case study 1: (a) Pareto front obtained from one of the 100 iterations with α step
size 0.02 and (b) detail of the point characterized by a negative value of β. Black dots: points
of the Pareto front. Red line: line connecting neighbouring points. Dashed black line: expected
Pareto front.

to most of results related to criteria A, C and D. As far as case study 1 is concerned, the
variability of α does not affect the values of the identified parameters, which are almost
insensitive to the weighing factor values (see Fig. 3.6). On the contrary, the identified
position of the damaged element yd in the case study 2 strongly depends on the weighting
factor α (see Fig. 3.9). The position spans from 1.450 m for criterion A to 2.486 m for
criterion B*. Criterion A provides the value of yd closer to its exact value, namely 1.250 m.
However, as the optimization is performed with reference to the pseudo-experimental modal
properties, the identified structural parameters are not necessarily as close as possible to
their exact values. Hence, a direct comparison between the estimated structural parameter
and its exact value is not an indication of the quality of the identified optimal solution. To
evaluate the quality of the optimization in terms of identified structural parameters, the
analysis should be repeated considering different pseudo-experimental modal properties
and evaluating the mean value of the estimated parameter.

As concerns case study 3, where the variation of parameters is less pronounced compared
to case study 2 but not negligible (see Fig. 3.13), also results of criteria C and D are char-
acterized by an high variation, especially the weighting factor. On the contrary, criterion
A is very stable also for this case study.

In summary, test I shows that results of the criterion A are almost unaffected by the
variability of the optimization algorithm, while criteria B and B* are highly sensitive to
this variability for all the cases examined. Criteria C and D are stable in the first two case
studies but show drawbacks in the last one.
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Figure 3.15: Case study 1: values of the bend angle β obtained from (a) criterion B and (b)
criterion B* performing the optimization with α step size 0.02.

Selection Case study 1
criterion Preferred α[−] m1 [103kg] h1 [m]

A 0.35-0.39 41.0-41.1 4.13-4.13
B 0.50, 0.92 40.8, 40.3 4.13, 4.15
B* 0.18 41.6 4.13
C 0.14-0.23 41.4-41.8 4.13 -4.13
D 0.17-0.31 41.1-41.6 4.13 -4.13

Table 3.10: Case study 1: results of test II.

3.3.5 Test II

Test II aims at evaluating how the choice of the weighting factor range for the definition
of the Pareto front affects the selection of the preferred solution. For each case study,
nine Pareto fronts are defined starting from a reference front generated adopting weighting
factors in the range 0.01-0.99, with step size 0.01. Each front differs from the others in at
least one extremity of the weighting factor range. Possible values for the inferior extremity
are 0.01, 0.05 and 0.10, while for the superior extremity are 0.90, 0.95 and 0.99. These
nine fronts are subsets of the reference front obtained disregarding some extremity points
when the corresponding weighting factor α is not included in that range. In this way, the
variability of the optimization algorithm treated in section 3.3.4 does not affect the results
of the test.

The different selection criteria are applied to the nine Pareto fronts obtaining, for each
criterion, nine preferred solutions and corresponding weighting factors α. Tables 3.10,
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Selection Case study 2
criterion Preferred α[−] rd[−] yd[m]

A 0.33-0.39 0.37 1.37
B 0.56 0.37 1.26
B* 0.59 0.33 3.64
C 0.15-0.26 0.30-0.36 1.53-1.76
D 0.18-0.31 0.33-0.37 1.42-1.65

Table 3.11: Case study 2: results of test II.

Selection Case study 3
criterion Preferred α[−] rS [-] rE [-] rN [-] rW [-]

A 0.30-0.33 0.98-0.99 0.81 0.98-0.99 1.04-1.06
B 0.61 0.98 0.78 0.98 1.01
B* 0.59 0.98 0.78 0.98 1.01
C 0.12-0.22 0.99 0.83-0.88 0.99 1.07-1.13
D 0.12-0.35 0.98-0.99 0.80-0.88 0.99 1.04-1.13

Table 3.12: Case study 3: results of test II.

3.11 and 3.11 provide the range of variation of the preferred weighting factors and the
corresponding structural parameters obtained from the nine fronts for case study 1, 2 and
3, respectively. Selection performed by criteria B and B* does not depend on the choice of
the weighting factor range unless the preferred point of the front is in the extreme region, as
with case study 1 considering the criterion B. In this case, in fact, α=0.92 is the preferred
solution as long as it is included in the weighting factor range, otherwise the preferred
solution corresponds to α=0.50. On the contrary, results obtained from criteria A, C e
D depend on the definition of the weighting factor range. As stated before, the variation
of the weighting factor does not affect the values of the identified parameters for the case
study 1. Hence, the following considerations focus on the case study 2, characterized by a
wide variability of the parameter yd with the weighting factor.

Fig. 3.16 illustrates the values of the membership function Φ that rules the selection of
the preferred solution according to criterion C. It can be observed that, when the range
0.01-0.99 is considered, the maximum value of Φ is obtained for α=0.16, corresponding to
yd =1.63 m, while the maximum corresponds to α=0.26 and yd =1.55 m when the range
0.10-0.99 is considered. The same happens for criterion D, as shown in Fig. 3.17. In
this case, depending on the weighting factor range, the preferred solution changes from
α = 0.18 to α = 0.31, corresponding to a position yd from 1.65 m to 1.47 m. Criterion
A shows to be less sensitive to the weighting factor range, with values of α varying from
0.33 to 0.39, corresponding to a position yd equal to 1.37 m that remains almost constant.
The variability is mainly due to the uncertainty in the equilibrium point definition, which
produces slight changes in the computed distance and thus in the selected optimal point.

The same considerations can be formulated also for the case study 3, even if the variation
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Figure 3.16: Case study 2: values of the membership function Φ obtained from the criterion C
considering different weighing factor ranges: (a) 0.01-0.99 and (b) 0.10-0.99.
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Figure 3.17: Case study 2: preferred solutions obtained from the criterion D considering dif-
ferent weighting factor ranges. Blue line and dot: boundary line and preferred solution for the
range 0.01-0.99. Red line and dot: boundary line and preferred solution for the range 0.10-0.99.

of the updated parameters is less marked compared to case study 2. However, it is observed
from Table 3.12 that the stiffness parameter rE identified by criterion D from the same set
of measurements shows a variation of 8 %. In the context of damage detection, this can
lead to different conclusions about the damage extension. This does not occur, or it occurs
in a very limited way, for criteria A, B and B*.
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Criterion eM

α m1 h1

Mean CV Mean CV Mean CV
[-] [%] [103kg] [%] [m] [%]

A
Eq. (2.2); γ=0.5 0.386 1.3 41.0 0.02 4.13 0.004
Eq. (2.2); γ=1 0.498 0.9 41.3 0.02 4.13 0.004
Eq. (2.3) 0.499 0.9 41.2 0.01 4.13 0.003

B
Eq. (2.2); γ=0.5 0.610 26.4 40.7 0.53 4.13 0.131
Eq. (2.2); γ=1 0.547 33.9 41.2 0.93 4.13 0.108
Eq. (2.3) 0.538 33.4 41.2 0.51 4.13 0.055

B*
Eq. (2.2); γ=0.5 0.260 12.3 41.3 0.23 4.13 0.005
Eq. (2.2); γ=1 0.463 12.2 41.4 0.27 4.13 0.026
Eq. (2.3) 0.403 15.9 41.3 0.18 4.13 0.028

C
Eq. (2.2); γ=0.5 0.220 0.6 41.4 0.02 4.13 0.004
Eq. (2.2); γ=1 0.490 1.1 41.4 0.02 4.13 0.005
Eq. (2.3) 0.513 1.9 41.2 0.01 4.13 0.004

D
Eq. (2.2); γ=0.5 0.286 2.1 41.2 0.03 4.13 0.003
Eq. (2.2); γ=1 0.491 1.3 41.4 0.03 4.13 0.005
Eq. (2.3) 0.527 1.1 41.2 0.01 4.13 0.002

’

Table 3.13: Case study 1: results of test III.

3.3.6 Test III

Test III aims at evaluating the influence of the definition of the objective function on the
preferred solution. In particular, three possible expressions for the mode shape residuals
eM are considered, which are those reported in Eqs. (2.2) with the exponent γ equal
to 0.5 and 1, and (2.3). The optimization process is performed three times, each time
adopting a different expression for eM in the definition of the objective function H (Eq.
(2.5)). For each definition of eM , the optimization algorithm is solved 100 times to account
for the variability of the optimization process. The influence of eM on the choice of the
preferred solution is shown in Table 3.13 and 3.14 for case study 1 and 2, respectively.
For each definition of the mode shape residuals eM , the statistics of the results from the
100 iterations in terms of weighting factor and structural parameters corresponding to the
preferred solution are presented.

The three different expressions of the mode shape residuals eM , and consequently of the
objective function H, imply three different Pareto fronts. Hence, three preferred solutions
are obtained for each selection criterion. The robustness of a selection criterion depends
on coherence in the selection of the preferred set of parameters despite the modification of
eM .

As reported before, the only structural parameter that significantly changes and depends
on the selected weighting factor is the position of the damaged element yd for the case study
2. Indeed, Table 3.13 shows that, although the optimal weighting factors α change with
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Criterion eM

α rd yd
Mean CV Mean CV Mean CV
[-] [%] [−] [%] [m] [%]

A
Eq. (2.2); γ=0.5 0.370 10.4 0.373 0.2 1.450 0.0
Eq. (2.2); γ=1 0.550 0.3 0.344 0.1 1.75 0.0
Eq. (2.3) 0.553 7.4 0.375 2.2 1.95 0.0

B
Eq. (2.2); γ=0.5 0.452 32.3 0.359 4.5 2.076 49.0
Eq. (2.2); γ=1 0.791 10.9 0.374 4.1 1.95 45.0
Eq. (2.3) 0.684 13.7 0.342 7.6 1.81 30.0

B*
Eq. (2.2); γ=0.5 0.571 15.9 0.364 2.2 2.486 47.8
Eq. (2.2); γ=1 0.643 13.5 0.363 3.6 1.67 16.9
Eq. (2.3) 0.620 7.6 0.485 0.2 1.75 0.0

C
Eq. (2.2); γ=0.5 0.159 4.3 0.323 1.7 1.765 1.4
Eq. (2.2); γ=1 0.612 2.3 0.355 2.3 1.72 1.3
Eq. (2.3) 0.661 8.5 0.340 7.5 1.65 1.0

D
Eq. (2.2); γ=0.5 0.199 6.1 0.334 0.8 1.750 0.0
Eq. (2.2); γ=1 0.554 8.5 0.347 2.9 1.72 2.6
Eq. (2.3) 0.662 8.3 0.335 0.3 1.65 0.0

Table 3.14: Case study 2: results of test III.

the definition of the mode shape residuals eM , the optimal parameters of case study 1 are
almost insensitive to α. On the contrary, the optimal value of the position of the damaged
element yd depends on the value of α (Table 3.14). As shown in section 3.3.4, results
of criteria B and B* are highly affected by the variability of the optimization algorithm,
leading to unreliable results in terms of estimated values of yd. In these cases, except for
the results obtained with the criterion B* and Eq. (2.3), the estimated values of yd show
coefficient of variations from 16.9% to 50.1%. On the contrary, results of criteria A, C and
D are unaffected by the variability of the optimization algorithm and can be employed to
assess the influence of eM . It can be observed that optimal parameters selected by criteria
C and D are very similar despite the modification of the objective eM while there is a
slightly higher difference between the optimal values of yd selected by criterion A.

3.3.7 Discussion

The previous tests showed that the choice of the criterion for the selection of the preferred
solution among those forming the Pareto front is especially important when the estimated
structural parameters change depending on the considered solution. Indeed, when dealing
with simple cases, as case study 1, results are basically independent on the choice of the
preferred solution and, consequently, on the selection criterion. On the contrary, when
more complex cases are considered, different optimal solutions can be obtained depending
on the selection criterion, as with case studies 2 and 3. First, it is observed that the results
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of the maximum bend angle criterion (criterion B) are strongly affected by the variability
of the optimization algorithm even for the case study 1. Even with the introduction of a
curve fitting of the Pareto front (criterion B*), results remain highly unstable. Results of
criteria C (fuzzy satisfying approach) and D (maximum distance from the boundary line)
are almost unaffected by the variability of the optimization algorithm for the first two case
study, but the opposite behaviour occurs for the case study 3. Moreover, they depend on
the choice of weighting factor range for the definition of the Pareto front. On the contrary,
results are fairly stable with respect to the definition of the mode shape residuals eM .
Criterion A (minimum distance from the equilibrium point) is stable with respect to the
variability of the optimization algorithm and the definition of the weighting factor range,
but it shows a lower coherence in the test III compared with criteria C and D.

3.4 Proposed updating procedure

Being the computation of the Pareto-optimal solutions a very time-consuming task, meth-
ods that directly evaluate the optimal solution should be preferred in real applications.
Analyses presented in section 3.3 have shown that the criterion of the minimum distance
from the equilibrium point (criterion A, section 3.2.1), the fuzzy satisfying approach (cri-
terion C, section 3.2.3) and the criterion of the maximum distance from the boundary line
(criterion D, section 3.2.4) provided good results with respect to the tests carried out, even
if they exhibited some weaknesses. In particular, criteria C and D show a certain sensi-
tivity towards the definition of the weighting factor range, or in general towards extreme
values of objectives involved in the selection of the preferred solution. This may limit the
applicability of a method based on a evolutionary algorithm for the direct evaluation of
the optimal solution, as the stochastic search involved in the algorithm produces a certain
variability of the extreme values of the objectives.

This section presents a new procedure for the direct evaluation of the optimal solution in
multi-objective optimization problems based on the criterion of the minimum distance from
the equilibrium point. In the following, results of this direct procedure are referred to as
DP(A) results. To evaluate the efficiency and robustness of the DP(A) procedure, results
are compared to those obtained through the computation of the whole Pareto front and
the following selection of the preferred solution with the criterion of the minimum distance
from the equilibrium point, indicated as AP results. The proposed approach for the direct
evaluation of the preferred solution is based on the DE-S algorithm (section 2.3) to solve
the optimization problem. The adoption of an evolutionary algorithm is essential for this
approach as it allows to simultaneously handle and compare a population of candidate
vectors. This would not be possible with gradient-based methods that consider one point
at a time [123, 154].

The objective function δ to minimize is defined as the distance from the equilibrium point,
whose coordinates are (emin

F , emin
M ):

δ =
√

(eF − emin
F )2 + (eM − emin

M )2 (3.20)

At each iteration, the values of emin
F and emin

M are searched from all the vectors of the
current population as well as from the previously considered vectors. Therefore, the values
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of emin
F and emin

M , and consequently of δ, may change, and a database containing the values
of the objectives for each vector is created. When for the generic i-th vector at least one
of the following conditions occurs:

eiF < emin
F

eiM < emin
M

(3.21)

the values of the objective function δ are recalculated for all the vectors existing in the
database considering the new value of emin

F and/or emin
M . The need to recalculate the values

of δ for all the vectors in the database is due to two reasons. First, a point belonging to a
previous generation can exhibit a lower value of the objective function δ if the equilibrium
point changes during the optimization procedure and, thus, it could be a good candidate for
the next generation even if it was previously discarded. On the contrary, points that had
low values of the objective function can be replaced by others due to their updated relative
distance with respect to the equilibrium point. Second, the DE-S algorithm chooses the
vectors of the subsequent population based both on a combination of vectors of the current
population and on the values of the objective function for all the vectors considered until
then. This means that when a parameter vector xA is close to another vector xB that has
been previously discarded owing to a high value of the corresponding objective function,
the vector xA can be ruled out with no need to perform a modal analysis, improving the
speed performances of the algorithm. Indeed, the re-evaluation of δ for a large number of
vectors implies a computational effort which is negligible compared to the effort needed to
perform a large number of modal analyses of complex FE models. Finally, it is highlighted
that for the initial population the objective function δ is computed as the distance from
the origin of the objective function space, because no objective has been evaluated yet.

The objective function δ expressed in Eq.(3.20) does not explicitly includes the weighting
factor α. Once the minimum of Eq.(3.20) is evaluated, the relative importance between
frequency and mode shape residuals for the optimal solution, represented by the weighting
factor α, can be estimated as follows. Let’s consider the generic Pareto front defined in
the objective function space and reported in Fig. 3.18. The point of the Pareto front with
the minimum distance from the equilibrium point Q is indicated as P . According to the
Taylor’s theorem, the Pareto front around the point P can be approximated by a first order
Taylor polynomial. Denoting with γ the quantity [eF (P )− emin

F ]/[eM(P )− emin
M ], the slope

of the segment QP is 1/γ. The tangent line to the Pareto front at the point P (blue line
in Fig. 3.18) is perpendicular to the segment QP and is formulated as:

eM = eM(P )− γ(eF − eF (P )) (3.22)

Hence, the coordinates of a point T on the tangent line (Eq.(3.22)) close to P are given
by:

eF (T ) = eF (P ) + ε, eM(T ) = eM(P )− γ ε (3.23)

where it is assumed that eF (T ) − eF (P ) = ε, with ε a very small number. According to
the weighted sum method (Eq. (2.5)), the objective functions H evaluated in P and T are
written:{

H(P ) = αP eF (P ) + (1− αP ) eM(P )

H(T ) = αT eF (T ) + (1− αT ) eM(T )
(3.24)
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Figure 3.18: Estimate of α for the DP(A) procedure: segment QP (red) and tangent line (blue)
to the Pareto front (black) at point P.

Being ε a very small number, it is assumed that the points P and T have almost the same
values of weighting factor α and objective function H:{

H(P ) ≈ H(T )

α(P ) ≈ α(T )
(3.25)

Finally, substituting Eqs.(3.23) and (3.25) into Eq.(3.24), an estimate α∗ of the weighting
factor α related to the optimal solution is obtained:

α∗ =
γ

1 + γ
(3.26)

The main stages of the proposed direct procedure can be summarized as follows:

1. Sampling of the initial population (NP vectors).

2. Evaluation of the residuals eF -eM and of the objective function δ (Eq. (3.20)) as-
suming emin

F and emin
M equal to zero.

3. Definition of emin
F and emin

M on the basis of the minimum values of eF and eM previously
computed.

4. Selection of NS vectors and calibration of a response surface (section 2.3.1).

5. If the calibrated RS is convex, computation of the vector that minimize the RS. Oth-
erwise, execution of the classical operations of an evolutionary algorithm: mutation
(section 2.3.2), crossover (section 2.3.3) and bound constraint (section 2.3.4).

6. Scoring operation according to the indications of section 2.3.5.
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Procedure
α m1 h1 Nr. of eval.

Mean CV Mean CV Mean CV Mean CV
[-] [%] 103kg] [%] [m] [%] [-] [%]

AP 0.386 1.3 41.0 0.02 4.13 0.004 11961 1.1
DP(A) 0.381 5.8 41.0 0.10 4.13 0.009 136 8.5

Table 3.15: Case study 1: comparison between DP(A) and AP results.

Procedure
α rd yd Nr. of eval.

Mean CV Mean CV Mean CV Mean CV
[-] [%] [-] [%] [m] [%] [-] [%]

AP 0.370 10.4 0.373 0.2 1.450 0.0 25711 4.5
DP(A) 0.330 25.8 0.385 6.4 1.759 47.0 200 62.9

Table 3.16: Case study 2: comparison between DP(A) and AP results.

7. Evaluation of the residuals eF -eM and of the objective function δ (Eq. (3.20)) for the
NH vectors with the lowest scores.

8. Updating of emin
F and emin

M on the basis of the new vectors evaluated. Computation
of the objective function δ again for all the vectors considered until now if at least
one of the values of emin

F and emin
M changes.

9. Execution of the selection operation (section 2.3.6).

10. Assessment of the algorithm convergence following the criteria of section 2.3.7.

11. Repetition of stages 4-10 until convergence is reached.

3.4.1 Comparison between DP(A) and AP procedure

In this section, the proposed direct procedure based on the selection criterion A - DP(A)
procedure - is applied to the case studies presented in section 3.3. To evaluate its robustness
and efficiency, results are compared to those obtained from the AP procedure, namely with
the criterion A applied to the whole Pareto front. By analogy with test I (section 3.3.4),
the optimization of case study 1, 2 and 3 is performed 100 times to evaluate the effects of
the variability of the optimization algorithm on the optimal updated model. In Tables 3.15,
3.16 and 3.17 statistics of results are compared in terms of mean values and coefficients
of variation (CV) of the weighting factor α, of the identified structural parameters and of
the number of modal analyses performed (Nr. of evaluations). The last is accounted for
because the modal analysis execution is the most time-consuming task of the optimization
process when dealing with complex FE models.

At first, it is observed that for all the case studies the mean values of the weighting factor
and of the structural parameters identified from the two approaches are very similar. On
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Procedure
α rS rE rN rW Nr. of eval.

Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV
[-] [%] [-] [%] [-] [%] [-] [%] [-] [%] [-] [%]

AP 0.300 0.0 0.98 0.0 0.81 0.0 0.98 0.0 1.05 0.0 13497 3.6
DP(A) 0.390 11.1 0.98 0.0 0.80 0.6 0.98 0.0 1.03 0.5 118 9.8

Table 3.17: Case study 3: comparison between DP(A) and AP results.

the contrary, the variability of the results obtained from the DP(A) procedure is slightly
increased. The highest variability is observed for the position of the damaged element yd
of case study 2, which goes from 0.0 % for the AP procedure to 47.0 % for the DP(A)
procedure. The higher variability obtained with the proposed method is mainly due to the
uncertainty in the definition of the equilibrium point. In summary, it can be stated that
the DP(A) procedure is slightly affected by the variability of the optimization algorithm
in the choice of the optimal set of structural parameters.

The main difference between the two approaches is in the requested computational effort:
for case study 1 (Table 3.15), the AP procedure needs a mean number of evaluations that
is about 100 times higher than the number of evaluations for the DP(A) method. It is
worth noting that in the first case (AP), the optimization process is repeated for each
value of α, namely 99 times with α ranging from 0.01 to 0.99 with step size 0.01. The
mean number of evaluations for a single optimization can be calculated dividing the total
number of evaluations (11961) by the number of weighting factors considered (99). In
this case, a single optimization with the AP method requires almost the same number of
evaluations as the DP(A) method, namely 121 and 136, respectively. However, with the
DP(A) procedure, the optimal solution is evaluated from a single optimization, while the
optimization has to be repeated for different values of α to evaluate the whole Pareto front
according to the AP procedure. Similar considerations can be drawn for case studies 2
and 3 (Tables 3.16 and 3.17). In these cases, the total number of evaluations required
by the AP method is respectively about 130 and 115 times higher than the number of
evaluations required by the DP(A) method, confirming that the direct estimation of the
optimal solution is less time consuming than the evaluation of the Pareto-optimal solutions.

3.5 The San Felice sul Panaro fortress

In this section, the proposed DP(A) procedure is applied to case study of the San Felice
sul Panaro fortress. The fortress is an historical masonry structure located in the town of
San Felice sul Panaro (Modena, Italy). The fortress was built in the XIV century, but over
the centuries it underwent several modifications. Now the fortress presents a quadrilateral
plan with an inner yard and five towers (Fig. 3.19(a)). The main tower, located in the
south-east corner, is called the “Mastio” due to its prevailing dimensions compared to the
rest of the building. The seismic events that affected the Emilia-Romagna region in 2012
have caused several damages to the structure: the roofs of the four minor towers collapsed
and many cracks of different size occurred [39]. Relevant shear cracks arose in the Mastio
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(a) (b) (c)

Figure 3.19: (a) The San Felice sul Panaro fortress before the 2012 earthquake and the damaged
Mastio: view from the (b) south and (c) north side.

and some vertical cracks were observed between the Mastio and the perimeter walls (Fig.
3.19(b) and Fig. 3.19(c)). Finally, also the merlons and the vaults inside the Mastio
exhibited important damaging. After the earthquake, the municipality of San Felice sul
Panaro planned the realization of some reinforcement operations in order to avoid further
collapses. In particular, the diagonal cracks of the Mastio were filled with mortar and steel
strands were introduced into the walls.

3.5.1 Ambient vibration testing and modal identification

Ambient vibration testing was performed on the Mastio of the San Felice sul Panaro fortress
in 2016. Tests were designed to identify the Mastio modal properties starting from its
dynamic response measured in operational conditions. Since the fortress has been strongly
damaged by the earthquake that affected the Emilia Romagna region in 2012, the modal
identification presented in the following refers to the dynamic behaviour of the Mastio in
damaged conditions.

The dynamic acquisition system consisted of 10 uniaxial piezoelectric accelerometers (seven
PCB/393B12 and three PCB/393B31), with a dynamic range of ±0.5 g, a bandwidth rang-
ing from 0.15 to 1000 Hz and a resolution of 8 µg (PCB/393B12) and 1 µg (PCB/393B31).
A National Instruments acquisition system was connected to the accelerometers for data
storage and system management purposes, while the sampling frequency was set to 200 Hz.
The response of the tower was simultaneously recorded in seven points belonging to four
levels along the height of the Mastio (see Fig.3.20). In each measuring position, one or two
accelerometers were placed, for a total of 10 measurement channels (A1–A10 in Fig.3.20).
Fig.3.21 shows an example of the typical installation of accelerometers, made with metal
plates and screws.

An illustrative acceleration time series measured at the upper instrumented level (L4) is
presented in Fig. 3.22(a). The recorded acceleration ranges between ±15 mg (correspond-
ing to ±0.15m/s2). The corresponding power spectral density (PSD) function is presented
in Fig. 3.22(b). Acquired accelerations are post-processed through the Enhanced Fre-
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Figure 3.20: Fortress: instrumented levels (L1-L4) and piezoelectric accelerometer positioning.

(a) (b)

Figure 3.21: Fortress: typical installation of piezoelectric accelerometers.

quency Domain Decomposition method to identify the modal parameters, namely natural
frequencies and mode shapes [27].

The first five identified mode shapes are presented in Fig. 3.23 where the corresponding
natural frequencies are indicated. Two closely spaced modes are identified around 1.7 Hz,
which are dominant bending modes and involve flexure in W-E direction (Fig. 3.23(a)) and
N-S direction (Fig. 3.23(b)). The third mode mainly involves torsion of the main tower
(Fig. 3.23(c)). The fourth (Fig. 3.23(d)) and the fifth (Fig. 3.23(e)) mode are second
bending modes characterized by dominant flexure in N-S and E-W direction, respectively.

3.5.2 FE model of the fortress

An accurate FE model of the San Felice sul Panaro fortress (Fig. 3.24) has been developed
by Castellazzi et al. [36, 37] through an innovative numerical modelling strategy called
CLOUD2FEM. This strategy is based on the semi-automatic transformation of a three-
dimensional points cloud of a structure into three-dimensional FE meshes. The resulting
mesh is composed by eight-node hexahedral elements with resolution 25 cm × 25 cm × 25
cm, for a total amount of 409,300 FEs and 1,512,444 DOFs. A jagged 3D representation
of the original geometry of floors and vaults has been used in order to automatically
generate their meshes. Conversely, the roof structure has been introduced in the model as
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Figure 3.22: Fortress: (a) typical acceleration time history recorded at the upper instrumented
level and (b) corresponding power spectral density (PSD) function.
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Figure 3.23: Natural frequencies and mode shapes of the (a, b, d, e) bending and (c) tor-
sional modes normalized to their maximum entry. Black asterisks: modal displacements of the
measuring points in the N-E corner of the cross-section in E-W direction; Red asterisks: modal
displacement of the N-E corner in N-S direction; Red dots: modal displacement of the W-S corner
in N-S direction.

concentrated mass disposed on the top elements of the Mastio. The mass matrix of the
overall structure is lumped. Finally, the restraint condition of the structure is affected by
the presence of a moat surrounding the fortress. Clamped boundary conditions have been
imposed to all the nodes at the moat level, while the elements located within the courtyard
have been modelled through an elastic continuum to coarsely take into account the presence
of terrain. The three-dimensional points cloud of the fortress was obtained from a laser
scanning survey performed after the 2012 earthquake, which allowed the reconstruction
of all the internal and external surfaces. Therefore, the FE model represents the post-
earthquake condition of the structure.

The study presented in [13] showed that to fully describe the actual behaviour of the
Mastio in operational conditions, the effect of the severe crack pattern has to be accurately
accounted for. To this aim, mesh elements corresponding to the damaged masonry have
been identified in the FE model and a different elastic modulus has been assigned to them,
as shown in Fig. 3.24. This allows accounting for the effect of damage and cracks in
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(a) (b)

Figure 3.24: FE model of the fortress with highlighting of the damaged elements (blue).

operational conditions, i.e. when the external actions are not such as to involve non-linear
behaviour and damage and cracks only imply a local stiffness reduction. As the calibration
is performed with reference to the modal properties of the Mastio, only the cracks of the
Mastio are introduced in the FE model. Hence, the structural parameters to be identified
with reference to the experimental modal properties are the elastic modulus of the masonry
EM and of the damaged elements ED. Other stiffness parameters related to floors, vaults
and terrain do not significantly affect the modal properties of the structure as a consequence
of the predominant contribution of the main walls, which have a thickness of the order of
meters. No mass parameter is considered for the calibration due to the presence of only
structural masses and the high accuracy achieved in the representation of the structure
geometry.

3.5.3 Evaluation of the optimal updated FE model

The optimal updated model is identified applying the DP(A) procedure presented in section
3.4, and results are compared with those obtained from the AP procedure. According to
the AP approach, the whole Pareto front shown in Fig. 3.25(a) is firstly evaluated and
the optimal solution is estimated through the criterion of the minimum distance from
the equilibrium point. The objectives eF and eM are expressed by Eqs. (2.1) and (2.2)
with γ=0.5, respectively. On the contrary, the direct procedure for estimating the optimal
solution is based on the subsequent evaluation of many candidate vectors, indicated with
black dots in Fig. 3.25(b). It can be observed how the candidate vectors are concentrated
in the proximity of the optimal solution, except for a few points spread out in the objective
function space. Fig. 3.26 presents a detail of the front where the equilibrium points
obtained from the AP (point Q) and the DP(A) (point Q∗) approach can be observed,
together with the optimal solution of the DP(A) procedure (point P∗). Fig. 3.25(b) shows
that the candidate vectors corresponding to the minimum values of eF and eM can be
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Figure 3.25: (a) Pareto front and (b) comparison between the front and the candidate vectors
evaluated in the subsequent iterations of the optimization algorithm (black dots).
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Figure 3.26: (a) Detail of the Pareto front and (b) comparison between the front and the
candidate vectors evaluated in the subsequent iterations of the optimization algorithm (black
dots). Point Q: equilibrium point obtained from the AP procedure. Point Q∗: equilibrium point
obtained from the DP(A) procedure. Point P∗: preferred solution of the DP(A) procedure.
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Figure 3.27: (a) Distance from the equilibrium point Q and (b) values of the structural param-
eters for the points of the Pareto front. Blue line: masonry elastic modulus EM . Red line: elastic
modulus of the damaged elements ED.

found close to the extreme points of the Pareto front, causing the proximity, but not
perfect correspondence, of the equilibrium points Q* and Q. Moreover, between α = 0.60
and α = 0.62 the Pareto front presents a non-convex shape, which is clearly recognized
with the direct procedure (see Fig. 3.26(b)). To define the non-convex part of the Pareto
front, the dominant solutions are evaluated according to Eq.(3.3).

The weighting factor corresponding to the optimal solution obtained from the direct proce-
dure (P*) is estimated through Eq.(3.26) and is equal to 0.66. The distances of the points
forming the Pareto front from the equilibrium point Q are shown in Fig. 3.27(a) while
the values of the identified structural parameters with α are reported in Fig. 3.27(b). As
the points of the front between α = 0.62 and α = 0.80 coincide with each others (see Fig.
3.26(a)), they are all characterized by the same distance from the equilibrium point, which
corresponds to the minimum one. The optimal structural parameters identified from the
two approaches and the corresponding α values are listed in Table 3.18, while the modal
properties of the calibrated modes are reported in Table 3.19. The optimal structural
parameters identified from the two approaches are very close to each other and therefore
also the modal properties of the optimal updated models, proving the good match between
results. Finally, the number of modal analyses performed by the DP(A) procedure is equal
to 173, while the mean number of modal analyses performed by the AP procedure for each
point of the Pareto front is 157. Having regard to the need to evaluate several points of
the Pareto front, the DP(A) procedure is confirmed to be significantly less time consuming
than the AP procedure.
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Approach EM [MPa] ED [MPa] α [-]

AP 983 342 0.62-0.80
DP(A) 986 346 0.66

Table 3.18: Identified structural parameters and α values.

Mode Shape
Exp. Freq. Num. Freq. Rel. Error MAC

[Hz] [Hz] [%] [%]

1st Bending E-W 1.72 1.82 5.81 95
1st Bending N-S 1.75 1.66 −5.14 90
1st Torsional 3.55 3.70 4.23 93

Table 3.19: Experimental and numerical modes - DP(A) procedure.

3.6 Concluding remarks

In this chapter, a new procedure for the direct evaluation of the optimal updated solu-
tion in multi-objective optimization problems has been presented. The multi-objective
optimization problem is solved through a single-objective approach, namely by defining
the objective function to minimize as the combination of different objectives. In particu-
lar, the objective function is defined as the distance from the equilibrium point and the
optimization procedure is performed through an evolutionary algorithm. Compared to
methods based on the evaluation of the whole Pareto front and the subsequent selection of
the preferred solution, the proposed procedure has proven to be computationally efficient
and able to provide reliable results. Moreover, the proposed approach is able to directly
estimate the best weighting factor α with a good accuracy, without the need to defined it
a priori, allowing to evaluate the relative importance between the selected objectives. A
preliminary study has been carried out to assess the performances of different criteria for
the selection of the preferred solution among those forming the Pareto front. It has allowed
to identify the criterion of the minimum distance from the equilibrium point as the most
robust with respect to the variability of the optimization algorithm, the weighting factor
range and the shape of the Pareto front. Results of this preliminary study performed con-
sidering three numerical case studies have led to the choice of the criterion of the minimum
distance from the equilibrium point for the definition of the objective function.

The proposed procedure for the direct evaluation of the preferred solution is adopted to
calibrate the FE model of the San Felice sul Panaro fortress, an historical masonry structure
that was severely damaged by the seismic events that affected the Emilia Romagna region
(Italy) in 2012. The FE model represents the structure in its damaged condition and the
effect of the crack pattern on the structural behaviour is accounted for. Results of the
proposed direct procedure are compared to those obtained from evaluation of the whole
Pareto front and the subsequent selection of the preferred solution. This problem presents
a non-convex part of the Pareto front that can be recognized with the direct procedure,
investigating all the vectors evaluated by the algorithm. The optimal updated models



Multi-objective optimization approach for model updating 67

identified from the two procedures are very consistent, while the computational cost of the
direct procedure is significantly lower.





Chapter 4

Bayesian model updating

Uncertainties and errors unavoidably affect model updating problems. Taking into account
the ill-posed nature of model updating when it is treated deterministically, in particular
the stability of the solution with respect to small perturbations of the data, there is the
concrete possibility to obtain unreliable results and predictions. An example is provided
by the large variation of the updated parameters of the FE model of the San Felice sul
Panaro fortress according to the selected objective weights (see Fig. 3.27(b)).

Treating the problem of model updating in probabilistic terms, the adoption of parameter
distributions could be more appropriate than considering a single optimal parameter vector
in deterministic terms. One of the most diffused approach for uncertainty quantification
in model updating is surely the Bayesian one, that will be the subject of this chapter.

In section 4.1 the main sources of uncertainty affecting model updating in structural dy-
namics are highlighted. At the same time, the most important reference works about
Bayesian model updating are cited. The mathematical framework of Bayesian model up-
dating is treated in section 4.2. Finally, the Bayesian approach is applied to the calibration
of two case studies, a simple numerical benchmark and the FE model of the San Felice
sul Panaro fortress. Results of the updating and a comparison with the already presented
deterministic approach based on bi-objective optimization are showed in section 4.3 and
4.4, respectively.

4.1 Uncertainty sources and literature review

The response predicted by a model unavoidably differs from the same quantity measured
thanks to an experimental test. This discrepancy is denoted as prediction error. Both
measurement and modeling errors contribute to prediction error. Measurement error is
mathematically defined as the difference between the observed system behaviour and the
real system response while model error is the difference between the model predicted be-
haviour and the real system response. Combining the two definitions, the total prediction
error is given by the sum of measurement and model errors.

As regards measurement error, the uncertainty of experimental data may depend on sensor
noise or bias caused by imperfections in the measurements equipment. The common limited
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number of adopted sensors implies a not detailed spatial information about the structure.
Other challenges derive from the approximation introduced by the system identification
methods for modal extraction [143] or errors due to signal processing. Furthermore, modal
properties suffer variation induced by environmental conditions [132, 155, 45, 140].

Uncertainties depending on the prediction model are no less important. A model is, by
definition, not able to reproduce perfectly the behavior of a real system. Lack of knowledge
or understanding about the real system leads to make assumptions or simplifications when
developing a model. Detailed analysis about model uncertainty, including the classification
of several types of uncertainty, can be found in works of Mottershead and Friswell [117],
Kennedy and O’Hagan [98], Walker et al. [172]. In summary, uncertainties may arise
from incorrect boundary conditions and governing equations, from insufficient accuracy in
the characterization of material and geometric properties or load conditions and from the
mathematical algorithms that produce the model output.

In this context, one of the most diffused approach for uncertainty quantification in model
updating is based on Bayesian inference, since a large amount of scientific publications
have been realized on the argument. Reference works about Bayesian model updating in
structural engineering was produced by Beck and Katafygiotis [18, 96], Beck [15], Katafy-
giotis et al. [95] and Jaynes [88]. An important application of this method occurred in the
field of structural health monitoring (SHM): the first works about probabilistic damage
assessment based on observed modal properties are those of Sohn and Law [157] and Vanik
et al. [166]. Later, Ching and Beck [40] employed the concept of system mode shape to
improve damage detection, while Yuen et al. [178] introduced system frequencies for the
same reason. Bao et al. [11] incorporates temperature as variable affecting modal proper-
ties. More recent works have been realized by Behmanesh and Moaveni [20], Behmanesh
et al.[21], Yin et al. [175] and Ierimonti et al. [82]. In-depth reviews of Bayesian model
updating for damage assessment can be found in Simoen et al. [152] and Huang et al. [80].

4.2 Bayesian model updating

Bayesian model updating provides a stochastic framework for parameter updating by con-
sidering the model parameters x and prediction error as random variables. In this way,
different sources of uncertainties can be included in the method. The general principle,
founded on the Bayes’ theorem, involves the updating through a set of measured data d
of the prior probability distribution of the model parameters p(x|M) into the posterior
distribution p(x|d,M):

p(x|d,M) = c−1p(d|x,M)p(x|M) (4.1)

where c is the Bayesian evidence, a constant ensuring that the posterior distribution of
parameters integrates to one, and it is computed as:

c =

∫
I

p(d|x,M)p(x|M)dx (4.2)

I ⊂ Rn is the integration domain where the product p(d|x,M)p(x|M) has a significant
value of probability density.
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p(d|x,M) is the likelihood function representing the plausibility that modelM parametrised
by x provides the measured data d. It reflects the contribution of data in the determination
of the updated posterior distribution of parameters.

4.2.1 Prior distribution

The prior distribution p(x|M) denotes the plausibility of model parameter x when experi-
mental data are not available. It can be proven that the prior distribution represents a soft
constraint in case of ill-conditioned problem providing regularization [25]. Its choice is very
significant when the data set is small: in this case, the posterior PDF is highly affected
by the prior distribution. On the other hand, when the calibration is performed using a
wide amount of data, results of the Bayesian procedure are very similar even starting from
different smooth prior distributions.

In the past, some methods have been developed in order to build consistent prior distri-
butions. The most diffused approaches are probably those of conjugate priors [50] and
the one based on the principle of maximum entropy [89, 158]. The property of conjugate
priors is that the related posterior PDF belongs to the same family of the prior. The choice
of the prior family must be in accordance with the likelihood function formulation. This
approach enables the exact computation of distributions but, in the context of vibration-
based model updating, often implies the need to approximate the likelihood function with
a known distribution.

The principle of maximum entropy states that best prior distribution according to the
present level of knowledge about the parameter vector x is the one who enables to ob-
tain the greater information entropy h(p), defined for a continuous random variables with
probability density function (PDF) p(x) as:

h(p) = E [− ln(p(x))] = −
∫
X

p(x) ln [p(x)] dx (4.3)

where E denotes the expected value and X is the support of p(x). As reported in Simoen et
al. [152], when it is known that a parameter is defined in a given interval, the application
of the principle of maximum entropy entails the adoption of a uniform distribution for
the parameter. Conversely, if the information about the parameter consist of a finite
mean and standard deviation this principle leads to a normal distribution. As concerns
multivariate variables, the ME principle implies to use independent prior variables, building
the joint distribution p(x) through the product among the marginal PDFs p(xi) of the single
parameters xi.

4.2.2 Likelihood function

The formulation of the likelihood function depends on the definition of the prediction
error. As previously mentioned in section 4.1, it represents the discrepancy between the
experimentally measured and predicted features, in this case frequencies and mode shapes.
The total prediction error is given by the sum of measurement and model errors. When no
information about the individual errors is available, as happens in most cases, the likelihood
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function is usually built using the total prediction error. The probabilistic model used for
prediction error can be assumed and/or determined in different ways. The usual practice
is to assume a known probabilistic model with fixed parameter. In vibration-based model
updating, the frequency and mode shape prediction error for a mode m is selected as a
zero-mean Gaussian distribution [15, 152]:

efm = fexp,m − fnum,m(x) ∼ N(0, σ2
fm) (4.4)

eϕm
=

ϕexp,m∥∥ϕexp,m

∥∥
2

− lm
ϕnum,m (x)∥∥ϕnum,m (x)

∥∥
2

∼ N(0,Σϕm
) (4.5)

with the scaling factor lm already defined in Eq.(2.4). Under the assumption of statistical
independence of identified modal properties, the likelihood function can be written as:

p(d|x,M) =
M∏

m=1

N(fexp,m, σ
2
fm)N(ϕexp,m,Σϕm

) (4.6)

where N(fexp,m, σ
2
fm
) is the Gaussian distribution with mean fexp,m and standard deviation

σfm and N(ϕexp,m,Σϕm
) is a multi-dimensional Gaussian distribution with mean vector

ϕexp,m and covariance matrix Σϕm
. Σϕm

is usually assumed to be diagonal which means
that no correlation is considered between different mode shape components.

The variance of the frequency prediction error is expressed as σ2
fm

= ϵ2ff
2
exp,m, while the

covariance matrix of the mode shape prediction error is expressed as Σϕm
= ϵ2ϕ

∥∥ϕexp,m

∥∥2

2
I,

where I is the identity matrix. The coefficients of variation ϵf and ϵϕ are assumed to be
the same for all the frequencies and mode shapes, respectively.

On the basis of the previous assumptions, the likelihood function of Eq.(4.6) can be written
as:

p(d|x,M) = c1 exp

[
−1

2
J (x)

]
(4.7)

where c1, that is a function of the coefficients of variation ϵf and ϵϕ, is a normalizing factor
[17]. J (x) is a discrepancy function defined as:

J (x) =
1

ϵ2f

M∑
m=1

(
fnum,m (x)− fexp,m

fexp,m

)2

+

+
1

ϵ2ϕ

M∑
m=1

1∥∥ϕexp,m

∥∥2

2

∥∥∥∥∥ ϕexp,m∥∥ϕexp,m

∥∥
2

− lm
ϕnum,m (x)∥∥ϕnum,m (x)

∥∥
2

∥∥∥∥∥
2

2

(4.8)

If the coefficients of variation ϵf and ϵϕ are considered equal, denoted as ϵ̄ in this case, the
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expression of the discrepancy function is simplified:

J (x) =
1

ϵ̄2

M∑
m=1

[(
fnum,m (x)− fexp,m

fexp,m

)2

+

+
1∥∥ϕexp,m

∥∥2

2

∥∥∥∥∥ ϕexp,m∥∥ϕexp,m

∥∥
2

− lm
ϕnum,m (x)∥∥ϕnum,m (x)

∥∥
2

∥∥∥∥∥
2

2

] (4.9)

In general, no or little information is available about the coefficients of variation of the
prediction error, hence a common practice is to fix these parameters in order to simplify
the updating procedure. A critical analysis of this practice, along with a more rigorous
method to asses the coefficient of variation, is discussed in chapter 5.

4.2.3 Computation of the posterior distribution

In accordance with Eq. (4.1), for the determination of the posterior distribution of param-
eters p(x|d,M) the evaluation of the Bayesian evidence is needed, other than the prior
distribution p(x|M) and the likelihood function p(d|x,M). In practice, direct application
of Eq. (4.2) for the computation of the Bayesian evidence involves numerical integration of
the product between prior distribution and likelihood function over the parameter domain
discretized through a grid. This operation becomes unfeasible when the number of updat-
ing parameters is high since the number of evaluations of the likelihood functions grows
exponentially with the number of parameters. Furthermore, it would be necessary to know
a priori in which region of the parameter domain the integrand function (i.e. the product
between prior distribution and likelihood function) has a significant value, in order to re-
duce the extension of the grid as much as possible. For this reason, several approximated
methods were developed for the determination of the updated distribution of parameters
and the evidence. Among these, a distinction can be made between an analytical method
based on asymptotic approximation and numerical methods based on Markov Chain Monte
Carlo (MCMC) algorithms.

As concerns the first method, Beck and Katafygiotis [18], under the assumption of globally
identifiable model class and that many observed data of the same quantities are available,
expanded the logarithm of the likelihood function in Taylor’s series around the point x̂ that
maximizes the likelihood and employed the Laplace’s method to approximate the evidence
integral of Eq. (4.2). Consequently, the posterior distribution can be approximated as
Gaussian with mean vector equal to the parameter vector x̂ and covariance matrix equal to
the inverse of the Hessian matrix calculated at x̂. Laplace asymptotic approximations have
been subsequently applied also to the locally identifiable case [18] and to the unidentifiable
case [97].

The hypothesis of large amount of data cannot be always satisfied, hence numerical meth-
ods like the MCMC samplers can be used. These algorithms generate samples that are
consistent with any probability distribution by constructing a Markov chain that has the
desired distribution, in this case the posterior distribution, as its equilibrium distribution
[80]. Among several MCMC methods proposed, most of them are based on Metropolis-
Hastings (MH) algorithm [115, 76] because it enables to sample a random distribution
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Table 4.1: Two floor frame: mechanical parameters of the structure

Floor N. 1 2

Mass m [103kg] 60.0 60.0
Stiffness multiplier r [-] 2.0 1.5

Stiffness k [kN/m] 16000 12000

defined as the ratio between a function of the same random variable and a normalization
constant whose value is unknown. Known methods based on the MH algorithm have been
proposed by Haario et al. [74] (adaptive MH MCMC) and Green and Mira [71] (delayed
rejection MH MCMC). Beck and Au [16] underlined some difficulties in applying the origi-
nal Metropolis-Hastings algorithm, related to the influence of the proposal distribution and
to the limited region of probability concentration of the posterior PDF. They proposed an
adaptive simulation method that was later improved by Ching and Chen [41]. The latter
takes the name of Transitional MCMC method. Finally, another class of MCMC methods
which has been developed but still not applied in the context of structural engineering is
based on evolutionary algorithms [26, 171].

4.3 Case study: two floor frame

A simple case study is first considered in order to asses the influence of prior distribu-
tion and likelihood function in given conditions. Moreover, results of the Bayesian model
updating are compared with those of the deterministic bi-objective optimization.

4.3.1 Description of the case study

The case study is a shear-type frame composed of two floors and one bay (Fig.4.1). Axial
deformation of all the elements is neglected, moreover beams are infinitely rigid in flexure.
Distributed masses of the structure are represented as concentrated masses at the floor
levels. In table 4.1, masses and stiffness, expressed as multiples of a reference stiffness
k0=8000 kN/m, of each floor are listed. The floor stiffness k1 and k2 are thus obtained as:

k1 = r1k0

k2 = r2k0
(4.10)

where r1 and r2 are the multiplication factors. The subscript is related to the floor number.
The corresponding modal properties and the pseudo-experimental values, assumed as ref-
erence values in the optimization process, are reported in table 4.2. Pseudo-experimental
properties are generated to account for errors that unavoidably affect real measurements.
Parameters to identify are the multiplication factors r1 and r2 of the base stiffness k0. Both
parameters are searched within the range [0.5; 4].
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Figure 4.1: Two floor frame: layout of the structure.

Table 4.2: Two floor frame: exact and pseudo-experimental modal properties. The first sub-
script of the mode shape component indicates the floor number while the second one is the mode
number.

Modal properties
Mode N.1 Mode N.2

f1 ϕ11 ϕ21 f2 ϕ12 ϕ22

[Hz] [−] [−] [Hz] [−] [−]

Exact 1.535 0.535 1.000 3.812 1.000 -0.535
Pseudo-experimental 1.517 0.769 1.000 3.846 1.000 -0.633

4.3.2 Deterministic model updating

The deterministic approach is based on the solution of a bi-objective optimization problem
using the weighted-sum method, as described in section 3.2. The objectives eF and eM
are expressed by Eqs. (2.1) and (2.2) with γ=1, respectively. The Pareto front obtained
is reported in Fig.4.2 where the preferred solution, selected with the criterion of minimum
distance from the equilibrium point, is shown in red. This solution represents a compromise
between objectives eF and eM , since it is located in the central part of the front. The
weighting factor, calibration parameters and modal properties associated to the preferred
solution are summed up in Table 4.3.

The variation of the updated parameter r1 and r2 with the weighting factor α is reported
in Fig.4.3(a) and Fig.4.3(b), respectively. Both parameters exhibit variations in the range
[1.5; 2], but associated to different trends: updated values of r1 increase with α, while r2
shows a decreasing trend.

4.3.3 Bayesian model updating

Bayesian model updating has been performed according to the inference process presented
in section 4.2. Six tests have been carried out using two different definitions of the likelihood
function and three different prior distributions for parameters. The first definition of the
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Table 4.3: Two floor frame: weighting factor α, calibration parameters r1, r2 and modal prop-
erties of the preferred solution.

α r1 r2
Mode N.1 Mode N.2

f1 ϕ11 ϕ21 f2 ϕ12 ϕ22

[−] [−] [−] [Hz] [−] [−] [Hz] [−] [−]

0.56 1.605 1.847 1.465 0.657 1.000 3.969 -1.000 0.657
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Figure 4.2: Two floor frame: Pareto front. Red dot: preferred solution.

likelihood function is that of Eqs. (4.7) and (4.8) with different coefficients of variation
for frequencies (ϵf ) and mode shapes (ϵϕ). The second considers a unique value ϵ̄ for the
coefficients of variation ((4.8)). The coefficients of variation selected for Eq. (4.8) are
ϵf=1 % and ϵϕ=10 %, while that of Eq. (4.9) is ϵ̄=5%. The prior distributions are a non
informative uniform distribution and two Gaussian distributions with different values of
mean and standard deviation. Table 4.4 illustrates likelihood equation and parameters of
the prior distribution used for each test. In the Table, a and b indicate the upper and lower
bound of the uniform distribution, respectively, while µ and σ are the mean value and the
standard deviation of the Gaussian distribution. In all the tests, calibration parameters are
considered as uncorrelated, hence the conjunct prior distribution can be expressed as the
product of the marginal distributions. Due to the simplicity of the model and the limited
number of the calibration parameters, Bayesian evidence (Eq.(4.2)) has been numerically
evaluated on a very dense square grid (step size 0.005 for both r1 and r2) built on the
domain. Posterior distribution is then obtained according to Eq.(4.1).

Results of updating procedure are listed in Table 4.5. Maximum a posteriori (MAP)
values of test N.1, N.2 and N.3 are very similar, showing how in this case the contribution
of the likelihood function is predominant with respect to the prior distribution. The same
consideration is valid for MAP values of test N.4 and N.5, while those of test N.6 are
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Figure 4.3: Two floor frame: variation of the parameter (a) r1 and (b) r2 with the weighting
factor α. Red dot: value of the parameter for the preferred solution.

Table 4.4: Two floor frame: description of the tests for Bayesian model updating.

Test Likelihood Prior Parameters Parameters
N. equation distribution for r1 for r2

1 (4.8) Uniform a=0.5 ; b=4.0 a=0.5 ; b=4.0
2 (4.8) Gaussian µ=2.0 ; σ=0.4 µ=1.5 ; σ=0.3
3 (4.8) Gaussian µ=3.0 ; σ=0.6 µ=1.0 ; σ=0.2
4 (4.9) Uniform a=0.5 ; b=4.0 a=0.5 ; b=4.0
5 (4.9) Gaussian µ=2.0 ; σ=0.4 µ=1.5 ; σ=0.3
6 (4.9) Gaussian µ=3.0 ; σ=0.6 µ=1.0 ; σ=0.2

different from the previous, especially r2. As concerns standard deviations, we can compare
tests characterized by the same prior distribution and different likelihood function, namely
pairs N.1-N.4, N.2-N.5 and N.3-N.6, observing how the lower uncertainty is obtained using
Eq.(4.8). Indeed, the comparison between contour plot of the two likelihood functions
used, performed in Fig.4.4, shows how in the case of Eq.(4.8) the area of the domain with
probability density different from zero is smaller than in the case of Eq.(4.9).

4.3.4 Comparison of results

Table 4.6 presents results obtained by different approaches in terms of calibrated param-
eters, relative error ϵ for frequencies and MAC value for mode shapes. Relative error for
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the m-th frequency is computed as:

ϵ =
fnum,m − fexp,m

fexp,m
· 100 (4.11)

Results of the Bayesian model updating for tests N.1, N.2 and N.3 are characterized by
smaller relative errors for frequencies compared to the preferred solution of the bi-objective
optimization and MAP values of test N.4, N.5 and N.6. On the contrary, a slightly higher
correlation with the first pseudo-experimental mode shapes is obtained with the latter.

Fig.4.5 shows solutions obtained with Bayesian model updating in the objective space eF -
eM , where objectives are defined by Eq.(2.1) and Eq.(2.2) with γ=1: the solutions of tests
N.1, N.2 and N.3 (black dot, asterisk and square, respectively) are located in the part
of the front characterized by values of α close to one. This highlights the predominant

Table 4.5: Two floor frame: results of the Bayesian model updating.

Test N.
r1 r2

MAP σ MAP σ
[−] [−] [−] [−]

1 1.825 0.069 1.635 0.060
2 1.835 0.068 1.625 0.059
3 1.885 0.078 1.570 0.061
4 1.545 0.143 1.910 0.169
5 1.575 0.135 1.830 0.139
6 1.525 0.135 1.605 0.111
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Figure 4.4: Two floor frame: likelihood function employed for (a) test N.1-N.2-N.3 and (b) test
N.4-N.5-N.6 both scaled by a factor 10−4.
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Table 4.6: Two floor frame: comparison among the results of the different methods.

Method
r1 r2

Mode N.1 Mode N.2
ϵ MAC ϵ MAC

[−] [−] [%] [%] [%] [%]

Deterministic 1.605 1.847 -3.40 99.44 3.19 99.97
Bayesian Test N.1 1.825 1.635 -0.46 98.46 0.46 99.89
Bayesian Test N.2 1.835 1.625 -0.36 98.40 0.33 99.87
Bayesian Test N.3 1.885 1.570 0.00 98.05 -0.41 99.76
Bayesian Test N.4 1.545 1.910 4.06 99.92 -4.44 99.62
Bayesian Test N.5 1.575 1.830 2.59 99.97 -4.20 99.47
Bayesian Test N.6 1.525 1.605 -2.72 100 -6.89 99.16
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Figure 4.5: Two floor frame: solutions of Bayesian model updating in the objective space eF -
eM . Red dot: preferred solution of bi-objective optimization. Black dot, asterisk and square:
solutions of test N.1., N.2. and N.3. Green dot,asterisk and square: solution of test N.4., N.5.
and N.6.

contribution of frequency residuals in the calibration procedure. In particular, solutions
of test N.1 and N.2 are non-dominated by other solutions, hence they represent points
of the Pareto front. The same for solutions of test N.4 and N.5 (green dot and asterisk,
respectively), that are located in another region of the front, closer to the preferred solution
of bi-objective optimization (red dot). Instead, solution of test N.6 (green square) is
dominated by the Pareto front.
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4.4 The San Felice sul Panaro fortress

In this section, the focus is the calibration of the FE model of the San Felice sul Panaro
fortress. For the description of the structure, the ambient vibration test and the FE
model the reader is referred to section 3.5. In both the approaches considered, namely
the deterministic bi-objective optimization and the Bayesian updating, the calibration has
been perfermed on the basis of the first three identified modes.

4.4.1 Deterministic model updating

The bi-objective optimization has been conducted considering the objectives defined by
Eqs. (2.1) and (2.2) with γ=0.5, the same functions employed in section 3.5.3. Hence,
results have been already presented in that section. Refer in particular to the Pareto front
of Fig. 3.25(a) and to the table 3.18 where the updated parameters and the weighting
factor associated to the preferred solution are listed.

4.4.2 Bayesian model updating

Bayesian model updating has been performed considering a uniform distribution for the
prior and the two different expressions for the likelihood function previously defined by
Eq.(4.8) and Eq.(4.9). The coefficients of variation selected for Eq. (4.8) are ϵf=5 % and
ϵϕ=1 %, while that of Eq. (4.9) is ϵ̄=2.5 %. The choice of a very small value for ϵϕ is
unusual but has been made in order to obtain a particular solutions, whose properties will
be discussed later. The corresponding contour plots, that have been realized on a regular
grid with a step size of 25 MPa for both parameters, are reported in Fig.4.6. The global
identifiability of the problem is assured considering the first three mode experimentally
identified. Indeed, both contour plots show that the likelihood functions have a single
peak [177].

Once the MAP value has been identified through the Matlab function “fminsearch”, Bayesian
evidence (Eq.(4.2)) has been numerically estimated on the grid previously described and
the conjunct posterior distribution has been computed according to Eq.(4.1). In table 4.7
the MAP values of ED and EU and the corresponding standard deviations, obtained using
the different definitions of likelihood function, are summed up. MAP values are similar,
almost identical for EU and with a difference of about 7 % for ED. Focusing on the uncer-
tainties of parameters, the standard deviation of EU computed in the second case is lower
than in the first one, but the standard deviation of ED is extremely larger, more than twice.
It depends on the coefficient of variation used for the likelihood function (Eq.(4.9)), where
the use of a value of 2.5 % determines a distribution very elongated in the ED direction
(see Fig. 4.6(b)). Fig.4.7 enables the comparison between posterior distributions obtained.
Despite these differences, standard deviation of ED is still high in both cases. For this
reason, the state of the structure defined on the basis of the modal property identified is
uncertain. More data are needed to reduce dispersion. Table 4.8 and 4.9 present the com-
parison between numerical and experimental modal properties for both situations, where
numerical properties are computed considering MAP values of table 4.7.
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Figure 4.6: Fortress: likelihood function defined by (a) Eq.(4.8) scaled by a factor 10137 and
(b) Eq.(4.9) scaled by a factor 10−1.

Table 4.7: Fortress: results of Bayesian model updating.

Likelihood Eq.
ED EU

MAP σ MAP σ
[MPa] [MPa] [MPa] [MPa]

(4.8) 632 107 904 53
(4.9) 585 234 912 36

Table 4.8: Fortress: experimental and numerical modes - Bayesian approach (Eq.(4.8)).

Mode Shape
Exp. Freq. Num. Freq. ϵ MAC

[Hz] [Hz] [%] [%]

1st Bending E-W 1.72 1.79 3.81 94.52
1st Bending N-S 1.75 1.63 −7.43 90.12
1st Torsional 3.55 3.62 2.22 93.58

4.4.3 Comparison of results

Tables 3.18 and 4.7 show that values of parameters updated by deterministic and Bayesian
procedure are different, in particular the value of ED. Also the corresponding frequencies
exhibit marked differences, while MAC values are similar for every mode. Fig.4.8 illustrates
how solutions of Bayesian model updating represented in the objective space eF -eM , where
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Figure 4.7: Fortress: comparison between posterior probability distributions of (a) parameter
ED and (b) parameter EU . Red curves: distributions related to likelihood function of Eq.(4.8);
black curves: distributions related to likelihood function of Eq.(4.9).

Table 4.9: Fortress: experimental and numerical modes - Bayesian approach (Eq.(4.9)).

Mode Shape
Exp. Freq. Num. Freq. ϵ MAC

[Hz] [Hz] [%] [%]

1st Bending E-W 1.72 1.79 3.95 94.53

1st Bending N-S 1.75 1.63 −7.28 90.12

1st Torsional 3.55 3.63 2.36 93.56

objectives are defined by Eq.(2.1) and Eq.(2.2) with γ=0.5, are not optimal solution in the
sense of Eq.(3.3). This outcome is not surprising because different discrepancy functions
have been used for the Bayesian and deterministic approaches. Solution of Bayesian model
updating are located close to the part of the front generated using small values of α,
highlighting how in this case the contribution of mode shape error is predominant in the
calibration process.

4.5 Concluding remarks

In this chapter, the framework of Bayesian model updating has been presented and the
benefits of handling a model updating problem in probabilistic manner highlighted. More-
over, a comparison with a deterministic approach for model updating has been performed
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Figure 4.8: Fortress: solutions of Bayesian model updating in the objective space eF -eM . Blue
dots: solutions of the Pareto front. Red dot: solution obtained using likelihood function of
Eq.(4.8). Black dot: solution obtained using likelihood function of Eq.(4.9)

through the calibration of a simple numerical model and the FE model of the San Felice sul
Panaro fortress, already described and employed in chapter 3. The deterministic approach
is based on the resolution of a bi-objective optimization problem using the DE-S algorithm
and on the subsequent choice of the preferred solution as the one characterized by the
minimum distance from the equilibrium point of the Pareto front.

For the simple frame model, Bayesian model updating has been carried out considering
three different prior distributions and two different likelihood functions with reference to
the coefficients of variation. In the first case, the values of ϵf and ϵϕ have been set to 1
% and 10 %, respectively. In the second, 5 % have been used for ϵ̄. The influence of the
likelihood function turned out to be greater than that of the prior distribution. Moreover,
standard deviations of the updated parameter distribution obtained in the first case of
likelihood function are about one half of those obtained in the second.

For the fortress, a uniform prior and the two previously defined likelihood functions are
considered. The posterior distribution less dispersed is obtained with the first definition
of the likelihood function. Anyway, the parameters of the structure updated through the
Bayesian framework have large uncertainty, especially ED. The author believes that a
greater number of accelerometers is needed to improve the mode shape accuracy and to
increase the number of experimental modes that can be used in the model updating, thus
reducing the uncertainty of the updated parameters.

Representation of solutions of Bayesian model updating in the objective space eF -eM re-
vealed that in most of the situation analyzed, both for the two-floor frame and the fortress,
unbalanced solution in terms of the objective eF and eM have been computed. Conversely,
the solutions of the deterministic approach, represent, by definition, the best compromise
between objectives. According to what has been shown, there is the need to introduce a
criterion for choosing the appropriate weight to frequency and mode shape errors in the
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Bayesian updating framework.



Chapter 5

Bayesian selection of residual weights

When dealing with the construction of the likelihood function, incorrect assumptions re-
garding the characteristic of the prediction error may unfairly influence the Bayesian up-
dating results. An example has been provided by the calibration of the two case studies
showed in section 4.3 and 4.4. In both cases, the solutions of the updating are affected by
the predominant contribution of a residual, the frequency residual for tests N.1, N.2 and
N.3 of the two-story frame and the mode shape residual for the fortress.

With reference to section 4.2.2, the incorrect assumptions may be related to fixed coeffi-
cient of variation of the prediction error, unknown a priori, or to uncorrelated or zero-mean
probabilistic model. In this regard, the Bayesian inference framework enables to make use
of the available data and to include the error parameters in the updating process in or-
der to identify the characteristics of the prediction error [152]. The problem of unknown
coefficients of variation has been addressed by Christodoulou and Papadimitriou [43], Pa-
padimitriou [129], Zhang et al. [182] and Goller et al. [69] through their selection performed
at the Bayesian model class selection level. In the cases, the uncorrelated and zero-mean
model assumption for the prediction error is maintained. However, when errors are corre-
lated or characterized by systematic components, the adoption of the previous probabilistic
model is obviously not well suited. More refined studies have been realized by Kennedy
and O’Hagan [98], who tried to estimate the parameters of a systematic error, and Simoen
et al. [153], who focused on correlation parameters.

In this chapter, the author focuses on the determination of the optimal coefficients of
variation of the prediction error, that are not supposed to be fixed a priori. Their rela-
tionship with the weights in bi-objective optimization is treated and, with reference to two
real case studies, a comparison between methodologies is realized. Moreover, a surrogate-
assisted procedure, aimed at reducing the computational cost of Bayesian model updating,
is applied for calibration of the case studies.

The chapter is organized in this way: section 5.1 presents the theoretical framework of
Bayesian Model Class Selection and the relationship between coefficients of variation and
weights in bi-objective optimization; in section 5.2 the surrogate-assisted procedure is
described. Finally, the results and the comparison between Bayesian and deterministic
approaches are discussed with reference to the case studies of the San Felice sul Panaro
fortress (section 5.3) and of the Ficarolo bell tower (section 5.4).

85
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5.1 Bayesian model class selection

Bayesian model class selection (BMCS) is an additional level of model updating where
the focus is addressed to the selection of the most plausible model class from a set of
alternatives according to the measured data d. Considering a discrete set of model classes
M = {Mk : k = 1, 2, ..., NMC}, the Bayes’ Theorem expressed at model class level updates
the prior probability P (Mk|M) into the posterior P (Mk|d,M) through the information
contained in d:

P (Mk|d,M) =
p(d|Mk)P (Mk|M)

p(d|M)
(5.1)

If all the model classes are considered equally plausible a priori, the posterior probability
depends exclusively on the factor p(d|Mk), which is the Bayesian evidence for the model
class Mk, previously defined in the Eq.(4.2) for a generic model class M. The denominator
of Eq.(5.1) is a constant ensuring that the sum of the posterior probabilities related the all
model classes gives 1. It is computed as:

p(d|M) =

NMC∑
k=1

p(d|Mk)P (Mk|M) (5.2)

where NMC is the number of model classes composing the set M.

In [15] it was proven how the logarithm of the Bayesian evidence is obtained by the differ-
ence between two terms:

ln [p(d|Mk)] =

∫
I

ln [p(d|x,Mk)] p(x|D,Mk) dx−
∫
I

ln

[
p(x|D,Mk)

p(x|Mk)

]
p(x|D,Mk) dx

(5.3)

The first term on the right hand side (RHS) of Eq. (5.3) quantifies the ability of the model
to fit the data (average data-fit in the following), while the second is the relative entropy of
the posterior p(x|D,Mk) with respect to the prior p(x|Mk). The latter is a penalty term
based on the model complexity. It penalizes more complicated models, that extract more
information from the data. We refer to this term with the denomination information gain.
In a general case, the number of model parameters affects the model complexity, hence the
information gain increases with the number of model parameters [19].

Bayesian model class selection has been applied for different purposes. A first option
is to use BMCS to select between different mechanical prediction models with the aim to
reduce model error. Muto and Beck [120] performed the selection among a set of hysteretic
structural models which give realistic responses to seismic loading. Mthembu et al. [118]
used the Bayesian evidence to analyse competing FE models for two real case studies.
In both cases, the updating procedure is carried out on the basis of measured natural
frequencies.

The other approach relies on the determination of the optimal probabilistic model in order
to represent the prediction error as well as possible. Some works in this field have been
cited in the introduction of this chapter. With reference to the selection of the optimal
coefficients of variation of the prediction error, model classes that compose the set M are
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characterized by different values of parameters ϵf and ϵϕ. The number of parameters of all
the model classes is always the same, so the penalty term of Eq.(5.3) depends exclusively
on the amount of information extracted from the data. It is associated, in turn, to the
relative weigh attributed to frequency and mode shape errors through the parameters ϵf
and ϵϕ.

Comparing the Eq. (4.8) with the Eqs.(2.1),(2.3) and (2.5), it is clear that the weights in
the bi-objective optimization are inversely proportional to the frequency and mode shape
coefficients of variations when no prior information about updating parameter is available,
as widely reported in literature [43, 152]. Therefore, the relationship between the weighting
factor α in bi-objective optimization and the quantity β = ϵ2ϕ/ϵ

2
f can be easily obtained

as:

α =
β

β + 1
(5.4)

Once the optimal coefficients of variation are determined thanks to BMCS, a comparison
with the weighted sum method can be performed computing the equivalent α with Eq.
(5.4).

5.2 Surrogate for the estimation of the Bayesian evi-

dence

Drawbacks that arise in the direct application of Eq. (4.2) have been discussed in section
4.2.3, as well as different methods for the computation of the posterior distribution have
been cited. In this work, the author proposes the use of a Gaussian surrogate for the
computation of the Bayesian evidence. The surrogate approximates the implicit-defined
integrand function, namely the product between prior distribution and likelihood function.
The computational cost of the integration operation on the surrogate model is significantly
smaller than that of the original function, especially for large complex structures as his-
torical masonry structures. The surrogate must be as accurate as possible using as few
simulation evaluations as possible. The process to define a surrogate comprises three major
steps which will be repeated iteratively:

1. Sample selection;

2. Construction of the surrogate model and calibration of model parameters;

3. Model validation and evaluation of the surrogate accuracy.

The accuracy of the surrogate depends on (i) the number and location of samples and (ii)
a proper choice of the function that approximates the original implicit-defined function.

The complete procedure used in this work to define the surrogate can be summarized as
follows:

1. Select a training dataset containingN samples. Each sample is aD-dimensional point
with D equal to the number of unknown structural parameters to be calibrated. The
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samples are selected by means of the Latin hypercube sampling (LHS) method. The
Latin hypercube sampling method produces well-distributed set of sample points and
avoids regions in the research space without samples or datasets with close points
[83].

2. Compute the likelihood function of Eq. (4.7) by solving the Finite Element model
for all samples of the selected dataset.

3. Identify a subset of data composed of samples for which the logarithm of the integrand
has a value larger than the 30 % of the maximum value computed at point 2.

4. In the case an inadequate number of samples are selected in the step 3, reduce the
research domain in a region close to the sample with the maximum values of the
integrand function and select a new dataset. Compute the value of the integrand
function for the new dataset.

5. Generate the surrogate by calibrating its parameters on the basis of the samples
evaluated at points 1 and 3. In this paper a D-dimensional Gaussian function is
used.

6. Compute the evidence from Eq. (4.2).

7. Validate the model. To do that, select a number N2 of new samples, calculate the
prediction error (i.e. the difference among the likelihood function predicted by the
surrogate and those calculate solving the FE model) and verify if the quality of the
fitting operation is satisfying. In this work, this occurs on the basis of two conditions.
The first is related to the residuals of the fitting operation: if the mean value of the
residuals is lower than a certain threshold it is not necessary to compute further points
on the domain. However, it may happen that the surrogate is not able to accurately
represent the distribution to be fitted. In this case the first condition cannot be
satisfied and the operation stops when the relative change in the parameter values of
the surrogate is lower than a fixed threshold.

8. Stop the procedure if the convergence is reached. Otherwise, repeat steps 3-7 adding
points in a search space in the neighbouring of the points with the maximum value
of the function predicted by the surrogate. The calibration of the surrogate has to be
carried out taking into account also the samples evaluated in the previous iterations.

Based on the above listed procedure, the Bayesian model updating framework allows to
determine the updating parameters and their uncertainties with a limited computational
cost. The model parameters can be identified by selecting the maximum of the poste-
riori distribution (MAP) after the Bayesian evidence is numerically calculated with the
surrogate.

5.3 The San Felice sul Panaro fortress

In this section, the comparison between results of the different approaches proposed and
the assessment of the computational cost of the different procedures are performed for
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the FE model of the San Felice sul Panaro fortress. The description of the structure, the
ambient vibration test and the FE model can be found in section 3.5.

5.3.1 Bi-objective optimization and selection of the preferred so-
lution

The bi-objective optimization has been performed with the weighted sum method (see
section 3.2) adopting the objectives eF and eM defined by Eqs. (2.1) and (2.3). The
definition of eM is different from that employed in section 3.5.3, so different results are
obtained. In this way, frequency and mode shape residuals are equal to those involved in
Eq. (4.8) for Bayesian model updating and a direct comparison can be conducted. The
weighting factor varies in the range [0.01; 1] with step size of 0.01. The associated Pareto
front is shown in Fig. 5.1(a), while Fig. 5.1(b) illustrates the variation of the updated
parameters with the weighting factor α. When α is between 0.01 and 0.7, the variation
of the parameters EU and ED is very limited. Indeed, the solutions obtained varying the
weighting factor in that range are all overlapped in few points located at the extreme right
region of the front (Fig. 5.1(a)). This means that the modification of α in the range [0.01,
0.70] does not produce a wide variety of solutions for the optimization problem.

Considering the remaining values of α, a significant variation of the updated parameters
is found, especially for ED. At the same time, in the objective space there is a gap among
the first points of the front placed on the right and the others. This is a drawback of the
weighted sum method, namely that a uniform distribution of the weighting factors does
not allow to generate a uniform distribution of the non-dominated solutions.

Fig. 5.2(a) compares the solutions estimated at the subsequent iterations of the direct
procedure (Eq. 3.26) with those forming the Pareto front. The optimal solutions estimated
from the two procedures are highlighted in Fig. 5.2(b). It can be observed from Fig. 5.2(a)
that all the solutions obtained from the subsequent iterations of the direct procedure allow
to identify the particular non convex shape of the front. The same consideration could have
been drawn if all the solutions evaluated from the classical procedure were represented,
rather than only the optimal ones.

As concerns the preferred solution of the classical procedure, the point corresponding to
the range [0.48, 0.70] for the weighting factor has been selected using the criterion of the
minimum distance from the equilibrium point. The value of the updated parameters EU

and ED is 912 MPa and 585 MPa, respectively. The comparison between the experimental
modal properties and those related to the preferred solution is reported in Table 5.1. The
preferred solution identified by the direct procedure, shown in Fig. 5.2(b), is slightly differ-
ent from the one found through the classical procedure because the direct one evaluates a
subset of solutions that is not computed by the classical one and that has smaller distances
from the equilibrium point.

5.3.2 Bayesian model updating and model class selection

Bayesian model updating and model class selection (see section 5.1) have been carried
out in order to determine the optimal coefficients of variation ϵϕ and ϵf and the posterior
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Figure 5.1: Model updating of the fortress FE model with bi-objective optimization: (a) Pareto
front and (b) variation of EU (black) and ED (red) with the weighting factor.
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Figure 5.2: Fortress: (a) comparison between points evaluated from different procedures and
(b) detail about the preferred solutions. Black circles: Pareto front computed with the classical
procedure; red circles: points evaluated from the direct procedure; black dot: preferred solution
for the classical procedure; red dot: preferred solution for the direct procedure.
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Table 5.1: Fortress: comparison between the preferred solution of bi-objective optimization and
the experimental modes.

Mode Shape
Exp. Freq. Num. Freq. ϵ MAC

[Hz] [Hz] [%] [%]

1st Bending E-W 1.72 1.79 3.95 94.53
1st Bending N-S 1.75 1.63 −7.28 90.12
1st Torsional 3.55 3.63 2.36 93.56

Figure 5.3: Fortress: second prior distribution employed in Bayesian model updating.

distribution of the parameter vector x.

Two different prior distributions have been chosen for the updating. The first is a non-
informative uniform distribution, while the second accounts for the damaged condition of
the structure. Indeed, it is unlikely that the damaged areas have an equivalent elastic
modulus larger than the one of the undamaged regions. This restriction is performed using
the prior distribution:

p(x|M) = k−1 1

1 + exp [−q(EU − ED)]
(5.5)

where q is a parameter that controls the slope of the descending part and k is a constant en-
suring that the distribution integrates to one. The 3D plot of the distribution of Eq. (5.5),
obtained using a value of 0.2 for the parameter q, is shown in Fig. 5.3. The analysis carried
out with the two different prior distributions are referred to as case 1 (non-informative uni-
form distribution) and case 2 (distribution that accounts for the damaged condition, Eq.
(5.5)). The likelihood function is defined by Eqs. (4.7) and (4.8). The same parameter grid
introduced in section 4.4.2 has been used for the computation of the Bayesian evidence.

First, the optimal coefficients of variation ϵϕ and ϵf are selected on the basis of the Bayesian
evidence. Fig.5.4 shows the contour plot of the posterior probability for case 1 and for
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Figure 5.4: Fortress: contour plot of the posterior probability, scaled by a factor of 103, for
different values of the coefficients of variation ϵf and ϵϕ.

different values of the variance coefficients. ϵf and ϵϕ ranges, respectively, from 1 % to 15
% and from 1 % and 20 % with step size of 0.25 %. The optimal pair of coefficients, that
corresponds to the pair with the maximum posterior probability, is ϵf=6 % and ϵϕ=5.75
%. Moving away from the maximum it can be observed that the slope of the distribution
is steeper in the ϵϕ direction, highlighting the more sensitivity of the posterior probability
towards the mode shape coefficient. Results of case 2 are not represented since the optimal
pair of variance coefficients are the same of case 1 and the posterior probability distribution
is very similar.

For the optimal pair of variance coefficients, the posterior marginal distributions of up-
dating parameters are reported in Fig. 5.5. The distributions of EU for the two cases are
very similar, while some differences are observed for ED. In particular, the distribution of
case 1 is characterized by an almost constant value of probability density for a large part
of the domain. In the second case, the variability of the parameter is still remarkable, but
reduced if compared to the first case. Mean values and standard deviations are listed in
Table 5.2.

It is interesting to analyze the uncertainty related to updated parameters by varying the
pair of the coefficients of variation. For the case 2, that involves the prior distribution of
Eq. (5.5), the trend of the standard deviation for parameters ED and EU is reported in
Fig. 5.6. For both parameters, the minimum values of standard deviations are obtained at
the left boundary of the plot, for very small values of ϵf . Moving in the ϵf direction there
is an abrupt increase of σ until the value of about 3%, then the slope slightly decreases
for EU while for ED there is an almost flat development. The optimal pair of coefficients,
identified on the basis of the Bayesian evidence, is not associated with the minimum stan-
dard deviation. The solutions characterized by low values of the standard deviation are
examined in section 5.3.4 through the comparison with bi-objective optimization results.
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Figure 5.5: Fortress: marginal posterior distribution of the updating parameters. Black con-
tinuous line: distribution of the parameter EU for the case 1; red continuous line: distribution
of the parameter ED for the case 1; black dashed line: distribution of the parameter EU for the
case 2; red dashed line: distribution of the parameter ED for the case 2.
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Figure 5.6: Fortress: contour plot of the standard deviation expressed in 106 Pa for the param-
eters (a) ED and (b) EU in function of different values of the variance coefficients. Black asterisk:
optimal solution identified on the basis of the Bayesian evidence.
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Table 5.2: Fortress: mean values (µ) and standard deviations (σ) of the updated parameters.

Case
µEU

σEU
µED

σED

[106Pa] [106Pa] [106Pa] [106Pa]

1 913 76 743 296
2 933 75 576 200

Table 5.3: Fortress: mean values (m) and coefficients of variation (CV ) over the 100 repeti-
tions of the logarithm of the evidence (log p(d|M)) and of the posterior distribution parameters
(µEU

,σEU
,µED

,σED
) estimated thanks to the Gaussian surrogate.

Case
log p(d|M) µEU

σEU
µED

σED

m CV m CV m CV m CV m CV
[-] [%] [106Pa] [%] [106Pa] [%] [106Pa] [%] [106Pa] [%]

1 31.96 0.1 905 0.4 75 44.0 754 4.3 429 14.8
2 32.00 0.2 921 0.4 74 23.7 585 3.3 243 9.9

5.3.3 Use of the surrogate for the computation of the evidence

Bayesian model updating and model class selection is performed adopting the approximated
procedure that involves the use of a surrogate, as described in section 5.2. The variability
of the procedure is assessed by repeating 100 times the updating considering both prior
distributions (non-informative uniform distribution and that of Eq. (5.5)) and fixed values
of the likelihood function coefficients of variation ϵf and ϵϕ, taken equal to the optimal
ones determined in subsection 5.3.2. Statistics about the natural logarithm of the evidence
and the posterior distribution parameters is summed up in Table 5.3.

Results reveal how the evidence is well estimated for both cases with a low variability
since the exact values of the natural logarithm of the evidence are 31.96 and 31.95 for
case 1 and 2, respectively. Instead, focusing on the posterior distribution parameters, we
note important differences between the two cases. Mean values of case 1 are very similar
to the exact values and characterized by a low coefficient of variation but the standard
deviation of ED is significantly over-estimated. This occurs because the product between
prior distribution and likelihood function, shown in the contour plot of Fig. 5.7(a), is
different from a Gaussian distribution. Consequently, the fitting function is not suitable
for the approximation and, in order to match the right tail of the distribution, that is more
elongated than the left one, σED

is over-estimated. Furthermore, both standard deviation
σEU

and σED
are highly variable.

As concerns the case 2, all parameters are calibrated with sufficient accuracy, with a
maximum relative error of 21.5 % for σED

, that is significantly lower compared to case
1. In this case the extension of the distribution tails in the ED direction are comparable
(Fig. 5.7(b)).
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Figure 5.7: Fortress: contour plot of the product between prior distribution and likelihood
function scaled by a factor 104. (a) case 1, (b) case 2.

5.3.4 Comparison between updating methods

MAP solutions of Bayesian model updating, obtained changing the coefficients of variation
ϵf and ϵϕ of the likelihood function as described in paragraph 5.3.2, are represented in the
objective space eF -eM . The plot is illustrated in Fig. 5.8. Bayesian solutions are Pareto-
optimal solutions that are not associated to a uniform distribution of weights. The only
difference with the bi-objective optimization results involves the point corresponding to
α=1.00, that has not been computed because it corresponds to a solution with ϵϕ → +∞.

In section 5.1 it has been demonstrated how, considering the objectives eF -eM defined by
Eqs.(2.1)-(2.3) and the likelihood function defined by Eqs.(4.7)-(4.8), there is an equiva-
lence between the weighting factor α of bi-objective optimization and the coefficient β for
Bayesian model updating (see Eq.(5.4)).

As concerns the selection of the optimal coefficients of variation, the equivalent weighting
factor α for the Bayesian procedure computed with Eq.(5.4) is 0.43, while the range of
preferred weighting factors selected with the criterion of the minimum distance from the
equilibrium point, that in this specific case corresponds to the same updated parameters,
is [0.48, 0.70]. These two solutions are not the same but they are close in the objective
space. Considering only the term of the evidence related to the average data-fit (namely
the first term on RHS of Eq. (5.3)), so neglecting the penalty term based on the informa-
tion gain, the equivalent weighting factor associated to the optimal variance parameter is
0.52. Therefore, the latter is equal to the preferred solution of deterministic bi-objective
optimization in terms of updated parameters.

Focusing on those Bayesian solutions characterized by low values of uncertainty (see Fig.5.6),
although their standard deviations are the minimum found, they are not well balanced so-
lutions in terms of frequency and mode shape residuals. The equivalent weighting factor
is equal to 0.99, so they are in an extreme region of the front and are related to a high
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Figure 5.8: Fortress: Bayesian solutions in the objective space (red asterisks) together with the
Pareto front (black dots) obtained with the bi-objective optimization.

value of mode shape residuals, as illustrated in Fig. 5.8. Computing the MAC value be-
tween experimental and numerical mode shapes, we obtain 90.19 %, 81.43 % ad 93.06 %
for the first three the experimental modes. If we compare them with the MAC values of
the preferred solution, listed in Table 5.1, we can remark how the correlation of the first
and the second mode decreases of about 4 % and 9%, respectively. Moreover, the updated
parameters of the solution corresponding to α=0.99 are very different from those of the
preferred solution, as we can see in Fig. 5.1(b).

Finally, the computational burden of all the methods employed is analyzed. The classical
Bayesian approach, that is performed through a parameter grid, needs 1617 evaluations of
the likelihood function. At each evaluation a modal analysis of the FE model is realized.
The efficiency is significantly improved with the surrogate-based procedure that requires
only 90 evaluations. As regards the deterministic methods, the whole Pareto front has
been built with a total amount of 3772 evaluations, on average 38 evaluations per point of
the front. The direct procedure of section 3.4 takes 120 repetitions of a modal analysis,
about 3 times the number needed for one point of the front, but allows to immediately
select the preferred solution.

5.4 The Ficarolo bell tower

In this section, the subject of the comparison is the calibration of the FE model of the
Ficarolo bell tower.

5.4.1 Description of the structure

The structure, showed in Fig. 5.9, is a masonry bell tower located in the city of Ficarolo
(Veneto, Italy). Its construction started in 1777, after the realization of the neighbouring
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Figure 5.9: The Ficarolo bell tower and the Saint Antonio Martire Church.

Saint Antonio Martire Church. The peculiarity of the tower is its impressive vertical
inclination with a mean tilt angle of about 3° for the central portion. For this reason, it
is known in Italy as “Pisa of Veneto”, recalling the more famous tower of Pisa, whose
maximum inclination reaches 4°.

The bell tower is composed of a double-barreled masonry structure with a spiral staircase
connecting the two shaft from the ground level up to 45 meters where the belfry starts.
The tower is about 68 m high and has a variable cross section whose dimension is variable,
from about 8.50 m at the base up to 5.30 m at the cusp level. Two intermediate masonry
cross-vaulted floors are located at the level of 45.0 m and 53.0 m, the first of those support
the belfry. The outer shaft is a multi-leaf masonry wall with deceasing thickness (from
230cm at the base up to 40 cm at the belfry level), while the inner shaft has a single-leaf
masonry wall of constant thickness equal to 15 cm.

Due to the Emilia earthquake occurred in 2012, the structure has suffered serious damage,
thus retrofitting interventions where planned and performed in 2014. The main operations
concerned: (i) the positioning of different types of external steel rings at the level of belfry
and cusp structures, (ii) the insertion of two rigid floor timber floors at the height of 51.0
m and 59.0 m, (iii) local injection of mortar, rebuilding and repointing of the mortar joints,
(iv) the rebuilding of cracked zones (especially in the area of the masonry cusp) and (v)
the strengthening of masonry walls with carbon bars embedded in the masonry with epoxy
resin.

5.4.2 Ambient vibration testing and modal identification

The dynamic behaviour of the Ficarolo bell tower has been characterized thanks to two
ambient vibration tests performed before and after the aforementioned strengthening inter-
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vention. The experimental campaign and the modal parameter identification are presented
in the present section. Since the model calibration is performed with reference to the ac-
tual condition of the tower (namely after the strengthening), the identification of modal
parameters presented in the following refers to that condition.

The dynamic tests were performed by means of the SHM602 system, namely a MEMS-
based system developed by the University of Bologna and the University of Modena and
Reggio Emila and engineered by Teleco SpA [73]. The system relies on an advanced
architecture composed of digital buses and MEMS sensors presenting a noise floor of about
0.3-0.5 mg. The SHM602 system components consist in a controller and storage unit
and several bus-connected sensing units. The main advantages of the bus connection are
the prevention against electromagnetic interferences and a high degree of reliability. Each
sensing unit can measure the temperature and the accelerations along two orthogonal axes,
with a sampling frequency between 20 Hz and 80 Hz. The main peculiarities of this system
are the digital data transmission and the possibility of performing some system analyses
directly on-board of the sensors, which allows transferring only the processed synthetic
data to the main computer.

To identify as many natural modes as possible, 11 biaxial MEMS-based accelerometers
were arranged in six levels, namely the ground, 13.2 m, 18.4 m, 31.4 m, 45.1 m and 51.0
m. Except for the ground, two units are placed at each instrumented level at the opposite
corners to better identify both translational and torsional mode shapes. Each sensing
unit can measure accelerations along two orthogonal axes so that four time histories are
attained for each section. One sensor is located at the ground level to acquire potential
seismic events that could occur during the experimental campaign, which lasted three days.
The instrumented levels and the layout of the accelerometers (R0-R5, N1-N5) are shown
in Fig.5.10. The sensors were installed on the inner walls by means of metal plates and
screws, as shown in Fig.5.11.

Fig.5.12(a) presents an example of the structural acceleration measured at the upper in-
strumented level, which ranges between -2 mg and 2 mg. The corresponding PSD function
is shown in Fig.5.12(b), where three peaks can be recognized. The modal parameters are
identified by applying the Enhanced Frequency Domain Decomposition method to the ac-
quired accelerations [27]. The first five identified modes are represented in Fig.5.13, where
the corresponding natural frequencies are indicated. The first four modes involve bending
in the two directions, while the fifth mode is a torsional mode. Bending modes in X and
Y direction are characterized by very close spaced frequency, due to the square plan and
the stiffness symmetry in the two directions.

5.4.3 FE model of the bell tower

A FE model of a three-dimensional cantilever beam discretized in 32 elements with flexural
and shear deformability has been developed for the bell tower. The variation of the shaft
stiffness along its height may be affected by several factors. On the basis of the available
mechanical and geometrical information, the most relevant uncertain parameters to be cal-
ibrated are the deformability of the soil-foundation system, the increment of stiffness due
to the presence of a rock basement and the presence of a masonry vault at the height of 45
m. The calibration of the shaft stiffness distribution is thus necessary in order to match



Bayesian selection of residual weights 99

+45.1

+31.4

+18.4

+13.2

+0.00

+51.0L5

Ground

L4

L3

L2

L1

L5
R5

N5

L4

L3

L2

L1
R4

N4

R3

N3

R2

N2

R1

N1

X

Z

X

Y

Ground
R0

Figure 5.10: Bell tower: instrumented levels (ground, L1-L5) and MEMS-based accelerometer
positioning.
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Figure 5.11: Bell tower: typical installation on MEMS-based accelerometers.
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Figure 5.12: Bell tower: (a) typical acceleration time history recorded at the upper instrumented
level and (b) corresponding power spectral density (PSD) function.
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Figure 5.13: Bell tower: experimental mode shapes.

the experimental modal properties as well as possible. The variation of stiffness along
the tower height is performed by implementing the so called damage function approach as
proposed in [163]. The damage functions, proposed for the specific application of damage
detection, describe the variation of a stiffness parameter inside a substructure, called dam-
age element by the proposers, composed of a certain number of finite elements. Unlike the
classical substructure approach, the value of the parameter inside a substructure may not
be constant. The number of functions Ni employed is commonly lower than the number
of finite elements of the model, in such a way that the number of variables to update is
reduced. To this purpose, the external side of the square cross section, that affects both
flexural and shear stiffness, is described by a piece-wise linear function, while the internal
side of the cross section is supposed to have a constant value equal to 3.9 meters. A ref-
erence value B0 of 7 meters has been considered and for each element e of the FE model
the updated side Be is computed through the parameter ae, that represents the relative
variation with respect to the reference value:

Be = B0 (1− ae) (5.6)
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Table 5.4: Bell tower: comparison between the preferred solution of bi-objective optimization
and the experimental modes.

Mode Shape
Exp. Freq. Num. Freq. ϵ MAC

[Hz] [Hz] [%] [%]

1st Bending Y 0.547 0.563 2.83 96.48
1st Bending X 0.573 0.563 −1.83 96.80
2nd Bending Y 2.158 2.110 −2.24 96.05
2nd Bending X 2.181 2.110 −3.27 96.17
1nd Torsional 3.103 3.055 −1.53 94.71

The correction parameter ae is computed by the linear combination of linear and step-wise
functions Ni:

ae =

NF∑
i=1

piNi (y
e) (5.7)

where NF is the number of functions Ni used in the discretization, pi are their multiplica-
tion factors and ye is the vector containing the centroid coordinate of the element e. Ni

are the damage functions and they describe the variation of the parameter ae inside the
structure. For this case study, three substructures, each one characterized by a linear stiff-
ness variation, are defined. When the number of substructures is limited, the location of
the boundaries significantly affects the parameter distribution. According to the structural
information and after some preliminary analysis, the boundaries of each substructure are
selected as the finite elements no.1, 3, 18 and 22, with the element numeration starting from
the base. These elements are located at the base, to take into account the soil-foundation
system deformability, at the end of the rock basement, at the base of the masonry vault
and, finally, at the beginning of the belfry. The upper part of the bell tower does not
significantly affect the modal behaviour of the tower and it is modeled accurately in term
of masses and stiffeners. The updating parameters are the four multiplication factors pi
that appear in Eq. (5.7).

5.4.4 Bi-objective optimization and selection of the preferred so-
lution

The bi-objective optimization has been performed with the weighted sum method (see
section 3.2) adopting the definitions of Eqs. (2.1) and (2.3) for the objectives eF and
eM , respectively. The weighting factor varies between 0.01 and 1 with step size of 0.01.
Fig. 5.14 shows the Pareto front for the FE model of the bell tower together with a point
representing a particular solution in the objective space. This solution has been computed
with the same FE model where each element is characterized by given values properties of
the cross section, computed according to the geometrical survey. Masses are also estimated
from the geometrical survey, considering a constant value of the material density. Thus,
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Figure 5.14: Bell tower: Pareto front (black dots) obtained with the weighted sum method and
solution related to the updating of the only elastic modulus (red dot).

the elastic modulus of the elements is the only parameter to be tuned, whose updated value
is 2141 MPa. It is possible to see that this particular solution is dominated by the Pareto
front since there is a solution of the front with about the same value of the objective eF
but with a value of eM smaller than about 0.01. This confirms that the parametrization of
the FE model with piece-wise linear functions allows to obtain better results compared to
the parametrization based on survey results.

The preferred solution of the optimization problem, selected with the criterion of the
minimum distance from the equilibrium point, corresponds to a weighting factor of 0.36.
The updated parameters of this solution are p1=0.073, p2=-0.125, p3=0.262 and p4=0.004.
The associated distribution of the element bending stiffness EI, where E denotes the elastic
modulus and I the moment of inertia of the cross section with respect to centroidal axis,
is illustrated in Fig. 5.15. The distribution of shear stiffness GAe,s, where G denotes the
shear modulus and Ae,s the equivalent shear area, is not represented, but it has a very
similar trend. Both distributions are consistent with the physical consideration expressed
in section 5.4.3. Due to the deformability of the soil-foundation system, the stiffness at
the base of the tower is relatively low compared to its value at upper heights, since at that
location the geometrical dimension of the cross section, obtained by the survey, are the
largest of the tower. Moving upward, there is a rapid increase of stiffness for the presence of
a stiffer rock basement. Finally, the linear decrement of stiffness with height, in compliance
with the reduction of the cross section dimension, is interrupted by a significant positive
variation to be ascribed to the masonry vault located at 45 m from the base.

The preferred solution identified with the direct procedure is very close to the one of
the classical procedure. The updated parameters are p1=0.072, p2=-0.124, p3=0.262 and
p4=0.004, while the estimated value of the weighting factor (Eq. (3.26)) is 0.37.
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Figure 5.15: Bell tower: bending stiffness distribution along the shaft height.

5.4.5 Bayesian model updating and model class selection

Bayesian model updating and model class selection (see section 5.1) have been carried
out in order to determine the optimal coefficients of variation ϵϕ and ϵf for the likelihood
function and the posterior distribution of parameter vector x. The likelihood function is
defined by Eqs. (4.7) and (4.8), while the prior distribution considered is a non-informative
uniform distribution defined in a four dimensional hyper-cubic domain where each updating
parameter pi, introduced in 5.4.3, belongs to the interval [-0.5, 0.4]. The parameter domain
was discretized into a regular grid employing a step size of 0.025 for each parameter.

As concerns the selection of the optimal coefficients of variation, several models has been
considered varying ϵf in the range [1 %, 10 %] and ϵϕ in the range [1 %, 15 %] both with
step size 0.5 %. Fig. 5.16 shows the contour plot of the posterior probability for different
values of the coefficients. The optimal pair of coefficients, that corresponds to the pair
with the maximum posterior probability, is ϵf=2.5 % and ϵϕ=3 %. Moving away from
the maximum it can be highlighted as the slope of the distribution is steeper in the ϵϕ
direction, highlighting the more sensitivity of the posterior probability towards the mode
shape coefficient.

The posterior marginal distributions of updating parameters are reported in Fig. 5.17,
while mean values and standard deviations are listed in Table 5.5. It shows a considerable
variability of results, especially for parameters p1 and p2. Consequently, the updated
stiffness distribution of the tower base is characterized by large uncertainty, as illustrated
in Fig. 5.18. Indeed, the maximum variation obtained between the extremities of the range
[µEI − σEI ;µEI + σEI ] is about 2.5 · 1011Nm2.
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Figure 5.16: Bell tower: contour plot of the posterior probability for different values of the
coefficients of variation ϵf and ϵϕ.
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Figure 5.17: Bell tower: marginal posterior distribution of updating parameters. Black contin-
uous line: distribution of the parameter p1; red continuous line: distribution of the parameter p2
; blue continuous line: distribution of the parameter p3; black dashed line: distribution of the
parameter p4.
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Table 5.5: Bell tower: mean (µ) and standard deviation (σ) of the updated parameters.

p1 p2 p3 p4

µ σ µ σ µ σ µ σ
[−] [−] [−] [−] [−] [−] [−] [−]

0.006 0.071 -0.079 0.044 0.240 0.026 0.031 0.049

Figure 5.18: Bell tower: updated distribution of the tower stiffness along the shaft height. Blue
line: mean value; light blue area: stiffness distribution in the range [µEI − σEI ;µEI + σEI ].

5.4.6 Use of the surrogate for Bayesian model updating

Bayesian model updating and model class selection is performed adopting the approxi-
mated procedure that involves the use of a surrogate, as described in subsection 5.2. The
variability of the procedure is assessed by repeating 100 times the computation of the
Bayesian evidence for fixed values of the likelihood function coefficients of variation, taken
equal to the optimal ones determined in subsection 5.4.5.

Since the updating parameters of the problem are 4, the complete characterization of a
Gaussian function in 4 dimensions needs the definition of 15 parameters: a scale parameter,
the mean vector of dimension 1 × 4 and the covariance matrix of dimension 4 × 4 that is
composed by 9 independent parameters due to its symmetry. The procedure is performed
in two cases, denoted as case A and B. In case A, the 4 random variables describing the
updating parameters are considered as uncorrelated, reducing the number of parameters
to determine to 9. In case B, the correlation between variables is maintained, leading to
the 15 parameters previously described.

In case A, the mean value of the natural logarithm of the evidence is 112 and its coefficient
of variation is less than 4 %. The exact value is 105.8, hence the relative error committed
is about 6.3 %. The updated parameters substantially differ from the exact ones: it can be
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Figure 5.19: Bell tower: comparison of the updated stiffness distributions. Blue line: exact
distribution; red line: updated distribution through Gaussian surrogate in case A; black line:
updated distribution through Gaussian surrogate in case B.

clearly noticed in Fig. 5.19 by comparing the exact stiffness distribution (blue line) with
the one related to the mean vector of the Gaussian surrogate (red line).

The optimization problem of case B is particularly complex due to the high number of
parameters, i.e. 15, and due to the fact that the covariance matrix needs to be positive
definite. The latter implies further constraints on the parameters describing covariance
between variables: the problem is solved by assigning a penalty term to those parameter
combinations that do not respect that condition.

The mean value of the natural logarithm of the evidence is 117 and its coefficient of variation
is equal to 15 %. The updated stiffness distribution, represented with the black line in Fig.
5.19, is similar to the exact one except for the values at the base of the tower, where the
initial stiffness reduction is not identified.

Results of the analysis reveal how in a 25 % of the repetitions the optimization algorithm
does not converge and the procedure is stopped when the maximum number of iterations
is reached. In these instances, the natural logarithm of the evidence is very far from its
exact value and the same applies for the updated stiffness distribution.

5.4.7 Comparison between updating methods

Fig. 5.20 represents the MAP solution of Bayesian model updating, obtained changing the
coefficients of variations ϵf and ϵϕ of the likelihood function as described in section 5.3.2, in
the objective space eF -eM . Similarly to what showed for the fortress, the solutions denote
the same Pareto front obtained with the bi-objective optimization. In the case of Bayesian
model updating, however, the optimal solutions are found by varying in a uniform way
not the weights, but the coefficients of variation ϵf and ϵϕ. Consequently, the equivalent
weights are not uniformly distributed.
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Figure 5.20: Bell tower: Bayesian solutions in the objective space (red asterisks) together with
the Pareto front (black dots) obtained with the bi-objective optimization.

As concerns the selection of the optimal coefficients of variation, the equivalent weighting
factor computed from Eq.(5.4) is 0.59, while the preferred weighting factor selected with
the criterion of the minimum distance from the equilibrium point is 0.36. Considering
only the term of the Bayesian evidence related to the average data-fit (namely the first
term on RHS of Eq. (5.3)), so neglecting the penalty term based on the information gain,
the equivalent weighting factor associated to the optimal variance parameter is 0.31. The
latter is appreciably closer to the preferred weighting factor of bi-objective optimization.

Finally, the computational burden of all the methods employed is analyzed. The classical
Bayesian approach performed through a parameter grid has a cost that grows exponentially
with the number of parameters, requiring for this problem about 1.8 · 106 evaluations of
the likelihood function, and consequently the realization of a modal analysis. The use of
the Gaussian surrogate enables to hugely reduce the number of evaluations to 250. Also
the deterministic methods are more expensive in terms of number of evaluations compared
to the case of the San Felice sul Panaro fortress. The computation of the whole Pareto
front needs about 35000 evaluations, on average 354 evaluations per point of the front.
The direct procedure of section 3.4, takes 1815 repetitions of a modal analysis, about 5
times the number needed for one point of the front, but it is able to identify the preferred
solution with a single optimization.

5.5 Concluding remarks

In this chapter, the Bayesian approach has been extended to the selection of the optimal
coefficients of variation of the likelihood function, that are related to the weights attributed
to frequency and mode shape residuals in the optimization. Moreover, a surrogate-assisted
approach has been proposed to alleviate the computational burden of the method. The
selection of the optimal coefficients of variation has been carried out for two real case
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studies, the San Felice sul Panaro fortress and the Ficarolo Bell tower. Results, in terms
of weights and computational effort, have been compared to the weights determined with
the deterministic bi-objective approach and the proposed direct procedure both presented
in chapter 3.

As expected, the direct procedure enables a sharp reduction of the computational cost
(namely 97% for the fortress and 95% for the bell tower) while guaranteeing basically
the same results of the classical bi-objective optimization. Results of the Bayesian model
updating match pretty well those of the deterministic approach especially when the penalty
term based on the information gain is neglected. A good agreement between results is
observed mainly for the fortress, while no negligible differences are noted in the updated
section stiffness EI at the base of the bell tower. Moreover, the introduction of a surrogate
model to compute the Bayesian evidence strongly reduces the computational cost of the
process. In particular, the number of simulations required decreases from 1617 to 90 for
the fortress and from about 1.8 · 106 to 250 for the bell tower.

Let us analyze results of the San Felice sul Panaro fortress in more detail. The main key
issue regarding the Bayesian model updating concerns the choice of the prior distribution.
Indeed, if the relation EU > ED between the undamaged EU and damaged ED masonry
elastic modulus (case 2 in section 5.3.2) is accounted for in the definition of the prior dis-
tribution, mean values of the updating parameters are very close to those obtained from
the deterministic approach. On the contrary, if a non-informative prior distribution is con-
sidered (case 1 in section 5.3.2), the mean value of the elastic modulus ED is overestimated
by about 25%. It is worth of note that in this specific case it is possible to fix a relation
between parameters because (i) there are only two calibration parameters and (ii) their
physical relation is clear and unequivocal. There is a good chance that in many other cases
it would not be possible to fix a relation among parameters. To reduce the computational
cost of the process, a Gaussian function is assumed to compute the Bayesian evidence. It is
observed that the Gaussian model is well-suited for case 2, i.e. when the relation between
the calibration parameters is accounted for in the definition of the prior distribution. Ac-
cordingly, in this case results are almost the same as those obtained without introducing
the surrogate model. On the contrary, the chosen fitting function is not suitable for case 1
(non-informative prior distribution), causing the overestimation of the standard deviation
of ED.

Unlike the fortress, the Ficarolo bell tower is characterized by a simpler numerical model
and four calibration parameters. In this case, a non-informative prior distribution is con-
sidered, as no relation among the updating parameters can be easily defined. Bayesian
model calibration with four updating parameters results hard to handle because of the
high number of simulations required in the parameter grid. To overcome this limit, a
surrogate model is introduced, represented by a four-dimensional Gaussian function. Two
different solutions are obtained depending on whether the correlation among the four ran-
dom variables describing the updating parameters is considered or not. Better results can
be obtained only if this correlation is considered, although even in this case the variability
of the updating parameters is high. Inaccuracies in the surrogate-based Bayesian model
updating are related to the calibration of the surrogate model, that can be complicated by
the high number of function parameters involved.



Chapter 6

Damage detection with Artificial
Neural Networks

Model updating methods for damage detection have been successfully applied in different
contexts [85, 162, 133, 87]. However, they are usually time-consuming and do not enable
the real-time identification of a damaged condition. On the contrary, machine learning
(ML) techniques, if properly calibrated, ensure a quick identification, and a good efficiency
in working with noise-corrupted data. Numerical models can be used for their calibration:
they simulate ordinary conditions and damage scenarios. Among the several ML methods,
artificial neural networks (ANNs) represent tools widely diffused in the field of damage
detection. The goal of this activity is to define a procedure using ANNs, in particular a
multi-layer perceptron (MLP), for the detection of damage in a railway bridge. Different
kinds of dynamic data, such as modal properties and features extracted from acceleration
and displacement response of the bridge recorded during the passage of a train are provided
as damage features to networks with different architectures.

The chapter is organized in this way: section 6.1 presents a literature review about data-
driven damage detection techniques; section 6.2 describes the specific type of ANN em-
ployed in this application from a mathematical point of view. In section 6.3 the proposed
damage identification procedure is delineated with details about all the aspects that char-
acterizes it: numerical models, simulation of the structural response, measurements and
model uncertainties, data elaboration and damage scenarios. Two models have been em-
ployed for the development of the procedure due to the impossibility to have data related
to a possible damage condition of the bridge and with the aim to taking into account
the unavoidable discrepancy between model and reality. Performances of the analyzed
networks are investigated with respect to a dataset generated through the first model in
section 6.4.1, while in section 6.4.2 the network test is performed with data obtained by
a more detailed model simulating the “real” structural behavior. Finally, conclusions are
drawn in section 6.5.

109



110

6.1 Literature review

Data-driven methods are based on the extraction of damage-sensitive features from the
measured experimental response, and they do not directly rely on the calibration of a
physical model for damage detection. For this reason, the computational effort required
by these methods is clearly limited compared to model-based techniques and a real-time
identification of the structure condition can be carried out. The performance of these
methods depends on the damage sensitivity of the features selected. Some of the main
approaches to damage detection without ML techniques has been described in chapter 1
referring to the review work of Doebling et al. [54].

An extended version of that review was realized by Sohn et al. [156]. In this work, attention
began to be placed on the development of statistical models for feature discrimination, a
field ML techniques are part of. ML techniques employment for damage detection showed
a significant increment in the last decades thanks to an impressive computational devel-
opment that allowed the collection, the handling and the elaboration of a huge amount of
data. Moreover, ML approaches are capable of working with uncertain and noise-corrupted
data [99], typical characteristics of dynamic data employed in vibration-based damage de-
tection. As a consequence of these developments, the damage detection process can be
addressed as a pattern recognition problem, whose main phases are data acquisition, fea-
ture extraction and classification. The last task is usually accomplished by ML classifiers,
among which ANN are the most diffused.

A proper distinction among ML damage detection methods relies on the feature extraction
technique, as proposed in a recent review article by Avci et al. [6]. Parametric methods
utilize dynamic parameters of the structure to determine the presence, location and sever-
ity of damage. These parameters are simply physical parameters like modal frequencies,
masses, dampings and mode shapes. In this case, feature extraction is performed by modal
identification techniques. On the other hand, non-parametric methods detect damage di-
rectly from the acquired accelerations by means of statistical tools. Time series modelling
and signal processing techniques are employed to extract damage sensitive features that
are then provided to a classifier. In the following, the principal works about ML-based
damage detection are investigated according to the previous distinction.

6.1.1 Parametric ML methods

Numerous applications have been proposed in this context and most of them are based on
the use of natural frequencies and mode shapes to construct the feature vector. Pawar el
al. [131] presented an integrated method of spatial Fourier analysis and ANNs to localize
damage in a fixed-fixed beam. Spatial Fourier analysis was performed to identify the mode
shapes, that are the extracted features, from the free response of the beam. Mehrjoo
et al. [114] carried out damage detection and localization of a simple truss bridge and
the Louisville Bridge with a MLP which takes in input modal properties extracted from
the acceleration response. These techniques were applied with successful results only to
numerical exercises. Gonzalez and Zapico [70] proposed a multiple MLP-based method
for seismic damage identification of a steel moment frame. The network was not used
for classification purposes but, on the basis of modal properties provided, it was able to
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compute modal mass and stiffness of the structure members, that are the features used
to identify, locate and quantify damage. The method, however, showed a high sensitivity
to input feature error. Bakhary et al. [8] developed another multiple ANN procedure
associated to the substructure approach. The structure under examination, a two-span
reinforced concrete slab, is divided into substructures and their local frequencies are the
output of the first network. This output represents the input of a second network that is
able to quantify and localize damage. The procedure is validated both numerically and
experimentally. Betti et al. [23] proposed the combined use of MLP and genetic algorithms
to improve damage detection considering the experimental SHM benchmark of the IASC-
ASCE Task Group [93]. The genetic algorithm was used to update a FE model of the
benchmark structure, which generates the training dataset of the ANN.

Some authors combined modal identification with other techniques for feature extraction.
For example, Lam and Ng [105] employed simultaneously modal properties and Ritz vectors
as extracted features for the same IASC-ASCE benchmark problem. A single MLP was
optimized according to a Bayesian approach and a parametric study was conducted in
order to determine the best activation function for damage identification purposes finding
the hyperbolic tangent function as the preferred one. The study also demonstrates that
modal properties, when are individually employed, allow to obtain better performances
compared to Ritz vectors.

Along with MLPs, few different types of ANN have been employed as classifiers of the
extracted features. Jiang et al. [90] combined probabilistic neural networks, rough set pro-
cessing and data fusion for damage detection considering two analytical case studies. This
procedure resulted in noise-resistant capabilities but it was not tested on real structures.
The data fusion approach was proposed again by Jiang et al. [91] in a two stage method
based on fuzzy neural network. It is shown that the fusion model plays an important role
in increasing the accuracy level of the procedure. However, the latter needs to be validated
on real structures as before.

Cury and Cremona [46] compared the accuracy of MLPs, support vector machines (SVMs)
and Bayesian decision trees (BDTs) for SHM purposes using symbolic data analysis to
manipulate monitoring data on a steel railway bridge in France. Interesting works about
the influence of noise level and model error were carried out by Yeung and Smith [174] and
Lee et al. [106]. Yeung and Smith dealt with the detection of girder connection damage of
a suspension bridge. The feature vector is composed by mode shape peaks and it is given
in input to two different unsupervised networks. Lee et al. used an analytical beam model,
a FE model and experimental data registered by the monitoring of a bridge in order to
study the effects of errors in baseline FE model. The mode shape variation with respect
to a pre-damage condition represents the input vector for a MLP.

6.1.2 Non-parametric ML methods

A variety of combinations between features and classifiers have been investigated in the
non-parametric ML method literature. Chun et al. [44] quantified damage severity caused
by the corrosion of bridge girders through a MLP. The input features have been obtained by
computing the mean and the variance of the measured acceleration signals. The method-
ology has been validated only with numerical simulations. This feature extraction process
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is quite simple and it is highly affected by operational and environmental conditions in
addition to damage.

A large part of more complex techniques employs auto-regressive (AR) time series mod-
elling. Figuereido et al. [59] compared the performances of four classification approaches,
auto-associative neural network (AANN), singular value decomposition (SVD), squared
Mahalanobis distance (SMD) and feature analysis (FA). Damage features are the iden-
tified coefficients of AR models that reproduce the response of a small frame structure
subjected to a random shaker excitation. AANN resulted the best performance with re-
spect to the other classifiers. Gui et al. [72] applied SVM for the classification of two kinds
of features extracted with AR modelling, namely the AR coefficients and the Residual
Error (RE). Hyper-parameters of the SVM have been calibrated with three optimization
techniques, particle swarm optimization (PSO), grid search (GS) and genetic algorithms
(GA). Combinations GS + RE, GA + RE, PSO + AR and PSO + RE all showed excellent
results.

De Lautour and Omenzetter [48] employed AR modelling in conjunction with principal
component analysis (PCA) for dimensionality reduction. A large number of features was
extracted with AR modelling of the vibration response of a laboratory frame and a bench-
mark structure. These features were then condensed with PCA and given in input to a
MLP with a single hidden layer. The test phase with experimental data revealed that an
accuracy of 97 % for stiffness reductions ranging from 7 % to 10 %.

Dackermann et al. [47] applied PCA directly on the acceleration signals in time domain
without AR modelling. The damage features compressed by PCA were fed into an en-
semble of ANNs for damage localization. The good accuracy obtained by numerical and
experimental test conducted confirms the ability of PCA to filter noise. Bandara et al.
proposed to apply PCA to FRFs in the case of a numerical model [9] and a laboratory
structure [10]. Two distinct methodologies were studied: in the first a MLP with two hid-
den layers was trained with damage features extracted from individual FRFs only, while
in the second the features for the same network are obtained considering the summation
of FRFs. In the last case, a higher accuracy is reached.

The last part of literature review is dedicated to feature extraction techniques different from
AR modelling and PCA. Liu et al. [111] combines wavelet decomposition of acceleration
signals and multi-sensor feature fusion in order to detect and localize damage of the IASC-
ASCE benchmark [93] considering only numerical simulations. The same case study was
the focus of Ghiasi et al. [67], that used wavelet decomposition and SVM classifier, and
Zhu et al. [185], which adopted interval modelling technique for feature extraction and
the adaptive neuro fuzzy inferencesystem (ANFIS) for damage identification. Finally, the
potentiality of self organizing maps (SOMs), a typical unsupervised learning tool, has been
exploited by Abdeljaber and Avci [125] for the computation of damage sensitive features,
which subsequently were processed by a MLP.

6.1.3 Drawbacks of damage detection methods

Several drawbacks and limitations emerge from the analysis of the main works about
damage detection. The damage detection process is without doubt case sensitive. There is



Damage detection with Artificial Neural Networks 113

no guarantee that a specific feature, and in parallel a specific classifier, will be the optimal,
or almost a good, choice for all the damage detection exercises. Furthermore, the optimality
of a combination feature/classifier may not depend only on the structure type but also on
the damage type. These limitations are valid for ML-based methods and, for the major
part, also for non ML-based methods. Finally, few works were focused on the experimental
validation on real and extended structures of methods developed starting from numerical
case studies.

6.2 Multi-layer perceptron for classification

Multi-layer perceptron (MLP) is surely the most popular kind of ANN that applies super-
vised training. It is composed of neurons arranged into layers. Each neuron in a given layer
is connected to all the neurons in the following layer. The connections between neurons
do not form cycles, therefore the information elaborated by the system moves only in the
forward direction, from the input layer to the output one [77]. For this reason, the MLP
is also denotes as feed-forward neural network.

In general terms, the connection between the output ai,j of i-th neuron belonging to the
j-th layer and the output ai,j+1 of the i-th neuron belonging to the j+1-th layer is expressed
by:

ai,j+1 = f(xi,j+1) (6.1)

xi,j+1 = bi,j+1 +

Nj∑
i=1

wi,j+1ai,j (6.2)

where bi,j+1 and wi,j+1 are the bias (or threshold) coefficient and the weight coefficient, re-
spectively, that characterize the connection. The function f(xi,j+1) is the so-called transfer
function that introduces non-linearity in the process.

Since we employ the network for classification, a common choice for the transfer function of
the output layer is the soft-max function, suggested for example by Bishop [24]. Considering
a vector x that has a number of components Nc equal to the number of classes, the value
of the soft-max function for the component xi is:

f(xi) = si =
exp(xi)∑Nc

j=1 exp(xj)
(6.3)

This value represents the probability that the sample represented by x belongs to the i-th
class. The transfer function of the hidden layers is generally chosen among:

� Sigmoid logistic function

f(x) =
1

1 + exp(−x)
(6.4)
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� Hyperbolic tangent function

f(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(6.5)

� Rectified linear unit (ReLU) function

f(x) = max {0, x} (6.6)

Network training is the process where the network coefficients are tuned in order to increase
the ability of the network to make correct predictions on the basis of the data available
and to prevent their over-fitting. The ability of a network in classification problems is
quantified by the average cross-entropy loss function E, that measures the discrepancy
between the prediction vectors sn and the corresponding targets tn related to the training
set. This function is expressed as:

E = − 1

Nt

Nt∑
n=1

Nc∑
j=1

tj,n log sj,n (6.7)

where Nt is the number of samples that constitute the training set.

The optimization of the network coefficients can be performed with several algorithms
using gradient-based methods. In this work, the author has chosen the scaled conjugate
gradient back-propagation algorithm [116], known for its efficiency in problems with a large
number of neurons. The problem of data over-fitting has been addressed by providing a
sufficient number of data that allows the generalization of the network [176]. More details
about the number of data will be given in the next section.

6.3 The proposed damage identification procedure

The proposed procedure involves the use of different ANNs for the identification of a possi-
ble damaged state of a railway bridge. The localization and the quantification of a damaged
state are not investigated. It is in the interest of the author to assess the performances
of different networks, that share the typology (MLP) and the finality (classification), but
differ for the dynamic data assumed as input features and for the architecture (in terms
of number of neurons per layer and transfer function). Network performances are assessed
with the accuracy of the predictions and with the number of uncertain predictions, whose
meaning will be explained in the next sections. The role played by data in this procedure
is without doubt fundamental for its success. In particular, the collection of data related
to any damaged condition of the structure has to be deepened. A possible strategy is to
realize different damage scenarios over the real structure or a prototype and to measure
their experimental response. The execution of damage tests over a bridge in operational
condition is not possible and the realization of a bridge prototype deals with feasibility
problems and economical drawbacks. Indeed, in order to obtain reliable results from an
experimental test, namely results that are not affected by the scale effect, a bridge proto-
type needs to have dimensions that are not comparable with the dimensions of a common
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laboratory. For the previous reasons, the damage scenarios of the bridge will be simulated
through two FE models different for the detail level. They simulate the “real” structural
behavior and that of “the model”, defined starting from the identified modal properties. In
this way, the procedure is characterized also by the presence of a model error, namely the
unavoidable discrepancy between a measured feature and the same predicted by a model.
In this work, it is represented by the discrepancy between the same feature predicted by
two different models of the same structure. The crucial aspects of the procedure are briefly
listed:

� use of two FE models for the impossibility to have data about a damaged state of
the real bridge and in order to account for model error;

� simulation of the structural response of the bridge due to the passage of a train;

� calibration of the simple model according to the response of the more detailed model
simulating the “real” structural behaviour;

� inclusion of uncertainties regarding the measurements and some parameters of the
models (train loads and velocity);

� creation of different damage scenarios;

� feature extraction from the structural responses;

� training and optimization of the networks;

� test of the trained networks.

They will be described in detail in the following.

6.3.1 Description of the structure and of the numerical models

The case study is a steel railway girder bridge approximately 40 meters long and 4.3 meters
wide. Two simple supported steel girders support a concrete slab of thickness equal to 34
centimeters. The slab is connected with the top flanges of the girders through pegs that
prevent the slip between the adjacent surfaces. The two steel girders are connected to each
other by a complex bracing system. It is a three-dimensional system composed of a basic
3D truss, whose dimensions are 3.5 m × 2.4 m × 2.4 m, that recurs for the whole length
of the bridge. A 3D view of the girders and of the bracing system is reported in Fig. 6.1.
The cross section types and dimensions of the steel elements that compose the bridge are
listed in Table 6.1. The value of the elastic modulus assumed for concrete and steel is
31475 MPa and 210000 MPa, respectively.

A detailed FE model, which simulate the “real” structural behaviour and will be employed
for the test of the networks in the last phase of the procedure, is developed using the FE
software MIDAS CIVIL. An image of the model is shown in Fig. 6.2. The walls of the steel
girders and the concrete slab are modeled with plate elements, while truss elements are
employed for the bracing system. Thicknesses of the plate elements are chosen according
to the dimensions of the modeled member. Cross section areas of the truss elements are
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Figure 6.1: 3D view of the girders and of the bracing system.

Table 6.1: Cross section dimensions of the steel elements of the bridge. The abbreviations IF,
SF and TF stand for inferior face, superior face and transversal face, respectively, of the basic 3D
truss.

Element Section Type H [mm] B [mm] tw [mm] tf [mm]

Girder Welded I 2150 800 25 40
Diag. brac. - IF Coupled L 150 150 14 14

Transv. brac. - IF (support) Coupled L 200 200 16 16
Transv. brac. - IF (interior) Coupled L 150 150 12 12

Diag. brac. - SF Single L 80 80 8 8
Transv. brac. - SF Coupled L 100 100 10 10
Diag. brac. - TF Coupled L 100 150 12 12
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Figure 6.2: Isometric view of the bridge FE model realized with MIDAS CIVIL (model D).

Figure 6.3: Disposition of the five sensors along the bridge length. Dimensions in meters.

computed on the basis of the dimensions provided in Table 6.1. The top flanges of the
girders are connected to the concrete slab through rigid links. The middle plane of the
flanges and of the slab are located at different heights in the model. We denote this detailed
model as model D.

A simpler model has been developed for the generation of the network training dataset.
The simplicity of the model is necessary due to the high number of analysis required to
generate the data that will be included in the dataset. It is a simply supported beam with
100 finite elements whose equivalent rectangular cross section is characterized by both
flexural and shear deformability. We denote this model as model S. The values of elastic
modulus, shear modulus and mass density are calibrated in such a way that the response
of this model matches as close as possible the response of the detailed model. More details
about the calibration can be found in section 6.3.3.

6.3.2 Simulation of the structural response

A dynamic monitoring system is assumed to be installed on the bridge. The measurement
equipment is composed of five accelerometers connected to the structure and placed at
the locations illustrated in Figure 6.3. Therefore, the dynamic response of the structure is
available only for the points corresponding to the sensor locations.
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The same typology of data is simulated by both the FE models. Natural frequencies and
mode shapes of both FE model are obtained performing modal analysis and modifying the
exact values by adding noise with the aim to reproduce measurement errors and uncer-
tainties characterizing the modal identification procedure. Details about the uncertainty
modelling are described in the next section. Only the first four bending modes in the
vertical plane are considered in the detection process.

On the other hand, several train passages are simulated to obtain displacement and acceler-
ation responses. Due to the assumption that the structure is equipped with accelerometers,
corresponding displacements are obtained from a double integration of the accelerations
as described in [168]. For the simpler model (S), the train load has been modeled as a
series of concentrated forces, representing the whole axle load, moving along the beam
with a constant speed. In particular, the train is composed of 2 carriages 26 meter long
with 4 axles per carriage. Values of axial load are defined according to the carriage weight
of an Italian high speed train [110]. The acceleration response is numerically integrated
in the modal space through a MATLAB routine considering the bridge as a single degree
of freedom system. The contribution of different modes is taken into account via modal
superposition.

For the detailed model (D), the difference in load modelling is the use of two concentrated
forces, representing the load of each train wheel, instead of a single force for the whole
axle. The two forces are symmetrically disposed with respect to the longitudinal axis
of the bridge, in correspondence of the rail location. The acceleration and displacement
response is computed with the specific algorithm of the software.

For both models, signals 3.5 seconds length and sampled with a time step of 10−3 seconds
are considered.

6.3.3 Calibration of the model S

The simpler model is calibrated with the aim to reduce as much as possible the discrepancy
between the responses of model S and D considering their undamaged state. The calibration
is performed with respect to the natural frequencies of the first four bending modes in the
vertical plane and the displacement response due to the passage of a specific train. It has
a speed of 106 km/h, while the axle loads of model S and D are highlighted in Table 6.2.
The loads in model S are the sum of the left and right loads in model D.

To achieve this goal, three properties of the beam, namely the elastic and the shear modulus
and the mass density, are adjusted. These properties remain constant along the bridge
length. In particular, in the first stage of the calibration a fixed value of the mass density
is set and the values of the elastic and shear modulus are tuned in order to minimize
the relative difference between the natural frequencies of model S and D, namely the
function eF defined in Eq. (2.1). Once the first stage is completed, a second constrained
optimization is performed by modifying all the three parameters with the aim to reduce
the discrepancies between the displacement responses of the five sensors A1, A2, A3, A4
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Table 6.2: Axle loads of the specific train used in the calibration of model S. Pl: load of the left
wheel in model D; Pr: load of the right wheel in model D; P: overall load in model S.

Position
Model D Model S

Pl [kN] Pr [kN] P [kN]

0 46 53 99
4 45 51 96
14 53 52 105
18 51 52 103
28 50 53 103
32 54 53 107
42 53 46 99
46 50 52 102

Table 6.3: Mechanical and geometrical parameters of the beam cross section of model S.

Area [m2] 1
Moment of inertia [m4] 0.225
Mass density [kg/m3] 15800
Elastic modulus [MPa] 221250
Shear modulus [MPa] 6050

and A5 (see Fig.6.3). The discrepancy is expressed as:

eD =
5∑

i=1

∥si,S − si,D∥1 (6.8)

where si,S and si,D are the displacement responses related to the i-th sensor computed by
model S and D, respectively. The symbol ∥·∥1 represents the generalized 1-norm. The
constraint imposes that the natural frequency of model S during this second stage does not
change with respect to the values computed in the first stage. The geometrical and mechan-
ical properties of the beam cross section, included the values of the updated parameters,
are listed in Table 6.3.

The comparison between the natural frequencies of the model S and D is showed in Table
6.4. It is easy to note that it is not reached a perfect correspondence between frequencies,
so a residual discrepancy remains also after the calibration. The displacement and the
acceleration response of sensor A3 computed by model S and D due to the train of Table
6.2 are represented in Fig. 6.4. The correspondence between displacement responses (Fig.
6.4(c)) is very good, while there are remarkable differences for accelerations, as it is possible
to see in Fig. 6.4(a). Despite the mean trend is similar, differences both in terms of
amplitude and frequency content for the acceleration responses of model S and D can be
noted (Fig. 6.4(b)). It is worth underlying that accelerations have not been taken into
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Table 6.4: Comparison between natural frequencies of model S and D after calibration.

1st fr. [Hz] 2nd fr. [Hz] 3rd fr. [Hz] 4th fr. [Hz]

Model S 1.680 6.102 12.079 18.713
Model D 1.697 5.859 12.958 18.193
Discrepancy 0.017 -0.243 0.879 -0.519
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Figure 6.4: Comparison between responses of the sensor A3 computed by model S (black lines)
and D (red lines):(a) acceleration response in time domain, (b) acceleration response in frequency
domain and (c) displacement response in time domain.

account in the definition of the discrepancy function, but the differences showed in Fig.
6.4(a) do not depends on this fact. Indeed, a calibration of the beam parameters in order
to minimize discrepancy between acceleration responses has been performed but results
very similar to those of Fig. 6.4(a) have been obtained.

Mode shapes have not been included in the calibration since they are not sensitive to
the modification of parameters that are constant along the bridge length. Anyway, mode
shapes computed by the two models are not exactly the same. As an example, Fig. 6.5
highlights the comparison for mode 2 and 4. With reference to both modes, differences
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Figure 6.5: Comparison between unit norm mode shape components computed by model S and
D for mode (a) 2 and (b) 4. Black asterisks: mode shape components of model S; red asterisks:
mode shape components of model D.

can be noted especially for sensors A2, A3 and A4. Another aspect to underline regards
the component related to sensor A3 for mode 2 and 4. The value computed by model
S is practically zero, since it has a order of magnitude of 10−15. It is unlikely to obtain
a similar value for experimental mode shapes since near zero-components have normally
a low accuracy. They have the second or the third decimal digits different from zero for
the classical normalization methods used. For this reason, a specific source of error for
pseudo-experimental data will be introduced in the next section.

6.3.4 Measurement and modelling uncertainties

In order to account for different sources of uncertainty that may influence the results,
measurement and modelling uncertainties are introduced in the simulated data. The latter
are related to limitations of the adopted numerical model to represent the actual structural
behavior while the former take into account the presence of uncertainties in experimental
measurements.

Moreover, model errors can be further classified in two groups: parametric uncertainties
and model form uncertainties [38]. Parametric uncertainties characterize the differences
between some parameter values of the actual physical system and the input parameters in
the numerical model. Model form uncertainties are related to inaccuracies in the modelling
of the physical system.

To account for measurement errors, a Gaussian noise with a coefficient of variation of 5%
is added to the simulated acceleration response. The displacement response is obtained
integrating twice the noised acceleration time series and thus it is affected by a magnifi-
cation of the uncertainty added to accelerations. Furthermore, errors introduced by the
numerical modal extraction technique and the fluctuation of the modal properties caused
by the environmental conditions are taken into account by corrupting the exact response
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zex and obtaining the corresponding pseudo-experimental value zps as:

zps = zex (1 + aN Nr) (6.9)

where Nr is a random number extracted from a standard normal distribution and aN is
the noise amplitude. aN is set to 0.01 for frequencies and 0.05 for mode shapes. In case
of mode shapes, and specifically for the component related to sensor A3 of mode 2 and 4,
whose value is close to zero, another term to be added to zps is considered in Eq. (6.9).
It is a sample extracted from a uniform distribution defined in the interval [2; 4]·10−3,
which has the same sign of the component. In this way, the low accuracy of experimentally
determined near-zero component is accounted for.

Parametric uncertainties regarding the train loading are considered on both load values and
train speed. To consider the presence of unknown number of passengers on carriages, each
train load is considered as a uniform random variable defined in the interval [90; 110] kN.
Similarly, the speed of each train is considered as a random variable extracted from a
uniform distribution in the interval [100; 120] km/h.

The response of the structure for a given damage scenario (see section 6.3.5) is computed
several times (i.e., 200) extracting each time a different sample for the random variables.

6.3.5 Damage scenario

Bridge damage is simulated through the reduction of the elastic modulus of a single element
of the structure. Considering the elastic modulus Eu of an undamaged element and the
reduced elastic modulus Ed of a damaged element, it is possible to define the damage
severity r as:

ds =
Eu − Ed

Eu

· 100 (6.10)

A large dataset has been generated for the network training and validation. It is composed
of the dynamic data described in section 6.3.2, namely modal properties, acceleration and
displacement responses, related to the undamaged condition of the bridge and to different
damage scenarios. Each scenario is characterized by a specific damage severity and location,
that may assume different values. In detail, damage location varies with a step-size of 5 %
of the bridge length over the whole structure, while its severity varies from 0 to 40 % with
a step-size of 2.5 %. As previously mentioned in section 6.3.4, the response of the model
S for a specific scenario is computed 200 times sampling each time the random variables
defined in order to model different uncertainty sources. Instead, the response of the model
for the undamaged scenario is computed 27000 times, since the dataset for the undamaged
class is composed only by the response computed in this scenario. In this manner, the
dimensions of the datasets related to the three classes are comparable.

6.3.6 Feature extraction, data compression and noise filtering

Different techniques, according to the data in exam, are employed for feature extraction.
The first technique is modal analysis, that allows to obtain concise dynamic features like
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frequencies and mode shapes. In this case, for simplicity modal analysis has been performed
in a direct way starting from mass and stiffness matrix. The addition of noise (Eq. (6.9))
allows to simulate a real situation, where modal extraction is performed in an inverse way,
starting from the structure response.

For the acceleration responses caused by train passages, the signal is represented in fre-
quency domain using the Fast Fourier Transform (FFT) implemented in MATLAB. The
frequency resolution of the signal is set to 0.02 Hz. For feature extraction from displace-
ment responses, two techniques are used: the above mentioned FFT and a distance-based
resampling. The second expresses displacements in function of the location of the concen-
trated forces simulating the axle load. This resampling can be summed as follows:

1. For a given train passage, consider the displacement time series s1,s2,...,s5 associated
to each sensor;

2. Define a vector zf containing the force location of interest. In this case, the author
has chosen locations every 0.5 m starting from the left support and moving along the
bridge.

3. On the basis of the train speed vt, define the vector t1 containing the time instants
ti when the first force passes over the locations defined in zf .

4. When the first force reaches the end support, determine the position ẑf of the second
force. Repeat point 3) considering a reduced location vector zf,r that goes from ẑf
to the position of the end support with step size equal to 0.5 m.

5. Define the vector t2 containing the time instants ti when the second force passes over
the locations defined in zf,r.

6. Repeat point 4) and 5) for the subsequent forces creating the vectors t3,...,tNF where
NF is the number of concentrated forces.

7. Concatenate all the vectors ti with i = 1, ..., NF in a vector t following the increasing
order of subscripts.

8. Compute the reduced time series sr,j (j = 1, ..., 5) by selecting only the components
of sj corresponding to the time instants of t.

Although features extracted from acceleration and displacement responses caused by train
passages are reduced in dimension compared to the original signals in time domain, they
still result difficult to handle for a MLP. This is especially true in the case of FFT that
operates with an high frequency resolution. For this reason, principal component analysis
(PCA) is applied to the extracted features for data compression. PCA is a known method
used to reduce the dimensionality of large datasets. A large set of variables is transformed
into a smaller one that contains most of the information stored in the large set. The loss
of information is accepted in order to visualize and analyze data in a simpler manner.
Principal components are linear combinations of the original variables, realized in such a
way that the new variables are uncorrelated and most of the information contained in the
original variables is compressed into the first new variables. The fundamental steps of PCA
are briefly described in the following.
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� Normalization of data in order to avoid that variables characterized by larger standard
deviations dominate the process. For a given variable x with mean µ and standard
deviation σ, the normalized variable z is obtained as:

z =
x− µ

σ
(6.11)

Normalized data can be organized in columns forming the matrix Z.

� Identification of the correlations between variables through the computation of the
covariance matrix Σ;

� Computation of the eigenvalues si and the eigenvectors li of the covariance matrix
Σ. The eigenvectors represent the principal components, while the corresponding
eigenvalues give the amount of variance in each principal component.

� Discarding the components of lower significance on the basis of the relative amount
of variance rvi:

rvi =
si∑nv

i=1 si
(6.12)

In particular, the eigenvectors are ordered based on the descending value of the
corresponding eigenvalue. The matrix that stores the eigenvectors as columns is
denoted by L. There is no a fixed rule for discarding the components of lower
significance, since the operation highly depends on the available data. A common
practice is to keep the first p principal components that allow to retain almost the
95 % of total amount of variance, namely

rv1 + rv2 + ...+ rvp ≥ 0.95 (6.13)

The selected component organized by columns will form the loading matrix LP .

� Transformation of the data along the principal component axes

T = LT
P Z (6.14)

After the transformation, most of the information contained in the original data is
described with a lower number of variables. Matrix T is denoted as score matrix and
its elements as principal components scores.

� Reconstruction of the original variables through the loading matrix LP , discarding
the last principal components whose variability is associated to noise:

Ẑ =
(
LP LT

P

)
Z (6.15)

If the aim is the compression of data, the procedure ends with Eq. (6.14). Conversely,
if it necessary to have noise-filtered data in the original coordinate system, then also Eq.
(6.15) is needed.
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Table 6.5: Network identifiers and corresponding input data.

Network identifier Damage features

N1 Frequencies and mode shapes
N2 Frequencies and mode shapes filtered with PCA (14 comp.)
N3 Frequencies and mode shapes filtered with PCA (15 comp.)
N4 Acceleration features using FFT and PCA
N5 Displacement features using FFT and PCA
N6 Displacement features using resampling and PCA
N7 Displacement features using resampling

6.3.7 Input and output data of the networks

In this section the networks employed in this procedure are described, with reference to
the construction of the input vector of the MLP. The networks and their corresponding
identifiers are listed in Table 6.5 together with a brief description of the input features.

As concerns modal properties, three different networks are developed: they are network N1,
N2 and N3. All these networks have an input vector composed of the natural frequencies
followed by the mode shapes with only the components corresponding to the five sensor
of the monitoring system (A1-A5 in Fig. 6.3). Network N1 takes in input the modal
properties corrupted by noise according to Eq. (6.9). For network N2 and N3 a noise
filtering operation is performed through PCA. A baseline set of frequencies and mode
shapes is created considering only data referred to the undamaged state. Then PCA is
applied separately to the frequency and mode shape sets in order to compute the loading
matrices LP,f and LP,ϕ. At the end, data are reconstructed in the original coordinate
system using Eq. (6.15).

The core of the problem lies in the choice of the number of principal components to retain.
In this instance, frequency set is analyzed: each principal component describes about 25
% of the total variance. Consequently, all the four principal components are retained and
the original data are conserved. As concerns mode shapes, the cumulative percentage of
variance described by the principal components is represented in Fig. 6.6. Considering
the values ranging from 14 to 16 of the principal components, the corresponding explained
variance assumes the values of 91.5 %, 96.0 % and 99.9 %. Since the value of 99.9 % is
high and it includes variability depending on noise, the implications of considering 14 or
15 principal components are studied. In the first case (14 components) the reconstructed
data form the input vector of network N2, while in the second (15 components) we have
network N3. It is worth noticing that baseline sets are composed of only data related to
the undamaged scenario, but this operation is applied to data associated to any scenario.

Acceleration features given in input to network N4 are obtained applying the FFT to the
signals in time domain and, subsequently, condensing the information of the 5 sensors in
one vector by means of PCA. After FFT, the resulting signals in frequency domain are
arranged in columns forming a matrix that is the subject of PCA. The input vector is the
first column, corresponding to the first principal component, of the transformed matrix
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Figure 6.6: Cumulative percentage of total variance explained by the principal components of
the mode shape baseline. Red dashed line: threshold value of 95 %.

(matrix T in Eq. (6.14)). The same operations are performed over the displacement
response obtaining the input vector for network N5. The input features of network N7
are the resampled displacement time series of each sensor arranged in a vector, while for
network N6 the resampled displacements are compressed with PCA in the same manner
described for network N4 and N5.

The finality of each network is the classification, realized on the basis of the input features,
of the state of the structure in one of the following conditions:

� undamaged condition;

� light damaged condition. Scenarios with a damage severity between 0 % and 15 %
are part of this class;

� severe damaged condition. Scenarios with a damage severity greater than 15 % are
part of this class.

The output is a 3×1 vector containing the probability associated to each class in the order
kept in the previous list.

6.3.8 Training process, network performances and their opti-
mization

The description of the training process is not dependent on the type of network listed in
Table 6.5, hence in the following we refer to a generic dataset, not specifying the kind of
data. A large dataset, created in the way delineated in section 6.3.5, is partitioned into a
training and a test set.

The training set is used for the calibration of the network coefficients. An optimization
problem is carried out where the average cross-entropy loss function defined with Eq. (6.7)
has to be minimized. The test set is used to assess the network behavior with respect to
data not included in the network training. In this case, the generalization capacity of the
network is checked. The initial dataset is randomly shuffled before the partitioning in order
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to increase the data variability inside the training and the test sets. Network creation and
training are performed with the MATLAB functions “patternnet” and “train”, respectively.

A third set is usually defined in the partitioning, called validation set. It can be used for
regularization by means of the early stopping strategy: the training is stopped when the
error on the validation data set increases, as this is a sign of over-fitting of the training
set [136]. For this application, this strategy is unnecessary since the high number of data
composing the training set is supposed to ensure network generalization.

Network performances can be assessed in terms of accuracy and number of uncertain pre-
dictions. Accuracy is a measure of the errors that a network commits, deriving from the
comparison between network prediction and the relative target class. The accuracy of
each network is calculated with reference to two different criteria. With the first crite-
rion, the exact correspondence between predicted output and target is considered for the
identification of errors. In the second case, a margin value δ, that has to be added to the
damage severity boundaries previously introduced for the three classes, is assigned for the
assessment of significant errors. If the classification output is not correct, but the damage
severity belongs to the neighborhood defined by δ, the error committed is not considered
as significant. A value of 5 % is assumed for δ. This leads to the distinction between:

� Strict accuracy, obtained accounting for all the errors committed;

� Soft accuracy, obtained accounting for only significant errors.

As concerns uncertain predictions, they can be computed considering the probability ex-
pressed by the soft-max function of Eq.(6.3). In particular, a threshold value ε is defined
equal to 0.33, which discriminates the certainty of the prediction. Let yord = [p1, p2, p3]
be the output vector of the network with probabilities ordered in descending order, where
p1 > p2 > p3, then if p1 − p2 < ε the result is considered uncertain.

The optimization of the network architecture is performed with the aim to tune a series of
hyper-parameters so that the performance of a network is the best possible. The hyper-
parameters considered are the number of hidden layers, their size and the type of transfer
function used. The possible values of the hyper-parameters are chosen according to common
rules adopted in the ML community and in order to avoid an excessive requirement of
analysis. The hidden layers can be one or two, their size may vary between the dimension
of the output vector (i.e, 3) and the dimension of the input vector, which depends on the
associated network. The possible choices for the transfer function are represented by the
functions of Eqs. (6.4), (6.5) and (6.6). If two hidden layers are employed, they have the
same transfer function.

First, the situation where a single hidden layer composes the network is studied. In the
following, only the analysis related to network N2 and N5 are presented, as their results
are representative and for the sake of simplicity. The evolution of the training and test
accuracy in function of the number of neurons is showed in Fig. 6.7. At the same time,
fixed the number of neurons, the activation function is changed between the alternatives
provided by Eqs. (6.4), (6.5) and (6.6). For both networks N2 and N5 the accuracy
obtained using a ReLU activation function (Eq. (6.6)) is lowest regardless of the number of
neurons. The performance of the hyperbolic tangent function (Eq. (6.5)) and the Sigmoid
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Figure 6.7: Accuracy of networks (a) N2 and (b) N5 for different numbers of neurons in the single
hidden layer and for different activation functions. Black lines: hyperbolic tangent function; red
lines: Sigmoid function; blue lines: ReLU function. Solid lines: accuracy related to the training
set; dashed lines: accuracy related to the test set.
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Figure 6.8: Loss function evolution with the number of training epochs for networks (a) N2 and
(b) N5. Black line: loss function for training set; red line: loss function for test set; black dashed
line: best value of the loss function.

logistic function (Eq. (6.4)) are substantially comparable. Focusing on the difference
between training and test set, performances for N2 are very similar, denoting a high level
of generalization, while for N5 the test accuracy is always lower than the train accuracy,
except when few neurons are adopted. The number of epochs needed to train the networks
are different and depends on the size of the input vector. N3 reach the best value of
the loss function after approximately 5000 epochs (Fig. 6.8(a)) and during the remaining
epochs the performance does not significantly improve. The same consideration is valid for
networks N1 and N2. N5 needs about 10000 epochs, as highlighted in Fig. 6.8(b), and a
similar behaviour is observed for N4, N6 and N7, even if the number varies between 10000
and 15000.

The introduction of a second layer improves the accuracy of all the networks. It has not
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Table 6.6: Optimal architectures of the studied network. The layer size is expressed inside
square brackets where the number of the hidden layer follows an ascending order.

Network Transfer function Layer sizes

N1 Hyperbolic tangent [24; 20]
N2 Hyperbolic tangent [10; 10]
N3 Hyperbolic tangent [10; 10]
N4 Hyperbolic tangent [200; 175]
N5 Sigmoid [100; 50]
N6 Hyperbolic tangent [50; 30]
N7 Hyperbolic tangent [100; 50]

been adopted a grid strategy, namely modifying in an orderly way the number of neurons
of the first and of the second hidden layer, because it would have implied a considerable
loss of time. The optimization has been conducted with a trial-and-error strategy saving
the architectures that resulted in better performances than those of the single hidden layer
architecture. With this strategy the global optimum may not be obtained, even if the
analysis performed have underlined a low variability of the performance with the number
of neurons of the two hidden layers. It can be supposed that the resulting architectures
represent near-optimal solutions. According to the findings of Fig. 6.7, the ReLU acti-
vation function has been discarded in the search, since it is characterized by the worst
performances. The optimal architectures found with the previously explained strategy are
summed up in Table 6.6.

6.4 Results of damage detection procedure

In this section, the results of the damage detection procedure are presented and analyzed.
The discussion presents results of the training and test phase for data computed by model
S (section 6.4.1) and results of the test phase for data computed by model D (section 6.4.2).

6.4.1 Training and test with model S

The performance indices of the network listed in Table 6.5 are shown in Fig. 6.9. The
first consideration is about the very small difference between the same quantity (strict
accuracy, soft accuracy or percentage of uncertain predictions) related to the training and
test dataset for the same network. This excludes over-fitting of data for all the networks
despite a validation dataset has not be used, since the high number of data ensure network
generalization. Another general consideration regards the qualitative relationship between
strict accuracy and number of uncertain predictions. The latter decreases when there is
an increment of accuracy.

Performances of network N1, that takes in input noise-corrupted modal properties, are the
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worst, both in terms of accuracy and reliability. This proves how the MLP has difficulties
in finding patterns between data because the effect of noise covers the changes of modal
properties caused by damage.

The application of PCA in order to filter noise is successful for both network N2 and N3:
strict and soft accuracy are larger than 90 % and the percentage of uncertain predictions
is lower than 10 %. There are not significant differences between N2 and N3, except for
few percentage points in favour of N2. The choice between 14 or 15 principal components
for the construction of the loading matrix (LP in Eq. (6.15)) does not produce substantial
differences in this phase.

The best performances have been obtained by networks N4, taking in input acceleration
features. As concerns soft accuracy, the values of 100 % denotes the absence of significant
errors. In addition, the percentage of uncertain predictions (4 %) is the lowest. Very good
soft accuracy values, equal or larger than 90 %, have been obtained also for networks N5, N6
and N7, which employ displacement features. Strict accuracy values of these networks are
lower and range between 72 % and 81 %. At the same time, an appreciable percentage of
network predictions is uncertain, especially for N6. It is worth reminding that displacement
response are obtained for double integration of noise-corrupted accelerations. In this way,
errors are surely magnified and this may be a reason for the worse performances of networks
N5, N6 and N7 compared to that of N4.

In Fig. 6.10 an analysis of errors committed by the networks is illustrated. Errors corre-
sponding to uncertain predictions are an important part of total errors. The same is even
more valid for significant errors. The highest percentage is obtained by network N1, where
more than the 80 % of erroneous predictions are at the same time uncertain. This means
that about the 27 % of the total predictions (with reference to the training set) are at
the same time erroneous and uncertain. For example, a very lower number is obtained for
network N4, where the errors are the 4 % of the total predictions (training set), and the
38 % of them are also uncertain. Repeating the same consideration, about the 2 % of the
total predictions are at the same time erroneous and uncertain.

Finally, an additional test is carried out for networks using modal properties, i.e. net-
works N1, N2 and N3. The difference from a numerical point of view between a near-zero
component computed by model S and D (the latter simulating “real” experimental data)
has been highlighted in section 6.3.3. This may surely facilitate the distinction between
damaged or undamaged state of the model, but it would remain a pure numerical exercise,
without possibility of extension to an experimental case. The consequent adoption of a
specific source of error for these components is described in section 6.3.4.

With the aim to verify if this source of error actually prevents the problem, the test under
consideration involves the exclusion of the component associated to sensor A3 for all the
modes from the data provided to the MLP. The operations regarding the detection proce-
dure remain the same, the only difference lies in the number of mode shape components
that is decreased. Due to the latter fact, the number of principal components selected is
different. In particular, N2 and N3 have 10 and 11 components, corresponding to a per-
centage of total explained variance of 89.7 % and 95.4 %, respectively. The performances
of these networks are shown in Fig. 6.11, while the percentage of errors that corresponds
to uncertain predictions can be found in Fig. 6.12. Comparing these values with those
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Figure 6.9: Network performances for the dataset generated by model S. Blue bars: perfor-
mances related to the training dataset; red bars: performances related to the test dataset.
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Figure 6.10: Percentage of errors (blue bars) and significant errors (red bars) corresponding to
uncertain predictions for different networks.
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Figure 6.11: Performances of network N1, N2 and N3 using the dataset generated by model
S discarding the sensor A3. Blue bars: performances related to the training dataset; red bars:
performances related to the test dataset.

obtained in Fig. 6.9 and 6.10 for networks N1, N2 and N3, we may note that differences
are very limited. Hence, the source of error for near-zero components is able to reduce
their accuracy because the performances of network N1 are very similar in the two cases,
namely the case with 5 sensors and a specific error for near-zero components and the case
with 4 sensors. On the other hand, the application of PCA greatly reduces the influence of
this error in the detection process, as we can see from the results of networks N2 and N3.

6.4.2 Test with model D

For the test with the more detailed model (model D), 7 scenarios have been taken into
account: the first represents the undamaged state of the model, while the remaining six are
damage scenarios, listed in Table 6.7 together with the previous one. Damage in the steel
beam (with reference to scenarios S2, S3 and S4) is introduced by decreasing the elastic
modulus of an element row of the bottom flange. The elastic modulus of these elements
is set to a very low value, namely 1 MPa, aiming at simulating material discontinuity.
The model corresponding to the scenario S3 is illustrated, as an example, in Fig. 6.13,
where the damaged elements are represented in red. For scenarios involving damage of
the concrete slab, i.e. S5, S6 and S7, the elastic modulus of concrete is reduced by 50 %
simulating the openings of cracks. In S5 and S6 a whole element row along the slab width
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Figure 6.12: Percentage of errors (blue bars) and significant errors (red bars) corresponding
to uncertain predictions for networks N1, N2 and N3 using the dataset generated by model S
discarding the sensor A3.

Table 6.7: Scenarios created with model D.

Code Damaged part
Location along

Extension
the bridge length

S1 Undamaged condition - -
S2 Steel flange One fourth Element strip
S3 Steel flange Middle Element strip
S4 Steel flange Three fourth Element strip
S5 Concrete slab One fourth Element strip
S6 Concrete slab Middle Element strip
S7 Concrete slab One third Nearly semi-circular area

is damaged, while in S7 a nearly semi-circular area is considered, as shown in Fig. 6.14.

Dynamic data (modal properties, acceleration and displacement time series) are generated
for each scenario. The natural frequencies of the seven scenarios are reported in table
6.8 together with the MAC values of the mode shapes. The MAC values are computed
with reference to the undamaged scenario and by considering only the five components

Figure 6.13: Damage scenario S3 for model D. The damaged elements are represented in red.
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Figure 6.14: Damage scenario S7 for model D. The damaged elements are represented in red.

Table 6.8: Natural frequencies and MAC values, referred to the comparison with the undamaged
condition, for the seven scenarios created with model D.

Frequency
Scenario

S1 S2 S3 S4 S5 S6 S7

1st [Hz] 1.697 1.683 1.671 1.684 1.696 1.695 1.696
2nd [Hz] 5.859 5.773 5.859 5.801 5.855 5.858 5.857
3rd [Hz] 12.958 12.927 12.769 12.932 12.939 12.952 12.953
4rt [Hz] 18.194 18.190 18.189 18.192 18.190 18.190 18.172

MAC value
Scenario

S1 S2 S3 S4 S5 S6 S7

1st mode [%] 100 100 100 100 100 100 100
2nd mode [%] 100 99.99 100 99.99 100 100 100
3rd mode [%] 100 98.22 90.43 99.02 100 100 100
4rt mode [%] 100 100 99.99 100 100 100 99.99

corresponding to the sensor location of the monitoring system. As expected, the frequencies
of the damaged scenarios are all lower than the corresponding frequencies of the undamaged
scenario. However, in few cases the reduction is remarkable. In the remaining, the reduction
magnitude is surely comparable to the effect of noise or external factors. The effect of
damage is even less clear observing the MAC values. Only for the third mode of scenario
S3 there is a significant change. The discussion is divided in two sections referred to the
network based on modal properties (section 6.4.2.1) and the networks based on acceleration
and displacement features (section 6.4.2.2).

6.4.2.1 Network N1, N2 and N3

The focus is first addressed to the network predictions using the exact values of modal
properties computed by the FE software. They are provided as they have been computed to
network N1, while they are filtered using the PCAmodel constructed with 14 or 15 principal
components for network N2 and N3, respectively. Table 6.9 contains the prediction results.
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Table 6.9: Predictions of network N1, N2 and N3 based on exact modal properties. PU: prob-
ability associated to the undamaged condition; PLD: probability associated to the light damage
condition; PSD: probability associated to the severe damage condition.

Network Probability
Scenario

S1 S2 S3 S4 S5 S6 S7

N1
PU [-] 0.00 0.10 0.08 0.00 0.00 0.00 0.00
PLD [-] 0.00 0.03 0.80 0.00 0.00 0.00 0.00
PSD [-] 1.00 0.87 0.12 1.00 1.00 1.00 1.00

N2
PU [-] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PLD [-] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PSD [-] 1.00 1.00 1.00 1.00 1.00 1.00 1.00

N3
PU [-] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PLD [-] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PSD [-] 1.00 1.00 1.00 1.00 1.00 1.00 1.00

They are very similar for all the networks: all the scenarios are identified as severely
damaged except for scenario S3 of network N1 that results in a light damage condition.
Even scenario S1, corresponding to the undamaged state of the detailed FE model, is
recognized as severely damaged with unit probability by all the networks.

The situation basically remains the same if exact modal properties are corrupted with
Gaussian noise on the basis of Eq. (6.9) using 1 % and 5 % as coefficients of variation for
frequencies and mode shapes, respectively, and 100 samples are extracted. In Table 6.10
the number of samples identified in the different classes for each scenario is indicated.

In the author’s opinion, the reason of these bad results has to be attributed to the discrep-
ancy between the modal properties computed by model D and model S. Although model
S has been calibrated based on the response of the model D, residual errors still remains
both for natural frequencies (Table 6.4) and mode shapes, as highlighted in Fig. 6.5 for
mode 2 and 4.

The proposed solution is to correct modal properties computed by model D by adding the
residual error obtained at the end of the calibration. The generic m-th corrected frequency
fm,cor and mode shape ϕm,cor can be computed starting from the exact values fm and ϕm

as:

fm,cor = fm + ηfm
ϕm,cor = ϕm + ηϕm

(6.16)

where ηfm and ηϕm
represent the residual error for the m-th frequency and the vector of

residual errors for the m-th mode shape, respectively. This operation can be performed in a
real case if a long-term monitoring of these properties is previously realized. In this way, the
several sources of uncertainty affecting modal properties can be partially or mostly removed
and their mean values identified. It is worth underlying that the residual error is applied in
the same manner for all the structure conditions, both undamaged and damaged, despite
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Table 6.10: Predictions of network N1,N2 and N3 based on pseudo-experimental modal prop-
erties. NU: number of samples classified in the undamaged condition; NLD: number of samples
classified in the light damage condition; NSD: number of samples classified in the severe damage
condition.

Network Prediction
Scenario

S1 S2 S3 S4 S5 S6 S7

N1
NU [-] 0 0 0 0 0 0 0
NLD [-] 0 0 100 0 0 0 0
NSD [-] 100 100 0 100 100 100 100

N2
NU [-] 0 0 0 2 2 1 0
NLD [-] 0 0 0 0 0 0 0
NSD [-] 100 100 100 98 98 99 100

N3
NU [-] 0 0 0 0 0 0 0
NLD [-] 0 0 0 0 0 0 0
NSD [-] 100 100 100 100 100 100 100

it was computed referring to the first one. There is no guarantee that it does not change
when the structure is damaged, but its computation for different damage scenarios was
not performed because it is unrealistic to expect that experimental data about a damage
scenario of a specific bridge can be available. Moreover, this solution is expected to enable
the correct identification of the undamaged conditions of the structure since this is the
problem revealed by results of Tables 6.9 and 6.10.

Predictions results are shown in Table 6.11. In this context, networks N1, N2 and N3
behave in different manners. As concerns N1 and N2, the first four scenarios are correctly
identified with certain probabilities. The only questionable aspect is the classification of
scenario 2 in high damage level and of scenarios 3 and 4 in light damage level despite the
severity of damage is the same for all. Scenarios 5,6 and 7 are mistakenly recognized as
undamaged: predictions for S5 and S7 are certain, while probabilities PU and PLD are
very close for S6. On the other hand, network N3 identifies S1 in the light damage class,
even if the result is highly uncertain with respect the severe damage class. S2 and S3 are
recognized as severely damaged with PSD=1, but it is not the same for S4 (PU=1). N3
is the only network able to recognize scenarios S5, S6 and S7 in a damaged condition. S5
and S7 are classified in the light damage condition, while S6 in the severe condition.

The behaviour of the networks is analyzed also when exact values computed by model
D are corrupted with Gaussian noise. The coefficient of variation is fixed to 1 %, while
different cases are considered by varying the mode shape coefficient of variation in the range
[1%, 10 %]. Once the coefficients of variation are fixed, 100 samples of pseudo-experimental
data are extracted and the predictions of networks N1, N2 and N3 are computed. Fig.
6.15(a) shows the trend of the accuracy with the mode shape coefficient of variation (CV)
for the three networks. Network N3, that does not identify the undamaged condition when
exact data are employed, has a very bad accuracy regardless of the value of the mode shape
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Table 6.11: Predictions of network N1, N2 and N3 with previous application of residual error.
PU : probability associated to the undamaged condition; PLD: probability associated to the light
damage condition; PSD: probability associated to the severe damage condition.

Network Probability
Scenario

S1 S2 S3 S4 S5 S6 S7

N1
PU [-] 0.69 0.00 0.08 0.08 0.76 0.55 0.86
PLD [-] 0.28 0.00 0.80 0.92 0.22 0.40 0.13
PSD [-] 0.03 1.00 0.12 0.00 0.02 0.05 0.01

N2
PU [-] 1.00 0.00 0.00 0.00 1.00 0.99 1.00
PLD [-] 0.00 0.00 0.00 1.00 0.00 0.00 0.00
PSD [-] 0.00 1.00 1.00 0.00 0.00 0.01 0.00

N3
PU [-] 0.00 0.00 0.00 1.00 0.00 0.00 0.00
PLD [-] 0.54 0.00 0.00 0.00 0.96 0.26 0.94
PSD [-] 0.46 1.00 1.00 0.00 0.04 0.74 0.06

CV. Networks N1 and N2 present a comparable behaviour for a value of 1% of the CV,
but, increasing its value, N1 has a rapid decrease of the accuracy, while N2 keeps a good
value, larger than 60 %, also for a CV equal to 10 %. The behaviour for scenarios S2 and
S3 is not shown since all the networks remain coherent in the identification of the severe
damage condition.

In Fig. 6.15(b) the coherence of the networks with regard to the identification of the
class predicted for exact values of the modal properties is investigated for scenario S4.
The predictions for the exact values are different: severe damage for N1, light damage
for N2 and no damage for N3. N2 has proven to be less sensitive to the magnitude of
noise. Moreover, it classifies data in a damaged condition most of the times, unlike N3.
Finally, results for scenarios S5, S6 and S7 are highly variable depending on the considered
network. However, for all the network it can be seen an increment of cases identified as
severely damaged when the mode shape CV ranges from 1 % to 10 %.

6.4.2.2 Network N4, N5, N6 and N7

Ten trains differing in axle loads and speed have been considered: their characteristics
are listed in Table 6.12 (speed) and Tables 6.13 and 6.14 (axle loads). For each train,
a dynamic analysis with moving loads has been performed obtaining acceleration and
displacement responses in time domain. An example of these responses, related to sensor
A3 and computed with reference to the characteristics of train nr.8 has been represented
in Fig. 6.4 of section 6.3.3. The responses computed by model D are represented by red
lines: the maximum displacement is about 7 mm, while the maximum acceleration is in
the order of 25 mg. The corresponding responses computed by model S are represented
with black lines in the same figures.

Response time series calculated for all the ten trains are then elaborated as described in
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Figure 6.15: Accuracy trend of networks N1, N2 and N3 with mode shape CV for noise-
corrupted data with the application of residual errors. Trend for (a) scenario S1 and (b) scenario
S4.

Table 6.12: Speeds of the 10 trains considered in the test phase with model D.

Train number Speed [km/h]

1 111
2 108
3 100
4 105
5 103
6 105
7 109
8 106
9 118
10 114

section 6.3.7 and the extracted features are given in input to networks N4, N5, N6 and
N7. Prediction results are summed up in Table 6.15. Networks N4 (acceleration features
extracted using FFT and PCA) and N6 (displacement features extracted using resampling
and PCA) give the same results for all the scenarios, classifying almost the totality of
the train data in a severe damage condition. For networks N5 (displacement features
extracted using FFT and PCA) and N7 (displacement features extracted using resampling)
the predictions are more variables but the undamaged scenario S1 is not recognized in most
cases.

In order to analyze the causes of this behaviour, a comparison between the input features
of the networks extracted from the responses computed by model D and S, for the same
value of train speed and axle load, is performed. The characteristics of train nr. 8 are taken
into account, as the undamaged scenario S1 for this train is never recognized and all the
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Table 6.13: Axle load of the trains 1-5 considered in the test phase with model D. Pl: load of
the left wheel; Pr: load of the right wheel.

Position
Train nr.1 Train nr.2 Train nr.3 Train nr.4 Train nr.5
Pl Pr Pl Pr Pl Pr Pl Pr Pl Pr

[m] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]

0 42 46 52 67 57 55 48 47 51 50
4 46 42 59 63 57 53 51 54 47 46
14 44 42 38 43 57 48 52 55 50 48
18 61 52 54 65 53 51 47 49 55 53
28 46 49 51 53 43 46 46 46 50 45
32 53 49 43 49 53 54 48 48 50 54
42 49 57 47 53 58 44 48 49 47 52
46 54 51 51 48 52 44 49 51 50 50

Table 6.14: Axle load of the trains 6-10 considered in the test phase with model D. Pl: load of
the left wheel; Pr: load of the right wheel.

Position
Train nr.6 Train nr.7 Train nr.8 Train nr.9 Train nr.10
Pl Pr Pl Pr Pl Pr Pl Pr Pl Pr

[m] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]

0 53 51 47 52 46 53 47 54 50 46
4 46 52 45 50 45 51 55 53 55 50
14 48 49 52 53 53 52 52 51 51 46
18 48 49 50 52 51 52 50 47 53 53
28 51 55 50 54 50 53 50 47 50 53
32 46 45 54 54 54 53 46 54 49 52
42 52 54 51 48 53 46 52 45 53 46
46 46 54 51 52 50 52 45 50 46 52
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Table 6.15: Predictions of network N4, N5, N6 and N7.NU : number of samples classified in the
undamaged condition; NLD: number of samples classified in the light damage condition; NSD:
number of samples classified in the severe damage condition.

Network Prediction
Scenario

S1 S2 S3 S4 S5 S6 S7

N4
NU [-] 1 1 1 1 1 1 1
NLD [-] 0 0 0 0 0 0 0
NSD [-] 9 9 9 9 9 9 9

N5
NU [-] 3 4 4 3 4 3 4
NLD [-] 2 1 0 1 1 2 1
NSD [-] 5 5 6 6 5 5 5

N6
NU [-] 0 0 0 0 0 0 0
NLD [-] 0 0 0 0 0 0 0
NSD [-] 10 10 10 10 10 10 10

N7
NU [-] 0 0 0 0 0 0 0
NLD [-] 5 8 8 7 5 6 5
NSD [-] 5 2 2 3 5 4 5

networks studied identify a severe damage condition. Fig. 6.16(a) shows the comparison
for the first component scores (see section 6.3.6 for their definition) of the acceleration
amplitude in frequency domain: there are significant discrepancies which derive from the
differences between responses in frequency domain computed by model D and S, as we
have noticed in Fig. 6.4(b).

For displacement features differences are surely less marked, as illustrated in Fig. 6.16(b)
and Fig. 6.16(c) with reference to network N5 and N6, respectively. The comparison
between input features of network N7 is not presented, but the same observations can
be made. The differences found for all the networks, that are more pronounced for N4
compared to networks N5, N6 and N7, compromise their predictions.

Following the same approach delineated for network N1, N2 and N3 (section 6.4.2.1),
residual errors between the extracted features of models D and S are computed. The focus
is addressed only on displacement features because there are at least similarities in the
comparison between responses of model D and S. On the other hand, it makes no sense to
talk about residual errors when the discrepancies between the two models are so extended,
like for accelerations.

With the aim to compute residual errors, the parameters influencing a generic displacement
response, supposing that the stiffness and mass matrices remain unchanged, are analyzed.
Displacements surely depend on the characteristics of the train, namely axle load and train
speed. Even the axle load distribution, and not only the whole train load, is significant. In
order to prove its influence, a specific distribution of forces, corresponding to the sum of left
and right axle loads of Train nr.5, listed in Table 6.13, is considered and all the possible
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permutations of that force vector are computed. Focusing only on 1000 permutations
chosen in a random way among all the 40320 combinations, the displacement response of
the structure is computed for a given speed value, the one of the train nr. 5. Fig. 6.17(a)
shows the maximum and minimum values of the corresponding displacement time histories
with reference to sensor A3: the maximum difference between the two responses is about
1 mm, that corresponds to an increment of the 16 % of the minor peak value. On the
other hand, the first component scores are not affected by the force distribution, as proven
in Fig. 6.17(b). Indeed, with reference to the frequency domain, the force distribution
modifies only the amplitude of the harmonics composing the signal but not its frequency
content. This is proven by the representation of all the 1000 responses of sensor A3 in the
frequency domain, realized in Fig. 6.17(c). The latter depends only on the train speed.
The first step of PCA involves the normalization of data, making the difference among the
amplitudes of the harmonics irrelevant. Hence, when the frequency content of signals is
the same, regardless of the amplitudes, the first component scores are the same.

Conversely, train speed influences both responses in time and frequency domain and their
first component scores. The initial force distribution of the previous analysis, related to
the train nr. 5 (Table 6.13), is considered again for the present analysis. In this case,
the variable parameter is the train speed, ranging from 100 to 120 km/h with step size
of 1 km/h. The responses in time domain of the sensor A3, calculated for each value of
train speed, are represented in Fig. 6.18(a). It is easy to note even without calculating
their FFT that the frequency contents of the signals are different. For this reason, the first
component scores of the displacement responses vary significantly on the basis of the train
speed (see Fig. 6.18(b)).

The previous considerations have been formulated for displacement responses and cor-
responding scores computed through PCA, which are the input features of network N5.
Similar considerations can be made for the input features of N6 and N7. In particular,
when PCA is applied to resampled displacements (input of N6) only train speed affects the
feature, due to the normalization performed at the beginning of the procedure. The input
features of N7, that are simply the resampled displacements, depend on both train speed
and loads.

For the previous reason, residual errors are computed and applied only in the cases of net-
works N5 and N6. Results of the predictions are summed up in Table 6.16. Both networks
identify with large accuracy scenarios S1-S4, with only one train that is not well recognized
in the worst case. As concerns scenarios S5-S7, network N5 always predicts a damage class,
that is the light one for S5-S6 and the severe one for S7. Instead, predictions of N6 are more
uncertain for scenario S6 and S7 since there is not a class that is unequivocally identified.

The accuracy of networks N5 and N6 is surely improved with the application of residual
errors, but in this perspective and thinking to a real situation, it is necessary to known
a priori the relationship between frequency and errors in order to employ a early warning
strategy. In this specific case, we are not able to determine a clear relationship, analytical
or numerical, on the basis of the few cases of train speed examined.
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Figure 6.16: Features extracted from the responses related to sensor A3 computed by model S
(black lines) and D (red lines) for the train nr.8. (a) PCA applied to the accelerations in frequency
domain, input of N4; (b) PCA applied to the displacements in frequency domain, input of N5;
(c) PCA applied to the resampled displacements, input of N6.

Table 6.16: Predictions of network N5 and N6 with previous application of residual errors. NU :
number of samples classified in the undamaged condition; NLD: number of samples classified in
the light damage condition; NSD: number of samples classified in the severe damage condition.

Network Prediction
Scenario

S1 S2 S3 S4 S5 S6 S7

N5
NU [-] 10 0 0 0 1 0 0
NLD [-] 0 0 0 0 8 10 4
NSD [-] 0 10 10 10 1 0 6

N6
NU [-] 9 0 0 0 0 4 3
NLD [-] 0 1 0 0 5 4 4
NSD [-] 1 9 10 10 5 2 3
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Figure 6.17: Displacement responses computed by model S and caused by a set of 1000 per-
mutations of a specific force vector for a given value of train speed. (a) minimum and maximum
values of the response of sensor A3 in time domain; (b) first component scores of the responses
of sensors A1-A5 associated to the 1000 permutations and (c) responses in frequency domain of
sensor A3 associated to the 1000 permutations.
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Figure 6.18: Displacement responses computed by model S and caused by a fixed load distri-
bution but by a speed ranging in the interval [100; 120] km/h. (a) responses in time domain of
sensor A3 and (b) first principal component scores of the responses of sensors A1-A5.
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6.5 Concluding remarks

A damage detection procedure for railway bridges using artificial neural network has been
presented in this chapter. The bridge studied is a mixed steel-concrete structure with a
single railway line. Several kinds of dynamic data have been employed in the procedure and
their efficiency in damage identification assessed. They are modal properties, displacement
and acceleration responses caused by the passage of a train on the bridge. Regardless
of the data kind, the detection process is a pattern recognition problem where damage
features are provided to a multi-layer perceptron which works as classifier. The operations
of feature extraction and compression are performed with different techniques: Fourier
transform, PCA and a resampling operation proposed for displacements. The procedure
includes the modeling of some parameters as random variables in order to account for
model and measurement uncertainties, and the use of two numerical models describing
the structural behaviour. A simpler model (model S) carries out the classical function of
a model, while a more detailed one (model D) simulate the “real” structural behaviour
in absence of experimental data. The training of the networks is realized with a dataset
generated by model S, while the test phase involves both data from model S and D.

As concerns the training and test phase with model S, predictions of the calibrated networks
highlight how the best performances are obtained using acceleration features extracted by
FFT and PCA. Very good results are obtained by the two networks taking modal properties
filtered by PCA. These networks differ from each other on the basis of the number of
principal components adopted in the construction of the mode shape loading matrix. 14
and 15 principal components have been used, respectively. Lower accuracies are obtained
for the network of unfiltered modal properties, that is the worst case analyzed, and for
the networks using displacement responses. The computation of displacements for double
integration of noised accelerations surely represents an additional source of errors that
reduces the accuracy of those networks.

The test phase with model D showed the necessity to account for residual errors remained
at the end of the calibration between models. In doing so, the undamaged condition
and the damage scenarios of the steel beam are recognized in most cases. Otherwise, no
network is able to correctly identify the scenarios created. The computation of residual
errors show drawbacks for all the networks except for those taking modal properties in
input. Indeed, from a pure theoretical point of view modal properties, and consequently
their residual errors, are affected only by the characteristics of the structure. Experimental
modal properties are actually affected by external factors, like environmental factors or
the excitation amplitude, but this dependency can be removed observing these variations
with a long-term monitoring. On the other hand, displacement or acceleration responses
depends also on the train load and speed. The dependency is only limited to the train
speed when the responses are normalized (first step conducted using PCA). In this case,
however, from the available data regarding model D and S, a clear relationship between
residual errors and train speed cannot be determined. The last analysis is about the
influence of the noise added to the exact modal properties computed by model D. Only the
network using PCA with 14 components showed a very limited reduction of the accuracy
with an increasing level of noise, while the behaviour of the other networks using modal
properties is considerably affected by noise.
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Figure 6.19: Scatter plot of some modal properties forming the baseline for PCA. (a) Fist and
second natural frequencies and (b) components A1 and A3 of the second mode shape.

According to the previous results, the choice of the optimal number of principal components
must be calibrated in order to obtain accurate results. Even in this case, light damage that
does not produce a significant modification of the modal properties cannot be identified.
In the author’s opinion, an interesting analysis may regard the influence of the size of
the baseline dataset on the cumulative explained variance associated to each principal
component. This aspect affects the choice of the number of principal components and
could improve the detection results. Remaining in this context, it is worth noting that
noise filtering performed by PCA is very efficient because the errors introduced in the modal
properties are modeled with a Gaussian variable, or in the most complex case (component
of sensor A3 for mode 2 and 4) with the sum of a Gaussian and a uniform distribution.
Fig. 6.19(a) shows the scatter plot of first and second frequency as an example, while Fig.
6.19(b) represents the variation of the components A1 and A3 of the second mode shape. In
this last case, we can observe the elongated shape of the distribution in the A1 component
direction due to the proportionality of the standard deviation with the mean value, that for
A1 is two order of magnitude greater. Moreover, the addition of a uniform error accounting
for the low accuracy of a near-zero component causes the absence of points with ordinate
in the interval [2; -2]·10−3. In a real situation, environmental or operational factor may
influence different features in different way determining a nonlinear relationship between
them [145]. PCA performs linear combination of the original variables, hence it is not the
appropriate techniques in this case. Nonlinear techniques like kernel PCA [149, 122] or
auto-encoders [31] may be employed in order to learn nonlinear relationship at the price
of an increment of the procedure complexity.

For displacement responses, the discrepancy between model and reality (between model
D and S in this application) is affected by a higher number of parameters, making its
prediction a complex task. Data of model S and D at hand are limited, hence it would
be advisable to collect a wide number of responses associated to different values of train
load and speed. Further developments involve the extension of the procedure to the local-
ization and the quantification of damage and its application to a real case study for the
experimental validation.





Chapter 7

Conclusions

The present chapter summarizes the main conclusions of this work and provides recom-
mendations for future researches in this field. Some damage detection techniques directly
or indirectly employing numerical models of a structure have been analyzed, most of them
taking advantage of soft computing techniques like evolutionary algorithms or artificial
neural networks. First, the focus is addressed to model-based methods and the principal
deterministic approaches for the updating of structural models have been cited. Among
these, the multi-objective approach has been described in detail. It allows to evaluate all
the multiple optimal solutions of the problem at the expense of a significant computational
effort and to select the preferred solution according to additional criteria. The robustness
of four selection criteria found in literature has been tested through the calibration of
three numerical case studies, showing how the criterion of the minimum distance from the
equilibrium point ensures the best performances. On the basis of this criterion, a direct
procedure for the computation of the preferred solution has been developed. It addition-
ally enables the a posteriori estimation of the weighting factor associated to this solution,
maintaining a connection with the classical approach. The validation of the procedure
carried out with the updating of a complex 3D FE model, describing a masonry fortress
located in San Felice sul Panaro (Modena, Italy), basically confirmed the same results of
the classical procedure allowing for a reduction of the computational time.

The focus has then been moved to Bayesian model updating, which enables the uncertainty
quantification of the updated parameters as a measure of the reliability of results. Inside
this framework, the selection of the optimal likelihood coefficients, namely the coefficient
of variation of frequency and mode shape prediction errors, is performed at an additional
level of updating, the Bayesian Model Class Selection. The author proposed the use of
a Gaussian surrogate to approximate the posterior distribution, considerably simplifying
its computation. Considering the San Felice sul Panaro fortress, updated parameters and
optimal likelihood coefficients have been determined and compared with results of the
deterministic approach. Indeed, there is a relationship between the weights in the multi-
objective optimization and the likelihood coefficients. The equivalent weights in Bayesian
model updating are the same of those determined with the criterion of the minimum dis-
tance from the equilibrium point for the fortress if only the term related to the average
data-fit is taken into account in the Bayesian framework. As concerns the Bayesian re-
sults, two prior distributions have been considered, a uniform distribution and a particular
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distribution taking into account the damaged condition of the fortress. The equivalence
between weights is valid in both cases. However, results of the surrogate-based procedure
are comparable to the exact ones only in the last case, where the posterior distribution
is approximately symmetric. The comparison has been performed also for another case
study, the Ficarolo bell tower. The FE model is simpler than that of the fortress, but the
updating parameter are more numerous (4 instead of 2). Results of the two approaches are
similar, with stiffness distributions of the tower that are in accordance with the physical
consideration about the structural behaviour. The surrogate-based procedure showed good
results only if the correlations between parameters are considered. The calibration of a 4D
Gaussian variable is a complex task and the convergence of the algorithm has not been
always reached.

For both deterministic and Bayesian approaches it will be interesting to develop in a future
research a complete damage detection procedure employing measures of different epochs as
long as to choose the more adequate parametrization of the model among several alterna-
tives. This will aim to ensure a proper damage detection and the minimal complexity of the
problem. Another aspect that could be investigated is the assessment of when it is strictly
necessary to rely on stochastic approaches, since the very large number of computations
required. Adopting proper simulations, this necessity can be related to the magnitude of
the errors affecting the measures. As concerns the surrogate-based procedure for Bayesian
model updating, results obtained for the San Felice sul Panaro fortress highlighted how
sometimes the Gaussian distribution does not accurately approximate the posterior distri-
bution because of its asymmetry. Hence, a Gaussian mixture model will be tested in its
substitution.

The last part of this work involved the development of a data-driven damage detection
procedure for railway bridges using artificial neural networks. The complete description
of the procedure phases has been realized, including the use of two numerical models to
simulate the unavoidable discrepancy between model and reality, the modelling of different
sources of uncertainty affecting measurements, the feature extraction and classification
tools used, the creation of the network datasets composed by different damage scenarios
and the optimization of the network architecture. The simpler model, which perform
the classical function of a model, has been denoted as model S, while the detailed model
simulating the reality has been denoted as model D. Different data are employed, such
as modal properties, displacement and acceleration responses caused by the passage of
a train over the bridge, and their applicability as damage feature is tested. Prediction
results related to the dataset generated by model S, used also for the network training,
showed how the best performances have been obtained by network N4, using acceleration
features extracted with FFT and PCA, and networks N2 and N3, which take in input
modal properties filtered with PCA. The difference between N2 and N3 is represented
by the number of principal components adopted for constructing the mode shape loading
matrix. The other networks (N1, N5, N6 and N7) are more sensitive to errors affecting
data, especially N1 (not filtered modal properties) that has an accuracy around 65 %. For
networks N5, N6 and N7 a further error source is present, namely the magnification of errors
due to double integration of accelerations. Despite this, their accuracy is close to 80 %.
The test phase with model D highlighted the need to consider the residual errors obtained
at the end of the calibration of the model. Otherwise, all the trained networks are not able
to recognize the damage scenarios created with model D. If the residual errors are added
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to the exact data, network N1 and N2 predict the target condition with good accuracy,
while N3 is not able to recognize the undamaged scenario. Corrupting the exact values
with noise the performance of N1 decreases with the increment of the noise amplitude. The
filtering operation conducted with PCA for N2 makes the network not sensitive to noise,
even if there are errors in the predictions regarding the scenarios of damage in the concrete
slab, that are classified as undamaged. The computation of residual errors for the other
networks allows to obtain good results, even better than those obtained by network N1 and
N2, but it has limitations due to the type of data. Indeed, displacement or acceleration
responses, and consequently their residual errors, depends on the train load and velocity.
The dependency is only limited to the train velocity when the responses are normalized
(first step conducted using PCA). In this case, however, from the available data regarding
model D and S, a clear relationship between residual errors and train velocity cannot be
determined.

According to the previous results, the choice of the optimal number of principal components
for the noise-filtering operation must be calibrated in order to obtain accurate results.
Even in this case, light damage that does not produce a significant modification of the
modal properties cannot be identified. In the author’s opinion, an interesting analysis may
regard the influence of the size of the baseline dataset on the cumulative explained variance
associated to each principal component. This aspect affects the choice of the number
of principal components and could improve the detection results. Works presented in
literature underline how a nonlinear correlation may exist between different modal features.
In this case, nonlinear techniques like kernel PCA or auto-encoders could be applied in order
to learn nonlinear relationship at the cost of an increment of the procedure complexity.
The introduction of these techniques in the procedure should be examined and investigated.
For displacement responses, the discrepancy between model and reality (between models
in this application) is affected by a larger number of parameters, making its prediction a
complex task. Data of model S and D at hand are limited, hence it would be advisable to
collect a wide number of responses associated to different values of train load and velocity.
Finally, further developments involve the extension of the procedure to the localization and
the quantification of damage and its application to a real case study for the experimental
validation.
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