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ABSTRACT 

The goal of this work is to apply Multiple Criteria Decision Analysis tools, both 

theoretical and practical, to analyse, support and possibly enhance composite indexes, in 

particular those related to sustainability assessment. In this context, the Sustainable 

Development of Energy, Water and Environment Systems Index represents a 

paradigmatic example and an emerging reference point, thus it is specifically addressed 

throughout the work. On the theoretical side, the focus is on the property of 

“independence”, i.e., of evaluating an alternative independently of the others. It is argued 

that this property can be appealing for an index that is conceived to address, over time, 

an increasing number of inherently evolving systems. A viable and theoretically 

grounded approach for devising a version of the index fulfilling independence is 

proposed. On the practical side, the contribution concerns visual support tools. A well-

known projective method is adapted to work with the index, and a new tool with 

comparable expressive capabilities is proposed. The new representation is more focused 

on the index, technically simpler, and less sensitive to changes in the input data. The 

features of the visual tools are illustrated exploiting currently available (partially 

aggregated) index data. In particular, the new tool is used to illustrate two issues 

addressed in the scientific literature on the index, namely, the use of scenario analysis as 

a predictive tool, and the decoupling of energy usage and carbon dioxide emissions. 

 

KEYWORDS 

SDEWES Index, Multiple Criteria Decision Analysis, Multiple Attribute Utility Theory, rank 

reversal, visual decision support tools, GAIA, Principal Component Analysis 

INTRODUCTION 

In the last decades, there has been an increasing demand for quantitative methods for 

sustainability assessment. This led, in particular, to the proliferation of composite 

indexes, that can provide a numerical synthesis of multiple assessments from different 

perspectives. The United Nations Environment Programme (UNEP) developed the 

Sustainability Assessment of Technologies Methodology (SAT) [1] to provide a general 

framework for structuring and supporting the assessment process in the context of 

sustainable development. The SAT methodology can be applied to a variety of situations, 

and with complexity ranging from policy making at the government (strategic) level to 

comparing technology options at the local community (operational) level. The European 

Commission created the Competence Centre on Composite Indicators and Scoreboards 

(COIN) [2] whose mission is to provide and continuosly improve reliable tools for 

building robust composite indexes. A relevant area of application for sustainability 

assessment is offered by cities; often, in this context, a composite index is designed to 

focus on a specific aspect. For example, the Sustainable Cities Index (SCI) by Arcadis 

[3] explores city sustainability from the perspective of the citizens, trying to assess how 

a city meets their needs. This also leads to a classification of the cities into four clusters, 

based on their similarity to eight “archetypes”. SCI is currently applied to 100 cities from 
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all over the world, and is based on three pillars (“People”, “Planet” and “Profit”) 

evaluated on 13, 11 and 7 indicators, respectively. Another example is provided by the 

Clean Air Scoreboard (CAS) by Clean Air Asia Initiative [4], that focuses on the city’s 

management of air pollutants. CAS has been applied in 19 Asian cities from nine 

countries, and integrates three aspects, related to actual air pollution levels, potential to 

face the problem, and existing policies/actions. A sample of some most relevant city 

sustainability indexes are described and compared in [5]. It is worth noting that the 

assessment of cities is not limited to sustainability issues. For example, the European 

Digital City Index (EDCi) [6] shows how cities support digital entrepreneurship. A 

detailed discussion of EDCi, and a comparison to other indexes with similar aims, can be 

found in [7]. 

 

In recent years, a growing interest has been attracted by a specific city-centred 

composite index, namely the Sustainable Development of Energy, Water and 

Environment Systems (SDEWES) Index. At the time of writing, this index is applied to 

an integrated sample of 120 cities; results, partially aggregated data and related 

explicatory material are maintained in [8]. This index was designed to address the 

integrated development of energy, water and environment systems (EWE systems for 

short) including societal and technological aspects, and with a particular focus on the goal 

of decoupling energy and resource usage from CO2 emissions. It is based on the following 

seven main dimensions: 

1. Energy Usage and Climate 

2. Penetration of Energy and CO2 Saving Measures 

3. Renewable Energy Potential and Utilization 

4. Water Usage and Environmental Quality 

5. CO2 Emissions and Industrial Profile 

6. Urban Planning and Social Welfare 

7. R&D, Innovation and Sustainability Policy. 

Each dimension is evaluated based on five indicators some of which, in turn, are obtained 

by aggregating sub-indicators. Technical details on the computation of the SDEWES 

Index are provided later in this work. It is worth noting that some dimensions (1, 4-6) 

essentially provide a picture of the current status of a city EWE system, while others (2, 

3, 7) evaluate the existing actions and the city potential to improve sustainability. 

Moreover, dimensions 1 and 5 are more directly related to the main focus of the SDEWES 

Index, since they measure the quality of the urban systems in terms of efficiency and CO2 

emissions, respectively; accordingly, these two dimensions are assigned a greater 

relevance (i.e., a larger weight) in the computation of the index. The SDEWES Index was 

originally applied to a sample of 12 South East Europe (SEE) cities [9]. A sample of 22 

Mediterranean port cities were considered in [10], where an “Energy Scenario Tool” was 

proposed to evaluate (in terms of the index values and ranking) the impact of possible 

actions improving the EWE system of a city. A further set of 25 world cities were 

considered in [11], where a “Benchmarking Tool” is devised to compare the performance 

of cities. Moreover, the “city pairing” process is introduced as a tool for supporting policy 

learning and best practices exchange. This process consists in finding pairs of cities with 

similar behaviour (either under or below average) on all dimensions. Results of city 

pairing are reported also in [12], where a further sample of 18 SEE cities is considered. 

In [13] a further sample of 26 world cities is evaluated, and a “normative scenario” (see 

discussion below) for Rio de Janeiro is analysed. The data for another sample of 18 world 

cities are compiled in [14]. An in-depth discussion of the results (including, but not 

limited to, sensitivity and scenario analysis, and city pairing) for the overall integrated 

sample of 120 cities addressed so far can be found in [5]; an overview is given in [15]. In 

particular, the areas of best practice characterizing the top ten cities in the SDEWES 
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Index ranking are pointed out in [5]. The analysis reveals that all these cities show best 

practices in the areas of urban energy systems and/or of CO2 emissions. This seems to 

suggest that energy/emission decoupling is a key factor for attaining a high level of 

sustainability. Some remarks along this line of thought are provided later in this work. 

 

An in-depth analysis of the SDEWES Index goes beyond the scope of this work. 

Nevertheless, it is important to point out a few relevant aspects here. First, the 

computation of the SDEWES Index involves a substantial amount of work for data 

collection. To begin with, a city to be evaluated via the SDEWES Index must have a 

Sustainable Energy Action Plan (SEAP) and maintain reliable statistics on its local 

energy system. Furthermore, collected data usually require pre-processing, e.g. for 

computing main indicators based on sub-indicators. These issues are skipped in this work, 

where the analysis starts after data collection and pre-processing. Second, the SDEWES 

Index is descriptive in nature but it also has a relevant prescriptive value. Indeed, it may 

help city planners to find successful policies for enhancing the sustainability of local 

energy systems. This can be obtained in several ways, the most obvious ones being 

spreading awareness and identifying best practices. In this direction, a methodologically 

more involved approach is provided by the city pairing process cited above. Beyond 

policy learning, the goal should be to adopt the SDEWES Index as the objective function 

to optimize when selecting or designing policies, in order to take integrated actions 

addressing several aspects of sustainability [5,15]. Last but not least, the SDEWES Index 

can be used to track the evolution of local EWE systems, and this means, in particular, 

that it allows to evaluate the impact of sustainability policies. This aspect is clearly 

pointed out in [13], in relation with some medium-long term commitments (with target 

spanning between 2035 and 2060) undertaken by the City of Rio de Janeiro. The impact 

of these commitments on the SDEWES Index is evaluated, which allows to forecast the 

evolution of the index value for Rio in the next decades. It can be argued that, during this 

period, a comparison of actual and envisioned results may provide useful feedback on the 

policy implementation status. That is, the SDEWES Index has the capability not only to 

evaluate the envisioned impact of sustainability policies, but also to assess, and keep track 

of, their actual implementation. However, in order to fully exploit this “evaluate and 

assess” capability, the index should be computed consistently throughout a possibly wide 

time horizon. This is one of the issues addressed by the present work. 

 

By definition, a composite index is a numerical aggregation of measures arising from 

different indicators. These measures are expressed in many different scales, ranging from 

purely qualitative or ordinal (that essentially sort elements into categories) to strongly 

cardinal ones, that have a sound physical meaning and specific units (such as “dollars” 

or “tons of CO2”). The aggregation of multiple evaluations on different scales is the 

subject of Multiple Criteria Decision Analysis (MCDA) [16]. In fact, any composite 

index can be seen as the numerical solution of an underlying MCDA problem, in 

particular, for the “ranking problematic” (see e.g. [16], Chapter 2) i.e., establish a 

complete order among a set of alternatives. A description (including a detailed visual 

representation) of the MCDA problem underlying the SDEWES Index can be found in 

[17], where the ranking obtained by the SDEWES Index is compared to the one of a 

hybrid method (merging AHP [16, Chapter 10] with SDEWES Index computation at the 

indicator level) for a sample of four cities. Since long time, and far beyond the link to 

composite indexes, MCDA methods have been applied in the field of sustainable 

development. The survey in [18] mentions 142 articles that apply MCDA and related 

methods to support or replace standard sustainability assessment methods. Another recent 

survey [19] lists 94 articles (dating 1995-2017) where MCDA assessment methods 

include social aspects in the evaluation of infrastructure sustainability. In a bibliography 
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of more than 2000 articles on PROMETHEE-GAIA applications [20] over 40% of the 

entries deal with energy, environment or water management. A survey devoted to 

ELECTRE methods [21] shows that 153 papers (out of the 544 application papers 

addressed there) deal with natural resources and environmental management. The role of 

MCDA for sustainability assessment has been investigated also from a theoretical point 

of view. The features of several MCDA methods, and their suitability for sustainability 

assessment, are discussed in [22], while Chapter 27 in [16] provides a critical analysis, in 

light of MCDA theory, of common practices and implicit assumptions in composite 

indicators for sustainability. 

Aims of the present research work 

In short, this work deals with composite indexes from an MCDA point of view. More 

precisely, some concepts and tools developed in the context of MCDA are applied to the 

ranking problem underlying a composite index. Two main topics are addressed: the “rank 

reversal” effect, and the application of visual support tools. It must be remarked that these 

topics may be of concern in a broad context, virtually for any index or benchmarking 

technique, not limited to sustainability issues. However, no efforts towards generality are 

made in this work, on the contrary, the above topics are addressed only in the context of 

the SDEWES Index. This implies that some observations and results are motivated by, 

and related to, the features and aims of the SDEWES Index; however, it must be kept in 

mind that here the SDEWES Index is adopted essentially as a paradigmatic example. The 

motivations for this choice should be clear in light of the above discussion, and include 

the availability of data, the wide scientific literature on the subject and, last but not least, 

the promising potential of the SDEWES Index as a decision supporting tool. In particular, 

the analyses conducted in the present work were made possible by the availability of the 

underlying data both at the dimension level [8] and (almost completely) at the indicator 

level [9-14]. For other indexes, data are not always made available, e.g., the Sustainable 

Cities Index [3] only provides the final scores and a graphical representation of 

normalized data. 

 

In MCDA terminology, a rank reversal occurs if the order of preference between two 

alternatives changes when an alternative is added to or removed from the decision 

problem. This means that the relative ranking of a pair of alternatives depends on the 

whole set of alternatives, and not only on the pair itself; in fact, an MCDA method 

exposed to rank reversal lacks of the so called “independence” property. Rank reversal, 

or equivalently “non-independence”, is known to affect many MCDA methods, and has 

been the subject of a long-lasting debate, see for example [23,24] and the references 

therein. In the context of MCDA methods for sustainability assessment rank reversal is 

specifically addressed in [22]. In practice, the occurrence of rank reversals is likely to be 

rather limited, and can be considered a minor problem in light of the aim and scope of 

the SDEWES Index. On the other hand, since the index is designed to address an 

inherently evolving reality, non-independence implies that the results may not be 

computed consistently throughout a wide time interval. This can be limiting if the goal is 

to adopt the index as a tool for evaluating and assessing policies; to this aim, it would be 

useful to devise a “stable” (i.e., “independent”, or “rank-reversal free”) version of the 

SDEWES Index. Here it will be shown that the MCDA theory offers a viable approach 

to obtain such version. It turns out that devising a stable index, although demanding in 

terms of technological expertise, is relatively easy from a mathematical point of view. 

 

A plethora of data visualization techniques are available today, and they are widely 

used in support of sustainability assessment analyses. As for the SDEWES Index, just to 

mention a couple of examples: radar (or spider-web) charts are used in the SDEWES 
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Index Benchmarking Tool [11], while geographical maps and stacked charts are 

combined in the “SDEWES City Index Atlas” [8,15]. In addition, special techniques have 

been developed, see e.g. the three-dimensional visualization proposed for the City 

Sustainability Index [25]. Visualization tools have been widely studied also in the context 

of MCDA, to address the “description problematic” [16, Chapter 2]; see [26] for an 

overview. A well-known example is the GAIA (Graphical Analysis for Interactive Aid) 

methodology, that has been developed as a visual companion to PROMETHEE methods 

[16, Chapter 6]. GAIA includes several graphic and interactive tools, in particular the 

“GAIA plane”, based on the projective approach originally proposed in [27]. The GAIA 

plane allows to reveal interesting relations between criteria and/or alternatives of an 

MCDA problem. Other tools similar to the GAIA plane have been proposed, e.g., the 

“Co-plot” method: see [28] for a description and a comparison to the GAIA plane. It is 

worth noting that Co-plot exploits more sophisticated statistical data analysis techniques 

compared to GAIA; on the other hand, Co-plot is not linked to a specific MCDA method, 

as GAIA is. In the present work, the GAIA plane is adapted to work with dimensions and 

indicators of the SDEWES Index. The benefits of this approach are shown, and some 

drawbacks are pointed out. Consequently, a new and simple visual tool is proposed. This 

tool shows explicitly and exactly some information that is somehow hidden or 

approximated in the GAIA plane. Some particular features of the new tool are exploited, 

first to provide a graphical representation of the scenario analyses discussed in [5] and 

[13], and then to point out some aspects related to the decoupling of energy use from CO2 

emissions. 

 

The layout of this paper is as follows. In Section 2 rank reversal is discussed, together 

with a possible approach for obtaining a stable index. Section 3 provides the definitions 

of the visual tools and points out their main features, while Section 4 shows the 

application of the tools to the SDEWES Index, in particular to data aggregated at the 

dimension level. The last section contains a few conclusions and suggestions for further 

work. 

 

THE SDEWES INDEX AS A MULTIPLE CRITERIA DECISION METHOD 

In MCDA terms, dimensions and indicators of the SDEWES Index define a two-level 

criteria hierarchy. The top level consists of seven macro-criteria, corresponding to 

dimensions D1, D2,…, D7. At the bottom level appear the actual criteria, i.e., the main 

indicators. There are exactly five indicators (criteria) for each dimension (macro-

criterion) and this gives an MCDA problem with m=35 criteria. The alternatives 

correspond to cities, and their number n varies depending on the sample. The current 

version of the index [8] considers a sample of n=120 cities, that integrates the samples 

reported on in detail in the literature [9-14]. For each x[1,7] and y[1,5] denote by 

𝐸𝑥,𝑦(𝐶𝑗) the evaluation of city Cj according to the yth criterion of dimension Dx. The 

computation of the SDEWES Index involves four steps: 

1. Statistical treatment of outliers by means of winsorization; 

2. Normalization of evaluations within each indicator; 

3. Computation of a sub-index for each dimension; 

4. Aggregation of sub-indexes. 

As described in [5,13] outliers are identified and treated by means of higher order 

moments, namely skewness and kurtosis. A single step of winsorization consists in 

replacing all the occurrences of the highest evaluation value by the second-highest one; 

this step is iterated until skewness and kurtosis fall below 2 and 3.5, respectively, or until 

a maximum of 5% of the values have been modified. A complete list of the indicators 
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that required winsorization for the current 120-city sample is provided in [14]. In the 

normalization step the evaluations are mapped onto the interval [0,10]; for maximization 

criteria, the normalized value is defined as  

𝐼𝑥,𝑦(𝐶𝑗) = 10
𝐸𝑥,𝑦(𝐶𝑗)−𝑚𝑥,𝑦

𝑀𝑥,𝑦−𝑚𝑥,𝑦
  (1) 

while for minimization criteria the equation is 

𝐼𝑥,𝑦(𝐶𝑗) = 10
𝐸𝑥,𝑦(𝐶𝑗)−𝑀𝑥,𝑦

𝑚𝑥,𝑦−𝑀𝑥,𝑦
   (2) 

where 𝑚𝑥,𝑦 and 𝑀𝑥,𝑦 denote the minimum and the maximum values 𝐸𝑥,𝑦(𝐶𝑗) across all 

cities, after winsorization. Note that for each indicator the best (respectively, worst) value 

is mapped into the normalized value 10 (respectively, 0). For each dimension an 

aggregated sub-index falling in the interval [0,50] is defined as: 

𝐴𝑥(𝐶𝑗) = ∑ 𝐼𝑥,𝑦(𝐶𝑗) 5
𝑦=1   (3) 

Finally, the SDEWES Index is obtained as 

𝑆𝐼(𝐶𝑗) = ∑  𝛼𝑥
7
𝑥=1 𝐴𝑥(𝐶𝑗) = ∑ ∑ 𝛼𝑥𝐼𝑥,𝑦(𝐶𝑗)5

𝑦=1  7
𝑥=1  (4) 

where 𝛼𝑥 = 0.225 for x=1 and x=5, and 𝛼𝑥 = 0.11 for the other dimensions. Note that 

the weights α sum to one, thus the index is normalized in [0,50]. It is worth noting that in 

the earlier works [9-11] the factor 10 was not included in Equations (1) and (2), thus the 

index and each sub-index where normalized in [0,5]. Furthermore, the treatment of 

outliers by winsorization was omitted. 

 

The SDEWES Index can be seen as the result of the well-known “weighted sum” 

MCDA method, see e.g. [28, Chapter 4] for a discussion. Weighted sum assigns to each 

alternative a score defined as a weighted sum of its normalized evaluations; this can be 

seen in Equation (4), where each normalized indicator of dimension Dx is given the 

weight 𝛼𝑥. The weighted sum is a totally compensatory method, where the weaknesses 

of an alternative can be compensated by its strengths. This means that the SDEWES Index 

of a city can be good even if some of the indicators have a quite poor evaluation. 

Technically, a score 𝑆𝐼(𝐶𝑗) does not depend on the dispersion of the values 𝐼𝑥,𝑦(𝐶𝑗) 

and/or 𝐴𝑥(𝐶𝑗), i.e., on these values being rather similar across the whole set of indicators 

and/or dimensions, or spread in a large interval. On the contrary, other MCDA methods 

are sensitive to dispersion: this is the case e.g. of TOPSIS, as pointed out in [30]. Note 

that the visual tool proposed later has the ability to capture, at least partially, the 

information related to dispersion. 

Weighted Sum and Rank Reversal: towards a stable index? 

The weighted sum method is known to be exposed to rank reversal, due to its 

normalization phase. An expository example is shown in [23]; note the normalization 

technique in that example is the same as in Equations (1) and (2), except that the factor 

10 is missing. It follows that also the SDEWES Index is potentially exposed to rank 

reversal; indeed, it is easy to see that the normalization process violates the independence 

property, since the results of Equations (1) and (2) depend on 𝑚𝑥,𝑦 and 𝑀𝑥,𝑦, and thus on 

the whole city sample. Clearly, the bounds for an indicator can change with time, as long 

as new cities are added to the sample, or due to changes in the city evaluations. It is 

interesting to point out what happens to the normalized values 𝐼𝑥,𝑦(𝐶𝑗) when either 𝑚𝑥,𝑦 

or 𝑀𝑥,𝑦 changes. It can be shown (technical details are rather straightforward and omitted 

here) that improving the best evaluation (respectively, worsening the worst evaluation) 
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makes the 𝐼𝑥,𝑦(𝐶𝑗)  decrease (respectively, increase). This can be considered as a 

reasonable and fair reaction to the setting of a higher or a lower standard, due to the arrival 

of a new very good or very poor city. Note that the use of winsorization may prevent 

these changes to take place, or at least filter off the ones with the most consistent impact. 

On the other hand, a straightforward application of the winsorization process to wider 

and wider samples may lead to unexpected effects, as shown by the following example. 

 

Example 1.  Consider indicator four of dimension three, “Renewable energy in electricity 

production”, measured as a percentage. For the set of 58 cities obtained from the samples 

in [9-11] kurtosis is above the maximum threshold 3.5, as a consequence, the best value 

100 (city of Tirana) is replaced by the second-best value 80 (city of Bogotá); thus 𝑀3,4 =
80 and the normalized value is ten for both cities. Consider now the whole current sample 

of 120 cities: in this case, kurtosis is below the threshold and no winsorization is needed; 

thus 𝑀3,4 = 100 and (since 𝑚3,4 = 1) Bogotá receives a value approximately 8, while 

Tirana retains the value ten. Note that five of the cities from [12-14] have an evaluation 

greater than 80, and this may (at least partially) justify the fall of the score for Bogotá. 

However, the same result (i.e., no winsorization needed) is obtained if the evaluations of 

these five cities are replaced by values smaller than 80. The conclusion is that the score 

of a city in an indicator can drop due to the insertion of cities whose evaluation is worse 

than the one of that city. 

 

It must be remarked that the behaviour pointed out in Example 1 did not affect the 

computation of the indicator, since winsorization was not applied in [9-11]; moreover, 

data seem to suggest that no outliers are likely to be detected if the current 120-city 

sample is further extended. Nevertheless, Example 1 suggests that despite of (and may 

be due to) winsorization the bounds 𝑚𝑥,𝑦 and 𝑀𝑥,𝑦 may change rather unpredictably in 

the long run. This means the score of a city may be artificially increased or decreased, 

regardless of the actual evolution of its local EWE system. In short, the index is not stable. 

Note that from an MCDA point of view the lack of stability cannot be considered as a 

methodological flaw, since it is a consequence of the lack of independence, which is 

almost ubiquitous in MCDA methods. The question is whether this stability issue is 

relevant in practice. Two objections can be raised. 

Objection 1. EWE systems are inherently dynamic entities: technological 

development, as well as social pressure, lead to setting higher and higher standards, to 

which a city should continuously struggle for complying, see e.g. [5, Section 3.5]. 

Accordingly, a local system should be evaluated in relation to other evolving systems, 

rather than based solely on its own features. 

Objection 2. The SDEWES Index is a yet evolving tool. Comparing the definitions in 

[5,13-15] to the ones in [9-12] it turns out that some indicators have been evaluated on 

different scales, replaced, or merged together, while new ones have been added. It can 

also be argued that the SDEWES Index should retain its dynamic nature, in order to 

comply with the evolution of technology and the improvement of EWE systems. 

In light of these objections, one should accept the idea that the SDEWES Index returns 

a sequence of snapshots, each one relative to the current city sample and corresponding 

performances, and to the current set of indicators. After all, this does not seem to seriously 

affect its descriptive power, and has a quite limited impact on its prescriptive value. On 

the other hand, the lack of stability may be drawback when the SDEWES Index is 

considered as a tool for evaluating and assessing the impact of sustainable development 

policies. Indeed, this task requires to compute the index in a consistent way both in the 

evaluation phase and throughout the (possibly long) time horizon set by the policy target. 
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Note that in this case instability is not only due to larger city samples, but also (and may 

be above all) to the evolution of local EWE systems. Therefore, in order to fully exploit 

the evaluating and assessing capabilities of the SDEWES Index, it seems necessary to 

tackle the stability issue explicitly. Ideally, the goal should be to obtain a version of the 

index that can at the same time 

 on one side, evaluate and track the evolution of EWE systems consistently and 

independently of each other; 

 on the other side, allow the comparison and benchmarking of an expanding set of 

cities. 

In the rest of the section this goal is pursued exploiting some principles and tools from 

MCDA theory. Clearly, a stable version of the SDEWES Index implies a stable set of 

indicators and sub-indicators, including their scale of measure; in what follows, this is 

assumed to be the case. A further premise is necessary, and is based on the following 

observation. The sample in [11] changed the bounds 𝑚𝑥,𝑦 and/or 𝑀𝑥,𝑦 for 20 out of the 

35 indicators, w.r.t. previous samples [9,10]; on the contrary, also due to winsorization, 

the sample in [12] turned out to fall within previous bounds. However, this does not 

necessarily mean that the index is evolving towards stability due to the addition of new 

samples. As suggested by Example 1 (and actually confirmed by Objection 1) a 

significant shift of the bounds may be expected in the future for some of the indicators. 

On the other hand, for other indicators the bounds for the 120-city sample are already 

sufficiently stable, or at least provide a reliable picture of the situation, including possible 

future trends.  

From weighted sum to an additive utility model 

Observe that the combination of winsorization and normalization implicitly define for 

each criterion a (normalized and piecewise linear) utility function 𝐹𝑥,𝑦(𝑣) mapping each 

evaluation 𝐸𝑥,𝑦(𝐶𝑗) onto the interval [0,10]. For a maximization criterion, this function 

assigns full utility to evaluations above the threshold 𝑀𝑥,𝑦, and null utility to evaluations 

below the threshold 𝑚𝑥,𝑦; evaluations in [𝑚𝑥,𝑦, 𝑀𝑥,𝑦] are linearly mapped onto [0,10]. 

For a minimization criterion, the role of the thresholds is symmetric, as shown in Figure 

1. Note that utility functions are defined on the whole domain of possible criterion 

evaluations, that (at least in principle) may be unbounded, even if in most cases (e.g., for 

a percentage) upper and lower bounds are readily available. Therefore, the flat zones on 

the left and on the right appear whenever the interval [𝑚𝑥,𝑦, 𝑀𝑥,𝑦] does not cover the 

domain; clearly, if winsorization detects outliers, they end up falling below these flat 

zones. It can be observed that the utility function (for maximization) resembles the 

“Linear” preference function of PROMETHEE [16, ch. 6], [31]. In particular, 𝑚𝑥,𝑦 and 

 𝑀𝑥,𝑦  play the role of the “indifference” and “preference” thresholds Q and P, 

respectively. Although in different contexts, these function share the common approach 

of mapping high and low values onto the extremes of the normalization interval. 

 
Figure 1. Utility function for maximization and minimization criteria 
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Based on the above utility functions, the SDEWES Index may be interpreted in terms 

of Multiple Attribute Utility Theory (MAUT: see e.g. [16, Chapter 7] and [29, Chapter 

6]) as an additive utility model: 

𝑆𝐼(𝐶𝑗) = ∑ ∑ 𝑓𝑥,𝑦𝐹𝑥,𝑦 (𝐸𝑥,𝑦(𝐶𝑗))5
𝑦=1

7
𝑥=1  (5) 

where each utility function 𝐹𝑥,𝑦 is given the weight 𝑓𝑥,𝑦 = 𝛼𝑥. Such additive model, 

once defined, can be later applied to any sample of cities, and applied again to the same 

city whenever some of its evaluations have changed. Remark that the score computed by 

Equation (5) does no longer depend on the city sample, since each city is evaluated 

independently; thus the additive model satisfies the independence property, i.e. is not 

exposed to rank reversal. As observed explicitly in [22], MAUT (not necessarily 

restricted to additive models) is the only MCDA approach that provides completely rank 

reversal free solutions. Clearly, in order to define the additive model in Equation (5) the 

utility functions 𝐹𝑥,𝑦(𝑣) must be defined once and for all. This amounts to say that a stable 

version of the SDEWES Index is obtained if the current bounds 𝑚𝑥,𝑦 and  𝑀𝑥,𝑦 are fixed 

as definitive, possibly after some suitable adjustments. Unfortunately, as discussed earlier, 

this operation is in general not safe: for some indicators, current bounds may not be 

representative of future trends. In these cases, reasonable bounds should be found, and 

this may be a challenging task for those indicators (in particular, maximization ones) for 

which evaluations are expected to improve substantially in the future. Note that the task 

can be simplified in light of a few preliminary observations, including (but not limited 

to) the following: 

 some indicators (e.g. those for dimension 𝐷2 , but also 𝐼5,5 , 𝐼6,2 , 𝐼7,1 , 𝐼7,2) are 

measured on essentially qualitative scales, that are specifically defined to 

aggregate the results of sub-indicators, and for which it should be easy to derive 

reasonable bounds; 

 for some indicators measured in percentage (e.g. 𝐼3,4, 𝐼3,5, 𝐼4,2, 𝐼7,5), 𝑚𝑥,𝑦 and/or 

 𝑀𝑥,𝑦 are equal or very close to 0 and 100, respectively; 

 for some indicators (e.g. 𝐼1,1, 𝐼1,2, 𝐼1,4, 𝐼4,5, 𝐼5,1, 𝐼5,2, 𝐼7,4),  𝑀𝑥,𝑦  is two or three 

orders of magnitude larger than 𝑚𝑥,𝑦: in these cases, it should be safe to shift 𝑚𝑥,𝑦 

to zero; 

 for most maximization (minimization) indicators it seems suitable to set the 

current 𝑚𝑥,𝑦 (𝑀𝑥,𝑦) as a minimum performance thresholds under (over) which a 

null utility must be assigned. 

Moreover, an additive model is not restricted to use the utility functions 𝐹𝑥,𝑦(𝑣) described 

above. These functions are not monotonically increasing or decreasing, since they show 

flat zones where evaluations are not distinguished from each other. Thus it may be 

appealing to consider smoothed version of these functions. A smooth utility function does 

not require to set the bounds 𝑚𝑥,𝑦 and  𝑀𝑥,𝑦, and may provide a more sophisticated model 

including e.g. saturation effects. A suggestion for a smooth function is again offered by 

PROMETHEE, in particular by the “Gaussian” preference function; a version rescaled 

within [0,10] will be considered here: 

𝐺(𝑣) = 10 − 10𝑒−𝑣2 2𝑑2⁄  (6) 

In addition, a “cubic” version of 𝐺(𝑣) will be used: 

𝐻(𝑣) = 10 − 10𝑒−𝑣3 2𝑑3⁄  (7) 

Both functions 𝐺(𝑣) and 𝐻(𝑣) are monotonically increasing, with shape changing from 

convex to concave, and such that 𝐺(𝑑) = 𝐻(𝑑), as shown in Figure 2. The following 
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example gives a hint of how these smooth functions may be used for one particular 

indicator. 

 

Example 2  Consider indicator three of dimension D3: “geothermal energy potential” 

[ mW/m2 ] for which the current bounds (after winsorization) are 𝑚3,3 = 30  and 

𝑀3,3 = 150 with a single outlier, namely Reykjavík, with an evaluation of 310 as shown 

in Figure 2 [11,14]. Assume that possible evaluations outside the bounds are taken into 

consideration, and handled according to the following principles:  

 positive values below 𝑚3,3 should be assigned a non-zero utility; 

 for values over 𝑀3,3 the utility function should be increasing, but with a rather 

fast saturation effect. 

This can be obtained exploiting the functions 𝐺(𝑣) or 𝐻(𝑣). In order to obtain three 

curves 𝐹3,3(𝑣), 𝐺3,3(𝑣) and 𝐻3,3(𝑣) close to each other the parameter d is set so that 

𝐹3,3(𝑑) = 𝐺3,3(𝑑) = 𝐻3,3(𝑑). 

 

 
Figure 2. Piecewise linear and smooth utility functions 

 

Note that 𝐺3,3(𝑚𝑥,𝑦) ≅ 0.727  and 𝐺3,3(𝑀𝑥,𝑦) ≅ 8.485 : the current bounds are not 

mapped onto extreme utility values, since some utility values must be reserved for 

evaluations over  𝑀3,3  and below 𝑚3,3 . Using 𝐺(𝑣)  instead of 𝐹(𝑣)  the score for 

Reykjavík remains almost unchanged (𝐺3,3(310) ≅ 9.997 instead of 𝐹3,3(310) = 10) 

while the scores for the other cities are shrunk within an interval of length 𝐺3,3(𝑀𝑥,𝑦) −

𝐺3,3(𝑚𝑥,𝑦) ≅ 7.758. That is, the outlier is distinguished from the other cities (according 

to the above principles) but the discriminating power among these cities is reduced. If the 

shrinking deriving from 𝐺3,3(𝑣) is considered excessive, then a function with a sharper 

behaviour may be used instead; for example, 𝐻3,3(𝑣) gives an interval of wider length 

𝐻3,3(𝑀𝑥,𝑦) − 𝐻3,3(𝑚𝑥,𝑦) ≅ 9.455.  

 

It must be remarked that the principles inspiring the utility function in Example 2 are 

purely explicative, and do not necessarily match with the actual aim of the indicator. 

Moreover, the functions 𝐺(𝑣)  and 𝐻(𝑣)  have been chosen solely for the sake of 

simplicity, while the method for choosing the parameter d is rather straightforward, if not 

naïve. Clearly, much more involved mathematical tools can be exploited to find suitable 

utility functions. If necessary, further degrees of flexibility may be obtained e.g. 

considering different normalization intervals and/or different weights for some indicators. 

This allows to concentrate efforts on technical issues, such as derive a clear picture of the 

current level of development, foresee a reasonable trend of evolution on a medium-long 

term, and (last but not least) evaluate the utility that should be associated with future 

improvements in relation with the aims and scope of the index. The conclusion that can 

be drawn from the above discussion is that choosing suitable utility functions may be 

challenging but is definitely possible. In other words, the SDEWES Index is a promising 
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candidate for the process of moving from weighted sum to an additive utility model, 

which in light of MCDA theory is the unique approach leading to stability, i.e., to satisfy 

the independence property. 

 

VISUAL TOOLS FOR THE SDEWES INDEX 

As mentioned above, several kinds of visual tools have been devised in the context of 

MCDA. Here, the interest is concentrated on tools representing the overall structure of 

the decision problem, in particular on the GAIA plane. Similar tools have been proposed 

in the literature, such as the aforementioned CoPlot method, but GAIA is apparently the 

simplest and the most widely known. Here, the GAIA plane is adapted for the SDEWES 

Index, addressing both the top level and the bottom level of the criteria hierarchy. 

Furthermore, a new tool will be presented, namely the “Index/Dispersion plane”. From a 

visual point of view, the new tool is very close to the GAIA plane, and conveys 

comparable information. Similarities and differences between the two methods will be 

discussed, and illustrated by means of some examples. On the computational side, the 

Index/Dispersion plane bears some resemblance with the CoPlot method since, in both 

cases, the alternative representation is found first, and the criteria representation is derived 

from it. There are, however, strong differences between the two approaches. In the tool 

proposed here, both city and criteria representations are found in a very simple way, and 

have a clear interpretation in terms of the underlying MCDA problem. On the contrary, 

CoPlot finds the mapping of the alternatives exploiting rather sophisticated statistical 

methods for multi-dimensional scaling, and finds the representation of each criterion solving 

(heuristically) a rather difficult non-linear optimization problem. Furthermore, CoPlot 

representations have no interpretation in terms of the underlying problem, while the 

Index/Dispersion plane conveys explicit information related to the SDEWES Index. 

Adapting the GAIA plane 

In the GAIA plane, alternatives, criteria and weights are jointly represented by points 

on a plane. More precisely, each criterion is graphically represented by a “vector”, i.e. a 

segment from the origin to the corresponding point; the vector representing the weights 

is usually referred to as the “stick”. The primary plane is identified by the axes U 

(horizontal) and V (vertical); a third axis W allows to define the secondary planes (U,W) 

and (V,W). This representation is obviously approximated, since it only shows the 

projections on a plane of points in a space of dimension p, i.e., the number of criteria. 

The method also provides a measure of the quality of the representation, which can be 

seen as the percentage of information retained after projection. The GAIA plane allows 

to visualize several aspects of an MCDA problem, such as conflicting criteria or 

sensitivity to changes in the weights; see [27] and [16, Chapter 6] for a detailed 

discussion. The interesting features for the present work can be summarized as follows: 

1. Alternatives with similar characteristics appear close to each other in the plane. 

2. Criteria expressing similar (respectively: opposite, uncorrelated) preferences are 

represented by vectors oriented in approximatively similar (respectively: opposite, 

orthogonal) directions. 

3. Points corresponding to better alternatives for a criterion are likely to be found 

moving in the direction of the corresponding criterion vector; similarly, the stick 

shows the direction where globally better alternatives can be found. 

4. The length of a vector denotes the reliability of the visual information it conveys: 

a short length suggests a high loss of information due to projection. 

In order to find the axes U, V and W, GAIA applies Principal Component Analysis 

(PCA) to the matrix of profiles computed by the PROMETHEE method. The profile of 
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an alternative is a (row) vector of scores, one for each criterion. Profiles are particularly 

suitable for PCA since they are normalized in [-1,1] and centered, i.e., the sum of scores 

over all alternatives is zero for each criterion. Obviously, in the context of the SDEWES 

Index profiles do not exist, but PCA can be applied to available data that are normalized, 

even if not centered. There are two possibilities here, namely, apply PCA at the top level 

or at the bottom level of the criteria hierarchy. In the former case, a city 𝐶𝑗 is represented 

by the sub-indexes 𝐴𝑥(𝐶𝑗), for x=1,2,…,7; recall that the sub-indexes are normalized in 

[0,50]. In the latter case, PCA is applied separately for each dimension 𝐷𝑥, and a city 𝐶𝑗 

is represented by its scores 𝐼𝑥,𝑦(𝐶𝑗), y=1,2,…,5, normalized in [0,10]. From now on, the 

generic term “criterion” is used to denote either a dimension (at top level) or an indicator 

(at bottom level). In both cases, let M denote the n×p “score matrix”, where n is the 

number of cities and p is either 7 or 5; each city 𝐶𝑗 is represented by row j of M. The PCA 

method for finding the axes U, V, W and the qualities of the projection planes can be 

summarized as follows. 

 

Algorithm PCA 

Input: a score matrix M 

Output: axes U, V, W; quality of planes (U,V), (U,W), (V,W) 

1) Compute the matrix of centered normalized evaluations N: 𝑁𝑗𝑘 = 𝑀𝑗𝑘 − 𝑀̅𝑘, where 

𝑀̅𝑘 is the average of the values in column k of M; 

2) Compute the p×p correlation matrix 𝐴 = 𝑁𝑇𝑁; 

3) Compute the three largest eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3  of A, and the corresponding 

eigenvectors x1, x2 and x3; let U= x1, V= x2, and W= x3; 

4) For the planes (U,V), (U,W) and (V,W), the quality is given by 100(𝜆1 + 𝜆2) tr(𝐴)⁄ , 

100(𝜆1 + 𝜆3) tr(𝐴)⁄  and 100(𝜆2 + 𝜆3) tr(𝐴)⁄ , respectively. 

 

Given the axes, the coordinates of relevant points on the plane (U,V) can be computed as 

shown below; the computation for the secondary planes (U,W) and (V,W) is similar. 

 city 𝐶𝑗 has coordinates (𝑁𝑗∙
 𝑈, 𝑁𝑗∙

 𝑉), where 𝑁𝑗∙ is row j of N; 

 criterion k has coordinates (𝑈𝑘, 𝑉𝑘); 

 the stick has coordinates (𝑤𝑇𝑈, 𝑤𝑇𝑉). 

Note that the weights are represented by a unit-length vector w, where 𝑤 = 𝛼 ‖𝛼‖2⁄  at 

top level, while at bottom level 𝑤 = 𝑢 ‖𝑢‖2⁄ , where 𝑢 = [1,1,1,1,1]𝑇. Recall that the 

weight vector is not considered in the PCA algorithm. Consequently, the aggregated score 

(the SDEWES Index at top level, a sub-index at bottom level) is not represented exactly 

on the GAIA plane. The stick shows a direction of expected growth, but this information 

may be quite approximated, in particular if the stick length is short. This is one of the 

motivations that lead to the proposal of a different visual representation. 

A new visual tool: the Index/Dispersion plane 

As discussed earlier, the weighted sum method is totally compensatory, i.e., it is not 

sensitive to dispersion of criteria values. Accordingly, the SDEWES Index does not take 

dispersion into consideration. On the other hand, distribution patterns of sub-indexes are 

relevant for city pairing [5, 12, 15], thus a measure of dispersion may be helpful in that 

context. The GAIA plane reveals some information about dispersion, since the direction 

orthogonal to the stick is somehow related to dispersion; however, this information is not 

explicit, and in some cases can be quite approximated. The tool proposed here aims at 

visualizing an aggregated score (horizontal coordinate) and the corresponding dispersion 

(vertical coordinate) explicitly and exactly. Also in this case, the method can be applied at 

two levels: at top level, the aggregated score is the SDEWES Index, while at bottom level it 
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is the sub-index 𝐴𝑥(𝐶𝑗) for a given dimension x; in both cases, the input data are contained 

in the n×p score matrix M, as defined for the GAIA plane. 

 

Clearly, many different measures of dispersion can be adopted: a straightforward 

geometrical approach is followed here. Consider first the top level, where each city Cj is 

represented by the sub-indexes 𝐴𝑥(𝐶𝑗), contained in row j of the score matrix M. Thus city 

Cj is a point 𝑀𝑗.
𝑇 in the space of dimension p=7, and weights are represented by the unit 

length vector 𝑤 = 𝛼 ‖𝛼‖2⁄ . For each city Cj let 𝑀𝑗.
𝑇 = 𝜋𝑗𝑤 + 𝑑𝑗, where 𝜋𝑗 =  𝑀𝑗∙𝑤. Note 

that 𝜋𝑗 is the length of the projection of 𝑀𝑗.
𝑇 onto the axis defined by w, while the vector 𝑑𝑗 

is orthogonal to this axis, thus ‖𝑑𝑗‖
2
 is the Euclidean distance of 𝑀𝑗.

𝑇 from the axis. It can 

be easily checked that  

𝑆𝐼(𝐶𝑗) = ‖𝛼‖2𝜋𝑗 (8) 

Therefore, to obtain homogeneous scales, the normalized distance 

𝛿𝑗 = ‖𝛼‖2‖𝑑𝑗‖
2
 (9) 

is chosen as a measure of the dispersion of the sub-indexes representing city Cj. The 

extension to the bottom level is immediate: in this case, for dimension x, city Cj is 

represented by indicators 𝐼𝑥,𝑦(𝐶𝑗), 𝑀𝑗.
𝑇 is a point in the space of dimension p=5, and the 

vector 𝑢 = [1,1,1,1,1]𝑇  replaces the vector 𝛼 , i.e., 𝑤 = 𝑢 ‖𝑢‖2⁄ . The value 𝜋𝑗  and the 

vector 𝑑𝑗 are defined as for the top level, and it turns out that  

𝐴𝑥(𝐶𝑗) = ‖𝑢‖2𝜋𝑗  (10) 

Therefore, similar to Equation (9), dispersion is measured by 𝛿𝑗 = ‖𝑢‖2‖𝑑𝑗‖
2
. 

 

Based on the representation of cities, a two-dimensional visualization of the criteria can 

be defined. The idea is that criterion k is represented by the point of coordinates (𝜌𝑘
(1)

, 𝜌𝑘
(2)

), 

where 𝜌𝑘
(1)

 and 𝜌𝑘
(2)

 are a measure of the correlation of the criterion with the aggregated 

score and the dispersion, respectively. In particular, the Pearson correlation coefficient will 

be used; recall that this coefficient is normalized in [−1,1]. Both at top and bottom level, 

criterion k corresponds to column k of the score matrix M, while aggregated score and 

dispersion can be represented by the n-dimensional vectors 𝜋 and 𝛿 defined above. Thus 

the horizontal coordinate of criterion k is defined as: 

𝜌𝑘
(1)

=
∑ (𝑀𝑗𝑘−𝑀̅𝑘)(𝜋𝑗−𝜋̅)𝑛

𝑗=1

√∑ (𝑀𝑗𝑘−𝑀̅𝑘)2𝑛
𝑗=1 √∑ (𝜋𝑗−𝜋̅)2𝑛

𝑗=1

 (11) 

where 𝑀̅𝑘 is the average of column k of M, while 𝜋̅ is the average value of vector 𝜋. The 

vertical coordinate 𝜌𝑘
(2)

 is defined as in Equation (11), replacing 𝜋  by 𝛿 . Graphically, 

criterion k is represented by a vector from the origin to the point (𝜌𝑘
(1)

, 𝜌𝑘
(2)

). Remark that 

(differently from GAIA) each of the two coordinates conveys sound information on the 

underlying MCDA problem. The horizontal coordinate shows whether, and up to what 

extent, the aggregated preferences agree with the ones expressed by the criterion. The 

vertical coordinate shows whether a good performance on the criterion comes at the 

expenses of a larger dispersion among criteria. An interesting feature of the 

Index/Dispersion approach is that criteria coordinates can be computed considering only a 

subset of the n cities. This allows, in particular, to partition the overall sample into sub-

samples (e.g., quartiles) and obtain distinct representations of criteria separately for each 

sub-sample. These representations can be compared to each other, in order to spot those 



Surname1, N1., Surname2, N2, et al. 
Paper Title 

Year XXXX 
Volume X, Issue Y, pp xx-yy  

 

14 

cases where the relations between criteria differ depending on the sub-sample. Note that a 

similar process is not possible with the GAIA plane, where the representation of criteria is 

determined univocally by the axis U and V, and cannot be related to sub-samples. It is worth 

mentioning that data analysis separated by quartiles has been exploited in [5,12,13,15], see 

e.g. Figure 4 in [5], where graphical representations are given both at the index and at the 

sub-index level. 

 

Reliability of visual information.  Similar to the GAIA plane, a joint representation of 

cities and criteria is also possible. To this aim, the criteria representation should be translated 

so that its origin moves to the coordinates given by the average aggregated score and the 

average dispersion. Equivalently, the city coordinates should be replaced by their centered 

counterparts, i.e., by differences w.r.t. averages. Moreover, a rescaling is necessary, since 

𝜌𝑘
(1)

 and 𝜌𝑘
(2)

 are normalized within [−1,1], while city coordinates are numbers in [0,50]. 

The joint representation allows to visualize the relations between criteria and cities, i.e., 

better cities for criterion k are likely to be found in the direction defined by the 

corresponding vector (𝜌𝑘
(1)

, 𝜌𝑘
(2)

). In other words, a criterion communicates a “visual 

ranking” of the cities, which is expected to be similar to the actual ranking defined by the 

criterion. Technically, the visual ranking is defined by the “visual scores” of the cities: 

for criterion k, and for city 𝐶𝑗, the visual score is the length of the projection of (the point 

representing) 𝐶𝑗 on the axis representing k, or equivalently, by the scalar product between 

(𝜌𝑘
(1)

, 𝜌𝑘
(2)

) and the coordinates of 𝐶𝑗. At top level, according to Equations (8) and (9), 

the visual score of 𝐶𝑗 for dimension 𝐷𝑘 is given by  

𝑃𝑘(𝐶𝑗) = 𝑆𝐼(𝐶𝑗) ∙ 𝜌𝑘
(1)

+ 𝛿𝑗 ∙ 𝜌𝑘
(2)

 (12) 

At bottom level, according to Equation (10), the visual score of 𝐶𝑗  for indicator k of 

dimension 𝐷𝑥 is given by  

𝑃𝑘(𝐶𝑗) = 𝐴𝑥(𝐶𝑗) ∙ 𝜌𝑘
(1)

+ 𝛿𝑗 ∙ 𝜌𝑘
(2)

 (13) 

Exploiting Equations (12) and (13) it is possible to give a measure of the reliability of the 

visual ranking offered by criterion k. This can be done by computing the Pearson 

correlation coefficient between the actual scores, defined by column k of the input score 

matrix M, and the visual scores defined by 𝑃𝑘. Note that a similar measure of reliability 

can be given for the GAIA plane as well. In the plane (𝑈, 𝑉), and similar for secondary 

planes, the visual score of 𝐶𝑗 for criterion k is given by  

𝑃𝑘(𝐶𝑗) = 𝑁𝑗∙
 𝑈 ∙ 𝑈𝑘 + 𝑁𝑗∙

 𝑉 ∙ 𝑉𝑘 (14) 

As shown later, this allows to compare the reliability of the visual rankings provided by 

GAIA and by Index/Dispersion. 

 

Visual stability of the Index/Dispersion plane. In the Index/Dispersion representation 

cities are processed independently of each other. Therefore, a change in the city sample or 

in the data representing a city cannot affect the representation of another city. This may be 

referred to as a sort of independence property of the proposed approach. Note that 

independence does not extend to criteria, since their representation is based on global 

information, i.e., on scores and dispersion of all the cities in the sample. Suppose now that 

the method is applied, in conjunction with a stable version of the SDEWES Index, for a 

sufficiently long period of time, during which the EWE systems of many cities are likely to 

evolve significantly. Accordingly, the Index/Dispersion representation of a city will change 

over time depending on the city’s system evolution, but independently of other cities. In 

other words, each city will define a “trajectory” on the Index/Dispersion plane, and 
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trajectories will be independent of each other. Looking at things the other way round, a city 

trajectory may be defined in advance by the envisioned results of a particular policy: in this 

case, that trajectory defines a stable representation of the expected results throughout the 

whole time horizon of the policy. This may be useful to support the process of evaluating 

and assessing the impact of sustainability policies. The conclusion is that the proposed 

approach is quite appealing as a visual companion of a stabilized SDEWES Index. Remark 

that the GAIA plane does not show a similar level of reliability. The PCA method is 

inherently unstable, since the projection axes depend on the underlying score matrix M. 

When new cities are added, or when some evaluations change, the projection planes are 

modified, and this affects the whole picture returned by the GAIA plane. 

APPLICATION OF VISUAL TOOLS 

This section reports some examples of the plots that can be obtained with the adapted 

GAIA plane and with the Index/Dispersion method. The goal is to point out similarities 

and differences between the two approaches, trying to shed light on their strengths and 

weaknesses. To this aim, the figures will come in pairs (except for the last one) which 

allows to compare the visual representations provided by the two methods for the same 

set of information. It must be remarked that the examples shown here are not intended to 

provide an extensive analysis of the (substantial amount of) information conveyed by the 

SDEWES Index, thus they are not expected to reveal, unless incidentally, any peculiar or 

unexpected feature. The ultimate goal is to demonstrate the soundness and suitability of 

the visual tools. For reasons of space, and for uniformity of presentation, only top level 

is addressed; bottom level provides a larger set of data representations, but does not reveal 

any new feature of the proposed tools. All the figures refer to the current 120-city sample 

available from [8] except for Figures 9 and 10, that for readability are limited to the 58 

cities from [9-11]. Figures obtained from GAIA are limited to the (U,V) plane, and are 

somehow simplified w.r.t. the usual appearance, omitting axes and bounding boxes; 

similar, rulers are often omitted in the Index/Dispersion plots. Nevertheless, all the 

relevant information is given within each figure. In some cases, specific subsets of cities 

will be individuated by means of different markers and/or by tracing the convex hull of 

the corresponding set of points in the plane. 

City representation: ranking and trajectories 

The first pair of figures illustrates the main difference between the two approaches, 

namely, the capability of representing exactly the value of the SDEWES Index. To this 

aim, the four quartiles individuated by the index values are represented. Figure 3 shows 

the GAIA plane with the stick showing the approximate direction of increase for the 

SDEWES Index. Observe that the length of the stick is 0.912, that is sufficiently close to 

one; this means that the unit length vector 𝑤 = 𝛼 ‖𝛼‖2⁄  is quite close to its projection on 

the (U,V) plane. However, some information is lost in the projection process, as can be 

expected from the quality value. Indeed, quartiles appear in the right order along the stick 

direction, but with overlapping convex hulls. Obviously, no overlapping appears in the 

Index/Dispersion representation of Figure 4, that allows to point out two interesting 

details: 

 For cities in the bottom quartile (91-120) both the SDEWES Index and the 

dispersion are spread in a much wider interval compared to the middle 

quartiles; up to a minor extent, the same holds true for the top quartile too. 

 Within the top quartile, the best index values are found in the top-right corner, 

i.e., show a relatively high dispersion; in other words, and excellent overall 

performance can be obtained even with relatively wide differences between 

single dimension performances. 
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Figure 3. GAIA: city quartiles and stick. 

 

 

Figure 4. Index/Dispersion: city quartiles and simulation trajectories. 

 

Figure 4 also shows two trajectories individuated by simulating the evolution of a city 

along time. The simulation for Rio de Janeiro is based on the results for the normative 

scenario addressed in [13]. The simulation for the “Average City” is taken from a scenario 

addressed in [5,15], where a fictitious city evolves, in each dimension, from the average 

to the maximum of the corresponding sub-index values in the current 120-city sample. In 

both cases, the simulation assumes a transition from the current situation (year 2019) to 

the situation foreseen for the target year 2050. Here, for simplicity, the transition is 

assumed to be linear in time; markers show the expected situation for each year in the 

time horizon. Even if the transition is linear, the trajectory is not necessarily linear, since 

the measure of dispersion is not linear. It can be observed that the proposed scenarios 
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lead to a substantial increase not only for the SDEWES Index (as expected) but also for 

dispersion. 

Criteria representation: reliability of visual information 

The goal of the next figures is to show that the two tools have the same capability of 

representing the relations among criteria and the relations between criteria and cities. 

Moreover, the information they convey have similar reliability. To this aim, conjoint plots 

of criteria and cities are provided, and further visual information is added as follows. In 

each plot, a specific dimension 𝐷𝑥 is selected, and the best ten and the worst ten cities for 

𝐷𝑥 are highlighted. This gives a visual intuition of the quality of the visual ranking of the 

cities. Moreover, the measure of reliability defined above, here denoted by “Correlation”, 

is provided for each plot. In Figures 5 and 6 the selected dimension is 𝐷5. For both tools, 

the correlation value is very close to one, and indeed, the visual ranking of the cities 

seems quite close to the actual one, with best and worst cities appearing on opposite sides 

of the city cloud. Note that for both tools the length of the vector representing 𝐷5 is high. 

 

 

Figure 5. GAIA: conjoint plot, best/worst cities for 𝐷5. 
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Figure 6. Index/Dispersion: conjoint plot, best/worst cities for 𝐷5. 

 

In Figures 7 and 8 the selected dimension is 𝐷3. In this case, the correlation value is rather 

low, and indeed the visual ranking appears much less reliable, with some of the best and 

worst cities mixing together around the origin. Note that both the length of the vector 

representing 𝐷3 and the correlation value are higher for Index/Dispersion than for GAIA. 

The relatively poor visual performance of dimension 𝐷3  can be related to its low 

correlation to the index, and this behaviour seems to suggest that some cities do not yet 

fully exploit their renewable energy potential in their energy supply systems; in this area, 

a remarkable example of best practice is given by the city of Reykjavík (the diamond 

close to the point defining 𝐷3in Figure 8) that decarbonized its power sector [5,14]. 
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Figure 7. GAIA: conjoint plot, best/worst cities for 𝐷3. 

 

 
Figure 8. Index/Dispersion: conjoint plot, best/worst cities for 𝐷3. 

 

Besides the above observations on the visual ranking of cities, Figures 5-8 show that the 

two tools provide remarkably similar representations of the criteria. The only evident 

difference is the length of the vectors representing dimensions D3 and D4. Keeping in 

mind the meaning of the stick for GAIA, it is possible to draw some conclusions 

supported by both tools. 
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 Up to different extents, the first six dimensions bring some similarity to the 

overall index, with D5 showing the strongest correlation 𝜌5
(1)

= 0.8056. 

 On the contrary, dimension D7 is almost uncorrelated to the index; this seems 

to suggest that an innovative city is not necessarily a sustainable city. 

 There is a partial conflict (or better a lack of correlation) between two sets of 

dimensions, namely, D1 and D5 opposed to D2, D6 and D7; in particular, this 

is revealed by dispersion, or equivalently by the direction orthogonal to the 

stick on the GAIA plane.  

As for the last observation, it is not easy to find a simple interpretation. A possible 

explanation may be as follows. On one side, dimensions D2, D6 and D7 are somehow 

related to the degree of social-cultural development of a city (in terms of sustainability 

awareness, welfare, education, innovation,…) and thus can be expected to be related to 

each other. On the other side, D1 and D5 measure the level of evolution of energy systems 

(in particular in terms of energy/emission decoupling) and thus are likely to be correlated; 

more details on this aspect are given at the end of this section. Yet, these two general 

aspects (social-cultural development and evolution of energy systems) appear essentially 

independent of each other, despite their potential for mutual enhancement. 

 

Comparison of city samples 

Figures 9 and 10 show conjoint plots for the (overall 58) cities addressed in [9], [10] 

and [11]: the three samples are distinguished, and referred to as MED, SEE and WC1, 

respectively. Note that the city of Istanbul, addressed both in [9] and in [10], is showed 

separately: this choice allows to point out more clearly the differences between the MED 

and SEE samples. To begin with, note that the representation of dimensions for both tools 

is very similar to the one obtained for the 120-city sample; as for the GAIA plane, also 

in this case the length of the stick is high (0.928) while the quality (65.88%) is lower than 

the one for the 120-city sample. As for the comparison of city samples, the following 

observations can be drawn. 

 MED and SEE samples (both located in specific geographical areas) are 

concentrated within relatively small areas of the plane, while the world cities in 

WC1 are spread in a larger area; 

 overall, SEE cities have a slightly better index w.r.t. MED cities, while WC1 cities 

have a larger dispersion; 

 WC1 cities show a better performance in terms of social-cultural development 

(dimensions D2, D6 and D7) while MED (and up to some extent, SEE) cities are 

better in terms of energy systems and emissions (D1 and D5). 
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Figure 9. 58 cities, GAIA: conjoint plot, distinguished samples. 

 

 
Figure 10. 58 cities, Index/Dispersion: conjoint plot, distinguished samples. 

Comparison of criteria by quartiles 

Figure 11 shows the criteria representations computed by the Index/Dispersion 

method separately for each quartile. The four plots show rather evident differences, 

following an apparent trend: roughly speaking, the pattern of criteria vectors seems to 

rotate clockwise from top to bottom quartiles. In particular, it is interesting to point out 

the behaviour of dimensions D1 and D5, that are closely related to a main focus of the 

SDEWES Index, namely the energy/emission decoupling. For the top quartile D1 and D5 

have the strongest correlations to the index, meaning that they have the most relevant 

impact on the city ranking. This is consistent with the results in [5] (mentioned earlier in 

the present work) showing that the top ten cities propose best practices in energy saving 

and/or reducing emission. Moving towards lower quartiles, the role of D1 and D5 becomes 

less and less relevant, in favour of other dimensions, in particular D6 and D7. In the bottom 

quartile, D1 and D5 have the weakest correlation to the index, and are rather weakly 

correlated to each other. Overall, this behaviour seems to suggest that the leading cities 

are those that adopted integrated measures to reduce energy consumption and emissions 
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at the same time, while for the less sustainable cities these two aspects seem to be rather 

disregarded, or at least, far from being addressed in a systematic way. 

 
Figure 11. Index/Dispersion: criteria representation by quartile. 

CONCLUSIONS AND FURTHER WORK 

The SDEWES Index is a tool for evaluating EWE systems, that are an inherently 

evolving objects. Faced with this fact, two attitudes are possible. One is to privilege 

adaptivity: conceive the index as a tool that is driven by the evolution (besides being itself, 

possibly, evolving) and thus continuously adapts its standards, renormalizing values to keep 

in line with the ongoing improvements. The other possible attitude privileges stability: 

conceive a tool that computes ranks uniformly along time, and thus can be used to track and 

measure the evolution. These two attitudes are both reasonable, but incompatible, and the 

goal of this work was not to take a stand; in the end, one may consider maintaining two (or 

more) different versions of the index. The goal of this work was to show that the 

adaptivity/stability dichotomy falls within the long-lasting debate about the relevance and 

legitimacy of rank reversal in the field of MCDA. Moreover, MCDA offers a viable 

(actually, the unique viable) approach towards stability. The SDEWES Index seems to be a 

rather good candidate in this sense. Clearly, devising an actual stable version of the index 

remains to be done. Similarly, it remains to understand whether, and up to what extent, the 

observations made on the SDEWES Index can be extended to other composite indexes, not 

necessarily limited to sustainability assessment. 

As to the other contribution of this work, it has been shown that visual tools developed 

in the context of MCDA can be adapted to work in support of the SDEWES Index. These 

tools may be useful for analysis, to reveal information somehow hidden in the collected data, 

but also for dissemination, to enhance the comprehension of the scoring process and of its 

results. Here, in particular, the GAIA plane was adapted, and the Index/Dispersion plane 

was proposed. It has been shown that the two tools have similar expressive power, however, 

the latter is technically simpler and tailored to convey information relevant for the SDEWES 

Index. Clearly, further work on the Index/Dispersion representation is needed. To begin 
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with, different measures of dispersion could be considered. Moreover, similar to the 

secondary planes in GAIA, further complementary views should be offered. To this aim, the 

proposed representation could be hybridized with projective (GAIA-like) techniques. 

Moreover, the Index/Dispersion method could be developed and generalized to work in a 

most general MCDA framework. Incidentally, this raises the question of how to consider 

data dispersion explicitly within an MCDA method, which may represent an interesting 

direction for research in the MCDA area. 
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NOMENCLATURE 

A  aggregated sub-index for a dimension 

C  specific city in a sample 

D  dimensions of the SDEWES Index (D1, D2,…, D7) 

E  evaluation of a city w.r.t. an indicator 

F  generic piecewise linear utility function 

G  smooth increasing utility function (Gaussian) 

H  smooth increasing utility function (modified Gaussian) 

I  normalized evaluations 

𝑀𝑥,𝑦 maximum evaluation for indicator y of dimension x 

𝑚𝑥,𝑦 minimum evaluation for indicator y of dimension x 

M  score matrix, input for GAIA and Index/Dispersion methods 

P  vector of visual scores 

SI  SDEWES Index of a city 

U  principal axis in the GAIA method 

u  vector of indicator weights in the definition of a sub-index 

V  second axis in the GAIA method 

W  third axis in the GAIA method 

w  weight axis in the Index/Dispersion method 

Subscripts 

j  number of a city in the sample 

k  generic criterion in the GAIA and Index/Dispersion planes 

x  dimension number 

y  indicator number within the dimension 

 

Greek letters 

𝛼  vector of dimension weights in the SDEWES Index 

𝛿  measures of dispersion in the Index/Dispersion plane 

𝜆  eigenvalues in the PCA algorithm 

𝜋  projection of cities onto a criterion axis in the Index/Dispersion plane 

𝜌  coordinates of a dimension or indicator in the Index/Dispersion plane 

Abbreviations 

CAS Clean Air Scoreboard 

COIN Competence Centre on Composite Indicators and Scoreboards 
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EDCi European Digital City Index 

EWE Energy Water and Environment 

GAIA Graphical Analysis for Interactive Aid, visual support tool 

MAUT Multiple Attribute Utility Theory 

MCDA Multiple Criteria Decision Analysis 

MED sample of Mediterranean port cities, addressed in [9] 

PCA Principal Component Analysis 

SAT Sustainable Assessment of Technologies 

SCI  Sustainable Cities Index 

SDEWES Sustainable Development of Energy, Water and Environment Systems 

SEAP Sustainable Energy Action Plan 

SEE South East Europe; city sample addressed in [10] 

UNEP United Nations Environment Programme 

WC1 first sample of World Cities, addressed in [11] 
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