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Abstract: Aging is one of the hallmarks of multiple human diseases, including cancer. We hypothe-
sized that variations in the number of copies (CNVs) of specific genes may protect some long-living
organisms theoretically more susceptible to tumorigenesis from the onset of cancer. Based on the
statistical comparison of gene copy numbers within the genomes of both cancer-prone and -resistant
species, we identified novel gene targets linked to tumor predisposition, such as CD52, SAT1 and
SUMO. Moreover, considering their genome-wide copy number landscape, we discovered that mi-
croRNAs (miRNAs) are among the most significant gene families enriched for cancer progression
and predisposition. Through bioinformatics analyses, we identified several alterations in miRNAs
copy number patterns, involving miR-221, miR-222, miR-21, miR-372, miR-30b, miR-30d and miR-31,
among others. Therefore, our analyses provide the first evidence that an altered miRNAs copy
number signature can statistically discriminate species more susceptible to cancer from those that are
tumor resistant, paving the way for further investigations.

Keywords: DNA copy number variation; miRNAs; comparative study

1. Introduction

Aging is considered one of the risk factors of cancer insurgence due to the mutational
burden derived from cell division and DNA replication [1]. Therefore, it is probable that, in
order to maintain a high longevity rate, those organisms that live longer should theoretically
possess a higher risk of cancer occurrence. Nevertheless, considering different species,
according to Peto’s Paradox theory [2], the body size of an organism and/or its lifespan
expectation are not directly correlated with the species percentage of cancer incidence.
After more than 40 years of research, the solution to this puzzling paradox is still an open
challenge to be solved. For example, despite its small size, the naked mole rat is, to date, the
longest-living member of the rodent family, being able to live more than 30 years. Several
studies highlighted that, besides the delayed aging, this species also shows the capacity
to resist spontaneous and experimentally induced tumorigenesis [3–6]. Conversely, in
some other rodents, the cancer-related mortality can reach 90%, coupled with a species
maximum life expectancy of 4–5 years [7]. The long-living Myotis lucifugus bat species
has been recently identified as a prospective organism for comparative cancer research [8].
Given their extended life-span rates [9], it has been suggested that bats develop a very
low number of cancer events, as confirmed by different pathological studies performed in
different areas of the world [10,11]. The elephant has been pinpointed as another cancer-
resistant species [12], with a cancer incidence rate considerably lower compared to the
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human one, for example (approximately 22%) [13]. In order to maintain a high longevity,
some species might have developed intrinsic molecular mechanisms that protect them
from cancer onset or development [14]. Interestingly, various authors recently reported
that the genome of the African elephant encodes multiple copies of the TP53 gene, also
known as the “guardian of the genome stability”. This amplification could be at the basis
of the elephant’s anti-cancer and longevity mechanisms by leading to increased levels of
apoptosis in response to DNA damage [12,15]. Indeed, according to Caulin and Maley
(2011) [16], the genome of large long-living organisms can reveal an altered number of
tumor suppressors and oncogenes (in multiple or reduced copies), which might represent a
possible mechanism underlying their capacity of exceeding the threshold of cancer onset,
despite their phenotypic predisposition due to body size and longevity [16]. Copy number
variations (CNVs) are duplications or deletions of genomic regions which can be associated
with phenotypic alterations, including tumorigenic diseases [17]. In particular, a variation
in the gene copy numbers can influence the activity of tumor suppressors and oncogenes,
leading to the development of cancer [18]. Within this framework, long-living animals
have to rely on compensatory mechanisms to suppress and prevent cancer progression,
which can be straightened by different molecular and genomic mechanisms such as altered
gene copy numbers that increase the number of tumor suppressors paralogues or reduce
copies of oncogenes [19,20]. As previously mentioned, mammals have evolved lifespan and
cancer incidence rates that vary among species [21], but the mechanisms underlying these
differences are still unclear. In order to test the hypothesis that genomic CNVs are related
to the cancer incidence rate of a species, we compared the genome-wide copy number
landscapes of nine different mammals (five cancer-resistant and four cancer-prone species)
and identified the target genes that can significantly discriminate between these two groups.
Contrary to what is usually done, we did not use an a priori list of cancer-related genes
but included all human genes in our analysis dataset. In this way, we were able to identify
miRNAs, usually removed from evolutionary comparative analyses, as the most enriched
elements able to discriminate those organisms that are predisposed to cancer from those
that are not.

2. Materials and Methods
2.1. Data Collection

According to the hypothesis that positively selected CNVs tend to recur during cancer
progression [22,23], but also during the evolution [24], we have recently developed the
VarNuCopy database, a unique database that collects the CNVs landscape for multiple
organisms, with the aim to compare patterns of copy number changes across the genome
of different species [25]. We used a homemade script written in Perl 5.14 and Python
3 in order to download the CNV data from Ensembl comparative genomics resources
(http://www.ensembl.org accessed on 1 March 2019) [26], an ideal system to perform
and support vertebrate comparative genomic analyses, given the consistency of gene
annotation across the genomes of different vertebrate species. We leveraged Ensembl’s
“gene gain/loss tree” feature, which displays the number of copies of extant homologous
genes for each species in a taxonomic tree view [27]. These data are estimated through CAFE
(Computational Analysis of gene Family Evolution), a computational tool commonly used
to study gene family evolution, which takes into account a priori the species phylogenetic
tree [27,28]. The Perl API script provided by the Ensembl website was used to access the
genomic databases and used to download all the available CNVs data. We encoded a new
homemade Python script to arrange the CNVs data counts in a readable tab-delimited
format and used this matrix to perform the subsequent analysis.

2.2. Statistical Comparison

Using a comparative approach, we analyzed the variation landscape of the gene
copies among the genomes of nine organisms sub-set in two categories: “cancer re-
sistant” (Heterocephalus glaber (Hg), Nannospalax galili (Ng), Dasypus novemcinctus (Dn),

http://www.ensembl.org
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Loxodonta africana (La) and Myotis lucifugus (Ml)) and “cancer prone” (Mus musculus (Mm),
Rattus norvegicus (Rn), Canis familiaris (Cf) and Homo sapiens (Hs)) species (Supplementary
Table S1). We classified as “cancer resistant” those species that, based on the literature
review, are known to possess a low cancer incidence rate. Conversely, “cancer prone”
organisms are those species for which the percentage of tumors found in a certain number
of necropsies is known to be high.

Cancer incidence rate data were collected from different recently published litera-
ture [4–6,8,10–12,15,21,29–33]. We performed a statistical comparison between the CNVs
of the two different species groups, cancer-prone and -resistant organisms, with the aim to
identify new possible gene targets able to discriminate between the two categories. Thus, a
statistical unpaired two-group Wilcoxon test was performed using R.3.1.1(R Foundation
for Statistical Computing, Vienna, Austria), to compare their entire CNV spectra. To de-
termine whether microRNAs CNVs independently contribute to the variation in cancer
incidence percentages among our species, we applied a linear regression model through
the PGLS R package [34], in order to check for potential bias due to species phylogeny
or population structure (Figure 1D). The phylogenetic tree included in the analysis was
derived from VertLife [35] and created and visualized through the Interactive Tree of Life
web-tool (Figure 1C) [36]. Data processing and statistical tests were performed with R.3.1.1.
Figures were made using the ggplot2 R package, in association with different R Shiny apps
such as BoxPlotR, PlotsOfData, ClustVis, and miRTargetLink 2.0 [37–40].
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Figure 1. CNV landscape comparisons: (A) Boxplot of the distribution of significant gene CNVs in
cancer-prone vs. cancer-resistant species. (B) Boxplot of the distribution of significant microRNA
CNVs in cancer-prone vs. cancer-resistant species. Cancer-resistant species are highlighted in
green, cancer-prone species in red. In the boxplots, the Y-axis scale has been changed to log one.
The boxplots were built considering the average number of copies of each gene in the two dif-
ferent target groups. (C) Heatmap representing the microRNA CNV repertoires within the nine
analyzed species—(Hg): Heterocephalus glaber; (Ng): Nannospalax galili; (Dn): Dasypus novemcinctus;
(La): Loxodonta Africana; (Ml): Myotis lucifugus; (Mm): Mus musculus; (Rn): Rattus norvegicus;
(Cf): Canis familiaris; (Hs): Homo sapiens. Hg, Ng, Dn, La and Ml have been previously described as
cancer-resistant species. Mm, Rn, Cf and Hs are known to be cancer-prone species. Phylogeny was
inferred from VertLife [35], created and visualized through the Interactive Tree of Life web-tool [36].
(D) PGLS correlating the cancer incidence rate with the total number of significant microRNAs
copies across the nine species included in the analysis. The blue line represents a positive correlation
between the two variables (adjusted R2 = 0.5173; p-value = 0.01746).
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2.3. Pathways Analysis

To determine if the CNVs are enriched in specific gene families, we used Gene SeT
AnaLysis Toolkit, a tool for the interpretation of lists of interesting genes that is commonly
used to extract biological insights from targets of interest [41]. The set of significant genes
were tested for pathway associations using the hyper-geometric test for over-representation
analysis (ORA) [42] (Supplementary Table S4). We selected different pathway enrichment
categories (KEGG: https://www.genome.jp/; Wikipathway: https://www.wikipathways.
org; Reactome: https://reactome.org/; PANTHER: http://www.pantherdb.org/ accessed
on 1 June 2019), considering as over-represented those molecular networks with an FDR
significance level lower than 0.05, after a correction with the Benjamini–Hochberg method.
In this context, the ORA analysis was the preferred option among the others (e.g., gene set
enrichment or network topology-based analysis) in order to obtain biological information
underlying the significantly enriched genes, resulting in a reduction in the complexity of
the data interpretation [42].

3. Results

A two-group comparison was performed using a Wilcoxon rank sum test, in order to
identify an existing distinction in the distribution of the number of gene copies between
cancer-prone and cancer-resistant species. A list of the most significant hits (p-value < 0.05),
including known tumor suppressors and oncogenes, is reported in Table 1 (see Supplemen-
tary Tables S2 and S3 for the extended version). Our analysis, which exclusively considered
the variation in number of gene copies among different species, was able to identify those
genes involved in biological processes related to cancer development and maintenance.

Table 1. Genomic CNV landscape comparisons. Subset of 25 significant hits resulting from the
unpaired 2-group Wilcoxon test (p-value < 0.05). The statistical comparison was made in order to
identify those genes able to discriminate between the cancer-prone and -resistant species groups,
relying exclusively on the genomic copy number values. Some of these genes are already known to
be tumor suppressor and/or oncogenes, whereas the others can play pivotal roles in tumorigenesis
events, and, for this reason, can be considered as targets to be further investigated and validated in
the context of cancer development.

Gene p-Value Known_TS Known_OG References

CD52 0.007 NO NO [43]

SAT1 0.007 NO NO [44]

MIR424 0.009 YES NO [45]

MIR372 0.010 NO YES [46,47]

DMD 0.014 YES NO [48]

EIF5 0.017 NO NO [49]

MIR107 0.022 YES YES [50,51]

MIR124-1, MIR124-2, MIR124-3 0.022 YES NO [52]

SUMO2, SUMO3, SUMO4 0.024 NO NO [53,54]

MIR506 0.029 YES YES [55]

MIR509-1 0.029 NO NO [56]

MIR511 0.029 YES NO [57]

MIR514A1, MIR514A3, MIR514B 0.029 NO NO [58]

MIR378A 0.030 YES NO [59]

https://www.genome.jp/
https://www.wikipathways.org
https://www.wikipathways.org
https://reactome.org/
http://www.pantherdb.org/
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Table 1. Cont.

Gene p-Value Known_TS Known_OG References

S100A16 0.030 NO NO [60]

MBD1, MBD2, MBD3 0.031 NO YES (MDB1) [61]

FGFBP1 0.032 NO NO [62]

FOXJ1 0.032 NO NO [63]

MIR1-1, MIR1-2 0.032 YES NO [64]

MIR206 0.032 YES NO [65]

MIR340 0.032 YES NO [66]

MIR542 0.032 NO NO [67]

NUPR1 0.032 YES NO [68]

SELENOW 0.032 NO NO [69,70]

JUND 0.034 NO YES [71]

3.1. Best Candidate Cancer-Related Genes

The distribution of the average number of each gene copies plotted in Figure 1A
highlights a difference between the two species categories, which appears even greater
if we only refer to the microRNAs CNVs landscape (Figure 1B). Among the most signif-
icant genes presenting an altered number of copies, we found CD52 (p-value = 0.007),
SAT1 (p-value = 0.007), DMD (p-value = 0.014), EIF5 (p-value = 0.017), SUMO2, SUMO3,
SUMO4 (p-value = 0.024), S100A16 (p-value = 0.030), MBD1, MBD2, MBD3 (p-value = 0.031),
FGFBP1 (p-value = 0.032), FOXJ1 (p-value = 0.032), NUPR1 (p-value = 0.032), SELENOW
(p-value = 0.032) and JUND (p-value = 0.034). Some of these, such as DMD, MDB1,
NUPR1 and JUND, have been already well described as tumor suppressors or onco-
genes [47,60,67,70], whereas the others do not officially belong to any of these two categories
and they have been proposed as key regulators in biological processes such as cell prolifer-
ation, migration and cancer development and progression [42,43,48,52,53,59,61,62,68,69].
A Principal Component Analysis (PCA) of the CNV values of the nine species reported in
Figure 2A,B showed a clear dichotomy between the cancer-prone and -resistant groups,
supporting the hypothesis that an altered CNV landscape is able to discriminate between
the two categories. To confirm these results, we performed another unsupervised clustering
analysis using Euclidean distance (Figure 2C).

As depicted in the heatmap, each cluster has a distinct set of copy number values, and
the main branches representing cancer-prone and -resistant organisms perfectly distinguish
the two groups. No additional information (other than copy numbers) was given to the
algorithm. In addition, we applied the Euclidean distances, using both the ‘complete’
and ‘ward’ methods (criteria that direct how the subclusters are merged) (Supplementary
Figures S2–S4)). Remarkably, using this method, the Loxodonta africana microRNAs CNV
landscape seems to have a different pattern as compared to the other cancer-resistant
species (Figure 2C), confirming the elephant as an outlier species of the cancer-resistant
group (see Section 4).

3.2. Cancer-Related MicroRNAs Pathways Are among the Most Significantly Enriched
Biological Families

Our analysis shows an enrichment of onco-miRNAs amplifications in the cancer-
prone species group. In particular, miR-424 (p-value = 0.009), miR-372 (p-value = 0.010),
miR-107 (p-value = 0.022), miR-124 (p-value = 0.022), miR-506 (p-value = 0.029), miR-511
(p-value = 0.029), miR-378A (p-value = 0.030), miR-1 (p-value = 0.032), miR-206 (p-value = 0.032)
and miR-340 (p-value = 0.032) are few examples of the most significant microRNA hits,
which possess a suppressor and/or oncogenic role (Figure 1C). Given the high diversity
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among our species, we used the generalized least squares (PGLS) phylogenetic method [34]
in order to assess whether copy number and cancer incidence rates evolved in a dependent
manner along the tree, or if their relationship might be the consequence of common ancestry,
resulting in similar patterns of miRNAs copy number alteration. Indeed, taking into
account the genetic structure of the population, the PGLS comparative method confirmed
the association between these traits independently of the shared evolutionary history of
the species (Figure 1D and Supplementary File S1).

Genes 2022, 13, 1046 7 of 16 
 

 

the two categories. To confirm these results, we performed another unsupervised clustering 
analysis using Euclidean distance (Figure 2C). 

 

Figure 2. (A) PCA based on the CNVs of all the significant genes. (B) PCA based on the CNVs of the 
significant microRNAs subset. Both plots show a dichotomy between cancer-resistant (blue) and 
cancer-prone species (red). (C) Heatmap of the significant microRNAs, clustered with Euclidean 
distance and complete linkage. (D,E) Bar and box plots of the significant microRNAs CNVs in 
cancer-prone species, cancer-resistant species and Loxodonta africana. The microRNAs repertoire of 
Loxodonta africana seems to reflect the cancer-prone miRNAs copy number alteration landscape, 
rather than the one typical of the cancer-resistant organisms. In the box plots, the Y-axis scale was 
changed to log one. The boxplots are built considering the average number of copies of each gene 
in the two different target groups. 

Figure 2. (A) PCA based on the CNVs of all the significant genes. (B) PCA based on the CNVs of
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cancer-prone species (red). (C) Heatmap of the significant microRNAs, clustered with Euclidean
distance and complete linkage. (D,E) Bar and box plots of the significant microRNAs CNVs in
cancer-prone species, cancer-resistant species and Loxodonta africana. The microRNAs repertoire of
Loxodonta africana seems to reflect the cancer-prone miRNAs copy number alteration landscape, rather
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to log one. The boxplots are built considering the average number of copies of each gene in the two
different target groups.
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3.3. ORA Analysis Confirms a Significant Enrichment in the miRNAs Gene Family

We performed an Over-Representation Analysis (ORA) [41] on the complete list of
significant genes, in order to identify enriched functional categories potentially related to
cancer (Table 2 and Supplementary Figure S1). The most enriched pathways outputted
by the ORA analysis were “MicroRNAs in cancer”, “miRNAs involved in DNA damage
response”, “Metastatic brain tumor”, “miRNA targets in ECM and membrane receptors”,
“let-7 inhibition of ES cell reprogramming” and “miRNAs involvement in the immune
response in sepsis” [72,73]. These results indicate that the genes more prone to CNVs
were those encoding miRNAs involved in cancer initiation, chronic inflammation and
immune response. Remarkably, performing the ORA analysis applying the PANTHER
algorithm [74], we also found a significant enrichment in the “Cadherin signaling network”,
which is a well-known molecular pathway described as a key player in cancer [75].

Table 2. Pathway analysis. Gene Over-Representation Analysis (ORA) using KEGG, PANTHER and
Wikipathway. The enrichment test used Benjamini–Hochberg’s FDR correction (FDR < 0.05). CNV data
were previously analyzed by an unpaired 2-group Wilcoxon test (p-value < 0.05). Significant genes
altered in their number of copies within the entire genomic landscape were used to perform the ORA
analysis, which highlighted a significant enrichment in microRNAs and cancer-related pathways.

Description FDR (BH) Genes

KEGG

MicroRNAs in cancer 0

MIR103A1; MIR103A2; MIR107; MIR124-1;
MIR124-2; MIR124-3; MIR1-1; MIR1-2; MIR206;

MIR100; MIR10A; MIR10B; MIR129-1; MIR129-2;
MIR15A; MIR15B; MIR193B; MIR199A1;

MIR199A2; MIR199B; MIR203B; MIR21; MIR223;
MIR31; MIR99A; MIRLET7A1; MIRLET7A3;

MIRLET7F2; MIR29B1; MIR29B2; MIRLET7G;
MIRLET7I; MIR221; MIR222; MIR23A; MIR23B;
MIR27A; MIR27B; MIR30C1; MIR30C2; MIR30A;

MIR30B; MIR30D; MIR30E.

Taste transduction 3.16 × 10−10

TAS2R10; TAS2R13; TAS2R14; TAS2R19;
TAS2R20; TAS2R3; TAS2R30; TAS2R31; TAS2R42;
TAS2R43; TAS2R45; TAS2R46; TAS2R50; TAS2R7;

TAS2R8; TAS2R9

Progesterone-mediated
oocyte maturation 2.43 × 10−4

SPDYE1; SPDYE11; SPDYE16; SPDYE17;
SPDYE2; SPDYE2B; SPDYE3; SPDYE4; SPDYE5;

SPDYE6; INS

Oocyte meiosis 2.73 × 10−4
PPP3R2; SPDYE1; SPDYE11; SPDYE16;

SPDYE17; SPDYE2; SPDYE2B; SPDYE3; SPDYE4;
SPDYE5; SPDYE6; INS

PANTHER Cadherin signaling pathway 4.02 × 10−2
PCDHB14; PCDHB7; PCDHGB1; PCDHB16;

PCDHB6; PCDHGB4; PCDHGA6;
PCDHGB6; PCDHGB7

Wikipathway

miRNAs involved in DNA
damage response 3.76 × 10−9

MIR371A; MIR372; MIR542; MIR100; MIR15B;
MIRLET7A1; MIR374B; MIR221; MIR222;

MIR23A; MIR23B; MIR27A; MIR27B

Alzheimers Disease 5.31 × 10−5

MIR124-1; MIR124-2; MIR124-3; MIR10A;
MIR129-1; MIR129-2; MIR199B; MIR21; MIR433;

MIR671; MIR873; PPP3R2; MIR29B1;
MIR30C2; MIR219A2

Metastatic brain tumor 2.31 × 10−3 MIRLET7A1; MIRLET7A3; MIRLET7F2;
MIR29B1; MIR29B2; MIRLET7G

miRNA targets in ECM and
membrane receptors 2.31 × 10−3 MIR107; MIR15B; MIR30C1; MIR30C2; MIR30B;

MIR30D; MIR30E
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Table 2. Cont.

Description FDR (BH) Genes

MicroRNAs in
cardiomyocyte hypertrophy 2.77 × 10−3

MIR103A1; MIR103A2; MIR140; MIR15B;
MIR185; MIR199A1; MIR199A2; MIR23A;

MIR27B; MIR30E

Cell Differentiation - Index 1.25 × 10−2 MIR1-1; MIR206; MIR199A1; MIR199A2;
MIR221; MIR222

let-7 inhibition of ES
cell reprogramming 1.25 × 10−2 MIRLET7A1; MIRLET7F2;

MIRLET7G; MIRLET7I

miRNAs involvement in the
immune response in sepsis 1.43 × 10−2 MIR187; MIR199A1; MIR199A2; MIR203B;

MIR223; MIR29B1; MIRLET7I

Cell Differentiation-
Index expanded 2.38 × 10−2 MIR1-1; MIR206; MIR199A1; MIR199A2;

MIR221; MIR222

Role of Osx and miRNAs in
tooth development 3.35 × 10−2 MIRLET7A1; MIRLET7F2; MIR29B1;

MIRLET7G; MIRLET7I

4. Discussion

Being theoretically more susceptible to cancer, big and long-living species need addi-
tional cancer defense molecular mechanisms. On the other hand, short-living and small-size
organisms might not need them because of their lower intrinsic predisposition to cancer due
to their short lifespan rate. CNVs can therefore be considered one of the multiple protection
ways against tumor insurgence that can explain Peto’s Paradox. In fact, we hypothesized
that all cancer-resistant organisms implemented a series of molecular mechanisms to coun-
teract their cancer predisposition, which depends on and derives from their own specific
evolutionary history. We believe that CNVs that increase the onco-suppressive capacity of
specific genes can be an excellent defense against tumor diseases in species at risk. Indeed,
some authors have recently suggested that one of the most effective cancer-resistance
strategies is represented by an augmentation in the number of copies of tumor suppressor
genes [76]. In contrast, a reduced cancer-resistance rate could be caused by a selective loss
of the same suppressor genes [77]. For instance, the CD52 gene (higher number of copies
in the cancer prone group), a membrane glycoprotein expressed on the surface of mature
lymphocytes, monocytes and dendritic cells, was one of the most significant hits of our
analysis (p-value = 0.007). Recently, Wang and co-authors [43] identified CD52 as a key
player in tumor immunity, affecting tumor behavior by regulating the associated tumor
microenvironment. With the same significant p-value of 0.007, we also identified the SAT1
gene (higher number of copies in the cancer prone group) as one of the possible targets to
be further investigated in the context of tumor onset. This gene can regulate and drive brain
tumor aggressiveness, promoting molecular pathways that act in response to DNA damage
and regulation of the cell cycle [44]. Another significant gene resulting from our analysis
was represented by the SUMO protein family members (higher number of copies in the
cancer resistant group). During cell cycle progression, many tumor suppressors and onco-
genes are regulated via SUMOylation [78], a biological process that, if deregulated, can lead
to genome instability and altered cell proliferation. In this context, it is evident that some
tumors could be dependent on the functional SUMO pathway, but whether it is required for
tumor growth remains to be established. For this reason, SUMO2, SUMO3 and SUMO4 can
be potentially exploited in further anti-cancer mechanisms investigations (p-value = 0.024
in the present study), in order to shed light on the regulatory mechanisms underlying the
activity of SUMO machinery in an oncogenic framework. Among the most significant hits,
we also retrieved some genes that are already known to be tumor suppressors or oncogenes
(DMD and JUND, respectively). Indeed, mutation or deregulated expression of Duchenne
Muscular Dystrophy gene (DMD) is often linked to the development and progression of
some major cancer types [48], such as sarcomas, carcinomas, melanomas, lymphomas and
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brain tumors [79,80], being a well-known tumor suppressor in different types of human
cancers. On the other hand, JUND, a member of the AP-1 family that is related to MYC
signaling pathway, regulates cell cycle and proliferation and its overexpression is linked to
many types of cancers (PCA i.e.,) [71].

Notably, our results show that miRNAs are the most enriched gene family in dis-
criminating between cancer-prone and cancer-resistant species. The specific role of these
miRNAs is not yet fully understood, but we speculate that some of them might possess
important regulatory functions aimed at defending some species (big size and long lifespan
organisms) from cancer, while, at the same time, they are capable of exposing others to
tumorigenesis (small-size and short-lifespan mammals). MicroRNAs (miRNAs) are small
post-transcriptional molecular regulators that are able to modify gene expression levels,
increasing the amount of mRNA degradation or inhibiting protein translation [81]. Since
each single miRNA can regulate the expression of dozens of genes, many authors were
able to correlate their activity with cell development, homeostasis and disease [82], includ-
ing cancer [83,84]. Indeed, some tumorigenic events are caused by a malfunction in the
heterogeneous regulatory activity of microRNAs inside the eukaryotic cells. Depending on
the specific tissue and on the relationship with the immune system, they can behave both
as tumor suppressors and as oncogenes [85]. Furthermore, epigenetic factors and species
genetic predisposition can drive their double-sided behavior, although some of them are
evolutionarily conserved within vertebrate taxonomic families [86]. Several miRNAs have
already been described in the literature as oncogenes and tumor suppressors. For example,
miR-424 is known to be a human tumor suppressor that can inhibit cell growth enhancing
apoptosis or suppressing cell migration [45]. MiR-372, instead, can participate in WNT
cancer molecular pathway [46], whereas the overexpression of miR-107, mediating p53
regulation of hypoxic signaling, can suppress tumor angiogenesis and growth in mice [50].
MiR-1 is another example of tumor suppressor microRNA that has been previously found
to be significantly down-regulated in squamous carcinoma cells [64]. MiR-30b and miR-30d
are considered suppressors in tumors that do not affect immune cells, whereas they have
been found to be upregulated in melanoma [87]. In a similar way and for the first time,
our analysis revealed several miRNAs candidates that might be involved in a mammalian
species cancer predisposition (Figure 1C).

Interestingly, all the miRNAs that we have found show many more copies in the
cancer-prone group as compared to the cancer-resistant species, and most of them are
well-known oncogenes (miR-221, miR222, and miR-372, etc.). MiR-372, for instance, is not
present in cancer-resistant species, whereas it shows multiple copies in those ones belonging
to the cancer-prone group. This microRNA plays a pivotal role in the initiation of breast
cancer and may activate the WNT and E2F1 pathways during the epithelial–mesenchymal
transition process [46,47]. We also found an amplification of miR-221 and miR-222 in the
cancer-prone category. Previous literature has extensively described these two RNAs as
oncogenes, being deregulated in primary brain tumors and in acute lymphoid leukemia,
among other malignancies [88,89]. According to our results, surprisingly, cancer-prone
species showed the amplification of miR-15 tumor suppressor, which is known to be able to
regulate cancer proliferation initiation by targeting the BCL2 gene [90,91]. Our hypothesis is
that this apparent paradox may underlie a defensive role of this microRNA in those species
that are, a priori, susceptible to tumor insurgence. On one hand, according to the so-called
“gene dosage hypothesis”, gains or losses of specific gene copies can have a dramatic impact
on the fitness of a species, leading to altered phenotypes due to the change in the expression
levels of the affected genes [92]. On the other hand, oncogenes amplification or tumor
suppressors deletions are not always detrimental, but can recapitulate tumorigenic events,
being drivers or modulators of the disease [93]. As mentioned before, in fact, differences in
ecology and evolutionary history are believed to give rise to significant differences between
short- and long-living animals [94], and consequently in cancer-prone and -resistant species.
In 2020, Tollis and co-authors [20] showed that mammalian lifespan can be correlated to
both suppressor gene and oncogene CNVs, a phenomenon that they themselves called
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“paradoxical”. Interestingly, our analysis also leans in the same direction, suggesting
that when high copy numbers of oncogenes shorten a lifespan, they must somehow be
counterbalanced by higher number of copies of tumor-suppressor genes.

In this framework, the elephant’s miRNAs amplification signature resembles that of
the organisms of the cancer-prone group (Figure 2D,E). In fact, it showed an alteration
in the copy numbers of known oncogenes, such as miR-221 and miR-222, together with
miR-30b/d and miR-31. In our opinion, Loxodonta africana should be placed in a new
category of organisms, which share both oncogenic and cancer-resistant characteristics,
being also clustered as an outlier species of the cancer-resistant group (Figure 2B). During
their evolution, elephants may have selected certain molecular mechanisms, such as the
amplification of TP53 and pseudogenes [12,15], with the aim to defend their cells from
the tumorigenic action of a high percentage of onco-miRNAs copy number amplification
and high longevity. Consequently, an additional amplification in the number of tumor
suppressor microRNAs would have not been sustainable/useful in terms of fitness and/or
survival. The hypothesis is that species with bigger sizes and longer lifespans have an
expanded number of tumor-suppressor genes (TSGs), which is even higher than the one of
their oncogenic counterparts. In this way, the direct elimination of oncogenes, which implies
elevated costs in terms of growth and cellular functions maintenance, can be avoided, thus
reducing the cancer incidence risk. In support of this, Vazquez and Lynch (2021) [76]
reported that, within the Afrotheria order, the tumor-suppressor genes found in an altered
number of copies were relatively lower compared to what might be expected. This finding
can mirror the trade-off mechanism that natural selection has developed during evolution
in order to compensate for the multi-copies effect that can lead to an increased risk of
cancer, due to the unbalanced number of copies of the same genes. Indeed, long-living
species might possess mechanisms that are capable of maintaining the equilibrium between
proliferation and tumor control. Their regulatory networks can create positive feedbacks
in which the amplification of tumor suppressor families functions as a buffer against the
oncogene co-expansion, or vice-versa [20]. On the other hand, the cancer-prone organisms
included in our analysis did not develop these gene defenses because they have a lower
lifespan, which does not make them particularly exposed to a severe lack of fitness due to
cancer progression (except in the case of Homo sapiens that has reached a high lifespan only
recently, thanks to the advance of medicine treatments and health care).

5. Limitations and Future Perspectives

Gene duplication is a fundamental process that can lead to the emergence of new
phenotypic traits. Analyzing patterns of gene copy number alterations across the genome of
large and long-living organisms may reveal new insights about the mechanisms underlying
cancer resistance in mammals [12,20,94]. Here, we have developed a simple way to test the
hypothesis that CNVs confer protection or increase vulnerability to cancer among species.
Using the absolute number of copies of each gene by species, we were able to identify,
for the first time, an alteration in miRNA CNVs that are overrepresented and enriched in
molecular pathways related to cancer. Further analyses will help to validate these findings
by better defining the correlation between miRNAs and their targets. Nowadays, the
current challenge is to develop and optimize new experimental design and strategies to
be used in human [95] and veterinary biomedical research. Indeed, whenever a potential
cancer-suppression mechanism is discovered in a species, there is the real possibility of
identifying a new molecular target or therapeutic approach. Therefore, the investigation
of genomic alterations, such as CNVs, can direct clinical research towards the discovery
of new toolkits able to guide scientists towards the exploration of more focused research
topics, such as, for example, specific microRNAs or their targets [96,97].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13061046/s1. Table S1: Species description. List of the 9 species included in our
analysis; Table S2: Cancer Prone vs. Cancer Resistant: a two-group statistical comparison. List of
the significant hits resulting from the unpaired 2-group Wilcoxon test (p-value < 0.05) applied on
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the genomic CNVs landscape of the selected species; Table S3: Cancer Prone vs Cancer Resistant:
a two-group statistical comparison. List of the significant microRNAs resulting from the unpaired
2-group wilcoxon test (p-value <0.05) applied on the total genomic CNVs landscape of the selected
species; Table S4: Pathway analysis—extended version. Gene Over-Representation Analysis (ORA).
The enrichment test used Benjamini-Hochberg’s FDR correction (FDR < 0.05). CNVs data were
previously analyzed by an unpaired 2-group wilcoxon test (p-value < 0.05); Figure S1: MicroRNAs in
cancer interaction graph. Figure S2: Heatmap of all the significant genes, clustered with Euclidean
distance and ward linkage; Figure S3: Heatmap of all the significant genes, clustered with Euclidean
distance and complete linkage; Figure S4: Heatmap of the significant MicroRNAs, clustered with
Euclidean distance and ward linkage; File S1: PGLS modelling results: Cancer incidence rate ~
significant miRNAs CNVs.
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