
06/05/2024 06:35

An inexact Newton method for solving complementarity problems in hydrodynamic lubrication / Mezzadri,
F.; Galligani, E.. - In: CALCOLO. - ISSN 0008-0624. - 55:1(2018), pp. 1-28. [10.1007/s10092-018-0244-9]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

An inexact Newton method for solving complementarity problems in

hydrodynamic lubrication

F. Mezzadri ∗ 1 and E. Galligani †1

1Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via P.
Vivarelli 10/1, building 26, I-41125, Modena

April 12, 2022

Received: date / Accepted: date

Abstract

We present an iterative procedure based on a damped inexact Newton iteration for solving Linear
Complementarity Problems. We introduce the method in the framework of a popular problem arising
in mechanical engineering: the analysis of cavitation in lubricated contacts. In this context, we show
how the perturbation and the damping parameter are chosen in our method and we prove the global
convergence of the entire procedure. A Fortran implementation of the method is finally analyzed. First,
we validate the procedure and analyze all its components, performing also a comparison with a recently
proposed technique based on the Fischer-Burmeister-Newton iteration. Then, we solve a 2D problem and
provide some insights on an efficient implementation of the method exploiting routines of the Lapack and
of the PETSc packages for the solution of inner linear systems.

Keywords: Complementarity Problem, Damped Inexact Newton algorithm, Cavitation Lubrication
MSC2010: 65H10, 65K05, 65L12, 90C51, 76B10

1 Introduction

Linear Complementarity Problems (LCPs) began to be extensively studied in the mid 1960’s (e.g. see [1]) and
they immediately excited much interest for both their mathematical properties and their applications. Indeed,
on the mathematical side, the LCP unifies the formulation of linear programming, quadratic programming
and bimatrix game problems, leading to important discoveries in all these fields [2, p. 3]. Several applications
ranging from engineering, to economics or computer science, nonetheless, exist.

For instance, an interesting problem that often arises in mechanical engineering and that can be formulated
as a complementarity problem consists in the analysis of cavitation in lubricated contacts. For a comprehensive
review of earlier studies on this problem, the reader may refer to [3]. Other relevant contributions include
[4, 5, 6, 7, 8]. Other studies, like [9], have then considered the case of cavitation in elasto-hydrodynamic
lubrication, while, more recently, also the effect of fluid compressibility, piezoviscosity and non-Newtonian
fluid behavior has been analyzed by [10].

The aim of this paper is to propose an iterative procedure based on a Damped Inexact Newton (DIN)
iteration for solving LCPs. Approaches of this kind are characterized by the presence of a perturbation, which
prevents the algorithm from stalling, and of a damping parameter, which ensures the global convergence
of the procedure. The choice of these two parameters is, thus, of fundamental importance and it is the
distinctive feature of different damped inexact Newton methods. Therefore, we show how the perturbation

∗francesco.mezzadri@unimore.it
†emanuele.galligani@unimore.it

1

and the damping parameters are chosen in our procedure and provide a proof of the global convergence of
the method. We also analyze how different perturbations affect the efficiency of the method itself.

Although the procedure we propose is general, it seems appropriate to present it with special regard to a
specific problem, which, in our case, is the aforementioned cavitation in hydrodynamic lubrication. This idea
follows [11], where a procedure based on an inexact Newton iteration with Armijo backtracking condition has
been used for solving practical problems concerning oxygen diffusion and combustion. In particular, we refer
to the model of cavitation in hydrodynamic lubrication presented in [12], where the authors reformulated the
problem so that pressure and a variable related to density are complementary in the entire domain ([13]).

We also compare our method with a similar procedure based on the Fischer-Burmeister-Newton (FBN)
iteration. Algorithms of this kind are efficient and have been recently applied to lubrication problems in [14].
However, we show that the DIN-based algorithm better enforces the non-negativity conditions imposed by
the complementarity.

Lastly, we also analyze the efficiency of the method. In particular, we make some considerations on how
efficiency can be improved and compare different inner solvers, all implemented through the Lapack [15] or
the PETSc [16, 17] packages.

The paper is structured as follows. In Section 2 we outline the problem of our concern, which is described
by the Reynolds equation. For a more detailed description of this equation in bearing systems, the reader
is referred to [18, Chapt. 6]. We then rewrite the problem in a complementarity formulation, present its
discretized form and introduce the general layout of our method applied to the resulting nonlinear system.

In Section 3 we analyze the method. We prove that the conditions for it to be a damped inexact Newton
method hold and we provide a proof of its convergence. In this regard, we also show how the perturbation
and the damping parameter are chosen and which criteria they must satisfy. Finally, we briefly present the
FBN method, which we later compare with the DIN iteration.

Sections 4, 5 and 6 are devoted to numerical experiments. First, in Section 4 we provide the numerical
data which define the test problems and the setting of the algorithm. We also summarize the configurations
of lubricated bearings which are considered afterwards. Then, in Section 5 we validate and analyze the
procedure by a Fortran implementation of the DIN method. We consider the behavior of the method in
different situations (e.g. changing the starting vectors) and when some parts of the algorithm are removed,
so to better show the role of each component. We also compare the results obtained by the DIN method with
those computed by the FBN iteration. Finally, Section 6 presents some insights on a faster implementation
and provides a comparison of various linear solvers called through Lapack or PETSc. Lastly, we present the
solution of a 2D example.

Conclusions are then given in Section 7.

2 Layout of the algorithm applied to a complementarity problem

2.1 Description of the problem

The problem of our interest is described by the Reynolds equation (1886), which governs the pressure
distribution of the thin, fluid films typical of bearing systems. When the thickness of the film is constant in
time, the equation is stationary and it reads

1

12µ

∂

∂x

(
ρh3 ∂p

∂x

)
+

1

12µ

∂

∂y

(
ρh3 ∂p

∂y

)
=

1

2
U
∂(ρh)

∂x
, (1)

where

• the unknowns are the pressure p = p(x, y) and the density ρ = ρ(x, y);

• h = h(x, y) > 0 is the thickness of the film;

• µ > 0 is the viscosity of the fluid;

• U > 0 is the velocity of the fluid.

2

Cavitation consists in cavities forming in the fluid when pressure gets low. Equation (1) remains valid also
in this case, but pressure and density behave differently where cavitation does and does not occur. Indeed, in
the zone where cavitation does not occur (called active region), p is always greater than or equal to zero.
Density ρ is instead equal to the density of the liquid, ρ0, implying ρ0 − ρ = 0. On the other hand, in the
cavitated region (also called inactive region), ρ is not equal to ρ0, since the fluid is now made of liquid, vapor
and gas. Hence ρ ≤ ρ0, or, equivalently, ρ0 − ρ ≥ 0. Simultaneously, we have p = 0. Thus we can write the
complementarity condition

(ρ0 − ρ)p = 0

(ρ0−ρ) ≥ 0; p ≥ 0.
(2)

Following [12], we then pose r = (ρ0 − ρ)/ρ0 and write (1) as

∂

∂x

(
h3

6µ

∂p

∂x

)
+

∂

∂y

(
h3

6µ

∂p

∂y

)
− U ∂h

∂x
+ U

∂(rh)

∂x
= 0 (3)

subject, in cavitation, to the complementarity condition pr = 0, with p ≥ 0, r ≥ 0.
We now discretize the domain by a grid of n inner points and approximate the derivatives of Equation (3)

by a finite difference scheme [19, Chap. 6] or by a finite element method [20, §14.5]. In this paper we use
the box-discretization in [19, pp. 196-199] and discretize the derivative in r by backwards finite difference
quotients. It is worth noticing that this discretization method works directly on the self-adjoint equation.
Therefore, it is sufficient to require the continuity of h3∂p/∂x and of h3∂p/∂y, while the partial derivatives
of p can be piece-wise continuous.

After discretization, we obtain the algebraic system

Ap +Br = c
subject to:

pTr = 0
p ≥ 0; r ≥ 0,

(4)

where 0 ∈ Rn denotes the null vector, A ∈ Rn×n, B ∈ Rn×n and c,p, r ∈ Rn. This is the formulation given
in [2, p. 30] for the generalized complementarity problem.

More specifically, considering, for simplicity, a 1D problem and defining

αi =
h(xi)

3

6µ
, βi = Uh(xi) (5)

the matrix A is the tridiagonal matrix of elements ai,j

ai,i−1 = − 1

∆x
αi−1/2, i = 2, 3, . . . , n;

ai,i =
1

∆x
(αi−1/2 + αi+1/2), i = 1, 2, . . . , n;

ai,i+1 = − 1

∆x
αi+1/2, i = 1, 2, . . . , n− 1.

(6)

It is easy to verify that A is irreducible [19, p.18] and diagonally dominant (by rows and by columns, strictly
at the first and at the last row/column). Then, A is irreducibly diagonally dominant [19, p.23]. Having also
positive diagonal elements and non-positive off-diagonal elements, it is an M-matrix [19, p.91]. Finally, due
to its symmetry, it is a Stieltjes matrix, and, thus, positive definite [19, p.91].

On the other hand, B is the bidiagonal matrix of elements bi,j

bi,i−1 = βi−1, i = 2, 3, . . . , n;

bi,i = −βi i = 1, 2, . . . , n.
(7)

3

Then, B is diagonally dominant by columns (strictly at the last column) and it has negative diagonal elements
and non-negative off-diagonal elements. Moreover, it is nonsingular.

In the 2D case, similar considerations apply, with A block-tridiagonal matrix (with diagonal blocks that are
tridiagonal and sub- and super-diagonal blocks that are diagonal) and B block-diagonal (with lower-bidiagonal
blocks).

2.2 The damped inexact Newton iteration

Problem (4) is the LCP that we use to present our damped inexact Newton iteration. In this regard, first
we write problem (4) as a system of 2n nonlinear algebraic equations with restriction on the sign of the
components of p and of r:

F (p, r) = 0

p ≥ 0; r ≥ 0
(8)

with

F (p, r) =

(
F 1(p, r)
PRe

)
, (9)

where F 1(p, r) ∈ Rn is Ap + Br − c, e ∈ Rn is the unity vector and P,R ∈ Rn×n are diagonal matrices
whose non-zero entries are the elements of p and of r respectively.

Then, we write the Jacobian matrix

F ′(p, r) =

(
A B
R P

)
(10)

and set the Newton iteration to solve (4): chosen an initial iterate (p(0), r(0)) sufficiently close to the solution,
we define (

p(k+1)

r(k+1)

)
=

(
p(k)

r(k)

)
+

(
∆p(k)

∆r(k)

)
, k = 0, 1, . . . , (11)

where (∆p(k),∆r(k)) is the solution of the linear system

F ′(p(k), r(k))

(
∆p
∆r

)
= −F (p(k), r(k)). (12)

A typical problem with this method is that the iteration on PRe = 0 can lead the algorithm to stall.
This has been observed, for example, in [21] with regard to the application of the Newton method to the
Karush-Kuhn-Tucker conditions of a nonlinear programming problem. We can see this easily by considering
a single i-th equation, n < i ≤ 2n, of system (12)

r
(k)
i ∆pi + p

(k)
i ∆ri = −p(k)

i r
(k)
i (13)

and supposing, for example, r
(k)
i = 0. This implies ∆r

(k)
i = 0, which, in turn, implies r

(k+1)
i = 0, and so

on for any following iteration. The same obviously applies to pi if we suppose p
(k)
i = 0. Then, if an iterate

reaches the boundary of the feasible region, it sticks to it also in the subsequent iterations.
To solve this problem, we perturb the complementarity equations in order to force the iterates sufficiently

far from the boundary of the nonnegative orthant p ≥ 0, r ≥ 0. Calling ρ̃ a positive scalar, the perturbed
system becomes

F (p, r) = ρ̃ẽ

p ≥ 0; r ≥ 0
(14)

with

ẽ =

(
0
e

)
. (15)

4

Therefore, now we have to solve the perturbed Newton equation

F ′(p(k), r(k))

(
∆p
∆r

)
= −F (p(k), r(k)) + ρ̃kẽ (16)

at each iteration, with ρ̃k → 0 for k → ∞. In this way, Equation (16) replaces (12) and, together with
Equation (11), it generates a sequence {p(k), r(k)} which strictly satisfies the non-negativity conditions in
(14). Equation (8) is instead satisfied in the limit.

Finally, we complete the method by introducing a damping parameter αk, 0 < αk < 1, which enforces
convergence, as described in Section 3. Denoting the solution of (16) by (∆p(k),∆r(k)), Equation (11) is
therefore replaced by (

p(k+1)

r(k+1)

)
=

(
p(k)

r(k)

)
+ αk

(
∆p(k)

∆r(k)

)
. (17)

3 Analysis of the method

For an initial guess (p(0), r(0)) and for k = 0, 1, . . . , Equations (16) and (17) make up the Damped Inexact
Newton method (DIN) if some conditions hold. More specifically,

1. the vector (∆p(k),∆r(k)) solution of (16) must be a descent direction for the merit function Φ(p, r) =
‖F (p, r)‖2, where ‖ · ‖ denotes the Euclidean norm;

2. αk must guarantee the reduction of the merit function at each iteration, while the components of p(k)

and r(k) remain positive for all k = 0, 1, This means defining a path following condition and a
backtracking condition which αk must satisfy.

To satisfy these conditions, we act on the choice of the perturbation ρ̃k and of the damping parameter αk.

3.1 Choice of ρ̃k and descent condition

With a suitable choice of the perturbation, we can interpret Equation (16) as the k-th iteration of an inexact
Newton method [22, 23, 24]. Let us set

ρ̃k = σkµk (18)

where

• σk is the forcing term, 0 < σmin ≤ σk ≤ σmax < 1;

• µk is a perturbation parameter which satisfies

‖µkẽ‖ ≤ ‖F (p(k), r(k))‖. (19)

If we isolate ρ̃kẽ in (16), take the norm of both sides of the equation and replace ρ̃k with its definition in
(18), applying condition (19) we get∥∥∥F ′(p(k), r(k))

(
∆p(k)

∆r(k)

)
+ F (p(k), r(k))

∥∥∥ ≤ σk‖F (p(k), r(k))‖. (20)

Thus, σkµkẽ has the meaning of a residual. Therefore, we call (20) residual condition of the inexact Newton
method with forcing term σk.

Now we must then choose a µk for which the residual condition is satisfied. In this regard, in [25] it is
suggested to choose µk in the interval

µ
(1)
k ≡

p(k)Tr(k)

n
≤ µk ≤

‖F (p(k), r(k))‖√
n

≡ µ(2)
k . (21)

With this choice, the residual condition is satisfied and the following theorem holds.

5

Theorem 1. The vector (∆p(k),∆r(k)) is a descent direction for the merit function Φ(p, r) = ‖F (p, r)‖2,
i.e.

∇Φ(p(k), r(k))T
(

∆p(k)

∆r(k)

)
≤ 0. (22)

Proof. First let us determine how µk must be for (22) to be satisfied. In this regard, let us substitute

∇Φ(p, r) = 2F ′(p, r)TF (p, r)

in (22). By (16) and by F (p, r)T ẽ = eTRPe = pTr, with a few simple algebraic passages we can write

∇Φ(p(k), r(k))T
(

∆p(k)

∆r(k)

)
= −2‖F (p(k), r(k))‖2 + 2σkµkp

(k)Tr(k). (23)

It follows that condition (22) is satisfied if

µk ≤
‖F (p(k), r(k))‖2

p(k)Tr(k)
≤ ‖F (p(k), r(k))‖2

σk(p(k)Tr(k))
. (24)

We now have to prove that µ
(1)
k and µ

(2)
k satisfy (24) and that inequality (21) holds. To this aim, in the

following we use the chain of inequalities (e.g., see [26, pp. 278-279])

p(k)Tr(k)

n
=
‖P (k)R(k)e‖1

n
≤ ‖P

(k)R(k)e‖√
n

≤ ‖P
(k)R(k)e‖1√

n
=

p(k)Tr(k)

√
n

,

(where ‖ · ‖1 indicates the 1-norm) and

‖P (k)R(k)e‖ ≤ ‖F (p(k), r(k))‖.

It follows

µ
(1)
k =

p(k)Tr(k)

n
≤ ‖P

(k)R(k)e‖√
n

√
np(k)Tr(k)

√
np(k)Tr(k)

≤ (
√
n‖P (k)R(k)e‖)2

n(p(k)Tr(k))
≤ ‖F (p(k), r(k))‖2

p(k)Tr(k)
,

and

µ
(2)
k =

‖F (p(k), r(k))‖√
n

≤ ‖F (p(k), r(k))‖2

‖F (p(k), r(k))‖
√
n
≤ ‖F (p(k), r(k))‖2√

n‖P (k)R(k)e‖
≤ ‖F (p(k), r(k))‖2

p(k)Tr(k)
,

proving that (22) is satisfied for µ
(1)
k and µ

(2)
k . Finally, we also have

µ
(1)
k =

p(k)Tr(k)

n
≤ ‖P

(k)R(k)e‖√
n

≤ ‖F (p(k), r(k))‖√
n

= µ
(2)
k ,

which proves that (21) holds as well.

3.2 Solution of the perturbed Newton equation

We now have to solve the perturbed Newton equation (16). This can be done exactly by a direct solver
or approximately by an iterative one. This last option is useful for reducing the computational cost of the
procedure when the Jacobian matrix is of large dimensions. Moreover, the tolerance of the iterative solver
can be set adaptively, so to require less inner iterations when p(k) and r(k) are still far from the solution.

In order to do so, we need to introduce a new parameter δk, which is needed to define adaptively the
stopping condition of the iterative solver, but which also affects all the following analysis. Every consideration
involving δk, however, applies also to case of direct inner solver: in this case, we simply pose δk = 0.

6

The iterative inner solver is stopped when the residual r̂(k) of Equation (16),

r̂(k) = F ′(p(k), r(k))

(
∆p(k)

∆r(k)

)
+ F (p(k), r(k))− σkµkẽ, (25)

satisfies
‖r̂(k)‖ ≤ δk(

√
nµk). (26)

Here, (∆p(k),∆r(k)) denotes the solution of system (16) computed stopping the inner solver when (26) is

satisfied. For µ
(1)
k ≤ µk ≤ µ

(2)
k and 0 < σmin ≤ σk ≤ σmax < 1, it is possible to prove that the vector

(∆p(k),∆r(k)) is a descent direction for the merit function Φ(p, r) = ‖F (p, r)‖2 when also 0 ≤ δk ≤ δmax < 1
and σmax + δmax < 1 are satisfied. The proof runs as in [27, Theorem 2].

3.3 Choice of αk

After solving the perturbed Newton equation, we need to compute the new iterate using (17). The damping
parameter αk is used to enforce the global convergence of the method and its choice is performed by verifying
three conditions: feasibility, centrality and backtracking.

3.3.1 The feasibility condition

The feasibility condition determines the initial value of α, which will then be passed to the centrality conditions.
For k = 0, 1, . . . , the feasibility condition reads

α = min

{
min

∆p
(k)
i <0

−p(k)
i

∆p
(k)
i

, min
∆r

(k)
i <0

−r(k)
i

∆r
(k)
i

, 1

}
. (27)

The value of α computed by (27) guarantees the feasibility of

p(k)(α) = p(k) + α∆p(k) ≥ 0;

r(k)(α) = r(k) + α∆r(k) ≥ 0,

with p(0) > 0, r(0) > 0, where ∆p(k) and ∆r(k) are the approximate solutions of (16) with residual condition
(19).

3.3.2 The centrality conditions

The centrality conditions force the iterates p(k) and r(k) to adhere to the central path, forcing them sufficiently
far from the boundary of the nonnegative orthant. In this regard, following [21], let us define the functions

ϕ(k)(α) ≡ min
i=1,...,n

(
P (k)(α)R(k)(α)e

)
− γkτ1

(
p(k)(α)

T
r(k)(α)

n

)
; (28)

ψ(k)(α) ≡ p(k)(α)
T
r(k)(α)− γkτ2‖F 1(p(k)(α), r(k)(α))‖, (29)

where γk ∈ [0.5, 1) and

τ1 ≤
mini=1,...,n

(
P (0)R(0)e

)
(p

(0)Tr(0)

n)
; τ2 ≤

p(0)T r(0)

‖F 1(p(0), r(0))‖
, (30)

with p(0) > 0 and r(0) > 0. Imposing also

σk > max

{
δk

√
n+ τ1γk

1− τ1γk
, δk

√
n+ τ2γk√

n

}
, (31)

7

it is possible to prove (see [27]) the existence of a value of α satisfying ϕ(k)(α) ≥ 0 and ψ(k)(α) ≥ 0. These
two inequalities are the centrality conditions1 and we denote by α̃k an α which satisfies them both. In
practice, α̃k is usually computed recursively by dividing α (provided by the feasibility condition) by a factor
larger than 1 until both the centrality conditions are satisfied.

We now need to prove the boundedness of the sequences {p(k)} and {r(k)}, which is required also to prove
that α̃k is bounded away from zero. To do so, given ε ≥ 0, let us define the level set

Ω(ε) =

{
(p, r) : ε ≤ Φ(p, r) ≤ Φ(p(0), r(0)); min

1≤i≤n
(PRe) ≥ τ2

2

(
pTr

n

)
;pTr ≥ τ2

2
‖F 1(p, r)‖

}
,

with p(0) > 0 and r(0) > 0. This last condition is required by Equation (30). The following theorem holds.

Theorem 2. If (p(k), r(k)) ∈ Ω(ε), ε > 0, then

1) the sequence

{(
p(k)

r(k)

)}
is component-wise bounded away from zero;

2) the sequence of matrices
{
F ′(p(k), r(k))−1

}
is bounded;

3) the sequence

{(
∆p(k)

∆r(k)

)}
is bounded.

Proof. In Ω(ε), ε > 0, by definition of Φ(p, r), we have∥∥∥∥(F 1(p, r)
PRe

)∥∥∥∥2

> 0.

So, if F 1(p, r) = 0, it must hold PRe 6= 0, which implies pTr > 0. Conversely, PRe = 0 would imply
‖F 1(p, r)‖ > 0 but, by definition of Ω(ε), this would mean pTr > 0 and min1≤i≤n PRe > 0, contradicting

the hypothesis. Therefore, PRe = 0 is not possible. The sequences {p(k)
i } and {r(k)

i } are then bounded away
from zero, proving proposition 1.

Let us then consider the properties of A and of B in Section 2.1 and the positivity of pj > 0 and rj > 0,
j = 1, . . . , n (which makes P and R nonsingular). We can prove that A− BP−1R is nonsingular. Indeed,
the matrix −B is a column diagonally dominant matrix with positive diagonal elements and non-positive
off-diagonal elements. These properties are conserved when −B is multiplied to the right by diagonal matrices
with positive diagonal entries, such as P−1 and R. It follows that A−BP−1R is the sum between two column
diagonally dominant matrices with positive diagonal entries and non-positive off-diagonal entries. Moreover,
strict diagonal dominance holds for at least a column index. Hence, A−BP−1R is nonsingular. Indeed, it is
irreducibly diagonally dominant and (by the sign of its elements) it is also a nonsingular M-matrix.

Considering a matrix like the Jacobian F ′(p, r) in (10), the nonsingularity of A−BP−1R and of P implies
that the inverse of the Jacobian is (e.g. see [28, p.108])

F ′(p, r)−1 =

(
(A−BP−1R)−1 −(A−BP−1R)−1BP−1

−P−1R(A−BP−1R)−1 P−1 + P−1R(A−BP−1R)−1BP−1

)
.

Since every sub-matrix is bounded, so is also F ′(p, r)−1. Then, {F ′(p(k), r(k))−1} is uniformly bounded in
Ω(ε), ε > 0, proving proposition 2.

Finally, let us consider that, by the definition of r̂(k) in (25), we have(
∆p(k)

∆r(k)

)
= −F ′(p(k), r(k))−1

(
F (p(k), r(k)) + σkµkẽ + r̂(k)

)
.

1If we replace ϕ(k)(α) and ψ(k)(α) with their expressions in (28) and (29), it is easy to note that the condition ϕ(k)(α) ≥ 0

forces the iterates far from (p, r) ≥ 0, while ψ(k)(α) ≥ 0 makes the sequence {p(k)(α)
T
r(k)(α)} to converge to zero slower than

{‖F 1(p(k)(α), r(k)(α))‖}.

8

Then, let us consider that the boundedness of {F ′(p(k), r(k))−1} in Ω(ε), ε > 0, means that there exists
a positive scalar M such that ‖F ′(p(k), r(k))−1‖ ≤ M for (p(k), r(k)) ∈ Ω(ε), ε > 0 and k ≥ 0. Moreover,

the inequalities in (19) and in (26) pose similar conditions on σkµkẽ and on r̂(k), respectively. Using these
relationships and remembering σk + δk ≤ σmax + δmax < 1 in Ω(ε), ε > 0, we get∥∥∥∥(∆p(k)

∆r(k)

)∥∥∥∥ ≤ M(1 + σk + δk)‖F (p(k), r(k))‖

≤ M(1 + σmax + δmax)‖F (p(k), r(k))‖ ≤ 2M‖F (p(k), r(k))‖.

Therefore, the sequence

{(
∆p(k)

∆r(k)

)}
is bounded for (p(k), r(k)) ∈ Ω(ε), ε > 0, completing the proof.

Using this result, it is possible to prove that α̃k is bounded away from zero as well. In this regard, see [27,
Theorem 6].

3.3.3 The backtracking condition

The value of α̃k computed by the feasibility and by the centrality conditions could still be too large to assure
a reduction of the merit function Φ(p, r). Thus, we introduce the backtracking condition. In this regard,
we use the Inexact Newton Backtracking algorithm (INB), which is a line search strategy described in [23]
that recursively reduces α̃k by the relationship αk = θtα̃k, with θ ∈ (0, 1) and t nonnegative integer which is
gradually increased. The procedure stops as αk satisfies

‖F (p(k) + αk∆p(k), r(k) + αk∆r(k))‖ ≤ (1− βαk(1− (σk + δk))) ‖F (p(k), r(k))‖, (32)

with β ∈ (0, 1). The proof that t is finite, and, therefore, αk remains bounded away from zero, runs as that
in [27, pp. 364-366].

3.3.4 Convergence of the algorithm

Let us set ξk = 1− βαk(1− (σk + δk)). By β, αk ∈ (0, 1) and by 0 < σk + δk ≤ σmax + δmax < 1, we have
that ξk is uniformly less than 1. Thus, if we replace 1− βαk(1− (σk + δk)) by ξk in (32), the backtracking
condition directly gives

‖F (p(k+1), r(k+1))‖ ≤ ξk‖F (p(k), r(k))‖ 0 < ξk ≤ ξ̄ < 1. (33)

Next, consider the definition of the residual r̂(k) in (25) and its boundedness in (26). Using also (19) and

(21) to evaluate, respectively, ‖µkẽ‖ and ‖r̂(k)‖ from above, we find that the step αk

(
∆p(k)

∆r(k)

)
satisfies the

condition∥∥∥∥F ′(p(k), r(k))αk

(
∆p(k)

∆r(k)

)
+ F (p(k), r(k))

∥∥∥∥ =
∥∥∥αk (−F (p(k), r(k)) + σkµkẽ + r̂(k)

)
+ F (p(k), r(k))

∥∥∥
≤ (1− αk)‖F (p(k), r(k))‖+ αk

(
σk‖µkẽ‖+ ‖r̂(k)‖

)
≤ (1− αk(1− (σk + δk)))‖F (p(k), r(k))‖
= ηk‖F (p(k), r(k))‖,

(34)

where ηk := 1− αk(1− (σk + δk)). From the considerations made on ξk, we notice that ηk ∈ (0, 1) as well.
Inequalities (33) and (34) correspond to the convergence conditions of an inexact Newton method [29,

§6.4]:

9

if the sequence {(p(k), r(k)} has limit point (p∗, r∗) where F ′(p∗, r∗) is nonsingular then

lim
k→∞

p(k) = p∗; lim
k→∞

r(k) = r∗,

and F (p∗, r∗) = 0.

Moreover, it is also possible to show (see [30, p. 9]) that the damped inexact Newton method has a
super-linear local convergence.

3.4 A note on the Fischer-Burmeister-Newton iteration

As mentioned earlier, complementarity problems connected with hydrodynamic lubrication have been recently
solved in [14] using a solution algorithm based on the Fischer-Burmeister-Newton (FBN) method, which has
been introduced in [31].

In the FBN approach, F (p, r) in (8) is replaced by

F̃ (p, r) =


Ap +Br − c√
p2

1 + r2
1 − p1 − r1

...√
p2
n + r2

n − pn − rn

 . (35)

and the Newton method is then applied to the nonlinear system F̃ (p, r) = 0.
The definition of the method follows, then, (11) and (12) with F̃ instead of F . Here we call (∆p(k),∆r(k))

the solution of the linear system (12) applied to F̃ (p, r) = 0.
It is easy to show that also the FBN method suffers of the problem that, if a component of p(k) or of

r(k) reaches the boundary of the feasible region, it sticks to it also in the successive iterations.
In order to ensure global convergence, we assume the non-singularity of the Jacobian of F̃ (p(k), r(k)) and

we consider two approaches:
1. Introduce a damping parameter αk satisfying the Armijo rule [32]

Φ̃(p(k+1), r(k+1)) ≤ Φ̃(p(k), r(k)) + β̃αk∇Φ̃(p(k), r(k))T
(

∆p(k)

∆r(k)

)
, (36)

with β̃ ∈ (0, 1), e.g., β̃ = 10−4. In this case, the global convergence can be proved by showing that
(∆p(k),∆r(k)) is a descent direction for the merit function Φ̃(p, r) = ‖F̃ (p, r)‖2 and then following the
convergence scheme for the line search method in [33, §3.1, §3.2].

2. Consider an inner iterative solver with stopping rule ‖r̂(k)‖ ≤ δk‖F̃ (p(k), r(k))‖, where δk ≤ δmax < 1

and r̂(k) is the residual

r̂(k) = F̃ ′(p(k), r(k))

(
∆p(k)

∆r(k)

)
+ F̃ (p(k), r(k))

and use the backtracking condition (32) with σk = 0. In this case, the method becomes an inexact Newton
method. Therefore, one has to prove that the inequalities (33) and (34) are satisfied. In this regard, defined
the compact set

Ω̃(ε) = {(p, r) : ε ≤ Φ̃(p, r) ≤ Φ̃(p(0), r(0))

it is easy to prove the boundedness of the sequence

{(
∆p(k)

∆r(k)

)}
in Ω̃(ε), ε > 0, by taking into account the

non-singularity of the Jacobian matrix. We can then make the same considerations of the DIN method and,
setting ξk = 1− β̃αk(1− δk) and ηk = 1− αk(1− δk), we can show that both the convergence inequalities
(33) and (34) are satisfied with F̃ and F̃ ′ instead of F and F ′.

It is possible to show that this method converges also for δk = 0 (which is, for a direct inner solver) by
following the theorem [34, §6.3], which regards the convergence of a sequence {v(k)} (where, in our case, v(k)

is (p(k)T , r(k)T)T).

10

4 Numerical experiments

We now introduce the numerical experiments, performed using a Fortran implementation of the method. In
the following, we define the analyzed problems and the numerical parameters used in the experiments.

4.1 Setting of the algorithm

The parameters of the solver are reported in Table 1, where τ
(max)
1 and τ

(max)
2 are the upper bounds for τ1

and τ2 as in (30) and θ is the parameter multiplying αk until feasibility, centrality and backtracking condition
are satisfied.

Table 1 Data used in the numerical experiments for setting the DIN solver

τ1 τ2 µk β θ γk

min

(
τ
(max)
1 ·10−7

2 , 0.99

)
τ

(max)
2 · 10−7 µ

(2)
k 10−4 0.5 0.5,∀k

Other parameters depend on the type of problem we are solving. Indeed, in 1D cases with coarser
discretizations, we use a direct inner solver (Gaussian elimination) so to analyze the behavior of the DIN
algorithm itself, without having to deal with the additional residual given by an iterative inner solver, which
would require further remarks. We therefore set

σk = 0.01‖F (p(k), r(k))‖; σmax = 0.9; δk = 0.

The same applies to the more efficient direct solvers used in Section 6.
When we employ iterative solvers, on the other hand, δk + σk < 1 and (31) must hold. We thus set

σk = 0.01‖F (p(k), r(k))‖; σmax = 0.9; δk = min

0.1,
ε̂σk

max
(√

n+τ1+γk
1−τ1γk ,

√
n+τ2γk√

n

)


with ε̂ < 1. When not otherwise specified, we set ε̂ = 1/n. Since σk can become very small, we also impose a
lower bound to the tolerance, which at the kth iteration is then chosen as

tolkinner = max
(
tolmin, δk‖F (p(k), r(k))‖

)
.

Finally, the Newton iteration is stopped when the stopping criteria

c1 ≡ ‖F (p(k+1), r(k+1))‖ ≤ ε1 and c2 ≡
∥∥∥∥αk (∆p(k)

∆r(k)

)∥∥∥∥ ≤ ε2 (37)

are satisfied, where ε1 = ε2 = 10−8 when not otherwise specified. The maximum number of DIN iterations is
set at 500, while the maximum number of inner iterations is set at 10, 000.

4.2 Numerical data of the test problems

In 1D cases, denoting by hmin and hmax, respectively, the minimum and the maximum thickness of the fluid
film and by L the length of the interval [a, b], we set

hmin = 0.015; hmax = 0.025; L = 100; µ = 0.015; U = 5. (38)

We consider both homogeneous and non-homogeneous Dirichlet boundary conditions on p. This describes the
two physical situations that can occur: in the first case, we are starting in a cavitated situation, while in

11

the second the entire phenomenon happens inside the domain. We also modify h(x), changing the shape of
the film. In particular, we reproduce the Convergent-Divergent (C-D) and the Divergent-Convergent(D-C)
schematics (see [12]). We can reproduce the C-D schematics by defining h(x) as a convex function passing
by hmax in x = a and in x = b and by hmin in x = (a+ b)/2. In this regard, we define h(x) as a parabola
h(x) = ax2 + bx+ c or as a sinusoid

h(x) = A sin

(
2π

λ
x+ φ

)
+K

of wavelength λ = L. The D-C schematics is reproduced analogously with concave functions. In the following,
when we speak of divergent and convergent parts of the domain, we thus refer to the reducing or increasing
thickness of the film, respectively.

Depending on the boundary conditions and on the configuration of the film, we define the following three
test problems, embedding the cases most commonly analyzed in the literature:

Problem 1: C-D configuration with p(a) = p(b) = 0, r(a) = 0;

Problem 2: C-D configuration with p(a) = p(b) = 1, r(a) = 0;

Problem 3: D-C configuration with p(a) = p(b) = 1, r(a) = 0.

Finally, regarding the 2D case, we consider a square domain Ω [0, L]× [0, L] where h(x, y) is described by
a sinusoid with C-D configuration from x = 3L/8 to x = 5L/8 and by h(x, y) = hmax elsewhere. We use the
same numerical values of (38). Calling ∂Ω the boundary of the domain, we thus define

Problem 4: C-D configuration with p(∂Ω) = 0, r(0, y) = 0.

5 Results and analysis

5.1 Validation of the method

In this subsection, we present the results obtained by solving Problem 1, Problem 2 and Problem 3 with the
numerical data in (38) (scaled so that the result for p is in MegaPascal, as commonly done in the literature)
by the DIN method. The film thickness h(x) is here described by a sinusoid as in Section 4.2 and the domain
is discretized by n = 100 inner points. Figure 1 provides the plots of the pressure for all these cases, along
with the plot of r and of h(x).

The C-D configuration with homogeneous Dirichlet conditions on p is the simplest case, whose solution is
provided by several articles in the literature (e.g. see [12], where also [35, 36] are cited). The trend of the
pressure computed with our code is the same as in these works, as it can be seen in Figure 1a. Moreover, we
also see that the complementarity condition is always respected.

The same can be said for Problem 2 (Figure 1b) and for Problem 3 (Figure 1c). This latter situation is
probably the most interesting one: indeed, as stated in [12], some formulations (like those in [9] and in [35])
fail to give correct results for Problem 3 since they assume that the cavitation can occur only in the divergent
parts of the profile. This leads to some inaccuracies at the boundary of Problem 2 as well. On the contrary,
the used cavitation model leads to physically realistic solutions: in Figure 1c, for instance, cavitation occurs
in the converging part of the film, as in [12]. All the computed profiles are, thus, in accordance with the most
recent results found in the literature.

To further assess the validity of our approach, we also formulate h(x) in a different way. As mentioned
in Section 4.2, we consider h(x) described by a parabola, as well. Considering, for example, Problem 1, in
Figure 2 we compare the results obtained for a parabolic and a sinusoidal h(x).

Qualitatively, the pressure profiles are really similar. However, as it can be intuitively expected, a less
abrupt decrease in thickness leads to lower peaks of pressure. The behavior is the same also for Problem 2
and Problem 3.

12

x (normalized)

p
,
r

h
/
h
m

a
x

(a) Results for Problem 1

x (normalized)

p
,
r

h
/
h
m

a
x

(b) Results for Problem 2

x (normalized)

p
,
r

h
/
h
m

a
x

(c) Results for Problem 3

Figure 1 Plots of h(x) and of the solutions p and r of Problem 1, Problem 2 and Problem 3 solved with the DIN
method and Gaussian elimination as inner solver.

Finally, in Table 2 we report the number of DIN, centrality and backtracking iterations, together with the
value of the stopping criteria c1 and c2 (defined like in (37)) at convergence. In Table 3 we instead report the
results obtained by solving Problem 1 with various discretizations using GMRES as inner solver with the
parameters in Section 4 with tolmin = 10−12. Here the implementation of the GMRES follows [37, p.45] with
Givens rotations and re-orthogonalization. We remark that we are now not concerned with the efficiency
of the method, but only with its validation with direct and iterative solvers. Efficient implementations are
instead studied in Section 6.

Table 2 Results obtained with the DIN method

Problem h(x) it back cent c1 c2

1
Sinusoid 30 0 26 1.55 · 10−18 5.96 · 10−9

Parabola 30 0 26 4.68 · 10−17 2.99 · 10−13

2
Sinusoid 46 0 46 6.63 · 10−12 6.38 · 10−9

Parabola 46 0 46 5.02 · 10−12 5.24 · 10−9

3
Sinusoid 58 0 58 9.31 · 10−12 7.83 · 10−9

Parabola 56 0 56 1.11 · 10−11 5.58 · 10−9

13

x (normalized)

h
(x

)

x (normalized)

p

Figure 2 Comparison of the results obtained for h(x) described by a parabola or by a sinusoid. Left: plot of h(x).
Right: plot of solution p.

Table 3 Results obtained with different discretizations for Problem 1 with sinusoidal h(x) and adaptive linear tolerance
with ε̂ = 1/n and tolmin = 10−12

n it back cent GMRES c1 c2
50 52 0 52 4, 114 9.90 · 10−13 5.82 · 10−9

100 29 0 26 5, 130 1.87 · 10−11 2.48 · 10−11

200 44 0 48 15, 256 6.49 · 10−10 1.94 · 10−10

500 49 0 48 43, 006 4.09 · 10−12 3.30 · 10−9

1,000 50 0 49 86, 546 1.04 · 10−11 2.96 · 10−9

5.2 Role of the conditions on αk

We now analyze what happens when we remove some conditions (like feasibility, centrality or backtracking)
in the choice of the step-size αk. We also consider what happens if the reduction of Argaez, Tapia and
Velazquez2 is introduced. The results of this analysis are reported in Table 4, where the different conditions
on αk are marked in the following way:

• F marks the presence of the feasibility condition;

• C marks the presence of the centrality condition;

• B marks the presence of the backtracking condition;

• R marks the presence of the Argaez, Tapia and Velazquez reduction.

Finally, the star ∗ next to the value of the stopping conditions c1 and c2 indicates that the algorithm converged,
but to a wrong solution.

We notice that the reduction of Argaez, Tapia and Velazquez does indeed reduce the number of iterations:
indeed, the centrality conditions are not triggered anymore in any of the considered problems, and the number
of the DIN iterations is almost halved.

Although both centrality and backtracking are, in general, needed for the algorithm to converge, we notice
that backtracking is never triggered in the analyzed cases. Therefore, the solution does not change when we
remove it. Similarly, Table 3 shows not only that the algorithm converges when we remove the centrality

2This reduction, introduced in [38], consists in reducing the value of αk computed by the feasibility conditions multiplying it

by a factor θ̂ defined as

θ̂ =

{
max(0.8, 1− 100(p(k)T r(k))) if αk = 1

max(0.8,min(0.9995, 1− 100(p(k)T r(k)))) if αk < 1

14

Table 4 Results obtained adding or removing conditions on the choice of αk

Problem Conditions it back cent c1 c2

1

FCB 30 0 26 1.55 · 10−18 5.96 · 10−9

FRCB 19 0 0 3.88 · 10−19 2.39 · 10−10

FB 16 0 - 4.78 · 10−19 5.12 · 10−10

FC 30 0 26 1.55 · 10−18 5.96 · 10−9

CB 26 0 29 2.10 · 10−15 3.95 · 10−12

B 15 7 - 4.40 · 10−19* 5.02 · 10−11*
C 26 - 29 2.10 · 10−15 3.95 · 10−12

2

FCB 46 0 46 6.63 · 10−12 6.38 · 10−9

FRCB 20 0 1 2.14 · 10−15 3.73 · 10−12

FB 17 0 - 8.10 · 10−19 6.47 · 10−13

FC 46 0 46 6.63 · 10−12 6.38 · 10−9

CB 41 0 49 7.71 · 10−12 8.30 · 10−9

B 15 26 - 1.61 · 10−18* 6.02 · 10−9*
C 41 - 49 7.71 · 10−12 8.30 · 10−9

3

FCB 58 0 58 9.31 · 10−12 7.83 · 10−9

FRCB 36 0 7 3.73 · 10−16 1.18 · 10−9

FB 19 0 - 8.17 · 10−20 8.36 · 10−13

FC 58 - 58 9.31 · 10−12 7.83 · 10−9

CB 51 0 79 5.84 · 10−12 6.82 · 10−9

B 23 124 - 3.68 · 10−19* 2.36 · 10−11*
C 51 - 79 5.84 · 10−12 6.82 · 10−9

conditions, but also that αk still does not trigger backtracking. Therefore, αk is never reduced after the
feasibility condition. This results in a larger step, which justifies the smaller number of iterations. However,
we remark that this applies to the analyzed problems and it does not mean that, in general, disregarding the
centrality conditions leads to higher efficiency or to faster convergence: both centrality and backtracking are
required for ensuring convergence as in Section 3.

If we also remove the feasibility condition, the centrality conditions become fundamental in order to
compute the correct solution. Otherwise, the backtracking condition still ensures that the algorithm converges,
but the computed solution is not correct. Indeed, the solution gets unstable in the parts of p and of r close
to zero, where we start having also large oscillations and negative values. The reductions performed by the
backtracking conditions alone are, therefore, not sufficient, since the adherence to the central path is granted
no more.

On the other hand, removing the feasibility condition when preserving the centrality does not largely
affect the results, but it only increases the number of required centrality iterations. This could be expected
also from the analysis of the algorithm: indeed, the centrality satisfies the feasibility, which is introduced in
order to pass a ”better”, already feasible αk to the centrality.

5.3 Role of the perturbation parameter µk and of the starting vectors p(0) and
r(0)

In Table 1 we chose µk equal to the upper bound µ
(2)
k , thus obtaining a greater perturbation. Arguably, this

helps avoiding stagnation when we are close to the boundary. In order to see this, let us see what happens
when we change µk and the starting vectors p(0) and r(0). The results are reported in Table 5, where maxit
indicates that the maximum number of DIN iterations has been reached before convergence.

We notice that the convergence is never faster for µk = µ
(1)
k . On the contrary, it gets much slower as

the initial iterates p(0) and r(0) are reduced. Indeed, when the initial iterates are large, the difference is

15

Table 5 Results with different starting vectors p(0) and r(0) and different choices of µk

Problem p(0) r(0) µk it back cent c1 c2

1

1 0.1 µ
(1)
k 43 0 42 2.78 · 10−12 5.44 · 10−9

1 0.1 µ
(2)
k 30 0 26 1.55 · 10−18 5.96 · 10−9

10−5 10−5 µ
(1)
k 74 0 74 1.91 · 10−15 5.35 · 10−9

10−5 10−5 µ
(2)
k 74 0 74 1.82 · 10−15 5.09 · 10−9

10−15 10−15 µ
(1)
k maxit 0 536 1.11 · 10−5 3.68 · 10−7

10−15 10−15 µ
(2)
k 83 21 82 2.80 · 10−15 7.86 · 10−9

2

1 0.1 µ
(1)
k 46 0 46 6.63 · 10−12 6.38 · 10−9

1 0.1 µ
(2)
k 46 0 46 6.63 · 10−12 6.38 · 10−9

10−5 10−5 µ
(1)
k 70 0 70 4.12 · 10−14 5.96 · 10−9

10−5 10−5 µ
(2)
k 35 0 34 5.14 · 10−12 7.55 · 10−9

10−15 10−15 µ
(1)
k maxit 0 503 2.48 · 10−4 1.06 · 10−10

10−15 10−15 µ
(2)
k 71 30 70 3.97 · 10−14 5.74 · 10−9

3

1 0.1 µ
(1)
k 58 0 58 9.31 · 10−12 7.83 · 10−9

1 0.1 µ
(2)
k 58 0 58 9.31 · 10−12 7.83 · 10−9

10−5 10−5 µ
(1)
k 89 0 89 4.41 · 10−14 8.11 · 10−9

10−5 10−5 µ
(2)
k 88 0 88 5.15 · 10−14 7.73 · 10−9

10−15 10−15 µ
(1)
k maxit 0 21,059 5.47 · 10−5 2.15 · 10−32

10−15 10−15 µ
(2)
k 78 26 77 4.76 · 10−14 7.13 · 10−9

negligible, especially for Problem 2 and for Problem 3, for which the results are indistinguishable in the two
cases. However, for p(0) = r(0) = 10−15, the algorithms do not converge if the perturbation parameter is
too small: we are indeed so near to the non-negative orthant that several centrality iterations are triggered,
leading the algorithm to stall. This is particularly evident for Problem 3.

Another effective choice is to set the perturbation parameter in an adaptive way. This can be done using
the condition

If p(k)Tr(k) > 0.1

µk = µ
(1)
k

else

µk = µ
(2)
k .

In the considered cases, this leads exactly to the same results computed choosing µk = µ
(2)
k . In other cases,

however, the accuracy of the solution can increase if we choose µk = µ
(1)
k when possible.

5.4 Comparison with the Fischer-Burmeister-Newton method

Finally, we compare the DIN method with the FBN method. As mentioned before, in [14] the FBN iteration
has been used for the solution of lubrication problems and it is remarked that this algorithm is very efficient.
However, it has to be noted that it also accepts iterates p(k) and r(k) whose components are negative: indeed,
there is nothing preventing this, while in DIN the non-negativity conditions are enforced by the perturbation
ρ̃k. We now show that this difference is actually visible in the numerical experiments.

Solving the one-dimensional problems by the FBN method, we get the results in Table 6, where FBN-A
denotes the FBN method with Armijo condition (36) and FBN-I denotes the FBN method with inexact
Newton backtracking condition (26) with F̃ instead of F and σk = δk = 0. In all the cases, we set n = 100.

16

Table 6 Results for Problem 1,Problem 2 and Problem 3 computed with the DIN and FBN methods

Problem Method it back cent c1 c2

1
DIN 30 0 26 1.55 · 10−18 5.96 · 10−9

FBN-A 13 15 - 3.59 · 10−19 5.57 · 10−13

FBN-I 13 15 - 3.59 · 10−19 5.57 · 10−13

2
DIN 46 0 46 6.63 · 10−12 6.38 · 10−9

FBN-A 13 13 - 6.83 · 10−19 8.56 · 10−13

FBN-I 13 13 - 6.83 · 10−19 8.56 · 10−13

3
DIN 58 0 58 9.31 · 10−12 7.83 · 10−9

FBN-A 24 62 - 9.26 · 10−20 1.05 · 10−13

FBN-I 24 62 - 9.26 · 10−20 1.05 · 10−13

We see that both the FBN methods converge in less iterations than the DIN method. This is a good
measure of the computational cost as well: indeed, as better described in the next section, the solution of
the linear systems arising at each Newton iteration is arguably the most expensive part of the procedure.
However, the faster convergence of the FBN iterations is likely linked to the specific problems we analyzed:
for these particular problems, similar and even better performances were obtained in Table 4 with the DIN
method when only feasibility and backtracking conditions were applied.

Moreover, the conditions p ≥ 0, r ≥ 0 are not always respected. This is shown in Table 7, which represents
the value of some components of p in points where p should be equal to zero. The table refers to Problem 1,
but the same applies to the other analyzed problems as well. We see that p computed with DIN is bounded

Table 7 Comparison of some values pi of p obtained solving Problem 1 with DIN and FBN methods

i pi DIN pi FBN-A pi FBN-I
70 1.59 · 10−25 3.11 · 10−18 3.11 · 10−18

71 1.27 · 10−25 −6.42 · 10−18 −6.42 · 10−18

72 1.06 · 10−25 2.10 · 10−18 2.10 · 10−18

73 9.08 · 10−26 4.33 · 10−18 4.33 · 10−18

74 7.99 · 10−26 5.65 · 10−18 5.65 · 10−18

75 7.15 · 10−26 −1.19 · 10−18 −1.19 · 10−18

away from zero: its components never get smaller than 10−26, ensuring that the non-negativity conditions
of the complementarity are satisfied. On the other hand, the FBN implementations oscillate around zero,
allowing both positive and negative values for the components of the vector. This violation is here below
machine precision and hence it is not concerning for the analyzed problems and for the chosen tolerance.
Nonetheless, it is interesting to notice the effect of the absence of something which strongly enforces the
non-negativity of the iterates. Moreover, if we choose ε1 = ε2 = 10−4 (as done for the DIN in the next section)
FBN iterations present a few values in the order of −10−9. The DIN iteration is, thus, more stable and the
solutions it computes approach zero smoothly and without oscillations, as in Table 7.

6 An efficient implementation and a 2D example

In the previous Section, we validated the DIN method and we analyzed the procedure in different situations.
However, we were not concerned with the efficiency of the implementation. This is testified, for instance, by
the large number of linear iterations required in Table 3, which, in turn, greatly affects computational times.

17

In this subsection, we instead focus on an efficient solution of the problem. The heart of a fast implementa-
tion of the DIN method relies in the efficient solution of the inner linear system arising at each DIN iteration.
Indeed, this is arguably the most onerous part of the procedure, since the computation of the Jacobian is
not onerous (see (10)) and the choice of an appropriate step-length αk is performed by algebraic operations
which are not much computationally expensive. We also relax the outer tolerances to ε1 = ε2 = 10−4, which
is enough to compute accurate results. Indeed, with this choice, in the analyzed cases the norm of F (p, r)
at convergence does not exceed 10−6 (and it usually is in the range 10−9 ÷ 10−11), while c2 < ε2 = 10−4 is
sufficient to ensure that the solution does not change rapidly between two successive iterations.

We consider different kinds of inner solvers:

• direct methods for full matrices;

• direct methods for sparse matrices;

• preconditioned iterative methods.

In order to guarantee an efficient implementation and to enhance reproducibility, we employ well-known
software libraries. In particular, the used direct solver for full matrices is given by the LU solver of the Lapack
libraries. Regarding sparse direct solvers, we consider SuperLU [39, 40] and MUMPS [41, 42] called through
the PETSc suite3. Finally, we use preconditioners and iterative solvers of the PETSc package. In this last
case, the inner systems are solved inexactly and the tolerance of the linear solver is chosen as in Section 4
with tolmin = min{ε1, ε2} = 10−4. We always used left preconditioning, which is also the default setting for
most Krylov solvers in PETSc.

In the following, we consider Problem 1 (representing a 1D example) and Problem 4 (2D example). In
tables, the columns titled time report computational times (expressed in seconds) for running the entire
algorithm in a Unix environment on a laptop with a dual core 2.7 GHz Intel “Core i5” processor (“Broadwell”
series).

Table 8 Solution of the inner systems by LU factorization

n it back cent time
100 29 0 26 0.17
500 38 0 37 2.47
1000 39 0 38 17.74

Starting from the 1D case, in Table 8 we report the results obtained with the LU factorization. When n is
small, the solver works efficiently, but computational times rapidly increase as the order of the Jacobian matrix
increases. Thus, exploiting the sparsity of the Jacobian becomes crucial for problems of large dimensions.

To this end, we can use direct solvers for sparse matrices (Table 9) or iterative solvers (Table 10). We see
that direct solvers for sparse matrices behave much better than those for full matrices and are still efficient
also when we have thousands of variables.

Regarding iterative solvers, in Table 10 we report the results obtained by using GMRES or BiCG-STAB
with ILU preconditioner. Other common preconditioners (such as Jacobi, SOR, etc.) did not behave well,
with the sole exception of the block-Jacobi preconditioner. On the other hand, ILU preconditioning reduces
the number of linear iterations consistently, as we can see in Table 10, where also computational times
approach those of direct methods for sparse matrices.

Passing to the 2D case, the order of the Jacobian matrix rapidly increases with n: each block of the
Jacobian matrix is of order n2. Moreover, A is block-tridiagonal and it is more sparse (although we have
more nonzero elements in each row). Therefore, we now only consider solvers for sparse matrices and iterative

3The use of PETSc allows also to easily change solver and it provides a parallel implementation of the linear solvers through
MPI. For better reproducibility, all the result here reported have however been obtained by running the programs sequentially
on a single core.

18

Table 9 Solution of inner systems by a sparse direct solver. SuperLU (left) and MUMPS (right)

n it back cent time
100 29 0 26 0.14

1,000 39 0 38 0.73
5,000 45 0 44 3.79
10,000 49 0 48 8.46

n it back cent time
100 29 0 26 0.19

1,000 39 0 38 1.11
5,000 45 0 44 10.22
10,000 49 0 48 21.81

Table 10 Solution of inner systems by a preconditioned iteartive solver. GMRES solver with ILU preconditioner
(left) and BiCG-STAB solver with ILU preconditioner (right)

n it back cent GMRES time
1,000 41 0 41 1,779 1.22
10,000 50 0 50 14,064 30.30

n it back cent BiCGS time
1,000 41 0 41 2,572 1.72
10,000 35 61 35 9,849 23.54

solvers. The results obtained using SuperLU and ILU-preconditioned GMRES are reported in Table 11, while
Figure 3 represents the solution computed by ILU-preconditioned GMRES with n = 100. We notice that the
iterative solver becomes more competitive as n increases: computational times are practically equal when
n = 100. For yet larger systems, it is also advisable to employ multigrid preconditioners, in order to make
the number of linear iterations more independent of the order of the problem.

Table 11 Comparison between sparse direct solver and iterative solver. SuperLU (left) and GMRES solver with ILU
preconditioner (right)

n it back cent time
50 65 0 65 15.55
100 101 0 101 609.96

n it back cent GMRES time
50 66 0 66 9,029 19.44
100 100 0 100 35,367 625.77

Lastly, we conclude with some information on saddle-point (e.g. see [43]) and on augmentation-based
preconditioners (e.g. see [44]), which are commonly used in the solution of systems similar to those we need
to solve at each DIN iteration. Since these preconditioners are not natively implemented in PETSc, a direct
comparison with the results previously reported would be inconsistent. It appears nonetheless suitable to
provide some remarks on their implementation for the problems of our concern.

Starting from augmentation-based preconditioners, they are generally applied to solving systems where
the (2, 2) block of the coefficient matrix is null or symmetric negative (semi)definite. Remembering the form
of the Jacobian (10), we can put ourselves in this situation by left-multiplying both sides of our Newton’s
system by the matrix

Ĩ =

(
I 0
0 −I

)
where I ∈ Rn×n is the identity matrix of order n. In the application of the preconditioner, a positive definite
weight matrix W must then be chosen. A common choice is to set it as the (2, 2) block of the coefficient
matrix changed of sign, which is W = P . This, however, can give some numerical difficulties as some diagonal
elements of P approach zero, especially when we want to solve the complementarity problem using a small
tolerance. In this case, it is therefore advisable to use other diagonal weight matrices, such as the identity
matrix.

Passing to saddle-point preconditioners, if ‖P‖2 is small enough, the problem preserves the characteristics
of a generalized saddle-point problem. The preconditioners analyzed, for instance, in [45] can then be of
interest. Here, the (1, 1) block of the coefficient matrix is first split in A = F − E. Then, considering the
Jacobian (10), the saddle-point preconditioner P with exact Schur complement is

P =

(
F−1 0

0 −(P −RF−1B)−1

)

19

0

0.5

100

1

1.5

80

2

100

2.5

3

60 80

3.5

4

60

4.5

40

5

40
20

20

0 0

xy

p

(a) Plot of p for Problem 4

0

100

0.1

0.2

80
100

0.3

60 80

0.4

0.5

60
40

0.6

40
20

20

0 0

xy

r

(b) Plot of r for Problem 4

Figure 3 Plots of the profiles of p and r of Problem 4 computed by ILU-preconditioned GMRES with n = 100 and
adaptive linear tolerance with tolmin = 104

where P,R are diagonal and B is lower bidiagonal. It is worth noticing that the Schur complement can be
computed exactly when A is split by Jacobi or Gauss-Seidel splittings. Indeed, if F is the diagonal of A
(Jacobi splitting), P −RF−1B is lower bidiagonal and its inverse is readily available. In case of Gauss-Seidel
splitting, since A is tridiagonal, F is lower bidiagonal. Hence, P −RF−1B is lower triangular and can be
inverted by forward substitution. Alternatively, preconditioners with approximate Schur complement [45] can
be used as well.

7 Conclusions

We introduced a DIN algorithm for solving complementarity problems and we presented it with special regard
to LCPs arising in hydrodynamic lubrication. We proved the global convergence of the proposed method and
we demonstrated its applicability for solving the problems of our concern. In the numerical experiments we
also analyzed the components of the algorithm, highlighting, for example, the advantage of choosing a larger
perturbation parameter µk. We also compared the DIN and the FBN iteration, confirming the ability of the
DIN method of strongly enforcing the non-negativity conditions of the complementarity problem, while the
FBN also accepts negative values in the solution vectors (although within machine precision). Lastly, we
remarked the importance of solving efficiently the inner linear systems in order to have a fast implementation
of the method. In particular, we compared the effect of different linear solvers, all efficiently implemented
through the Lapack and the PETSc packages. We then concluded our analysis by solving a 2D example.

References

[1] R. W. Cottle, G. B. Dantzig, Complementarity pivot theory of mathematical programming, Linear
Algebra Appl. 1 (1968) 103–125.

[2] R. W. Cottle, J.-S. Pang, R. E. Stone, The Linear Complementarity Problem, Classics in Applied
Mathematics, SIAM, 2009.

[3] G. Capriz, G. Cimatti, Free boundary problems in the theory of hydrodynamic lubrication: A survey,
Tech. Rep. Nota Informatica C81-7, Istituto di Matematica, University of Pisa (1981).

[4] A. Laratta, O. Menchi, Approssimazione della soluzione di una disequazione variazionale. applicazione
ad un problema di frontiera libera, Calcolo 11 (1974) 243–267.

[5] G. McAllister, S. Rohde, An optimization problem in hydrodynamic lubrication theory, Appl. Math.
Opt. 2 (1976) 223–235.

20

[6] G. Cimatti, O. Menchi, On the numerical solution of a variational inequality connected with the
hydrodynamica lubrication of a complete journal bearing, Calcolo 15 (1978) 249–258.

[7] C. Cryer, The numerical solution of a degenerate variational inequality, in: S. V. Parter (Ed.), Numerical
Methods for Partial Differential Equations, 1979.

[8] C. Cryer, A. Dempster, Equivalence of linear complementarity problems and linear programs in vector
lattice Hilbert spaces, SIAM J. Control Optim. 18 (1) (1980) 76–90.

[9] M. Kostreva, Elasto-hydrodynamic lubrication: a nonlinear complementarity problem, Int. J. Numer.
Meth. Fl. 4 (1984) 377–397.

[10] L. Bertocchi, D. Dini, M. Giacopini, M. Fowell, A. Baldini, Fluid film lubrication in the presence of
cavitation: a mass-conserving two-dimensional formulation for compressible, piezoviscous and non-
Newtonian fluids, Tribol. Int. 67 (2013) 61–71.

[11] G. Chapiro, A. E. Gutierrez, J. Herskovits, S. R. Mazorche, W. S. Pereira, Numerical solution of a class
of moving boundary problems with a nonlinear complementarity approach, J. Optimiz. Theory App.
168 (2) (2016) 534–550.

[12] M. Giacopini, M. Fowell, D. Dini, A. Strozzi, A mass-conserving complementarity formulation to study
lubricant films in the presence of cavitation, J. Tribol. 132 (2010).

[13] A. Almqvist, P. Wall, Modelling cavitation in (elasto)hydrodynamic lubrication, Adv. Tribol. (2016).

[14] T. Woloszynski, P. Podsiadlo, G. W. Stachowiak, Efficient solution to the cavitation problem in
hydrodynamic lubrication, Tribol. Lett. 58 (2015) 1–11.

[15] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, 3rd Edition, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1999.

[16] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient management of parallelism in object
oriented numerical software libraries, in: E. Arge, A. M. Bruaset, H. P. Langtangen (Eds.), Modern
Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202.

[17] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang,
H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.8, Argonne National Laboratory
(2017).
URL http://www.mcs.anl.gov/petsc

[18] M. Khonsari, E. Booser, Applied tribology: bearing, design and lubrication, 2nd Edition, John Wiley &
Sons, Chichester, 2008.

[19] R. Varga, Matrix Iterative Analysis, 2nd Edition, Springer, Berlin, 2000.

[20] E. Süli, D. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge,
2003.

[21] A. El-Bakri, R. Tapia, T. Tsuchiya, Y. Zhang, On the formulation and theory of the Newton interior
point method for nonlinear programming, J. Optimiz. Theory App. 89 (1996) 507–541.

[22] R. Dembo, S. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982) 400–408.

[23] S. Eisenstat, H. Walker, Globally convergent inexact Newton methods, SIAM J. Optimiz. 4 (1994)
393–422.

21

[24] D. Fokkema, G. Sleijpen, H. Van der Vost, Accelerated inexact Newton schemes for large systems of
nonlinear equations, SIAM J. Sci. Comput. 19 (1998) 657–674.

[25] C. Durazzi, On the Newton interior-point method for nonlinear programming problems, J. Optimiz.
Theory App. 104 (2000) 73–90.

[26] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

[27] E. Galligani, Analysis of the convergence of an inexact Newton method for solving Karush-Kuhn-Tucker
systems, in: Atti del Seminario Matematico e Fisico dell’Università di Modena e Reggio Emilia LII, 2004,
pp. 331–368.

[28] D. S. Bernstein, Matrix Mathematics: theory, facts and formulas, 2nd Edition, Princeton University
Press, Princeton, NJ (U.S.A.), 2009.

[29] W. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, 2nd Edition, SIAM, Philadelphia,
1998.

[30] S. Bonettini, E. Galligani, V. Ruggiero, Inner solvers for interior point methods for large scale nonlinear
programming, Comput. Optim. Appl. 37 (2007) 1–34.

[31] A. Fischer, A special Newton-type optimization method, Optimization 24 (1992) 269–284.

[32] L. Armijo, Minimization of functions having Lipschitz-continuous first partial derivatives, Pac. J. Math.
16 (1966) 1–3.

[33] J. Nocedal, S. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.

[34] V. Lakshmikantham, D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications,
2nd Edition, Marcel Dekker Inc., New York, 2002.

[35] K. Oh, P. Goenka, The elastohydrodynamic solution of journal bearings under dynamic loading, J. Tribol.
107 (3) (1985) 389–395.

[36] D. Bonneau, M. Hajjam, Modélisation de la rupture et de la reformation des films lubrifiants dans les
contacts élastohydrodynamiques, Eur. J. Comput. Mech. 10 (2001) 679–704.

[37] C. Kelley, Iterative Methods for Linear and Nonlinear Equations, Frontiers in Applied Mathematics,
SIAM, Philadelphia, 1995.

[38] M. Argaez, R. Tapia, L. Velazquez, Numerical comparisons of path-following strategies for a primal-dual
interior-point method for nonlinear programming, J. Optimiz. Theory App. 114 (2002) 255–272.

[39] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu, A supernodal approach to sparse
partial pivoting, SIAM J. Matrix Anal. A. 20 (3) (1999) 720–755.

[40] X. Li, J. Demmel, J. Gilbert, L. Grigori, M. Shao, I. Yamazaki, SuperLU Users’ Guide, Tech. Rep.
LBNL-44289, Lawrence Berkeley National Laboratory, http://crd.lbl.gov/ xiaoye/SuperLU/. Last
update: August 2011 (September 1999).

[41] P. R. Amestoy, I. S. Duff, J. Koster, J.-Y. L’Excellent, A fully asynchronous multifrontal solver using
distributed dynamic scheduling, SIAM J. Matrix. Anal. A. 23 (1) (2001) 15–41.

[42] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution
of linear systems, Parallel Comput. 32 (2) (2006) 136–156.

[43] M. Benzi, A. J. Wathen, Some preconditioning techniques for saddle point problems, in: W. H. A.
Schilders, H. A. van der Vorst, J. Rommes (Eds.), Model Order Reduction: Theory, Research Aspects
and Applications, Vol. 13, Springer, Berlin, Heidelberg, 2008, pp. 195–211.

22

[44] B. Morini, V. Simoncini, M. Tani, A comparison of reduced and unreduced kkt systems arising from
interior point methods, Comput. Optim. Appl. 68 (1) (2017) 1–27.

[45] C. Siefert, E. De Sturler, Preconditioners for generalized saddle-point problems, SIAM J. Numer. Anal.
44 (3) (2006) 1275–1296.

23

