
University of Modena and Reggio Emilia
Department of Sciences and Methods for Engineering

Doctoral School
Industrial Innovation Engineering

Planar Pushing: a study of
non-prehensile manipulation with single

and multiple mobile robots

Filippo Bertoncelli

PhD Course Coordinator:
Prof. Franco Zambonelli

Supervisor:
Prof. Lorenzo Sabattini

XXXIV Cycle

“The world’s not perfect, but it’s there for us trying the best it can. That’s what makes
it so damn beautiful.”

Roy Mustang (Fullmetal Alchemist)

“Life’s a bore if you don’t challenge yourself.”

Yu Nishinoya (Haikyuu)

i

Abstract

This doctoral dissertation studies the manipulation of objects using pushing: a ma-
nipulation technique from the class of non-prehensile manipulations. Techniques from
this class exploit the geometry of the object together with its dynamics and the sur-
rounding environment to achieve the task at hand. Starting from present literature,
the first problem approached was the generation of an optimal pushing plan for manip-
ulating a polygonal object using pushing actions on its sides by a single mobile robot.
The proposed solution is a two-layer planning algorithm. The first layer evaluates the
feasibility of the manipulation by computing a path to the target pose of the object,
considering the dimentions of both robot and object. This initial path is then used as
a guide to search for a set of pushing trajectories for the robot. These trajectories are
obtained through an optimization problem that generates the shortest possible tra-
jectory that satisfies the pushing constraints. The next step is to generate a control
algorithm that ensures that the motion of the robot during the manipulation satisfies
the pushing constraints. This is achieved using Model Predictive Control. The con-
troller makes use of a model of the system to predict the future state and optimize
its behaviour. With MPC it is also possible to impose a set of constraints on the
system motion. In particular, the interest here is imposing a constraint to maintain
a sticking contact between the object and the robot during the manipulation. This is
achieved at first by including the contact forces in the inputs of the system in order
to predict the motion of the pushed object. A constraint is then formulated to ensure
that the motion of the robot and the object are compatible. However, the prediction
of the motion of a pushed object is often unreliable due to the indeterminacy of the
factors involved, and the formulation of the constraint is nonlinear. This increases
the complexity of the solution of the optimization algorithm and therefore its time
requirements. An improved version of the control algorithm was then designed trans-
forming the constraint into an equivalent linear formulation, easier to compute. The
last component necessary for a single robot to perform a manipulation by pushing is
a monitoring algorithm. The proposed design defines a finite state machine for the
execution of the pushing trajectories, monitoring the manipulation and handling edge
cases and possible failures. The study of pushing manipulation with multi-robot sys-
tem was split in two research directions, differentiated by the size of the robot group.
When only a few robots are available to complete the assigned planar pushing task,
it is necessary to carefully displace them around the object according to the assigned
task. A characterization of the quality of a grasp configuration was defined to aid this

ii

decision. Its validity has been studied through statistical analysis from simulation
data. The iterative optimization of a given configuration for a task was also studied,
therefore proposing a procedure to optimize a pushing configuration. The proposed
optimization makes use of the characterization as well as other forms of estimation of
the quality of a configuration. When the number of robots is higher and it may be
necessary to have the robots push on each other to combine the efforts, a different
approach is necessary. A hierarchical control law was then proposed to address these
cases. The control law makes use of established control schemes to coordinate the
group of robots as if they were a probability distribution, therefore capable to adapt
to any object shape and size. Experiments were carried out to validate the strategy
on different objects and different numbers of robots.

iii

Sommario

Questa tesi di dottorato studia la manipolazione di oggetti mediante la spinta: una
tecnica di manipolazione appartenente alla classe delle manipolazioni non prensili. Le
tecniche di questa classe sfruttano la geometria dell’oggetto da manipolare insieme alla
sua dinamica e all’ambiente circostante per portare l’oggetto nella posizione desider-
ata. Partendo dalla letteratura attuale, il primo problema affrontato è la generazione
di un piano di spinta ottimale per manipolare un oggetto poligonale tramite azioni
di spinta sui suoi lati da parte di un singolo robot mobile. La soluzione proposta è
un algoritmo di pianificazione a due livelli. Il primo livello valuta la fattibilità della
manipolazione calcolando un percorso verso la posa target dell’oggetto, considerando
sia le dimensioni del robot che dell’oggetto. Questo percorso iniziale viene quindi
utilizzato come guida per la ricerca di una serie di traiettorie di spinta per il robot.
Queste traiettorie sono ottenute attraverso un problema di ottimizzazione che genera
la traiettoria più corta possibile che soddisfi i vincoli di spinta. Il passo successivo
è generare un algoritmo di controllo che assicuri che il movimento del robot durante
la manipolazione soddisfi i vincoli di spinta. Ciò si ottiene utilizzando il controllo
predittivo. Il controllore di tipo Model Predictive Control (MPC) utilizza un mod-
ello del sistema per prevedere lo stato futuro e ottimizzarne il comportamento. Con
MPC è anche possibile imporre dei vincoli al movimento del sistema. In particolare,
si è imposto un vincolo per mantenere un contatto stabile tra l’oggetto e il robot
durante la manipolazione. Ciò si ottiene inizialmente includendo le forze di contatto
negli ingressi del sistema per prevedere il movimento dell’oggetto spinto. Tuttavia,
siccome la previsione del moto di un oggetto spinto è spesso inaffidabile a causa
dell’indeterminatezza di parametri come l’attrito, e la formulazione non lineare del
vincolo, la complessità della soluzione dell’ottimizzazione risulta alta. È stata quindi
progettata una versione migliorata dell’algoritmo di controllo trasformando il vincolo
in una formulazione lineare equivalente, più facile da calcolare. Affinché un singolo
robot esegua una manipolazione spingendo è necessario un algoritmo di monitoraggio.
La soluzione proposta è la definizione di una macchina a stati finiti per l’esecuzione
delle traiettorie di spinta, il monitoraggio della manipolazione e la gestione dei casi
limite e dei possibili guasti. Lo studio della manipolazione della spinta con il sistema
multi-robot è stato suddiviso in due direzioni di ricerca. Quando sono disponibili solo
pochi robot per completare l’attività di spinta planare assegnata, è necessario disporli
con attenzione attorno all’oggetto in base all’attività assegnata. Una caratterizzazione
della qualità di una configurazione di contatto è stata definita per aiutare questa deci-
sione, validata con metodi statistici. È stata studiata anche l’ottimizzazione iterativa

iv

di una data configurazione per un task, proponendo quindi una procedura per ottimiz-
zare una configurazione. L’ottimizzazione proposta si avvale della caratterizzazione e
di altre forme di stima della qualità di una configurazione. Quando il numero di robot
è maggiore la complessità del problema aumenta. Pertanto è necessario un approccio
diverso. È stata quindi proposta una legge di controllo gerarchico per affrontare questi
casi. La legge di controllo si avvale di schemi di controllo consolidati per coordinare il
gruppo di robot secondo una distribuzione di probabilità, definita in base alla spinta
da applicare. Sono stati condotti esperimenti per validare la strategia su diverse forme
e utilizzando numeri di robot differenti.

v

Acknowledgements

I would like to thank my family for their unconditional support. Without them I
would not have been able to complete this journey.

I am deeply thankful to my advisor, Prof. Lorenzo Sabattini for his great help,
for being welcoming to every discussion topic and especially for his patience. I am
thankful to all the people that I had the chance to work with at ARSControl Lab, I
could not have wished for better colleagues.

Last but not least, I would like to thank every person that has helped me during
this journey.

This opportunity has been a roller coaster of emotions but I would not exchange
it for anything in the world.

vii

Contents

Abstract i

Sommario iii

Acronyms xix

1 Introduction 1
1.1 Contribution . 5
1.2 Publications . 6

2 Pushing Manipulation with a Single Robot 9
2.1 Problem Statement and Preliminaries 9

2.1.1 Preliminaries . 10
2.2 Manipulation Planning . 12

2.2.1 Holonomic planner . 12
2.2.2 Search Algorithm . 13
2.2.3 Planner Implementation . 16

2.3 Manipulation Control for Wheel Slip Avoidance 18
2.3.1 Modeling . 18
2.3.2 Controller Design . 20

Optimization Problem Formulation 20
Wheel Slip Constraints . 21

2.3.3 Simulations . 24
2.3.4 Case studies . 24

Case study I. 25
Case study II. 27
Case study III. 27

2.4 Maintenance of Pushing Contact . 28
2.4.1 Problem statement . 28
2.4.2 Modeling . 29

Robot Model . 29
Pushed Object Model . 31

2.4.3 MPC Controller Formulation 33
2.4.4 LTV Model Approximation . 33
2.4.5 LTV MPC Formulation . 34
2.4.6 Nonlinear Pushing Constraints for Object Slippage Avoidance . 35

viii

Controller Implementation and Experiments 35
Tracking of a straight line . 36
Complete manipulation task . 37

2.4.7 Linear Constraints for Pushing Contact Maintenance and Ob-
stacle Avoidance . 38
Constraint validation . 40

2.5 Manipulation Supervision . 41
2.6 Framework Validation . 42

2.6.1 Environment 1 . 43
2.6.2 Environment 2 . 46
2.6.3 Environment 3 . 48

2.7 Future Works . 48

3 Pushing Manipulation with a few Robots 51
3.1 Grasp Quality Characterization . 52

3.1.1 Quality of a Nonprehensile Grasp 54
Effectiveness of the grasp . 54
Energy efficiency . 55

3.1.2 Grasp-Task Compatibility Test 55
3.1.3 Configuration Indices . 56

Composed Quality Index . 56
Extension Index . 57
Grasp Dexterity Index . 57
Modified Hausdorff distance . 57

3.1.4 Evaluation . 58
Simulation Environment . 58
Methods . 58
Results . 59

3.1.5 Results Discussion . 60
Grasp-Task Compatibility Test 60
Configuration Indices . 61

3.1.6 Possible Applications . 62
3.2 Task Oriented Grasp Optimization . 64

3.2.1 Task-oriented optimal robot positioning 66
3.2.2 Motion control for trajectory tracking 69
3.2.3 Simulation and experimental results 70

Simulation setup . 70
Experimental setup . 71
Results . 71

3.3 Future Works . 74

ix

4 Pushing Manipulation with many Robots 79
4.1 Problem Description and Proposed Approach 80
4.2 Control Architecture . 81

4.2.1 Lower Layer: Swarm Control 82
4.2.2 Position Control Layers for Pushing the Object 84

Zone 1: Repulsive Field . 86
Zone 2: Attractive Field . 86
Zone 3: Magnetic Field . 86
Zone 4: Tangential Field . 88

4.3 Validation . 88
4.3.1 Simulations . 88
4.3.2 Experiments . 90

4.4 Future Works . 92

5 Conclusive Remarks 95

xi

List of Figures

1.1 e-puck differential drive mobile robot pushing a square box through
three obstacles. 2

1.2 Illustration of the problem addressed in this work: a group of mobile
robots has to manipulate an object by pushing it along a desired task.
The aim is to establish optimal contact points to simultaneously mini-
mize the tracking error and the contact forces during the task. 5

2.1 Feasible ICR for pushing a polygonal object. The arrows represent the
borders of the friction cone. The shaded area on the left represents the
counter clock-wise set of centers of rotation, while the area on the right
contains the clock-wise ICRs. 11

2.2 Intersection of the pushing feasible ICR with the differential drive mo-
bile robot motion constraints. 12

2.3 Example of graph generated by the search algorithm. Every node q has
an associated state composed of a 2D pose γ and a pushing side sp. . . 15

2.4 Results of the first planning layer visualized in Rviz. The arrows rep-
resent the desired direction of motion for the pushing system. 17

2.5 Snapshot of the planning search algorithm connecting two states from
the path obtained by the first layer. The pink arrows represent the
output of the first planning layer. The blue line shows an attempt of
the search algorithm in connecting two intermediate states. 17

2.6 End result of the manipulation planning. 17
2.7 Schematic representation of the differential drive mobile robot. The

black rectangles are the wheels. The black circle is the caster wheel.
The frontal bumper is represented by the white rectangle in front of
the wheels. 19

2.8 Planar forces and torques acting on the robot. 22
2.9 Forces exchanged between the robot and the ground. 24
2.10 Position error with and without constraint. 25
2.11 Robot trajectory and reference: red blocks represent obstacles. 26
2.12 Longitudinal velocity difference with constraint: non-zero values imply

the presence of wheel slip. 26
2.13 Longitudinal velocity difference without constraint: non-zero values im-

ply the presence of wheel slip. 26
2.14 Position error for the pushing manipulation, 27

xii

2.15 Longitudinal velocity difference with the box. 27
2.16 Position error for the pushing manipulation with inaccurate µ. 28
2.17 Longitudinal velocity difference with inaccurate µ. 28
2.18 Schematic representation of the differential drive mobile robot. The

black rectangles are the wheels. The black circle is the caster wheel.
The frontal bumper is represented by the white rectangle in front of
the wheels. 30

2.19 Schematic representation of the pushed object. 32
2.20 Line tracking from a non-zero initial error state. Top graph: controller

with the proposed constraint, bottom graph: without the proposed
constraint. 37

2.21 Y coordinates of the pushed object with respect to Σr during the ma-
nipulation. 38

2.22 Complete manipulation of an object. 38
2.23 Performance of the robot manipulating the object to track a linear

trajectory. The robot can correct the initial offset from each side. . . . 41
2.24 State diagram of the Supervision FSM with table of associated names. 41
2.25 Testing environment composed of a motion capture system estimating

the poses of the robot and the pushed object. 43
2.26 Visualization of a test case of Scenario 2. The purple line displays the

path taken by the robot during the manipulation. The robot is depicted
during the side change manoeuvre to reorient with the object. 44

2.27 Environment 1: Manipulation of a square object across a narrow pas-
sage. The orange line displays the reference trajectory for the object
while the blue lines represent the motion of the object during the tests.
The reference final position for each manipulation is drawn in red while
the final position for each manipulation is drawn in black. 45

2.28 Visualization of a test case of Scenario 4. The purple line displays the
path taken by the robot during the manipulation. A visualization of
the robot and the manipulandum during a particular drift from the
reference trajectory is provided to showcase the ability to maintain the
contact. 46

2.29 Environment 2: Manipulation of a square object across a N shaped
environment. The orange line displays the reference trajectory for the
object while the blue lines represent the motion of the object during
the tests. The reference final position for each manipulation is drawn
in red while the final position for each manipulation is drawn in black. 47

xiii

2.30 Environment 3: Manipulation of a square object in an environment
with three circular obstacles. The orange line displays the reference
trajectory for the object while the blue lines represent the motion of
the object during the tests. The reference final position for each manip-
ulation is drawn in red while the final position for each manipulation
is drawn in black. 49

3.1 Schematic representation of the manipulated object (in gray) and the
pushing agents (in yellow) with the related reference frames. 53

3.2 An example of the polyhedral approximationWgrasp, represented as the
light blue polyhedron in 3D wrench space, along withWdes, represented
in red. In this example Wgrasp contains Wdes. 56

3.3 Representation of the pushed object and the pushing agents in Cop-
peliaSim. 59

3.4 A) Polynomial(blue, red and yellow) and sinusoidal(purple, green and
light Blue) trajectories for planar manipulation. B)Set of the pushed
objects in CoppeliaSim. 60

3.5 Scatter plots displaying the pairs (E,index) for the successful manipu-
lations. 61

3.6 Violin plot describing the distribution of δ separated by test results.
The median value of each distribution is represented by the red square. 62

3.7 A) Visualization of the grasp configuration selected by the proposed
procedure. B) Visualization of the robots deployed in the selected grasp
configuration. 63

3.8 A)Position of the manipulated object during task execution by simu-
lated mobile robots. B)Position of the manipulated object during task
execution by real mobile robots. 64

3.9 Visual representation of the considered system. Symbols are explained
in Sec. 3.2. 66

3.10 Close up visualization of the force applied on the object by robot i

as well as the borders of the associated friction cone. Symbols are
explained in Sec. 3.2. 67

3.11 The robots and object in the CoppeliaSim simulation environment. . . 71
3.12 The robots and object in the test environment. 72
3.13 Upper graphs: desired (black dashed line) and executed trajectory

(orange) in the optimal robots’ configuration (left) and non-optimal
robots’ configuration (right). Bottom left graph: norm of the track-
ing error ep = po,d − po. Bottom right graph: norm of the contact
forces fc1 , fc2 , fc3 along the performed trajectory. Results of the opti-
mal robots’ configuration are shown with continuous lines, non optimal
robots’ configuration results are shown with dashed lines. 73

xiv

3.14 Tracking performance along the first proposed test trajectory, depicted
as a dashed black line. The orange line shows the motion of the object
during the simulated manipulation. 73

3.15 Comparison of the error between the requested body force and the force
that can be applied by the contacts. 74

3.16 Tracking performance of a polynomial trajectory (dashed blue) using 3
robots in a simulated environment, depicted as the orange line. 75

3.17 Tracking performance along the third proposed test trajectory, depicted
as a dashed blue line. The orange line shows the motion of the object
during the simulated manipulation. 75

3.18 Tracking performance along the third proposed test trajectory, depicted
as a dashed blue line. The orange line shows the motion of the object
during the real world manipulation. 76

4.1 E-Puck robots approaching a square object to apply a pushing action
inside the motion capture arena. 80

4.2 Representation of the considered system inside the simulator: the ma-
nipulated object that lies on the ground and the robots used for the
manipulation. The robot model has been simplified to reduce the com-
putational load of simulating multiple robots. 81

4.3 Behaviour of the coverage control algorithm: the initial positions of
the robots are depicted in red, while the final positions are depicted in
blue. Solid gray lines represent the trajectories of each robot. 82

4.4 Visualization of the probability density function used, a Gaussian cen-
tered in pgoal with σx = 2σy and rotated to align with the manipulandum. 84

4.5 A) Artificial potential force for cumulative swarm input, oriented ac-
cordingly to vdes, represented in red. B) Action zones of the proposed
artificial potential field. The Repulsive field acts in Zone 1, shown as
the red area. The attractive potential is active in Zone 2, depicted
in blue. The yellow annulus sector represents Zone 3 and Zone 4 is
represented in purple. 85

4.6 Magnetic field around two wires . 88
4.7 Set of manipulated objects used in the simulator: octagon shape, flower

shape, ellipse shape and rectangle. 89
4.8 Box plot representation of the time required to reach all targets, grouped

by shape and swarm size. 90
4.9 Visualization of the trajectory of the manipulated object (light blue)

with the square shape, during the real world experiment, together with
the pushing robots (dark blue). The trajectory of the center of mass of
the manipulated object is depicted in orange. 91

xv

4.10 Visualization of the trajectory of the manipulated object (light blue)
for each shape, during the simulation, together with the pushing robots
(dark blue). The trajectory of the center of mass of the manipulated
object is depicted in orange. 92

4.11 Visualization of the travel distances used for the quantitative compar-
ison of the proposed method against literature. The distance traveled
in the presented experiment is presented on the right while the distance
considered to evaluate the method in [1] is on the left. 93

xvii

List of Tables

2.1 Summary of position and orientation error among the analyzed test sce-
narios. The position error is computed as the norm of distance between
the final object pose and the desired object pose. The orientation error
is the absolute value of the difference between the final orientation and
desired orientation. 49

3.1 Contingency table describing the frequency distribution of the test and
manipulation results in the collected data 60

3.2 correlation coefficients and associated p-values between the quality met-
ric E and the considered indices . 60

4.1 Sequence of target points for the manipulated object 89

xix

Acronyms

MPC Model Predictive Control.

RRT* Rapidly-exploring Random Tree Star.

NMPC Nonlinear Model Predictive Control.

NLP Non-Linear Programming.

LTVMPC Linear Time-Varying Model Predictive Control.

MHD Modified Hausdorff Distance.

xxi

Dedicated to my family and every
person who believed in me.. . .

1

Chapter 1

Introduction

Robots have grown to be an essential part of modern life. In industrial scenarios,
robots have been used extensively to fulfill tasks that required repetitive and precise
movements or the interaction with heavy payloads. The sensing capabilities of field
robots have been used to explore environments that were previously impossible to
access due to extreme conditions, like the extreme pressure of ocean floors or the lack
of a breathable atmosphere on other planets like Mars.

The purpose of any robot can be summarized to reducing human effort while in-
creasing efficiency. Industrial robots operating inside factories are a prime example
of this, being designed to fulfill a specific task, repeatedly and efficiently, making
human job easier. A common trait can be identified among many different applica-
tions: a robot needs to interact with the environment around it. This interaction can
take various forms, from sensing the many different characteristics of the surrounding
environment to modifying it through manipulation.

In this thesis, we consider a particular class of interactions that a robot can apply
on its surroundings named pushing. Pushing is a manipulation primitive that belongs
to the broader category of non-prehensile manipulation [2]. The most traditional and
used way for a robot to modify its surroundings is through prehensile manipulation
techniques where the object that has to be manipulated is strictly constrained to move
accordingly to the robot’s motion [3]. A firm grasp on the object can be obtained
by very different means, a mechanical gripper, a robotic hand, or a suction end-
effector. This mechanical connection between the robot and the manipulandum often
represents the weakest link of the kinematic chain. Robotic hands and grippers are
generally prone to malfunction, and their repair can be expensive. Non-prehensile
manipulation primitives offer a potential solution to avoid this problem. The main
characteristic of this class of manipulation primitives is the absence of a fixed element
constraining the object with the robot motion. A few examples of these primitives
have been identified in the literature [2]. Throwing an object requires particular care
into setting the dynamic state of the manipulated object at the beginning of the throw
so that the resulting motion matches the desired trajectory to reach the final outcome.
Catching an object, on the other hand, requires accurate detection of its dynamic state
so that the robot can match its trajectory till contact is established. Batting combines
these two primitives in a single collision since hitting an object into a desired final

2 Chapter 1. Introduction

Figure 1.1: e-puck differential drive mobile robot pushing a square
box through three obstacles.

position requires computing the outcome of the impact between the robot and the
object, knowing its incoming trajectory, as well as understanding the dynamics of the
impact. In the sliding primitive, the object is set in motion onto the surface of the
manipulator by a combination of frictional forces and vibrations of the surface. As
the robot vibrates or oscillates, a created virtual force field controls the direction of
motion. Whenever an object is purposely set to roll on the surface of the manipulator,
then it is possible to talk about rolling manipulation. If only pure rolling is considered,
the motion constraints are holonomic when the environment is two-dimensional (2D)
while, for three-dimensional (3D) environments, the constraints turn non-holonomic.
Lastly, the pushing primitive, which is the manipulation primitive considered in this
thesis, is a widely used solution by humans when the object to be manipulated is too
large or too heavy to be grasped. The manipulator applies a force to cause a motion
of the object towards the desired configuration. The pushing primitive is closely
related to sliding since the resulting motion is often the object sliding on the support
surface. However, the critical difference is that, in pushing, the motion is caused by
the action of the manipulator on the object. In contrast, in sliding, the motion comes
directly from the object’s interaction with the support surface. Intuitively, friction
plays a critical role in performing this type of manipulation. The indeterminacy
of the frictional parameters can cause difficulties in predicting the object’s motion.
Nevertheless, as will be explained in Section 2.1.1, under certain assumptions, it is
possible to bypass some of these difficulties and obtain a well-performing prediction
method.

In the multi-robot systems literature collaborative transportation of an object
represents a classical problem. It takes inspiration from the natural world. Small
animals, like ants, collaborate to transport heavy and large loads: several works can
be found in the literature that try to mimic the ants’ behavior to achieve collaborative

Chapter 1. Introduction 3

transportation for groups of mobile robots [4,5]. However, this problem is often solved
considering approaches in which force closure is achieved, planning the motion of the
robots in such a way that they are opportunely displaced around the object [6]. As
an example, a team of robots that locally exchange information is proposed in [7] to
create a suitable formation around the object to transport it successfully. Along the
same line, a large number of robots are attached to the object to exchange forces with
it in [8]. These approaches resemble the most common solution exploited in robotics
for solving the problem of moving an object: the pick-and-place method, where the
object is grasped in a stiff way and is moved to the desired location. While this is
a common and effective solution in several cases, it can not always be applied. For
example, when the object’s size is too large, when its shape is unknown a priori,
when it is excessively heavy, or when its surface can be damaged by a firm grasp, as
discussed in [9].

Nonprehensile manipulation approaches can thus be exploited in those cases above,
as proposed in [2]. Specifically, these strategies include methods in which the robot
imposes the motion to the object through unilateral constraints only, such as in the
case of pushing. While nonprehensile manipulation can represent a solution in the sce-
narios above, its successful implementation requires to take into account the dynamic
models of the robot, the object, and the environment, since the exchanged forces are of
paramount importance. Historically, the mechanics of the pushing manipulation has
been studied in both [9] and [10] in order to identify a model to predict the motion of a
pushed object, which led to the design of planning and control algorithms for pushing
operations such as in [9,11] and more recently in [12,13]. Nonprehensile manipulation
has been also recently implemented, equipping the robots with flexible elements, such
as ropes or cables. For instance, a robot equipped with a tail (i.e., a flexible cable)
is considered in [14], where a planning method to define the motion of the robot is
proposed to exploit such a tail for moving an object by pushing. While this method
has proven its feasibility for simple objects to be manipulated, alternative methods
are necessary for more complex scenarios. Objects with general shape can be consid-
ered by the method proposed in [15], where two mobile robots are connected with a
cable, for cooperatively pulling a heavy object. The main drawback of this solution is
represented by the physical interconnection between the robots (i.e., the cable), which
significantly reduces the freedom of motion. Mobile robots can be controlled to avoid
these issues by directly pushing the object to be manipulated, as discussed in [16].
Thus, it is necessary to guarantee that the mobile robot can move in the environment
without colliding with obstacles, and change the relative position with respect to the
object (i.e., change the pushing direction). This is achieved in [17], where uncertain-
ties in both the control and the motion execution are dealt in an appropriate motion
planning strategy. This last addresses an increased size of the pushed object to accom-
modate the repositioning maneuvers of the pushing robot. A reinforcement learning
framework is proposed in [18] to define the motion pattern for two robots pushing a
box in a very simplistic scenario, in which dynamics are entirely neglected. A similar

4 Chapter 1. Introduction

case is considered in [19], where an artificial potential field is defined to let a robot,
or a group of robots, push an object by simply measuring its instantaneous direction
of motion. Even in this case, dynamic effects (e.g., friction) are not considered, which
makes the proposed method not suitable for complex situations, such as in the pres-
ence of non-uniform friction or when more than two robots are needed. A similar
problem is considered in [20], where a fuzzy controller is proposed for controlling two
robots to push an object with known geometrical properties.

In [21] the authors proposed a control architecture to synchronize the motion of
two mobile robots that have been tasked to transport an object leaned on top of
them without dropping it. In a similar scenario, [22] makes use of a potential method
to generate trajectories for omnidirectional robots carrying an object, and [23] de-
signs a planning strategy that takes the pose of the transported object into account.
A decentralized approach is instead proposed by [24] to transport an object using a
consensus-based formation control law for omnidirectional mobile robots derived using
Fuzzy Wavelet Neural Networks. A more general manipulation scenario is considered
in [25], where the authors propose a decentralized adaptive controller for a team of
robots to manipulate a common payload without exchanging information. A group
of robots is used in [26] to estimate kinematic and inertial parameters of the manip-
ulated objects in a distributed way. Multi-robot manipulation can be applied also in
difficult scenarios, such as [27], where two underwater vehicles coordinate their mo-
tion through minimal exchange of information. Aerial manipulators are used in [28]
to manipulate a long rod considering safety and collision avoidance at the planning
level, while a controller absorbs the disturbances caused by the mutual interaction
between the robots. The authors of [29] proposed a decentralized control strategy
to surround the target object with a group of robots, effectively grasping the object,
before transporting it to a target location.

A common characteristic of these works is the presence of a rigid connection be-
tween the manipulated object and each robot. This is a typical trait of the most
common solution in robotics to the problem of moving an object: the pick-and-place
method, where the object is rigidly grasped by a gripper or a robotic hand and moved
to the desired location. These grasping devices often represent the weakest link in
the system and are thus prone to malfunctions. To avoid this problem, several re-
search groups started exploring the use of non-prehensile manipulation, which does
not require such tools to achieve a manipulation task [9, 13, 30]. The authors of [31]
proposed a leader-follower scheme that enables a pair of robots to push a cubic object
following a reference trajectory. The object is considered as a virtual leader and its
position is computed using an onboard object localization algorithm, while the robots
are considered as followers. The work proposed in [32] describes the design and exper-
imental validation of a distributed cooperative transportation scheme. The strategy
enables a leader-less group of robots to autonomously coordinate an position around
an object to transport it along a reference trajectory without the presence of a central
control instance. Moreover, [1] proposes a planning and control strategy which uses a

1.1. Contribution 5

Figure 1.2: Illustration of the problem addressed in this work: a
group of mobile robots has to manipulate an object by pushing it
along a desired task. The aim is to establish optimal contact points
to simultaneously minimize the tracking error and the contact forces

during the task.

large number of robots to push an object into a goal location.

1.1 Contribution

On the subject of pushing with a single mobile robot, many works treated different
aspects of the problem. On the planning side, the works of K. Lynch and M. Ma-
son [9] provided a solid modeling base used by works as [33,34] to generate a feasible
manipulation plan. None of these work has however addressed the problem from the
point of view of finding the optimal manipulation plan. In this work we approach this
challenge using a two layer planning strategy that optimizes the length of the manip-
ulation trajectories. On the control side, we aimed at improving the performance of
pushing manipulation by implementing several controllers for the robot. Many of the
works present in literature, such as [13], assume that the robot is perfectly capable
of pushing the target object while one of our controllers constrains the motion of the
robot so that the wheels always roll without slipping. Similarly, we also propose a
controller that constrains the curvature of the robot trajectory in order to maintain a
fixed contact with the pushed object. This is achieved in two scenarios, one that con-
siders the contact forces that are transmitted between the robot and the object and
one that directly constraints the robotic motion. This approach differs from those
present in literature such as [13] and [35] since these works never consider robotic

6 Chapter 1. Introduction

pushers with non-holonomic constraints such as mobile robots. Finally, all the related
work always treats one or two aspects of the pushing manipulation at a time. Through
the use of a supervision algorithm we finally create a completely integrated framework
capable of automatically generating a manipulation plan and execute said plan using
a controller. The execution is supervised and monitored to ensure proper completion
of the manipulation. The framework is evaluated extensively using real robots in a
testing scenario.

On the subject of pushing with multiple robots, we approached the topic from
two research fronts. The first research involves a small number of robots (less than
five), tasked to push an object in a planar environment. Instead of displacing the
robots in a predetermined configuration and remodel the task to suit the constraints,
we aim to identify the best configuration for a generic task. First we identify and test
a heuristic to rank the quality of a configuration with respect to a task. The heuristic
considers the forces required by a manipulation task as well as the forces that a cer-
tain configuration can apply. The result can be used to compare two configurations
and identify the the one that is most suited for a certain task. On a more analytic
approach, we also define an optimization problem that computes the best configu-
ration for a task based on the pushing kinematic model. The optimization problem
selects the configuration that can complete a certain task with the least amount of
effort. The contact configuration obtained from either method is then used in a de-
centralized control algorithm to command the motion of mobile robots for pushing.
The controller coordinates the robots’ motions to execute the pushing manipulation
while also maintaining the instructed contact configuration. The scenario is tested
extensively in simulations and real world examples.

The second line of research focuses on the use of many robots. In particular, the
robots are considered in an aggregated manner to provide a coordinated push to an
object. The approach taken is similar to the one presented in [1], however it improves
the manipulation performance by exploiting the flexibility of a multirobot system. The
efficacy of the strategy is proven through simulations and real-world experiments, and
the performance improvement over [1] is verified by comparing the time required by
both strategies to push a unit-size object for a unit of length. The comparison shows
a 50% reduction in time.

1.2 Publications

• "Wheel slip avoidance through a nonlinear model predictive control for object
pushing with a mobile robot”, F. Bertoncelli, F. Ruggiero and L. Sabattini, Pro-
ceedings of 10th IFAC Symposium on Intelligent Autonomous Vehicles (IAV),
2019,

• "Linear time-varying mpc for non-prehensile object manipulation with a non-
holonomic mobile robot", F. Bertoncelli, F. Ruggiero and L. Sabattini, Pro-
ceedings of 2020 IEEE International Conference on Robotics and Automation

1.2. Publications 7

(ICRA), 2020,

• "Characterization of grasp configurations for multi-robot object pushing", F.
Bertoncelli, F. Ruggiero and L. Sabattini, Proceedings of 2021 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS), 2021

• "Planar pushing manipulation with a group of mobile robots", F. Bertoncelli
and L. Sabattini, Proceedings of 20th International Conference on Advanced
Robotics (ICAR), 2021,

• "Pushing with a group of mobile robots", F. Bertoncelli and L. Sabattini, Pro-
ceedings of 3rd Italian Robotics and Intelligent Machines Conference (I-RIM
3D), 2021

• "Non-prehensile Planar Manipulation: A Framework for Pushing with a Single
Mobile Robot", F. Bertoncelli, F. Ruggiero and L. Sabattini, submitted to IEEE
Transaction on Robotics, 2022,

• "Task-Oriented Contact Optimization for Pushing Manipulation with Mobile
Robots", F. Bertoncelli, M. Selvaggio, F. Ruggiero and L. Sabattini, submit-
ted to 2022 International conference on Intelligent Robots and Systems (IROS),
2022

9

Chapter 2

Pushing Manipulation with a
Single Robot

In this chapter we focus the research on the problem of pushing with a single mobile
robot with the objective of designing a completely automated solution to the manipu-
lation problem. In the planning scenario, solutions in literature only solve the problem
of finding a solution to manipulate an object using pushing. We hereby present an
attempt at finding an optimal solution. In the control scenario, we explore the ap-
plication of several constraints on the robot motion in order to improve the pushing
performance. Finally, through the implementation of a supervision algorithm, we pro-
vide a completely integrated framework for single robot pushing of polygonal objects.
The framework is extensively tested through real world experiments.

2.1 Problem Statement and Preliminaries

Consider a planar environment with obstacles where a polygonal object has to be
manipulated by a wheeled mobile robot. Let Σw be the global reference frame and
Σr be the local frame attached to the center of the robot’s axle. The robot’s pose

at time t is represented by χr(t) =
[
xr(t) yr(t) θr(t)

]T
∈ R3 while the pose of

the object to be manipulated, also identified as manipulandum, is represented as

χo(t) =
[
xo(t) yo(t) θo(t)

]T
∈ R3. Moreover, the object has a set SP ⊂ Z+ of sides

on which the robot can apply a pushing action. Finally, the planar positions of the
obstacles present in the environment are collected in the set O.

This chapter is focused on providing a solution to the following problem.

Problem 1 Transport a polygonal manipulandum from the current location χo to the
desired pose χod ∈ R3 by pushing on its sides with a single mobile robot, avoiding
obstacles in the environment.

The proposed solution to the aforementioned problem is the design of a compre-
hensive framework for object pushing with a single mobile robot. The framework is
composed by three main components.

1. Manipulation Planning. An algorithm to plan the necessary actions required to
push the target object to the desired location. To be considered appropriate

10 Chapter 2. Pushing Manipulation with a Single Robot

for the task, the algorithm needs to take into account both the presence of
static obstacles and the motion constraints associated with a stable push [9]. In
particular, the algorithm needs to consider the geometry of both the object and
the robot in different pushing configurations to ensure that a given maneuver is
feasible. Furthermore, the solution provided by the planner should be optimal
with respect to both the length of the path and the time required to perform it.

2. Manipulation Control. A feedback control algorithm that computes the com-
mands for the robot to perform a given task that reduces the robot’s state
error to zero with respect to the given reference. Furthermore, the controller
should ensure the enforcement of appropriate constraints related to the problem,
namely collision avoidance and pushing motion limits.

3. Manipulation Supervision. A high-level decision algorithm that coordinates the
planning and execution of the manipulation task interacting with the controller
and the planner.

The proposed framework is capable of performing the required manipulation task
under the following assumptions.

• The friction conforms to Coulomb’s law. The friction reaction force of a sticking
contact can act in any direction tangential to the contact normal, with maximum
magnitude µfn, where fn ∈ R+ is the magnitude of the normal contact force
and µ ∈ R+ is the friction coefficient associated with the contact. For a sliding
contact, the frictional force resists the motion with a force of magnitude µfn.

• The environment is planar. All the pushing forces lie on the plane while gravity
acts downward along the vertical axis.

• The contact friction coefficient is uniform across the plane.

• The motion is slow enough that all inertial forces are negligible or instanta-
neously absorbed by the frictional forces. The frictional support forces always
balance the pushing forces. This corresponds to the quasi-static assumption.

2.1.1 Preliminaries

The principal connotation of pushing manipulation is the limited set of generated
motions due to the reduced contact interaction and lack of force closure. For example,
an object that can be pushed in one direction cannot be moved in the opposite one by
simply reversing the motion of the pusher. In [36], the authors presented a method
to determine the possible movements of an object sliding on a plane during multiple
contact pushing, focusing in particular on the motions that guarantee that the pushing
contacts are sticking to the objects and not sliding or breaking. The resulting approach
is independent of the exact distribution of support forces on the object from the plane.
In [9], this method has been developed further by analysing the controllability of the

2.1. Problem Statement and Preliminaries 11

Figure 2.1: Feasible ICR for pushing a polygonal object. The arrows
represent the borders of the friction cone. The shaded area on the left
represents the counter clock-wise set of centers of rotation, while the

area on the right contains the clock-wise ICRs.

pushing manipulation primitive and introducing a graphical procedure to determine
an approximation of the locations of the centers of rotation deemed feasible for stable
pushing. The procedure draws two sets of rotation centers, one for clock-wise rotation
and one for counter clock-wise. An example of the resulting regions for a polygonal
object is provided in Figure 2.1. By default, the procedure considers a holonomic
pusher. To obtain the overall motion constraints acting on the pusher-slider system,
it is necessary to consider the motion constraints acting on the pusher robot as well.
This is obtained by intersecting the centers of rotation for stable pushing with the
centers of rotation for the mobile robot. The instantaneous centers of rotation (ICR)
for a differential drive mobile robot lie on the line of its axle. For the experimental case
considered in this chapter, which is the planar manipulation of a square object, the
intersection of the two sets is visualized in Figure 2.2. The resulting set of ICR can be
mathematically translated into lower limits on the curvature radius associated with the
robot’s motion. The limit for the clock-wise motion curvature radius is represented by
rlim− ∈ R− while rlim+ ∈ R+ represents the limit for counter clock-wise motion. This
lower bound constraint is used in the planner to compute a proper pushing motion
and in the controller to ensure the contact is maintained during pushing operations.
The following sections will describe how these constraints have been integrated in the
proposed framework.

12 Chapter 2. Pushing Manipulation with a Single Robot

Figure 2.2: Intersection of the pushing feasible ICR with the differ-
ential drive mobile robot motion constraints.

2.2 Manipulation Planning

This section introduces the planning algorithm to compute the trajectories the robot
has to follow in order to push the object towards the desired pose. The desired
output from the algorithm is a list of collision free, curvature constrained trajectories
for the mobile robot along with an indication of the pushing side associated with
each trajectory. To achieve this output we propose a two part planning algorithm
composed by a Rapidly-exploring Random Tree Star (RRT*) [37] holonomic planner
and an A* search algorithm.

2.2.1 Holonomic planner

The first part of the proposed solution, the holonomic planner, computes a path for
the object around the obstacles that leads to the desired object pose. This path Γ is
expressed as an ordered list of object poses with the initial pose at the beginning and
the desired target pose at the end. The environment is represented using an occupancy
grid map. Each cell of the grid represents a portion of space and can be either free or
occupied. A collision is detected when the footprint of the object intersects one of the
occupied regions in the map, deeming a position invalid. The RRT* algorithm grows
the random tree using valid positions starting from the initial object pose, considering
the following cost function:

C(Γ) = λ1L(Γ) + λ2(min
p∈Γ

d(p,O))−1 (2.1)

where the first element of the sum is the length of the path Γ and the second element
indicates the reciprocal of the minimum clearance distance of the path with respect
to the obstacles in the map. The purpose of this cost function is to determine a

2.2. Manipulation Planning 13

trajectory that both minimizes the total length of the path while maximizing the
minimum clearance. The coefficients λ1, λ2 ∈ R+ are parameters to regulate the
trade-off between the two, often opposing, objectives. The resulting path Γ from the
algorithm is used as a guide for the second part of the proposed planning solution.

2.2.2 Search Algorithm

The second layer of the planning algorithm computes the final manipulation plan. The
plan is composed of an ordered list of reference trajectories for the robot to follow,
each associated to a pushing side. Therefore, the execution algorithm, explained
in Section 2.5, will know that, in order to complete the pushing manipulation, the
robot has to push the object following a sequence of defined trajectories, applying
the pushing action on a specific side for each trajectory. This manipulation plan
is assembled through the use of a graph search algorithm, A* [38], that iteratively
populates the graph with new nodes and connections until a solution is found.

The underlying idea behind this solution is to look into the path Γ obtained
by the previous layer, for a sequence of key object poses to use as waypoints for
the manipulation. These waypoints are used to compute the curvature-constrained
trajectory for the robot to follow in order to manipulate the object through all of
the waypoints, possibly changing the pushing side in order to reach the desired final
position and orientation for the object.

The search algorithm is detailed in Algorithm 1. The search tree is composed
of nodes associated with a configuration in a 4D space. The first 3 components
represent a planar pose of the pushed object γ ∈ Γ, while the fourth component
sp ∈ Z+ represents which side of the object the robot is positioned in contact with.
The tree is initialized with a root node q0 representing the target pose for the object
with a null pushing side. Each node has an associated cost f that depends on its
configuration and the configurations of the nodes connecting it to the root node q0.
The cost f of each node is composed also by an heuristic cost that estimates how far
is q from the search goal. At every algorithm iteration, the algorithm selects the node
q in the graph with the lowest total cost f , and generates a set of feasible successors
for the node to insert in the graph, therefore the presence of cost f is necessary to
guide the search algorithm towards the solution. The detailed formulation of f will
be introduced later in this section. When a node associated with the initial position
of the object is selected at the beginning of the iteration, the algorithm reports a
solution.

In the successors generation procedure, Algorithm 2 looks iteratively through Γ

for an object pose γ that can be pushed into the selected node position by having the
robot follow a curvature-constrained, obstacle-free polynomial trajectory indicated by
P. If such pose is found, a node associated with it is created and inserted into the
graph.

14 Chapter 2. Pushing Manipulation with a Single Robot

We chose a third-order polynomial trajectory P to connect two states, expressed
as:

x(s) = s3xf − (s− 1)3xi + αxs
2(s− 1) + βxs(s− 1)2 (2.2)

y(s) = s3yf − (s− 1)3yi + αys
2(s− 1) + βys(s− 1)2 (2.3)[

αx

αy

]
=

[
kf cos θf − 3xf

kf sin θf − 3yf

]
,

[
βx

βy

]
=

[
ki cos θi − 3xi

ki sin θi − 3yi

]
(2.4)

where s ∈ [0, 1] represents the arc parameter of the curve, while xi, yi, θi and xf , yf , θf

are respectively the initial and final poses of the trajectory.
Let sp be the selected pushing side on the object. The initial pose of the curve is

the pose the robot would have when placed in pushing contact on sp with the object
situated in γ. The final pose is computed in the same way but the object is situated
in the pose associated with the selected node q. An example of the robot in pushing
contact with the object is visualized in Figure 2.2.

The remaining parameters for the polynomial trajectory are ki and kf , these are
strongly realated to the resulting shape and length of the trajectory. In order to
find the shortest polynomial trajectory whose curvature abides the pushing motion
constraints expressed in Section 2.1.1, the value for ki and kf is computed by solving
the following constrained optimization problem.

argmin
ki,kf

∫ 1

0

√
x′(s)2 + y′(s)2ds (2.5)

subject to ki, kf > 0 (2.6)

rlim− ≤ Rc(s) ≤ rlim+ ,∀s ∈ [0, 1] (2.7)

where:

Rc(s) =
(x′(s)2 + y′(s)2)

3
2

x′(s)y′′(s)− x′′(s)y′(s)
(2.8)

is the curvature radius associated with each point of the polynomial path. x′(s),y′(s)
and x′′(s),y′′(s) indicate the first and second derivatives of x(s),y(s) with respect to s

respectively. Constraint (2.7) expresses the motion constraint for pushing detailed in
Section 2.1.1. The optimization problem is nonlinear with a semi-infinite constraint,
more details on how it has been implemented are shown in Section 2.2.3

If the optimization problem reports a solution, the resulting trajectory is checked
for collisions with the environment. If the trajectory is collision free then the object
can be pushed from γ to the pose associated with q then a successor of q is found. If
the found successor has a different pushing side sp than q, an additional intermediate
node is inserted, representing the change of pushing side. Each node has an associated
cumulative cost f , computed by adding a incremental component to the cost of the
previous node up the tree. The cost f(q) and its components g(q) and h(q) are defined

2.2. Manipulation Planning 15

q:(poi , sp = 1)

q:(poi , sp = 2) q:(poi , sp = 3)

q:(pok , sp = 3)

Figure 2.3: Example of graph generated by the search algorithm.
Every node q has an associated state composed of a 2D pose γ and a

pushing side sp.

as follows:

f(q) = g(q) + h(q) (2.9)

g(q) = d(q, q[−1]) + g(q[−1]) (2.10)

h(q) = l(Γq
0) (2.11)

The first component g(q) is computed by adding the distance from q to its parent
node q[−1] to the component g associated with the parent node. If the two nodes
have different associated object position, the cost increment is the length of P. If q
and q[−1] have the same object position, the difference is represented by the change
in pushing side. If the previous node has the same sp, the incremental component is
computed as the length of the polynomial trajectory connecting the two nodes. If the
previous node has the same object pose but different sp, the incremental component
represents the distance between the robot’s two pushing positions. To complete the
total cost f , it is necessary to add a heuristic cost component h to the previously
described cumulative one. This heuristic provides an estimate of the distance between
the current node and the goal and, combined in the cumulative cost f , enables the
algorithm to pursue the search from the node with the lowest cost. For each node,
this heuristic is computed as the length of Γ up to the pose γ associated to the new
node. Figure 2.3 displays an example of the graph generated by the A* algorithm.
In particular, the graph displays the two types of connections between nodes that are
allowed. The first type, displayed by the connection between the top node and its
children, represents a change in pushing side, implying that the robot will have to
change its contact side on the object to proceed with the pushing manipulation. The
second type represents the actual pushing manipulation. In the represented case the
robot will push the object from pok to poi using pushing side sp = 3 by moving along
a polynomial trajectory.

The solution of Algorithm 1 is computed iteratively from the final node q as a
list of the polynomial paths from each node to its parent. A list of the pushing sides
associated to each pushing path is also created to aid the execution.

16 Chapter 2. Pushing Manipulation with a Single Robot

Algorithm 1: Search Algorithm
input : path Γ
output: List of pushing trajectories

1 begin
2 Put start node q0 in OPEN list
3 while OPEN ̸= ∅ do
4 select q from OPEN with the lowest f(q)
5 if pose of q is initial pose of Γ then
6 compute solution
7 return success

8 Generate S the list of successors of q
9 foreach successor s in S do

10 if OPEN contains a node with same configuration and lower cost
f then

11 add s to CLOSED list and continue

12 if CLOSED contains a node with same configuration and lower
cost f then

13 add s to CLOSED list and continue

14 return failure

2.2.3 Planner Implementation

The proposed algorithm has been implemented inside the ROS [39] framework. The
first layer of the planning algorithm is implemented in C++ using the open motion
planning library (OMPL) [40] over R2 and the RRT* holonomic planning algorithm.
The newly generated state is checked for collision against the map at every iteration.
Furthermore, a termination condition is applied to the algorithm to end the execution
when the best path has been found. A representation of the path identified in this layer
is visualized in Fig. 2.4. The A* search algorithm composing the second layer of the
planning algorithm, detailed in Algorithm 1, receives as an input the path computed
by the previous layer as an ordered list of 2D positions and searches a sequence of
connections from start to finish using the positions as a guideline for searching. As
detailed in Algorithm 2, the successors generation procedure requires the solution
of a semi-infinite programming problem. The approach used to solve this problem
discretizes the curvature constraint by sampling points along the generated trajectory
and computing the curvature at this reduced number of points, thus approximating
the semi-infinite constraint. This approach represents a trade-off between the time
required to calculate a solution and the accuracy obtained in terms of constraint
satisfaction. The resulting nonlinear optimization problem is solved using a Sequential
Quadratic Programming solver. To prevent the occurrence of infeasible trajectories
resulting from the optimization solver, the resulting path is post-checked for both
curvature feasibility and collision avoidance. Figure 2.5 show an attempt to connect
two different states on the identified holonomic path while Fig. 2.6 displays the final
result of a planning procedure.

2.2. Manipulation Planning 17

Figure 2.4: Results of the first planning layer visualized in Rviz.
The arrows represent the desired direction of motion for the pushing

system.

Figure 2.5: Snapshot of the planning search algorithm connecting
two states from the path obtained by the first layer. The pink arrows
represent the output of the first planning layer. The blue line shows an
attempt of the search algorithm in connecting two intermediate states.

Figure 2.6: End result of the manipulation planning.

18 Chapter 2. Pushing Manipulation with a Single Robot

Algorithm 2: Successors generation
input : Selected node q, path Γ
output: List of successors node S

1 begin
2 Set γ as the first element of Γ
3 while S = ∅ and γ ̸= q do
4 foreach pushing side do
5 compute initial robot pushing pose given γ and pushing side
6 compute final robot pushing pose given the pose of q and pushing

side
7 solve constrained optimization obtaining polynomial path
8 if path collision free then
9 if pushing side sp ̸= sp of q then

10 create new node with properties g,h,f ,P,p
11 add new node to S

12 if S = ∅ then
13 set p as the following element of Γ

14 return S

2.3 Manipulation Control for Wheel Slip Avoidance

The first approach to control the motion of a mobile robot for pushing manipulation
has focused on maintaining the wheels of the robots rolling without slipping. The
loss of traction at the wheels can impact the pushing performance greatly, therefore
the contribution of this work is the design of a controller, based on Nonlinear Model
Predictive Control (NMPC), that avoids the slipping of the wheels of a mobile robot.
The proposed formulation allows us to explicitly consider the dynamics of the robot,
the object, and the friction. In particular, in this work, we directly integrate con-
straints that guarantee that wheel slip becomes negligible. The dynamic model of the
mobile robot is introduced in Section 2.3.1. Section 2.3.2 contains the main results,
namely the proposed NMPC scheme and the wheel slip avoidance constraints. As a
case study, in Section 2.3.3, we present the dynamic simulations results obtained by
controlling the robot through the proposed NMPC to push a box.

2.3.1 Modeling

The dynamic model of the robot is introduced in this section. We consider a differential
drive robot moving on a plane, whose schematic representation is depicted in Fig. 2.7.
The robot is equipped with a frontal bumper rigidly attached to its body. Let Σw be
the fixed world frame, and Σr be the body frame attached to the midpoint of the axle

of the mobile robot. In addition, let pr =
[
xr yr

]T
∈ R2 be the position of Σr with

respect to Σw, υ ∈ R and ω ∈ R be the heading and angular velocities of the mobile
robot, respectively. Finally, let θr ∈ R be the angle expressing the rotation of Σr in

2.3. Manipulation Control for Wheel Slip Avoidance 19

Figure 2.7: Schematic representation of the differential drive mobile
robot. The black rectangles are the wheels. The black circle is the
caster wheel. The frontal bumper is represented by the white rectangle

in front of the wheels.

Σw. The kinematic model of the mobile robot can be expressed as follows:ẋrẏr
θ̇r

 =

cos θr 0

sin θr 0

0 1

[υ
ω

]
. (2.12)

Through standard computations, the dynamic model of the mobile robot was derived
in [41], and it can be expressed as

ẋr = cos θrv

ẏr = sin θrv

θ̇r = ω(
mr +

2Iw
r2

)
v̇r =

1

r
(τR + τL)−mcdω

2(
Ir +

2l2

r2
Iw

)
ω̇r =

l

r
(τR − τL) +mcωvd

(2.13)

with q =
[
xr yr θr υ ω

]T
∈ R5 being the state vector of the robot, mr ∈ R+ the

total mass of the vehicle, Ir ∈ R+ the inertia moment of the robot about the vertical
axis, Iw ∈ R+ the inertia moment of a wheel about its axis, l ∈ R+ the half the wheel
separation distance(see Fig. 2.7), r ∈ R+ the wheel radius, d ∈ R+ the distance of the
center of mass of the body of the robot on the robot axis (see Fig. 2.7), and mc ∈ R+

the mass of the body of the robot (i.e., excluding the wheels). The control input is

20 Chapter 2. Pushing Manipulation with a Single Robot

the pair u =
[
τR τL

]T
∈ R2, which are the torques acting on the wheels.

2.3.2 Controller Design

In this section, we describe the design of the controller used to command the robot.
We choose the NMPC scheme because it allows to include dynamic constraints in the
design of the controller explicitly. The main idea of the scheme is to optimize the
predicted future behavior of the system over a finite time horizon.

Optimization Problem Formulation

The idea behind the NMPC is the repetitive solution of an optimal Non-Linear Pro-
gramming (NLP) problem . Given the measured state q0 at each controller time step
Ts, the discretized version of the dynamic model is employed by the NMPC to predict
the future behavior of the system state q̂(k), with k = 0, . . . , N − 1, where N ≥ 2

is the prediction horizon, and q̂(0) = q0. Such a prediction is useful to optimize
the control sequence u(0), . . . , u(M − 1), with 0 < M ≤ N the control horizon, and
u(i) = u(M − 1) for i = M, . . . , N − 1. The peculiarity of the NMPC algorithm is
that only the first element u(0) of the sequence is applied to the system. The NLP is
repeatedly solved from each new acquired measure. The NLP minimizes an objective
function, generally composed of the states and the inputs, with respect to the input
variable and subject to a set of constraints. Nevertheless, if formulated in this way,
the NLP becomes of high dimension, and the computation time and the accuracy of
the solver worsen. Instead, we use the recursive elimination methodology proposed
in [42]. Such a methodology decouples the dynamic model of the system from the
solution of the Non-Linear Programming (NLP) problem by reducing the size of the
optimization variable and allowing each problem to be treated by specialized solu-
tion methods. With a slight abuse of notation regarding the dependencies for each
function, the optimization control problem can be written as

minimize J(z)

w.r.t. z = (u(0)T , . . . , u(M − 1)T)T ∈ R2M

s.t G(z) ≤ 0̄,

(2.14)

where

J(z) = e(N)TPe(N) + u(N)TWNu(N) +

N−1∑
k=1

e(k)TQe(k) + u(k)TWu(k) (2.15)

is the cost to minimize, while Q ∈ R5×5, P ∈ R5×5, W ∈ R2×2 and WN ∈ R2×2 are
diagonal and positive semi-definite matrices1. The error e(k) ∈ R5 is the difference
between the predicted q̂(k) and the desired state qref (k) ∈ R5. Such an error is

1The matrices W and WN can be zero matrices since we force the control input to be bounded
by including the saturation of the actuators explicitly.

2.3. Manipulation Control for Wheel Slip Avoidance 21

expressed with respect to Σr and it is calculated as

e(k) = R(θr(k)) (q̂(k)− qref (k)) , (2.16)

with

R(θ(k)) =

cos(θ(k)) sin(θ(k)) 0 0 0

− sin(θ(k)) cos(θ(k)) 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 ∈ R5×5. (2.17)

By denoting with

q̂(k + 1) = F (q(k), u(k)), k = 0, . . . , N − 1, (2.18)

the Euler-discretized version of (2.13), the robot state prediction is calculated through (2.18)
from the current measure q0. Finally, the inequality constraints are expressed as
G(z) ≤ 0̄, with 0̄ ∈ R13N the zero vector of proper dimension, and G(z) ∈ R13N

defined as detailed in the next subsection.

Wheel Slip Constraints

The first subset of constraints is the following

xr(k) + xlim ≤ 0, (2.19a)

xlim − xr(k) ≤ 0, (2.19b)

yr(k) + ylim ≤ 0, (2.19c)

ylim − yr(k) ≤ 0, (2.19d)

Ωr(k) + Ωlim ≤ 0, (2.19e)

Ωlim − Ωr(k) ≤ 0, (2.19f)

Ωl(k) + Ωlim ≤ 0, (2.19g)

Ωlim − Ωl(k) ≤ 0, (2.19h)
for k = 0, . . . , N − 1. The inequalities (2.19a)—(2.19d) limit the position of the

robot inside a rectangle of the plane delimited by the coordinates xlim ∈ R and
ylim ∈ R in Σw. The inqualities (2.19e)—(2.19h) impose instead that the velocities of
the wheels remain inside the saturation limit Ωlim ∈ R of the motors.

Beyond the constraints introduced above, the main focus of our work is the design
of an explicit condition to avoid wheel slip. Wheel slip is defined as the relative
motion between a tire and the surface on which it is moving. This relative motion
occurs when the force needed to maintain the contact exceeds the maximum friction
force. The Coulomb friction model provides the following representation of the wrench
transmitted to an object through a point contact with friction [43]

Fci =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

T

fci ∈ R6, (2.20)

22 Chapter 2. Pushing Manipulation with a Single Robot

Figure 2.8: Planar forces and torques acting on the robot.

where fci ∈ FCci and

FCci ≜ {f =
[
ft1 ft2 fn

]T
∈ R3 :

√
f2
t1 + f2

t2 ≤ µfn, fn ≥ 0} (2.21)

is the so-called friction cone, while ft1 ∈ R and ft2 ∈ R are the components of a force
f tangential to the contact, and fn ∈ R is the component of f normal to the contact
with positive sign going inside the object. The friction coefficient between each wheel
and the ground is denoted by µ ∈ R+.

Following such representation, to obtain wheel slip avoidance, we can conclude
that the frictional forces need to balance the forces exerted by the robot to achieve a
specific motion at any time. The robot interacts with the floor in three points: the two
driving wheels and the caster. We assume the planar forces transmitted by the caster
wheel are negligible, and we consider the vertical component only. Figure 2.8 shows
the forces exerted by the driving wheels decomposed into the longitudinal (subscript
u) and lateral (subscript w) components. To maintain a rolling contact between the
wheels and the ground (i.e., to avoid slippage) the following relations need to be
verified: √

F 2
uL + F 2

wL ≤ µNL,
√
F 2
uR + F 2

wR ≤ µNR. (2.22)

2.3. Manipulation Control for Wheel Slip Avoidance 23

These forces are related to the robot’s movement through the following equations:

mrv̇u = mrv̇r = FuL + FuR, (2.23)

mrv̇w = mrω̇r∆ = FwR + FwL, (2.24)

Irθ̈r = Irω̇r = (FuR − FuL)l + (FwL + FwR)∆. (2.25)

NL +NR +Nca = mrg, (2.26)

Ncalca −mrg∆+mrv̇r(h− r) = 0, (2.27)

NL −NR =
mrv̇w(h− r)

l
. (2.28)

where (2.23) and (2.24) describe the movement along the robot’s XR and YR axes
respectively and (2.25) describes the rotation about the ZR axis. Equation (2.26)
relates the reaction forces of the ground caused by the weight of the robot. Considering
the equilibrium to the rotation about the robot’s XR and YR axis, equations (2.27) and
(2.28) can be derived, which relate forces FuR, FuL, FwL, and FwR with the vertical
forces acting on the robot. In particular, Fig (2.9a) depicts the considered forces in a
frontal section of the robot, where NL ∈ R and NR ∈ R are the left and right reaction
forces of the wheels with the ground, and mrv̇w is the apparent inertial force caused
by the robot lateral motion. Conversely, Fig. (2.9b) depicts the forces in a lateral
view of the robot, where Nca ∈ R is the reaction force of the caster with the ground,
mrg represents the weight of the robot and mrv̇r is the apparent inertial force caused
by the longitudinal motion of the robot. Notice that in equations (2.23)—(2.28) the
forces FwL and FwR appear always in the form FwL + FwR thus it’s not possible to
extract the two forces from the system of equations, preventing the direct computation
of (2.22).

If we assume FwLFwR ≥ 0, the following relations are always verified√
F 2
uL + F 2

wL ≤
√
F 2
uL + (FwL + FwR)2, (2.29)√

F 2
uR + F 2

wR ≤
√
F 2
uR + (FwL + FwR)2. (2.30)

Such an assumption implies that there is no relative motion between the wheels on
the YRZR-plane of the robot. The truthfulness of (2.29)—(2.30) allows us to write the
following two constraints which imply (2.22) by the transitive property of inequalities,√

F 2
uL + (FwL + FwR)2 ≤ µNL, (2.31)√

F 2
uR + (FwL + FwR)2 ≤ µNR. (2.32)

Since it is possible to extract NL,NR,Nca,FuR,FuL and FwR+FwL from (2.23)—(2.28)
the constraints are computable from the controller point of view. It is worth noting

24 Chapter 2. Pushing Manipulation with a Single Robot

(a) Frontal view of the robot. (b) Lateral view of the robot.

Figure 2.9: Forces exchanged between the robot and the ground.

that the solution extracted from the system of equations above can assume non-
physical values unless we impose the following constraints to the problem

NL ≥ 0, NR ≥ 0, Nca ≥ 0. (2.33)

These relations also imply that the wheels remain on the ground at all times. The rela-
tions (2.31)—(2.33) are added to the inequality constraints of the problem (2.14). The
final inequality constraint vector G(z) is composed by (2.19a)—(2.19h) and (2.31)—
(2.33), and it is repeted for each time step of the prediction horizon.

2.3.3 Simulations

In this section, we present the simulation results to validate the proposed controller.
The simulations show a Pioneer 3-DX tracking a trajectory generated by a motion
planning algorithm to push an object to the desired configuration (position plus ori-
entation). To simulate the system, we use the V-REP simulator controlled by a
MATLAB script which handles the data collection and the controller calculations

2.3.4 Case studies

To compute the discretized model of the system (2.18), the following parameters are re-
trieved from the datasheet of the physical robot: L = 0.17 m, R = 0.095 m, m = 17 kg,
mc = 16 kg, Ir = 0.1307 kgm2, Iw = 0.0051 kgm2, and d = 0.15 m. The matrices of
the functional cost (2.15) are chosen to reduce the local error along the YR compo-
nent in ΣR. This choice implies that the robot moves to initially reduce, as much as
possible, the lateral error from the target, and orientation is only adjusted afterwards.
Then, by tuning, the chosen gains are Q = diag(

[
2.5 5 0.25 0.05 0.05

]
), P = 4Q,

while W and WN are zero matrices. To compute G(z), instead, the parameters are
experimentally tuned as xlim = ylim = 10 m, Ωlim = 4π rad/s, h = ∆ = 0.12 m,
and µ = 0.5. The applied prediction horizon is set as N = 15 with control horizon
set as M = 6. The time interval between the predicted instants is Ts = 0.1s. The
simulations are performed on a standard PC, with Intel Core i7-4510U CPU, on which

2.3. Manipulation Control for Wheel Slip Avoidance 25

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

150 155 160 165 170 175

0

0.05

0.1

Figure 2.10: Position error with and without constraint.

it is installed MATLAB R2018b and V-REP 3.5.0. A MATLAB script is in charge of
elaborating the measures acquired from V-REP, solve the Nonlinear Model Predictive
Control (NMPC) algorithm and send the actuation command to V-REP, which is thus
employed as a dynamic simulator and not as just a visualizer.

Three case studies are addressed in the following. The first one is necessary to test
the NMPC approach for tracking the trajectories that compose a manipulation plan
with a mobile robot. The second case study shows the pushing manipulation on the
same trajectory, while the latter case study includes some parametric uncertainties
and discrepancy between the simulated robot in V-REP and the parameters employed
for the NMPC algorithm in MATLAB.

Case study I.

In this case study, the robot must follow a given trajectory without slipping. First, the
robot moves towards the initial point of the trajectory until it reaches a 0.05 m radius
around the point. Then, the robot starts following the trajectory. To validate the
constraint, we executed a simulation with the wheel slip avoidance constraints (2.31)—
(2.32) active, and a simulation without it. Figure 2.10 shows the tracking errors for
both the simulations. Figure 2.11 shows the robot tracking the trajectory with the
constraint active: red blocks represent obstacles to be avoided. The trajectory starts
in the bottom-right part of the plot (position (0,−3)), and is composed of different
portions: arc-shaped portions are introduced to let the robot change its orientation
with respect to the object and therefore changing its pushing side. It is possible to
notice that the robot follows the trajectory in a very precise manner. Figure 2.12 and
2.13 show the difference between the surface velocity of each wheel and the longitudinal
velocity of its axle for the first 13 s of simulation: when this difference is non-zero, then
wheel slip is happening. The plots clearly show that the application of the constraints
significantly reduces the presence of wheel slip.

26 Chapter 2. Pushing Manipulation with a Single Robot

-6 -4 -2 0 2

-2

0

2

4

6

Figure 2.11: Robot trajectory and reference: red blocks represent
obstacles.

0 2 4 6 8 10 12
-0.02

-0.01

0

0.01

0.02

0.03

Figure 2.12: Longitudinal velocity difference with constraint: non-
zero values imply the presence of wheel slip.

0 2 4 6 8 10 12
-0.5

0

0.5

1

1.5

Figure 2.13: Longitudinal velocity difference without constraint:
non-zero values imply the presence of wheel slip.

2.3. Manipulation Control for Wheel Slip Avoidance 27

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

150 155 160 165 170 175

0

0.05

0.1

Figure 2.14: Position error for the pushing manipulation,

0 50 100 150 200 250
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure 2.15: Longitudinal velocity difference with the box.

Case study II.

In this second case study, pushing manipulation is addressed. The size of the box to
be pushed is 0.25× 0.25× 0.25 m, and it weighs 3 kg. The presence of the box sliding
on the floor acts as an unmodeled disturbance to the system. The robot behaves as
discussed in case study I, following a trajectory designed for pushing manipulation:
it moves to the starting point, and then continues its motion, tracking the trajectory.
Figure 2.14 shows the position error of the robot during the simulation. The robot can
track the trajectory regardless of the presence of the box. In Figure 2.15 we observe
the longitudinal velocity difference of each wheel across the whole simulation. The
differences remain bounded in spite of the presence of the box.

Case study III.

In a real environment, it is very likely to have inaccuracies in parameters, especially
the friction coefficient µ. To ensure the controller is robust to uncertainty regarding
this parameter, we conducted a simulation where the value of the friction coefficient
for the wheels in the controller’s parameters (implemented in MATLAB) is set to

28 Chapter 2. Pushing Manipulation with a Single Robot

0 50 100 150 200 250 300 350

0

0.5

1

1.5

2

180 190 200 210 220

0

0.05

0.1

Figure 2.16: Position error for the pushing manipulation with inac-
curate µ.

0 50 100 150 200 250 300 350
-0.1

0

0.1

0.2

0.3

Figure 2.17: Longitudinal velocity difference with inaccurate µ.

µ = 0.7, therefore the controller assumes that the wheels of the robot are capable
of applying a greater force. As per the other simulations, the robot moves to track
the assigned trajectory. Figure 2.16 shows the tracking performance of the robot
subject to disturbance. From Fig. 2.17 we can conclude that the controller is robust
to inaccuracies in the friction parameter.

2.4 Maintenance of Pushing Contact

2.4.1 Problem statement

Consider a wheeled mobile robot moving in a bi-dimensional environment, where a
polygonal planar object has to be manipulated. Let Σw and Σr be the global reference
frame and the body frame attached to the center of the robot’s axle, respectively.
Let the pose of the mobile robot at time t be represented by the vector χr(t) =[
xr(t) yr(t) θr(t)

]T
∈ R3, where xr(t), yr(t) ∈ R represent the position of Σr in

2.4. Maintenance of Pushing Contact 29

Σw, and θr ∈ R is the rotation of Σr with respect to Σw. A visualization is provided

in Fig. 2.18. In a similar way, let χo(t) =
[
xo(t) yo(t) θo(t)

]T
∈ R3 represent the

pose of the object, as shown in Fig. 2.19.
We provide a solution to the following problem.

Problem 2 Control the motion of the mobile robot to manipulate the object through
pushing maneuvers, in such a way that the trajectory χo(t) closely tracks the desired
one χd(t), starting from the initial pose χo(0).

In the following, we will assume the mobile robot to behave as a unicycle. The
choice is motivated by the simplicity of notation introduced by such a model, and
by the fact that several real-world mobile robots (as differential-drive robots) can be
represented according to this formulation [44]. We assume that all the considered
contacts are rigid, that the robot wheels do not slip, and that the forces exchanged
in the interaction follow Coulomb’s model of friction. Moreover, we decompose each
contact force in two components, aligned with the edges of the friction cone [3]. The
angle between each component and the contact normal is

θµ = tan−1 µ, (2.34)

where µ > 0 is the friction coefficient associated with the interacting surfaces. A
visualization of the used decomposition is provided in Figure 2.19. The motion of the
controlled system is assumed quasistatic (i.e, it is slow enough that inertial forces are
negligible). Moreover, we assume the mobile robot to be equipped with a planar end-
effector (i.e., a planar contact surface), such that the surface used to interact with
the object is consistent and homogeneous. During the interaction, the end-effector
is supposed to be parallel to one of the sides of the polygonal object. This type of
interaction is typically referred to as line contact, modeled as if the only contact points
were the extreme points of the line [45].

2.4.2 Modeling

In this section, we introduce the mathematical model of the motion of the system
and the constraints applied within the Model Predictive Control (MPC) controller
for planar manipulation tasks. First, we describe a second-order model of the mobile
robot and the error dynamic for the desired trajectory, then the mathematical model
of the pushed object motion is introduced.

Robot Model

Defining vr, ωr ∈ R as the linear and angular velocities of the robot, respectively (see
Fig. 2.18), the state of the robot is defined as ξ(t) ∈ R5, given by

ξ(t) =
[
xr(t) yr(t) θr(t) vr(t) ωr(t)

]T
. (2.35)

30 Chapter 2. Pushing Manipulation with a Single Robot

Figure 2.18: Schematic representation of the differential drive mobile
robot. The black rectangles are the wheels. The black circle is the
caster wheel. The frontal bumper is represented by the white rectangle

in front of the wheels.

For ease of notation, in the following, dependence on time will be omitted, when not
strictly necessary.

Define now ar, εr ∈ R as the inputs for the robot, given as the linear and angular
acceleration, respectively. Hence, the model of the robot motion can be written as

ξ̇ =

cos θrvr

sin θrvr

ωr

0

0

+

0

0

0

ar

εr

 . (2.36)

Solution of the Problem stated in Section 2.4.1 passes through the generation of the

desired trajectory ξd(t) =
[
xrd(t) yrd(t) θrd(t) vrd(t) ωrd(t)

]T
∈ R5 for the robot

to realize the pushing maneuvers. Let e(t) =
[
exr(t) eyr(t) eθr(t) evr(t) eωr(t)

]T
∈

R5 be the error vector with respect to the desired reference frame centered in (xrd(t), yrd(t)),
and oriented as θrd(t), that is defined as

2.4. Maintenance of Pushing Contact 31

e(t) =

cos(θrd(t)) sin(θrd(t)) 0 0 0

− sin(θrd(t)) cos(θrd(t)) 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 (ξ − ξd). (2.37)

Considering the robot motion (2.36) and the error vector (2.37), we can describe the
system error dynamics as follows:

ė(t) = f(t) =

cos(eθr)(evr + vrd)− vrd + eyrωrd

sin(eθr)(evr + vrd)− exrωrd

eωr

ar − v̇rd

εr − ω̇rd

 . (2.38)

Pushed Object Model

Consider, as discussed in Section 2.4.1, a polygonal object pushed by the robot with
line contact on one of its sides. The contact forces are modeled using the components
along the friction cone as shown in Fig. 2.19. We denote with fiR ∈ R and fiL ∈ R the
right and left contact force components, respectively, for each contact point i = {1, 2}
[3]. We define the vector fc ∈ R4 as

fc =
[
f1R f1L f2R f2L

]T
. (2.39)

The total external wrench w ∈ R3, expressed in ΣW and whose torque is applied
around the object’s center of mass, exerted by the robot to the object can be described
by

w = Gfc (2.40)

where G ∈ R3×4 is the so called grasp matrix. For a square object of side length
2s > 0, the grasp matrix is

G =

cos(θr − θµ) sin(θr − θµ) s(cos θµ + sin θµ)

cos(θr + θµ) sin(θr + θµ) s(cos θµ − sin θµ)

cos(θr − θµ) sin(θr − θµ) s(sin θµ − cos θµ)

cos(θr + θµ) sin(θr + θµ) −s(cos θµ + sin θµ)

T

, (2.41)

where θµ is given in (2.34), and it can be obtained through a geometrical analysis of
the contact forces.

32 Chapter 2. Pushing Manipulation with a Single Robot

Figure 2.19: Schematic representation of the pushed object.

Under the assumption of quasistatic interaction, the object motion can be de-
scribed using the limit surface [46], a geometric representation of the relationship be-
tween the applied force on an object and its instantaneous velocity. Inspired by [13],
an ellipsoidal approximation of the limit surface is used, due to its simplicity and
invertibility properties. A convex quadratic formulation of the ellipsoidal limit sur-
face is given by S(w) = 1

2w
THw, where H ∈ R3×3 is the matrix representing the

ellipsoidal approximation of the limit surface. A procedure for computing such an
approximation, that requires the knowledge of the object’s shape and mass as well as
the friction coefficient of the support surface, can be found in [47]. Through the prin-
ciple of maximal dissipation [46], the object instantaneous velocity is perpendicular
to the limit surface for a given wrench, which implies:[

ẋo ẏo θ̇o

]T
= Hw. (2.42)

2.4. Maintenance of Pushing Contact 33

2.4.3 MPC Controller Formulation

To correctly solve the Problem defined in Section 2.4.1, a controller must be designed
such as the error vector e(t) in (2.37) is steered to zero without violating the fric-
tion constraints given by the contact between the robot and the object. This avoids
the slippage of the object during the pushing manipulation. As a matter of fact,
zeroing the error vector only does not imply that the object follows the desired tra-
jectory χd(t). The controller makes use of a Linear Time-Varying Model Predictive
Control (LTVMPC) formulation [48] to solve the nonlinear control problem in real-
time through the solution of a motion constrained optimization problem. First, a
LTV approximation of the model is presented. The model considers the presence of
the velocity and acceleration of the desired trajectory in the form of the measured
disturbances v(t) ∈ R4, a vector of known but unmodifiable model inputs.

2.4.4 LTV Model Approximation

As discussed in [49], the MPC formulation requires a discrete-time linear (or linearized)
model to construct the optimization problem. Therefore, the model (2.38) is linearized
and discretized. The linearization is performed around a series of predicted states ẽ(t)
obtained through numerical integration of (2.38). In particular, the nonlinear error
dynamics (2.38) can be approximated by the following LTV system

ė(t) = A(ẽ(t), v(t))e(t) +Buu(t) +Bv(ẽ(t))v(t), (2.43)

where u(t) ∈ R2 is the model input vector, v(t) ∈ R4 is the vector of measured
disturbances and ẽ(t) ∈ R5 is the predicted state. More specifically, we define

u(t) =

[
ar

εr

]
v(t) =

vrd

ωrd

v̇rd

ω̇rd

 ẽ(t) =

ẽxr(t)

ẽyr(t)

ẽθr(t)

ẽvr(t)

ẽωr(t)

 , (2.44)

and
A(ẽ(t), v(t)) = ∂f

∂e

∣∣∣e(t)=ẽ(t)
v(t)

,Bv(ẽ(t)) =
∂f
∂v

∣∣∣
e(t)=ẽ(t)

Bu =

[
0 0 0 1 0

0 0 0 0 1

]T
,

(2.45)

which represents the fact that matrices are obtained performing the linearization
around (ẽ(t), v(t)), both evaluated at time t. The discrete-time equivalent model
of (2.43), defined with sampling time Ts > 0, can then be obtained following the

34 Chapter 2. Pushing Manipulation with a Single Robot

procedure given in [50]. Denoting with k ∈ Z the discrete time variable, we get

e[k + 1] = A[k] e[k] +Bu[k]u[k] +Bv[k] v[k], (2.46)

with

A[k] = eA(ẽ[k],v[k])Ts , (2.47)

Bu[k] =

∫ Ts

0
eA(ẽ[k],v[k])τdτBu(ẽ[k]), (2.48)

Bv[k] =

∫ Ts

0
eA(ẽ[k],v[k])τdτBv(ẽ[k]). (2.49)

2.4.5 LTV MPC Formulation

The idea behind the MPC formulation is to optimize the future behaviour across a
finite prediction horizon of p steps. At every discrete-time instant k, for a given state
e[k], the optimal control input is computed solving the following constrained quadratic
programming (QP)

min
zk

J(zk, e[k]) (2.50a)

s.t. Mzk < b, (2.50b)

um[k + i] ≤ u[k + i] ≤ uM [k + i], i = 0 . . . p− 1 (2.50c)

∆um[k + i] ≤ ∆u[k + i] ≤ ∆uM [k + i], (2.50d)

i = 0 . . . p− 1 (2.50e)

where
zk =

[
u[k]T fT

c [k]u[k + 1]T fT
c [k + 1] . . .

. . . u[k + p− 1]T fT
c [k + p− 1]

]T (2.51)

is the QP decision variable containing the input vector u[k+i] (that collects the linear
and angular acceleration of the robots) and fc[k+ i] (that collects the forces imposed
on the pushed object) for i = 0, . . . , p− 1. As will be detailed in Section 2.4.6, such a
definition of the decision variable allows us to consider the physical limitations of the
robot inside the QP problem, even though the contact forces are not considered in the
robot model. Besides, the cost function in (2.50) is defined as the following quadratic
function

J(zk, e[k]) = e[k + p]TPe[k + p] +

p−1∑
i=0

{(
e[k + i]TQe[k + i]

)}
+ (2.52)

+

p−1∑
i=0

{(
u[k + i]TRuu[k + i]

)
+

(
∆u[k + i]TR∆u∆u[k + i]

)}
.

The diagonal matrices Q,P ∈ R5×5 provide the weights associated with each state
variable, while Ru, R∆u ∈ R2×2 contain the weights on the amplitude of the input and

2.4. Maintenance of Pushing Contact 35

the amplitude of its rate of change respectively. The terminal weight P is introduced
to improve stability, as discussed in [42]. These matrices are all positive semidefinite.
Inequality (2.50b) expresses a pushing interaction constraint, which will be described
in details in Section 2.4.6. Expression (2.50c) imposes upper and lower limits on the
elements of the QP decision variable zk, while (2.50e) sets limits on its rate of change.
These constraints are imposed to guarantee the feasibility of the solution, taking into
account the physical limitations of the robot actuators.

2.4.6 Nonlinear Pushing Constraints for Object Slippage Avoidance

Since the robot is subject to nonholonomic constraints, it cannot change its orien-
tation instantaneously. The direction of the force applied to the pushed object is
thus constrained as well. Besides, as previously discussed, the pushing force must
be restricted within the friction cone to avoid object slippage during manipulation.
Hence, we will now introduce a constraint for the robot motion, such that the contact
between the robot and the object does not break. This guarantees that the movement
of the robot produces valid pushing forces, that lie within the friction cone. As a
consequence, the input for the robot does not generate any relative motion between
the object and the robot itself.

The concept above is implemented imposing the following constraintsẋrẏr
θ̇r

+ ωr ×R(θr)por =

ẋoẏo
θ̇o

 = HGfc, (2.53)

where por ∈ R2 is the position of the object in the robot frame Σr and R(θr) ∈ SO(2)

is the rotation matrix between Σr and Σw. The left-hand side of (2.53) represents
the velocity that the object would have if the robot-object system were moving as a
rigid body (i.e., no relative motion). The right-hand side expresses the motion of the
object due to contact forces, as explained in Section 2.4.2.

In order to include (2.53) inside the optimization problem (2.50), some adjustments
are required. In particular, to ensure that the contact forces lie inside the friction cone,
each component of fc is bounded to be greater than zero. The equality constraint
in (2.53) is thus converted into a set of two double inequalities, of the form g(zk) ≤ 0,
and linearized, at each time step k, around the point (ẽ[k], v[k], por[k]). Matrix M ∈
R6p×6p in (2.50b) is finally defined as the Jacobian matrix of the left-hand side of
the inequalities, computed with respect to variable zk, while vector b ∈ R6p is a zero
vector.

Controller Implementation and Experiments

In this section, we discuss the implementation of the pushing system and the results
of three different manipulation tests, which are representative of different operative
conditions. The robot used during the simulation is a Pioneer 3-DX, a differential drive

36 Chapter 2. Pushing Manipulation with a Single Robot

mobile robot with two actuated wheels and a castor wheel. The robot is equipped with
a pushing bumper attached on the front. The robot receives velocity commands vr, ωr

through ROS [39]. At each time step k, with period Ts = 0.1s, the following procedure
is performed. The controller first sends the velocity command to the robot, then
collects the data required to predict the future behaviour and generate the linearized
models. The solution of the quadratic problem discussed in section 2.4.5 is then
computed and used to generate the velocity command for the future step.

Algorithm 3: Feedback procedure
1 send previous (vr, ωr)
2 get e[k], v[k]
3 ẽ[k]←−predict(e[k],v[k],zk−1)
4 Ak, Buk

, Bvk ,M ←−linearize(ẽ[k], v[k])
5 zk ←− QP(Ak, Buk

, Bvk ,M, ẽ[k], v[k])
6 (vr, ωr)←− (vr, ωr) + Tsu[k]
7 zk−1 ←− zk

Two case studies have been carried out in simulations, performed on a laptop
with an Intel Core i7-4510U using the CoppeliaSym physics simulator. The controller
is written in MATLAB, while ROS handles the communication with the simulator.
The gains are experimentally tuned to Q = diag([15, 20, 5, 1, 1]), P = 50Q, Ru =

diag([0.1, 0.1, 0.001, 0.001, 0.001, 0.001]), and R∆u = diag([0.1, 0.1, 0, 0, 0, 0]).

Tracking of a straight line

The first case study we propose is the tracking of a straight line starting with an offset.
Several simulations have been performed, with the robot starting its movement with

initial error state e(0) =
[
0 φ 0 0 0

]T
, with varying φ ∈ {0.1, 0.2, 0.4, 0.5}. A

representative run of the simulations, performed with φ = 0.2, is discussed hereafter.
The pushed object is placed in contact with the robot in a centered position. Figure
2.20 top graph depicts the planar movement of the robot and the object, measured for a
representative run of the simulations. The yellow line represents the desired trajectory
while the blue line and red line depicts the movement of the robot and the object,
respectively. The figure clearly shows that an initial position offset can be corrected
using the proposed controller and constraints. Figure 2.21 shows a comparison of the
y components of the object position with respect to Σr, while being pushed, with
and without the presence of the constraint in the controller. The application of the
constraint significantly reduces the amplitude of the movement of the pushed object.
The same conclusion can be extracted from the bottom graph of Figure 2.20, that
shows the positions of the object and robot controlled without the constraint (2.53).
Moreover, Figure 2.20 shows that, during the manipulation, the movement of the
robot causes an interruption of the pushing line contact, also reflected in the spike
visualized in Figure 2.21, that results in a loss of control over the movement of the
object and ultimately in a loss of quality of the manipulation. The proposed controller

2.4. Maintenance of Pushing Contact 37

0 0.5 1 1.5 2

X[m]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Y
[m

]

Robot

Object

Reference

0 0.5 1 1.5 2

X[m]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Y
[m

]

Robot

Object

Reference

Figure 2.20: Line tracking from a non-zero initial error state. Top
graph: controller with the proposed constraint, bottom graph: without

the proposed constraint.

and constraints maintain the line contact, with a final average object position error
less than 0.01 m, while the absence of the constraint on the motion leads to an average
error greater than 0.05 m.

Complete manipulation task

The second case study we explore is a complete manipulation task. To complete the
task, the robot transports the object to a desired configuration performing a series of
pushing actions. Once a pushing maneuver is completed, the robot performs a reposi-
tioning maneuver to change the pushing side before starting the next action. During
the maneuver the robot steps back from the object, goes around the object along a cir-
cular trajectory and then approaches slowly the object until the contact is established.
Several simulations have been performed, considering different trajectories composed
of straight and curve segments. The trajectory traveled by the robot and the object
during a representative run of the simulations is depicted in Figure 2.22. In this task

the robot transports the object from the initial position χo(0) =
[
0.0 0.0 0.0

]T
towards the desired configuration

[
1.65 0.15 π

]T
performing three pushing actions

on the object. The results indicate that, with the use of the proposed controller, it is
possible to track a curved line to transport the package without significant accumula-
tion of error, that implies that the robot, when an appropriate reference trajectory is
provided, can manipulate the object across the environment. The final positon error
is 0.04 m while the final orientation error is 1.8 deg.

38 Chapter 2. Pushing Manipulation with a Single Robot

0 2 4 6 8 10 12 14 16 18

Time[s]

0

0.05

0.1

0.15

Y
[m

]

with constraint

without constraint

Figure 2.21: Y coordinates of the pushed object with respect to Σr

during the manipulation.

-1 -0.5 0 0.5 1 1.5 2 2.5

X[m]

-0.5

0

0.5

1

1.5

2

2.5

Y
[m

]

Robot

Object

Figure 2.22: Complete manipulation of an object.

2.4.7 Linear Constraints for Pushing Contact Maintenance and Ob-
stacle Avoidance

Despite proving successful in a simulated environment, the nonlinear motion constraint
presented previously represents a heavy burden for the QP solver used in the LTVMPC
controller, making it unreliable for real world usage. A new constraint formulation
is therefore necessary to achieve a controller that can operate in real time. To that
extent we propose a new constraint, based on the results described in Section 2.1.1. As
visualized in Figure 2.2, the curvature constraint requires that the robot moves around
a center of rotation on the robot’s orthogonal axis with a positive linear velocity vr.

2.4. Maintenance of Pushing Contact 39

The constraint can be expressed as: vr
ωr
≥ Rlim+ + yor, if ωr ≥ 0

vr
ωr
≤ Rlim− + yor, if ωr < 0

(2.54)

where yor represents the y coordinate of the object’s position with respect to the
robot. With this formulation the constraint is not convex and therefore not suited to
be inserted in the optimization algorithm. Since the linear velocity vr of the robot
has to be positive for the robot to push, and by definition Rlim+ > 0 and Rlim− < 0,
then the constraint can be rewritten as

ωr −
vr

Rlim+ + yor
≤ 0 (2.55)

vr
Rlim− + yor

− ωr ≤ 0 (2.56)

With this representation, the constraint is convex and does not rely on the sign of
ωr. Applying the definition of the error vector (2.37) we obtain the final form of the
constraint as: [

−1
Rlim++yor

1
1

Rlim+yor
−1

][
evr

eωr

]
+

[
−1

Rlim++yor
1

1
Rlim+yor

−1

][
vrd

ωrd

]
≤ 0 (2.57)

This constraint is equivalent to the previous one but improves on the previous for-
mulation by expressing the constraint using a time-invariant linear system, easier to
enforce in the QP problem. Furthermore, this constraint does not require the inclu-
sion of the contact forces in the system input variables, reducing the dimension of
the problem, further improving the speed of the algorithm. The constraint is applied
across the prediction horizon considering the y position of the object with respect to
the robot to remain constant.

As an additional constraint to insert in the MPC controller, we propose a collision
avoidance constraint. The purpose of the collision avoidance constraint is to keep the
robot at a safe distance δ from each obstacle o in the set O of obstacles. In other
words, the distance between (xr, yr) and (xo, yo) has to be greater than δ.√

(xr − xo)2 + (yr − yo)2 > δ, ∀o = (xo, yo) ∈ O (2.58)

The constraint formulation is inherently non-convex and therefore not suited to be
inserted in a linearly constrained QP problem. However it is possible to obtain the
same objective formulating the constraint using a convex approximation of the avail-
able space. In [51] the authors propose a convex approximation of the feasible space
for the robot as the largest polyhedron containing the robot but not the obstacles.
The formulation used in the controller considers each obstacle as circular object of
radius δ. At each iteration the closest point in the circular perimeter of each obstacle

40 Chapter 2. Pushing Manipulation with a Single Robot

oi to the robot is computed as:

qi = δ
pr − oi
∥pr − oi∥

(2.59)

The subspace of feasible positions for the robot is computed as P = {p ∈ R2 : Acp ≤
bc}, where, as detailed in [51],

Ac =

(q1 − p0)

T

...
(qM − p0)

T

 , bc =

(q1 − p0)

T q1
...

(qM − p0)
T qM

 (2.60)

where p0 is the current position of the robot and p represents the position of the robot
along the prediction horizon. Introducing the error formulation (2.38) in the definition
of P leads to the following formulation:

AcR

[
erx

ery

]
+Ac

[
xrd

yrd

]
≤ bc (2.61)

R =

[
cos θrd − sin θrd

sin θrd cos θrd

]
(2.62)

In the optimization problem, the constraints (2.57) and (2.61) are related to the
decision variable zk using the linearized discrete time model (2.46) recursively over the
prediction horizon. The final constraint formulation (2.50b) used in the optimization
is composed stacking (2.57) and (2.61).

Constraint validation

The execution of a computed pushing plan is highly dependent on the ability of the
controller to guide the movement of the robot to execute a push maintaining contact
with the object. Therefore the proposed controller is validated again by placing the
pushing robot in contact with the object and instructing it to track a linear trajectory
starting with an offset on the robot’s local y direction.

The robot used is an e-puck [52] differential drive robot equipped with a front
bumper. The position of the robot and the object are obtained via an Optitrack Mo-
tion Capture System [53]. The manipulated object is a square box with side length
of 9 cm. Figure 2.23 shows the behaviour of the robot tracking the linear trajectory
in the test environment. The robot moves to correct the initial offset starting from
either side of the reference line. The pushing constraint expressed in (2.57) maintains
the contact between the robot and the object during the pushing manipulation, vali-
dating the ability of the controller to execute the assigned pushing task. Furthermore,
the controller is able to solve the optimization in real-time, guaranteeing a smooth
manipulation operation.

2.5. Manipulation Supervision 41

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.3

-0.2

-0.1

0

0.1

0.2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.3

-0.2

-0.1

0

0.1

0.2

Figure 2.23: Performance of the robot manipulating the object to
track a linear trajectory. The robot can correct the initial offset from

each side.

2.5 Manipulation Supervision

This section introduces the algorithm used to manage the interaction between the
planner and the controller as well as the execution of the pushing tasks. The algorithm
implements a Finite State Machine (FSM) that handles the reception of a new target
pose for the object, requests the pushing sequence from the planner and commands its
execution by the controller. The FSM also handles pushing sides change and possible
failures of the planning algorithm. The state diagram of the FSM can be visualized
in Figure 2.24a, while the naming of the states is provided in Table 2.24b. Upon
initialization, the algorithm loads all the required geometrical parameters as well as
the map of the environment as an occupancy grid. The initial state of the machine

S1

S2

S3

S4

S5

S6

(a)

State Name
S1 Idle State
S2 Planning State
S3 Positioning State
S4 Approach State
S5 Pushing State
S6 Detaching State

(b)

Figure 2.24: State diagram of the Supervision FSM with table of
associated names.

42 Chapter 2. Pushing Manipulation with a Single Robot

is S1, the Idle state. When a new target pose for the object is received, the machine
transitions to S2 to compute a new plan. A planning request, composed of 1) the
initial object pose, 2) the requested target pose, 3) the map of the environment as
an occupancy grid is sent to the planning algorithm. Upon success, the state returns
to S1 waiting for an execution command from the user. If the planner reports a
failure, the supervisor computes a pushing action to apply before any other actions
in order to change the initial pose of the object used to compute the plan. The
action is computed selecting a random motion curvature that respects the constraints,
computing the resulting object poses deriving from a push with said curvature on all
the object’s sides, using forward integration on the robot’s model. The computed
poses are checked for collision with the occupancy grid discarding the unfeasible ones
and then sorted based on their distance to the target. A new planning request is
then sent using the closest new pose as the initial pose of the object. The request is
repeated iteratively across the poses of the sorted list till success is reported by the
planner. The FSM enters S3 only if a valid pushing plan has been computed. In the
Positioning state S3 the algorithm sends a static target to the controller along with
a list of obstacles. The obstacles are composed by the target object’s pose and the
poses of the occupied cells in the occupancy grid map. The static target is computed
as a position for the robot that faces the object’s side to be pushed at a safe distance.
Once this target has been reached, the state machine switches to the Approach state
S4 and the robot is tasked to approach the proper pushing position for the given
pushing side, thus the position of the manipulandum has to be removed from the list
of obstacles. When the approach is complete, the FSM state changes to S5 and the
pushing trajectory is sent to the controller to be executed, the algorithm then waits
for completion. Upon completion of this manipulation, if there is another trajectory
to execute, the algorithm checks if the next pushing side is equal to the current one,
and in that case the cycle repeats from S5 but if the side is different the state switches
to S6. In S6 the robot is instructed to move backwards till a safe distance is reached.
The cycle then starts back from S3 and continues until all the trajectories have been
completed or an error occurs. A pseudo code description of the algorithm for pushing
execution is provided in Algorithm 4.

2.6 Framework Validation

The combination of the planning algorithm presented in Section 2.2 and the controller
from Section 2.4, coordinated by the aforementioned supervision algorithm compose a
framework to enable a single robot to perform a pushing manipulation on a polygonal
object. The evaluation of the complete proposed framework is now discussed. The
tests have been conducted manipulating the target square box in three different en-
vironments performing three different targets in each environment. The experiments
are conducted in a testing area equipped with an Optitrack Motion Capture Sys-
tem [53]. The robot used to manipulate is an e-puck differential drive mobile robot.

2.6. Framework Validation 43

The complete testing environment is shown in Figure 2.25.

Figure 2.25: Testing environment composed of a motion capture
system estimating the poses of the robot and the pushed object.

2.6.1 Environment 1

The first map introduced, visualized in Fig.s 2.27a, 2.27b, 2.27c, and 2.26, presents
a narrow passage from the left side to the right side. The manipulandum is initially
placed on the bottom left side of the map while all the three targets are on the
right side, two on the top half with different orientations, and one on the bottom
half of the map. Figure 2.27a shows the tests performed on the first target set to
the point (1.3, 0.75) m with desired orientation of zero radians. In this scenario,
the manipulation does not require a change in the pushing side and the robot can
manipulate the object closely tracking the reference trajectory. The tests visualized
in Fig. 2.27b display a particular case in which the robot is required to change the
pushing side to complete the manipulation. The path taken by the robot is visualized
in Fig. 2.26. As detailed in Section 2.5, the robot first detaches from the object,
then circles around it before approaching the next pushing position. In this scenario,
the target position is the same as in the first set of tests, equal to (1.3, 0.75) m, but
the requested orientation is set to π/2 rad. In one instance of these tests, the robot
deviates a bit from the reference trajectory while entering the narrow passage. Still,
the constraint applied on the controller maintains the contact with the object allowing
the successful recovery of the manipulation. The third considered scenario in this
obstacle environment presents a target in the lower half of the map, at (1.3,−0.65) m
with planar orientation −(4/5)π rad. In this scenario, depicted in Fig. 2.27c, it can
be noted that multiple turns in the same direction can generate a slight shift of the
contact towards the outside of the curve. This can be attributed to an erroneous
estimate of the frictional parameters.

44 Chapter 2. Pushing Manipulation with a Single Robot

Algorithm 4: Pushing Execution
input : PUSHES: ordered list of trajectories to execute and associated

pushing sides.

1 while PUSHES is not empty do
2 select and pop first element of PUSHES;
3 compute approaching and pushing poses for the robot;
4 instruct controller to move towards approaching pose;
5 monitor until completion instruct controller to move towards pushing

pose;
6 monitor until completion;
7 instruct controller to perform selected pushing trajectory;
8 monitor until completion;
9 if PATHS is not empty then

10 if pushing side of next trajectory is not equal to the current pushing
side then

11 instruct controller to move towards approaching pose;
12 monitor until completion;

13 else
14 select and pop first element of PUSHES;
15 instruct controller to perform selected pushing trajectory;
16 monitor until completion;

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 2.26: Visualization of a test case of Scenario 2. The purple
line displays the path taken by the robot during the manipulation.
The robot is depicted during the side change manoeuvre to reorient

with the object.

2.6. Framework Validation 45

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(a) Scanario 1

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(b) Scenario 2

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(c) Scenario 3

Figure 2.27: Environment 1: Manipulation of a square object across
a narrow passage. The orange line displays the reference trajectory
for the object while the blue lines represent the motion of the object
during the tests. The reference final position for each manipulation is
drawn in red while the final position for each manipulation is drawn

in black.

46 Chapter 2. Pushing Manipulation with a Single Robot

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 2.28: Visualization of a test case of Scenario 4. The purple
line displays the path taken by the robot during the manipulation. A
visualization of the robot and the manipulandum during a particular
drift from the reference trajectory is provided to showcase the ability

to maintain the contact.

2.6.2 Environment 2

The second map considered in the testing presents an N-shaped free space. This forces
the robot to manipulate the object performing tight curves to avoid the obstacles. The
manipulation towards the first target is shown in Fig. 2.29a. The target is placed in
(1.3, 0.5) m with an orientation of zero radians. The robot approaches the object from
the lower side and performs a single pushing manipulation. The results show that the
robot struggles to track the trajectory around tight corners, the controller constraints
again enforce contact maintenance, allowing the manipulation’s completion, despite a
contained loss in final accuracy. A representation of the robot during the manoeuvre
is provided in Fig. 2.28.

The second target is placed in the same position but rotated of π/2 rad counter-
clockwise. To perform this manipulation, the planner constructs a sequence of two
manipulations that require a pushing side change. This plan is built after a failed try
from the planner, forcing the supervisor to generate a preemptive pushing action with
constant curvature. The resulting manipulation is visualized in Fig. 2.29b. After per-
forming this preemptive action, the robot faces the same tracking issue again as the
previous target. Still, likewise, the controller can maintain the contact and complete
the manipulation.

The third target is again placed in the same position but rotated by π/4 rad. Like
the previous test, the planner initially fails to find a suitable manipulation sequence,
and the supervisor is tasked with generating a preemptive action. However, in this
scenario, it was not necessary to change the pushing side between actions. As shown in
Fig. 2.29c and differently from the previous cases, only one manipulation run struggled
to remain close to the reference trajectory.

2.6. Framework Validation 47

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(a) Scanario 4

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(b) Scenario 5

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(c) Scenario 6

Figure 2.29: Environment 2: Manipulation of a square object across
a N shaped environment. The orange line displays the reference tra-
jectory for the object while the blue lines represent the motion of the
object during the tests. The reference final position for each manipu-
lation is drawn in red while the final position for each manipulation is

drawn in black.

48 Chapter 2. Pushing Manipulation with a Single Robot

2.6.3 Environment 3

Figures 2.30a, 2.30b and 2.30c display the third test map considered in the evaluation.
The map presents three obstacles placed around its center to form a triangle. The three
tests in this scenario are constructed to force the manipulation to pass between the
obstacles to evaluate the ability of the proposed framework to generate manipulations
around various sets of obstacles. In the previous tests, the overall path to the target
was forced by the shape of the environment. In this scenario, multiple routes could
be taken to reach the desired pose of the object.

Each of the three targets was manually selected to be aligned diagonally across
the environment from the starting position; therefore, the shortest path to reach the
target is obtained by crossing the triangle formed by the three obstacles. The first
manipulation is composed of a single polynomial curve that brings the object towards
the target, as depicted in Fig. 2.30a. The robot easily transports the object following
the reference trajectory.

To reach the second target, it is required to perform an initial manipulation to
orient the object correctly. In some tests, the performance of this introductory manip-
ulation resulted in a small orientation error. To correct this, the supervisor algorithm
tasks the robot to realign with the object during the change of pushing side. The
consequent offset in the initial position for the final manipulation forced the controller
to drift away from the target trajectory to realign and later reduce the error with
the manipulation’s reference trajectory. In Scenario 9, the manipulandum is placed
initially near the top left corner of the map, and the robot is tasked to transport it
towards the bottom right corner. The planner finds a single polynomial pushing tra-
jectory that connects to the target passing through the obstacles. Table 2.1 presents
aggregate information on the results of the performed tests. The average position
and orientation error and associated standard deviation σ are reported, as well as
the maximum error value obtained across all trials. The results show that the pre-
sented framework produces a very precise final orientation, and the position error is
maintained within 20% of the object’s footprint.

2.7 Future Works

In this chapter, we proposed a framework for planning, controlling, and executing
planar manipulations using only pushing actions applied by a single mobile robot.
The framework can generate a manipulation plan composed of a sequence of push-
ing actions and perform the manipulation by adequately controlling the motion of
the pushing robot. The robot’s movement is constrained during the manipulation to
avoid the slippage of the contact with the manipulandum and avoid collision with the
environment. The framework was tested, performing different manipulations in three
different settings. The provided results indicate that the proposed framework effec-
tively solves the manipulation problem in the considered scenarios. In the presented

2.7. Future Works 49

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(a) Scanario 7

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(b) Scenario 8

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(c) Scenario 9

Figure 2.30: Environment 3: Manipulation of a square object in an
environment with three circular obstacles. The orange line displays
the reference trajectory for the object while the blue lines represent
the motion of the object during the tests. The reference final position
for each manipulation is drawn in red while the final position for each

manipulation is drawn in black.

Table 2.1: Summary of position and orientation error among the
analyzed test scenarios. The position error is computed as the norm
of distance between the final object pose and the desired object pose.
The orientation error is the absolute value of the difference between

the final orientation and desired orientation.

Position error [m] Orientation error[rad]
Scenario avg σ max mean σ max

1 0.0130 0.0072 0.0200 0.0456 0.0146 0.0622
2 0.0269 0.0274 0.0585 0.0698 0.0435 0.0985
3 0.0114 0.0113 0.0292 0.0365 0.0178 0.0476
4 0.0216 0.0046 0.0268 0.0120 0.0145 0.0284
5 0.0313 0.0028 0.0333 0.0090 0.0050 0.0126
6 0.0195 0.0055 0.0246 0.0099 0.0062 0.0168
7 0.0045 0.0019 0.0065 0.0261 0.0216 0.0402
8 0.0193 0.0086 0.0254 0.0461 0.0149 0.0566
9 0.0092 0.0058 0.0150 0.0117 0.0128 0.0314

50 Chapter 2. Pushing Manipulation with a Single Robot

work, we considered the manipulation of known polygonal objects. We aim to gener-
alize the motion constraints to more general shapes in future work, where the center
of mass is not known a priori. Furthermore, the framework currently relies on the
precise localization of the objects in the environment. Future work will extend it by
using on board sensors to estimate the relative pose, removing the necessity of an ex-
ternal localization system. Finally, future work will consider scenarios where unknown
obstacles are present in the environment, identifying their position and adapting the
manipulation plan.

51

Chapter 3

Pushing Manipulation with a few
Robots

In this chapter the research is shifted toward the use of multiple robots as a source of
pushing motion. The use of multiple robots can provide considerable benefits in push-
ing applications due to the higher flexibility of the system. A multi-robot oriented
pushing strategy could enable a distributed energy expense, as well as more resilient
architectures, since the robots are usually interchangeable and less expensive. The first
challenge tackled is the identification of a good contact configuration for the robots
by providing a characterization of the contact configuration with respect to a nonpre-
hensile manipulation task, performed with a team of robots. Following state-of-art
examples in selecting optimal force-closure grasps, we rank a set of configurations using
various indices suitably adapted for nonprehensile manipulation. Following the search
for the optimal contact configuration, a task-oriented contact optimization procedure
has been developed. The procedure solves a constrained non-linear optimization prob-
lem to identify the configuration that is best suited to fulfill a planar manipulation
task. The introduction of a control scheme to command mobile robots performing
pushing actions was the last challenge tackled in this research. Knowing informations
about the motion model of the pushed object, the requested contact configuration
and the manipulation task to perform, the control scheme instructs the robots into
moving in a coordinated way, maintaining the appropriate contact configuration. The
strategy is validated performing multiple manipulation tasks both in simulation and
using real robots.

The rest of the chapter is organized as follows: Section 3.1 studies the problem of
finding a characterization for the quality of a contact configuration and illustrates the
proposed approach to identify such characterization. The evaluation of the suitable
characterizations is carried forward in Section 3.1.4 while the results are discussed in
Section 3.1.5. A possible application of this characterization is shown in Section 3.1.6.
Section 3.2 formulates the problem of finding a task oriented optimal configuration
whose solution is tackled in Section 3.2.1. Section 3.2.2 describes the control scheme
used to command the mobile robots. The results of the performed tests are detailed
in Section 3.2.3.

52 Chapter 3. Pushing Manipulation with a few Robots

3.1 Grasp Quality Characterization

Consider a group of n robots performing a manipulation task on an object in the
plane. In the addressed task, we assume to know in advance both the trajectory to
follow and the frictional properties of the pushed object. By assumption, each robot is
omnidirectional, it can touch the object at a single point, and if the objects has vertices
(i.e. a polygonal prism) it cannot touch the object in a corner. The omnidirectional
robots that interact with the object are thus modeled as circular objects free to move
on the plane. This assumption is introduced to exclude any external effects that may
arise from motion constraints on the pushing agents so that the characterization is
focused purely on the pushing interaction. Let ΣW and ΣO be the global reference
frame and the object local frame, respectively. Let the pose of the object at time t be
represented as the vector

χo(t) =
[
xo(t) yo(t) θo(t)

]T
∈ R3

where xo(t), yo(t) ∈ R represent the position of ΣO with respect to ΣW , while θo

represents its orientation. Since, in this work, we consider robots interacting with the
object by means of pushing, we will hereafter refer to them as pushing agents. The

position of each pushing agent is represented in ΣW as pi(t) =
[
xi(t), yi(t)

]T
∈ R2,

with i = 1, . . . , n. An illustration of the aforementioned quantities is presented in
Figure 3.1. The position of the pushing agents around the object can be collectively
represented as p(t) =

[
pT1 (t) . . . p

T
n (t)

]T ∈ R2n, and is referred to as the contact con-
figuration.

Let Fo ∈ R3 be the total wrench on the object at its center of mass. Let Fci ∈ R2

be the contact force applied by the i-th pushing agent on the object at the contact
point, with i = 1, . . . , n. The single contact wrenches can be collected into the vector

Fc =
[
F T
c1(t) . . . F

T
cn(t)

]T ∈ R2n.

The map between the contact forces and the total object wrench is called grasp
map [43]. Since each contact map is linear, the wrenches can be stacked as long
as they are all written in the same coordinate frame (i.e., the global reference frame
ΣW), and each contact force belongs to the relative friction cone, the net object wrench
is

Fo = GFc, (3.1)

where G ∈ R3×2n is referred to as grasp matrix. More details about how to build such
a matrix can be found in [43]. In robotic prehensile manipulation, the grasp matrix
plays a fundamental role in understanding whether a grasp has force-closure. In detail,
force closure is present when the friction cone mapped through G is equal to the entire
external wrench space [43]. On the other hand, in nonprehensile manipulation, the
concept of force-closure grasp is meaningless because of the presence of unilateral

3.1. Grasp Quality Characterization 53

Figure 3.1: Schematic representation of the manipulated object (in
gray) and the pushing agents (in yellow) with the related reference

frames.

constraints only [2]. Nevertheless, it is still possible to define the grasp matrix G

and (3.1) holds whenever the contacts are maintained, and the contact forces belong
to the relative friction cones. For this reason, with a slight abuse of language, we will
still refer to a grasp configuration also in the addressed case of nonprehensile pushing.

More specifically, we tackle the following problem:

Problem 3 Characterize a nonprehensile grasp configuration with respect to a planar
pushing task both in terms of efficacy and energy efficiency.

In the following, as addressed in [9], we will assume that the motion is quasi-static
(e.g., inertial forces are negligible with respect to the frictional and contact forces),
and that the forces exchanged in contact interactions follow Coulomb’s friction model.
Furthermore, as carried out in [43], the friction parameters are assumed to be uniform
across the environment, and all the contacts are rigid. Finally, we assume that the
requested pushing manipulation is obstacle free since there exist multiple algorithms
in the literature which are able to generate manipulation trajectories that consider
the presence of obstacles in the environment [54].

The expression of the quality of a grasp configuration is useful only when it provides
a quantitative insight of how suited it is with respect to a certain task to accomplish.
For this purpose, we first define quality metrics for assessing the performance of the
manipulation activity. Subsequently, we present a set of configuration indices, which
provide aggregate information about the selected grasp configuration. Those indices
are proposed starting from quantities that are commonly used in the traditional pre-
hensile manipulation literature. They are here extended to the case of nonprehensile

54 Chapter 3. Pushing Manipulation with a few Robots

manipulation performed by a set of mobile robots. Furthermore, we provide a novel
index formulation that takes into account both the required task and the applicable
forces by a configuration, along with a compatibility test to assess if a configuration
is capable of executing a given task. Along the same line, we provide evaluation re-
sults to demonstrate the correlation between the configuration indices and the quality
metrics for the case of pushing.

3.1.1 Quality of a Nonprehensile Grasp

To understand what are the desired qualities of a grasp, it is useful to think about
what a grasp is. Grasping is the most common approach used to interact with the
environment. Children learn by grasping different objects with their hands, animals
use grasping to interact with food or other animals, and even insects like ants use
grasping to interact with leaves or crumbs. In other words, grasping is a tool used to
achieve the goal of moving one or more objects to a different state. The tasks this
tool has to fulfill in order to reach the goal are diverse but connected. First, the grasp
has to be able to provide the necessary forces for the movement. Second, the grasp
has to absorb the uncertainties that arise during the movement. Third, the grasp has
to maintain the contact state across the movement. In other words, the grasp has to
be effective and robust enough to sustain the movement.

In prehensile grasping, the robustness of the grasp is ensured by the concept of
force closure we described in the previous section. Conversely, since nonprehensile
grasping, by definition, cannot balance all the forces that might act on the object,
the requirement is translated into maintaining or breaking the contact depending on
the dexterity of the sought task. In the pushing scenario, the requirement is instead
reduced to maintaining the contact state despite a range of possible disturbances.

Hence, we introduce two metrics, that must be minimized in the following, to
evaluate (i) the effectiveness of the grasp, and (ii) the energy efficiency of the manip-
ulation operation.

Effectiveness of the grasp

In this thesis, we evaluate the grasp effectiveness by measuring the relative overall dis-
placement of each pushing agent to the manipulated object. This measures the ability
to maintain the contact during a single pushing operation. For a given trajectory Γ

of length lΓ > 0 covered in a time TΓ, we define the normalized overall displacement
δ as

δ =
1

lΓ

n∑
i=1

[∫ TΓ

0
||vOi (τ)||dτ

]
(3.2)

where vOi ∈ R2 is the velocity of the i-th pushing agent with respect to ΣO. Even
though in [12] it has been shown that a relative motion between pusher and manipu-
lated object can be beneficial and exploited for control purposes, if no feedback control

3.1. Grasp Quality Characterization 55

is considered regulating the contact position, the ability of a configuration to exert
all the wrenches required by a task can be translated in the lack of relative motion
between the pushers and the manipulated object, thus indicating the effectiveness of
a grasp configuration with respect to a given manipulation task.

Energy efficiency

Different configurations may require different amounts of energy to maintain the grasp
effectiveness during the manipulation. A configuration that requires a lower effort to
maintain the contact during manipulation is intuitively preferable than one that re-
quires a higher effort: therefore, energy can be used to rank effective grasps. Consider
Γ to be a trajectory describing an ordered sequence of poses for the object. Let Γci be
the 2D trajectory of the i-th contact point in a configuration associated to Γ. The nor-
malized energy spent by a configuration to execute a motion is computed as the sum
of the mechanical work exerted by each contact force on the object, each normalized
with respect to the length of the trajectory drawn by each contact point:

E =
n∑

i=1

[
1

lΓci

∫
Γci

fT
cidγci

]
(3.3)

3.1.2 Grasp-Task Compatibility Test

When the grasping task is known, it is intuitively convenient to extract information
a priori in order to optimize the performance. It is indeed possible to compute the
set of wrenches acting on the object due to the friction with the plane. The contact
configuration has to be capable of balancing these wrenches in order to perform the
manipulation. In other words, the space of possible wrenches that a grasp can apply
to the object has to contain the reaction wrenches from the task. Within prehensile
grasping, as already mentioned above, this is ensured with force closure [3]. Within
nonprehensile grasping, instead, force closure is meaningless.

Therefore, we propose the following procedure to check whether a grasp can apply
the required wrench. The space of required wrenches Wdes is extracted from the
task using the friction limit surface ellipsoidal approximation model for the target
object [46]. For each sample velocity v ∈ R3 of the assigned object trajectory, a
corresponding friction wrench w ∈ R3 is computed using

w =
Hv√
vTHv

(3.4)

where H ∈ R3×3 is the matrix expressing the ellipsoidal friction limit surface [46].
Then, the combination of all the wrenches is computed, representing the space Wdes.

For a configuration that can apply the desired wrench, Wdes must be inside the
space of applicable wrenches. Let Wgrasp be a polyhedral approximation of the space
of applicable wrenches. The proposed Grasp-Task compatibility test formally checks
if Wdes ⊂ Wgrasp. The approximation Wgrasp can be computed as follows:

56 Chapter 3. Pushing Manipulation with a few Robots

Figure 3.2: An example of the polyhedral approximation Wgrasp,
represented as the light blue polyhedron in 3D wrench space, along
with Wdes, represented in red. In this example Wgrasp contains Wdes.

1. each contact force is decomposed using the two borders of the Coulomb friction
cone;

2. the associated normalized wrenches are then computed for each border force;

3. the obtained set is then enlarged with the bisector wrench for each friction cone;

4. the conical combination is then computed in the 3D wrench space of the obtained
set of normalized wrenches.

An example of this approximation is shown in Figure 3.2.

3.1.3 Configuration Indices

As it happens in prehensile grasping tasks, the proposed metrics are difficult to apply
to select the optimal grasp. Therefore, we now introduce a set of indices that can be
easily exploited to characterize, in an aggregate manner, the nonprehensile grasp con-
figurations and can be employed as a selection criterion. These indices are borrowed
from the standard manipulation literature, and they are here adapted to be used in
the considered scenario.

Composed Quality Index

The composed quality index ID ranks the uniformity of the angular distribution of
the contact points and the capability of applying forces directed to the object’s center

3.1. Grasp Quality Characterization 57

of mass [55]. Its expression is

ID =
(2π
n

)n n∏
i=1

∣∣∣ min
j∈{1...n},j ̸=i

arccos cTi cj − arccosnT
i ci

∣∣∣−1
(3.5)

where ni ∈ R2 is the inward unit vector normal to the object surface at the i-th
contact point, while ci ∈ R2 is referred to as central vector and it is the inward unit
vector pointing the center of mass of the object from the i-th contact point. When the
central vectors have a uniform angular distribution with respect to the center of mass,
the configuration is expected to resist better external forces and disturbances [56,57].
Besides, when the contact forces points towards the center of mass of the object, the
configuration can reduce the inertial effect.

Extension Index

The extension index IE is computed as the area of the polygon formed by the contact
points. As discussed in [58], the effectiveness of a grasp improves as this area increases.

Grasp Dexterity Index

The performance and precision of manipulation are affected when a configuration is
close to a singular position since that configuration requires more effort to impress a
wrench into the manipulated object. The grasp dexterity index [59] provides informa-
tion on how close a configuration is to a singularity. This index is defined as

IG =
σmin(G)

σmax(G)
(3.6)

where σmin(G) and σmax(G) are the minimum and maximum singular values of the
grasp matrix, respectively. This index is close to zero when the grasp is close to a
singular configuration.

Modified Hausdorff distance

Intuitively, ifWgrasp is much bigger thanWdes, then the grasp can withstand a greater
range of disturbances that can arise from non-idealities. However, the grasp creating a
widerWgrasp can present contact forces that interfere negatively with each other, thus
requiring a more greater effort from the single contacts in order to balance the task
requirements. The Modified Hausdorff Distance (MHD) proposed in [60] measures
how far two subsets of a metric space are from each other, and it can thus provide a
measure on how big Wgrasp is with respect to Wdes.

Assuming the distance between a generic vector a ∈ R3 and a set of vectors B to
be defined as

d(a,B) = max
b∈B

aT b

∥a∥∥b∥
(3.7)

58 Chapter 3. Pushing Manipulation with a few Robots

which is the maximum cosine similarity of a vector a across a set B of vectors, the
MHD between two sets of vectors is defined as follows

MHD(A,B) = max{dMHD(A,B), dMHD(B,A)} (3.8)

where
dMHD(A,B) =

1

Na

∑
a∈A

d(a,B)

represents the unidirectional distance between a set A, with Na elements, and a set
B. Hence, we define MHD(Wgrasp,Wdes) as a configuration index.

3.1.4 Evaluation

In this section, the statistical evaluation process conducted to validate the proposed
test and indices is discussed.

Simulation Environment

The data required for the statistical evaluation of the indices above is collected through
a series of simulations. Four different objects, represented in Figure 3.4b, are pushed
along six different trajectories using ten randomly generated configurations. The tra-
jectories, represented in Figure 3.4a, start at (0, 0) and belong to two different classes:
polynomial and sinusoidal with constant orientation. The configurations chosen are
tested in the CoppeliaSim [61] physical simulation environment. The pushed object is
modeled as extruded shapes that slide on the support floor, as shown in Figure 3.4b,
while the pushing agents, visualized in Figure 3.3, are modeled as spheres. The push-
ing agents are free to roam accordingly to the 2D velocity commands transmitted
through ROS communication channels from a MATLAB script. For each shape, each
trajectory and each configuration, the MATLAB script places the pushing agents in
their assigned relative position then iteratively computes the velocities of each agent
according to the given trajectory to be performed and sends the commands to the
pushing agents to move accordingly in space. The resulting motion of the pushing
agents resembles a virtual rigid object moving according to the requested manipula-
tion trajectory. The position and force data from the simulation are stored in a file
and used to compute δ from (3.2) and E from (3.3).

Methods

For each pair of shape and trajectory, a generator of random contact configurations
selects 10 contact configurations which satisfy two requirements: 1) there is no collision
between the pushing agents; 2) the angle between every contact normal and the initial
velocity of the trajectory is ∈ (−π/2, π/2). The former requirement is necessary for
the physical realization of the grasp, while the latter ensures that the configuration is
nonprehensile and can apply a push to the object. The simulations thus provide a set
of 240 Boolean results that represent the success or failure of the manipulation, and

3.1. Grasp Quality Characterization 59

Figure 3.3: Representation of the pushed object and the pushing
agents in CoppeliaSim.

two sets of 240 samples for δ and E, respectively. A manipulation is deemed successful
if the pushing agents maintain the contact with the object during the whole pushing
process, which means that the object has been successfully transported along the
trajectory. The data, together with the configuration indices for each grasp, are used
to perform a statistical evaluation. To prove the validity of the test proposed in
Section 3.1.2, we execute a Wilcoxon rank-sum test [62] between δ and the test result.
A Fisher’s exact test [63] is also performed between the results of the test and the
manipulation success information. The relationship between each index ID, IE , IG,
MHD and the metric E is assessed computing the linear correlation between the data
along with the corresponding p-value.

Results

The results of the statistical analysis are presented here, while a discussion on the
results is provided in Section 3.1.5.

The distribution of the metric δ for each test result is shown in Figure 3.6. The
correlation between the values of δ and the test result are assessed with a Wilcoxon
rank-sum test. The test rejects the hypothesis of no-correlation and returns a p-value
of 1.66e − 15. Table 3.1 is a 2 × 2 contingency table describing the classification of
the simulations by manipulation success and test result. The application of a Fisher’s
exact test to the contingency table confirms the correlation between the test result
and the manipulation success with a p-value of 3.2187e− 20.

60 Chapter 3. Pushing Manipulation with a few Robots

-6 -4 -2 0 2 4 6

X [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y
 [
m

]

(a) (b)

Figure 3.4: A) Polynomial(blue, red and yellow) and sinu-
soidal(purple, green and light Blue) trajectories for planar manipu-

lation. B)Set of the pushed objects in CoppeliaSim.

Table 3.1: Contingency table describing the frequency distribution
of the test and manipulation results in the collected data

Manipulation
success

Test
Fail Pass

No 181 8
Yes 18 33

The relation between the indices and the performance metric E is evaluated con-
sidering only the successful manipulations since we are interested in information on
the contact configurations that are capable of performing the required task. Figure 3.5
show the scatter plots of the index values and the corresponding value of E for the
manipulation simulation. Table 3.2 contains the correlation coefficient for each index
and the corresponding p-value.

Table 3.2: correlation coefficients and associated p-values between
the quality metric E and the considered indices

ID IE IG MHD

correlation coefficient −0.1697 −0.1321 −0.0604 −0.37172
p-value 0.3085 0.4293 0.7186 0.021568

3.1.5 Results Discussion

Grasp-Task Compatibility Test

The validity of the proposed test is assessed using two standard statistical tools: the
Wilcoxon rank-sum test and the Fisher’s exact test. These evaluations provide the
same result with a stable confidence level given by the very low reported p-values.
Consequently, it is possible to say that the proposed Grasp-Task Compatibility Test

3.1. Grasp Quality Characterization 61

50 60 70 80
0

500

1,000

E

I D

50 60 70 80
0

0.05

0.1

E

I E

50 60 70 80
0

0.1

0.2

0.3

0.4

E

I G

50 60 70 80

0.2

0.4

0.6

0.8

1

E

M
H

D

Figure 3.5: Scatter plots displaying the pairs (E,index) for the suc-
cessful manipulations.

is a suitable tool to determine the ability of a grasp configuration to carry out the
task.

Configuration Indices

The existence of a relationship between the considered indices and the performance
metric E is assessed through the computation of the linear correlation coefficient and
corresponding confidence level.

The results reported in Table 3.2 demonstrate that a statistically relevant relation-
ship exists only for one of the considered indices, namely the MHD. Even though
a low correlation seems to exist also for indices ID, IG and IE with the performance
metric E, the associated confidence values are too large to consider such a relation-
ship as statistically relevant. We believe that the low significance of the indices ID, IE
and IG is due to the peculiarity of non-prehensile manipulation. The absence of force
closure and the characteristic of the pushing manipulation of having all the contacts
facing towards the direction of motion could be one of the causes that affected the
performance. As an example, when pushing a convex object, the contact points may
be restricted to only one side of the manipulandum, thus the maximum value of IE is
restricted and the angular uniformity graded in ID is affected. Furthermore, the value
of IG represents how uniformly a grasp can resist to external forces applied to the

62 Chapter 3. Pushing Manipulation with a few Robots

Figure 3.6: Violin plot describing the distribution of δ separated by
test results. The median value of each distribution is represented by

the red square.

object, but in non-prehensile manipulations a grasp cannot resist all external forces
by definition, thus the index might be ill-posed for the problem.

In summary, even though the indices ID, IE and IG have been proven useful and
significant for characterizing a grasp configuration in the prehensile scenario, these
cannot provide information on the efficiency of a grasp configuration applied to a
pushing problem, while the information provided by MHD can be considered relevant
for the addressed problem and therefore suitable to characterize the quality of a grasp
configuration with respect to a task.

3.1.6 Possible Applications

We hereby defined an index to evaluate the quality of a grasp configuration with
respect to a pushing manipulation task. The primary use of this result can be identified
in the selection of the most adequate configuration to perform a given manipulation
among a set of candidates. Considering the results of the performed analysis, we
propose the following procedure to select a grasp configuration that is both effective
and energy efficient. Knowing the assigned manipulation task and both the geometry
and frictional properties of the manipulated object, as well as of the pushing agents,
the following steps are proposed.

3.1. Grasp Quality Characterization 63

1. Generate a set of random grasps.

2. Test every grasp configuration in the set for the following requirements:

• no collision among the pushing agents;

• the angle between each contact normal and the initial velocity is inside the
range (−π/2, π/2);

• the grasp configuration passes the test defined in Section 3.1.2.

3. Select the configuration that maximizes MHD for the given task.

4. Solve an optimization problem to refine the chosen configuration.

The optimization problem is defined as

max
x

MHD(x,Wdes) (3.9)

subject to g(x) ≤ 0 (3.10)

where x is the contact configuration, MHD(x,Wdes) indicates the index associated to
said configuration with respect to the task requirementWdes. The constraint function
g(x) encodes the three requirements specified in the second step of the procedure.

As a case study, this selection procedure was applied for choosing the contact con-
figuration to perform a manipulation task on an elliptic object. The pushing agents
deployed accordingly are represented in Figure 3.7a. The configuration completed the
task with energy efficiency E = 38.67 and the associated MHD is 0.254 in the evalua-
tion setup with non-holonomic pushing agents. The chosen contact configuration has
been also employed to perform a pushing manipulation with mobile robots both in
simulation and in a real scenario. In both experimental takes three e-puck [52] differ-
ential drive mobile robots are controlled to perform a syncronized reference trajectory
using a Linear Time-Varying MPC controller [64]. The reference trajectory for each
robot is obtained by computing the relative position of each pushing agent with respect

(a) (b)

Figure 3.7: A) Visualization of the grasp configuration selected by
the proposed procedure. B) Visualization of the robots deployed in

the selected grasp configuration.

64 Chapter 3. Pushing Manipulation with a few Robots

to every point in the manipulation trajectory. A precise tracking of this trajectory by
the robots therefore matches the motion of a omnidirectional pushing agent during
the execution of the same task. The robots are equipped with a circular bumper ring
with a diameter of 10cm. First the robot start moving towards the assigned contact
position. Once all the robots have reached their target, namely the initial position
of the reference trajectory, the manipulation can begin and each robot tracks its own
reference trajectory. A comparison of the required manipulation task for the object
and the resulting manipulation from the robots is provided in Figure 3.8a. A motion
capture system is employed in the real environment to provide absolute positioning of
both the manipulated object and the robots. The position of the manipulated object
during the execution of the task is visualized in Figure 3.8b. From both results it can
be noted that the path drawn by the manipulated object remains close to the reference
trajectory even without a feedback action on the object’s position, thus concluding
that the chosen contact configuration is suitable for the specified manipulation task.

−0.5 0 0.5
0

0.5

1

1.5

X[m]

Y
[m

]

Object
Reference

(a)

−0.5 0 0.5 1

−0.5

0

0.5

X[m]

Y
[m

]
Object

Reference

(b)

Figure 3.8: A)Position of the manipulated object during task execu-
tion by simulated mobile robots. B)Position of the manipulated object

during task execution by real mobile robots.

3.2 Task Oriented Grasp Optimization

In the literature, the problem of how to grasp a given object to perform a specific
task, which is usually encoded through its desired trajectory, while satisfying some
optimality criteria is known as task-oriented grasping. This concept has been suc-
cessfully applied in numerous application scenarios [65–69]. However, all the previous
works considered either force- or form- closure grasps, which allow the robot to treat
the object as entirely restrained. None of the above works have, indeed, addressed
the problem of task-oriented optimal placement of multiple robots around an object
for nonprehensile pushing. In this thesis, we extend the use of such a concept to non-
prehensile pushing manipulation performed by a fleet of autonomous mobile robots.
Our main contributions can be listed as follows:

3.2. Task Oriented Grasp Optimization 65

• we define a optimization procedure to optimally position the robots around the
object to perform a given task (tracking of a desired trajectory);

• we design a control algorithm that instructs the robots on how to properly push
the object to track the assigned task trajectory;

• we thoroughly validate the presented procedures using simulation as well as real
world experiments.

The first challenge addressed here is the optimal positioning of the robots along
the object perimeter to enhance the object’s trajectory tracking performances and the
pushing robustness. More specifically, given a manipulation task, we aim at identifying
the optimal deployment of n robots in contact with the object, also denoted as the
grasp configuration, that can fulfill the task in the most robust way possible. This
challenge was briefly addressed in Section 3.1.6 using a heuristic approach, while in the
following we’ll provide an analytical solution to the problem based on task-oriented
grasping. To fulfill the presented challenge, we will consider a system described as
follows.

Let To ∈ SE(2) be the planar configuration of the manipulandum’s (the object
to be manipulated) center of mass (CoM). Let mo, Jo ∈ R be the mass and moment
of inertia of the object, respectively. The position of the i-th robot on the plane is
identified by pi ∈ R2, expressed with respect to Σw, the global fixed reference frame.
The robots are modeled as circular objects of radius ri > 0 and can establish point
contacts with friction with the object’s perimeter [43]. We assume the robots move
on the plane following the motion law of a single integrator

ṗi = ui. (3.11)

Figure 3.9 visualizes the considered system with an elliptical manipulandum (grey)
laying on the horizontal plane with two robots (yellow) represented in the contact
position. The considered manipulation task is described as a trajectory Γ composed
by an ordered set of object configurations, as well as the associated velocity, at each
generic time instant t ∈ [0, T], with T being the trajectory duration.

The following additional assumptions are considered in the rest of this chapter:

• all the contacts are modeled as point contacts with friction [43], and interactions
obey the Coulomb’s friction model with a known friction coefficient between the
parts in contact;

• the manipulated object and the robots lay in a planar environment, with all the
frictional forces acting on the plane and gravity acting downward on the vertical
axis;

• the frictional properties of the ground are uniform across the environment;

• the motion is slow enough, such that inertial forces are negligible or instantly
absorbed by the frictional effects (quasi-static assumption);

66 Chapter 3. Pushing Manipulation with a few Robots

Figure 3.9: Visual representation of the considered system. Symbols
are explained in Sec. 3.2.

• the object’s perimeter is represented as a closed smooth curve enclosing a convex
region of the space.

3.2.1 Task-oriented optimal robot positioning

In this section, we describe the procedure used to optimize the robots’ contact po-
sitions around the object. The closed curve representing the object’s perimeter at a
given configuration To ∈ SE(2) is parametrized by θ, i.e., the angle formed by the
segment connecting the object CoM and a point on the object’s perimeter. Given the
object convexity assumption, the value of θ corresponds to a given position belonging
to the object perimeter. Thus, a contact point between the i-th robot and the object
is identified by a particular value of θi. Our goal is to calculate optimized values of θi
for each robot to perform the pushing task optimally.

At each contact point we define a reference frame {Ci}, whose origin lays on the
object’s perimeter, the x̂-axis is directed along the perimeter tangent and the ẑ-axis
is directed along the inward normal. The number of contact points is nc and it
is equal to the total number of robots in contact with the object. Denoting with
Θ = [θ1, . . . , θnc]

T, the grasp matrix G (Θ) ∈ R3×2nc maps contact forces between the
object’s CoM, identified by the frame {B}, and the contact frames {C1}, . . . , {Cnc}.
Generally, it can be constructed given the generic i−th contact point pose (pci , Rci)
with Rci ∈ SO(2) being the rotation matrix of the frame {Ci} and pci = [pci,x, pci,y] ∈

3.2. Task Oriented Grasp Optimization 67

Figure 3.10: Close up visualization of the force applied on the ob-
ject by robot i as well as the borders of the associated friction cone.

Symbols are explained in Sec. 3.2.

R2 being the position of the origin of {Ci} expressed in {B} as follows (see [43])

G =

[
. . .

Rci 0

[−pci,y pci,x]Rci 1
. . .

]
. (3.12)

Under the stated quasi-static assumption, the object dynamic model can be for-
mulated as follows

ẋo = RoG(Θ)Fc, (3.13)

where xo = [po,x, po,y, θo]
T denotes the minimal representation of the object pose and

ẋo its time derivative. Ro is the rotation matrix from the object frame to the global
frame, while Fc = [fT

c1 , . . . , f
T
cnc

]T ∈ R2nc is the vector stacking the contact forces,
that represents the overall input of the system. To be realizable, the contact forces
Fc must belong to the the friction cone space.

To simplify this constraint formulation in the optimization problem introduced
later, a contact force parametrization is introduced. The i−th contact force, namely
fci ∈ R2 can be espressed as a non-negative linear combination of unit vectors f̂ci,j ,
with j = 1, 2, denoting the i−th friction cone boundaries. These vectors can be
calculated, using geometrical considerations (see Fig. 3.10), starting from the friction
coefficient µ ≥ 0 as follows

f̂ci,j = Ry(±θ̂)ẑi, θ̂ = arctanµ, (3.14)

68 Chapter 3. Pushing Manipulation with a few Robots

where Ry(·) is the rotation matrix around the ŷ−axis, ẑi = [0, 0, 1]T is the contact
normal expressed in {Ci}, and θ̂ is the semi-aperture angle of the friction cone.

By denoting with F̂c = blockdiag
(
F̂c,1, . . . , F̂c,nc

)
the matrix encoding all the unit

vectors representing the boundary of the friction cones, i.e., F̂c,i =
[
f̂ci,1, . . . , f̂ci,k

]
,

and with Λ =
[
λc1,1, . . . , λcnc ,2

]T the associated coefficients used to decompose the
contact forces along the friction cone boundaries, we can compactly express the vector
of stacked contact forces as follows

Fc = F̂cΛ. (3.15)

At this point, for the contact forces to belong to the composite friction cone space
(Cartesian product of all the friction cone spaces) is sufficient to have Λ ≥ 0, i.e., all
the λ’s must be non-negative [43].

A task-oriented optimality criterion is thus established to optimize the positions
of the robots around the object (and thus the contact points they form). Given a task
(trajectory) Γ to be realized (tracked) expressed as a sequence of desired poses for the
object xo,d(t), 0 ≤ t ≤ T , we choose to optimize the position of the robots (through
the optimization of Θ) to simultaneously minimize the task tracking error and the
associated contact forces (coefficients) to realize it. Mathematically, the discretized
problem is formulated as follows

min
Θ,Λ

N∑
k=1

1

2
||xo,d(k)− xo(k)||2Q +

1

2
||Λ(k)||2R (3.16)

s.t. xo(k + 1) = xo(k) +Ro(k)G(Θ)F̂cΛ(k) (3.17)

DΘ+ Θ̄ ⪰ ϵ (3.18)

Λ(k) ⪰ 0 ∀k = 1, . . . , N (3.19)

where k represents the generic time instant, N is the total number of steps taken to
accomplish the task (and it is related to the trajectory duration T and the adopted
discretization step), xo,d(k) and xo(k) are the desired and the current object positions
at a given time step 1 ≤ k ≤ N , Q > 0 and R > 0 are diagonal and positive-definite
weight matrices. The constraint in (3.17) is obtained by combining the object dynamic
model (3.13) and the contact force parametrization (3.15), while the constraint (3.19)
denotes the feasibility of the contact forces discussed above. The constraint (3.18) is,
instead, used to avoid collisions between the robots and is described hereafter. The
matrix D is the incidence matrix of the cyclic graph associated to the multi-robot
system deployed around the object, Θ̄ is the vector taking into account the modulo

3.2. Task Oriented Grasp Optimization 69

2π property of the parametrized object perimeter, and are specified as follows

D =

1 −1 0 . . . 0

0 1 −1 . . . 0
...

. . .
...

1 0 0 . . . −1

 , Θ̄ =

0
...
2π
...
0

,

where ϵ ≥ 0 is a non-negative constant vector denoting the collision bounds to be
opportunely chosen. The value 2π occupies the k−th component of the vector Θ̄ and
it is used to take the shorter distance between the k−th and (k+1)−th contact points
when this last crosses the value θ = 2π. This is used to calculate the right minimum
(angular) distance between the robots. The value of ϵi (i.e., the i-th component of
vector ϵ) represents the lower bound of the angle between the computed configurations
of the two successive contact points/robots i and i+ 1.

3.2.2 Motion control for trajectory tracking

In this section, we report the proposed control scheme used to command the robots
to execute the considered object’s pushing manipulation task. More specifically, the
objective of the manipulation is to move the object on the plane following a predefined
trajectory Γ. To achieve this objective, we propose to define the desired body force
according to a proportional-derivative scheme. In particular, let xo,d ∈ R3 be the
current desired pose for the object along Γ, and vo,d ∈ R3 be the associated desired
velocity for the object. The desired body force F∗

o for the problem at hand is computed
as

Fo,d = KPO
(xo,d − xo) +KDO

(vo,d − vo) + fµ(vo,d), (3.20)

where KP ,KD ∈ R3×3 are positive definite diagonal matrices representing the pro-
portional and derivative gains. The last term fµ(vd) is a feed-forward component for
sliding friction compensation. This component is computed as the wrench caused by
the friction effect on the object sliding with velocity vo,d. More specifically, fµ(vd) is
computed using the following ellipsoidal approximation for the limit surface [70]:

fµ(vo,d) =
µfmog√

v2o,d,x + v2o,d,y + (γωo,d)2

vo,xvo,y

γ2ω

 , (3.21)

where vo,x, vo,y, ω ∈ R are the components of vo, γ =
√

Jo/mo and µf is the friction
coefficient between the object and the floor. The body force Fo,d computed in (3.20)
is then used to online extrapolate feasible contact forces to be applied to the object

70 Chapter 3. Pushing Manipulation with a few Robots

using the optimization problem described below

min
Fc

1

2
||Fo,d −G(Θ∗)Fc||2 (3.22)

s.t. Fc = F̂cΛ (3.23)

Λ ⪰ 0 (3.24)

where Θ∗ is the optimal solution of the problem in (3.16). The input velocity for the
i-th robot is thus computed using the following control law

ui = KPR
(p∗ci − pi) +KVR

RoG(Θ)Fci, (3.25)

where, the first term provides proportional position feedback for the robot since p∗ci
is the desired optimal position for the i-th robot, calculated using θ∗i , and pi is its
current position. The second addendum is a feed-forward component instructing the
robots to move in the direction of the contact force it needs to provide to accomplish
the task. The coefficients KPR

,KV > 0 are gains of the control law. The proposed
online procedure makes use of the optimal robots’ positioning Θ∗ which is guaranteeing
minimal contact forces and tracking error in the ideal case, while providing robustness
by means of position feedback terms.

3.2.3 Simulation and experimental results

In this section, we present the evaluation method used to assess the validity of the pro-
posed strategy. In order to properly evaluate the presented optimization and control
architecture, a series of simulations has been performed. We propose three different
manipulation tasks performed by a pair of robots pushing an elliptical prism. For
each trajectory, the optimal positioning for each robot is computed using the pro-
cedure presented in Section 3.2.1. The control law proposed in Section 3.2.2 is then
used to perform the tracking of the task trajectory by having the robots push onto the
object after they have reached the desired contact position. Results of the validation
will be detailed in Section 3.2.3.

Simulation setup

The simulations have been performed using the CoppeliaSim physical simulation soft-
ware [61]. Two or three robots are placed in the simulated environment together with
an elliptical prism, as visualized in Fig. 3.11. The robots are an e-puck [52] differential
drive mobile robot and are equipped with bumper rings with ri = 5 cm, to provide
a consistent contact surface. In order to provide the single integrator behaviour de-
scribed in (3.11), the velocities for the wheels of each robot are obtained through
input-output feedback linearization [71]. The object’s mass is set to mo = 0.3[kg]
while the inertia moment is set to Jo = 0.0072[kg m2]. The principal axes of the
ellipse are 0.5 m and 0.2 m respectively. The friction coefficient between the object

3.2. Task Oriented Grasp Optimization 71

Figure 3.11: The robots and object in the CoppeliaSim simulation
environment.

and the floor is set to 0.6 while the robot-object friction coefficient is set to 0.2. All
the used parameters are set according to the best available estimate from the available
real-world equipment described in the next section. The data required to compute
the control laws is transmitted through ROS communication channels to a MATLAB
script implementing the proposed methodology. The simulations are performed on a
laptop equipped with an Intel Core I7-9750H and 16GB of RAM.

Experimental setup

The real-world experiment is performed on a honed concrete floor using the same
robot used in the simulation environment, the e-puck differential drive robot, equipped
with a 3D printed bumper ring. The elliptical manipulandum is obtained from a
5mm plywood sheet. The principal axis of the ellipse are 0.255 m and 0.175 m
respectively. The global pose of both the robots and the object is obtained using
an Optitrack™ motion capture system [53] composed of seven Prime13 cameras. The
information about the velocity of the object, required to compute (3.20), is obtained by
feeding the pose information into an extended Kalman filter generating the linear and
angular velocities of the object. The system inside the experiment area is visualized
in Fig. 3.12. All the required data is sent to the PC, computing the control law
through ROS channels. The computed input for each robot is sent through a Bluetooth
connection to the robot’s control board.

Results

In this section, the results of the performed tests are shown. First, the results of two
different simulated tasks are presented, followed by a manipulation task performed
in the real environment. Figure 3.13 (top) show the execution of a desired b-spline
trajectory (black dashed line), in the optimal robots’ configuration case (left) and in

72 Chapter 3. Pushing Manipulation with a few Robots

Figure 3.12: The robots and object in the test environment.

the non-optimal case (right). The bottom left graph shows the norm of the traking
error ep = po,d − po while the bottom graph shows the contact force fc1 , fc2 , fc3 norm
along the perfomed trajectory. The continuous lines are associated to results with the
robots in the optimal configuration Θ∗ = [5.112, 4.623, 3.569]T found solving the prob-
lem in (3.16), while dashed lines are associated to non optimal robots’ configuration
Θ = [7/4π, 3/2π, 5/4π]T, which is also used as a starting point of the optimization.
As it is possible to note from the upper graph, the optimal solution increases the
performance of the tracking task showing a lower and less varying error norm (in
blue), compared to the non-optimal configuration (in red), especially in the second
half of the trajectory. Analogous considerations can be drawn looking at the bottom
graphs that shows the norm of the three contact forces fc1 , fc2 , fc3 for the optimal
configuration (continuous lines) and for the non-optimal configuration (dashed lines).
In particular, it can be noted that the contact forces are more uniformly distributed
among the robots in the optimal case, especially in the second half of the trajectory.
It is worth remarking that, although successful in the considered case, non-optimal
configurations can lead to even larger tracking errors and norms of contact forces, and
this may lead to task failures.

Figure 3.14 shows the tracking performance of the same trajectory using two
robots. As shown by the orange line, the robots can closely track the assigned tra-
jectory. However, this is again achieved by sacrificing the orientation tracking perfor-
mance as the robots align the object to mostly push along the motion direction. The
optimal configuration of the robots is Θ =

[
5.497 3.734

]
, and corresponds to both

robots actively pushing along the entire trajectory.
Figure 3.15 shows the performance difference between an optimized configuration

and a non-optimized one in terms of the norm of the difference between the desired
body force Fo,d and the cumulative force applied by the contact GFc, obtained tracking
the same polynomial trajectory. Even if the magnitude of the error is relatively

3.2. Task Oriented Grasp Optimization 73

−1 0 1 2 3 4

0

1

2

x [m]

y
[m

]

−1 0 1 2 3 4

0

1

2

x [m]

y
[m

]
0 50 100 150 200

0

0.1

0.2

0.3

||e
p
||

[m
]

0 50 100 150 200
0

0.2
0.4
0.6
0.8

||f
c i
||

[N
]

fc,1
fc,2
fc,3

Figure 3.13: Upper graphs: desired (black dashed line) and executed
trajectory (orange) in the optimal robots’ configuration (left) and non-
optimal robots’ configuration (right). Bottom left graph: norm of
the tracking error ep = po,d − po. Bottom right graph: norm of the
contact forces fc1 , fc2 , fc3 along the performed trajectory. Results of
the optimal robots’ configuration are shown with continuous lines, non

optimal robots’ configuration results are shown with dashed lines.

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

X[m]

Y
[m

]

Figure 3.14: Tracking performance along the first proposed test tra-
jectory, depicted as a dashed black line. The orange line shows the

motion of the object during the simulated manipulation.

74 Chapter 3. Pushing Manipulation with a few Robots

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

T[s]

||F
o
,d
−
G
F
c
||2

optimized
not optimized

Figure 3.15: Comparison of the error between the requested body
force and the force that can be applied by the contacts.

small in both cases, the optimized configuration is more capable to quickly reduce
the error, therefore obtaining higher tracking performance. It is important to notice
how the results are similar at the beginning of the tracking. Both configurations can
apply a cumulative force directed in the object’s local y direction. The difference in
performance arises when the trajectory starts to turn, indicating that the optimized
configuration can apply a force closer to the force requested by the task at hand.
The second manipulation task is defined by the polynomial trajectory visualized in
Figure 3.16. In this three-robot scenario the optimal configuration of the robots here

is Θ =
[
5.1121 4.6237 3.5693

]T
. The performance obtained matches the results of

the previous scenarios in which the orientation tracking is sacrificed.
The tracking performances depicted in Figure 3.17 and Figure 3.18 show the ma-

nipulation of the same elliptical object in simulation and in the real environment
respectively. The optimal contact configuration is defined as Θ =

[
5.1868 3.7398

]
.

In this two robot scenario it is possible to note how in the optimal robot configuration
one robot is mostly pushing from below, and the other aligns with the diagonal por-
tion of the trajectory. The great similarity between the results obtained in simulation
and in the real environment further validates the proposed approach.

3.3 Future Works

In this work, we considered the problem of cooperative manipulation of an object
through a group of mobile robots. More specifically, referring to a pushing maneuver,

3.3. Future Works 75

−1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

X[m]

Y
[m

]

Figure 3.16: Tracking performance of a polynomial trajectory
(dashed blue) using 3 robots in a simulated environment, depicted

as the orange line.

−1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

X[m]

Y
[m

]

Figure 3.17: Tracking performance along the third proposed test
trajectory, depicted as a dashed blue line. The orange line shows the

motion of the object during the simulated manipulation.

76 Chapter 3. Pushing Manipulation with a few Robots

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

X[m]

Y
[m

]

Figure 3.18: Tracking performance along the third proposed test
trajectory, depicted as a dashed blue line. The orange line shows the

motion of the object during the real world manipulation.

we proposed a procedure to characterize the quality of a nonprehensile grasp configu-
ration with respect to the execution of a required pushing task. This was achieved by
selecting a set of configuration indices and correlating them to the energy efficiency
and effectiveness of the pushing maneuver. The correlation was studied employing an
extensive validation campaign performed on a physical simulator. As a case study,
a procedure for selecting the optimal configuration was employed to select a grasp
configuration in an optimized manner using the proposed characterization. The se-
lected configuration was employed to perform the requested manipulation with both
simulated and physical robots. Furthermore, we proposed a method for calculating
optimal non-colliding contact points for a group of mobile robots pushing an object
that minimizes both the trajectory tracking error and the norm of contact forces to
perform the task. Exploiting an optimized contact configuration, a motion controller
was developed that exploits online computed contact forces in feed-forward and posi-
tion error feedback terms to realize the desired trajectory tracking task. Results were
validated through simulations and experiments on real a robotic system composed of
multiple robots, showing the validity of the proposed approach.

Although effective, our method still has several limitations that must be addressed
in future works. For instance, the use of a local optimization method for the calculation
of the contact points might lead to sub-optimal results. A global optimization method
might produce better results at the expense of larger computing time. A trade-off can
be found depending on the application scenario. Besides this, we aim to reformulate

3.3. Future Works 77

the problem in (3.16) to find possibly time varying contact configurations and the
corresponding pushing forces for a given trajectory using the task-oriented approach
presented here. Finally, further experimental validations and tuning will be carried
out in the future possibly regulating pushing forces at their optimal values using
feedback regulation techniques.

79

Chapter 4

Pushing Manipulation with many
Robots

The work presented in this chapter concerns the use of a large number of robots to
perform pushing manipulation on a planar object.

As outlined in the previous chapter, the computational complexity associated with
multi-robot pushing increases with the number of robots. This may represent a serious
drawback in the implementation of pushing stategies. The contribution of this work is
in the definition of a control scheme for the manipulation of an object by a multi-robot
system, where the group of robots is controlled in an aggregate manner, exploiting
a hierarchical structure. More specifically, a Voronoi-based coverage control strategy
is exploited to implement local actions to aggregate the robots according to a given
(time varying) probability density function, whose shape is defined, at a high level,
based on the shape of the object to be manipulated, and to the desired trajectory
to be followed. Once the group of robots has successfully aggregated, the object is
manipulated performing a collaborative pushing operation, achieved by moving and
adapting the probability density function. This strategy resembles the one used in [1]
but with a different global behaviour and resulting performance. In [1] the authors
used a single global input to control all the robots, which implied the necessity of in-
teracting with the walls in the environment to control the variance. As a consequence,
the robots required significant time to regroup, affecting the time performance of the
manipulation. Furthermore, their strategy is not applicable to free space scenarios
where only the robots and the manipulandum are present. Our proposed approach
considers the ability of each robot to be controlled separately in order to reduce the
time required to bring the manipulated object to a target pose. To further demon-
strate the performance improvement introduced by the present work, we also provide
a quantitative comparison with the results of [1], given the similarity between the
two methods. Finally, despite being effective, the strategy presented in [20] requires
exact knowledge of the shape of the manipulated object, while the strategy hereby
presented only requires rough information on the object’s footprint.

To summarize, the contribution of this chapter are:

• The introduction of a control architecture for the planar manipulation of an

80 Chapter 4. Pushing Manipulation with many Robots

Figure 4.1: E-Puck robots approaching a square object to apply a
pushing action inside the motion capture arena.

object with a system of multiple mobile robots that is able to generate a coor-
dinated pushing action on the object, in order to transport it towards a desired
target pose in an efficient way. The architecture generates the manipulation
action taking advantage of the controllability of each single robot composing
the group without relying on features of the environment and exact knowledge
of the object to be transported.

• The extensive validation of the proposed control architecture through physical
simulations as well as real world experiments, providing a quantitative compar-
ison with a similar method from the literature.

The rest of the chapter is organized as follows. Section 4.1 provides the problem for-
mulation, and introduces the proposed approach. Based on a multi-layer hierarchical
structure, the proposed solution is detailed in the subsequent Section 4.2. Results of
the experimental evaluation are presented in Section 4.3. Finally, concluding remarks
are given in Section 4.4.

4.1 Problem Description and Proposed Approach

Consider a prismatic object free to slide on a bounded rectangular ground plane Q.
This object will be hereafter referred to as the manipulated object, or manipulandum.

The planar position of this object is identified by the position of its center of mass,
defined as pO = [xO, yO]

T ∈ R2. Consider a group (or swarm) of robots composed by
n mobile robots that move on the same plane. The planar position of the i-th robot

4.2. Control Architecture 81

Figure 4.2: Representation of the considered system inside the sim-
ulator: the manipulated object that lies on the ground and the robots
used for the manipulation. The robot model has been simplified to

reduce the computational load of simulating multiple robots.

of the swarm is identified by pi = [xi, yi]
T ∈ R2. The motion model for each robot

is considered to be a single integrator ṗi = ui. This is achieved using input/output
feedback linearization [71]. The positions pi of all the robots are collected in the set
P = {p1, . . . , pi, . . . , pn}. The mean position of the robot group is denoted as p̄ ∈ R2.
A representation of the system in a simulated environment is visualized in Figure 4.2.

This work approaches the problem of manipulating an object on a plane using
only pushing actions generated by a group of wheeled mobile robots. The proposed
solution makes use of the ability of the group of robots to apply a coordinated push
to an object, much stronger then the one applicable by a single robot.

In order to perform the manipulation operation, we propose a three-layer strategy:

1. In the lower layer, the robots are controlled by a decentralized control algorithm
in order to gather around a requested mean point, with a required variance.

2. The middle layer steers the group of robots around and towards the object
according to a requested velocity direction for the object.

3. The higher layer is the overall position controller for the manipulated object,
given the position to be reached.

4.2 Control Architecture

This section presents the control architecture designed to steer the robots to manip-
ulate the object. First, the lower layer for swarm control is introduced. This layer

82 Chapter 4. Pushing Manipulation with many Robots

controls how the robots are displaced in the environment according to a desired dis-
tribution. The shape and mean position of the desired distribution are obtained using
the output of the higher layers of position control for object pushing. This output,
namely the planar velocity of the mean point of the robot distribution, is obtained
from an artificial potential function specifically designed for the robots to achieve the
pushing task.

4.2.1 Lower Layer: Swarm Control

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−3

−2.5

−2

−1.5

−1

−0.5

0

X[m]

Y
[m

]

Figure 4.3: Behaviour of the coverage control algorithm: the initial
positions of the robots are depicted in red, while the final positions
are depicted in blue. Solid gray lines represent the trajectories of each

robot.

This section presents the algorithm used in the lower layer to control and coordi-
nate the group of mobile robots. The objective of the control scheme is to displace
the robots according to a certain distribution ϕ. As will be clarified in the following
sections, such distribution will be used to steer the robots in order to push a target
object towards a target position. To achieve this objective we employ an algorithm
taken from standard multi-robot literature: coverage control. In mobile sensing net-
works, coverage control solves the problem of displacing a large group of robots in the
environment in order to minimize the locational optimization function [72]:

HV(P) =
∫
Q

min
i∈{1,...,n}

∥q − pi∥ϕ(q)dq (4.1)

4.2. Control Architecture 83

ϕ is a density function that represents the desired displacement of the robots over Q.
In particular, ϕ is defined as 2D gaussian distribution:

ϕ(q) = e(q−pgoal)
TB(q−pgoal) (4.2)

where pgoal is the center of the density function, and B is a 2-by-2 matrix defined as

B =

(cos2 Θ2σ2
x

+ sin2 Θ
2σ2

y
) (sin 2Θ

4σ2
x
− sin 2Θ

2σ2
y
)

(sin 2Θ
4σ2

x
− sin 2Θ

2σ2
y
) (sin

2 Θ
2σ2

x
+ cos2 Θ

2σ2
y
)

 (4.3)

where σx, σy are the 2D standard deviation of the distribution and Θ is a planar
rotation angle used to orient the distribution on the plane. The angle Θ is computed as
so that the variance σx expresses the variance of the density function on the orthogonal
direction with respect to the manipulated object. This angle is thus compuped as

Θ = tan−1 [1, 0](pO − pgoal)

[0, 1](pO − pgoal)

The choice of the standard deviations σx, σy is related to the dimentions of the ma-
nipulated object and the number of robots in the swarm. More specifically, σx should
be set so that the resulting tangential distribution of robots with respect to the ob-
ject is as wide as the manipulandum. σy ≤ σx is set in relation to the swarm size
so that more robots are involved in the pushing action since, with fewer robots, a
more elliptical distribution forces more robots to be involved directly in the action
(i.e. pushing directly on the object and not on other robots). A visualisation of the
density function is shown in Figure 4.4.

The center point pgoal of the Gaussian function is computed as

pgoal = p̄+ uswarmdt (4.4)

where uswarm is the output of the middle control layer (that, as will be clarified in
the following section, represents the desired motion input for the swarm) and dt is the
discrete time step for the overall control algorithm.

The solution of this optimization problem is obtained using Lloyd’s algorithm [72].
Starting from the initial position of the robots, the following iterative procedure is
performed:

1. Compute the Voronoi diagram of Q considering, as seeds for the Voronoi parti-
tion, the current position pi of the robots (one Voronoi cell is created for each
robot).

2. Compute the weighted centroid CVi of each Voronoi cell through the integration
of ϕ.

84 Chapter 4. Pushing Manipulation with many Robots

pgoal

Θ

X

Y

Figure 4.4: Visualization of the probability density function used, a
Gaussian centered in pgoal with σx = 2σy and rotated to align with

the manipulandum.

3. Compute the following cartesian control input for each robot i

ui = −(pi − CVi)

When convergence has been reached, the robots will have deployed according to the
density function ϕ. An example of this behavior using 20 robots is shown in Fig-
ure 4.3 using a Gaussian distribution centered at (0, 0) with standard deviations
σx = σy = 0.1.

4.2.2 Position Control Layers for Pushing the Object

This section described the two control layers that, starting from the desired position of
the object, first determines the desired motion direction for the manipulated object,
then defines the desired overall motion of the swarm. The objective of the higher
control layer is to generate the desired motion direction for the object to reach a
required position. This can be achieved using different approaches and strategies. In
this work, we propose a simple direction law. Let ptarget ∈ R2 be the desired position
for the manipulandum. Then, the desired direction of motion vdes(t) ∈ R2 for the
object is computed as follows:

vdes(t) =
ptarget − pO(t)

∥ptarget − pO(t)∥
(4.5)

In the middle control layer, given the required pushing direction vdes, the position
of the manipulandum pO and the mean position of the swarm p̄, an artificial potential

4.2. Control Architecture 85

(a) (b)

Figure 4.5: A) Artificial potential force for cumulative swarm input,
oriented accordingly to vdes, represented in red. B) Action zones of
the proposed artificial potential field. The Repulsive field acts in Zone
1, shown as the red area. The attractive potential is active in Zone
2, depicted in blue. The yellow annulus sector represents Zone 3 and

Zone 4 is represented in purple.

field [73–76] is defined to steer the swarm by generating uswarm, used in (4.4) to
compute the center point of the required distribution for the robots. The design of
such a potential field has to meet the following core requirements.

• When too far away from the object, the robots should direct towards the object.

• The robots should avoid contact with the object that would result in pushing
opposite to the desired direction.

• The robots should position correctly with respect to the object before pushing.

• The robots pushing action should aim at converging into the desired direction.

Such potential field is computed as the combination of four different effects applied
across 4 different action zones:

1. a repulsive field to avoid unwanted collisions with the object,

2. an attractive field, to steer the robots towards the object when too far away,

3. a magnetic field to steer the robots behind the object and push towards vdes,

4. a tangential field to realign the swarm for pushing.

Figure 4.5b provides a visualization of the action zones of the proposed artificial
potential field. Define now d ∈ R2 as the relative position between the manipulated
object and the mean position of the swarm, namely

d = p̄− pO

86 Chapter 4. Pushing Manipulation with many Robots

Let γ represents the angle that d forms with vdes, that is

γ = cos−1

(
vdes · d
∥vdes∥ · ∥d∥

)
The overall gradient of the potential is computed as

uswarm =
urep
∥urep∥

+
uatt
∥uatt∥

+
umag

∥umag∥
+

utan
∥utan∥

(4.6)

This cumulative swarm input is depicted in Figure 4.5a, for a representative example
of manipulated object. The limits of application of each force component in the
artificial potential field are computed taking into consideration the radius rman of
the smallest circumference that encloses the manipulandum. For instance, in the
experiments described in Section 4.3, the following parameters are used:

drep = 1.4rman datt = 1.8rman

The value γlim = 4
5π is set empirically as a tradeoff between improving pushing

execution precision (higher γlim) and minimizing swarm-manipulandum realignments
(lower γlim)

Zone 1: Repulsive Field

This repulsive component of the potential field is active on a circular sector of width
2γlim and radius drep aligned with vdes. With this shape the field repels the robots
except for when they are in an appropriate position for pushing, which is behind the
manipulated object (with respect to the desired direction of motion, given by vdes).
We define urep, the gradient of such a potential, as follows:

urep =

{
(1
∥d∥ −

1
drep

) 1
∥d∥2d, ∥d∥ ≤ drep ∧ γ < γlim

0, otherwise

Zone 2: Attractive Field

The purpose of the attractive field is to attract the swarm towards the object and
consequently to keep the robots from drifting away. The attractive component uatt

is defined when the distance of the swarm to the object is greater then datt. The
gradient of the potential in this zone is computed as

uatt =

{
− d

∥d∥ , ∥d∥ ≥ datt

0, otherwise

Zone 3: Magnetic Field

The magnetic field represents the core of the pushing action of the swarm. Once the
robots have reached the pushing area, in order to properly push, their motion should

4.2. Control Architecture 87

converge into the line of action of vdes while approaching the object. The magnetic
field created by an electric current flowing in opposite directions along two parallel
wires, sketched in Figure 4.6, resembles this motion: thus, we define a control action
inspired by this principle. The action zone of this field is set to the circular sector of
radius 110%datt where γ > γlim. Let us introduce a rotation matrix R(α), defined to
orient the field towards the required vdes, namely

R(α) =

cosα − sinα 0

sinα cosα 0

0 0 1

with

α = tan−1

(
[0, 1] · vdes
[1, 0] · vdes

)
Let Win,Wout ∈ R3 be the points where an imaginary current loop respectively enters
and exits the plane. These points lie on the line orthogonal to vdes that passes through
pO. The distance from the points to pO is defined as 70%rman. In global coordinates
the position of these points can be computed as

Win = R(α)

 0.0

−0.7rman

0.0

+

xOyO
0.0

Wout = R(α)

 0.0

0.7rman

0.0

+

xOyO
0.0

With rin, rout we define the distance of the swarm mean point to Win and Wout

respectively, computed as

rin = [p̄T , 0.0]T −Win, rout = [p̄T , 0.0]T −Wout

The gradient of the magnetic potential field is defined as umag, given by

umag =
Min × rin
(∥rin∥)3

+
Mout × rout
(∥rout∥)3

(4.7)

where Min = [0, 0,−1]T and Mout = [0, 0, 1]T are the associated magnetic moments.
Equation (4.7) is indeed inspired by the magnetic field of two electric wires that are
orthogonal to the plane, one with current flowing into the plane, one with current
flowing out. However, since the definition of uswarm given by (4.6) normalizes the
contribution of the various components, the constants present in classical physics
theory have been removed.

88 Chapter 4. Pushing Manipulation with many Robots

Figure 4.6: Magnetic field around two wires

Zone 4: Tangential Field

The purpose of the tangential field is to steer the robots around the object till they
reach the active pushing area. The action zone for this component is the annulus
sector around the object with radius from 90%drep to 110%datt with γ ≤ γlim. The
zone is designed to provide an overlap with the adjacent zones, effectively combining
the effects. Let vdesE = [vTdes, 0]

T and dE = [dT , 0]T be the extension to R3 of vdes and
d respectively. The tangential component inside the action zone is defined as:

utan =

[
1 0 0

0 1 0

]
[(vdesE × dE)× dE] (4.8)

4.3 Validation

This section illustrates the procedure used to validate the proposed approach. The
proposed solution has been tested both in a physical simulator and with real world
experiments. The objective of both types of validation is to manipulate a prismatic
object through a series of target positions. The tests use the e-puck robots [52]. The
control algorithm is implemented as a MATLAB script that communicates with the
robots through ROS [39].

4.3.1 Simulations

The physical environment is recreated inside the CoppeliaSim simulator [61]. The
simulated model for the e-puck robot send the global pose of the robot through a
ROS topic. The position and orientation of the manipulated object is also published
through a dedicated ROS topic. The tests are conducted on four prisms with different
base shapes: an ellipse, an octagon, a rectangle and a flower. A visualization of
the four manipulanda is shown in Figure 4.7. All the manipulanda have rman of

4.3. Validation 89

Table 4.1: Sequence of target points for the manipulated object

Simulation Real
1 ptarget = (2, 2) ptarget = (1, 1)

2 ptarget = (0, 0) ptarget = (0, 0)

3 ptarget = (−1, 1) ptarget = (−0.5, 0.5)
4 ptarget = (−1,−2) ptarget = (−0.5,−0.5)
5 ptarget = (2,−1) ptarget = (1,−0.5)
6 ptarget = (0, 0) ptarget = (0, 0)

around 25 cm and weight 500 g. Each manipulated object is transported through
a series of 6 targets starting from the position (0, 0). A target is deemed reached
when the manipulandum enters a circular zone of radius 0.1m around the target.
Table 4.1 lists the sequence of the 6 assigned targets for both the simulation and
the real world experiments. The sequence of targets is chosen specifically to test the
proposed solution. As an example, when the first target is reached, the robots are
then guided all around the object for it to be pushed to the second target, forcing a
long waiting time between pushing actions. The proposed solutions is tested with

Figure 4.7: Set of manipulated objects used in the simulator: oc-
tagon shape, flower shape, ellipse shape and rectangle.

different robot groups, namely 8, 12, 16 and 20 robots. Each group carries each shape
across all targets and each test is repeated 3 times. Figure 4.10 show the behaviour
of the different manipulanda in characteristic runs. Across all the simulations, σx is
set to 0.1 while the value σy = σx is used in all runs except with 8 robots where
σy = 0.075. This effect is seen in Figure 4.10 where the robots tend to spread more
on the object’s border. Figure 4.8 shows the statistics of the time required to reach
all the assigned targets according to the shape and group size. It is worth noting here
that rounder shapes like the octagon and flower require less time to complete all the

90 Chapter 4. Pushing Manipulation with many Robots

tasks than the more eccentric shapes like ellipse and rectangle. This can be attributed
to the different interaction between the robots and the object that can be more prone
to create a rotation than a translation. It can also be noted that larger groups are
more time effective then smaller swarms.

Ellipse Octagon FlowerRectangle
500

1,000

1,500

2,000

Shapes

T
[s

]

8 12 16 20
500

1,000

1,500

2,000

Group sizes

T
[s

]
Figure 4.8: Box plot representation of the time required to reach all

targets, grouped by shape and swarm size.

4.3.2 Experiments

Real world experiments have been conducted to validate the approach in a real sce-
nario. In the experiments, 5 e-puck robots are used to manipulate a square object
similarly to what is done in the simulations, using the same MATLAB implementa-
tion of the proposed strategy. The robots are controlled by a ROS driver node that
communicates with the robots via bluetooth. The position of the robots and the ma-
nipulated object are measured globally using the Optitrack Motion capture system.
A visualization of the system is provided in Figure 4.1. The object’s weight is 327g

and has rman = 0.26m. In this scenario, the targets follow the same relative displace-
ment of the ones used in simulation, but adjusted to take into account the limited
area for the experiment. Figure 4.9 shows the motion of the manipulated object in
the environment. Thestandard deviations used with the real robots are σx = 0.075,
σy = 0.0375. On average the robots were able to perform the selected manipulations
in 902 ± 17 s (mean ± std). To quantitatively compare the time efficiency of the
presented strategy against the results in [1], we evaluated the average time required
to travel a normalized unit distance. This metric δ is evaluated by computing an esti-
mate of the distance traveled in the presented real world experiments, divided by the
size of the manipulated object, then divide the average time to perform the associated
experiment by this distance, namely:

δ =
TM [s]
lM [m]
sO[m]

4.3. Validation 91

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x[m]

y[
m

]

Figure 4.9: Visualization of the trajectory of the manipulated object
(light blue) with the square shape, during the real world experiment,
together with the pushing robots (dark blue). The trajectory of the

center of mass of the manipulated object is depicted in orange.

92 Chapter 4. Pushing Manipulation with many Robots

0 2
−2

−1

0

1

2

x[m]

y[
m

]

−2 0 2
−2

−1

0

1

2

x[m]

y[
m

]

−2 0 2

−2

−1

0

1

x[m]

y[
m

]
−2 0 2

−2

−1

0

1

2

x[m]
y[

m
]

Figure 4.10: Visualization of the trajectory of the manipulated ob-
ject (light blue) for each shape, during the simulation, together with
the pushing robots (dark blue). The trajectory of the center of mass

of the manipulated object is depicted in orange.

where TM [s] is the duration of the manipulation process, lM [m] is the distance traveled
during the manipulation and sO[m] is the object size. The distance estimate for the
presented case is computed as the distance between a target and its successor in
Table 4.1 starting from the initial pose (0, 0), resulting in 7.15m. In [1] only the
dimensions of the area is provided, therefore we consider the traveled distance as
the length of the red line in Figure 4.11, which is 4.6m. Given the structure of the
experiments, the estimate of the traveled distance for our experiment is lower then the
actual distance (this can be noted also in Figure 4.9) while the estimate in Figure 4.11
has a higher value then the traveled distance observed in the experiment. This choice
results in a comparison advantageous to [1].The resulting value of δ for [1] is 111.2s

while the value for our real world experiments is δ = 50.4s therefore, with the hereby
proposed method an object can be transported to a target in half the time required
by the method proposed in [1].

4.4 Future Works

In this work we proposed a methodology to solve a collaborative transportation task,
performed by a group of mobile robots implementing a pushing operation. The pro-
posed method exploits a Voronoi-based coverage control method to aggregate the

4.4. Future Works 93

0 1.5
0

1.2

−0.5 0 0.5 1

−0.5

0

0.5

1

Figure 4.11: Visualization of the travel distances used for the quan-
titative comparison of the proposed method against literature. The
distance traveled in the presented experiment is presented on the right
while the distance considered to evaluate the method in [1] is on the

left.

robots according to a desired time-varying probability density function. The param-
eters of the probability density function are defined based on the desired velocity for
the object to be manipulated, and on its dimentions.

Extensive simulations, performed on a dynamic simulation environment, showed
that the proposed methodology effectively performs the manipulation task, letting the
manipulated object reach the desired positions. Furthermore, the proposed method
is compared against a similar approach already present in literature, showing a sig-
nificative performance improvement in the manipulation time. Finally, even though
the current implementation is centralized, the presented strategy can be implemented
in a decentralized way, since each robot only needs: the relative positions of the ma-
nipulandum and the relative position of its neighbors, both obtainable with on board
sensors. An estimate of the swarm mean pose is also required but can be computed in
a decentralized way through a consensus algorithm, while the relative target position
for the object is given by the task.

In this work, we considered only objects with a prismatic shape, moving in a
planar environment. Future work will aim at removing this assumption, allowing to
manipulate objects with more general shape, in environments that are not perfectly
planar. In the presented approach, we also considered a very minimal higher control
strategy to compute the desired direction of motion. Future work will focus on de-
signing a more sophisticated strategy that, for example, could consider the presence
of obstacles in the environment.

Furthermore, the strategy neglects the ability of a swarm to apply pushing actions
that rotate the object, therefore neglecting the regulation of the orientation of the
object. In future work, we aim at extending the proposed strategy to enable the total
regulation of the pose of the manipulated object.

Finally, future works will also aim at investigating the effectiveness of different
probability density functions other than a simple Gaussian function.

95

Chapter 5

Conclusive Remarks

In this thesis we explored the world of pushing manipulations through the point of
view of a single robot and multiple robots. In the single robot scenario we developed
strategies for planning optimal manipulation trajectories that take into account the
peculiarities of the pushing interaction. One of the main challenges in the develop-
ment of the presented solution was the implementation of a fast algorithm capable of
providing a solution in a reasonable time span. While the first layer of the algorithm
provides a solution quickly, the second layer involves the solution of multiple nonlin-
ear semi-infinite programming problems. The final solution was achieved employing
several techniques to optimize the code execution, only after a thorough review of
available solvers. Similar challenges appeared during the implementation of the con-
trollers. The constraint implemented to avoid wheel slipping is a quadratic constraint
on the robot motion when formulated using the robot’s control inputs that signifi-
cantly increase the complexity of the problem to solve. The constraints to maintain
the pushing contact were less challenging being linearized and therefore easier to in-
corporate into the problem. However, the implementation of a controller that could
reliably operate in real-time required a fair amount of debugging as well as the the
complete integration of the planning an control strategy. In the multi-robot scenario
we deeply analyzed the quality of a contact configuration that the robot form on the
object in order to push the object. The identification of a heuristic to rank the quality
of a configuration with respect to its ability to achieve a certain task has provided
the opportunity to conduct a rigorous testing campaign and to apply statistical meth-
ods to the results. While solving the task-oriented optimization problem we faced
again problems regarding the time required to obtain a solution, which however has
been easier to solve due to the experience developed during the single robot pushing
research. The implementation of the controller for the robot motion provided the
opportunity to look at the multi-robot pushing from the point of view of the grasp-
ing research, trying to merge the peculiarities of coordinating multiple robots with
knowledge from the well established "robotics manipulation" field. Finally, during
the research on pushing with many robots we got the chance to apply some well es-
tablished multi-robot control strategies to new aspects with surprisingly good results.
Overall, during the three and a half years of the PhD thesis, I had the chance to work
on multiple aspects of the same problem and to take inspiration from different points

96 Chapter 5. Conclusive Remarks

of view. The knowledge and experience gained during this period have been broadly
transferred between fields and will certainly prove useful in the future.

97

Bibliography

[1] S. Shahrokhi, L. Lin, C. Ertel, M. Wan, and A. T. Becker, “Steering a swarm
of particles using global inputs and swarm statistics,” IEEE Transactions on
Robotics, vol. 34, pp. 207–219, 2018.

[2] F. Ruggiero, V. Lippiello, and B. Siciliano, “Nonprehensile dynamic manipulation:
A survey,” IEEE Robotics and Automation Letters, vol. 3, pp. 1711–1718, 2018.

[3] D. Prattichizzo and J. C. Trinkle, Grasping, pp. 671–700. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008.

[4] H. F. McCreery and M. D. Breed, “Cooperative transport in ants: a review of
proximate mechanisms,” Insectes Sociaux, vol. 61, pp. 99–110, 2014.

[5] K. Ohashi, R. Takahashi, M. Takimoto, and Y. Kambayashi, “Cooperative trans-
portation of a rod using mobile agents,” in 2014 IEEE International Conference
on Robotics and Biomimetics (ROBIO 2014), pp. 1019–1026, Dec 2014.

[6] A. Yamashita, T. Arai, J. Ota, and H. Asama, “Motion planning of multiple mo-
bile robots for cooperative manipulation and transportation,” IEEE Transactions
on Robotics and Automation, vol. 19, pp. 223–237, 2003.

[7] J. Fink, M. A. Hsieh, and V. Kumar, “Multi-robot manipulation via caging in
environments with obstacles,” in 2008 IEEE Int. Conf. Robot. Autom., pp. 1471–
1476, May 2008.

[8] G. Habibi, Z. Kingston, W. Xie, M. Jellins, and J. McLurkin, “Distributed cen-
troid estimation and motion controllers for collective transport by multi-robot
systems,” in 2015 IEEE Int. Conf. Robot. Autom., pp. 1282–1288, May 2015.

[9] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controllability, and
planning,” The International Journal of Robotics Research, vol. 15, pp. 533–556,
1996.

[10] M. T. Mason, “Mechanics and planning of manipulator pushing operations,” The
International Journal of Robotics Research, vol. 5, pp. 53–71, 1986.

[11] K. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active sensing by push-
ing using tactile feedback,” in Proc. of the IEEE/RSJ Int. Conf. Intell. Robots
Syst., vol. 1, pp. 416–421, 1992.

98 BIBLIOGRAPHY

[12] F. R. Hogan and A. Rodriguez, Feedback Control of the Pusher-Slider System:
A Story of Hybrid and Underactuated Contact Dynamics, pp. 800–815. Cham:
Springer International Publishing, 2020.

[13] F. R. Hogan, E. R. Grau, and A. Rodríguez, “Reactive planar manipulation
with convex hybrid mpc,” 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 247–253, 2017.

[14] Y.-H. Kim and D. A. Shell, “Using a compliant, unactuated tail to manipulate
objects,” IEEE Robotics and Automation Letters, vol. 2, pp. 223–230, 2017.

[15] T. Maneewarn and P. Detudom, “Mechanics of cooperative nonprehensile pulling
by multiple robots,” in Intelligent Robots and Systems, 2005.(IROS 2005). 2005
IEEE/RSJ International Conference on, pp. 2004–2009, 2005.

[16] P. Kolhe, N. Dantam, and M. Stilman, “Dynamic pushing strategies for dynam-
ically stable mobile manipulators,” in Robotics and Automation (ICRA), 2010
IEEE International Conference on, pp. 3745–3750, 2010.

[17] S. Krivic, E. Ugur, and J. Piater, “A robust pushing skill for object delivery be-
tween obstacles,” in 2016 IEEE International Conference on Automation Science
and Engineering (CASE), pp. 1184–1189, 8 2016.

[18] K. Kovac, I. Zivkovic, and B. D. Basic, “Simulation of multi-robot reinforcement
learning for box-pushing problem,” in Proc. of the 12th IEEE Mediterranean
Electrotechnical Conference, vol. 2, pp. 603–606 Vol.2, May 2004.

[19] T. Igarashi, Y. Kamiyama, and M. Inami, “A dipole field for object delivery by
pushing on a flat surface,” in IEEE Int. Conf. Robot. Autom., pp. 5114–5119,
May 2010.

[20] M. A. Golkar, S. T. Namin, and H. Aminaiee, “Fuzzy controller for cooperative
object pushing with variable line contact,” in IEEE International Conference on
Mechatronics (ICM), pp. 1–6, 2009.

[21] M. Udomkun and P. Tangamchit, “Cooperative overhead transportation of a box
by decentralized mobile robots,” in 2008 IEEE Conference on Robotics, Automa-
tion and Mechatronics, pp. 1161–1166, 2008.

[22] M. Wada and R. Torii, “Cooperative transportation of a single object by omnidi-
rectional robots using potential method,” in 2013 16th International Conference
on Advanced Robotics (ICAR), pp. 1–6, 2013.

[23] M. Morishita, S. Maeyama, Y. Nogami, and K. Watanabe, “Development of an
omnidirectional cooperative transportation system using two mobile robots with
two independently driven wheels,” in 2018 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 1711–1715, 2018.

BIBLIOGRAPHY 99

[24] C. Tsai, H. Wu, F. Tai, and Y. Chen, “Decentralized cooperative transporta-
tion with obstacle avoidance using fuzzy wavelet neural networks for uncertain
networked omnidirectional multi-robots,” in 2016 12th IEEE International Con-
ference on Control and Automation (ICCA), pp. 978–983, 2016.

[25] P. Culbertson and M. Schwager, “Decentralized adaptive control for collaborative
manipulation,” in 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 278–285, 2018.

[26] A. Franchi, A. Petitti, and A. Rizzo, “Distributed estimation of the inertial pa-
rameters of an unknown load via multi-robot manipulation,” in 53rd IEEE Con-
ference on Decision and Control, pp. 6111–6116, 2014.

[27] E. Simetti and G. Casalino, “Manipulation and transportation with cooperative
underwater vehicle manipulator systems,” IEEE Journal of Oceanic Engineering,
vol. 42, pp. 782–799, 2017.

[28] S. Kim, H. Seo, J. Shin, and H. J. Kim, “Cooperative aerial manipulation using
multirotors with multi-dof robotic arms,” IEEE/ASME Transactions on Mecha-
tronics, vol. 23, pp. 702–713, 2018.

[29] P. Song and V. Kumar, “A potential field based approach to multi-robot ma-
nipulation,” in Proceedings 2002 IEEE International Conference on Robotics and
Automation (Cat. No.02CH37292), vol. 2, pp. 1217–1222 vol.2, 2002.

[30] J. Zhou, J. A. Bagnell, and M. T. Mason, “A fast stochastic contact model
for planar pushing and grasping: Theory and experimental validation,” CoRR,
vol. abs/1705.10664, 2017.

[31] Z. Hu, Z. Zhao, L. Zhang, H. Liu, N. Ding, Z. Sun, T. L. Lam, and H. Qian,
“Collaborative object transportation by multiple robots with onboard object lo-
calization algorithm,” in 2019 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pp. 2344–2350, 2019.

[32] H. Ebel, W. Luo, F. Yu, Q. Tang, and P. Eberhard, “Design and experimental val-
idation of a distributed cooperative transportation scheme,” IEEE Transactions
on Automation Science and Engineering, vol. 18, pp. 1157–1169, 2021.

[33] C. Zito, R. Stolkin, M. Kopicki, and J. L. Wyatt, “Two-level rrt planning for
robotic push manipulation,” in 2012 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 678–685, 2012.

[34] J. Z. Woodruff and K. M. Lynch, “Planning and control for dynamic, nonprehen-
sile, and hybrid manipulation tasks,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4066–4073, May 2017.

100 BIBLIOGRAPHY

[35] J. Zhou, Y. Hou, and M. T. Mason, “Pushing revisited: Differential flatness,
trajectory planning, and stabilization,” The International Journal of Robotics
Research, vol. 38, no. 12-13, pp. 1477–1489, 2019.

[36] K. M. Lynch, “The mechanics of fine manipulation by pushing,” in Proceedings
1992 IEEE International Conference on Robotics and Automation, pp. 2269–2276
vol.3, 1992.

[37] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The International Journal of Robotics Research, vol. 30, pp. 846–894,
2011.

[38] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, pp. 100–107, 1968.

[39] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA Workshop
on Open Source Software, 2009.

[40] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning li-
brary,” IEEE Robotics & Automation Magazine, vol. 19, pp. 72–82, 12 2012.
https://ompl.kavrakilab.org.

[41] R. Dhaouadi and A. A. Hatab, “Dynamic modelling of differential-drive mobile
robots using lagrange and newton-euler methodologies: A unified framework,”
Advances in Robotics and Automation, vol. 2, no. 2, pp. 1–7, 2013.

[42] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Al-
gorithms. Communications and Control Engineering, London: Springer-Verlag,
2011.

[43] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduction to
Robotic Manipulation. CRC Press, Inc., 1st ed., 1994.

[44] G. Oriolo, A. D. Luca, and M. Vendittelli, “Wmr control via dynamic feedback lin-
earization: design, implementation, and experimental validation,” IEEE Trans-
actions on control systems technology, vol. 10, pp. 835–852, 2002.

[45] J. Xie and N. Chakraborty, “Rigid body dynamic simulation with line and surface
contact,” in 2016 IEEE International Conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR), pp. 9–15, Dec 2016.

[46] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry friction part
1. limit surface and moment function,” Wear, vol. 143, pp. 307–330, 1991.

[47] S. H. Lee and M. R. Cutkosky, “Fixture Planning With Friction,” Journal of
Engineering for Industry, vol. 113, pp. 320–327, 08 1991.

BIBLIOGRAPHY 101

[48] P. Falcone, F. Borrelli, J. Asgari, E. Tseng, and D. Hrovat, “Predictive active
steering control for autonomous vehicle systems,” Control Systems Technology,
IEEE Transactions on, vol. 15, pp. 566 – 580, 06 2007.

[49] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and
Hybrid Systems. Cambridge University Press, 2017.

[50] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of Dynamic
Systems. Addison-Wesley Longman Publishing Co., Inc., 3rd ed., 1997.

[51] A. Bemporad and C. Rocchi, “Decentralized linear time-varying model predictive
control of a formation of unmanned aerial vehicles,” in 2011 50th IEEE Confer-
ence on Decision and Control and European Control Conference, pp. 7488–7493,
2011.

[52] P. Gonçalves, P. Torres, C. Alves, F. Mondada, M. Bonani, X. Raemy, J. Pugh,
C. Cianci, A. Klaptocz, S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Mar-
tinoli, “The e-puck, a robot designed for education in engineering,” Proceedings
of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, 1
2009.

[53] NaturalPoint, “Motion capture systems.”

[54] M. M.G and A. Salgoankar, “A survey of robotic motion planning in dynamic
environments,” Robotics and Autonomous Systems, vol. 100, 12 2017.

[55] V. Lippiello, B. Siciliano, and L. Villani, “Fast multi-fingered grasp synthesis
based on object dynamic properties,” in 2010 IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, pp. 1134–1139, 7 2010.

[56] E. Chinellato, A. Morales, R. B. Fisher, and A. P. del Pobil, “Visual quality
measures for characterizing planar robot grasps,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 35, pp. 30–41,
Feb 2005.

[57] B. Mirtich and J. Canny, “Easily computable optimum grasps in 2-d and 3-
d,” Proceedings - IEEE International Conference on Robotics and Automation, 1
2002.

[58] C.-H. Xiong, Y.-F. Li, H. Ding, and Y.-L. Xiong, “On the dynamic stability of
grasping,” The International Journal of Robotics Research, vol. 18, pp. 951–958,
1999.

[59] B.-H. Kim, S.-R. Oh, B.-J. Yi, and I. H. Suh, “Optimal grasping based on non-
dimensionalized performance indices,” in IEEE International Conference on In-
telligent Robots and Systems, vol. 2, pp. 949 – 956 vol.2, 1 2001.

102 BIBLIOGRAPHY

[60] M. . Dubuisson and A. K. Jain, “A modified hausdorff distance for object match-
ing,” in Proceedings of 12th International Conference on Pattern Recognition,
vol. 1, pp. 566–568 vol.1, Oct 1994.

[61] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly v-
rep): a versatile and scalable robot simulation framework,” in Proc. of The
International Conference on Intelligent Robots and Systems (IROS), 2013.
www.coppeliarobotics.com.

[62] E.-M. Tiit, “Nonparametric statistical methods. myles hollander and douglas a.
wolfe, wiley, chichester, 1999. no. of pages: xiii+779. price: £ 39.95. isbn 0-471-
19045-4,” Statistics in Medicine, vol. 19, no. 10, pp. 1386–1388, 2000.

[63] R. A. Fisher, “On the Interpretation of χ 2 from Contingency Tables, and the
Calculation of P,” Jan. 1922.

[64] F. Künhe, J. Gomes, and W. Fetter, “Mobile robot trajectory tracking using
model predictive control,” in II IEEE latin-american robotics symposium, vol. 51,
Citeseer, 2005.

[65] M. Prats, P. J. Sanz, and A. P. del Pobil, “Task-oriented grasping using hand
preshapes and task frames,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 1794–
1799, 2007.

[66] E. A. M. Ghalamzan, F. Abi-Farraj, P. R. Giordano, and R. Stolkin, “Human-in-
the-loop optimisation: Mixed initiative grasping for optimally facilitating post-
grasp manipulative actions,” in 2017 IEEE/RSJ Int. Conf. Intell. Robots Syst.,
pp. 3386–3393, 2017.

[67] M. Selvaggio, E. A. M. Ghalamzan, R. Moccia, F. Ficuciello, and B. Siciliano,
“Haptic-guided shared control for needle grasping optimization in minimally inva-
sive robotic surgery,” in IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3617–3623,
2019.

[68] R. Detry, J. Papon, and L. Matthies, “Task-oriented grasping with semantic
and geometric scene understanding,” in 2017 IEEE/RSJ Int. Conf. Intell. Robots
Syst., pp. 3266–3273, 2017.

[69] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and S. Savarese,
“Learning task-oriented grasping for tool manipulation from simulated self-
supervision,” Int. J. Robot. Res., vol. 39, no. 2-3, pp. 202–216, 2020.

[70] A. Fakhari, M. Keshmiri, and M. Keshmiri, “Dynamic modeling and slippage
analysis in object manipulation by soft fingers,” in ASME International Mechan-
ical Engineering Congress and Exposition, vol. 4, 11 2014.

[71] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning
and Control. Springer Publishing Company, Incorporated, 1st ed., 2008.

BIBLIOGRAPHY 103

[72] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mo-
bile sensing networks,” IEEE Transactions on Robotics and Automation, vol. 20,
pp. 243–255, 2004.

[73] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and coordi-
nated control of groups,” in Proceedings of the 40th IEEE Conference on Decision
and Control (Cat. No. 01CH37228), vol. 3, pp. 2968–2973, 2001.

[74] L. Sabattini, C. Secchi, and C. Fantuzzi, “Arbitrarily shaped formations of mobile
robots: artificial potential fields and coordinate transformation,” Autonomous
Robots, vol. 30, p. 385, 2011.

[75] J. Sun, J. Tang, and S. Lao, “Collision avoidance for cooperative uavs with opti-
mized artificial potential field algorithm,” IEEE Access, vol. 5, pp. 18382–18390,
2017.

[76] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,”
IEEE Transactions on robotics and automation, vol. 16, pp. 615–620, 2000.

	Abstract
	Sommario
	Acronyms
	Introduction
	Contribution
	Publications

	Pushing Manipulation with a Single Robot
	Problem Statement and Preliminaries
	Preliminaries

	Manipulation Planning
	Holonomic planner
	Search Algorithm
	Planner Implementation

	Manipulation Control for Wheel Slip Avoidance
	Modeling
	Controller Design
	Optimization Problem Formulation
	Wheel Slip Constraints

	Simulations
	Case studies
	Case study I.
	Case study II.
	Case study III.

	Maintenance of Pushing Contact
	Problem statement
	Modeling
	Robot Model
	Pushed Object Model

	MPC Controller Formulation
	LTV Model Approximation
	LTV MPC Formulation
	Nonlinear Pushing Constraints for Object Slippage Avoidance
	Controller Implementation and Experiments
	Tracking of a straight line
	Complete manipulation task

	Linear Constraints for Pushing Contact Maintenance and Obstacle Avoidance
	Constraint validation

	Manipulation Supervision
	Framework Validation
	Environment 1
	Environment 2
	Environment 3

	Future Works

	Pushing Manipulation with a few Robots
	Grasp Quality Characterization
	Quality of a Nonprehensile Grasp
	Effectiveness of the grasp
	Energy efficiency

	Grasp-Task Compatibility Test
	Configuration Indices
	Composed Quality Index
	Extension Index
	Grasp Dexterity Index
	Modified Hausdorff distance

	Evaluation
	Simulation Environment
	Methods
	Results

	Results Discussion
	Grasp-Task Compatibility Test
	Configuration Indices

	Possible Applications

	Task Oriented Grasp Optimization
	Task-oriented optimal robot positioning
	Motion control for trajectory tracking
	Simulation and experimental results
	Simulation setup
	Experimental setup
	Results

	Future Works

	Pushing Manipulation with many Robots
	Problem Description and Proposed Approach
	Control Architecture
	Lower Layer: Swarm Control
	Position Control Layers for Pushing the Object
	Zone 1: Repulsive Field
	Zone 2: Attractive Field
	Zone 3: Magnetic Field
	Zone 4: Tangential Field

	Validation
	Simulations
	Experiments

	Future Works

	Conclusive Remarks

