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Abstract

This doctoral dissertation studies the manipulation of objects using pushing: a ma-
nipulation technigue from the class of non-prehensile manipulations. Techniques from
this class exploit the geometry of the object together with its dynamics and the sur-
rounding environment to achieve the task at hand. Starting from present literature,
the first problem approached was the generation of an optimal pushing plan for manip-
ulating a polygonal object using pushing actions on its sides by a single mobile robot.
The proposed solution is a two-layer planning algorithm. The first layer evaluates the
feasibility of the manipulation by computing a path to the target pose of the object,
considering the dimentions of both robot and object. This initial path is then used as
a guide to search for a set of pushing trajectories for the robot. These trajectories are
obtained through an optimization problem that generates the shortest possible tra-
jectory that satisfies the pushing constraints. The next step is to generate a control
algorithm that ensures that the motion of the robot during the manipulation satisfies
the pushing constraints. This is achieved using Model Predictive Control. The con-
troller makes use of a model of the system to predict the future state and optimize
its behaviour. With MPC it is also possible to impose a set of constraints on the
system motion. In particular, the interest here is imposing a constraint to maintain
a sticking contact between the object and the robot during the manipulation. This is
achieved at first by including the contact forces in the inputs of the system in order
to predict the motion of the pushed object. A constraint is then formulated to ensure
that the motion of the robot and the object are compatible. However, the prediction
of the motion of a pushed object is often unreliable due to the indeterminacy of the
factors involved, and the formulation of the constraint is nonlinear. This increases
the complexity of the solution of the optimization algorithm and therefore its time
requirements. An improved version of the control algorithm was then designed trans-
forming the constraint into an equivalent linear formulation, easier to compute. The
last component necessary for a single robot to perform a manipulation by pushing is
a monitoring algorithm. The proposed design defines a finite state machine for the
execution of the pushing trajectories, monitoring the manipulation and handling edge
cases and possible failures. The study of pushing manipulation with multi-robot sys-
tem was split in two research directions, di [erkntiated by the size of the robot group.
When only a few robots are available to complete the assigned planar pushing task,
it is necessary to carefully displace them around the object according to the assigned
task. A characterization of the quality of a grasp configuration was defined to aid this



decision. Its validity has been studied through statistical analysis from simulation
data. The iterative optimization of a given configuration for a task was also studied,
therefore proposing a procedure to optimize a pushing configuration. The proposed
optimization makes use of the characterization as well as other forms of estimation of
the quality of a configuration. When the number of robots is higher and it may be
necessary to have the robots push on each other to combine the eLorts, a dilerknt
approach is necessary. A hierarchical control law was then proposed to address these
cases. The control law makes use of established control schemes to coordinate the
group of robots as if they were a probability distribution, therefore capable to adapt
to any object shape and size. Experiments were carried out to validate the strategy
on diLerknt objects and di Lerknt numbers of robots.



Sommario

Questa tesi di dottorato studia la manipolazione di oggetti mediante la spinta: una
tecnica di manipolazione appartenente alla classe delle manipolazioni non prensili. Le
tecniche di questa classe sfruttano la geometria dell’oggetto da manipolare insieme alla
sua dinamica e all’ambiente circostante per portare I’oggetto nella posizione desider-
ata. Partendo dalla letteratura attuale, il primo problema a[rdntato e la generazione
di un piano di spinta ottimale per manipolare un oggetto poligonale tramite azioni
di spinta sui suoi lati da parte di un singolo robot mobile. La soluzione proposta é
un algoritmo di pianificazione a due livelli. 1l primo livello valuta la fattibilita della
manipolazione calcolando un percorso verso la posa target dell’oggetto, considerando
sia le dimensioni del robot che dell’oggetto. Questo percorso iniziale viene quindi
utilizzato come guida per la ricerca di una serie di traiettorie di spinta per il robot.
Queste traiettorie sono ottenute attraverso un problema di ottimizzazione che genera
la traiettoria piu corta possibile che soddisfi i vincoli di spinta. |l passo successivo
¢ generare un algoritmo di controllo che assicuri che il movimento del robot durante
la manipolazione soddisfi i vincoli di spinta. Cio si ottiene utilizzando il controllo
predittivo. Il controllore di tipo Model Predictive Control (MPC) utilizza un mod-
ello del sistema per prevedere lo stato futuro e ottimizzarne il comportamento. Con
MPC é anche possibile imporre dei vincoli al movimento del sistema. In particolare,
si & imposto un vincolo per mantenere un contatto stabile tra I’'oggetto e il robot
durante la manipolazione. Cio si ottiene inizialmente includendo le forze di contatto
negli ingressi del sistema per prevedere il movimento dell’oggetto spinto. Tuttavia,
siccome la previsione del moto di un oggetto spinto & spesso ina [dabile a causa
dell’indeterminatezza di parametri come I'attrito, e la formulazione non lineare del
vincolo, la complessita della soluzione dell’ottimizzazione risulta alta. E stata quindi
progettata una versione migliorata dell’algoritmo di controllo trasformando il vincolo
in una formulazione lineare equivalente, piu facile da calcolare. A [nché un singolo
robot esegua una manipolazione spingendo € necessario un algoritmo di monitoraggio.
La soluzione proposta é la definizione di una macchina a stati finiti per I’esecuzione
delle traiettorie di spinta, il monitoraggio della manipolazione e la gestione dei casi
limite e dei possibili guasti. Lo studio della manipolazione della spinta con il sistema
multi-robot é stato suddiviso in due direzioni di ricerca. Quando sono disponibili solo
pochi robot per completare I'attivita di spinta planare assegnata, € necessario disporli
con attenzione attorno all’oggetto in base all’attivita assegnata. Una caratterizzazione
della qualita di una configurazione di contatto é stata definita per aiutare questa deci-
sione, validata con metodi statistici. E stata studiata anche I’ottimizzazione iterativa



di una data configurazione per un task, proponendo quindi una procedura per ottimiz-
zare una configurazione. L’ottimizzazione proposta si avvale della caratterizzazione e
di altre forme di stima della qualita di una configurazione. Quando il numero di robot
€ maggiore la complessita del problema aumenta. Pertanto e necessario un approccio
diverso. E stata quindi proposta una legge di controllo gerarchico per a[fdntare questi
casi. La legge di controllo si avvale di schemi di controllo consolidati per coordinare il
gruppo di robot secondo una distribuzione di probabilita, definita in base alla spinta
da applicare. Sono stati condotti esperimenti per validare la strategia su diverse forme
e utilizzando numeri di robot di [erknti.
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Chapter 1

Introduction

Robots have grown to be an essential part of modern life. In industrial scenarios,
robots have been used extensively to ful Il tasks that required repetitive and precise
movements or the interaction with heavy payloads. The sensing capabilities of eld
robots have been used to explore environments that were previously impossible to
access due to extreme conditions, like the extreme pressure of ocean oors or the lack
of a breathable atmosphere on other planets like Mars.

The purpose of any robot can be summarized toeducing human e ort while in-
creasing e ciency . Industrial robots operating inside factories are a prime example
of this, being designed to fulll a specic task, repeatedly and e ciently, making
human job easier. A common trait can be identi ed among many di erent applica-
tions: a robot needs to interact with the environment around it. This interaction can
take various forms, from sensing the many di erent characteristics of the surrounding
environment to modifying it through manipulation.

In this thesis, we consider a particular class of interactions that a robot can apply
on its surroundings namedpushing Pushing is a manipulation primitive that belongs
to the broader category of non-prehensile manipulation [2]. The most traditional and
used way for a robot to modify its surroundings is through prehensile manipulation
techniques where the object that has to be manipulated is strictly constrained to move
accordingly to the robot's motion [3]. A rm grasp on the object can be obtained
by very dierent means, a mechanical gripper, a robotic hand, or a suction end-
e ector. This mechanical connection between the robot and thananipulandum often
represents the weakest link of the kinematic chain. Robotic hands and grippers are
generally prone to malfunction, and their repair can be expensive. Non-prehensile
manipulation primitives o er a potential solution to avoid this problem. The main
characteristic of this class of manipulation primitives is the absence of a xed element
constraining the object with the robot motion. A few examples of these primitives
have been identi ed in the literature [2]. Throwing an object requires particular care
into setting the dynamic state of the manipulated object at the beginning of the throw
so that the resulting motion matches the desired trajectory to reach the nal outcome.
Catching an object, on the other hand, requires accurate detection of its dynamic state
so that the robot can match its trajectory till contact is established. Batting combines
these two primitives in a single collision since hitting an object into a desired nal
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