

Appendix H – Funnel plots. Intervention studies on metabolic diseases

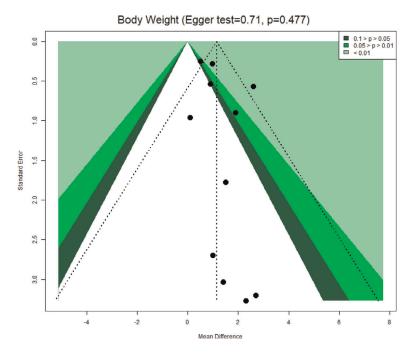


Figure H.1: RCTs on the effect of high vs. low sugar intake ad libitum on body weight

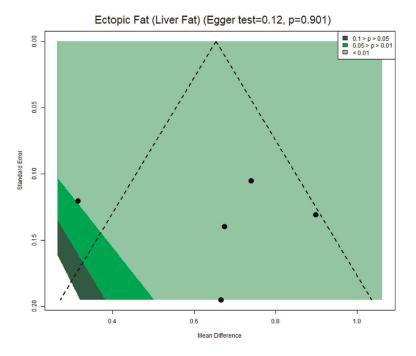


Figure H.2: RCTs on the effect of high vs. low sugar intake on liver fat

Fasting Glucose (Egger test=2.9, p=0.004)

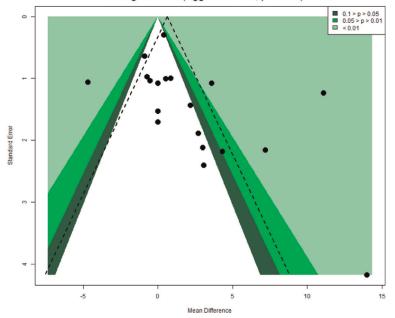


Figure H.3: RCTs on the effect of high vs. low sugar intake on fasting glucose

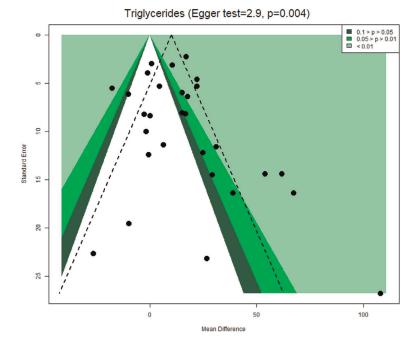


Figure H.4: Funnel plot. RCTs on the effect of high vs. low sugar intake on fasting triglycerides

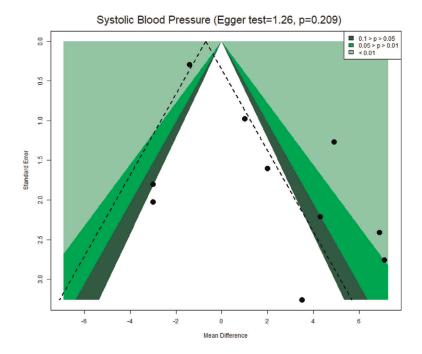


Figure H.5: Funnel plot. RCTs on the effect of high vs. low sugar intake on systolic blood pressure

Appendix I – Summary of risk of bias ratings for randomised controlled trials by type of design and endpoint

Reference	Randomisation	Allocation concealment	Blinding	Attrition	Exposure	Endpoint	Reporting	Other threats to interval validity	Tier
Campos et al. (2015)_SSBs	+	NR	-	+	++	NR	++	++	2
Ebbeling et al. (2012)_SSBs	++	++		++	+	++	++	++	1
Ruyter et al. (2014)_ SSBs	++	++	+	+	++	++	++	++	1
Hernandez-Cordero et al. (2014)_SSBs	++	++		+		++	++	++	2
Hollis et al. (2009)_SSBs	+	NR	+	+	+	+	++	+	1
Maersk et al. (2012)*_SSBs	++	NR			+		++	+	2
Markey et al. (2016)	++	+	++	+	+	++	++	++	1
Saris et al. (2000)*	+	+	-	-	+	+	++	++	1
Raben et al. (2002)*	+	NR	-	++	+	++	++	+	1
Smith et al. (1996)	++	NR		-	+	NR	++	+	2
Werner et al. (1984)	+	NR		++	+	-	++	-	2

Figure I.1: Summary of Risk of Bias ratings for RCTs on the effect of high vs. low sugar intake on body weight

Reference	Randomisation	Allocation concealment	Blinding	Attrition	Exposure	Endpoint	Reporting	Other threats to interval validity	Tier
Campos et al. (2015)_SSBs	+	NR	-	+	++	+	++	++	1
Lowndes et al. (2014b)*_SSBs	+	NR	-	-	+	+	++	-	2
Maersk et al. (2012)*_SSBs	++	NR			+	-	++	+	2
Umpleby et al. (2017)	++	++	NR	++	-	+	++	++	2

Figure I.2: Summary of Risk of Bias ratings for RCTs on the effect of high vs. low sugar intake on liver fat

Reference	Randomisation	Allocation concealment	Blinding	Attrition	Exposure	Endpoint	Reporting	Other threats to interval validity	Tier
Black et al. (2006)	++	+	+	+	+	++	++	++	1
Campos et al. (2015)_SSBs	+	NR	-	+	++	-	++	++	1
Hallfrisch et al. (1983a)*	NR	NR	NR	++	+	+	-	+	2
Hernandez-Cordero et al. (2014)_SSBs	++	++		+		++	++	++	2
Hollis et al. (2009)_SSBs	+	NR	+	+	+	+	++	+	1
Israel et al. (1983)*	+	+	+	++	++	+	++	+	1
Lewis et al. (2013)	++	NR	NR	++	+	+	++	++	1
Lowndes et al. (2014b)*_SSBs	+	NR	-	-	+	+	++	-	2
Lowndes et al. (2015)_SSBs	++	++	+	+	+	+	++	+	1
Maersk et al. (2012)*_SSBs	++	NR			+	+	++	+	2
Majid et al. (2013)_SSBs	++	NR		++	+	++	++	-	2
Markey et al. (2016)	++	+	++	+	+	++	++	++	1
Moser et al. (1986)	+	+	+	++	++	+	++	+	1
Raben et al. (2002)*	+	NR	-	++	+	++	++	+	1
Saris et al. (2000)*	+	+	-	-	+	++	++	+	1
Swanson et al. (1992)	+	NR	NR	++	++	+	++	++	1
Umpleby et al. (2017)	++	++	NR	++	-	+	++	++	2

Figure I.3: Summary of Risk of Bias ratings for RCTs on the effect of high vs low sugar intake on fasting glucose

Reference	Randomisation	Allocation concealment	Blinding	Attrition	Exposure	Endpoint	Reporting	Other threats to interval validity	Tier
Black et al. (2006)	++	+	+	+	+	++	++	++	1
Campos et al. (2015)_SSBs	+	NR	-	+	++	-	++	++	1
Gostner et al. (2005)	+	NR	+	++	++	+	++	+	1
Hallfrisch et al. (1983a)*	NR	NR	NR	++	+	+	-	+	2
Hernandez-Cordero et al. (2014)_SSBs	++	++		+		++	++	++	2
Hollis et al. (2009)_SSBs	+	NR	+	+	+	+	++	+	1
Huttunen et al. (1976)				++	+	+	++	-	2
Israel et al. (1983)*	+	+	+	++	++	+	++	+	1
Lewis et al. (2013)	++	NR	NR	++	+	+	++	++	1
Lowndes et al. (2014a)_SSBs	+	NR	-	+	+	+	++	++	1
Lowndes et al. (2014b)*_SSBs	+	NR	-	-	+	+	++	-	2
Maersk et al. (2012)*_SSBs	++	NR			+	+	++	+	2
Majid et al. (2013)_SSBs	++	NR		++	+	++	++	-	2
Markey et al. (2016)	++	+	++	+	+	++	++	++	1
Moser et al. (1986)	+	+	+	++	++	+	++	+	1
Raben et al. (2002)*	+	NR	-	++	+	++	++	+	1
Reiser et al. (1979a)*	-	NR	NR	+	+	+	++	++	2
Reiser et al. (1989a)*	NR	NR	+	+	++	++	++	+	2
Saris et al. (2000)*	+	+	-	-	+	++	++	+	1
Smith et al. (1996)	++	NR		-	+	+	++	+	2
Swanson et al. (1992)	+	NR	NR	++	++	+	++	++	1
Umpleby et al. (2017)	++	++	NR	++	-	+	++	++	2
Werner et al. (1984)	+	NR		++	+	+	++	-	2

Figure I.4: Summary of Risk of Bias ratings for RCTs on the effect of high vs. low sugar intake on fasting triglycerides

Reference	Randomisation	Allocation concealment	Blinding	Attrition	Exposure	Endpoint	Reporting	Other threats to interval validity	Tier
Black et al. (2006)	++	+	+	+	+	++	++	++	1
Campos et al. (2015)_SSBs	+	NR	-	+	++	NR	++	++	2
Hallfrisch et al. (1983b)*	NR	NR	NR	++	+	-	-	+	2
Hernandez-Cordero et al. (2014)_SSBs	++	++		+		++	++	++	2
Israel et al. (1983)*	+	+	-	++	++	-	++	+	2
Lewis et al. (2013)	++	NR	NR	++	+	-	++	++	2
Lowndes et al. (2014b)*_SSBs	+	NR	-	-	+	-/NR	++	-	2
Maersk et al. (2012)*_SSBs	++	NR			+		++	+	2
Markey et al. (2016)	++	+	++	+	+	++	++	++	1
Raben et al. (2002)*	+	NR	-	++	+	+	++	+	1

Figure 1.5: Summary of Risk of Bias ratings for RCTs on the effect of high vs. low sugar intake on systolic blood pressure

Reference	Randomisation	Allocation concealment	Blinding	Attrition	Exposure	Endpoint	Reporting	Other threats to interval validity	Tier
Angelopoulos et al. (2015)*_SSBs	+	NR	-	+	+	+	++	+	1
Silbernagel et al. (2011)_SSBs	++	++	+	++	+	++	++	++	1
Koh et al. (1988)	NR	NR	-	++	++	+	++	+	2
Stanhope et al. (2009)*_SSBs	NR	NR	++	+	++	++	++	+	2

Figure 1.6: Summary of Risk of Bias ratings for RCTs on effect of fructose vs. glucose on uric acid

Appendix J – General characteristics of observational studies on metabolic diseases

Note: Under exposure(s) assessed, all the exposures used as independent variables in relation to the endpoints in the original publications are listed. Among these, the exposures used for this scientific assessment are in **bold** and those not considered for the assessment are *in italics*.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
AGAHLS Amsterdam Growth and Health Longitudinal Study The Netherlands Stoof et al. (2013) Mixed funding	N = 409 Children from two secondary schools in Amsterdam and the surrounding area Caucasian	13 year (mean) 52.1% females	SSSD, SSFD, SSFJ SSSD, SSFD, TFJ	Cross-check dietary history face-to-face interviews by a dietitian. Subjects were asked to recall the frequency of use and the amount of different foods and beverages during the previous month. No information on validation.	BMI Body fat Trunk fat
ALSPAC Avon Longitudinal Study of Parents and Children UK Johnson et al. (2007) Bigornia et al. (2015) Anderson et al. (2015) Cowin and Emmett (2001) Mixed funding	N = 15,247 General population living within a defined part of the country Caucasian	Birth 58.1% females	Total sugars SSSD, SSFD 100% FJs Carbohydrates Starch Protein Fat Milk Water PUFA SFA Vegetables Individual food items	Three-day food diary covering 2 weekdays and 1 weekend day. Parents recorded their child's diet until the child reached age 10 year. SFFQ were also used at specified examinations, covering 43 items originally and growing to 68 items. FFQs had no portion size information included. No information on validation.	Body weight BMI WC Body fat NAFLD Blood lipids
ALSWH Australian Longitudinal Study on Women's Health Australia Looman et al. (2018) Public funding	N = 40,000 approximately Women from Australia's national health care system Caucasian	18–75 year Females	Total sugars TFJ <i>Carbohydrates</i> <i>LCD score</i> <i>Total dietary fibre</i> <i>Glycaemic index</i> <i>Glycaemic load</i> <i>Individual food groups/</i> <i>items</i>	One self-administered SFFQ of 101 items – previous year. Portion sizes estimated with photo album. Two SFFQ completed but only the one done at baseline used for analysis. Validation for nutrients against 7-day food diaries of 63 women. Correlation coefficient of 0.78 for carbohydrates and 0.73 for total sugars.	GDM

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Amsterdam The Netherlands Weijs et al. (2011) Public Funding	N = 226 General population Caucasian	4–13 mo 46.7% females	SSSD, SSFD, TFJ Animal protein	Two-day food record (1 weekday and 1 weekend) of actual consumption in portions (translated into weight by standard portion sizes) or weighed. Parents were asked to subtract spilled or not consumed amounts. No information on validation.	Overweight
ARIC Atherosclerosis Risk in Communities Study USA Bomback et al. (2010) Paynter et al. (2006) Public funding	N = 15,792 General population 78.1% White, 21.9% African American	45–64 year 55.2% females	SSSD SSSD, FD and all FJS ASSD Coffee	One interview administered SFFQ of 66 items – previous year. Specified portion sizes (frequency). Two SFFQ completed but only the one done at baseline used for analysis. Validation against four one-week records with a sample of 173 women who answered the 1980 Nurses' Health Study questionnaire. ²³ Sucrose Pearson correlation coefficients (0.71).	Hyperuricaemia T2DM
BMES Blue Mountain Eyes Study Australia Goletzke et al. (2013a) Public funding	N = 3,654 General population Caucasian	67 year (median) 62.7% females	Total sugars <i>Glycaemic index</i> <i>Glycaemic load</i> <i>Starch</i> <i>Fibre</i>	One self-administered SFFQ of 145 items – previous year. Validated against 4-day weighed food records collected on three occasions during 1 year (subsample of the cohort $n = 79$). Correlation coefficient of 0.62 for carbohydrates and for total sugars.	Blood lipids
BWHS Black Women's Health Study USA Boggs et al. (2013)	N = 59,001 African American women	21–69 year Females	SSSD SSFD and SSFJ 100% FJs (orange and grapefruit)	One self-administered SFFQ of 68 items – previous year. Specified portion sizes (frequency).	Obesity T2DM

²³ Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH and Speizer FE, 1985. Reproducibility and validity of a semiquantitative food frequency questionnaire. American Journal of Epidemiology, 122.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Palmer et al. (2008) Public funding			Individual food items	Baseline SFFQ validated for nutrients against 3-day food diaries and three 24-h recalls. ²⁴	
Public funding				Pearson correlation coefficients (95% CI) for carbohydrates:	
				 SFFQ vs. mean of 3 24-h recalls (n = 408): Crude 0.09 (-0.03, 0.25); energy-adjusted 0.30 (0.18,0.41); energy- adjusted and deattenuated 0.48 (0.29, 0.66) FFQ vs. mean of a 3-day diary (n = 245): crude 0.20 (0.04, 0.32); energy-adjusted 0.26 (0.05, 0.39); energy-adjusted and deattenuated 0.35 (0.08, 0.48) FFQ vs. mean of combined recall and diary data (n = 408): crude 0.13 (-0.03, 0.25); energy adjusted 0.30 (0.18, 0.40); energy adjusted and deattenuated 0.43 (0.26, 0.53) 	
Camden USA	N = 594	12–19 year Females	Total sugars	Three 24-h dietary recall (interviewer administered) analysed for energy intake and	Birth weight
	Pregnant adolescents 61% Black	i ciliales		nutrients, including total sugars	
Lenders et al. (1997) Public funding	30% Hispanic 9% White			No information about validation.	
CARDIA Coronary Artery Risk Development in Young Adults	N = 5,115 General population of	18–30 year 53.5% females	Sucrose SSSD, SSFD 100% FJ	One interview-administered SFFQ – previous month	T2DM HTN Abdominal obesity
USA	4 centres selected to balance subgroups of		Low-fat milk Whole fat milk	Validation against a second SFFQ and seven 24-h recalls (n = 128 young adults) ²⁵	Glucose homeostasis (FI)

 ²⁴ Kumanyika SK, Mauger D, Mitchell DC, Phillips B, Smiciklas-Wright H and Palmer J, 2003. Relative validity of food frequency questionnaire nutrient estimates in the Black Women's Health study. Annals of Epidemiology, 13, 111–118.
 ²⁵ McDonald A, Van Horn L, Slattery M, Hilner J, Bragg C and Caan B, 1991. The CARDIA dietary history: development, implementation and evaluation. Journal of American Diet Association, 91,

^{1104–1112.}

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Archer et al. (1998) Duffey et al. (2010) Folsom et al. (1996) Mixed funding	race, sex, education and age 52.6% Black, 47.4% White			Pearson correlation coefficients for total carbohydrates: White men 0.79 White women 0.89 Black men 0.43 Black women -0.22	Blood lipids
CoSCIS Copenhagen School Child Intervention Study Denmark Jensen et al. (2013) Mixed funding	N = 1,024 Children entering a public school in two suburbs of Copenhagen Caucasian	6 year (mean) 51.1% females	SSSD SSSD, SSFD	A 7-day food record administered by parents/ caregivers when the children were 6 and 9 years, respectively. No information on validation.	BMI Body fat
CTS California Teachers Study USA Pacheco et al. (2020): Public funding	N = 133,477 Female teachers from California 87.3% Caucasian and 12.7% all other races	22–104 year Females	SSSD SSFD SSSD, SSFD Sweetened bottled water or tea	 One self-administered SFFQ of 103 items – previous year. Validated against a sub-sample of CTS using another FFQ and 4 x 24 h dietary recalls.²⁶ Correlation coefficient for SFFQ vs. 24 h recalls was 0.7 for carbohydrates. 	CVD CHD Stroke Revascularisation
Daily-D Daily-D Health Study USA Van Rompay et al. (2015) Public funding	 N = 690 General population from Boston area schools 45% Caucasian, 13% Black, 18% Hispanic, 9% Asian and 15% multi-racial/other 	8–15 year 50.8% females	SSSD, SSFD	Three SFFQs of 78 items – past week use to estimate mean SSBs intake over 12 months. Validation against 2 x 24 hrs dietary recall by telephone in a sample of 83 children aged 10-17 years. ²⁷ Deattenuated adjusted correlations (whole sample) for E% from carbohydrates = 0.69.	Blood lipids

 ²⁶ Horn-Ross PL, Lee VS, Collins CN, Stewart SL, Canchola AJ, Lee MM, Reynolds P, Clarke CA, Bernstein L and Stram DO, 2008. Dietary assessment in the California Teachers Study: reproducibility and validity. Cancer Causes Control, 19, 595–603.
 ²⁷ Cullen KW, Watson K and Zakeri I, 2008. Relative reliability and validity of the Block Kids Questionnaire among youth aged 10 to 17 years. Journal of American Diet Association, 108, 862–866.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
DCH Diet, Cancer and Health Study Denmark Olsen et al. (2016) Mixed funding DDHP Detroit Dental Health Project USA Lim et al. (2009) Mixed funding	N = 57,053 Inhabitants from Copenhagen and Aarhus counties Caucasian N = 1,021 Low-income African American children from Detroit	50–64 year 49.4% females 3–5 year 51.6% females	SSSD SSSD SSFD SSSD, SSFD	One self-administered SFFQ of 192 items – previous year. Validated against two 7-day diet records in a random sample of men and women from Copenhagen (aged 40–64 year). ²⁸ Correlation coefficients for carbohydrates: 0.40 and 0.47 and for sucrose: 0.50 and 0.41, for men and women, respectively. One interview administered SFFQ (Block Kids Food Frequency Questionnaire) containing 75 questions and measuring intake of previous week. Validation against a similar cohort (age: 8.3 ± 0.3) of n = 129 that completed 3-day diaries (for 2 weekdays and 1 weekend day during a 7-day period.) Validity in the estimates of beverage intakes established for children aged 7–9y Spearman correlation coefficients (SFFQ vs. Diary) ²⁹ : – SSSD+SSFD: 0.326	Body weight WC
DONALD Dortmund Nutritional and Anthropometric Longitudinally Designed Study Germany	N = > 1,300 General population from Dortmund Caucasian	birth 53.5% Females	Free sugars SSSD, SSFD, SSFJ 100% FJ Sugar from individual food groups Energy drinks	 Carbohydrate: 0.203 3-day weighed dietary records (over 3 consecutive days). No information on validation. 	BMIz-score Body fat Glucose homeostasis (HOMA-IR)

²⁸ Tjønneland A, Overvad K, Haraldsdottir J, Bang S, Ewertz M and Jensen OM, 1991. Validation of a semiquantitative food frequency questionnaire developed in Denmark. International Journal of

 ²⁹ Teresa A, Marshall JM, Eichenberger G, Barbara B, Stumbo PJ and Levy SM, 2008. Relative validity of the Iowa Fluoride Study targeted nutrient semi-quantitative questionnaire and the Block Kids' Food questionnaire for estimating beverage, calcium, and vitamin D intakes by children. Journal of the American Dietetic Association, 108, 465–472.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Herbst et al. (2011) Libuda et al. (2008) Goletzke et al. (2013b) Public funding			Carbohydrate Glycaemic index Glycaemic load Fibre		
ELEMENT Early Life Exposure in Mexico to Environmental Toxicants Mexico Cantoral et al. (2015) Public funding	N = 1,079 General population Hispanics	Birth 54% females	Whole grain SSSD, SSFD, SSFJ	 SFFQ of previous 3 months administered in each visit (8 visits, from when the child was 12mo to 5y in 6-months intervals). SFFQ included 116 foods grouped into 10 categories and beverages (natural juice, milk, sodas, commercial fruit drinks and flavoured water with sugar). Standard serving size used to obtain average daily intakes. SFFQ validated (24-h recall) with a random sample of women from medium to low socioeconomic status living in Mexico City. To assess the validity for <u>carbohydrates</u> of the questionnaire Pearson correlation coefficients between the average of 16 24-hour recalls and the first and second administration of the FFQ were calculated. FFQ1 vs. 24-hr recall: Unadjusted 0.51; adjusted* 0.49; de-attenuated 0.52 FFQ2 vs. 24-hr recall: Unadjusted 0.56; de-attenuated 0.57 FFQ1 vs. FFQ2: Unadjusted 0.56; adjusted* 0³⁰ 	
				At revisit (8 and 14y of age) SFFQ (ENSANUT 2006) was 'administered to the children who	

³⁰ HERNÁNDEZ-AVILA, Mauricio et al. Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. **Salud Pública de México**, [S.I.], v. 40, n. 2, p. 133-140, mar. 1998. ISSN 1606-7916. Available online: https://saludpublica.mx/index.php/spm/article/view/6068/7081 [Accessed: 20 September 2019].

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
				were assisted – this instrument used a 1-week recall period and queried about the consumption of natural juices, commercial fruit drinks, flavoured water with sugar, tap water, sodas, diet sodas, whole fat milk, coffee and tea'.	
EPIC-Diogenes European Prospective	N = 146,543	20-60 year	SSSD TFJ	Country-specific self-administered SFFQs.	WC _{BMI}
Investigation into Cancer and Nutrition-Diet, Obesity and Genes project	General population from 5 countries (8 sites)	59.5% females	Individual food items/ groups	Validation against 24-h dietary recalls or weighted food records. ³¹	
IT, UK, NL, DE, DK	Caucasian				
Romaguera et al. (2011)					
Public funding					
EPIC-Interact European Prospective Investigation into Cancer and Nutrition-InterAct project	N = 29,238 Mainly general population	35–70 year 62% females	Total sugars SSSD, SSFD TFJ ASSD	One baseline assessment Quantitative dietary questionnaire with individual portion sizes: France, Spain, The Netherlands, Germany and Italy.	T2DM
DK, FR, DE, IT, NL, ES, SE, UK	Caucasian		ASSD, SSSD, SSFD Glycaemic index	SFFQ: Denmark, Naples (Italy), Sweden and the	
Sluijs et al. (2013)			Glycaemic load	UK. Each dietary assessment tool was validated	
InterAct consortium (2013)			Digestible carbohydrates	locally. ³²	
Public funding			Starch	Validation against 24-h dietary recalls or weighted food records.	
				Correlation coefficients varied from 0.40 in Denmark to 0.84 in Spain for men and from	

³¹ Kaaks R and Riboli E, 1997. Validation and calibration of dietary intake measurements in the EPIC project: methodological considerations. European Prospective Investigation into Cancer and Nutrition. International Journal of Epidemiology, 26(Suppl 1), S15–S25.

³² Bingham SA, Gill C, Welch A, Day K, Cassidy A, Khaw KT, Sneyd MJ, Key TJ, Roe L and Day NE, 1994. Comparison of dietary assessment methods in nutritional epidemiology: weighed records v. 24 h recalls, food-frequency questionnaires and estimated-diet records. British Journal of Nutrition, 72, 619–643; Margetts BM and Pietinen P, 1997. European Prospective Investigation into Cancer and Nutrition: validity studies on dietary assessment methods. International Journal of Epidemiology, 26:S1–5. Available online: https://epic.iarc.fr/about/dietaryexposure.php

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
				0.46 in Malmo (Sweden) to 0.78 in Spain for women.	
EPIC-Morgen European Prospective Investigation into Cancer and Nutrition-Morgen cohort The Netherlands Burger et al. (2011) Public funding	N = 22,654 General population Caucasian	20–65 year 54.8% females	Total sugars <i>Glycaemic index</i> <i>Glycaemic load</i> <i>Carbohydrates</i> <i>Starch</i>	 One self-administered SFFQ of 79 items–previous year. The questionnaire contained photographs of 21 foods in different sizes. For most other items, the consumption frequency was asked in number of specified units; for a few foods a standard portion size was assumed.³³ Validation against twelve 24-h recall. Person correlation for carbohydrate was 0.74 (men) and 0.76 (women) 	CHD Stroke
EPIC-Multicentre European Prospective Investigation into Cancer and Nutrition- Multiple countries DK, DE, GR, FR, NL, UK, NO, ES, SE, IT Mullee et al. (2019)‡ Sieri et al. (2020)‡ Public funding	N = 521,330 General population Caucasian	35–70 year 71% females	Total sugars <i>SSSD, SSFD</i> <i>ASSD</i> <i>SSSD, SSFD, ASSD</i> <i>Glycaemic load</i> <i>Glycaemic index</i> <i>Carbohydrates</i> <i>Starch</i>	 Self-administered SFFQ (no. of items varied depending on study location – up to 260 items) were used in all centres, except in Greece, Spain and Ragusa (Italy), where data were collected during personal interviews. In Malmö (Sweden), a combined SFFQ and 7-day dietary diary and diet interview was used. Validation methods varied on type of assessment method used at each site. Correlation coefficients were country specific, but range from 0.46 to 0.77 for soft or non-alcoholic drinks (in the Netherlands, France, Germany and Spain). 	CVD CHD Stroke
EPIC-Norfolk European Prospective Investigation into Cancer and Nutrition-Norfolk cohort	N = 25,639 General population Caucasian	39–79 year 54% females	Total sucrose Free glucose Free fructose SSSD, SSFD	7-day diet diary (several completed throughout the year, for four years) and a self-administered SFFQ of 130-item. First day of diary completed as a 24-h recall with a trained interviewer.	WC BMI T2DM

³³ Ocké, MC, Bueno-de-Mesquita, HB, Goddijn, HE, Jansen, A, Pols, MA, van Staveren, WA & Kromhout, D. (1997). The Dutch EPIC food frequency questionnaire. I. Description of the questionnaire, and relative validity and reproducibility for food groups. International journal of epidemiology, 26 Suppl 1, S37–S48.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
UK Ahmadi-Abhari et al. (2014) Kuhnle et al. (2015) Public funding			TFJ <i>ASBs</i> <i>Sweetened tea or</i> <i>coffee</i> <i>Sweetened-milk</i> <i>beverages</i> <i>Starch</i> <i>Total carbohydrates</i> <i>Lactose</i> <i>Maltose</i>	The 7-day diet diary and the SFFQ were repeated at 18 months to ascertain details of changes in health since recruitment. ³⁴ Validation was done for nutrients. (n = 300, subsample of the original Norfolk cohort) Pearson correlation coefficients for sugars: - 1st vs. 2nd diary: 0.75 - 1st vs. 2nd SFFQ: 0.67 - 1st diary vs. 1st SFFQ: 0.53 - 1st diary vs. 1st 24-h recall: 0.57	
EPICOR European Prospective Investigation into Cancer and Nutrition-Italian cohort Italy Sieri et al. (2010) Sieri et al. (2013) Public funding	N = 47,749 General population Caucasian	35–75 year 69% females	Total sugars <i>Carbohydrates</i> <i>Carbohydrates from</i> <i>high-GI food</i> <i>Carbohydrates from</i> <i>low-GI food</i> <i>Starch</i> <i>Glycaemic index</i> <i>Glycaemic load</i> <i>Fibre</i>	SFFQ – previous year. Three different types: One for northern and central Italian centres (self-administered), one for Ragusa (administered by trained interviewers) and one for Naples (administered by trained interviewers) Validation for food groups and sugar against 24-h recall and between questionnaires. Correlation coefficient for sugar: Men Q1-Q2 0.62; Q1-24-h 0.51. for women Q1-Q2 0.66; Q1-24-h 0.26 ³⁵	CHD Stroke
EPIC-Utrecht European Prospective Investigation into Cancer and Nutrition-Utrecht cohort The Netherlands Beulens et al. (2007) Public funding	N = 17,357 Breast cancer screening participants Caucasian	49–70 year Females	Total sugars <i>Carbohydrates</i> <i>Polysaccharides</i> <i>Glycaemic load</i> <i>Glycaemic index</i>	 SFFQ – previous year. 77 main food items. Portion sizes assessed for 28 items. Total of 178 foods. Validation against 12 24-h recalls. Spearman correlations were 0.76 for carbohydrates and 0.74 for fibre, and 0.78, 0.56, 0.69 and 0.70 for bread, fruit, sweets and potatoes, respectively 	CVD CHD Stroke

 ³⁴ Bingham SA, Welch AA, McTaggart A, Mulligan AA, Runswick SA and Luben R. Nutritional methods in the European prospective investigation of cancer in Norfolk. Public Health Nutrition, 4, 847–858.
 ³⁵ Pisani P, Faggiano F, Krogh V, Palli D, Vineis P and Berrino F, 1997. Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres International Journal of Epidemiology, 26(Suppl. 1), S152–S60.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
FMCHES Finnish Mobile Clinic Health Examination Survey Finland Montonen et al. (2007) Public funding	N = 51,522 General population Caucasian	40–69 year 47% females	Total sugars Sucrose Fructose+glucose Free fructose Free glucose SSSD Lactose Maltose Honey and syrup Jam and marmalade SS berry juice Table sugar	Dietary history interview ³⁶ SFFQ of 100 food items and mixed dishes and administered by trained interviewers – previous year Validated against dietary history interviews repeated after 4–7 years. Intraclass correlation coefficient for carbohydrates: men 0.41, women 0.39	T2DM
Framingham-3Gen Framingham-Third Generation cohort USA Ma et al. (2016b) Haslam et al. (2020) <u></u> Public funding	N = 4,095 General population Caucasian	19–72 year 45% females	SSSD, SSFD 100% FJ ASSD LCSB	 SFFQ of 126 items – previous year Validation against 7-day diet record with 157 men. Correlation coefficient for SSBs was 0.51, 0.84 for sugar sweetened cola, 0.55 for other sweetened soft drinks and for diet soda 0.66. 	Ectopic fat (VAT and VAT:SAAT ratio) Blood lipids
Framingham-Offspring Framingham-Offspring cohort USA Ma et al. (2016a) Pase et al. (2017) Haslam et al. (2020)‡ Public funding	N = 5,135 General population Caucasian	30–59 year 53.1% females	SSSD, SSFD SSSD, SSFD, 100% FJ 100% FJ ASSD LCSB	 Three self-administered SFFQ of 126 items – previous year Average of all available SFFQs until diagnosis of the outcome Validation against 7-day diet record with 157 men. Correlation coefficient for SSBs was 0.51, 0.84 for sugar sweetened cola, 0.55 for other sweetened soft drinks and for diet soda 0.66. 	Glucose homeostasis (HOMA-IR) Prediabetes or T2DM (composite endpoint) Stroke Blood lipids

³⁶ Ja[°]rvinen R, 1996. Epidemiological follow-up study on dietary antioxidant vitamins. Results from the Finnish Mobile Clinic Health Examination Survey. Helsinki: Social Insurance Institution, Studies in Social Security and Health 11.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
GeliS Germany Günther et al. (2019)‡ Public funding	N = 2,286 Pregnant women with a singleton pregnancy Caucasian	18–43 year Females	SSSD Carbohydrates Saccharose Protein Fat Alcohol Caffeine Light drinks Vegetables Fruits Dairy products Meat Sweets and snacks Fast food	 Two (early and late pregnancy) self-administered SFFQs of 54 items – past month. Validated against two 24-h dietary recalls (in sample of 161 participants aged 18–80y). Correlation coefficient of 0.61 for non-alcoholic beverages for all participants and 0.59 for females only.³⁷ 	Birthweight
Generation R Generation R Study The Netherlands Leermakers et al. (2015) Mixed funding	N = 9,749 General population Caucasian	1.08 year (median) 50.1% females	SSSD, SSFD, TFJ	 A SFFQ of 211 items completed by primary caregiver – previous year. Validated against 3-day 24-h recalls carried out by trained nutritionists. Correlation coefficient of 0.4 for carbohydrates and of 0.76 for sugar-containing beverages. 	Obesity
Girona Spain Funtikova et al. (2015) Public funding	N = 3,058 General population Caucasian	25–74 year 49% females	SSSD 100% FJ Whole milk Skim and low-fat milk	Interview administered SFFQ administered at baseline and follow-up. 166-item food list including alcoholic and non-alcoholic beverages. Medium servings and units (slices, glass, teaspoons etc.) were specified for each food item. A subset of participants repeated the 72-h recall (n = 19) and the FFQ (n = 29) for repeatability analysis purposes. ³⁸ Correlation coefficient for carbohydrates was 0.71.	

 ³⁷ Haftenberger M, Heuer T, Heidemann C, Kube F, Krems C and Mensink GBM, 2010. Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutrition Journal, 9, 36.
 ³⁸ Schroder H, Covas MI, Marrugat J, Vila J, Pena A, Alcantara M and Masia R, 2001. Use of a three-day estimated food record, a 72-hour recall and a food-frequency questionnaire for dietary assessment in a Mediterranean Spanish population. Clinical Nutrition, 20, 429–437.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
GUTS Growing Up Today Study USA Field et al. (2003) Berkey et al. (2004) Mixed funding	N = 16,882 Offspring of participants from NHSII Majority (94.7%) Caucasian	9–14 year 55% females	SSSD, SSFD 100% FJ <i>Milk</i> <i>ASSD</i> <i>Fruit</i> <i>Vegetables</i>	A self-administered SFFQ of 132 items -previous year. ³⁹ Validated against three 24-h recalls. ⁴⁰ Correlation coefficient for nutrients from the FFQ compared with three 24-h recalls was $r = 0.54$.	BMIz-score
GUTSII Growing Up Today Study-II USA Field et al. (2014) Study USA Bernstein et al. (2012) Choi and Curhan (2008) Choi et al. (2010) Cohen et al. (2010) Cohen et al. (2012) de Koning et al. (2011) Forman et al. (2009) Muraki et al. (2013) Pan et al. (2013) Joshipura et al. (1999) Malik et al. (2019)‡ Public funding	N = 51,529 Health professional males (dentists, optometrists, osteopaths, pharmacists, podiatrists and veterinarians) Majority (~90%+) Caucasian	40–75 year Males	Total fructose Free fructose SSSD SSSD and FD 100% FJ ASSD ASB Glycaemic index Glycaemic load Orange or apple FJ Orange or apple (fruit) Total whole fruit Individual fruits Whole-fat milk Low-fat milk Total coffee Sweetened cola Other sweetened soft drinks Carbonated beverages	One self-administered ⁴¹ SFFQ of 131 items- previous year. Additional SFFQs carried out throughout follow-up. A second SFFQ was completed by a subsample of 127 men that participated in the validation study. Validation against two 7-day diet records. Correlation coefficients were 0.84 for colas, 0.74 for low-calorie colas and 0.55 for other carbonated sugar-sweetened beverages, 0.88 low-fat milk and 0.75–0.89 fruit juice	Body weight CVD CHD Stroke Gout HTN T2DM

 ³⁹ Rockett HRH, Wolf AM and Colditz GA, 1995. Development and reproducibility of a food frequency questionnaire to assess diet of adolescents. Journal of American Diet Association, 95, 336–340.
 ⁴⁰ Rockett HRH, Breitenbach M and Frazier AL, 1997. Validation of a youth/adolescent food frequency questionnaire. Preventive of Medicine, 26, 808–816.
 ⁴¹ Feskanich D, Rimm EB and Giovannucci EL, 1993. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. Journal of American Diet Association, 95, 336–340. 93, 790–796.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
			Non-carbonated beverages Water Tea Vitamin C		
HPP Harvard Pooling Project of Diet and Coronary Disease (ARIC, ATBC, HPFS, IWHS, WHS, NHS80, NHS86) USA Keller et al. (2020)‡ Public funding	N = 284,345 Health professionals and general population Majority Caucasian	≥ 35 year 76.1% females	SSSD, SSFD <i>Fruit juice</i> <i>Caffeinated coffee</i> <i>Total coffee</i> <i>Tea</i> <i>Low fat milk</i> <i>Whole fat milk</i> <i>Total milk</i> <i>ASB</i>	SFFQ at baseline – no further information on amount of items. No information on validation.	CHD
Healthy Start Study-Denmark Denmark (Zheng et al., 2015) Mixed funding	N = 552 Children who had a high predisposition for future overweight based on specific criteria Caucasian	2–6 year 45% females	SSSD, SSFD, TFJ Water Milk ASB	A 4-day dietary record completed by parents (covering weekdays and weekends). No information on validation.	Body weight BMIz-score
HSS-USA Healthy Start Study-USA USA Crume et al. (2016) Public funding	N = 1,410 Pregnant women White 54.81% Hispanic 24.62% Black 14.71% Other 5.87%	> 16 year Females	Total sugars Total fat SFA Unsaturated fat MUFA PUFA Carbohydrates Protein	Repeated (8x) 24-h dietary recall. No information on validation.	Birth weight
Inter99 Inter99 study	N = 13,016	30–60 year 49.3% females	SSSD	One self-administered SFFQ of 198 items – previous year.	Body weight WC

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Denmark	Inhabitants from			Validated against 28-day diet history. ⁴²	
Olsen et al. (2016)	Copenhagen county			Correlation coefficients for carbohydrate: crude	
Mixed funding	Caucasian			0.45 and 0.46 (men and women, respectively); adjusted for total for total energy intake 0.51 and 0.46 (men and women, respectively).	
ЈРНС	N = 43,149	40–59 year	SSSD, SSFD, SSFJ	Self-administered FFQ: 1990, 44 items -	CHD
Japan Public Health centre- based Study Cohort	General population	52.13% females	100% FJ Vegetable juice	previous month; 1995 and 2000, 147 foods – previous year.	Stroke T2DM
Japan	Asian			Validation: 1990 and 1995 FFQ, validated	
Eshak et al. (2012) Eshak et al. (2013)				against four 7-day weighed dietary records (DR) over one year.	
Public funding				Correlation coefficient for SSSD, FD and SFJ:	
				 1990 SFFQ vs. four 7-day DR was 0.29 for men and 0.31 for women 1995 SFFQ vs. four 7-day DR was 0.35 for men and 0.41 for women 1990 SFFQ vs. 1995 SFFQ was 0.52 for men and 0.51 for women 	
				Correlation coefficient for 100% FJ:	
				 1990 SFFQ vs. four 7-day DR was 0.17 for men and for women 1990 SFFQ vs. 1995 SFFQ was 0.22 for men and 0.33 for women. 	
KoCAS	N = 811	9–10 year	Total sugars	A three-day (two weekdays, one weekend day)	BMIz-score
Korean Child–Adolescent Cohort Study	Children from four	48.3% females	Free sugars from beverages	food record – with parental assistance.	Body fat
South Korea	schools from city of Gwacheon		Milk sugar Fruit sugar	No information on validity.	

⁴² Toft U, Kristoffersen L, Ladelund S, Bysted A, Jakobsen J, Lau C, Jorgensen T, Borch-Johnsen K and Ovesen L, 2008. Relative validity of a food frequency questionnaire used in the Inter99 study. European Journal of Clinical Nutrition, 62, 1038–1046.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Hur et al. (2015)	Asian		Other sources sugar		
Public funding					
KoGES Korean Genome and	N = 10,030	> 30 year	SSSD	Two SFFQ of 103 items – previous year	Abdominal obesity Blood lipids
Epidemiology Study	General population	54% females		Validation against four 3-day dietary recall for 1 year of each participant (adherence of	T2DM
South Korea	Asian			85%). ⁴³	HTN
Kang and Kim (2017) Kwak et al. (2018)				Pearson's correlation coefficient for carbohydrate:	
Public funding				Crude model: – Dietary recall vs. SFFQ1 was 0.27	
				 Dietary recall vs. SFFQ2 was 0.42 	
				Sex, age and energy-adjusted:	
				Dietary recall vs. SFFQ1 was 0.37Dietary recall vs. SFFQ2 was 0.54	
				Sex, age, energy-adjusted and de-attenuated (corrected for within-person variation):	
				Dietary recall vs. SFFQ1 was 0.49Dietary recall vs. SFFQ2 was 0.64	
MDCS	N = 28,098	44–74 year	Added sugars	Interview-based: 7-day food record combined	T2DM
Malmo Diet Cancer Study	General population	62% females	Sucrose SSSD	with SFFQ of 168-items of previous year + diet history interview for checks	CVD CHD
Sweden	Caucasian		100% FJ	Validation against 18-day weight food records	Stroke
Ericson et al. (2018) Sonestedt et al. (2012) Sonestedt et al. (2015) Warfa et al. (2016)			Carbohydrates Fat Protein Fibre	collected over one year ($n = ca. 100$ aged 50–69 randomly extracted from Malmö's computerised population registry).	

⁴³ Ahn Y, Kwon E, Shim JE, Park MK, Joo Y and Kimm K, 2007. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. European Journal of Clinical Nutrition, 61, 1435–1441.

www.efsa.europa.eu/efsajournal

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Public funding			Milk ASSD Sweets Cakes and biscuits Cakes and pastries Tea Coffee Chocolates Fruits and berries Vegetables Processed meat Whole grains Refined grains Potatoes Sugar and sweets Sugar and jam	Energy-adjusted Person correlation coefficient for sugars: 0.60 for men and 0.74 for women.	
MIT-GDS Massachusetts Institute of Technology Growth and Development Study USA Phillips et al. (2004) Mixed funding	N = 196 Premenarcheal girls from Cambridge, MA 75% Caucasian, 14% Black and 11% other	8–12 year Females	SSSD <i>Candy</i> <i>Chips</i> <i>Baked goods</i> <i>Ice-cream</i>	Self-administered SFFQ of 116 items – previous year. Validation against four one-week records with a sample of 173 women who answered the 1980 Nurses' Health Study questionnaire. ⁴⁴ Correlation coefficient for sucrose of 0.71.	BMIz-score BF
MoBA Norwegian Mother and Child Cohort Study Norway Grundt et al. (2017)	N = 75,075 mother- child dyads Pregnant women Caucasian	Mean age per intake category: 27.9 – 30.7 year Females	SSSD ASSD	Self-administered SFFQ of 255 food items – since the beginning of the pregnancy ⁴⁵ Validated with a 4-day weighed food diary and one 24-h urine collection and blood sample $(n = 119)$	Birth weight

 ⁴⁴ Willett WC, Sampson L and Stampfer MJ, 1985. et Reproducibility and validity of a semiquantitative food frequency questionnaire. American Journal of Epidemiology, 122, 51–65.
 ⁴⁵ Brantsæter AL, Haugen M, Alexander J and Meltzer HM, 2008. Validity of a new food frequency questionnaire for pregnant women in the Norwegian Mother and Child Cohort Study (MoBa). Maternal and Child Nutrition, 4, 28–43.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Public funding				Spearman correlation coefficient for added sugars of SFFQ vs. food diary: 0.36 Energy-adjusted correlation coefficient for added sugars of SFFQ vs. food diary: 0.29	
MONICA Monitoring Trends and Determinants of Cardiovascular Disease Denmark Olsen et al. (2016) Public funding	N = 4,581 Inhabitants from Copenhagen county Caucasian	30–60 years 52.1% females	SSSD	7-day dietary record; information provided on the mean weight of 19 frequently consumed foods. Entries were expressed at estimated, or preferably weighted, grams. No information on validation.	Body weight
MOVE MOVE project USA Carlson et al. (2012) Public funding	N = 271 Children with history of parental obesity 39% Caucasian, 48% Latino, 13% other	6–7 year 56% females	SSSD, SSFD 100% FJ <i>High fat foods</i> <i>Fruit and vegetables</i> <i>Fast food/restaurants</i>	One SFFQ administered by parents – no information on number of items. No data on validation against reference method – unclear validity.	BMIz-score BF
Mr and Ms OS Mr and Ms OS project of Hong Kong China Liu et al. (2018) Public funding	N = 4,000 General population Asian	\geq 6.5 year 50.2% females	Added sugars Free sugars Added sugars from cereals/milk/sweets	One self-administered SFFQ of 329 items (in which sugar intakes were estimated from 130 food items) – previous year. Validated by the basal metabolic rate calculation and the 24-h sodium/creatinine and potassium/ creatinine analysis. ⁴⁶	Body weight BMI Body fat CVD
MTC Mexican Teachers' Cohort	N = 27,992 Female teachers	\geq 25 year Females	SSSD ASSD	Two self-administered SSFQ of 139 items – previous year.	Body weight WC

⁴⁶ Woo J, Leung SSF, Ho SC, Lam TH and Janus ED, 1997. A food frequency questionnaire for use in the Chinese population in Hong Kong: description and examination of validity. Nutrition Research, 17, 1633–1641.

Stern et al. (2017)	Hispanic			Validated against another FFQ and four 4-day	
Jnclear funding	N 2 270	0.10	Tabel success	24-hour recalls. ⁴⁷ Correlation coefficient between the SFFQ and the average of sixteen 24-h recalls (de- attenuated) was 0.52 for carbohydrates.	DMT- cours
National Lung, Heart and Blood Institute's Growth and Health Study JSA Lee et al. (2014) Lee et al. (2015)	N = 2,379 Non-Hispanic Caucasian and African American girls with racially concordant parents from 3 sites 51% Caucasian and 49% Black	9–10 year Females	Total sugars Added sugars SSSD SSFD 100% FJ Natural sugar Milk Coffee/tea	An annually (10x) collected 3-day food record (2 weekdays and 1 weekend day). Validated against observation of a sub-sample of 60 participants. Correlation coefficient 0.78 for carbohydrates.	BMIz-score Body weight WC Blood lipids
NHS Nurses Health Study JSA	N = 121,770 Female nurses Majority (~93%+) Caucasian	30–55 year Females	Total Fructose Free fructose SSSD 100% FJ SSSD, SSFD ASSD ASB Lactose Sugar-sweetened cola Carbonated beverages Non-carbonated beverages Vitamin C Total whole fruit	Six self-administered SFFQ of 61 foods – previous year (number of SFFQs varied per outcome assessed due to different lengths of follow). Additional SFFQs carried out throughout follow-up. Validation for food source against two 7-day diet records. Correlation coefficients were 0.84 for cola-type soft drinks (SSSD and ASSD combined), 0.36 for other carbonated soft drinks, 0.84 for orange juice and 0.56 for fruit punch.	Body weight CVD Stroke Gout HTN T2DM

⁴⁷ Hernández-Avila M, Romieu I and Parra S, 1998. Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Publica Mex, 40, 133–140.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
			Individual fruits Water Coffee Tea Low-fat milk Whole-fat milk Other sweetened soft drinks Glycaemic index Glycaemic load Orange or apple FJ Orange or apple (fruit)		
NHS-II Nurses Health Study-II USA Chen et al. (2009b) Cohen et al. (2012) Forman et al. (2012) Forman et al. (2012) Muraki et al. (2013) Pan et al. (2013) Schulze et al. (2004) Public funding	N = 116,671 Female nurses Majority (~90%+) Caucasian	24–44 year Females	Total fructose 100% FJ SSSD, SSFD ASSD Total whole fruit Individual fruits Carbonated beverages Non-carbonated beverages Vitamin C Water Coffee Tea Low-fat milk Whole-fat milk	Three self-administered SFFQ of 133 items – previous year Validation against two 7-day diet records Correlation coefficients for cola-type soft drinks (including diet) 0.84; other carbonated soft drinks 0.36; orange juice 0.84; and fruit punch 0.56.	Body weight GDM HTN T2DM
NIH-AARP National Institutes of Health- American Association for Retired Persons Diet and Health Study	N = 567,169 General population from 6 states ~ 93% White, 3% African-American, 2%	50–71 year 41.7% females	Total sugars Added sugars Total sucrose Added sucrose Total fructose	Self-administered SFFQ of 124 items – past year Validated with four 24-h dietary recall interviews (in subjects of the EATS study, a nationally representative sample of men and women aged 20–79 year). ⁴⁸	CVD

⁴⁸ Millen A, Midthune D, Thompson F, Kipnis V and Subar A, 2005. The National Cancer Institute Diet History Questionnaire: Validation of Pyramid Food Servings. American Journal of Epidemiology, 163, 279–288. https://doi.org/10.1093/aje/kwj031

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
USA Tasevska et al. (2014b) Public funding	sevska et al. (2014b) Other		Added free fructose	Correlation coefficients (deattenuated and energy-adjusted) for added sugars: 0.79 for women and 0.68 for men.	
NSHDS Northern Sweden Health and Disease Study Sweden Winkvist et al. (2017) Mixed funding	N = 40,066 General population Caucasian	30–60 year 52.2% females	Sucrose	 Two self-administered SFFQ of 64 items– previous year. Validated against 10x 24-h dietary recalls in a random subsample (n = 99) Vasterbotten county cardiovascular disease (CVD) study.⁴⁹ Correlation coefficients for sucrose de- attenuated: 0.65 for men and 0.37 for women. 	BMI Blood lipids
PHHP Pawtucket Heart Health Program USA Parker et al. (1997) Public funding	General population62.2% femalesAnimal fatrecords (covering 1 year) for women94% CaucasianVegetable fat(subsample of NHS) and for men against oneProteinFFQ and 2 one-week diet records (subsample of		Body weight		
PHI Planet Health Intervention USA Ludwig et al. (2001) Public funding	N = 780 Children from four communities in the Boston metropolitan area	11–12 year 48% females	SSSD, SSFD	Self-administered (under supervision of trained personnel) SFFQ of 131 items – past year Validation in a similar cohort of 261 children and adolescents (9 to 18y) that completed three 24-h recalls and two FFQ (1 year apart). Correlation coefficients for carbohydrates:	Obesity

www.efsa.europa.eu/efsajournal

⁴⁹ Johansson I, Hallmans G, Wikman A, Biessy C, Riboli E and Kaaks R, 2002. Validation and calibration of food-frequency questionnaire measurements in the Northern Sweden Health and Disease cohort. Public Health Nutrition, 5, 487–496.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
	64% white, 15% Hispanic, 14% Afro- American, 8% Asian, 8% American Indian or other			 Mean 24-h recalls vs. mean FFQ: unadjusted 0.37; adjusted 0.40; de-attenuated 0.46 Mean 24-h recalls vs. 2nd FFQ: unadjusted 0.38; adjusted 0.41; de-attenuated 0.47.⁵⁰ 	
Project Viva USA Sonneville et al. (2015) Mixed funding	N = 2,1281 yearInfants from eight urban and suburban obstetric offices in Massachusetts49.8% females70.3% Caucasian, 11.7% Black, 3.7% Hispanic, 3.1% Asian and 11.2% other1		100% FJ Water	 Two SFFQ of 103 items administered by the parents or guardian – past month. Validated against three 24-h dietary recalls (2x weekdays and 1x weekend).⁵¹ Correlation coefficient of 0.52 for carbohydrates. 	BMIz-score
QUALITY Quebec Adipose and Lifestyle InvesTigation in Youth USA Wang et al. (2014) Public funding	N = 630 General population from Quebec with at least one biological parent that had obesity and/or abdominal obesity Caucasian	8–10 year 44.5% females	Added sugars	Three 24-h dietary recalls on non-consecutive days of the week, including one weekend day. Completed by registered dietician. No information on validation.	Body weight BMI WC Body fat Glucose homeostasis (FG, FI, HOMA-IR, Matsuda-ISI)
REGARDS Reasons for Geographic and Racial Differences in Stroke study USA	N = 30,183 General population Caucasian 68.9%, African-America 31.1%	≥ 45 year 40.7% females	SSSD, SSFD SSSD, SSFD, 100% FJ 100% FJ	Self-administered SFFQ of 98 items – past year Validation with three 4-day diet records (sample of 260 females from Women's Health Trial) Correlation coefficient of 0.51 for carbohydrates.	CHD

⁵⁰ Rockett H, Breitenbach M and Frazier A, 1997. Validation of a Youth/Adolescent Food Frequency Questionnaire. Preventive Medicine 26, 808–816. ⁵¹ Blum R, Wei E and Rockett H, 1993. Validation of a food frequency questionnaire in native American and Caucasian children 1 to 5 years of age. Journal of Maternal Child Health, 3, 167–172.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Collin et al. (2019)‡					
Public funding					
SCES	N = 2,353	12 year	Total sugars	One self-administered SFFQ of 120 items -	BMI
Sidney Childhood Eye Study	Schoolchildren from	49.2% females	Added sugars Fructose	previous year.	WC Body fat
Australia	Sydney		Glycaemic index	Validated against four 24-h food records in children aged 9–16y. ⁵²	Blood pressure
Gopinath et al. (2013) Gopinath et al. (2012) Mixed funding	61.1% Caucasian, 19.5% East Asian, 4% Middle Eastern, 15.4% Other		<i>Glycaemic load Carbohydrates Fibre Fruits</i>	The de-attenuated, energy-adjusted Pearson correlation coefficient for total sugars was 0.41.	
SCHS Singapore Chinese Health Study Singapore Rebello et al. (2014) Public funding	N = 63,257 General population of Chinese adults living in Singapore Asian	45–74 year 56% females	Total sugars Carbohydrates Starch Dietary fibre Vegetables Fruits Rice Noodles	 Interview administered SFFQ of 165 items- past year. with serving sizes reported as number based or coloured photographs representing the 15th, 50th and 85th percentiles of the portion size. Validated with 24-h dietary recall interviews (sub-group of n = 1022) Correlation coefficients for carbohydrate intake for Cantonese 0.37 and 0.32 (men and women, respectively) and for Hokkien 0.58 and 0.56 (men and women, respectively). 	CHD
Seven Countries The Netherlands, Finland Feskens et al. (1995)	N = 2,589 General population Caucasian	50–70 year Males	Total sugars	Cross-check dietary history method at baseline and end of follow-up and at 10-year follow-up habitual food consumption pattern and checklist of foods.	Dynamic glucose homeostasis (OGTT)
Public funding				No validation for the method used in the study.	

⁵² Watson JF, Collins CE, Sibbritt DW, Dibley MJ and Garg ML, 2009. Reproducibility and comparative validity of a food frequency questionnaire for Australian children and adolescents. International Journal of Behaviour Nutrition Physcian Action, 6, 62.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
SUN Seguimiento Universidad de Navarra Spain Barrio-Lopez et al. (2013) Donazar-Ezcurra et al. (2018) Sayon-Orea et al. (2015) Fresan et al. (2017) Public funding	N = 21,678 University graduates, mainly health professionals Caucasian	> 18 year 69% females	SSSD SSSD, SSFD 100% FJ TFJ SSFD SSFD, SSFJ, 100%	 Self-reported SFFQ of 136 items – previous year. Four 4-day diet (n = 147)⁵³ Pearson correlation coefficient for carbohydrates: Q1 vs. mean 4-day records: unadjusted 0.40; adjusted (for total caloric intake) 0.36; de-attenuated 0.40. Q2 vs. mean 4-day records: unadjusted 0.44; adjusted (for total caloric intake) 0.42; de-attenuated 0.46. 	GDM HTN Body weight T2DM
Takayama Japan Nagata et al. (2019)‡ Public funding	N = 34,018 General population Asian	≥ 35 year 54.1% females	Total sugars Total fructose Added sugars Glucose	One self-administered SFFQ of 169 items – previous year. Validated in subsamples in this population by comparing twelve 1-day diet records kept over a 1-year period. ⁵⁴ Spearman's correlation coefficients between the questionnaire and twelve 1-day diet records kept over a 1-year period for intakes of total sugars, glucose, fructose, sucrose, maltose and lactose were 0.28, 0.46, 0.51, 0.48, 0.35 and 0.85, respectively, in men (n 17) and 0.68, 0.80, 0.46, 0.56 and 0.71, respectively, in women (n 20).	CVD
TLGS Teheran Lipid and Glucose Study	N = 15,005 General population	≥ 3 year 56.7% females	Total fructose SSSD, SSFD, TFJ SSSD, SSFD, SSFJ	Three interview-administered SFFQ of 168 items – previous year Validation against twelve 24-h recall (n = 132). ⁵⁵	WC

 ⁵³ Martin-Moreno JM, Boyle P, Gorgojo L, Maisonneuve P, Fernandez-Rodriguez JC, Salvini S and Willett WC, 1993. Development and validation of a food frequency questionnaire in Spain. International Journal of Epidemiology, 22.
 ⁵⁴ Shimizu H, Ohwaki A and Kurisu Y, 1999. Validity and reproducibility of a quantitative food frequency questionnaire for a cohort study in Japan. Japan Journal of Clinical Oncology, 29, 38–44.
 ⁵⁵ Asghari G, Rezazadeh A, Hosseini-Esfahani F, Mehrabi Y, Mirmiran P and Azizi F, 2012. Reliability, comparative validity and stability of dietary patterns derived from an FFQ in the Tehran Lipid

and Glucose Study. British Journal of Nutrition, 108, 1109–1117.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Iran Bahadoran et al. (2017) Mirmiran et al. (2015) Public funding	Caucasian		Added fructose Natural fructose	 Spearman correlation coefficient for carbonated drinks: SFFQ2 vs. 24-h recall: 0.43 (crude), 0.40 (energy adjusted) SFFQ2 vs. SFFQ3: 0.50 (crude), 0.23 (energy adjusted) Spearman correlation coefficient for sugars, sweets and desserts: SFFQ2 vs. 24-h recall: 0.52 (crude), 0.37 (energy adjusted) SFFQ2 vs. SFFQ3: 0.40 (crude), 0.34 (energy adjusted) 	Glucose homeostasis (FI, HOMA-IR) Blood lipids Blood pressure HTN T2DM CVD
Toyama Japan Sakurai et al. (2014) Public funding	N = 2,275 Male employees of a factory Asian	35–55 year Males	SSSD ASSD	Self-administered diet history questionnaire including SFFQ of 110 items– previous month Validation against 3-day diet record (n = 47 women from a similar cohort) ⁵⁶ Pearson correlation coefficient for carbohydrates: 0.48 (crude); 0.46 (energy adjusted); 0.48 (energy adjusted and de- attenuated).	T2DM
WAPCS Western Australia Pregnancy Cohort (Raine) Study Australia	N = 2,868 Offspring from mothers from the Raine study	14 year 48.2% females	SSSD, SSFD and SSFJ	SFFQ of previous year completed in every follow-up by primary caregiver – 212 food items (individual foods, mixed dishes and beverages). ⁵⁷	BMI WC Blood lipids Blood pressure

⁵⁶ Sasaki S, Yanagibori R and Amano K, 1998. Self-administered diet history questionnaire developed for health education: a relative validation of the Test-Version by comparison with 3-day diet record in women. Journal of Epidemiology, 8, 203–215.

⁵⁷ Ambrosini GL, de Klerk NH and O'Sullivan TA, 2009. The reliability of a food frequency questionnaire for use among adolescents.Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP and Agurs-Collins T, 1999. Measurement characteristics of the Women's Health Initiative Food Frequency Questionnaire. Annals of Epidemiology, 9, 178–187. Ambrosini GL, Oddy WH and Robinson M, 2009. Adolescent dietary patterns are associated with lifestyle and family psycho-social factors.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Ambrosini et al. (2013) Unclear funding	Caucasian			Serving sizes measured in household units (cups, spoons, slices, etc.) Validation against 3-day food record. Pearson's correlation coefficient of total sugars: 0.29 $(p < 0.001)^{58}$	Glucose homeostasis (FI, FG and HOMA- IR)
WHI Women's Health Initiative USA Auerbach et al. (2017) Auerbach et al. (2018) Huang et al. (2017) Tasevska et al. (2018) Public funding	N = 122,970 Postmenopausal women enrolled into the WHI Observational Study (n = 93,676) and the comparison arm of the Dietary Modification Clinical Trial (n = 29,294) \sim 84% Caucasian, 7.6% Black, Hispanic/ Latino 4% and 3% Asian/Pacific	50–79 year Females	Total sugars 100% FJ SSSD SSFD SSSD, SSFD and TFJ ASB Whole fruit	SFFQ of 122 items – previous 3 months Validated with: four 24-h dietary recalls conducted by trained staff; and four self- completed food records (n = 113 in 1995). Correlation coefficients for carbohydrates was 0.41 (unadjusted), 0.63 (energy-adjusted), 0.67 (de-attenuated) ⁵⁹	T2DM CVD CHD Stroke Heart failure CABG PCI HTN Body weight
WHS Women's Health Study USA Janket et al. (2003) Public funding	N = 39,876 Women (health professionals) whom participated in a RCT on low dose aspirin and vitamin E in the primary prevention of cardiovascular disease and cancer	≥ 45 year Females	Total sugars Sucrose Free fructose Free glucose SSSD Lactose Starch Jam and marmalade Maltose SS berry juice	 SFFQ of 131 items – previous year The SFFQ used was the same as for HPFS and NHS, validation described previously. Also validated against a diet record in a similar group of women. Correlation coefficient for energy-adjusted carbohydrates ranged from 0.59 to 0.73. 	T2DM

 ⁵⁸ Ambrosini GL, de Klerk NH and O'Sullivan TA, 2009. The reliability of a food frequency questionnaire for use among adolescents.
 ⁵⁹ Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP and Agurs-Collins T, 1999. Measurement characteristics of the women's health initiative food frequency questionnaire. Annals of Epidemiology, 9, 178–187.

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
	94.8 White, 2.3% African American, 1.1% Hispanic, 1.4% Asian/Pacific Islander, 0.3% American Indian/Alaskan Native, and 0.1% more than one race.				
Dental caries					
Finnish Cohort	N = 6,335	30–89 year	Total sugars	SFFQ of 128 food items and mixed dishes –	DMFT
Finland	General population	56% females		previous year.	
Bernabé et al. (2016)	Caucasian			SFFQ only administered at baseline. Standard portion size assigned to each FFQ item and	
Public funding				specified with natural units.	
				The overall frequency of sugars intake (times/ day) was estimated by adding the weighted responses for 15 sugary food items	
				The amount of sugars intake (g/day) was estimated by multiplying the food consumption frequency by fixed portion sizes. Validated against a 3-day food record (n = 294; 137 men and 157 women). ⁶⁰	
IFS	N = 608	5–9 year	Total sugars	3-day food diaries (2 weekdays, 1 weekend day)	
Iowa Fluoride Study	General population	55% females	SSSD 100% FJ	were obtained every 1.5 to 6 months during the study period. Intakes were averaged for each	
Chankanka et al. (2011)	94% Caucasian, 6%		Milk	child to reflect sugar intakes from 5 to 8 years	
USA	Other		Powder-sugared beverages	of age. ⁶¹	

⁶⁰ Paalanen L, Männistö S, Virtanen MJ, Knekt P, Räsänen L, Montonen J and Pietinen P, 2006. Validity of a food frequency questionnaire varied by age and body mass index. Journal of Clinical

Epidemiology, 59, 994–1001.
 ⁶¹ Marshall TA, Broffitt B, Eichenberger-Gilmore J, Warren JJ, Cunningham MA and Levy SM, 2005. The roles of meal, snack, and daily total food and beverage exposures on caries experience in young children. Journal of Public Health Dentrics, 65, 166–73. [PubMed: 16171262].

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
Public funding			ASSD Water Individual food items		
Michigan cohort USA Burt et al. (1988) Burt and Szpunar (1994) Szpunar et al. (1995) Unclear funding	N = 747 General population from three towns with non-fluoridated water supply	10–15 year 47.9% females	Total sugars	Dietary interviews – 3 times two 24-h diet recalls administered for the previous day. Included weekdays and weekends and covered seasonal variations during the study period. Models provided to assess quantities Intake data from all the interviews for the same child over the 3-year follow-up were averaged.	DMFS DMFS (AP) DMFS (FS)
STRIP-1 Special Turku Coronary Risk Factor Intervention Project Finland Ruottinen et al. (2004) Unclear funding	N = 1,066 Children attending well-baby clinics of the city of Turku, where the fluoride concentration in drinking water is 0.3 ppm Caucasian	13 months 31% females	Sucrose	3-day food records (at 13 months) and 4-day food records (thereafter every 6 months until 7 years of age, every 2 years thereafter in the intervention group and every year in the control group until 10 years of age. Records included one weekend day and were reviewed by nutritionist at next visit.	d ₃ mft, d ₃ mft+D ₃ MFT D ₃ MFT scores
STRIP-2 Special Turku Coronary Risk Factor Intervention Project Finland Karjalainen et al. (2001) Karjalainen et al. (2015) Unclear funding	N = 1,066 Children attending well-baby clinics of the city of Turku, where the fluoride concentration in drinking water is 0.3 ppm Caucasian	3 year 45.8% females	Sucrose	4-day food records at 3, 6, 9, 12 and 16 years of age.Records included one weekend day and were reviewed by nutritionist at next visit.	D3MFT scores d3mft

Cohort Country References Funding	Population (original cohort)	Age (years) Gender	Exposure(s) assessed	Exposure assessment, time coverage and validation	Endpoints
UK cohort	N = 466	11.5 year (mean)	-	5 times 3-day food diaries (3 consecutive days)	DMFS
United Kingdom	Children in their final 2		Individual food items Starch	in the 2 years of the study (total of 15 days of dietary intake).	DMFT DFS
Rugg-Gunn et al. (1984) Rugg-Gunn et al. (1987)	years of middle school from the area of south Northumberland			All days of the week covered. Children were instructed to record all foods and beverages	DFS(FS) DFS (SS)
Public funding	Caucasian			consumed, the amounts and the time of the day in which these were consumed. Interview the day of completion to check quantities and uncertainties. Food models and graduated cups used for quantification of the amount.	DFS (AP)
VA-DLS Department of Veterans Affairs-Dental Longitudinal Study USA	ment of Veterans		Total sugars SSSD Starch DASH adherence score DASH vegetable score	Repeated administration of an expanded self- administered 131-item SFFQ at each visit. Average dietary variables were computed from all SFFQs after the first root surface was exposed until edentulism or the end of the study for analysis of root carios increment.	Root caries increment
Kaye et al. (2015)			DASH total grain score DASH sweets score	for analyses of root caries increment.	
Public funding				Validation against two 7-day diet records administered 6 months apart ^{62,63} . The SFFQ was administered twice to 127 men at one-year interval.	

ASBs, artificially sweetened beverages; ASSD, artificially sweetened soft drinks; BMI, body mass index; CABG, coronary artery bypass grafting; CHD, coronary heart disease; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; D3MFT, decayed into dentine, missing and filled permanent teeth; d3mft, decayed into dentine, missing and filled primary teeth; DFS: decayed, filled surfaces; DFS (AP), approximal surfaces; DFS (FS), pit and fissure surfaces; DFS (SS), free smooth surfaces; DMFS: decayed, missing and filled primary teeth; FD, fruit drinks; FG, fasting glucose; FI, fasting insulin; FJ, fruit juice; GI, glycaemic index; GL, glycaemic load; GDM, gestational diabetes mellitus; HOMA, homeostatic model of assessment; HTN, hypertension; IR, insulin resistance; LCDS, Low-carbohydrates diet score; LCSB, low-calorie sweetened beverage; MUFA, monounsaturated fatty acid; NAFLD, non-alcoholic fatty liver disease; PCI, percutaneous coronary intervention; PUFA, polyunsaturated fatty acid; RCT, randomised control trial; SAT, subcutaneous adipose tissue; SFA, saturated fatty acid; SFFQ, semiquantitative food frequency questionnaire; SSBs, sugar-sweetened beverages, SSFDs, sugar-sweetened fruit drinks, T2DM, type 2 diabetes mellitus; TFJ, total fruit juice; VAT, visceral adipose tissue; WC, waist circumference; WC_{BMI}, waist circumference regressed on body mass index.

:: Study identified through the update of the literature search.

⁶² Rimm EB, Giovannucci EL and Stampfer MJ, 1992. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. American Journal of Epidemiology, 135, 1114–1126.

⁶³ Feskanich D, Rimm EB, Giovannucci EL, et al. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc. 1993;93:790–796.

Appendix K – Forest plots. Observational studies on metabolic diseases

Figure K.1: Intake of added and free sugars and continuous variables related to the risk of obesity and abdominal obesity

Herbst et al., 2011 DE 1 (NR) 216 6.0 per 1 %E increase 4.3 (1.8 - 7.9) BMI z-score Mixed Most adjusted model (BMI) -0.12 (-0.23, -0.00) STD Mr and Ms OS Free sugars Liu et al., 2018 CN 72.5 (z65) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m²) Females Least adjusted model -0.02 (-0.01, 0.02) Liu et al., 2018 CN 72.5 (z65) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m²) Females Most adjusted model -0.01 (-0.01, 0.02) 0.01													
Lue et al. 2018 CN 72.5 (x45) 1714 4.0 per 1%E increase 3 (2.2) change in BMI (light") Females Least adjusted model 0.01 (40.1, 0.03) Lue et al. 2018 CN 72.5 (x45) 1714 4.0 per 1%E increase 3 (3.2) change in BMI (light") Most adjusted model 0.01 (40.1, 0.03) 0.01 (40.1, 0.03) Lue et al. 2018 CN 72.4 (x45) 1707 4.0 per 1%E increase 3.6 (3) change in BMI (light") Males Most adjusted model (BMI) 0.01 (40.1, 0.02) ULu et al. 2014 US N.R (8-10) 472 2.0 per 10 g/d increase 1.1.4 (12.5) change in BMI (light") Males Most adjusted model (BMI, E) -0.00 (-0.13, 0.12) .<				participants in				Outcome	Sex				TEI
Liu et al. 2018 CN 72.5 (e65) 1714 4.0 per 1 %E increase 3 (3.2) change in BMI (hg/m*) Females Most adjusted model (BMI) - 0.001 (-0.01, 0.03) Lue et al. 2018 CN 72.4 (e65) 1707 4.0 per 1 %E increase 3.6 (3) change in BMI (hg/m*) Males Least adjusted model (BMI) - 0.001 (-0.01, 0.02) . CUALITY Added sugars (includs) .	Mr and Ms OS Add	ded sugars											
Liu et al., 2016 CN 72.4 (a65) 1707 4.0 per 1 %E increase 3.6 (3) change in BMI (light?) Males Least adjusted model (BM) 000 (0.01, 0.02) 0.01 (0.01, 0.02) 0.00 (0.13, 0.12) 0.00 (0.00, 0.02) 0.00 (0.01, 0.02)	Liu et al., 2018	CN	72.5 (≥65)	1714	4.0	per 1 %E increase	3 (3.2)	change in BMI (kg/m²)	Females	Least adjusted model	-	0.01 (-0.01, 0.03)	
Lu et al. 2018 CN 72.4 (a65) 1707 4.0 per 1 %E increase 3.6 (3) change in BMI (kg/m?) Males Most adjusted model (BMI) 0.01 (0.02) . CUALITY Added sugars (liquids) Wang et al., 2014 US NR (8 - 10) 472 2.0 per 10 g/d increase 11.4 (12.5) change in BMI (kg/m?) Mixed Most adjusted model (BMI, E) -0.00 (-0.13, 0.12) . CUALITY Added sugars (solids) Wang et al., 2014 US NR (8 - 10) 472 2.0 per 10 g/d increase 4.0.4 (22.2) change in BMI (kg/m?) Mixed Most adjusted model (BMI, E) -0.01 (-0.10, 0.07) . CONLOT Free sugars Herbst et al., 2011 DE 1 (NR) 216 6.0 per 1 %E increase 4.3 (1.8 - 7.9) BMI 2-score Mixed Herbst et al., 2011 DE 1 (NR) 216 6.0 per 1 %E increase 4.3 (1.8 - 7.9) BMI 2-score Mixed Most adjusted model (BMI) . Mixed Most adjusted model (BMI) . Control DE 1 (NR) 216 6.0 per 1 %E increase 4.3 (1.8 - 7.9) BMI 2-score Mixed Mixed Mixed model (BMI) . Mixed Mixed Mixed Mixed Mixed Mixed (BMI) . Control DE 1 (NR) 216 6.0 per 1 %E increase 4.3 (1.8 - 7.9) BMI 2-score Mixed Mixed Mixed model (BMI) . Mixed Mixed Mixed Mixed Mixed Mixed (BMI) . Control DE 1 (NR) 216 6.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m?) Females Least adjusted model (BMI) . Control DE 1 (NR) 7.25 (a65) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m?) Females Mixed Mixed model (BMI) . Lu et al., 2018 CN 7.22 (a65) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m?) Males Least adjusted model (BMI) . Correspondence in BMI (kg/m?) Males Mixed adjusted model (BMI) . Correspondence in BMI (kg/m?) Males Mixed adjusted model (BMI) . Correspondence in BMI (kg/m?) Males Mixed adjusted model (BMI) . Correspondence in BMI (kg/m?) Males Mixed Mixed adjusted model (BMI) . Correspondence in BMI (kg/m?) Males Mixed adjusted model (BMI) . Correspondence in BMI (kg/m?) Males Mixed Mixed Mixed Mixed Mixed Mixed Mixed Mixed Mixed (BMI) . Correspondence in BMI (kg/m?) Males Mixed M	Liu et al., 2018	CN	72.5 (≥65)	1714	4.0	per 1 %E increase	3 (3.2)	change in BMI (kg/m²)	Females	Most adjusted model (BMI)	+	0.01 (-0.01, 0.03)	
QUALITY Added sugars (liquids) NR (8 - 10) 472 2.0 per 10 g/d increase 11.4 (12.5) change in BMI (light?) Mixed Most adjusted model (BMI, El) -0.00 (-0.13, 0.12)	Liu et al., 2018	CN	72.4 (≥65)	1707	4.0	per 1 %E increase	3.6 (3)	change in BMI (kg/m²)	Males	Least adjusted model	+	0.00 (-0.01, 0.02)	
Wang et al., 2014 US NR (§ - 10) 472 2.0 per 10 g/d increase 11.4 (12.5) change in BMI (kg/m²) Mixed Most adjusted model (BMI, El) -0.00 (-0.13, 0.12) . <	Liu et al., 2018	CN	72.4 (≥65)	1707	4.0	per 1 %E increase	3.6 (3)	change in BMI (kg/m²)	Males	Most adjusted model (BMI)	-	0.01 (-0.01, 0.02)	
CUALITY Added sugars (solids) Wang et al., 2014 US NR (8 - 10) 472 2.0 per 10 g/d increase 40.4 (22.2) change in BMI (kg/m ²) Mixed Most adjusted model (BMI, El) -0.01 (-0.10, 0.07) DONALD Free sugars Herbst et al., 2011 DE 1 (NR) 216 6.0 per 1 %E increase 4.3 (1.8 - 7.9) BMI z-score Mixed Least adjusted model (BMI) -0.09 (-0.20, 0.02) STD - Mr and Ms OS Free sugars - - - - -0.01 (-0.01, 0.07) -0.09 (-0.20, 0.02) STD - Mr and Ms OS Free sugars - - - - - -0.01 (-0.01, 0.07) Lu et al., 2018 CN 72.5 (a65) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m ²) Females Most adjusted model (BMI) - 0.01 (-0.01, 0.02) Lu et al., 2018 CN 72.5 (a65) 1714 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m ²) Most adjusted model (BMI) - 0.01 (-0.01, 0.02) Lu et al., 2018 CN 72.4 (a65) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (k	QUALITY Added s	ugars (liquid	ds)										
Wang et al., 2014 US NR (8 - 10) 472 2.0 per 10 g/d increase 40.4 (22.2) change in BMI (kg/m²) Mixed Most adjusted model (BMI, EI) -0.01 (-0.10, 0.07) - <	Wang et al., 2014	US	NR (8 - 10)	472	2.0	per 10 g/d increase	11.4 (12.5)	change in BMI (kg/m²)	Mixed	Most adjusted model (BMI, EI)	<u>1</u>	-0.00 (-0.13, 0.12)	
DONALD Free sugars Herbs tet al., 2011 DE 1 (NR) 216 6.0 per 1 %E increase 4.3 (1.8 - 7.9) BMI z-score Mixed Least adjusted model (BMI) -0.09 (-0.20, 0.02) STD - Mrends tet al., 2011 DE 1 (NR) 216 6.0 per 1 %E increase 4.3 (1.8 - 7.9) BMI z-score Mixed Most adjusted model (BMI) -0.09 (-0.20, 0.02) STD - Mrand MS OS Free sugars - - - - - -0.12 (-0.23, -0.00) STD Liu et al., 2018 CN 72.5 (ze65) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m²) Females Least adjusted model 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.00, 0.02) 0.01 (-0.00, 0.02) 0.01 (-0.00, 0.02) 0.01 (-0.00, 0.02) 0.01 (-0.00, 0.02) 0.01 (-0.00, 0.02) 0.01 (-0.00, 0.02) 0.01 (-0.00, 0.02) 0.01 (-0.00, 0.02) 0.01 (-0.00, 0.02) <t< td=""><td>QUALITY Added s</td><td>ugars (solid</td><td>ls)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	QUALITY Added s	ugars (solid	ls)										
Herbst et al., 2011 DE 1 (NR) 216 6.0 per 1 %E increase 4.3 (1.8 - 7.9) BMI z-score Mixed Least adjusted model (BMI) -0.09 (-0.20, 0.02) STD . Mr and Ms OS Free sugars Lu et al., 2018 CN 72.5 (a65) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m²) Females Least adjusted model (BMI) -0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) Liu et al., 2018 CN 72.5 (a65) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m²) Females Least adjusted model (BMI) -0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02)	Wang et al., 2014	US	NR (8 - 10)	472	2.0	per 10 g/d increase	40.4 (22.2)	change in BMI (kg/m²)	Mixed	Most adjusted model (BMI, EI)	•	-0.01 (-0.10, 0.07)	
Herbst et al., 2011 DE 1 (NR) 216 6.0 per 1 %E increase 4.3 (1.8 - 7.9) BMI z-score Mixed Most adjusted model (BMI) -0.12 (-0.23, -0.00) STD	DONALD Free sug	gars											
Mr and Ms OS Free sugars Liu et al., 2018 CN 72.5 (a65) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m²) Females Least adjusted model 0.01 (-0.01, 0.02) Liu et al., 2018 CN 72.5 (a65) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m²) Females Most adjusted model 0.01 (-0.01, 0.02) Liu et al., 2018 CN 72.4 (a65) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m²) Males Least adjusted model 6Most adjusted model 0.01 (-0.01, 0.02) Liu et al., 2018 CN 72.4 (a65) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m²) Males Least adjusted model 6Most adjusted model 0.01 (-0.01, 0.02) KoCAS Free sugars (liquids) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4 (.2 - 2.4) BMI z-score Mixed Most adjusted model -0.02 (-0.06, 0.02) -0.02 (-0.06, 0.02) -0.02 (-0.06, 0.02) -0.02 (-0.06, 0.04) -0.02 (-0.06, 0.02) -0.02 (-0.06, 0.04) -0.02 (-0.06, 0.04) -0.02 (-0.06, 0.04) <t< td=""><td>Herbst et al., 2011</td><td>DE</td><td>1 (NR)</td><td>216</td><td>6.0</td><td>per 1 %E increase</td><td>4.3 (1.8 - 7.9)</td><td>BMI z-score</td><td>Mixed</td><td>Least adjusted model (BMI)</td><td>+</td><td>-0.09 (-0.20, 0.02)</td><td>STD</td></t<>	Herbst et al., 2011	DE	1 (NR)	216	6.0	per 1 %E increase	4.3 (1.8 - 7.9)	BMI z-score	Mixed	Least adjusted model (BMI)	+	-0.09 (-0.20, 0.02)	STD
Liu et al., 2018 CN 72.5 (265) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m ³) Females Least adjusted model (BMI) 0.01 (-0.01, 0.02) Liu et al., 2018 CN 72.4 (265) 1714 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m ³) Females Least adjusted model (BMI) 0.01 (-0.01, 0.02) Liu et al., 2018 CN 72.4 (265) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m ³) Males Least adjusted model (BMI) 0.01 (-0.01, 0.02) Liu et al., 2018 CN 72.4 (265) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m ³) Males Least adjusted model (BMI) 0.01 (-0.00, 0.02) Liu et al., 2018 CN 72.4 (265) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m ³) Males Most adjusted model (BMI) 0.01 (-0.00, 0.02) Work adjusted model (BMI) 0.01 (-0.00, 0.02) Liu et al., 2018 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4.(2 - 2.4) BMI z-score Mixed Least adjusted model (BMI) 0.02 (-0.06, 0.02) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4.(2 - 2.4) BMI z-score Mixed Most adjusted model (BMI) 0.02 (-0.06, 0.02) -0.02 (-0.06, 0.02) 0.00 (-0.00, 0.00) 0.00 (-0.0	Herbst et al., 2011	DE	1 (NR)	216	6.0	per 1 %E increase	4.3 (1.8 - 7.9)	BMI z-score	Mixed	Most adjusted model (BMI)	-	-0.12 (-0.23, -0.00)	STD
Liu et al., 2018 CN 72.5 (a65) 1714 4.0 per 1 %E increase 4.1 (3.8) change in BMI (kg/m ²) Females Most adjusted model (BMI) Liu et al., 2018 CN 72.4 (a65) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m ²) Males Least adjusted model (BMI) Liu et al., 2018 CN 72.4 (a65) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m ²) Males Most adjusted model (BMI) . KoCAS Free sugars (liquids) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4.(.2 - 2.4) BMI z-score Mixed Least adjusted model (EI) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4.(.2 - 2.4) BMI z-score Mixed Most adjusted model (EI) 	Mr and Ms OS Fre	e sugars											
Liu et al., 2018 CN 72.4 (265) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m ²) Males Least adjusted model (BMI) 0.01 (-0.01, 0.02) Liu et al., 2018 CN 72.4 (265) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m ²) Males Most adjusted model (BMI) 0.01 (-0.00, 0.02) KoCAS Free sugars (liquids) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4. (.2 - 2.4) BMI z-score Mixed Least adjusted model (EI) -0.02 (-0.06, 0.02) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4. (.2 - 2.4) BMI z-score Mixed Most adjusted model (EI) -0.02 (-0.06, 0.02) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4. (.2 - 2.4) BMI z-score Mixed Most adjusted model (EI) -0.02 (-0.06, 0.02) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4. (.2 - 2.4) BMI z-score Mixed Most adjusted model (EI) -0.02 (-0.06, 0.02) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4. (.2 - 2.4) BMI z-score Mixed Most adjusted model (EI) -0.02 (-0.06, 0.02) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase 4. (.2 - 2.4) BMI z-score Mixed Most adjusted model (EI) -0.02 (-0.06, 0.04)	Liu et al., 2018	CN	72.5 (≥65)	1714	4.0	per 1 %E increase	4.1 (3.8)	change in BMI (kg/m²)	Females	Least adjusted model	+	0.01 (-0.01, 0.02)	
Liu et al., 2018 CN 72.4 (a65) 1707 4.0 per 1 %E increase 4.6 (3.5) change in BMI (kg/m²) Males Most adjusted model (BMI) . KoCAS Free sugars (liquids) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase .4 (.2 - 2.4) BMI z-score Mixed Least adjusted model (EI) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase .4 (.2 - 2.4) BMI z-score Mixed Most adjusted model (EI)	Liu et al., 2018	CN	72.5 (≥65)	1714	4.0	per 1 %E increase	4.1 (3.8)	change in BMI (kg/m²)	Females	Most adjusted model (BMI)	+-	0.01 (-0.01, 0.02)	
KoCAS Free sugars (liquids) Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase .4 (.2 - 2.4) BMI z-score Mixed Least adjusted model Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase .4 (.2 - 2.4) BMI z-score Mixed Most adjusted model (EI) -0.02 (-0.06, 0.02) -0.02 (-0.06, 0.04)	Liu et al., 2018	CN	72.4 (≥65)	1707	4.0	per 1 %E increase	4.6 (3.5)	change in BMI (kg/m²)	Males	Least adjusted model	+	0.01 (-0.01, 0.02)	
Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase .4 (.2 - 2.4) BMI z-score Mixed Least adjusted model	Liu et al., 2018	CN	72.4 (≥65)	1707	4.0	per 1 %E increase	4.6 (3.5)	change in BMI (kg/m²)	Males	Most adjusted model (BMI)	•	0.01 (-0.00, 0.02)	
Hur et al., 2015 KR 9.9 (9 - 10) 605 4.0 per log (g/d) increase .4 (.2 - 2.4) BMI z-score Mixed Most adjusted model (EI) -0.02 (-0.08, 0.04)	KoCAS Free sugar	rs (liquids)											
· · · · · · · · · · · · · · · · · · ·	Hur et al., 2015	KR	9.9 (9 - 10)	605	4.0	per log (g/d) increase	.4 (.2 - 2.4)	BMI z-score	Mixed	Least adjusted model	-	-0.02 (-0.06, 0.02)	
	Hur et al., 2015	KR	9.9 (9 - 10)	605	4.0	per log (g/d) increase	.4 (.2 - 2.4)	BMI z-score	Mixed	Most adjusted model (EI)		-0.02 (-0.08, 0.04)	
										228		20	

Regression coefficients sorted by exposure and cohort - baseline exposure

Note: STD = Standardised for Total Energy Intake.

EPIC-Norfolk (Kuhnle et al., 2015) and PHHP (Parker et al., 1997) excluded.

Figure K.1a: Intake of added and free sugars at baseline and measures of body mass index

Regression coefficients sorted by exposure and cohort - baseline exposure

^p ublication Author, Year)	Study Location	Age, Mean (SD/Range)	N of participants in analysis	Follow-up duration (y)		Exposure, Mean (SD/range)	Outcome	Sex	Model description - 3 categories		Beta coefficient (95% CI) TEI
Mr and Ms OS Add	led sugars										
iu et al., 2018	CN	72.5 (≥65)	1714	4.0	per 1 %E increase	3 (3.2)	change in BF (%)	Females	Least adjusted model	+-	0.02 (-0.01, 0.05)
iu et al., 2018	CN	72.5 (≥65)	1714	4.0	per 1 %E increase	3 (3.2)	change in BF (%)	Females	Most adjusted model (BMI)		0.02 (-0.02, 0.05)
iu et al., 2018	CN	72.4 (≥65)	1707	4.0	per 1 %E increase	3.6 (3)	change in BF (%)	Males	Least adjusted model	+	0.04 (0.00, 0.08)
Liu et al., 2018	CN	72.4 (≥65)	1707	4.0	per 1 %E increase	3.6 (3)	change in BF (%)	Males	Most adjusted model (BMI)	+	0.05 (0.01, 0.09)
QUALITY Added s	ugars (liqu	iids)									
Wang et al., 2014	US	NR (8 - 10)	472	2.0	per 10 g/d increase	11.4 (12.5)	change in BF (kg)	Mixed	Most adjusted model (BMI, EI)		-0.04 (-0.29, 0.20)
QUALITY Added s	ugars (soli	ids)									
Wang et al., 2014	US	NR (8 - 10)	472	2.0	per 10 g/d increase	40.4 (22.2)	change in BF (kg)	Mixed	Most adjusted model (BMI, EI)		-0.04 (-0.21, 0.13)
OONALD Free sug	ars										
Herbst et al., 2011	DE	1 (NR)	216	6.0	per 1 %E increase	4.3 (1.8 - 7.9)	BF (%)	Mixed	Least adjusted model (BMI)	+	-0.01 (-0.04, 0.02) STI
Herbst et al., 2011	DE	1 (NR)	216	6.0	per 1 %E increase	4.3 (1.8 - 7.9)	BF (%)	Mixed	Most adjusted model (BMI)	+	-0.01 (-0.04, 0.02) ST
Mr and Ms OS Fre	e sugars										
iu et al., 2018	CN	72.5 (≥65)	1714	4.0	per 1 %E increase	4.1 (3.8)	change in BF (%)	Females	Least adjusted model	÷	0.01 (-0.02, 0.04)
iu et al., 2018	CN	72.5 (≥65)	1714	4.0	per 1 %E increase	4.1 (3.8)	change in BF (%)	Females	Most adjusted model (BMI)	÷	0.01 (-0.02, 0.04)
iu et al., 2018	CN	72.4 (≥65)	1707	4.0	per 1 %E increase	4.6 (3.5)	change in BF (%)	Males	Least adjusted model	+	0.04 (0.01, 0.07)
iu et al., 2018	CN	72.4 (≥65)	1707	4.0	per 1 %E increase	4.6 (3.5)	change in BF (%)	Males	Most adjusted model (BMI)	+	0.05 (0.01, 0.08)
KoCAS Free sugar	rs (liquids)										
	KR	9.9 (9 - 10)	605	4.0	per log (g/d) increase	.4 (.2 - 2.4)	BF (%)	Mixed	Least adjusted model		- 0.10 (-0.39, 0.59)
Hur et al., 2015	KR	9.9 (9 - 10)	605	4.0	per log (g/d) increase	.4 (.2 - 2.4)	BF (%)	Mixed	Most adjusted model (EI)		0.02 (-0.39, 0.43)

Note: STD = Standardised for Total Energy Intake.

Figure K.1b: Intake of added and free sugars at baseline and measures of body fat

Figure K.2: Intake of SSBs and Fruit Juices and incidence of overweight/obesity and abdominal obesity

HRs sorted by source, cohort, model and increasing exposure (mL/day)

Chardine Colum One Mathematical Mat						N.d.							
Sector	Author, Year)		Age, range		Ethnicity	N of participants in analysis	N events/cases	Exposure category code	Exposure unit STD	Exposure, Mean (Range)	HR per category / HR per unit change (reflunit)	Hazard Ratio (95% CI)	Note
Sector	SSSD BWHS Model 1 (least Boggs et al., 2013 Boggs et al., 2013 Boggs et al., 2013 Boggs et al., 2013 Boggs et al., 2013	t adjusted) USA USA USA USA USA USA	21:38		Black Black	NR	1010 2430 1730 614 550	\$\$\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$ \$ \$ \$ \$	mL/day mL/day	(12 - 84) (96 - 288)		1.00 (1.00, 1.00) 1.08 (1.02, 1.15) 1.18 (1.07, 1.23) 1.25 (1.14, 1.23) 1.25 (1.14, 1.23)	
Solid-S	SSSD BWHS Model 1 + cov Boggs et al., 2013 Boggs et al., 2013 Boggs et al., 2013 Boggs et al., 2013 Boggs et al., 2013	urs + BMI USA USA USA	21-3333	188	Black Black Black	2222	2438 1738	SSSD SSSD SSSD SSSD	mL/day mL/day mL/day	(12 - 94) (80 - 288) (338 - 338)		1.00 (1.00, 1.00) 1.05 (0.98, 1.12) 1.03 (0.98, 1.11) 1.08 (0.98, 1.20) 1.12 (1.00, 1.25)	
SSD1-SSD1C/F Model 2 (M + E) = cours (M + E) = c		1 (least adjusted) USA	3-5	52	Black	275	75	SSSD+SSFD	mL/day	568.0	Per 29.6 mL/d increase		OR
In dia 2000 UA 3-5 02 Biok 275 15 SSD-SSFD mLang 0010 Pri230 mLange 0010 Pri230 Pri230 mLange 0010 Pri230 mLange 0010 Pri230 Pri	ISSD+SSFD DDHP Model Jim et al., 2009	1 + covars + BMI + EI USA	3-5	52	Black	275	75	SSSD+SSFD	mL/day	568.0	Per 29.6 mL/d increase	1.04 (1.02, 1.07)	OR
ubdig if if: 2001 Ubdig if if: 2001 Ubdig if if: 2001 Ubdig if if: 2001 Provide if: 2001 Ubdig if if: 2001 Ubd	SSD+SSFD DDHP Model : .im et al., 2009	2 (BMI + EI) + covars USA	3-5	52	Black	275	75	SSSD+SSFD	mL/day	568.0	Per 29.6 mL/d increase	1.04 (1.01, 1.07)	OR
SSD-SSD-SSD-SSD-SSD-SSD-SSD-LSDD (Model 1 (exst aduated in state at aduated in make at aduated i	SSD+SSFD PHIModel 1 (.udwig et al., 2001 .udwig et al., 2001		11:12	48 48	Mixed Mixed	388	37	8888*88FB	mL/day mL/day	433.0 78.0	Per 355 mL/d increase in intake at baseline Per 355 mL/d increase in intake as change from baseline	1.41 (0.62, 3.23) 1.39 (0.66, 1.96)	8R
SSD-SSD-SSD-SSD-SSD-SSD-SSD-SSD-SSD-SSD	SSD+SSFD PHI Model 1 (udwig et al., 2001 udwig et al., 2001	BMI) + covars USA USA	11 - 12 11 - 12	48 48	Mixed Mixed	398 398	37 37	SSSD+SSFD SSSD+SSFD	mL/day mL/day	433.0 78.0	Per 355 mL/d increase in intake at baseline Per 355 mL/d increase in intake as change from baseline	1.46 (0.57, 3.75) 1.44 (1.22, 1.70)	OR
Subtraction 41, 2015 Musico 1-1 64 Hspanio 75 29 SSSID-SSPD-SSPD mL (22731-5981)7 0.3 SSD-SSD-SSD-SSD-SSD-SSD mL (22731-5981)7 0.3			11:12	48 48	Mixed Mixed	398 398	37 37	SSSD+SSFD SSSD+SSFD	mL/day mL/day	433.0 78.0	Per 355 mL/d increase in intake at baseline Per 355 mL/d increase in intake as change from baseline	1.48 (0.63, 3.47) 1.60 (1.14, 2.24)	OR
antoral et al. 2019 Mexico 1:1 54 Historic 78 15 SSUE-SSED SSED ME. (1997) 23 SSUE-SSED SSED MEXIC 122731-SSUESY 23 SSUE-SSED MEXIC 122731-SSUESY 23 SSUESY 23	SSD+SSFD+SSFJ ELEME antoral et al., 2015 antoral et al., 2015 antoral et al., 2015	NT Model 1 (least adj Mexico Mexico Mexico	usted) 1 - 1 1 - 1 1 - 1	333	Hispanio Hispanio Hispanio	78 74 75	15 13 29	SSSD+SSFD+SSFJ SSSD+SSFD+SSFJ SSSD+SSFD+SSFJ	ri i i	(1642 - 15042)* (15410 - 22464)* (22731 - 55913)*	8g (m)	1.00 (1.00, 1.00) 0.84 (0.34, 2.05) 2.69 (1.25, 5.79)	ORR
Vegi et al., 2011 The Netherlands 33 - 1.08 47 Caucasian 120 20 SSSD-SSFD-TFJ E% 5.2 Per 1E% increase 1.10(10.2, 1.18) Vegi et al., 2011 The Netherlands 33 - 1.08 47 Caucasian 120 20 SSSD-SSFD-TFJ E% 5.2 Per 1E% increase 1.10(10.2, 1.18) SSD-SSFD-TFJ Armstendam (Addel 3 (6W) + courser (6W) et al., 2011 The Netherlands 33 - 1.08 47 Caucasian 120 20 SSSD-SSFD-TFJ E% 5.2 Per 1E% increase 1.10(10.1, 1.19) SSD-SSFD-TFJ Armstendam (Model 3 (6W) + courser (6W) et al., 2011 The Netherlands 33 - 1.08 47 Caucasian 120 20 SSSD-SSFD-TFJ E% 5.2 Per 1E% increase 1.13(10.0, 1.24) SSD-SSFD-TFJ Armstendam (Model 3 (6W) + courser (6W) et al., 2011 The Netherlands 34 - NR SSSD-SSFD-TFJ F% 5.2 Per 1E% increase 1.13(10.0, 1.24) SSD-SSFD-TFJ Armstendam (Model 3 (6W) + courser (6W) et al., 2011 The Netherlands 34 - NR SSSD-SSFD-TFJ F% 5.2 Per 1E% increase 1.13(10.0, 1.24) SSD-SSFD-TFJ	Cantoral et al., 2015 Cantoral et al., 2015	Mexico Mexico	+E 1-1 1-1	333	Hispanic	78 74 75	15 13 29	SSSD+SSED+SSEJ SSSD+SSED+SSEJ SSSD+SSED+SSEJ	r r r r	(1642 - 15242)* (15410 - 22464)* (22731 - 55913)*	8 ²		0000
SSD_SSPCTF1 Amsterdam Model 3 (BV) + scours The Methemands 33 - 1.08 47 Gaucasian 120 20 SSSD_SSPCTF1 Per 1E% increase 1.13 (1.09, 1.24) Velp + d 2, 2011 The Methemands 32 - 1.08 47 Gaucasian 344 NR SSSD_SSPCTF13 Per 1E% increase 1.13 (1.09, 1.24) seemakes et al., 2015 The Methemands 21 - 1.18 100 Gaucasian 344 NR SSSD_SSPCTF13 middam 40.0 0 (1 eV) 120 (1.00, 1.00) 120 (1.00, 1.00) seemakes et al., 2015 The Methemands 21 - 1.18 100 Gaucasian 364 NR SSSD_SSPCTF13 middam 40.0 0 (1 eV) 120 (1.00, 1.00)	SSD+SSFD+TFJ Amsterda Vejs et al., 2011	am Model 1 (least adju The Netherlands	.33 - 1.08	47	Caucasian	120	20	SSSD+SSFD+TFJ	E%	5.2	Per 1 E% increase	1.10 (1.02, 1.18)	OR
SSD-SSD-TFJ Generation R Model 1 least adjusted) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 304 NR SSD-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSD-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSD-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSD-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSD-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSD-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSD-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSD-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSDS-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSDS-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSDS-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSDS-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSDS-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSDS-SSD-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSDS-SSDS-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSDS-SSDS-TFJ muldary 64.0 GI (m) emmakes et al. 2015 The Netherlands 81-118 100 Gaucasian 305 NR SSDS-SSDS-TFJ muldary 52.10 GI (m) emmakes et al. 2015 The Netherlands 81-118 0 Gaucasian 305 NR SSDS-SSDS-TFJ muldary 52.10 GI (m) emmakes et al. 2015 The Netherlands 81-118 0 Gaucasian 305 NR SSDS-SSDS-TFJ muldary 52.10 GI (m) emmakes et al. 2015 The Netherlands 81-118 0 Gaucasian 305 NR SSDS-SSDS-TFJ muldary 52.10 GI (m) emmakes et al. 2015 The Netherlands 81-1	SSD+SSFD+TFJ Amsterda lejs et al., 2011	am Model 1 + covars + The Netherlands	BW .33 - 1.08	47	Caucasian	120	20	SSSD+SSFD+TFJ	E%	5.2	Per 1 E% increase	1.10 (1.01, 1.19)	OR
eermakes et al. 2015 The Netherlands 80 - 1.8 100 Gaucasian 300 NE 2000 - 100 100 100 100 100 100 100 100 10	SSD+SSFD+TFJ Amsterd: Veijs et al., 2011	am Model 3 (BW) + oo The Netherlands	.33 - 1.08	47	Caucasian	120	20	SSSD+SSFD+TFJ	E%	5.2	Per 1 E% increase	1.13 (1.03, 1.24)	OR
Aermakes et J. 2015 The Netherlands 60-118 100 Gaucasian 304 NE SSSD-SSD-TFJ m.Uday 61.0 Gg (m/) Aermakes et J. 2015 The Netherlands 60-118 100 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Aermakes et J. 2015 The Netherlands 60-118 100 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Aermakes et J. 2015 The Netherlands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Aermakes et J. 2015 The Netherlands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Aermakes et J. 2015 The Netherlands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Aermakes et J. 2015 The Netherlands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Aermakes et J. 2015 The Netherlands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Aermakes et J. 2015 The Netherlands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Aermakes et J. 2015 The Netherlands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Arriteriands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Arriteriands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Arriteriands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Arriteriands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Arriteriands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Arriteriands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/) Arriteriands 60-118 0 Gaucasian 305 NE SSSD-SSD-TFJ m.Uday 2010 GG (m/)	eermakers et al., 2015 eermakers et al., 2015	The Netherlands The Netherlands The Netherlands	Sjusted) 196 - 1.18 196 - 1.18 196 - 1.18 196 - 1.18 196 - 1.18 198 - 1.18	10000	Caucasian Caucasian Caucasian Caucasian	A-996,6608	NR	50000000000000000000000000000000000000	mL/day mL/day mL/day	1718		1.10(0.74, 1.82)	555555
SSD+SSED+TFJ Generation R Model 2 + covars + El	eermakers et al., 2015 eermakers et al., 2015 eermakers et al., 2015 eermakers et al., 2015 eermakers et al., 2015	The Netherlands The Netherlands The Netherlands The Netherlands The Netherlands The Netherlands		1000	Caucasian Caucasian Caucasian Caucasian	19356658	2222		mUday mUday mUday	321.0 64.0 171.0		1.00 (1.00, 1.00) 1.08 (0.66, 1.76) 1.22 (0.75, 1.90) 1.00 (1.00, 1.00) 1.04 (0.59, 1.83) 0.90 (0.47, 1.72)	5,999,99
eemakes et al., 2015 The Netherlands . 98 + 1.18 0 Caucasian 388 NR SSISD+SSPD+TFJ mL/day 321.0 Q3	SSD+SSFD+TFJ Generati eermakers et al., 2015 eermakers et al., 2015	The reethenands	1010 1010 1010 1010 1010 1010	1000	Caucasian Caucasian Caucasian		25 55 55 55	8880-8870-777 8880-8870-777 8880-8870-777 8880-8870-777	mL/day mL/day	64.0 171.0 64.0 171.0 171.0 171.0 171.0 171.0	gg (m)	1.00 (1.00, 1.00) 1.09 (0.87, 1.78) 1.27 (0.78, 2.05) 1.00 (1.00, 1.00) 1.03 (0.57, 1.87) 0.90 (0.44, 1.85)	SC SC SC SC

Note: * = cumulative exposure; RR = Rate Ratio; OR = Odds Ratio.

Figure K.2a: Intake of SSBs at baseline and incidence of overweight/obesity

Publication (Author, Year)	Study Location	Age. range	Females	Ethnicity	N of participants in analysis	N events/cases	Exposure category code	Exposure unit STD	Exposure, Mean (Range)	HR per category / HR per unit change (ref/unit)		Hazard Ratio (95% CI)	Note
100%FJ CARDIA Mode Duffey et al., 2010	I 1 (covars + BW USA	+ EI) 18 - 30	55	Mixed	2444	637	100%FJ	mL/day		Per 250 mL/d increase	+	0.98 (0.90, 1.06)	RR
100%FJ Girona Model Funtikova et al., 2015 Funtikova et al., 2015 Funtikova et al., 2015	1 + covars + El Spain Spain Spain	25 - 74 25 - 74 25 - 74	49 49 49	Caucasian Caucasian Caucasian	NR NR NR	NR NR NR	100%FJ 100%FJ 100%FJ	mL/day mL/day mL/day	(0) (1 - 199) (200)	NC (ref) C1 C2	_ <u>+</u>	1.00 (1.00, 1.00) 0.98 (0.73, 1.32) 0.74 (0.49, 1.12)	OR OR OR
SSSD Girona Model 1 + Funtikova et al., 2015 Funtikova et al., 2015 Funtikova et al., 2015	Spain Spain Spain Spain	25 - 74 25 - 74 25 - 74	49 49 40	Caucasian Caucasian Caucasian	NR NR NR	NR NR NR	SSSD SSSD SSSD	mL/day mL/day mL/day	(0) (1 - 199) (200)	NC (ref) C1 C2	<u>+</u>	1.00 (1.00, 1.00) 1.22 (0.90, 1.66) 1.77 (1.07, 2.93)	OR OR OR
SSD KoGES Model 1 Kang et al., 2017 Kang et al., 2017	(least adjusted) South Korea South Korea South Korea South Korea South Korea South Korea South Korea	40 - 69 40 - 69	100 100 100 0 0 0	Asian Asian Asian Asian Asian Asian Asian	993 648 206 29 1127 1237 665 109	405 254 82 15 278 273 167 28	\$\$\$0 \$\$\$0 \$\$\$0 \$\$\$0 \$\$\$0 \$\$\$0 \$\$\$0 \$\$\$	mL/day mL/day mL/day mL/day mL/day mL/day mL/day	(0) (1 - 28) (29 - 113) (114) (0) (1 - 28) (29 - 113) (114)	NC (ref) G2 C2 NC (ref) G1 G2 G3	***	1.00 (1.00, 1.00) 0.90 (0.82, 1.12) 1.11 (0.87, 1.41) 1.78 (1.06, 2.90) 1.00 (1.00, 1.00) 0.84 (0.71, 0.96) 1.89 (0.88, 1.31) 1.11 (0.75, 1.85)	
SSD KoGES Model 1 Kang et al., 2017 Kang et al., 2017	+ covars + BMI + South Korea South Korea South Korea South Korea South Korea South Korea South Korea	El 40 - 69 40 - 69	100 100 100 0 0 0	Asian Asian Asian Asian Asian Asian Asian	993 648 206 29 1127 1237 665 109	405 254 82 15 278 273 167 28	\$\$\$0 \$\$\$0 \$\$\$0 \$\$\$0 \$\$\$0 \$\$\$0 \$\$\$0 \$\$\$	mL/day mL/day mL/day mL/day mL/day mL/day mL/day	(0) (3 - 26) (29 - 86) (114) (0) (3 - 26) (29 - 86) (114)	NC (ref) G1 G2 NC (ref) G1 G2 G3		1.00 (1.00, 1.00) 0.95 (0.81, 1.11) 1.12 (0.88, 1.43) 1.32 (0.78, 2.23) 1.00 (1.00, 1.00) 0.87 (0.73, 1.03) 1.07 (0.87, 1.31) 1.11 (0.74, 1.68)	
SSSD+SSFD CARDIA I Duffey et al., 2010	Model 1 (covars - USA	BW + EI) 18 - 30	55	Mixed	2444	637	SSSD+SSFD	mL/day		Per 250 mL/d increase		1.08 (1.02, 1.10)	RR
SSSD+SSFD+SSFJ EL Cantoral et al., 2015 Cantoral et al., 2015 Cantoral et al., 2015	EMENT Model 1 Mexico Mexico Mexico	(least adju: 1 - 1 1 - 1 1 - 1	sted) 54 54 54	Hispanic Hispanic Hispanic	78 74 75	13 14 22	SSSD+SSFD+SSFJ SSSD+SSFD+SSFJ SSSD+SSFD+SSFJ	mL mL	(1642 - 15242)* (15410 - 22484)* (22731 - 55913)*	Q1 (ref) Q2 Q3	_ <u>+</u>	1.00 (1.00, 1.00) 1.15 (0.47, 2.81) 2.29 (1.01, 5.19)	OR OR OR
SSSD+SSFD+SSFJ EL Cantoral et al., 2015 Cantoral et al., 2015 Cantoral et al., 2015	EMENT Model 1 Mexico Mexico Mexico	+ covars + 1 - 1 1 - 1 1 - 1	54 54 54	Hispanic Hispanic Hispanic	78 74 75	13 14 22	SSSD+SSFD+SSFJ SSSD+SSFD+SSFJ SSSD+SSFD+SSFJ	mL mL	(1642 - 15242)* (15410 - 22484)* (22731 - 55913)*	Q1 (ref) Q2 Q3	<u> </u>	1.00 (1.00, 1.00) 1.14 (0.42, 3.08) 2.70 (1.03, 7.05)	OR OR OR
SSSD+SSFD+TFJ TLG Mirmiran et al., 2015 Mirmiran et al., 2015 Mirmiran et al., 2015 Mirmiran et al., 2015	S Model 1 (least Iran Iran Iran Iran	adjusted + 6 - 18 6 - 18 6 - 18 6 - 18 6 - 18	EI) 68 68 68 68	Caucasian Caucasian Caucasian Caucasian	NR NR NR	NR NR NR	SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ	mU/day mU/day mU/day mU/day	9.3 32.0 58.6 142.2	Q1 (ref) Q2 Q3 Q4	+	1.00 (1.00, 1.00) 1.53 (0.63, 3.71) 1.65 (0.65, 4.19) 2.94 (1.27, 6.81)	OR OR OR OR
SSSD+SSFD+TFJ TLG Mirmiran et al., 2015 Mirmiran et al., 2015 Mirmiran et al., 2015 Mirmiran et al., 2015	S Model 1 (EI) + Iran Iran Iran Iran	6 - 18 6 - 18 6 - 18 6 - 18 6 - 18	68 68 68	Caucasian Caucasian Caucasian Caucasian	NR NR	NR NR NR	SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ	mU/day mU/day mU/day mU/day	9.3 32.0 58.0 142.2	Q1 (ref) Q2 Q3 Q4	+	1.00 (1.00, 1.00) 1.58 (0.65, 3.85) 1.70 (0.70, 4.11) 2.97 (1.23, 7.18)	OR OR OR
SSSD+SSFD+TFJ TLG Mirmiran et al., 2015 Mirmiran et al., 2015 Mirmiran et al., 2015 Mirmiran et al., 2015	S Model 2 (EI) + Iran Iran Iran Iran	BMI 6 - 18 6 - 18 6 - 18 6 - 18	68 68 68 68	Caucasian Caucasian Caucasian Caucasian	NR NR NR NR	NR NR NR	SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ	mL/day mL/day mL/day mL/day	9.3 32.0 58.0 142.2	Q1 (ref) Q2 Q3 Q4	+	1.00 (1.00, 1.00) 2.16 (0.82, 5.68) 1.86 (0.71, 4.86) 3.66 (1.40, 9.58)	OR OR OR
											1 I .5 1 2		

HRs sorted by source, cohort, model and increasing exposure (mL/day)

Note: in Funtikova et al. (2015) total N analysed = 1479, total N of events = 336; in Duffey et al. (2010) exposure = average across years 0 and 7; NC (ref) = non-consumers; * = cumulative exposure; RR = Rate Ratio; OR = Odds Ratio.

Figure K.2b: Intake of SSBs at baseline and Fruit juices and incidence of abdominal obesity

Publication (Author, Year)	Study Location	Age, range	Females proportion		N of participants in analysis		Exposure category code		Exposure, Mean (Range)	HR per category / HR per unit change (reflunit)		Hazard Ratio (95% CI) Note
SSSD AO Girona Mod Funtikova et al., 2015 Funtikova et al., 2015 Funtikova et al., 2015	Spain Spain	25 - 74 25 - 74 25 - 74	49 49 49	Caucasian Caucasian Caucasian	NR	NR NR NR	SSSD SSSD SSSD	mL/day mL/day mL/day	(0) (1 - 199) (200)	NC (ref) C1 C2	÷	1.00 (1.00, 1.00) OR 1.22 (0.90, 1.65) OR 1.77 (1.07, 2.93) OR
SSD AO KoGES Moc Kang et al., 2017 Kang et al., 2017	del 1 + covars + B South Korea South Korea South Korea South Korea South Korea South Korea South Korea	MI + EI 40 - 69 40 - 69	100 100 100 0 0 0 0	Asian Asian Asian Asian Asian Asian	993 646 206 29 1127 1237 665 109	405 254 82 15 278 278 273 167 28	8850 8850 8850 8850 8850 8850 8850 8850	mL/day mL/day mL/day mL/day mL/day mL/day mL/day	(0) (3 - 26) (29 - 86) (114) (0) (3 - 26) (29 - 86) (114)	NG (ref) 01 02 03 05 (ref) 05 03		1.00 (1.00, 1.00) 0.95 (0.81, 1.11) 1.12 (0.88, 1.43) 1.32 (0.78, 2.23) 1.00 (1.00, 1.00) 0.87 (0.73, 1.03) 1.07 (0.87, 1.31) 1.11 (0.74, 1.66)
SSSD+SSFD AO CAR Duffey et al., 2010	IDIA Model 1 (cov USA	ars + BW - 18 - 30	+ EI) 55	Mixed	2444	637	SSSD+SSFD	mL/day		Per 250 mL/d increase	•	1.06 (1.02, 1.10) RR
SSSD+SSFD+SSFJ A Cantoral et al., 2015 Cantoral et al., 2015 Cantoral et al., 2015	O ELEMENT Mod Mexico Mexico Mexico	iel 1 + covi 1 - 1 1 - 1 1 - 1	54 54 54 54	Hispanic	78 74 75	13 14 22	SSSD+SSFD+SSF SSSD+SSFD+SSF SSSD+SSFD+SSF	JmL	(1642 - 15242)* (15410 - 22484) (22731 - 55913)	02	<u> </u>	1.00 (1.00, 1.00) OR 1.14 (0.42, 3.08) OR 2.70 (1.03, 7.05) OR
SSSD+SSFD+TFJ AO Mirmiran et al., 2015 Mirmiran et al., 2015 Mirmiran et al., 2015 Mirmiran et al., 2015	TLGS Model 2 (E Iran Iran Iran Iran	EI) + BMI 6 - 18 6 - 18 6 - 18 6 - 18 6 - 18	68 68 68 68	Caucasian Caucasian Caucasian Caucasian	NR	NR NR NR	SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ	mL/day mL/day	9.3 32.0 58.6 142.2	01 (ml) 02 03 04	+	1.00 (1.00, 1.00) OR 2.16 (0.82, 5.68) OR 1.85 (0.71, 4.85) OR 3.65 (1.40, 9.58) OR
SSSD OB BWHS Mod Boggs et al., 2013 Boggs et al., 2013 Boggs et al., 2013 Boggs et al., 2013 Boggs et al., 2013	el 1 + covars + Bi USA USA USA USA USA USA	Al 21 - 39 21 - 39 21 - 39 21 - 39 21 - 39 21 - 39	100 100 100 100 100	Black Black Black	NR NR NR NR	1616 2436 1736 614 550	555D 555D 555D 555D 555D	mL/day mL/day mL/day mL/day mL/day	(0 - 12) (12 - 84) (96 - 288) (336 - 336) (672)	C1 (ref) C2 C3 C4 C5	******	1.00 (1.00, 1.00) 1.05 (0.98, 1.12) 1.03 (0.95, 1.11) 1.08 (0.98, 1.20) 1.12 (1.00, 1.25)
SSSD+SSFD OB DDH Lim et al., 2009	IP Model 2 (BMI + USA	EI) + covi 3 - 5	52	Black	275	75	SSSD+SSFD	mL/day	568.0	Per 29.6 mL/d increase	•	1.04 (1.01, 1.07) OR
SSSD+SSFD OB PHI Ludwig et al., 2001 Ludwig et al., 2001	Model 2 (BMI) + E USA USA	11 - 12 11 - 12 11 - 12	48 48	Mixed Mixed	398 398	37 37	SSSD+SSFD SSSD+SSFD	mL/day mL/day	433.0 78.0	Per 355 mL/d increase in intake at baseline Per 355 mL/d increase in intake as change from baseline		1.48 (0.63, 3.47) OR 1.60 (1.14, 2.24) OR
SSSD+SSFD+SSFJ O Cantoral et al., 2015 Cantoral et al., 2015 Cantoral et al., 2015	B ELEMENT Mod Mexico Mexico Mexico	iel 1 + covi 1 - 1 1 - 1 1 - 1	54 54 54 54	Hispanic	78 74 75	15 13 29	SSSD+SSFD+SSF SSSD+SSFD+SSF SSSD+SSFD+SSF	JmL	(1642 - 15242)* (15410 - 22484) (22731 - 55913)	02		1.00 (1.00, 1.00) OR 0.84 (0.33, 2.17) OR 2.99 (1.27, 7.02) OR
SSSD+SSFD+TFJ OB Weijs et al., 2011	Amsterdam Mod The Netherlands			Caucasian	120	20	SSSD+SSFD+TFJ	E%	5.2	Per 1 E% increase	•	1.13 (1.03, 1.24) OR
SSD+SSFD+TFJ OB Leermakers et al., 201 Leermakers et al., 201 Leermakers et al., 201 Leermakers et al., 201 Leermakers et al., 201	5The Netherlands 5The Netherlands 5The Netherlands 5The Netherlands 5The Netherlands	.98 - 1.18 .98 - 1.18 .98 - 1.18 .98 - 1.18 .98 - 1.18 .98 - 1.18	100 100 100 0	Caucasian Caucasian Caucasian Caucasian Caucasian	399 395 392 393	NR NR NR NR	SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ SSSD+SSFD+TFJ	mL/daý mL/day mL/day mL/day	64.0 171.0 321.0 64.0 171.0 321.0	C1 (ref) C2 C3 C1 (ref) C2 C3		1.00 (1.00, 1.00) OR 1.09 (0.57, 1.78) OR 1.27 (0.78, 2.06) OR 1.00 (1.00, 1.00) OR 1.03 (0.57, 1.87) OR 0.30 (0.44, 1.85) OR
											5 1 2	

Note: * = cumulative exposure; NC (ref) = non-consumers; RR = Rate Ratio; OR = Odds Ratio

Figure K.3: Intake of SSBs at baseline and incidence of overweight/obesity and abdominal obesity

Figure K.4: Intake of SSBs and continuous variables related to the risk of obesity and abdominal obesity

Regression coefficients sorted by exposure and cohort - baseline exposure

Publication (Author, Year)	Study Location	Age, Mean (SDiRange)	N of participants in analysis	Follow-up duration (y)	Unit change in exposure	Exposure, Mean (SDitange)	Outcome	Sex	Model description - 3 categories		Beta coefficient (95% CI)	TEI
DCH SSSD Olsen et al., 2016 Olsen et al., 2016	DK DK	53 (50 - 58) 53 (50 - 58)	2165 2165	2.0 2.0	per 200 mild increase per 200 mild increase	10.5 (.3 - 200.3) 10.5 (.3 - 200.3)	1-y change in BW (kg) 1-y change in BW (kg)	Mixed Mixed	Least adjusted model Most adjusted model (EI)	\$	0.100 (0.010, 0.180) 0.120 (0.030, 0.200)	
Inter99 SSSD Olsen et al., 2016 Olsen et al., 2016	DK DK	48.4 (38.2 - 63.2) 48.4 (38.2 - 63.2)	1341 1341	2.0 2.0	per 200 mild increase per 200 mild increase	16.4 (0 - 500) 16.4 (0 - 500)	1-y change in BW (kg) 1-y change in BW (kg)	Mixed Mixed	Least adjusted model Most adjusted model (EI)	\$	-0.030 (-0.190, 0.130) -0.020 (-0.190, 0.150)	
MONICA SSSD Otsen et al., 2016 Otsen et al., 2016	DK	41.4 (30.6 - 61.1) 41.4 (30.6 - 61.1)	1257 1257	5.0 5.0	per 200 mild increase per 200 mild increase	0 (0 - 250) 0 (0 - 250)	1-y change in BW (kg) 1-y change in BW (kg)	Mixed Mixed	Least adjusted model Most adjusted model (EI)	ŧ	0.040 (-0.050, 0.140) 0.050 (-0.050, 0.140)	
ALSPAC SSSD+SSFD Johnson et al., 2007 Johnson et al., 2007	UK UK	5.2 (0.06) 5.2 (0.06)	521 521	4.6 4.6	per 180 mild increase per 180 mild increase	57 (0 - 163) 57 (0 - 163)	8F (kg) 8F (kg)	Mixed Mixed	Least adjusted model Most adjusted model (BMI)	-	-0.160 (-0.600, 0.280) -0.150 (-0.540, 0.240)	
CoSCIS SSSD+SSFD Jensen et al., 2013 Jensen et al., 2013	DK DK	6.7 (0.3) 6.7 (0.3)	286 286	7.0 7.0	per 100 mild increase per 100 mild increase	NR NR	change in BMI (kg/m*) change in log SFT	Mixed Mixed	Most adjusted model (BMI) Most adjusted model	4	-0.059 (-0.145, 0.027) -0.004 (-0.019, 0.010)	
GUTS SSSD+SSFD Berkey et al., 2004 Berkey et al., 2004 Berkey et al., 2004 Berkey et al., 2004	US US US	NR (9 - 14) NR (9 - 14) NR (9 - 14) NR (9 - 14)	9536 9536 5018 5018	2.0 2.0 2.0 2.0	per 355 mild increase per 355 mild increase per 355 mild increase per 355 mild increase	NR NR NR	1-y change in BMI (kg/m²) 1-y change in BMI (kg/m²) 1-y change in BMI (kg/m²) 1-y change in BMI (kg/m²)	Females Females Males Males	Least adjusted model (BMI) Most adjusted model (BMI, EI) Least adjusted model (BMI, EI) Most adjusted model (BMI, EI)	\$	0.021 (-0.003, 0.045) 0.019 (-0.008, 0.046) 0.028 (0.001, 0.055) 0.015 (-0.014, 0.044)	
AGA+LS SSED+SSFD+ Stod et al., 2013 Stod et al., 2013	SSFJ N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	12.7 (1) 12.7 (1) 12.9 (1.1) 12.9 (1.1) 12.9 (1.1) 12.9 (1.1) 12.7 (1) 12.7 (1) 12.7 (1) 12.9 (1.1) 12.9 (1.1) 12.9 (1.1)	124 124 114 114 114 124 124 124 124 114 11	27 0 27 0 27 0 27 0 27 0 27 0 27 0 27 0	per 220 mild increase per 220 mild increase	160 (137) 160 (137) 160 (137) 200 (191) 200 (191) 160 (137) 160 (197) 160 (197) 160 (137) 160 (137)	8 4 8 4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8	Females Females Males Males Males Females Females Females Males Males	Least adjusted model Intermediate model (BMR) Most adjusted model (BMR, EI) Least adjusted model (BMR, EI) Least adjusted model (BMR) Intermediate model (BMR) Least adjusted model Intermediate model (BMR) Most adjusted model (BMR, EI)		-1.120 (-2.780, 0.540) -0.720 (-2.400, 0.970) -0.720 (-2.440, 1.010) 1.160 (-0.050, 2.240) 1.160 (-0.050, 2.240) 1.160 (-0.050, 2.240) 1.160 (-0.050, 2.240) -0.000 (-1.020, 0.850) 0.440 (-0.370, 1.240) 0.430 (-0.250, 0.950) 0.240 (-0.330, 0.820) 0.240 (-0.330, 0.820)	
DONALD SSSD+SSFD+ Libuda et al., 2008 Libuda et al., 2008	SSFJ DE DE DE DE DE DE DE DE DE	11.8 (9 - 18) 11.8 (9 - 18) 11.9 (9 - 18) 11.9 (9 - 18) 11.8 (9 - 18) 11.8 (9 - 18) 11.9 (9 - 18) 11.9 (9 - 18)	116 119 119 116 116 116 119	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	per 1 MJid increase per 1 MJid increase	243 (273) 243 (273) 277 (296) 277 (296) 243 (273) 243 (273) 243 (273) 243 (273) 277 (296)	change in BF (%) change in BF (%) change in BF (%) change in BF (%) change in BM 2-4core change in BM 2-4core change in BM 2-4core	Females Females Males Females Females Males Males	Least adjusted model Most adjusted model (E) Least adjusted model (E) Least adjusted model Most adjusted model (E) Least adjusted model Most adjusted model (E)		-0.065 (-0.196, 0.066) 0.006 (0.001, 0.011) -0.048 (-0.130, 0.014) -0.033 (-0.078, 0.013) 0.006 (-0.072, 0.010) 0.005 (-0.003, 0.013) 0.027 (-0.098, 0.143) 0.027 (-0.093, 0.143)	
HSS-DK SSSD+SSFD+1 Zhang et al., 2015 Zhang et al., 2015	DK DK	NR (2 = 6) NR (2 = 6)	352 352	1.5 1.5	per 100 mild increase per 100 mild increase	92 (107) 92 (107)	change in BMI 2-score change in BMI 2-score	Mond Mond	Least adjusted model (BMI) Most adjusted model (BMI, EI)	-	0.060 (0.001, 0.119) 0.060 (0.001, 0.119)	STD STD
										-2.78 0 2	78	

Note: STD = Standardised for Total Energy Intake.

MIT-GDS (Phillips et al., 2014) and Framingham-3Gen (Ma et al., 2016) excluded.

Figure K.4a: Intake of SSBs at baseline and measures of body weight, body mass index and body fat

Publication (Author, Year)	Study Location	Age Mean (SD/Range)	N of participants in analysis	Follow-up duration (y)	Unit change in exposure	Exposure Mean (SD/range)	Outcome	Sex	Model description - 3 categories		Beta coefficient (95% CI)	TEI
GUTSII SSSD Field et al., 2014 Field et al., 2014 Field et al., 2014 Field et al., 2014	0000	13(8:15) 129(8:15)	4121 3438	7.8 7.8	per 355 mild increase per 355 mild increase per 355 mild increase per 355 mild increase per 355 mild increase		2-3 y change in BM (kg/m²) 2-3 y change in BM (kg/m²) 2-3 y change in BM (kg/m²) 2-3 y change in BM (kg/m²)	Females Females Males Males	east adjusted model (BMI) Nost adjusted model (BMI) east adjusted model (BMI) Nost adjusted model (BMI)		892 (388,833) 892 (388,833)	
MTC SSSD Stern et al., 2017	MX	43.3 (5.2)	11218	2.0	per 355 ml/d increase	142 (178)	change in BW (kg)	Females	Most adjusted model	+	1.00 (0.70, 1.20)	
NGHS SSSD Striegel-Moore et al., 2006	US	NR (9 - 10)	2371	10.0	per 100 g/d increase	NR	1-y change in BMI (kg/m²)	Females	Most adjusted model (EI)	ł	0.01 (0.00, 0.02)	
ALSPAC SSSD+SSFD Boomia et al., 2015 Boomia et al., 2015 Boomia et al., 2015 Boomia et al., 2015 Boomia et al., 2015 Bigomia et al., 2015	50000	1000000 0000000 0000000 0000000			per 180 mild increase per 180 mild increase			Mixed Mixed Mixed Mixed Mixed	Apest adjusted model (BMI) 	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8 (6, 0, 0, 0, 24) 8 (0, 11, 0, 13) 8 (0, 1, 0, 13) 8 (0, 0, 1, 0, 13) 8 (0, 0, 0, 13) 8 (0, 0, 0, 13) 8 (0, 13) 8	
GUTS SSSD+SSFD Berkey et al., 2004 Berkey et al., 2004 Berkey et al., 2004 Berkey et al., 2004	5000	11111 00000 000000	55-36 50-18	200	per 355 mild increase per 355 mild increase per 355 mild increase per 355 mild increase per 355 mild increase	2000	1-y change in BMI (kg/m²) 1-y change in BMI (kg/m²) 1-y change in BMI (kg/m²) 1-y change in BMI (kg/m²)	Females Females Males Males	Least adjusted model (BMI) Most adjusted model (BMI) Least adjusted model (BMI) Most adjusted model (BMI, EI)		8.02 (-9.09, 8.06) 8.02 (-9.01, 8.05) 8.02 (-9.01, 9.05)	
HPFS SSSD+SSFD Pan et al., 2013 Pan et al., 2013	US	50.6 (40 - 63) 50.6 (40 - 63)	21988	28.8	per 355 ml/d increase per 355 ml/d increase	131 (0 - 483) 131 (0 - 483)	4-y change in BW (kg) 4-y change in BW (kg)	Males Males	Least adjusted model Most adjusted model (BMI)	*	0.38 (0.31, 0.44) 0.25 (0.19, 0.31)	
NHS SSSD+SSFD Pan et al., 2013 Pan et al., 2013	US US	51.8 (41 - 63) 51.8 (41 - 63)	58813	28.8	per 355 ml/d increase per 355 ml/d increase	\$\$ (8 : 388)	4-y change in BW (kg) 4-y change in BW (kg)	Females Females	Least adjusted model Most adjusted model (BMI)	2	8:58 (8:33; 8:51)	
NHS II SSSD+SSFD Pan et al., 2013 Pan et al., 2013	US	37.7 (38:44)	52987	18.8	per 355 ml/d increase	183 (8 : 888)	1:y shange in BW (kg)	Females Females	Least adjusted model Most adjusted model (BMI)		8.47 (8.41, 8.52)	
SUN SSSD+SSFD Barno-Lopez et al., 2013 Barno-Lopez et al., 2013 Barno-Lopez et al., 2013	ESS:	38 (NII)	1888	600	categorical categorical categorical	113 (NB)	change in BW (kg) change in BW (kg) change in BW (kg)	Mixed Mixed Mixed	Least adjusted model Intermediate model Most adjusted model (BMI, EI)	* <u>*</u>	3.20 (2.10, 1.80) 1.38 (1.10, 1.88)	
MOVE SSSD+SSFD Carlson et al., 2012 Carlson et al., 2012	US US	8.7 (8 : 7)	錢	20	per 355 ml/d increase per 355 ml/d increase	182 (283)	change in BF (%) change in BMI z-score	Mixed Mixed	Most adjusted model Most adjusted model	.	1.40 (0.09, 2.72) 0.11 (-0.03, 0.25)	
DONALD SSSD+SSFD+SSFJ Lbuda et al., 20 Lbuda et al., 20 Lbuda et al., 20 Lbuda et al., 20 Lbuda et al., 200 Lbuda et al., 2008 Lbuda et al., 2008	Manager and a second se	10000000000000000000000000000000000000	6007040000	0000000	per 1 Mulici increase ber 1 Mulici increase		change in BE (%) change in BE (%) change in BE (%) change in BE - Score change in BE - Score change in BE - Score change in BE - Score	Females Females Males Ales Females Females Males Males	.east adjusted model Most adjusted model (EI) Least adjusted model (EI) Most adjusted model (EI) Most adjusted model (EI) Most adjusted model (EI) Most adjusted model (EI)		044 (-022, 1, 10) 0445 (-022, 1, 11) 0065 (-025, 0, 06) 0065 (-025, 06) 006 (-025, 06) 0065 (-025, 06) 006 (-025, 06) 0065 (-025, 06)	
WAPCS SSSD+SSFD+SSFJ Ambrosini et al., 2013 Ambrosini et al., 2013 Ambrosini et al., 2013 Ambrosini et al., 2013		14474 14474 14474 14	NOR NOR NO	300	categorical categorical categorical categorical	651.1 (321.2) 651.1 (321.2) 651.1 (321.2)	change in BMI (%) change in BMI (%) change in BMI (%) change in BMI (%)	Females Females Males Males	Least adjusted model Most adjusted model Least adjusted model Most adjusted model		3.80 (1.80, 5.70) 3.80 (1.80, 5.70) 1.50 (-0.50, 3.50) 0.80 (-1.30, 2.30)	
WHI SSSD+SSFD+SSFJ Auerpach et al., 2018 Auerpach et al., 2018 Auerbach et al., 2018	1999 000 000 000	573 (88 : 78) 573 (88 : 78)	42106 4249	38 30	per 177 mild increase per 177 mild increase per 177 mild increase	22 (28) 27 (28) 28 (28)	change in BW (Ibs) change in BW (Ibs) change in BW (Ibs)	Females Females Females	Least adjusted model Intermediate model (BMI) Most adjusted model (BMI, EI)	*	838 (852, 123)	STB
									-5.8	0 5	8	

Regression coefficients sorted by exposure and cohort - Change in exposure

Note: STD = Standardised for Total Energy Intake; Ambrosini et al. (2013) and Barrio-Lopez et al. (2013) = only coefficients from highest categories (categorical analysis).

Figure K.4b: Change in intake of SSBs and measures of body weight, body mass index, and body fat