Appendix G - Forest plots. Intervention studies on metabolic diseases

Figure G.1: Randomised controlled trials: effect of high vs. low sugar intake on measures of body fatness.

Figure G.1a: Effect of high vs low sugar intake on body weight (kg)

Figure G.1b: Effect of high vs low sugar intake on BMI (kg/m2)

Figure G.1c: Effect of high vs low sugar intake on waist circumference (cm)

Footnote to Figure G1. * differences in BW change between high and low sugar intake, $\mathrm{AL}=$ add libitum; $\mathrm{BMI}=$ body mass index; $\mathrm{BW}=$ body weight; $\mathrm{CI}=$ confidence interval; $\mathrm{E} \%=$ energy percentage; $\mathrm{Eu}=\mathrm{eucaloric;} \mathrm{~F}=$ females; GP = general population; H-TG = hyper-triglyceridemic; MF = males and females; Mix under Sugar = sugar mixtures; Mixed under Source = foods and beverages; N=average sample size per arm; OB = obese; OW = overweight; RoB = risk of bias (tier); $\mathrm{r05}$ and r099 $=$ change in the significance of the effect ($0=$ no change; $1=$ change) when assuming a correlation coefficient of respectively 0.50 and 0.99 (instead of 0.82) when computing the SE of the effect measurement. Study duration is expressed in weeks.

Figure G.1d: Effect of high vs low sugar intake on body fat (\%)

Figure G.2: Randomised controlled trials: effect of high vs. low sugar intake on measures of ectopic fat deposition

Figure G.2a: Effect of high vs low sugar intake on liver fat (standardized mean difference)

(and females; Mix under Sugar = sugar mixtures; Mix under Source = foods and beverages; $N=$ average sample size per arm; NAFLD = non-alcoholic fatty liver disease; $\mathrm{OB}=\mathrm{obese}$; $\mathrm{OW}=\mathrm{overweight;} \mathrm{RoB}=$ risk of bias (tier); r05 and r099 = change in the significance of the effect ($0=$ no change; $1=$ change) when assuming a correlation coefficient of respectively 0.50 and 0.99 (instead of 0.82) when computing the SE of the effect measurement; SMD = standardized mean difference. Study duration is expressed in weeks.

Figure G.2b: Effect of high vs low sugar intake on visceral adipose tissue (standardized mean difference)

Figure G.3: Randomised controlled trials: effect of fructose vs. glucose on measures of ectopic fat deposition

Figure G.3a: Effect of fructose vs glucose on liver fat (standardized mean difference)

Study	N	SMD Effect	se Effect	95\% cl	r 0.5	r 0.99				Fru-Glu (E\%)	Sex	Subjects	Source	BW*	Weeks	RoB
Diet = Isocaloric with positive energy balance																
Silbernagel et al, 2011	9	0.00	0.15	[-0.30; 0.30]	0	0				22	MF	BMİ35	в	-1.5	4	1
Random effects model		0.00		[-0.30; 0.30]												
Hetergeneity: not applicat																
Diet $=$ Ad libitum																
Stanhope et al, 2009*	15	0.54	0.09	[$0.36 ; 0.72$]	0	0			-	25	MF	ош/ов	в	-0.2	8	2
Random effects model		0.54		[0.36; 0.72]												
Heterogeneity: not applicat																
Random effects model		0.28		[-0.25; 0.82]												
Heterogeneity: $I^{2}=50 \%[81 \% ; 97 \%], \tau^{2}=0.1320, p<0.01$																
Residual heterogeneity: $I^{2}=\mathrm{NA} \%, p=\mathrm{NA}$ Random effects model $(r=0.5): 0.28[-3.16 ; 3.73]$ $-1 \quad-0.5 \quad 0$ 0.5 Relack $=$ Parallel Red $=$ Cro																

Footnote to Figure G3. * differences in BW change between high and low sugar intake; $\mathrm{AO}=$ abdominal obesity; $\mathrm{B}=$ beverages; $\mathrm{BMI}=$ body mass index; $\mathrm{BW}=$ body weight; $\mathrm{Cl}=$ confidence interval; $\mathrm{E} \%=$ energy percentage;
 effect ($0=$ no change; $1=$ change) when assuming a correlation coefficient of respectively 0.50 and 0.99 (instead of 0.82) when computing the SE of the effect measurement; RoB $=$ risk of bias (tier); SMD $=$ standardized mean difference. Study duration is expressed in weeks.

Figure G.3b: Effect of fructose vs glucose on visceral adipose tissue (standardized mean difference)

Figure G.4: Randomised controlled trials: effect of high vs. low sugar intake on measures of glucose tolerance

Figure G.4a: Effect of high vs low sugar intake on blood glucose at 120^{\prime} during an OGTT ($\mathrm{mg} / \mathrm{dL}$)

Figure G.4b: Effect of high vs low sugar intake on insulin at 120^{\prime} during an OGTT (pmol/L)

Figure G.4c: Effect of high vs low sugar intake on fasting glucose ($\mathrm{mg} / \mathrm{dL}$)

Figure G.4c1: Stratified by type of diet

Figure G.4c2: Stratified by sugars source

Study	N	Mean Effect	se Effect	95\% Cl	r 0.5	r0.99				Sugar diff (E\%)	Sex	Subjects	Sugar	Source	Bw-	Duration	RoB
Diet = Isocaloric with neutral energy balance																	
Lewis et al, 2013	13	20.02	1.52	[23.05; 29.00]	0	0	+			10	MF	owor	Mix	Mix	0.7	0	1
Blacketal. 2000	13	6.94	5.43	[-3.70; 17.58]	0	2				15	m	8M\|×35	Mix	Mix	0.4	\bigcirc	1
Halltisch ef al, 19833* (normoinsulinemic)	12	-2.36	3.33	[-8.89; 4.17]	0	2				15	m	$\mathrm{N}-1$	Fruct	F		5	2
Helltrisch et al, 19830* (hyperinsulinemic)	12	17.03	3.29	[11.18; 24.08]	0	0	\#			15	m	H-1	Fiuct	F		5	2
Lowndes et al, 2015	32	7.70	4.98	[-2.07; 17.47]	0	2	H			18	MF	вм1<35	Mix	B		10	1
Umpleby et al, 2017 (No NaFLD)	14	1.39	8.18	[-14.85; 17.42]	0	0				20	m	owno-Naflo	Mix	Mix	22	12	2
Umpleby et al, 2017 (NAFLD)	11	-1.39	8.20	[-17.48; 14.89]	0	0				20	m	ownaflo	Mix	Mix	2.1	12	2
lsasel et al, 1983*	12	113.82	18.31	[77.93; 149.70]	0	0		\#		28	M	H-1	Mix	F	-3.8	6	1
lysel et al. 1983*	12	71.48	10.07	[51.74: 91.22]	0	0		푼		28	F	H-1	Mix	F	0.2	8	1
Moseret st, 1988 (OC-Usens)	6	0.00	6.58	[-12.90; 12.90]	0	0				43	F	oc	Mix	F	-1	4	1
Moseret al. 1988 (No 0 OC -users)	6	0.00	12.49	[-24.48: 24.48]	0	0				43	F	Non-OC	Mix	F	1	4	1
Random effects model $(r=0.82) \quad 19.99 \quad[0.67 ; 39.31]$Hetergenety: $I^{1}=93 \%[90 \%: 98 \%), z^{2}=998.7957, p<0.01$																	
Diet $=$ Ad libilum																	
Maney et al. 2010	48	2.40	1.77	[-1.07: 5.87$]$	0	2	-			10	MF	Non-Ob	Mix	Mix	0.1	8	1
Campos et al 2015	${ }^{13}$	15.27	12.63	[-9.48; 40.02]	0	2	I-			18	MF	ow/ob	Mix	B	2.3	12	1
Maersk et al, 2012^{*}	14	6.40	7.11	[-7.53; 20.33]	0	2				18	MF	Ow/OB	Mix	B	1	24	2
Saris et al, 2000*	79	15.13	8.25	[-1.05; ${ }^{\text {12,31] }}$	0	0	\square			19	MF	ow/ob	Mix	Mix	0.9	24	1
Raben et al, 2002*	11	13.00	5.70	[1.83; 24.17]	1	0	\square			23	MF	ow	Mix	Mix	2.0	10	1
Random effects model ($r=0.82$)		7.58		[1.04; 14.12]			-										
Hewergenety : $i^{2}=38 \% 105 \%$ >75\%1, $\tau^{2}=21.4500, p=0.20$																	
Random effects model ($\mathrm{r}=0.82$)		16.21		[3.91; 28.50]			-										
Prediction interval [-36.56; 68.97]																	
Heterogentiy: $t^{2}=93 \%$ [900% : 95\%], $\tau^{2}=565.7927, p<0.01$																	
Residual heterogeneity: $t^{2}=91 \%[37 \% ; 94 \%]$] $p<0.01$ Random effects model ($r=0.5$): 12.85 [1.89; 23.81]							50	$50 \quad 100$									
Random effects mosel ($r=0.99$) 18.04 (1.65;				1 \rightarrow significant				$0.99=2 \rightarrow$ no	signifion	effect (0.82)	mes	ificant (0.99)					

Footnote to Figure G4. * differences in BW change between high and low sugar intake; B = beverages; BMI = body mass index; $\mathrm{BW}=$ body weight; CI $=$ confidence interval; E\% = energy percentage; F under Sex = females; F under Source = food; Fruct = fructose; GP = general population; H-I = hyperinsulinemia; M = males; MF = males and females; Mix under Sugar = sugar mixtures; Mix under Source = foods and beverages; $\mathrm{N}=$ average sample size per arm; $\mathrm{N}-\mathrm{I}=$ normo-insulinemia; NAFLD = non-alcoholic fatty liver disease; OB = obese; OC = oral contraceptives; OW = overweight; r05 and r099 = change in the significance of the effect ($0=$ no change; $1=$ change) when assuming a correlation coefficient of respectively 0.50 and 0.99 (instead of 0.82) when computing the SE of the effect measurement; RoB = risk of bias (tier). Study duration is expressed in weeks.

Figure G.4d: Effect of high vs low sugar intake on fasting insulin (pmol/L)

Figure G.5: Randomised controlled trials: effect of fructose vs. glucose on measures of glucose tolerance

Figure G.5a: Effect of fructose vs glucose on fasting glucose ($\mathrm{mg} / \mathrm{dL}$)

Study	N	Mean Effect	se Effect	95\% Cl	${ }^{0} 0.5$	r 0.9					Fru-Glu (E\%)	Sex	Subjects	Source	BW*	Weeks	Rob
Diet = Isocaloric with neutral energy balance																	
Lowndes et al. 2015	32	22.30	10.38	[1.95; 42.85]	1	0		\square			9.00	MF	вM1<35	E		10	1
Koh et al, 1988 (NGT)	9	-80.04	18.18	[-91.78; -28.33]	0	0	\square				15.00	MF	NGT	Mix		4	2
Koh et al, 1988 (IGT)	9	-20.01	28.38	[-71.72; 31.69]	0	2					15.00	MF	1 IGT	Mix		4	2
Kelsay et sl, 1974	7	0.00	10.62	[-20.81; 20.81]	0	0					42.50	F	GP	F		4	2
Random effects model		-12.48		[48.46; 23.50]													
Heterogeneity: $t^{2}=34 \%$ [80	294\%	$=1089.3313 . \mathrm{p}$															
Diet = Isocaloric with positive energy balance																	
Silbernagel et al, 2011	10	-5.00	11.40	[-27.35; 17.35]	0	0					22.00	MF	BM1<35	E	-1.5	4	1
Random effects model Heterogeneity: not applica		-5.00		[-27.35; 17.35]													
Diet $=$ Ad libitum																	
Mark et al, 2014	35	7.38	5.73	[-3.86; 18.62]	0	2					16.00	F	ow/ob	E	-0.4	4	1
Jin et al. 2014	10	149.21	61.65	[28.38: 270.04]	1	0					20.00	MF	NAFLD	B	0.2	4	1
Stanhope et al. 2009^{*}	16	6.25	11.70	[-16.68: 29.17]	,	-		+			25.00	MF	OW/OB	-	-0.2	8	2
Random effects model		8.14		[-1.91; 18.20]				-									
Heterogeneity: $t^{2}=62 \%[0 \% ;>89 \%], z^{2}=<0.0001, p=0.07$																	
Random effects model		-0.77		[-20.07; 18.53]													
Prediction interval $r^{\text {a }}$,				[-61.75; 60.20]													
$\text { Residual heterogeneity: } I^{2}=79 \%[55 \% ; 91 \%], p<0.01$																	
							${ }^{-100}$ = Parallel	$\text { Red }=\text { Cros }$	200	300							

Footnote to Figure G5. * differences in BW change between high and low sugar intake; $B=$ beverages; $B M I=$ body mass index; $B W=$ body weight; $C I=$ confidence interval; $\mathrm{E} \%=$ energy percentage; F under Sex $=$ females; F under Source = food; Fru = fructose; Glu = glucose; GP = general practitioner; $\operatorname{IGT}=$ impaired glucose tolerance; MF = males and females; Mix = foods and beverages; $N=$ average sample size per arm; NAFLD = non-alcoholic fatty liver disease; $\mathrm{NGT}=$ normal glucose concentration; $\mathrm{OB}=$ obese; $\mathrm{OW}=$ overweight; r 05 and r099 = change in the significance of the effect ($0=$ no change; $1=$ change) when assuming a correlation coefficient of respectively 0.50 and 0.99 (instead of 0.82) when computing the SE of the effect measurement; RoB $=$ risk of bias (tier). Study duration is expressed in weeks.

Figure G.5b: Effect of fructose vs glucose on fasting insulin (pmol/L)

Figure G.6: Randomised controlled trials: effect of high vs. low sugar intake on blood lipids
Figure G.6a: Effect of high vs low sugar intake on total cholesterol ($\mathrm{mg} / \mathrm{dL}$)

Figure G.6a1: Stratified by type of diet

Study	N	Mean Effect	se Effect	$95 \% \mathrm{Cl}$	${ }^{0} 0.5$	r 0.99			Sugar diff (E\%)	Sex	Subject	Sugar	Diet	BW*	Weeks	RoB
Source $=$ Beverages																
Majid et sl, 2013	31	-28.88	4.44	[-35.39; -17.98]	0	0	\mp		8.00	M	GP	Mix	AL		4	2
Lowndes et al. 2014a	15	-14.30	8.14	[-30.28: 1.88]	0	2			10.00	MF	оw/ob	Mix	Eu	0	10	2
Campos et sl, 2015	13	0.00	8.88	[-13.45; 13.45]	0	0			18.00	MF	ow/os	Mix	AL	2.3	12	1
Hollis et al, 2009	25	0.39	5.39	[-10.17; 10.95]	0	0			18.00	MF	ow	Mix	AL	1.5	12	1
Maersket al, 2012^{*}	14	35.19	7.78	[19.94; 50.44]	0	0		-	18.00	MF	ow/os	Mix	AL	1	24	2
Hernandez-Cordero et al. 2014	120	-1.00	1.07	[-3.10; 1.10]	0	2			20.00	F	ow/os	Mix	AL	0.5	36	2
Lowndes et al, 20146*	55	8.80	4.70	[-2.82; 15.82]	0	2			22.00	MF	вм1<35	Mix	Eu	-4.1	10	2
Random effects model ($\mathrm{r}=0.82$)		-0.30		[-14.02; 13.41]												
Hetergenety: $I^{2}=90 \%[82 \% ; 94 \%], z^{2}=309.1118, p<0.01$																
Source = Foods																
Gostner et al, 2005	19	-10.00	8.81	[-22.98; 2.98]	0	2	-		8.00	MF	GP	Mix	Eu	0	4	1
Hallfrisch et al, 1983a* (normoinsulinemic)	12	14.40	4.20	[0.17 ; 22.63]	0	0		- +	15.00	m	$\mathrm{N}-1$	Fruct	Eu	.	5	2
Halltrisch et al, 1983**(hyperinsulinemic)	12	11.40	8.40	[-5.08; 27.88]	0	2		\square	15.00	M	H-1	Fruct	Eu	.	5	2
Reiser et al, 1989a* (normoinsulinemic)	11	15.08	6.99	[1.38: 28.78]	1	0		-	20.00	M	$\mathrm{N}-1$	Fruct	Eu	.	5	2
Reiser el al., 1989** (hyperinsulinemic)	10	22.82	7.84	[7.44: 38.19]	1	0		푼	20.00	M	$\mathrm{H}-1$	Fruct	Eu	.	5	2
\|srael et al. 1983*	12	52.00	8.11	(36.11; 87.89]	0	0		-	28.00	M	$\mathrm{H}-\mathrm{I}$	Mix	Eu	-3.8	-	1
\|srael et al, 1983*	12	21.00	3.31	[14.51; 27.49]	0	0		+	28.00	F	$\mathrm{H}-1$	Mix	Eu	0.2	-	1
Reiser et sl, 1979a*	19	26.00	9.53	[7.31; 44.69]	1	0		+	30.00	MF	GP	Mix	Eu	0.5	6	2
Moser et al. 1988 (OC.users)	-	15.00	7.97	[-0.82; 30.62]	0	2		\pm	43.00	F	\bigcirc	Mix	Eu	-1	4	1
Moser et al, 1988 (No oc.users)	\bigcirc	-14.00	12.33	[-38.17; 10.17]	0	2			43.00	F	Non-OC	Mix	Eu	1	4	1
Random effects model ($\mathrm{r}=0.82$)		15.85		[5.12; 26.57]				+								
Heteroenerity: $I^{2}=80 \%[88 \% ; 89 \%] . \tau^{2}=241.0777, p<0.01$																
Source = Mixed																
Lewis et al. 2013	13	7.73	4.84	[-1.38: 16.83]	0	2		\mp	10.00	MF	ow/os	Mix	Eu	0.7	\bigcirc	1
Markey et al. 2018	50	0.39	2.17	[-3.86: 4.83]	0	0			10.00	MF	Non-OB	Mix	AL	0.1	8	1
Smith et sl, 1998	18	19.34	9.13	[1.44: 37.23]	1	0		\pm	12.00	MF	H-TG	Mix	AL	2.7	24	2
Bladet al. 2008	13	23.59	18.58	[-12.79: 59.97]	0	2			15.00	M	вм1<35	Mix	Eu	0.4	8	1
Huttunen et al, 1978	40	.7.73	11.32	[-29.93; 14.48]	0	0			18.00	MF	GP	Mix	AL		72	2
Swanson et sl, 1992	14	14.31	3.95	[8.58 ; 22.05]	0	0		\#	16.80	MF	GP	Fruct	Eu		4	1
Saris et al, 2000*	79	-0.77	3.90	[-8.42; 8.88]	0	0			19.00	MF	ow/os	Mix	AL	0.9	24	1
Umpleby et al, 2017 (No NAFLD)	14	10.83	5.92	[-0.77; 22.43]	0	2		\square	20.00	M	OW/No-NAFLD	Mix	Eu	2.2	12	2
Umpleby et al, 2017 (NAFLD)	11	13.53	7.32	[-0.81; 27.88]	0	2		+	20.00	M	OWINAFLD	Mix	Eu	2.1	12	2
Raben et sl, 2002^{*}	11	-4.25	10.50	(-24.83; 18.33]	,	0			23.00	MF	ow	Mix	AL	2.8	10	1
Werner et al, 1984	12	5.80	8.37	(-10.80; 22.20)	0	2			24.00	MF	Gallstones	Mix	AL	1.4	8	2
Groen et al. 1988	15	27.00	8.18	[11.00; 43.00]	0	0		-	30.00	MF	GP	Mix	Eu	-0.8	5	2
Random effects model ($\mathrm{r}=0.82)$		7.98		[2.67; 13.28]												
Heterogeneity: $l^{2}=00 \%[25 \% ; 79 \%] . \mathrm{z}^{2}=41.9999, p<0.01$																
Random effects model ($\mathrm{r}=0.82$)		8.71		[2.86; 14.56]				-								
Prediction interval				[-21.33; 38.76]												
							1	12								
							$40-20$	$20 \quad 40 \quad 60$								
Random effects model ($r=0.5)$) $7.27[1.43 ; 13.11]$			Blad $=$ Parallel Red $=$ Cross-over													

Figure G.6a2: Stratified by sugars source

Figure G.6b: Effect of high vs low sugar intake on LDL-cholesterol (mg/dL)

Study	N	Mean Effect	se Effect	95\% CI	r 0.5	r 0.99			Sugar diff (E\%)	Sex	Subjects	Sugar	Source	BW*	Duration	RoB
Diet = Isocaloric with neutral energy balance																
Gostner et 91, 2005	19	-13.30	8.12	[-25.30; -1.30]	1	0			8.00	MF	GP	Mix	f	0	4	1
Lewis et al, 2013	13	3.87	3.87	[-3.32; 11.08]	0	2		T	10.00	MF	ow/ob	Mix	Mix	0.7	8	1
Lowndes et sl, 2014s	15	-11.80	8.85	[-25.22; 1.82]	0	2	\cdots		10.00	MF	оw/ob	Mix	B	0	10	2
Black et sl, 2008	13	20.50	8.41	[7.94; 33.05]	1			-	15.00	M	вм1<35	Mix	Mix	0.4	8	1
Hallrisch et al, 19833* (N - HI)	24	6.90	4.58	[-2.08; 15.88]	0	2		T-	15.00	M	$\mathrm{NI} \cdot \mathrm{HI}$	Fruct	F		5	2
Swanson et sl. 1992	14	10.44	3.28	[4.08: 16.82]	1	0		-	18.80	MF	GP	Fruct	Mix		4	1
Reiseret sal. 19898* (normoinsulinemic)	11	12.76	4.90	[3.15: 22.37]	1	0		\square	20.00	M	$\mathrm{N} \cdot \mathrm{I}$	Fruct	F		5	2
Reiser el al., 1989a*" (hyperinsulinemic)	10	8.12	5.84	[-2.94; 19.18]	0	2		F-	20.00	M	H-1	Fruct	F		5	2
Umpleby et al, 2017 (No NAFLD)	14	5.41	4.85	[-3.69: 14.52]	\bigcirc	2		픈	20.00	M	OW/No-NAFLD	Mix	Mix	2.2	12	2
Umpleby et al. 2017 (NAFLD)	11	6.57	6.27	[-5.71: 18.86]	0	2		+	20.00	M	OWINAFLD	Mix	Mix	2.1	12	2
Lowndes et al, 2014b*	55	3.80	4.00	[-4.24; 11.44]	0	2			22.00	MF	вм1<35	Mix	в	-4.1	10	2
lsasel et al, 1983*	12	35.00	8.80	[22.08: 47.94]	0	0		판	28.00	M	$\mathrm{H}-1$	Mix	F	-3.8	8	1
lsrase et al, 1983*	12	14.00	3.31	[7.51: 20.49]	0	0		ㅍ-	28.00	F	$\mathrm{H} \cdot \mathrm{I}$	Mix	F	0.2	8	1
Hetergeneity: $I^{2}=75 \%[55 \%: 38 \%], z^{2}=97.9159, p<0.01$																
Diet $=$ Ad libitum																
Majid et al, 2013	31	-20.11	3.31	[-28.80; -13.82]	0	0	\mp		8.00	M	GP	Mix	B		4	2
Markey et sl, 2018	50	0.39	1.82	[-3.18; 3.96]	0	0			10.00	MF	Non-Ob	Mix	Mix	0.1	8	1
Hollis et al, 2009	25	1.55	5.39	[-9.02; 12.12]	0	0			18.00	MF	ow	Mix	в	1.5	12	,
Maersk et al. 2012*	14	22.43	7.77	[7.21: 37.85]	1	\bigcirc		\pm	18.00	MF	Ow/OB	Mix	B	1	24	2
Saris et al, 2000*	79	-2.71	3.35	(-9.28: 3.88]	-	0			19.00	MF	Ow/os	Mix	Mix	0.9	24	1
Hernandez-Cordero et al. 2014	120	-8.00	0.75	[-7.47; -4.53]	0	0			20.00	F	OW/OB	Mix	B	0.5	${ }^{36}$	2
Werner et al, 1984	12	1.18	7.35	[-13.25; 15.57]	0	0			24.00	MF	Gallstones	Mix	Mix	1.4	6	2
Random effects model ($\mathrm{r}=0.82$)		-1.66		[-10.17; 6.84]												
Hetergenerity: $l^{2}=87 \%[78 \% ; 93 \%) \cdot z^{2}=111.0518, p<0.01$																
Random effects model ($\mathrm{r}=0.82$)		4.49		[-0.88; 9.87]				+								
Prediction interval [-19.76; 28.75]																
								1								
							-20	$20 \quad 40$								
Random effects model ($r=0.5)$: $3.38[-2.03 ; 8.75]$																
Random effects model ($r=0.99)$: $4.91[-0.88$;				$=1 \gg$ significant	d (0.82	comes	significan:	$\begin{aligned} & \text { Red }=\text { Cross-over } \\ & 5) ; ~ r o .99=2->\text { non sig } \end{aligned}$	ant effect (0.82) b	mes	ificant (0.99)					

Figure G.6b1: Stratified by type of diet

Figure G.6b2: Stratified by sugars source

Figure G.6c: Effect of high vs low sugar intake on HDL-cholesterol (mg/dL)

Figure G.6c1: Stratified by type of diet

