
9.3.3. Fruit juices

9.3.3.1. Intervention studies

No RCTs were available for sQ3.A.

9.3.3.2. Observational studies

LoE1. Standalone (main): Incidence of GDM. PCs. Two PCs (ALSWH, NHSII) report on the
relationship between the intake of FJs and incidence of GDM. The evidence table can be found in
Annex J.

Preliminary UA

In the ALSWH cohort (Looman et al., 2018), the relationship between the intake of FJs (from fresh
fruits and ready-to-eat) and incidence of GDM was negative and borderline significant in the most
adjusted model (RR = 0.89; 95%CI = 0.80, 1.00 for each 100 g/day increase in intake). Fruit juice
intake was adjusted for TEI using the nutrient residuals model (RoB tier 3), keeping TEI constant.

In the NHS II cohort, no association between the intake of FJs and incidence of GDM was reported.
Analyses were performed by quintiles of absolute FJs intake and models were not adjusted for TEI
(RoB tier 2).

The Panel considers that the available evidence does not suggest a positive relationship between
the intake of fruit juice and risk of GDM. No comprehensive UA is performed.

Complementary LoE2: Risk of obesity and LoE 3: T2DM. PCs. There is evidence from PCs
for a positive and causal relationship between the intake of FJs and risk of obesity (very low certainty
sQ5.1, Section 8.2.5.1) and T2DM (moderate certainty, sQ5.3, Section 8.4.5.1).

Conclusion sQ3.A. PCs. The available BoE does not suggest a positive relationship between the
intake of fruit juices and risk of GDM.

9.3.3.3. Overall conclusion sQ3.A

Since no standalone LoE passed the screening step (preliminary UA), the Panel considers that the
available BoE cannot be used to conclude on a positive and causal relationship between the intake of
fruit juice and risk of GDM.

9.4. Birthweight-related endpoints

9.4.1. Total sugars

9.4.1.1. Intervention studies

No RCTs we available for sQ1.B.

9.4.1.2. Observational studies

LoE1. Standalone (main). Incidence of LBW, SGA, HBW and LGA. PCs. The relationship
between the intake of total sugars and LBW and SGA was investigated in one PC (Cadmen, (Lenders
et al., 1997)).

A total of 594 pregnant female adolescents between 12 and 19 years of age without history of
diabetes or GDM in current pregnancy were recruited from two clinics at the time they attended for
prenatal care (time not specified). Total sugar intake was assessed through a 24-h dietary recall at
entry, 28 and 36 weeks of gestation. For data analysis, the sample was divided in two groups, being >
or < the 90th percentile (cut-off = 206 g/day) for absolute intake of total sugars, and thus, TEI was
not held constant before categorisation. The evidence table is in Annex J.

Preliminary UA

The risk of having infants SGA was double in the group consuming > 206 g/day of total sugars as
compared to the reference group (OR = 2.01; 95% CI: 1.05,7.53) after adjusting for TEI and BMI,
among other relevant covariates. Although it is stated that low birth weight (LBW) was also an
endpoint for the study, logistic regression analyses were done on SGA only. It is reported that the
percentage of infants with LBW was also higher in the group consuming more total sugars (13% vs.
7%) although not significantly so. This PC was at moderate RoB (tier 2), critical domains being
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exposure, attrition and other sources of bias (e.g. statistical analysis on the extreme percentiles of
intake, incomplete reporting).

The Panel notes that only one PC at moderate RoB was available for this LoE. The Panel considers
that the available BoE does not suggest a positive relationship between the intake of total sugars and
risk of SGA or LBW. No comprehensive UA is performed.

LoE2. Standalone (surrogate). Birthweight. PCs. In the HSS-USA cohort (Crume et al., 2016),
1,040 pregnant women older than 16 years with no history or diabetes or GDM were recruited
between 8 and 24 weeks of gestation (median 17 weeks). Birth weight was measured by trained
nurses within 72h from birth (median 1 day). Total sugars intake was assessed monthly through
pregnancy by repeated 24-h diet recalls. 82% of participants completed at least two 24-h recalls.

Preliminary UA

Non-significant (negative) relationships were reported between the intake of total sugars during
pregnancy and birthweight in both energy substitution (for each 1E% increase in total sugars in
isocaloric exchange with other macronutrients, TEI held constant) and energy partition models (for
each 100 kcal/day increase in total sugars adjusting for the intake of other macronutrients, TEI not
held constant) after adjusting for relevant covariates, including pre-pregnancy BMI. This PC was at low
RoB (tier 1).

The Panel notes that the only PC available was at low RoB and reports non-significant associations
between the intake of total sugars, either per se or in isocaloric exchange with other macronutrients
and birthweight. The Panel considers that the available BoE does not suggest a positive relationship
between the intake of total sugars and adverse effects on birthweight. No comprehensive UA is
performed.

Conclusion sQ1.B. PCs. The available BoE does not suggest a positive relationship between the
intake of total sugars and risk of adverse effects on birthweight.

9.4.1.3. Overall conclusion on sQ1.B

Since no standalone LoE passed the screening step (preliminary UA), the Panel considers that the
available BoE cannot be used to conclude on a positive and causal relationship between the intake of
total sugars and risk of adverse effects on birthweight.

9.4.2. Sugar-sweetened beverages

9.4.2.1. Intervention studies

No RCTs we available for sQ2.B.

9.4.2.2. Observational studies

LoE1. Standalone (main). LBW, SGA, HBW, LGA. Two PCs (MoBA, (Grundt et al., 2017);
GeliS, (G€unther et al., 2019)) report on the relationship between the consumption of SSBs during
pregnancy and these endpoints. In the MoBA cohort, the relationship between carbonated SSBs
consumption during pregnancy (mean intakes during weeks 15, 22 and 30) and adverse effects on
birthweight-related endpoints was investigated in those that, not being diabetic at baseline, either
developed or not GDM during pregnancy. In the GeliS cohort, the relationship between SSBs
consumption in early (≤ 12th week of gestation) and late (> 29th week of gestation) pregnancy and
adverse effects on birthweight-related endpoints was investigated. Both studies adjusted for pre-
pregnancy maternal BMI and neither adjusted for TEI in the multivariable models.

The Panel notes that, whereas the cut-off for LBW was the same in both studies (birthweight <
2,500 g), the cut-off for HBW was higher in the MoBA than in the GeliS cohort (birthweight > 4,500 g
and > 4,000 g, respectively). The evidence table can be found in Annex J.

Preliminary UA

In the MoBA cohort, in women who did not develop GDM during pregnancy, there was a non-
significant higher risk of having infants with LBW (OR = 1.05; 95%CI: 0.99, 1.10, per 100 mL/day
increase in intake) and a significantly lower risk of having infants with HBW (OR = 0.94; 95%CI: 0.90,
0.97, per 100 mL/day increase in intake) associated with the consumption of SSBs. Results are
reported to be similar for SGA and LGA, respectively, but not provided in the publication. Similar
results were obtained for SSBs (carbonated, cordials, fruit juices and nectars combined) in mL/day and
for energy from added sugars (all sources), but not when volume or energy from carbonated SSBs,
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respectively, was subtracted (data not shown in the publication). The relationship between
consumption of carbonated SSBs and birthweight-related outcomes was in the opposite direction for
women with GDM (higher risk of having infants with HBW) but not statistically significant. The
Panel notes the high birthweight cut-off used to define HBW in this study (> 4,500 g) may have
attenuated the strength of this association. This study was at low RoB (tier 1), with no critical
domains.

In the GeliS cohort, SSBs consumption in early pregnancy was also non-significantly associated with
increased risk of having a neonate with LBW (OR = 1.04; 95%CI: 0.99, 1.09 per 200 mL/day increase
in intake) and with a decreased risk of having neonates with HBW (OR = 0.95; 95%CI: 0.88, 1.02 per
200 mL/day increase in intake). Similar results were reported for SSBs consumption in late pregnancy
and risk of having neonates with HBW, whereas the association with having neonates with LBW was
null. A similar pattern of results was reported for SSBs consumption in both early and late pregnancy
and risk of having neonates SGA and LGA, respectively. The Panel notes that, in this cohort, 10.8% of
the women developed GDM and 8% developed hypertension during pregnancy. Taking into account
that both these variables could have been associated with both the exposure and the endpoints, and
that the relationship between the intake of SSBs and birthweight in women with GDM was in the
oppositive direction in the MoBA cohort, the Panel considers that not excluding women with GDM from
data analysis may have attenuated the observed relationship. This study was at moderate RoB (tier 2).
Critical domains were confounding and outcome assessment.

Consistent with the results obtained for dichotomous outcomes, both studies report a statistically
significant inverse relationship between SSBs consumption and neonate birthweight analysed as a
continuous endpoint (LoE2. Standalone (surrogate)). In the MoBA cohort, in women with no GDM,
each additional 100 mL/day increase in carbonated SSBs consumption was associated with a mean
neonate birthweight of �7.8 g (95%CI: �10.3, �5.3). Consumption of carbonated ASBs and of
combined ASBs was also negatively and significantly associated with lower birthweight in this
population of women with no GDM, although the magnitude of the association is reported to be 25
and 50% lower than that of carbonated SSBs, respectively (data not shown in the publication). In
women who developed GDM (n = 432), mean birthweight per each 100 mL/day increase in
carbonated SSBs consumption was in the opposite direction (+25.1 g, 95%CI: �2.0, 52.2). In the
GeliS cohort, mean birthweight was �10.9 g (95%CI: �18.17, �3.64) and �8.19 g (95%CI: �16.26,
�0.11) per each additional serving of SSBs (200 mL/day) consumed in early and late pregnancy,
respectively.

The MoBa cohort was at RoB tier 1. The GeliS cohort was at RoB tier 2, critical domains being
confounding and outcome assessment. The heat map for the RoB assessment is in Annex K.

The Panel considers that the available BoE suggests a positive relationship between the intake of
SSBs and adverse effects on birthweight (i.e. a decrease in birthweight, leading to a higher risk of low
birthweight and being small for gestational age) in women not developing GDM during pregnancy.

Comprehensive UA

The Panel considers that it would be inappropriate to proceed with a comprehensive UA because
several downgrading factors cannot be assessed with less than three independent studies. The initial
level of certainty assigned to the relationship is very low (0–15% probability) to reflect the limited
BoE available (see Section 8.1.3). The Panel did not identify any reason to increase this level of
certainty.

Conclusion sQB2. PCs. The level of certainty in a positive and causal relationship between the
intake of SSBs and risk of adverse effects on birthweight is very low. The relationship is observed
while not keeping TEI constant in the analysis.

9.4.2.3. Overall conclusion on sQ2.B

There is evidence from PCs for a positive and causal relationship between the intake of SSBs and
risk of adverse effects on birthweight (very low level of certainty).

9.5. Overall conclusions on hazard identification: pregnancy endpoints

The Panel notes the scarcity of studies available on the relationship between the intake of dietary
sugars and their sources and the pregnancy-related endpoints investigated in this assessment. Still,
there is some evidence that habitual consumption of SSBs by women in child-bearing age could
increase the risk of GDM during pregnancy (low certainty, > 15–50% probability), possibly through
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excess energy intake leading to an increase in body weight, although a specific effect of the sugar
fraction on glucose tolerance cannot be excluded.

There is also some evidence (very low certainty, 0–15% probability) that consumption of SSBs
during pregnancy could increase the risk of having infants SGA in women not developing GDM during
pregnancy. In women developing GDM, the risk appears to be having infants LGA. In women not
developing GDM, the relationship could be mediated by lower intakes of other macronutrients (e.g.
protein, fat), whereas an excess energy intake and the impaired glucose metabolism could play a role
in women with GDM. However, TEI was not considered in the multivariable models used for data
analysis in the two PCs that investigated these endpoints, and the limited data available preclude
exploring these hypotheses.

9.6. Pregnancy endpoints: data gaps and research needs

The following major data gaps were identified in the BoE regarding the relationship between
dietary sugars and their sources and risk of adverse effects on pregnancy-related endpoints:

aLack of studies investigating the relationship between added and free sugars from all sources, and
fructose, and incidence of GDM and adverse birthweight-related endpoints.

bPaucity of studies on total sugars, SSBs and FJs and incidence of GDM and adverse birthweight-
related endpoints.

The data gaps identified in the BoE regarding the relationship between dietary sugars and risk of
adverse pregnancy-related endpoints lead to the following research needs:

a) PCs that assess the relationship between quantitative intakes of dietary sugars (characterised
as the amount of total, added and free sugars; both habitual intakes and intakes during
pregnancy) and their sources, and incidence of GDM.

b) PCs that assess the relationship between quantitative intakes of dietary sugars and their
sources during pregnancy and birthweight in women developing and not developing GDM
during pregnancy, accounting for factors that may confound the association (e.g. intake of
other macronutrients, gestational age, pre-pregnancy BMI, weight gain during pregnancy, pre-
eclampsia).

c) Studies that measure the impact of interventions to reduce the amount of dietary sugars
(habitual intakes, intake during pregnancy) on the development of GDM.

d) Studies that measure the impact of interventions to reduce the amount of dietary sugars
during pregnancy on birthweight in women developing and not developing GDM.

10. Hazard identification: dental caries

10.1. Principles applied to assess the body of evidence

Ever since the pathogenesis of dental caries was elucidated, there is wide consensus among the
scientific community that the intake of dietary sugars is causally related to the development of dental
caries at all ages (Jepsen et al., 2017). For this reason, few human intervention studies investigating
the effects of different doses of dietary sugars on the incidence of dental caries were undertaken over
the years, owing to ethical considerations.

The BoE eligible for this assessment is presented below for the purpose of describing dose-
response relationships between the exposure and the endpoint and possibly identifying a level of
sugars intake that is/it is not associated with an increased risk of dental caries. The conclusions will be
used for hazard characterisation.

To this end, EFSA requested all the authors of the observational studies potentially eligible for this
assessment to share individual data. The purpose was to perform pooled analyses in order to identify
dose-response relationships if possible.

10.2. Body of evidence

10.2.1. Intervention studies

Only one human intervention study met the inclusion criteria for this assessment (Scheinin et al.,
1976).
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The Turku sugar study is an open-label intervention in which free-living, healthy participants (mean
age 27.7 years, age range 12–53 years) were allocated to three groups, half based on individual
preference and half at random. Participants (n = 125) were asked to consume, for 2 years, all added
sugars in the diet as either sucrose (n = 35), fructose (n = 38) or xylitol (n = 52).

Food products were given free of charge and were specifically manufactured for the trial (M€akinen
and Scheinin, 1976). Compliance with the dietary regimen was assessed through diaries and interviews
when clarifications were needed through the 2-year period. Clinical and radiological evaluation of
primary and secondary dental caries with and without defect, and of filled surfaces, was performed at
baseline, and at months 3, 7, 13, 20 and 24 of the study. Details on the inter-observer variability in
clinical and radiological diagnosis are thoroughly discussed in the publication. From these, several
caries indices were derived for analysis.

A 25% dropout rate was foreseen, but only 10 participants (8%) discontinued participation or were
removed from the trial, leaving 115 subjects for analysis (33, 35 and 47 in the sucrose, fructose or
xylitol groups, respectively).

No significant differences were found between the groups for age, sex, number of primary and
secondary carious surfaces with and without defect, number of filled surfaces and extracted teeth, or
the decayed, missing and filled tooth surfaces (DMFS)-index. Mean intake of sucrose, fructose and
xylitol was 2.2, 2.1 and 1.5 kg/month, respectively, corresponding to 73.5, 70 and 50 g/day,
respectively.

After 2 years the mean (SD) increment in the DMFS-index was 7.2 (5.67), 3.8 (4.14) and 0.0 (5.35)
in the sucrose, fructose and xylitol groups, respectively (p < 0.005 for sucrose and fructose vs. xylitol;
p < 0.01 for sucrose vs. fructose). The mean (SD) increment in the modified DMFS-index (sum of
increment in the DMFS-index and all secondary caries reversals) was 10.5 (7.97), 6.1 (5.44) and 0.9
(6.66) in the sucrose, fructose and xylitol groups, respectively (p < 0.005 for sucrose and fructose vs.
xylitol; p < 0.05 for sucrose vs. fructose). The mean (SD) increment in the caries activity index (sum of
increment in the DMFS-index, all secondary caries reversals and increase in size of total clinical and
radiographic reversals) was 12.5 (9.35), 8.5 (6.26) and 1.9 (6.59) in the sucrose, fructose and xylitol
groups, respectively (p < 0.005 for sucrose and fructose vs. xylitol; p = 0.052 for sucrose vs. fructose).
No significant differences were observed in the number of filled surfaces among groups during the
study. This study was at RoB tier 2, critical domains being randomisation, allocation concealment,
blinding and exposure assessment (Annex K).

The Panel notes that full replacement of added sucrose and fructose in the diet led to a significant
decrease in the incidence of dental caries over 2 years, and that fructose appeared to be less
cariogenic than sucrose. The Panel also notes that, although this study confirms the cariogenic
potential of sucrose and fructose, it does not allow investigating a potential dose-response relationship
between the intake of these dietary sugars and the risk of developing dental caries.

10.2.2. Observational studies

A total of 11 publications reporting on seven cohorts met the inclusion criteria. One cohort included
adults of both sexes (Finnish cohort, (Bernab�e et al., 2016)), one was in adult and older adult men
(VA-DLS, (Kaye et al., 2015)), two were in adolescents of both sexes (UK cohort (Rugg-Gunn et al.,
1984; Rugg-Gunn et al., 1987); Michigan cohort (Burt et al., 1988) (Burt and Szpunar, 1994; Szpunar
et al., 1995)) and three were in children, again of both sexes (IFS (Chankanka et al., 2011); STRIP-1
(Ruottinen et al., 2004); STRIP-2 (Karjalainen et al., 2001, 2015).

All children in the STRIP-1 and 2 cohorts participated in the STRIP trial, an RCT designed to restrict
the intake of total fat and cholesterol for atherosclerosis prevention. The overlap between the two
STRIP cohorts investigating the relationship between the intake of sucrose and dental caries is limited
to one child, and thus, both cohorts are included in this assessment.

Five PCs report on total sugars (of which two also report on SSBs and one on FJs) and two cohorts
(STRIP-1 and STRIP-2, Finland) report on sucrose. At the time these studies were conducted, sucrose
was the major source of added sugars in Finland. Cohorts were very heterogeneous regarding the
outcome of interest, consistently with the demographic characteristics of their participants. The Finnish
cohort measured Decayed Missing and Filled Teeth (DMFT) including coronal and root lesions that
were cavitated or extended into dentine. The VA-DLS study focused on root caries (adjusted root
caries increment) only, a type of lesion that is more commonly encountered as age progresses and
tooth root becomes exposed. The UK and Michigan cohorts visually assessed and reported not only the
number of decayed teeth, but also tooth surfaces, and subclasses of tooth surfaces (i.e. fissure,
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approximal, smooth) with cavitated carious lesions. The two studies based on data from the STRIP
cohort measured the number of primary and permanent teeth with cavitated carious lesions, confirmed
by radiographic assessment. The IFS measured pre-cavitated and cavitated carious surfaces in primary
and permanent dentition by visual examination. The evidence table is in Appendix M.

Individual data were obtained for three cohorts (STRIP, IFS and VA-DLS). However, data from the
VA-DLS cohort could not be used for the EFSA analysis because of difficulties in reproducing the
outcome as in the original study due to lack of full information. The database was used to provide
descriptive statistics on intakes for sugars in g/day (per quartiles of E%) and SSBs.

The STRIP-2 (Karjalainen et al., 2001, 2015) and IFS cohorts (Chankanka et al., 2011) were
included at full-text screening because they were potentially eligible for the assessment, although the
results as reported in the original publications were not (i.e. daily intakes of sugars and/or their
sources were either not quantified or not used as independent variables in prospective analyses).
However, authors provided individual data for EFSA to perform the analyses of interest for this opinion.
A technical report with details on the statistical analysis conducted by EFSA using individual data from
the STRIP and IFS cohorts can be found in Annex N.

The summary assessment of the RoB is in Annex K. Two cohorts were at low RoB (tier 1; Finnish
cohort and Michigan cohort), and the remaining were at moderate RoB (tier 2) except for the VA-DLS
cohort for total sugars (tier 3). Critical domains across the BoE were confounding, attrition and
exposure assessment.

10.2.2.1. Total sugars

In the Finnish cohort (Bernab�e et al., 2016), a positive linear dose-response relationship was
observed between the intake of total sugars (in g/day) and the increment of cavitated caries in
permanent dentition during the 11-year follow-up over a wide range of sugars intake (13.7 to 442.3 g/
day). None of the 43 alternative curvilinear models tested improved the prediction of the linear model
significantly. Mean intakes of total sugars (SD) at baseline were 110.9 g/day (47.8). After adjustment
for relevant covariates, including frequency of sugars consumption, the relationship was stronger than
in the crude model (Appendix M). Vice-versa, frequency of consumption was not associated with
dental caries when the amount of total sugars was included in the model. Upon EFSA’s request for
additional information, the authors report that a level of total sugars associated with a zero increment
in the DMFT index could not be identified in this study. The Panel also notes that the lowest intake of
total sugars was low, corresponding to about 2.7 E% for a diet of 2,000 kcal/day. This PC was at low
RoB (tier 1).

In the VA cohort (Kaye et al., 2015), no significant relationship was observed between quartiles of
total sugars intake (E%; sum of sucrose, fructose and lactose) and adjusted root caries increment over
the 11-year follow-up. Total sugars intake ranged from 3.8 to 36.7 E%. The study was at high RoB
(tier 3) for total sugars. Critical domains were confounding, attrition and exposure.

In the UK cohort (Rugg-Gunn et al., 1984, 1987), there was a low but statistically significant
correlation between the DMFS increment, measured over a 2-year period, and total sugars intake in g/
day (r = +0.105 for the crude model, without adjusting for potential confounders; p < 0.05). When the
analysis was controlled for tooth brushing frequency, the correlation between total sugars intake and
caries increment was higher than in the bivariate analysis. The correlation was significant for the 2-
year fissure caries increment (DFS; r = +0.143; p < 0.02) after adjusting for age, sex, gingival index,
frequency of sugars intake and starch intake, but not for the caries increment for approximal or
smooth tooth surfaces. Regression of DMFS increment on the amount of total sugars intake indicated
that there was an average increase of 0.36 DMFS (95%CI �0.07, 0.80) over 2 years with each rise of
30 g of sugars per day in the most adjusted model. The 31 children with the highest intake of total
sugars (> 163 g/day) developed 0.9 more DMFS per child per year than the 31 children with the
lowest intake of total sugars (< 78 g/day, p = 0.07). The Panel notes that this study reports a linear
dose-response relationship between the intake of total sugars and incidence of dental caries and does
not allow identifying a level of intake at which the risk is not increased. The study was at moderate
RoB (tier 2). Critical domains were confounding and other sources of bias (statistical analysis).

In the Michigan cohort (Burt et al., 1988; Burt and Szpunar, 1994; Szpunar et al., 1995), a higher
proportion of energy intake from total sugars increased the probability of developing cavitated lesions
in the permanent dentition over the 3-year follow-up period. Those in the highest quartile of total
sugars intake (mean intake 29.5E%, 175 g/day) had a relative risk (95%CI) of 1.22 (1.04, 1.46) of
developing caries compared with the lowest quartile (mean intake 23E%, 109 g/day). This risk rose to
1.80 (1.06, 3.10) for approximal caries. Models were adjusted for age and baseline DMFS. In most
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adjusted models (including sex, age, history of previous residence in a fluoridated community, use of
fluoride tablets, frequency of topical fluorides, toothbrushing frequency, antibiotic use, parental
education and family income as covariates), E% from total sugars significantly correlated with total,
approximal and fissures caries incidence, whereas the correlation was only significant for total caries
when total sugars intake was expressed in g/day. Frequency of sugars intake did not correlate with
caries risk. From these most adjusted models, it was estimated that the risk of cavitated caries
increased by 1.6 times in those at +1SD of total sugars intake vs. those at �1SD, either expressed as
E% or g/day. It was calculated that each additional 8 g/day of total sugars intake was associated with
a 1% increase in the probability of developing cavitated lesions. In this study, the relationship between
total sugars intake and caries risk appeared to be linear and it does not allow identifying a level of
intake at which the risk is not increased. The Panel notes that the intake of total sugars in this
population group was high. The study was at low RoB (tier 1).

In the IFS (Chankanka et al., 2011), the relationship between the intake of total sugars over the
study period and risk of cavitated, non-cavitated and dental caries between the ages of 5 and 9 years
in the mixed dentition was assessed. No relationship between the intake of either total sugars and risk
of dental caries was observed after controlling for relevant confounders, including sex, SES, age at the
dental exam at follow-up, prevalence of dental caries at baseline, mean daily toothbrushing frequency
and composite water fluoride concentration (ppm). Similar results were obtained when the analyses
were restricted to children free of caries at 5 years. Mean intakes of total sugars was 114 g/day (range
53 to 216 g/day). The study was at moderate RoB (tier 2). Critical domains were exposure assessment
and attrition. The Panel notes that intakes of total sugars were high in this population group.

10.2.2.2. Added sugars

In the STRIP-1 cohort of Finnish children followed from infancy to age 10 (Ruottinen et al., 2004),
the mean sucrose intake in a ‘high’ sucrose group was 48.4 g per day, and in the ‘low’ sucrose group,
it was 22.5 g/day. The high sucrose group has a higher sucrose intake every year of the study. The
sucrose consumption of the high sucrose group exceeded 10% of energy intake after 13 months of
age. In the low sucrose group, the intake of sucrose did not exceed 7% of energy intake at any age.
The mean dmft (primary dentition) was 2.7 (SD 3.3) in the ‘high’ sucrose intake group and 1.19 (SD
1.2) in the ‘low’ sucrose intake group (p = 0.177). The mean dmft+DMFT (mixed dentition) was 1.9
(SD 2.5) in the ‘high’ sucrose intake group and 0.5 (SD 1.1) in the ‘low’ sucrose intake group
(p = 0.032). The mean DMFT (permanent dentition) in the ‘high’ sucrose intake group was 1.4 (SD
2.0) compared with 0.5 (SD 1.1) in the ‘low’ sucrose group (p = 0.01). Potential confounders were not
included as covariates in the analysis. However, confounding by tooth brushing frequency was
considered by comparing sucrose intake and dental health in different tooth brushing frequency
groups. The association between sucrose intake and toothbrushing frequency was not significant, but
this may have been due to the small size of the groups compared. The study was at moderate RoB
(tier 2), critical domains being confounding and exposure assessment.

In the STRIP-2 (Karjalainen et al., 2001, 2015), the relationship between sucrose intakes (g/day) at
years 3 and 12 and new cavitated caries in primary dentition at age 6 years and in permanent
dentition at age 16 years, respectively, was investigated. Data on sex, STRIP study group, caries-free
age (years), cavitated caries at baseline for each period and daily toothbrushing (yes/no) were
available as covariates. The risk of developing cavitated caries in primary dentition at 6 years (yes/no)
was about four times higher in the highest (mean intake = 44 g/day, range = 34.5–65.9 g/day) vs. the
lowest quartile (mean intake = 15.9 g/day, range = 7.4–20.9 g/day) of sucrose intake at 3 years (OR =
4.32; 95%CI = 1.31, 14.25). Assuming an energy requirement of 1100 kcal/for a 3-year-old child,
mean sucrose intakes in the highest and the lowest quartiles would correspond to 16E% (range 12.5
to 24E%) and 5.8E% (range 2.6 to 7.6E%), respectively. The risk increased by 1.64 (95%CI = 1.13,
2.37) for each 10 g/day increase in sucrose intake at 3 years. Mean intake (SD) of sucrose in the
whole sample at 3 years was 28.5 g/day (11.3). The relationship between sucrose intake at 3 years
and new cavitied caries in primary dentition at 6 years was not significant when new caries was
expressed as counts (dmft increment). The relationship between sucrose intake at 12 years and new
cavitied caries in permanent dentition at 16 years was not significant in any analyses. Mean intake
(SD) of sucrose in the whole sample at 12 years was 34.7 g/day (11.3). The Panel notes that the
number of children with data available from 12 to 16 years was lower (n = 81 vs. n = 128). The study
was at moderate RoB (tier 2), critical domains being confounding and exposure assessment.
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10.2.2.3. SSBs and FJs

In the VA cohort of adult and older adult men (Kaye et al., 2015), a significant positive linear trend
(p < 0.05) was observed across quartiles of SSBs intake (servings per week) for adjusted root caries
increment (the dental outcome variable) during the 11-year follow-up including years at risk of root
caries, baseline age, smoking status, number of teeth at risk for root caries, existing root caries or
restorations, subgingival calculus, dental prophylaxis in past year and removable denture status as
covariates. Median intakes of SSBs ranged from 0 mL/week in the lowest quartile to 1,407 mL/week in
the highest. In this PC the relationship between SSBs intake and adjusted root caries increment
appears to be linear and a level of intake at which the risk is not increased cannot be identified [mean
(95%CI) = 2.86 (2.28, 3.60) and 2.17 (1.68, 2.79) for the highest vs. the lowest quartile of intake].
The study was at moderate RoB for SSBs (tier 2). Critical domains were confounding and attrition.

In the IFS (Chankanka et al., 2011), the relationship between the intake of SSBs and FJs over the
study period and risk of cavitated, non-cavitated and dental caries between the ages of 5 and 9 years
in the mixed dentition was assessed. No relationship between the intake of SSBs or FJs and risk of
dental caries was observed after controlling for relevant confounders. Similar results were obtained
when the analyses were restricted to children free of caries at 5 years. Mean intakes of SSBs and FJs
were 271 mL/day (range 0–1,079 mL/day) and 87 mL/day (0–525 mL/day), respectively. The study
was at moderate RoB (tier 2). Critical domains were exposure assessment and attrition. The
Panel notes that intakes of sugar-containing beverages were high in this population group.

10.2.2.4. Dose-response relationships

Most PCs (Finnish cohort, UK cohort, Michigan cohort) suggest a positive linear dose-response
relationship between the intake of total sugars and risk of dental caries in permanent dentition across a
wide range of sugars intakes. However, the Panel notes that the shape of the dose-response relationship
was rather assumed in the UK and Michigan cohorts, where non-linear relationships were not explored.
Two of these PCs were at low RoB (tier 1) and adequately controlled for confounding factors, including
frequency of sugars intake (Finnish cohort, Michigan cohort). In these two PCs, frequency of sugars
intake was either not significantly associated with risk of dental caries (Michigan cohort) or was no longer
associated with the risk of caries when the amount of sugars was accounted for (Finnish cohort).

Limited data (STRIP-2 study, RoB tier 2) indicate a positive linear dose-response relationship
between the intake of sucrose (a proxy for added sugars) and dental caries in primary dentition across
a wide range of intakes, whereas no relationship was observed between sucrose intake and dental
caries for permanent dentition in the same study.

Limited data were also available for the relationship between the intake of dietary sugars and
sugar-containing beverages (SSBs and FJs) and risk of dental caries in mixed dentition (STRIP-1, IFS
cohort) and in the older adults (root caries, VA cohort). No significant relationship was observed in
these studies between the intake of dietary sugars and caries risk.

The low number of PCs for all age groups and the heterogeneity in available data with respect to
both the measures of intake of dietary sugars and the indices used to assess the risk of dental caries
(incidence (yes/no) vs. severity (counts)) did not allow pooled analyses or meta-analysis to
characterise dose-response relationships between the intake of dietary sugars and caries risk across
the body of evidence.

10.3. Overall conclusions on hazard identification: dental caries

The Panel notes that the relationship between the intake of dietary sugars and the development of
dental caries in humans is well established. Positive linear dose-response relationships have been
observed between the intake of total sugars and risk of dental caries in permanent dentition (endpoint
most relevant for adults and children older than 12 years) and between the intake of sucrose (a proxy
for added sugars) and risk of dental caries in primary dentition (endpoint most relevant for children
younger than 6 years of age) in individual PCs across a wide range of total sugars and sucrose intakes.

However, the Panel also notes that dose-response relationships across the BoE could not be
explored with the data available, that dose-response relationships between the intake of total sugars
and risk of dental caries in permanent dentition were assumed to be linear in two cohorts (UK and
Michigan cohorts) but tested for non-linearity only in one (Finnish cohort) and that the available data
for other population groups (primary dentition in children, root caries in the older adults) and
exposures (added and free sugars including sucrose and their sources) are scarce. In this context, the
Panel considers that, although it is well established that dietary sugars are involved in the development
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of dental caries at all ages, the available BoE does not allow conclusions on the shape of the
relationship between the intake of dietary sugars and risk of dental caries for any age group, or to
identify a level of sugars intake at which the risk of dental caries is not increased.

10.4. Dental caries: data gaps and research needs

The low number of PCs for all age groups and the heterogeneity in available data with respect to
both the measures of intake of dietary sugars and the indices used to report dental caries counts
(severity) did not allow pooled analyses or meta-analysis to characterise dose-response relationships
between the intake of dietary sugars and caries risk across the body of evidence. This problem is
compounded by deficits in method of nutritional assessment (e.g. lack of validation of reported
intakes, use of retrospective and semi-quantitative approaches) and failure to measure and/or account
for (also in the statistical analysis) factors that probably confound the relationship between the intake
of dietary sugars and the development of dental caries (including indices of socio-economic status,
exposure to fluoride and measures of oral hygiene).

Therefore, the data gaps identified in the BoE regarding the relationship between dietary sugars
and risk of dental caries lead to the following research needs:

aProspective cohort studies that assess the relationship between quantitative intakes of dietary sugars
(characterised as the amount of total, added and free sugars) and the development of dental caries
(both incidence and severity) in all age groups, including root caries in older adults, using validated
methods of nutritional assessment and accounting for factors that may confound the association.

bStudies that measure the impact of interventions to reduce the amount of dietary sugars on the
development of dental caries in all age groups.

11. Hazard characterisation: dose-response assessment and derivation
of a Tolerable Upper Intake Level for sugars

The UL for (total/added/free) sugars is the maximum level of chronic daily intake of sugars from all
sources judged to be unlikely to pose a risk of adverse health effects to humans. ‘Tolerable intake’ in
this context connotes what is physiologically tolerable and is a scientific judgement as determined by
assessment of risk, i.e. the probability of an adverse effect occurring at some specified level of
exposure. The UL is not a recommended level of intake (SCF SCoF, 2000). The underlying assumption
is that a ‘threshold’ can be identified below which no risk from consumption of dietary sugars is
expected for the general population, and above which the risk of adverse health effects, including risk
of disease, increases.

If there are no, or insufficient, data on which to base a UL, an indication may be given on the
highest level of chronic daily intake from all sources where there is reasonable confidence in data on
the absence of adverse effects (i.e. a science-based cut-off value for a daily exposure which is not
associated with adverse health effects, or a safe level of intake). This requires the identification of a
level of sugars intake up to which no adverse health effects are observed.

11.1. Total sugars

The available BoE from PCs does not support a positive relationship between the intake of total
sugars, in isocaloric exchange with other macronutrients, and any of the chronic metabolic diseases
(Section 8.9.1) or pregnancy-related endpoints (Section 9.5) considered in this assessment.

The relationship between the intake of dietary sugars and the development of dental caries in
humans is well established. Positive and linear dose-response relationships between the intake of total
sugars and risk of dental caries in permanent dentition have been reported in observational studies,
with no evidence for non-linearity in the only cohort in which this hypothesis was tested (Finnish
cohort, (Bernab�e et al., 2016)). The data available, however, did not allow exploring dose-response
relationships across the BoE, or to identify a level of total sugars intake at which the risk of dental
caries is not increased (Section 10.3).

11.2. Added and free sugars

The available BoE from PCs does not support a positive relationship between the intake of added
and free sugars, in isocaloric exchange with other macronutrients, and any of the chronic metabolic
diseases (Section 8.9.2) or pregnancy-related endpoints (Section 9.5) considered in this assessment.
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The level of certainty for a positive and causal relationship between the intake of added and free
sugars and risk of chronic metabolic disease is considered to be moderate for obesity and
dyslipidaemia (> 50–75% probability), low for NAFLD/NASH and T2DM (> 15–50% probability) and
very low for hypertension (0–15% probability), based on data from RCTs which investigated the effect
of ‘high’ vs. ‘low’ sugars intake on surrogate disease endpoints, i.e. body weight, liver fat, fasting
glucose, fasting triglycerides and SBP (Section 8).

Figure 18 shows the distribution of RCTs addressing different endpoints by ranges of added or
free sugars intake, corresponding to between-arm differences in intake. The Panel notes the limited
number of measurements available for intakes of added and free sugars below 10 E% and above 30 E
% for all endpoints investigated.

Dose–response relationships between the intake of added and free sugars and the above-
mentioned endpoints were characterised as part of the hazard identification step, where possible:

Body weight: Based on meta-regressive dose-response analysis, no dose–response relationship
could be established between the intake of added and free sugars (dose range 6–24 E%) and body
weight (Section 8.2.2). Dose-response was not investigated in individual studies (Section 8.2.2).

Liver fat: A dose–response relationship between the intake of added sugars and liver fat could not
be established in the single study which tested it using three sugar doses (8, 18 and 30 E% in the
respective study arms) (Lowndes et al., 2014b). The dose-response relationship between the intake of
added and free sugars and liver fat could not be explored by meta-regression analysis owing to the
limited number of RCTs available and the narrow range of sugars intakes investigated (between-arm
difference range 18–22 E%) (Section 8.3.2).

Fasting glucose: A linear dose-response relationship was observed between the intake of sucrose
(2, 15 and 30 E% in the respective study arms) in isocaloric exchange with starch and fasting glucose
and insulin levels in the RCT by Israel et al. (1983) conducted in men and women with
hyperinsulinaemia. Meta-regression analysis of the relationship between the intake of added and free
sugars (between-arm difference range 8–28 E%) and fasting glucose concentrations across the BoE
from RCTs identified a positive and linear dose-response (see Section 8.4.2.1 and Annex L).

Fasting triglycerides: A dose-response relationship between the intake of sucrose (2, 15 and 30 E%
in the respective study arms) in isocaloric exchange with starch and fasting triglycerides was observed
in the RCT by Israel et al. (1983) conducted in men with hyperinsulinaemia. A dose-response
relationship between the intake of fructose (0, 7.5 and 15 E% in the respective study arms) in
isocaloric exchange with starch and fasting triglycerides was also reported in the RCT by Hallfrisch
et al. (1983a) conducted in men with hyperinsulinaemia. A meta-regressive dose-response relationship

Legend to Figure 18. Since each randomised controlled trial (RCT) can investigate more than one endpoint,
the total number of studies in the figure is higher than the number of RCTs included in the assessment.

Figure 18: Distribution of randomised controlled trials addressing different endpoints by ranges of
added or free sugars intake, corresponding to between-arm differences in intake
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across the BoE from RCTs was identified between the intake of added and free sugars (between-arm
difference range 6–30 E%) and fasting triglycerides. The relationship was positive and linear, with no
evidence for non-linearity. Most of the heterogeneity in the data set could not be explained. In this
context, the Panel considers that no quantitative prediction of the effect of added (or free) sugars on
fasting triglycerides can be made based on this model. The Panel notes that, for the same difference
in added and free sugars intake, a higher absolute difference in fasting triglycerides was found in
individuals with obesity, hypertriglyceridaemia or hyperinsulinaemia compared to other population
subgroups (see Section 8.5.2.1 and Annex L).

Blood pressure: Dose-response was not investigated in individual RCTs. No meta-regression analysis
could be performed owing to the small number of RCTs available. Visual inspection of the forest plots
did not suggest a dose-response relationship (between-arm difference range 10–28E%)
(Section 8.6.2).

Regarding the risk of dental caries, positive relationships with the intake of sucrose (a proxy for
added sugars) have been reported in the STRIP cohort (STRIP-1; (Ruottinen et al., 2004); STRIP-2;
(Karjalainen et al., 2001, 2015). A positive and linear dose-response relationship between the intake of
added sugars and risk of dental caries in primary dentition was identified in the STRIP-2 cohort. The
data available, however, did not allow exploring dose-response relationships across the BoE, or to
identify a level of added sugars intake at which the risk of dental caries is not increased.

11.3. Conclusions on hazard characterisation

Overall, the Panel concludes that available data do not allow the setting of a UL or a safe level of
intake for either total, added or free sugars. The Panel notes that the BoE considered in this opinion
does not allow comparison of health effects based on the classification of dietary sugars as added or
free (sections 8.1.1 and 8.1.2).

• The intake of dietary sugars is a well-established hazard in relation to dental caries in humans.
The data available, however, did not allow identifying a level of (total/added/free) sugars
intake at which the risk of dental caries is not increased over the range of observed intakes.

• There is evidence from RCTs for a positive and causal relationship between the intake of added
and free sugars and risk of some chronic metabolic diseases, with levels of certainty ranging
from moderate (50–75% probability) to very low (0–15% probability) depending on the
disease. The data available, however, did not allow identifying a level of added/free sugars
intake at which the risk of chronic metabolic disease is not increased over the range of
observed intakes. The Panel notes that the relationship between the intake of added and free
sugars and risk of chronic metabolic diseases could not be adequately explored at levels
of intake < 10 E% owing to the low number of RCTs available, and that the uncertainty about
the shape and direction of the relationship at these levels of intake is higher than at intakes
≥ 10 E%.

• The available BoE from PCs does not support a positive relationship between the intake of
dietary (total/added/free) sugars and any of the chronic metabolic diseases or pregnancy-
related endpoints considered in this assessment. Dietary sugars were mostly assessed keeping
TEI constant (i.e. in isocaloric exchange with other macronutrients).

Based on the available BoE and related uncertainties, the Panel considers that the intake of added
and free sugars should be as low as possible in the context of a nutritionally adequate diet. The
Panel notes that decreasing the intake of added and free sugars would decrease the intake of total
sugars to a similar extent.

The information provided in this opinion can assist EU Member States in setting goals for
populations and/or recommendations for individuals in their country, taking into account the nutritional
status, the actual composition of available foods and the known patterns of intake of foods and
nutrients of the specific populations for which they are developed (see Section 6). The Panel notes
that the lowest amount of added/free sugars that is compatible with a nutritionally adequate diet in
Europe may vary across population groups and countries.
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12. Assistance to Member States when developing food-based dietary
guidelines

Owing that the available data did not allow the setting of a UL or a safe level of intake for dietary
sugars (total/added/free) from all sources, scientific advice is provided in relation to intakes of
individual sugar types (e.g. fructose) and food sources of dietary sugars in order to assist Member
States when developing FBDGs, as foreseen in the protocol.

12.1. Sugar types: fructose

The level of certainty for a positive and causal relationship between the intake of fructose and risk
of chronic metabolic diseases is considered to be moderate for gout (> 50–75% probability) and low
for CVDs (> 15–50% probability), based on PCs. However, the external validity of the findings for
European populations is unclear (see Section 8.9.3). In the eligible RCTs, the effects of fructose and
glucose on body weight, liver fat, measures of glucose tolerance, blood lipids and blood pressure did
not appear to be different, whereas fructose appeared to increase hepatic insulin resistance and uric
acid levels more than equivalent amounts of glucose.

The Panel notes that fructose is a component of added and free sugars in mixed diets i.e.
containing comparable amounts of fructose and glucose. The Panel considers that the conclusions for
added and free sugars also apply to fructose in that context. In addition, the Panel notes that limiting
the intake of added and free sugars in mixed diets would also limit the intake of fructose. This may
not be the case if pure fructose or isoglucose with high fructose content (> 55%) are used to replace
sucrose in foods and beverages (Section 4.2).

12.2. Sources of dietary sugars

12.2.1. Sugar-sweetened beverages

The level of certainty for a positive and causal relationship between the intake of SSBs and risk of
chronic metabolic disease is considered to be high for obesity, T2DM, HTN and CVD (> 75–100%
probability), moderate for gout (> 50–75% probability) and low for NAFLD/NASH and dyslipidaemia
(> 15–50% probability), based on data from RCTs and PCs. When dose-response relationships
between the intake of SSBs and incidence of disease (i.e. T2DM, hypertension and CVD) could be
investigated using data from PCs, these were positive and linear, with no evidence for non-linearity.
Whereas the relationship between the intake of SSBs and risk of obesity, NAFLD, T2DM, dyslipidaemia
and gout could be attributed, at least in part, to the sugars fraction of the beverage, this is more
questionable in relation to the risk of hypertension and CVD (see Section 8.9.4). In addition, the
external validity of the findings in relation to the risk of gout for European populations is unclear.
Based on data from PCs, there is low certainty (> 15–50% probability) that habitual consumption of
SSBs by women of child-bearing age could increase the risk of GDM, and very low certainty (0–15%
probability) that consumption of SSBs during pregnancy by women not developing GDM increases the
risk of having infants SGA (Sections 9.3.2.2 and 9.4.2.2).

The proportion of consumers of SSBs (SSSD+SSFD) in Europe varied widely across population groups
and countries, ranging from 0% to 97% of the dietary survey’s sample. Intakes of added and free sugars
from all sources were higher in consumers of SSBs than in consumers of any other non-core food group
significantly contributing to sugars intake (fine bakery wares, confectionery, sugar and similar, fruit and
vegetable juices) in virtually all countries and population groups (Section 4.3, Annex E).

In consumers, the mean contribution of added and free sugars in SSBs (SSSD+SSFD) to total
energy intake ranged from 1 to 8 E%, depending on the survey. With few exceptions, the contribution
of SSBs to the mean intake of added and free sugars ranged from 15% to about 50% (Annex E).

12.2.2. Fruit juices

The level of certainty for a positive and causal relationship between the intake of FJs and risk of
chronic metabolic diseases is considered to be moderate for T2DM and gout (> 50–75% probability)
and very low for obesity (0–15% probability), based on data from PCs. The dose-response relationship
between the intake of FJs and incidence of T2DM was positive and linear, with no evidence for non-
linearity. The external validity of the findings in relation to the risk of gout for European populations is
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unclear. The Panel notes that the levels of intake of FJs are lower than for SSBs in prospective cohort
studies and that the BoE on FJs is restricted to a lower number of studies compared to SSBs.

The proportion of consumers of fruit juices varied widely across population groups and countries,
ranging from 15% to 96% of the sample. In toddlers, intakes of free sugars from all sources were
higher in consumers of fruit juices than in consumers of any other non-core food group in most
countries (Section 4.3, Annex E). In consumers, the mean contribution of free sugars in fruit juices to
total energy intake ranged from 1 to 11 E% depending on the survey (Annex E). With few
exceptions, the contribution of fruit juices to the mean intake of free sugars ranged from 15% to
about 50%.

12.2.3. Other sources of dietary sugars

Data from PCs on other sources of dietary sugars were not extracted (Section 7.3.2). However, all
major contributors to the intake of added and free sugars should be considered by Member States
when setting FBDGs.

In addition to SSBs and FJs, food groups contributing the most to the intake of added and free
sugars in European countries were ‘sugars and confectionery’ (i.e. table sugar, honey, syrups,
confectionery and water-based sweet desserts) and fine bakery wares, as well as sweetened ‘milk and
dairy’ products in young consumers, with high variability among population groups and countries
(Section 4.3, Annex E).

Conclusions

Based on the available scientific evidence and related uncertainties, the Panel concludes that:

Dietary sugars

• A UL or a safe level of intake for either total, added or free sugars could not be established.
• The health effects of added vs. free sugars could not be compared.
• The intake of dietary sugars is a well-established hazard in relation to dental caries in humans.

However, a level of (total/added/free) sugars intake at which the risk of dental caries is not
increased over the range of observed intakes could not be identified.

• There is evidence for a positive and causal relationship between the intake of added and free
sugars and risk of some chronic metabolic diseases. The level of certainty in the relationship is
considered to be moderate for obesity and dyslipidaemia (> 50–75% probability), low for
NAFLD/NASH and T2DM (> 15–50% probability) and very low for hypertension (0–15%
probability), based on data from RCTs which investigated the effect of ‘high’ vs. ‘low’ sugars
intake on surrogate disease endpoints, i.e. body weight, liver fat, fasting glucose, fasting
triglycerides and SBP. However, a level of added/free sugars intake at which the risk of chronic
metabolic disease is not increased over the range of observed intakes could not be identified.

• The relationship between the intake of added and free sugars and risk of chronic metabolic
diseases could not be adequately explored at levels of intake < 10 E% owing to the low
number of RCTs available. The uncertainty about the shape and direction of the relationship at
these levels of intake is higher than at intakes ≥ 10 E%.

• PCs do not support a positive relationship between the intake of dietary (total/added/free)
sugars and chronic metabolic diseases or pregnancy-related endpoints. Dietary sugars were
mostly assessed keeping TEI constant (i.e. in isocaloric exchange with other macronutrients).

• Excess energy intake leading to positive energy balance and body weight gain appears to be
the main mechanism by which the intake of dietary sugars may contribute to the development
of chronic metabolic diseases in free living conditions. Mechanisms which are specific to sugars
as found in mixed diets (i.e. de novo lipogenesis leading to ectopic fat deposition, increased
hepatic insulin resistance and impaired glucose tolerance in the long term; increase in uric acid
levels) may also play a role, particularly in positive energy balance.

• The intake of added and free sugars should be as low as possible in the context of a
nutritionally adequate diet. Decreasing the intake of added and free sugars would decrease the
intake of total sugars to a similar extent.

• Food groups contributing most to the intake of added and free sugars in European countries
were ‘sugars and confectionery’ (i.e. table sugar, honey, syrups, confectionery and water-based
sweet desserts), followed by beverages (SSBs, fruit juices) and fine bakery wares, with high
variability across countries. The main difference between the intake of added and free sugars
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was accounted for by fruit juices. In infants, children and adolescents, sweetened ‘milk and
dairy’ products were also major contributors to mean intakes of added and free sugars.

• The information provided in this opinion can assist EU Member States in setting goals for
populations and/or recommendations for individuals in their country, taking into account the
nutritional status, the actual composition of available foods and the known patterns of intake
of foods and nutrients of the specific populations for which they are developed. The lowest
amount of added/free sugars that is compatible with a nutritionally adequate diet in Europe
may vary across population groups and countries.

Sugar types

• There is evidence for a positive and causal relationship between the intake of fructose and risk
of some chronic metabolic diseases, based on data from PCs. The level of certainty in the
relationship is considered to be moderate for gout (> 50–75% probability) and low for CVDs (>
15–50% probability), although the external validity of the findings for European populations is
unclear. In the eligible RCTs, fructose appeared to increase hepatic insulin resistance and uric
acid levels more than equivalent amounts of glucose. The effects of fructose and glucose on
body weight, liver fat, measures of glucose tolerance, blood lipids and blood pressure did not
appear to be different.

• Fructose is a component of added and free sugars in mixed diets i.e. containing comparable
amounts of fructose and glucose. Therefore, the conclusions for added and free sugars also
apply to fructose in that context. Limiting the intake of added and free sugars in mixed diets
would also limit the intake of fructose. This may not be the case if pure fructose or isoglucose
with high fructose content (> 55%) are used to replace sucrose in foods and beverages.

Sugars from specific sources

• There is evidence for a positive and causal relationship between the intake of SSBs and risk of
some chronic metabolic diseases, based on data from RCTs and PCs. The level of certainty in
the relationship is considered to be high for obesity, T2DM, HTN and CVD (> 75–100%
probability), moderate for gout (> 50–75% probability) and low for NAFLD/NASH and
dyslipidaemia (> 15–50% probability).

• There is also evidence for a positive and causal relationship between the intake of fruit juices
and risk of some chronic metabolic diseases, based on data from PCs. The level of certainty in
the relationship is considered to be moderate for T2DM and gout (> 50–75% probability) and
very low for obesity (0–15% probability).

• The external validity of the findings in relation to the risk of gout for European populations is
unclear.

• Based on data from PCs, there is low certainty (> 15–50% probability) that habitual
consumption of SSBs by women of child-bearing age could increase the risk of GDM, and very
low certainty (0–15% probability) that consumption of SSBs during pregnancy by women not
developing GDM increases the risk of having infants SGA.

• In PCs, SSBs and FJs were mostly assessed not keeping TEI constant in the analysis, thus
allowing for the possible contribution of energy to the associations.

• No conclusions could be drawn on specific sources of dietary sugars other than SSBs and FJs.
However, all major contributors to the intake of added and free sugars should be considered
by Member States when setting FBDG.

Recommendations for research

Main data gaps and recommendations for research are addressed in Sections 8.10, 9.6 and 10.4 of
this scientific opinion.

The Panel considers that the priorities for research in order to inform the setting of an UL for
dietary sugars are as follows:

1) To develop and validate reliable methods and (bio)markers for the assessment of intake for
dietary sugars.

2) To make individual data collected in human studies available for reanalyses and pooled
analyses.
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3) To improve the reporting of the methods and results of research studies by following
international quality and transparency guidelines.17

4) To use standardised definitions for the characterisation of dietary sugars, their fractions
(added and free sugars) and their sources (food groups in which they are contained).

5) To measure the impact of interventions to reduce the amount of added and free sugars
from all sources (especially to below 10 E%) in controlled settings on the development of
chronic metabolic diseases and surrogate endpoints thereof in all age groups. The impact of
potential effect modifiers and the mechanisms involved should be further investigated.

6) To assess the relationship between quantitative intakes of dietary sugars (characterised as
the amount of total, added and free sugars), and the risk of developing GDM, and
birthweight-related endpoints in women developing and not developing GDM.

7) To use reliable methods to measure possible mediators and confounders of the relationship
between the intake of dietary sugars and the incidence of chronic metabolic diseases, in
particular energy intake, body fatness, diet quality and physical activity.

8) To define appropriate data analysis strategies (i.e. choice of energy adjustment models,
selection of covariates, testing of potential mediators) and formally evaluate and report the
robustness of results (e.g. through sensitivity analysis).

9) To measure the impact of interventions in clinical and community settings to reduce the
amount of dietary sugars (as E% and in g/day) on the development of dental caries in all
age groups.

10) To assess the relationship between quantitative intakes of dietary sugars (characterised as
the amount of total, added and free sugars) and the development of dental caries (both
incidence and severity) in all age groups, including root caries in older adults, accounting for
factors that may confound the association, in order to allow the characterisation of the
hazard.
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100% FJs 100% fruit juices, with no added sugars
24-h DR 24-h dietary recall
24uSF Urinary sucrose and fructose in 24-h urine samples
Added sugars Mono- and disaccharides added to foods as ingredients during processing

or preparation at home, and sugars eaten separately or added to foods at
the table

AGAHLS Amsterdam Growth and Health Longitudinal Study
AI Adequate intake
AIC Akaike Information Criteria
ALSPAC Avon Longitudinal Study of Parents and Children
ALSWH Australian Longitudinal Study on Women’s Health
AMP Adenosine monophosphate
ANSES French Agency for Food, Environmental and Occupational Health & Safety
AOAC Association of Official Analytical Chemists
ARIC Atherosclerosis Risk in Communities Study
ASBs Artificially sweetened beverages
ASSDs Artificially sweetened drinks
ATP Adenosine triphosphate
AUC Area under the curve
BF Body fat
BIA Bioelectrical impedance analysis
BMES Blue Mountain Eyes Study
BMI Body mass index
BoE Body of evidence
BP Blood pressure
BW Body weight
BWHS Black Women’s Health Study
CARDIA Coronary Artery Risk Development in Young Adults
CHD Coronary heart disease
CI Confidence interval
CoSCIS Copenhagen School Child Intervention Study
CTS California Teachers Study
CVD Cardiovascular disease
Daily-D Daily-D Health Study
DBP Diastolic blood pressure
DCH Diet, Cancer and Health Study
DDHP Detroit Dental Health Project
DFS Decayed, filled surfaces
DMFS Decayed, missing and filled tooth surfaces
DMFT Decayed, missing and filled teeth
DNL De novo lipogenesis
DONALD Dortmund Nutritional and Anthropometric Longitudinally Designed Study
DRI Dietary Reference Intake
DRV Daily reference values
E% Percent energy intake
EC European Commission
EFSA European Food Safety Authority
EKE Expert Knowledge Elicitation
ELEMENT Early Life Exposure in Mexico to Environmental Toxicants
EPIC-Diogenes European Prospective Investigation into Cancer and Nutrition-Diet, Obesity

and Genes project
EPIC-E3N European Prospective Investigation into Cancer and Nutrition-French cohort
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EPIC-InterAct European Prospective Investigation into Cancer and Nutrition-InterAct project
EPIC-Morgen European Prospective Investigation into Cancer and Nutrition-Morgen cohort
EPIC-Multicentre European Prospective Investigation into Cancer and Nutrition-Multicentre
EPIC-Norfolk European Prospective Investigation into Cancer and Nutrition-Norfolk cohort
EPICOR European Prospective Investigation into Cancer and Nutrition-Italian cohort
EPIC-Utrecht European Prospective Investigation into Cancer and Nutrition-Utrecht cohort
ESPGHAN European Society for Paediatric Gastroenterology Hepatology and Nutrition
EU European Union
FBDG Food-based dietary guidelines
FCD Food composition database
FFQ Food frequency questionnaire
FJ Fruit juice
FMCHES Finnish Mobile Clinic Health Examination Survey
Framingham-3Gen Framingham third Generation cohort
Framingham-Offspring Framingham offspring’s cohort
Free sugars Added sugars plus sugars naturally present in honey, syrups, fruit juices

and juice concentrates
GDM Gestational diabetes mellitus
GeliS Healthy living in pregnancy study
Generation R Generation R Study
GI Glycaemic index
GL Glycaemic load
GLP1 Glucagon-like peptide-1
GLUT4 Glucose transporter type 4
GUTS Growing Up Today Study
GUTS II Growing Up Today Study II
HBW High birth weight
HDL High-density lipoprotein
HFCS High fructose corn syrup
HHS U.S. Department of Health and Human Services
HOMA Homeostatic model assessment
HPFS Health Professionals Follow-up study
HPAEC-PAD High Performance Anion-Exchange Chromatography with Pulsed

Amperometric Detection
HPLC High Performance Liquid Chromatography
HPP Harvard Pooling Project of Diet and Coronary Disease
HR Hazard ratio
HSS-DK Healthy Start Study-Denmark
HSS-USA Healthy Start Study-USA
HTN Hypertension
IFS Iowa Fluoride Study
IGT Impaired glucose tolerance
IL6 Interleukin 6
Inter99 Inter99 study
IoM Institute of Medicine
IR Insulin resistance
ISI Insulin sensitivity index
IUGR Intrauterine growth retardation
iv Intravenous
IVGTT Intravenous glucose tolerance test
IVITT Intravenous insulin tolerance test
JPHC Japan Public Health centre-based study Cohort
KoCAS Korean Child–Adolescent cohort Study
KoGES Korean Genome and Epidemiology Study
LBW Low birth weight
LDL Low-density lipoprotein
LF Liver fat
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LGA Large-for-gestational age
Linking category Categories established based on the distribution of total sugar values within

each FoodEx2 level in order to match the total sugar content from the EFSA
Nutrient Composition Database with the foods reported in the EFSA
Comprehensive European Food Consumption Database

LoE Line of Evidence
MDCS Malmo Diet Cancer Study
MIT-GDS Massachusetts Institute of Technology Growth and Development Study
MoBa Norwegian Mother and Child Cohort Study
MONICA Monitoring Trends and Determinants of Cardiovascular Disease
MOVE MOVE project
Mr and Ms OS Mr and Ms OS of Hong Kong
MTC Mexican Teachers’ Cohort
Na+/K+ ATPase Sodium–potassium adenosine triphosphatase
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
PCC Prospective case-cohort
NDA Panel EFSA Panel on Nutrition, Novel Foods and Food Allergens
NGHS National Lung, Heart and Blood Institute’s Growth and Health Study
NGT Normal glucose tolerance
NHS Nurses’ Health Study
NHS-II Nurses’ Health Study-II
NIH-AARP National Institutes of Health-American Association for Retired Persons

Diet and Health Study
NK cells Natural killer cells
NPAAS Nutrition and Physical Activity Assessment Study
NSHDS Northern Sweden Health and Disease Study
NTP National Toxicology Program
OGTT Oral glucose tolerance test
OHAT Office of Health Assessment and Translation
OPEN Observing Protein and Energy Nutrition
P/S Polyunsaturated/Saturated fat
PCs Prospective cohort studies
PHHP Pawtucket Heart Health Program
PHI Planet Health Intervention
ppm parts per million
Project Viva Project Viva
PROMETHEUS PROmoting METHods for Evidence Use in Scientific assessments
PYY Peptide YY
QUALITY Quebec Adipose and Lifestyle InvesTigation in Youth
RCS Restricted cubic splines
RCTs Randomised controlled trials
REGARDS Reasons for Geographic and Racial Differences in Stroke study
RI Reference intake
RoB Risk of bias
RR Relative risk
SACN Scientific Advisory Committee on Nutrition
SAT Subcutaneous adipose tissue
SBP Systolic blood pressure
SCES Sydney Childhood Eye Study
SCF Scientific Committee on Food
SCHS Singapore Chinese Health Study
SD Standard deviation
SE Standard error
SES Social economic score
SFFQ Semi-quantitative food frequency questionnaire
SGA Small-for-gestational age
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SGLT1 Sodium-Glucose-coTransporter 1
SLIVGTT Stable labelled intravenous glucose tolerance test
sQ Subquestion
SSBs Sugar sweetened beverages
SSFDs Sugar sweetened fruit drinks
SSFJs Sugar sweetened fruit juices
SSSDs Sugar sweetened soft drinks
STRIP Special Turku Coronary Risk Factor Intervention Project
SUN Seguimiento Universidad de Navarra
T2DM Type 2 diabetes mellitus
Table sugar Sucrose
TEI Total energy intake
TFJ Total fruit juice
TG Triglyceride
TLGS Teheran Lipid and Glucose Study
TNF-a Tumour necrosis factor alpha
Total sugars All mono- and disaccharides found in mixed diets i.e. glucose, fructose,

sucrose, galactose, lactose, trehalose and maltose
TRL Triglyceride rich lipoprotein
UA Uncertainty analysis
UK United Kingdom
UL Tolerable Upper Level of Intake
US United States
USDA U.S. Department of Agriculture
VA-DLS Department of Veterans Affairs-Dental Longitudinal Study
VAT Visceral adipose tissue
VLDL Very low-density lipoprotein
WAPCS Western Australia Pregnancy Cohort (Raine) Study
WC Waist circumference
WGHS Women’s Genome Health Study
WHI Women’s Health Initiative
WHO World Health Organisation
WHS Women’s Health Study
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Appendix A – Summary results_intake and percent contribution_whole population

Table A.1: Intake of total, free and added sugars across EU dietary surveys from selected food groups and percent contribution of the selected food
groups to the intake of total, free and added sugars18

Food Groups19

Total sugars Free sugars Added sugars

g/day(a) % contrib.(a) g/day(a) % contrib.(a) g/day(a) % contrib.(a)

Mean P95 Mean Mean P95 Mean Mean P95 Mean

Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

INFANTS (≥ 4 to < 12 months)

Sugars and confectionery 0 10 0 31 0% 20% 0 10 0 31 1% 80% 0 10 0 31 1% 82%
SSSD+SSFD 0 2 0 12 0% 3% 0 2 0 12 0% 18% 0 2 0 12 0% 25%

Fine bakery wares 0 2 0 9 0% 4% 0 2 0 9 0% 34% 0 2 0 9 0% 36%
Fruit/veg. juices 0 5 0 30 0% 9% 0 5 0 30 2% 33% 0 2 0 7 0% 23%

Fruit/veg., processed 0 16 0 75 0% 20% 0 2 0 10 0% 16% 0 2 0 10 0% 19%
Fruit/veg., fresh 2 17 24 52 3% 28% N/A N/A

Cereals 0 2 0 8 0% 3% 0 1 0 11 0% 14% 0 1 0 11 0% 16%
Milk and dairy 5 37 23 114 13% 60% 0 2 0 11 0% 47% 0 2 0 11 0% 50%

Baby foods 10 45 41 104 12% 65% 0 4 0 11 0% 52% 0 4 0 11 0% 52%
Others 0 2 0 11 0% 4% 0 1 0 8 0% 17% 0 1 0 2 0% 11%

TODDLERS (≥ 12 to < 36 months)

Sugars and confectionery 1 13 6 51 2% 19% 1 12 6 49 6% 54% 1 12 2 36 8% 61%

SSSD+SSFD 0 18 0 83 0% 19% 0 18 0 83 0% 37% 0 16 0 77 0% 42%
Fine bakery wares 0 7 1 37 0% 10% 0 7 1 34 1% 28% 0 7 1 34 1% 34%

Fruit/veg. juices 2 19 5 72 3% 19% 2 19 5 72 10% 36% 0 4 0 17 0% 20%
Fruit/veg., processed 1 9 2 52 1% 14% 0 4 0 19 0% 13% 0 4 0 19 1% 15%

Fruit/veg., fresh 6 21 33 94 9% 30% N/A N/A

18 Data extracted from Annex D-Results of the intake assessment. Whole population.
19 Sugars and confectionery includes sugar and similar, confectionery and water-based sweet desserts; SSSD+SSFD are sugar sweetened soft drinks and sugar sweetened fruit drinks; Fruit/veg.

juices include nectars; Fruit/veg. processed excludes beverages; Cereals include cereal-based products and exclude fine bakery wares; Milk and dairy also includes dairy alternate products;
Baby foods are foods for infants and young children.

Tolerable Upper Intake Level for dietary sugars

www.efsa.europa.eu/efsajournal 185 EFSA Journal 2022;20(2):7074



Food Groups19

Total sugars Free sugars Added sugars

g/day(a) % contrib.(a) g/day(a) % contrib.(a) g/day(a) % contrib.(a)

Mean P95 Mean Mean P95 Mean Mean P95 Mean

Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

Cereals 1 4 5 17 1% 6% 0 3 0 11 0% 14% 0 3 0 11 0% 20%

Milk and dairy 10 31 56 110 17% 37% 2 15 13 45 5% 32% 2 15 13 45 7% 48%
Baby foods 1 20 2 89 1% 32% 0 4 0 12 0% 13% 0 3 0 12 0% 15%

Others 0 3 2 11 1% 4% 0 2 0 9 0% 7% 0 0 0 3 0% 2%

OTHER CHILDREN (≥ 36 months to < 10 years)

Sugars and confectionery 4 28 20 105 6% 24% 4 26 18 101 12% 41% 3 26 14 86 14% 62%
SSSD+SSFD 1 29 1 115 2% 24% 1 29 1 115 3% 36% 1 27 1 108 5% 39%

Fine bakery wares 0 16 0 72 0% 16% 0 15 0 65 0% 26% 0 15 0 65 0% 33%
Fruit/veg. juices 4 23 15 99 6% 20% 4 23 15 99 9% 35% 0 4 0 17 0% 11%

Fruit/veg., processed 1 13 3 57 1% 13% 0 7 1 37 1% 13% 0 7 1 37 1% 16%
Fruit/veg., fresh 9 27 39 119 12% 26% N/A N/A

Cereals 2 8 5 34 2% 12% 0 6 0 25 0% 19% 0 6 0 25 0% 25%
Milk and dairy 14 37 51 139 17% 40% 3 14 21 70 8% 30% 3 14 21 70 9% 33%

Others 1 5 3 20 1% 5% 0 1 0 5 0% 2% 0 1 0 5 0% 2%

ADOLESCENTS (≥ 10 to < 14 years)

Sugars and confectionery 6 30 24 110 7% 24% 6 29 22 106 12% 39% 4 28 13 100 13% 56%
SSSD+SSFD 3 37 22 176 3% 27% 3 37 22 176 6% 38% 3 35 21 166 7% 41%

Fine bakery wares 0 16 0 80 0% 16% 0 15 0 75 0% 25% 0 15 0 75 0% 32%
Fruit/veg. juices 6 23 26 104 5% 19% 6 23 26 104 8% 33% 0 5 0 20 0% 12%

Fruit/veg., processed 1 11 6 56 2% 11% 1 5 1 35 1% 9% 1 5 1 35 1% 11%
Fruit/veg., fresh 9 29 40 134 8% 26% N/A N/A

Cereals 2 9 7 43 2% 12% 0 6 2 32 0% 16% 0 6 2 32 1% 23%
Milk and dairy 8 36 31 143 11% 32% 1 14 3 79 3% 18% 1 14 3 79 4% 26%

Alcoholic beverages 0 1 0 8 0% 2% 0 1 0 8 0% 3% 0 1 0 0 0% 1%
Others 1 4 2 17 1% 4% 0 1 1 5 0% 2% 0 1 1 5 1% 2%

ADOLESCENTS (≥ 14 to < 18 years)

Sugars and confectionery 6 28 25 105 6% 24% 6 26 23 102 11% 42% 5 26 23 97 12% 59%

SSSD+SSFD 4 36 28 188 4% 28% 4 36 28 188 6% 39% 3 35 27 181 7% 44%
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Food Groups19

Total sugars Free sugars Added sugars

g/day(a) % contrib.(a) g/day(a) % contrib.(a) g/day(a) % contrib.(a)

Mean P95 Mean Mean P95 Mean Mean P95 Mean

Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

Fine bakery wares 0 14 0 70 0% 14% 0 13 0 64 0% 22% 0 13 0 64 0% 30%

Fruit/veg. juices 6 34 27 167 5% 27% 6 34 27 167 8% 38% 0 3 0 19 0% 10%
Fruit/veg., processed 2 9 7 45 2% 10% 0 5 1 26 1% 8% 0 5 1 26 1% 10%

Fruit/veg., fresh 9 27 39 136 9% 25% N/A N/A
Cereals 2 9 7 46 2% 11% 0 6 2 32 1% 13% 0 6 2 32 1% 16%

Milk and dairy 9 34 34 131 11% 30% 1 12 1 69 4% 16% 1 12 1 69 4% 22%
Alcoholic beverages 0 2 0 11 0% 2% 0 1 0 8 0% 2% 0 1 0 4 0% 2%

Others 1 4 3 17 1% 4% 0 1 1 5 0% 2% 0 1 1 5 1% 3%

ADULTS (≥ 18 to < 65 years)

Sugars and confectionery 7 28 34 95 11% 29% 7 28 32 91 18% 52% 5 26 23 90 20% 57%
SSSD+SSFD 3 19 10 119 3% 18% 3 19 10 119 7% 30% 3 19 10 115 8% 34%

Fine bakery wares 1 14 7 64 1% 14% 1 13 5 63 2% 23% 1 13 5 63 2% 30%
Fruit/veg. juices 1 24 0 124 1% 20% 1 24 0 124 2% 31% 0 2 0 21 0% 5%

Fruit/veg., processed 1 9 4 49 2% 9% 0 6 0 28 1% 12% 0 6 0 28 1% 14%
Fruit/veg., fresh 14 30 63 132 14% 39% N/A N/A

Cereals 2 7 10 31 3% 8% 0 3 0 16 1% 7% 0 3 0 16 1% 9%
Milk and dairy 7 28 29 125 10% 26% 1 10 4 57 3% 14% 1 10 4 57 4% 20%

Alcoholic beverages 1 7 5 31 1% 8% 0 3 1 15 1% 5% 0 1 0 8 0% 3%
Others 1 7 3 25 2% 7% 0 2 1 6 1% 3% 0 2 1 6 1% 4%

OLDER ADULTS (≥ 65 years)

Sugars and confectionery 6 26 27 92 8% 27% 6 26 27 90 15% 60% 3 25 13 73 10% 66%

SSSD+SSFD 1 7 0 38 1% 7% 1 7 0 20 2% 21% 1 6 0 20 2% 22%
Fine bakery wares 2 17 4 98 1% 21% 1 16 4 84 2% 36% 1 16 4 84 2% 45%

Fruit/veg. juices 0 14 0 73 0% 13% 0 14 0 73 1% 25% 0 1 5 25 0% 3%
Fruit/veg., processed 1 13 2 62 2% 14% 0 9 0 44 2% 21% 0 9 0 44 2% 26%

Fruit/veg., fresh 17 30 74 136 19% 44% N/A N/A
Cereals 2 6 8 24 3% 8% 0 2 0 9 0% 6% 0 2 0 9 0% 7%

Milk and dairy 7 24 28 123 11% 24% 0 10 0 53 2% 17% 0 10 0 53 3% 22%
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Food Groups19

Total sugars Free sugars Added sugars

g/day(a) % contrib.(a) g/day(a) % contrib.(a) g/day(a) % contrib.(a)

Mean P95 Mean Mean P95 Mean Mean P95 Mean

Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

Alcoholic beverages 1 6 3 23 1% 5% 0 3 0 15 0% 9% 0 1 0 7 0% 4%

Others 1 6 4 23 2% 8% 0 2 1 10 1% 4% 0 2 1 10 1% 5%

PREGNANT WOMEN

Sugars and confectionery 8 16 39 67 9% 16% 7 15 36 62 17% 29% 5 14 21 54 17% 31%
SSSD+SSFD 2 10 9 55 2% 11% 2 10 9 55 4% 24% 2 10 9 55 5% 32%

Fine bakery wares 7 11 32 61 9% 11% 7 10 31 57 17% 22% 6 10 31 57 22% 29%
Fruit/veg. juices 5 10 24 54 5% 11% 5 10 24 54 10% 23% 0 2 19 23 0% 5%

Fruit/veg., processed 2 8 7 23 2% 9% 1 5 6 18 2% 9% 1 5 6 18 2% 11%
Fruit/veg., fresh 17 25 89 108 22% 30% N/A N/A

Cereals 3 9 10 39 3% 9% 0 5 3 25 1% 12% 0 5 3 25 2% 16%
Milk and dairy 14 29 53 133 16% 31% 3 10 19 63 9% 22% 3 10 19 63 12% 25%

Alcoholic beverages 0 0 0 0 0% 0% 0 0 0 0 0% 0% 0 0 0 3 0% 0%
Others 2 3 10 14 3% 4% 0 1 1 4 1% 2% 0 1 1 4 1% 2%

LACTATING WOMEN

Sugars and confectionery 15 26 54 97 15% 23% 14 25 53 92 28% 48% 7 22 29 77 27% 52%

SSSD+SSFD 2 2 10 11 2% 2% 2 2 10 11 4% 4% 2 2 10 11 5% 8%
Fine bakery wares 6 11 26 57 5% 12% 5 11 26 53 11% 21% 5 11 26 53 13% 39%

Fruit/veg. juices 7 17 26 66 6% 17% 7 17 26 66 13% 33% 0 1 17 18 1% 1%
Fruit/veg., processed 2 9 8 44 2% 8% 1 5 7 29 2% 10% 1 5 7 29 3% 12%

Fruit/veg., fresh 18 35 92 148 19% 31% N/A N/A
Cereals 4 5 16 21 4% 5% 1 2 5 6 2% 4% 1 2 5 6 2% 7%

Milk and dairy 21 21 54 82 18% 22% 4 6 12 30 7% 12% 4 6 12 30 14% 14%
Alcoholic beverages 0 0 0 2 0% 0% 0 0 0 0 0% 0% 0 0 0 0 0% 0%

Others 3 4 8 12 2% 4% 0 1 0 2 0% 1% 0 1 0 2 1% 1%

Numbers in red indicate identical estimated intake values for added and free sugars.
(a): Minimum (min) and maximum (max) means and 95th percentiles across EU surveys, for each age class.
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Appendix B – Summary results_intake and percent contribution_consumers

Table B.1: Intake of free sugars across EU dietary surveys from selected food groups in consumers and percent contribution of the selected food groups
to the intake of free sugars

Free sugars

Food groups20

Percentange of
consumers of the food
group in the surveys

Consumers

From food group(a) From all sources(a)
% contrib.(a)

(g/day) (g/day)

Mean P95 Mean Mean

Min Max Min Max Min Max Min Max Min Max

INFANTS (≥ 4 to < 12 months)

Fine bakery wares 0 52 0 5 2 13 3 23 1% 51%
Confectionery 0 27 0 10 3 8 5 30 3% 54%

Sugar and similar 1 93 1 13 6 33 6 26 6% 82%
SSSD+SSFD 0 26 1 35 7 7 11 38 3% 100%

Fruit/veg. juices 5 52 1 14 2 23 2 32 7% 53%

TODDLERS (≥ 12 to < 36 months)

Fine bakery wares 26 97 1 8 3 18 15 63 4% 33%
Confectionery 14 92 1 12 3 24 19 64 5% 32%

Sugar and similar 6 99 2 13 7 31 18 60 5% 53%
SSSD+SSFD 2 80 2 22 10 63 18 71 7% 41%

Fruit/veg. juices 32 89 4 24 15 47 14 66 19% 48%

OTHER CHILDREN (≥ 36 months to < 10 years)

Fine bakery wares 1 98 1 15 5 37 32 82 1% 28%
Confectionery 36 100 7 16 17 46 35 82 14% 22%

Sugar and similar 21 100 3 15 9 39 29 82 5% 29%

20 Data extracted from Annex E. Results of the intake assessment. Consumers.
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Free sugars

Food groups20

Percentange of
consumers of the food
group in the surveys

Consumers

From food group(a) From all sources(a)
% contrib.(a)

(g/day) (g/day)

Mean P95 Mean Mean

Min Max Min Max Min Max Min Max Min Max

SSSD+SSFD 14 97 5 31 21 72 42 86 11% 38%

Fruit/veg. juices 39 96 8 26 23 67 31 87 13% 42%

ADOLESCENTS (≥ 10 to < 14 years)

Fine bakery wares 3 96 0 16 5 61 32 106 0% 30%
Confectionery 35 97 7 20 18 60 39 99 14% 31%

Sugar and similar 27 98 5 17 14 47 31 98 6% 28%
SSSD+SSFD 23 93 10 39 27 101 44 99 19% 47%

Fruit/veg. juices 30 93 13 26 36 71 37 105 15% 47%

ADOLESCENTS (≥ 14 to < 18 years)

Fine bakery wares 0 88 2 19 24 54 34 101 2% 30%
Confectionery 27 94 8 21 20 59 49 111 12% 34%

Sugar and similar 32 97 6 19 21 53 34 100 9% 33%
SSSD+SSFD 20 90 12 41 40 118 46 109 16% 48%

Fruit/veg. juices 25 93 11 55 35 146 44 111 15% 49%

ADULTS (≥ 18 to < 65 years)

Fine bakery wares 28 84 2 20 5 53 34 84 3% 31%
Confectionery 13 91 5 17 15 57 39 92 10% 30%

Sugar and similar 25 97 8 27 25 60 30 85 13% 51%
SSSD+SSFD 16 88 9 40 30 123 30 109 24% 47%

Fruit/veg. juices 15 81 1 45 5 134 30 97 3% 46%

OLDER ADULTS (≥ 65 years)

Fine bakery wares 34 90 2 21 5 66 23 62 3% 43%
Confectionery 9 86 4 12 13 33 31 67 8% 32%

Sugar and similar 36 99 8 24 22 55 20 62 16% 59%

Tolerable Upper Intake Level for dietary sugars

www.efsa.europa.eu/efsajournal 190 EFSA Journal 2022;20(2):7074



Free sugars

Food groups20

Percentange of
consumers of the food
group in the surveys

Consumers

From food group(a) From all sources(a)
% contrib.(a)

(g/day) (g/day)

Mean P95 Mean Mean

Min Max Min Max Min Max Min Max Min Max

SSSD+SSFD 6 89 5 25 18 71 24 79 18% 48%

Fruit/veg. juices 24 78 0 30 13 94 20 71 2% 42%

PREGNANT WOMEN

Fine bakery wares 59 76 9 15 23 43 39 55 20% 32%
Confectionery 24 39 8 18 27 46 46 62 16% 30%

Sugar and similar 33 76 7 11 23 31 38 53 15% 23%
SSSD+SSFD 15 40 13 30 33 85 42 64 22% 46%

Fruit/veg. juices 37 70 8 17 28 53 36 58 22% 35%

LACTATING WOMEN

Fine bakery wares 55 86 10 12 27 27 52 59 17% 24%
Confectionery 46 54 7 13 35 35 55 60 12% 22%

Sugar and similar 74 93 15 19 49 49 54 56 27% 36%
SSSD+SSFD 16 37 6 13 42 42 50 69 12% 19%

Fruit/veg. juices 46 86 15 19 46 46 51 63 23% 37%

Confectionery includes water-based desserts; SSSD+SSFD are sugar sweetened soft drinks and sugar sweetened fruit drinks.
(a): Minimum (min) and maximum (max) means (and 95th percentiles when calculated) across EU surveys, for each age class.
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Table B.2: Intake of added sugars across EU dietary surveys from selected food groups in consumers and percent contribution of the selected food
groups to the intake of free sugars

Added sugars

Food groups21

Percentange of
consumers of the food
group in the surveys

Consumers

From food group(a) From all sources (a)

% contrib.(a)
(g/day) (g/day)

Mean P95 Mean Mean

Min Max Min Max Min Max Min Max Min Max

INFANTS (≥ 4 to < 12 months)

Fine bakery wares 0 52 0 5 2 13 3 19 1% 53%
Confectionery 0 27 0 10 3 8 5 27 3% 54%

Sugar and similar 1 93 1 13 5 33 2 22 6% 82%
SSSD+SSFD 0 26 1 31 6 6 10 31 4% 100%

Fruit/veg. juices 5 52 0 8 0 7 2 25 0% 32%

TODDLERS (≥ 12 to < 36 months)

Fine bakery wares 26 97 1 8 3 18 11 43 5% 41%
Confectionery 14 92 1 12 3 24 17 47 6% 36%

Sugar and similar 6 99 0 12 3 29 11 40 3% 61%
SSSD+SSFD 2 80 2 21 9 59 16 62 8% 46%

Fruit/veg. juices 32 89 0 8 0 18 9 41 0% 32%

OTHER CHILDREN (≥ 36 months to < 10 years)

Fine bakery wares 1 98 1 15 5 37 25 71 3% 37%
Confectionery 36 100 7 16 17 46 27 72 17% 29%

Sugar and similar 21 100 1 13 5 37 20 70 3% 38%
SSSD+SSFD 14 97 5 29 20 67 32 73 14% 41%

Fruit/veg. juices 39 96 0 10 0 21 23 68 0% 16%

21 Data extracted from Annex E. Results of the intake assessment. Consumers.
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Added sugars

Food groups21

Percentange of
consumers of the food
group in the surveys

Consumers

From food group(a) From all sources (a)

% contrib.(a)
(g/day) (g/day)

Mean P95 Mean Mean

Min Max Min Max Min Max Min Max Min Max

ADOLESCENTS (≥ 10 to < 14 years)

Fine bakery wares 3 96 0 16 5 61 26 87 1% 36%
Confectionery 35 97 7 20 18 60 34 89 16% 38%

Sugar and similar 27 98 1 16 13 47 22 85 3% 31%
SSSD+SSFD 23 93 10 37 26 97 37 88 21% 56%

Fruit/veg. juices 30 93 0 10 0 25 25 83 0% 26%

ADOLESCENTS (≥ 14 to < 18 years)

Fine bakery wares 0 88 2 19 24 54 29 83 3% 38%
Confectionery 27 94 8 21 20 59 39 89 14% 39%

Sugar and similar 32 97 3 18 12 53 28 88 7% 37%
SSSD+SSFD 20 90 12 40 40 118 41 88 24% 59%

Fruit/veg. juices 25 93 0 12 0 26 33 81 0% 21%

ADULTS (≥ 18 to < 65 years)

Fine bakery wares 28 84 2 20 5 53 27 61 3% 39%
Confectionery 13 91 5 17 15 57 33 71 11% 36%

Sugar and similar 25 97 4 25 19 59 23 62 9% 55%
SSSD+SSFD 16 88 9 40 29 123 28 83 26% 51%

Fruit/veg. juices 15 81 0 10 0 23 21 58 0% 17%

OLDER ADULTS (≥ 65 years)

Fine bakery wares 34 90 2 21 5 66 19 48 4% 52%
Confectionery 9 86 4 12 13 33 25 54 9% 39%

Sugar and similar 36 99 2 22 15 53 15 47 7% 65%
SSSD+SSFD 6 89 5 25 18 71 22 64 20% 53%

Fruit/veg. juices 24 78 0 2 0 12 15 49 0% 9%
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Added sugars

Food groups21

Percentange of
consumers of the food
group in the surveys

Consumers

From food group(a) From all sources (a)

% contrib.(a)
(g/day) (g/day)

Mean P95 Mean Mean

Min Max Min Max Min Max Min Max Min Max

PREGNANT WOMEN

Fine bakery wares 59 76 9 15 23 43 31 49 26% 40%
Confectionery 24 39 8 18 27 46 36 56 17% 34%

Sugar and similar 33 76 2 9 7 30 27 47 5% 25%
SSSD+SSFD 15 40 13 30 33 85 33 57 24% 55%

Fruit/veg. juices 37 70 0 4 0 13 26 42 0% 11%

LACTATING WOMEN

Fine bakery wares 55 86 10 12 27 27 29 49 20% 42%
Confectionery 46 54 7 13 35 35 33 51 20% 26%

Sugar and similar 74 93 6 16 48 48 30 44 20% 37%
SSSD+SSFD 16 37 6 13 42 42 32 61 18% 22%

Fruit/veg. juices 46 86 0 1 8 8 26 47 1% 2%

Confectionery includes water-based desserts; SSSD+SSFD are sugar sweetened soft drinks and sugar sweetened fruit drinks.
(a): Minimum (min) and maximum (max) means (and 95th percentiles when calculated) across EU surveys, for each age class.
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Appendix C – Flow chart for the selection of human studies

*: Articles identified through the update of the literature search that were incorporated into the assessment
(see Annex A).

Figure C.1: Flow chart for the selection of studies on metabolic diseases
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Figure C.2: Flow chart for the selection of studies on caries
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Appendix D – Intervention studies on metabolic diseases reported in
multiple references

Several randomised controlled trials that were eligible for this assessment were reported in multiple
references. To facilitate the identification of the individual studies when reporting the results in forest
plots, a main reference was identified for each of them. In some cases, data on different endpoints
were extracted from linked references, and not from the main reference indicated in the forest plots or
the text. In other cases, linked references did not provide additional data for this assessment with
respect to the main reference and were excluded at data extraction (e.g. report on reanalysis of data
already presented in the main reference or other linked references). Main references for studies with
data extracted from linked references appear in forest plots with an asterisk (e.g. Angelopoulos et al.,
2015*).

Main reference and endpoints
extracted

Linked references and endpoints
extracted

Linked references
excluded at data
extraction

Angelopoulos et al. (2015)*

Uric acid, SBP, DBP

Angelopoulos et al. (2016)

Triglycerides, total cholesterol, HDL-c,
LDL-c, fasting glucose, body weight, BMI,
WC

Hallfrisch et al. (1983a)*

Glucose at 120’ during an OGTT, insulin at
120’ during an OGTT, fasting insulin,
fasting glucose

Hallfrisch et al. (1983b)

Triglycerides, total cholesterol, HDL-c,
LDL-c, SBP, DBP

Israel et al. (1983)*

Uric acid, SBP, DBP

Reiser et al. (1981a)

Triglycerides, total cholesterol, HDL-c,
LDL-c
Reiser et al. (1981b)

fasting glucose, fasting insulin, glucose at
120’ during an OGTT, insulin at 120’
during an OGTT

Ebbeling et al. (2012)

Body weight, BMI

Ebbeling et al. (2006)

Ruyter et al. (2014)

Body weight, WC

Katan et al. (2016)

Lowndes et al. (2014b)*

WC, BF, fasting glucose, SBP, DBP, total
cholesterol, triglycerides, HDL-c, LDL-c,
uric acid

Bravo et al. (2013)

Liver fat

Yu et al. (2013)

Maersk et al. (2012)*

VAT, Liver fat

Engel et al. (2018)

Body weight, BF, triglycerides, total-c,
HDL-c, LDL-c, fasting insulin, fasting
glucose, glucose at 120’ during an OGTT,
insulin at 120’ during an OGTT, Matsuda
index, SBP, DBP

Bruun et al. (2015)

Uric acid
Raben et al. (2002)*

Body weight, BMI, BF, SBP, DBP,

Raben et al. (2011)

Triglycerides, total cholesterol, HDL-c,
fasting glucose, fasting insulin, HOMA-IR,
HOMA-b
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Main reference and endpoints
extracted

Linked references and endpoints
extracted

Linked references
excluded at data
extraction

Reiser et al. (1979a)*

Total cholesterol, triglycerides

Reiser et al. (1979b)

Glucose at 120’ during an OGTT, insulin
at 120’ during an OGTT
Solyst et al. (1980)

Uric acid

Reiser et al. (1989a)

Triglycerides, total cholesterol, HDL-c,
LDL-c, uric acid

Reiser et al. (1989b)

Saris et al. (2000)

Body weight, fasting glucose, fasting
insulin, triglycerides, total cholesterol,
HDL-c, LDL-c

Poppitt et al. (2002)

Stanhope et al. (2009)*

WC, VAT, SBP, DBP, triglycerides, total
cholesterol, HDL-c, LDL-c, fasting glucose,
fasting insulin, glucose at 120’ during an
OGTT, insulin at 120’ during an OGTT

Stanhope et al. (2011)
Cox et al. (2012)
Uric acid

Rezvani et al. (2013)
Body weight, BF

BF, body fat; BMI, body mass index; DBP, diastolic blood pressure; HDL-c, high density lipoprotein cholesterol; HOMA,
homeostasis model of assessment; IR, insulin resistance; LDL-c, low density lipoprotein cholesterol; OGTT, oral glucose tolerance
test; SBP, systolic blood pressure; VAT, visceral adipose tissue; WC, waist circumference.
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Appendix E – Main characteristics of intervention studies on metabolic diseases

Author,
year*

Country Funding
Design,
duration
(wks)

Arms(1)
Sugars
dose

(E%)(2)
Participants

Age, years
(mean � SEM)

Background diet(3) Food form
Outcome
clusters(4)

Q1 Q2 Q3 Q4

Isocaloric with neutral energy balance(5)

Bantle et al.
(2000)

US Public CX, 6 Fructose
Glucose

14
14

24/12 F
BMI ≤ 32 kg/m2

Range: 18–80
12/6F(3) 40
12/6F < 40

CHO: 55
Protein: 15
Fat: 30
Fibre: 23
P/S: 0.947

Mixed diet BL – I:14 Fr
R:14 G

– –

Black et al.
(2006)

UK Private CX, 6 Sucrose
Sucrose

10
25

13 M
BMI < 35 kg/m2

33.3 � 3 CHO: 55
Protein: 12
Fat: 33
Fibre: 18

Mixed diet GH, BP, BL I: 25
R: 10

– – –

Despland
et al. (2017)

CH Public CX, 8d Starch
Honey
Glucose/
Fructose

0
25
25

8 M
GP

NR CHO: 55
Protein: 15
Fat: 30

Mixed diet GH I: 25 Gl/Fr
R:0

– – –

Gostner et al.
(2005)

DE NR CX, 4 Isomalt
Sucrose (30 g/
day)

0
6

19 /12F
GP

Median: 30.5 CHO: 46
Protein: 14
Fat: 40
Fibre: 14

Foods GH, BL I:6
R:0

– – –

Groen et al.
(1966)

US Mixed CX, 5 Starch
Sucrose (140 g/
day)

0
30

8/6F
7/4F
GP

40.2 � 3.16 Starch/sucrose
CHO: 62.1/66.4
Protein: 18.4/14.6
Fat: 19.3/18.9

BL I:30
R:0

– – –

Hallfrisch
et al.
(1983a)*

US NR CX, 5 Starch
Fructose
Fructose

0
7.5
15

12 M N-I 39.8 � 2.4 CHO: 45
Protein: 15
Fat: 40
Fibre: 5
P/S: 0.4

Foods GH, BP, BL I:15
R:0

– – –

12 M H-I 39.5 � 2.1

Israel et al.
(1983)*

US NR CX, 6 Sucrose
Sucrose
Sucrose

2
15
30

24/12F H-I Mean: 36.8
Range: 21–51

CHO: 44
Protein: 14
Fat: 42
Fibre: 4
P/S: 0.29

Foods GH, BP, BL,
UA

I:30
R:2

– – –
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Author,
year*

Country Funding
Design,
duration
(wks)

Arms(1)
Sugars
dose

(E%)(2)
Participants

Age, years
(mean � SEM)

Background diet(3) Food form
Outcome
clusters(4)

Q1 Q2 Q3 Q4

Johnston
et al. (2013)

US Mixed P, 2 Fructose
Glucose

25
25

32 M, AO 35 � 11
33 � 9

CHO: 55
Protein: 15
Fat: 30

Beverages EFD, GH, BL,
UA

– I:25 Fr
R:25 Gl

– –

Kelsay et al.
(1974)

US NR CX, 4 Glucose
Sucrose

42.5
42.5

7F
GP

Range: 18–23 CHO: 50
Protein: 12
Fat: 38
P/S: 0.23

Foods GH – – – –

Koh et al.
(1988)

US NR CX, 4 Fructose
Glucose

15
15

9/6F NGT 50 � 5 CHO: 51
Protein: 17
Fat: 32
Fibre: 22.5
P/S: 0.9

Mixed diet GH, BP, BL – I:15 Fr
R:15 Gl

– –

9/6F IGT 54.6 � 6

Lewis et al.
(2013)

IE Private CX, 6 Sucrose
Sucrose

5
15

13/4F, OW/OB 46.1 � 1.9 5E% / 15 E%:
CHO: 54.8/55
Protein: 12.3 /12.1
Fat: 32.9/32.8
Fibre: 18.3/17.9
P/S: 0.35/0.31

Mixed diet GH, BP, BL I:15
R:5

– – –

Lowndes
et al. (2014a)

US Private P, 10 Sucrose
HFCS
Sucrose
HFCS

10
10
20
20

18/6F
17/8F
13/ 8F
17/9F
OW/OB

39.82 � 11.6
39.33 � 10.94
41.15 � 12.24
36.48 � 12.5

NR Beverages BF, BP, BL I:20 Suc
R:10 Suc

– –

Lowndes
et al.
(2014b)*

US Private P, 10 Sucrose
HFCS
Sucrose
HFCS
Sucrose
HFCS

8
8
18
18
30
30

58/26F
69/42F
64/38F
60/30F
53/26F
51/28F
BMI < 35

38.62 � 12.33
38.93 � 11.65
41.3 � 11.1
40.43 � 11.33
38.85 � 11.56
43.41 � 11.33

NR Beverages BF, EFD, GH,
BP, BL, UA

I: 30 Suc
R: 8 Suc

– –
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Author,
year*

Country Funding
Design,
duration
(wks)

Arms(1)
Sugars
dose

(E%)(2)
Participants

Age, years
(mean � SEM)

Background diet(3) Food form
Outcome
clusters(4)

Q1 Q2 Q3 Q4

Lowndes
et al. (2015)

US Private P, 10 Control milk
Fructose
Glucose
Sucrose
HFCS

0
9
9
18
18

31/21F
30/14F
34/17F
33/18F
31/21F
BMI < 35

35.3 � 12.5
35.6 � 10.4
37 � 11.7
34.1 � 11
36.5 � 11.3

NR Beverages GH I: 18 Suc
R: 0

I:9 Fr
R:9 Gl

Moser et al.
(1986)

US NR CX, 4 Starch
Sucrose

0
43

6F non-OC users
6F OC users

Range: 19–25 CHO: 51
Protein: 13
Fat: 36

Foods GH, BL I:43
R:0

– – –

Reiser et al.
(1979a)*

US NR CX, 6 Starch
Sucrose

0
30

19/9F
GP

Mean: 42
Range: 35–55

CHO: 43
Protein: 15
Fat: 42
Fibre: 4.2
P/S: 0.26

Foods GH, BL, UA I:30
R:0

– – –

Reiser et al.
(1989a)*

US NR CX, 5 Starch
Fructose

0
20

11 M N-I Mean: 38
Range: 23–64

Starch / fructose:
CHO: 51 / 51
Protein: 13 / 13
Fat: 36 / 36
Fibre: 12.1 / 11
P/S: 0.33 / 0.33

Foods BL, UA I:20
R:0

– – –

10 M H-I Mean: 47
Range: 23–64

Schwarz
et al. (2015)

US Public CX, 9d Starch
Fructose

0
20

8 M Non-OB 42 � 3 Starch / fructose:
CHO: 50 / 50
Protein: 15 / 15
Fat: 35 / 35
Fibre: 28 / 17

Beverages GH I:20
R:0

– – –

Sunehag
et al. (2008)

US Mixed CX, 1 Fructose
Fructose

6
24

6/3F OB 15.2 � 0.5 CHO: 60 E%
Protein: 15 E%
Fat: 25 E%

Mixed diet GH I:24 Fru
R:6 Fru

– – –

Swanson
et al. (1992)

US Mixed CX, 4 Starch
Fructose

0
16.6

14/7F
GP

Mean: 34
Range: 19–60

Starch / fructose:
CHO: 55 / 55
Protein: 15 / 15
Fat: 30 /30
Fibre: 27 /26
P/S: 1 / 1

Mixed diet GH, BL I:16.6
R:0

– – –
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Author,
year*

Country Funding
Design,
duration
(wks)

Arms(1)
Sugars
dose

(E%)(2)
Participants

Age, years
(mean � SEM)

Background diet(3) Food form
Outcome
clusters(4)

Q1 Q2 Q3 Q4

Szanto and
Yudkin
(1969)

UK Public CX,2 Starch
Sucrose (438 g/
day)

0
54

19 M
GP

Mean: 28
Range: 22–44

NR Mixed diet GH I:54
R:0

– – –

Thompson
et al. (1978)

US Mixed CX, 10d Corn syrup
Sucrose
Corn syrup
Sucrose

45
45
65
65

8 M
GP

Range: 19–24 45E% / 65E%:
CHO: 45 / 65
Protein: 15 /15
Fat: 40 / 20
P/S: 0.7 /0.7

Beverages GH I:65 Suc
R:45 Suc

– – –

Umpleby
et al. (2017)

UK Public CX, 12 NMES
NMES

6
26

14 M OW/no
NAFLD

Mean: 54
Range: 41–65

NR Mixed diet EFD, GH, BL I:6
R:26

– – –

11 M OW/NAFLD Mean: 59
Range: 49–64

Isocaloric with positive energy balance(6)

Beck-Nielsen
et al. (1978)

DK Mixed P, 2 Fat (250 g/day)
Sucrose (250 g/
day)

0
32

6 NR
6 NR
GP

Range: 23–33 NR Mixed diet GH I:32
R:0

– – –

Beck-Nielsen
et al. (1980)

DK NR P, 1 Fructose (250 g/
day)
Glucose (250 g/
day)

33
33

8NR
7NR
GP

Range: 21–35 CHO: 44
Protein: 18
Fat: 35

Beverages GH – I:36 Fr
R:36 Gl

– –

Johnston
et al. (2013)

UK Private P, 2 Fructose
Glucose

25
25

32 M, AO 35 � 11
33 � 9

NR Beverages EFD, GH – I:25 Fr
R:25 Gl

– –

Silbernagel
et al. (2011)

DE Mixed P, 4 Fructose (150 g/
day)
Glucose (150 g/
day)

22
22

10/3F
10/5F
BMI < 35

30.5 � 2 CHO: 50
Protein: 15
Fat: 35

Beverages EFD, GH, BP,
BL, UA

– I:22 Fr
R:22 Gl

– –

Hypercaloric (7)

Le et al.
(2009)

US NR CX, 1 No sugars
Fructose

0
35

8 M non-OffT2DM 24.0 � 1.0 CHO: 55
Protein: 15
Fat: 30

Beverages GH I:35
R:0

– – –

16 M OffT2DM 24.7 � 1.3
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Author,
year*

Country Funding
Design,
duration
(wks)

Arms(1)
Sugars
dose

(E%)(2)
Participants

Age, years
(mean � SEM)

Background diet(3) Food form
Outcome
clusters(4)

Q1 Q2 Q3 Q4

Ad libitum

Aeberli et al.
(2013)

CH Mixed CX, 3 Fructose (40 g/
day)
Fructose (80 g/
day)
Glucose (80 g/
day)
Sucrose (80 g/
day)

8
16
16
16

9 M
NW

22.8 � 1.7 No target Beverages GH I:16 Fr
R:8 Fr

I:16 Fr
R:16 Gl

– –

Angelopoulos
et al.
(2015)*

US NR P, 10 Fructose
Glucose
Sucrose
HFCS

9
9
18
18

65NR
77NR
64NR
61NR
BMI < 35 kg/m2

38.65 � 12.19
36.1 � 12.06
39.83 � 12.19
36.32 � 10.72

No target Beverages BF, GH, BP,
BL, UA

– I:9 Fr
R:9 Gl

– –

Campos
et al. (2015)

CH Mixed P, 12 ASSD
SSSD

0
18

14/6F
13/7F
OW/OB

NR No target Beverages BF, EFD, GH,
BP, BL, UA

I: 18
R: 0

– – –

Ruyter et al.
(2014)

NL Public P, 72 ASSD
SSSD (26 g/day)

0
5

319/147F 322/151F
GP

8.2 � 1.8
8.2 � 1.8

No target Beverages BF I: 5
R: 0

– – –

Ebbeling
et al. (2012)

US Public P, 52 ASSD+water
SSSD+SSFD+TFJ

0
17

110/48F
114/52F
OW/OB

15.3 � 0.7
15.2 � 0.7

No target Beverages BF I: 17
R: 0

– – –

Hayashi et al.
(2014)

JP Public P, 12 HFCS (28 g/day;
26 g sugar)
RSS (30 g/day;
23 g sugar)

–

–

17/8F
17/9F
OB

42.4 � 2.6
41.7 � 2.8

No target Beverages BF, GH, BP,
BL, UA

– – – –

Hernandez-
Cordero
et al. (2014)

MX Private P, 36 Water
SSBs

0
20

120F
120F
OW/OB

33.5 � 6.7
33.3 � 6.7

No target Beverages BF, GH, BP,
BL

I: 20
R: 0

– – –
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Author,
year*

Country Funding
Design,
duration
(wks)

Arms(1)
Sugars
dose

(E%)(2)
Participants

Age, years
(mean � SEM)

Background diet(3) Food form
Outcome
clusters(4)

Q1 Q2 Q3 Q4

Hollis et al.
(2009)

US Private P, 12 No beverage
Grape juice (82
g/day)
Grape drink (82
g/day)

0
18
18

25NR
25NR
26NR
OW

28 � 10
22 � 4
26 � 9

No target Beverages BF, GH, BL I: 18 GD
R: 0

– – –

Houchins
et al. (2012)

US NR CX, 8 Fruits/
vegetables (20E
%)
Fruit Juice (20E
%)

–

–

34NR
GP

23 � 1 No target Beverages BF – – – –

Huttunen
et al. (1976)

FI NR P, 72 Xylitol
Fructose (70 g/
day)
Sucrose (73.5 g/
day)

0
14
16

48NR
35NR
33NR
GP

Range: 13–55 No target Mixed diet GH, BL, UA I: 16 Suc
R: 0

I: 15 Fr
R:15 Gl

– –

Jin et al.
(2014)

US Mixed P, 4 Fructose (99 g/
day)
Glucose (99 g/
day)

20
20

9/6F
12/4F
NAFLD

14.2 � 0.88*
13.0 � 0.71*

No target Beverages BF, EFD, GH,
BL

– I: 20 Fr
R:20 Gl

– –

Maersk et al.
(2012)*

DK Mixed P, 24 Semi-skim milk
Water
ASSD
SSSD (106 g/
day)

–

0
0
18

15/11F
16/11F
15/12F
14/6F
OW/OB

37.7 � 9.1
39 � 7.3
39 � 7.6
37.8 � 8

No target Beverages BF, EFD, GH,
BP, BL, UA

I:18
R:0 ASSD

– – –

Majid et al.
(2013)

PK Public P, 4 No beverage
Honey (46 g/
day)

0
8

31 M
32 M
GP

20 � 0.15
20.13 � 0.14

No target Beverages GH, BL I:8
R:0

– – –

Mark et al.
(2014)

DK Public P, 4 Fructose (60 g/
day)
Glucose (66 g/
day)

14
16

35F
38F
OW/OB

Range: 20–50 No target Beverages BF, GH – I: 15 Fr
R:15 Gl

– –

Markey et al.
(2016)

UK Private CX, 8 NMES (29 g/
day)
NMES (75 g/
day)

6
16

50/34F Non-OB 31.6 � 9.5 No target Mixed diet BF, GH, BP,
BL

I:6
R:16

– – –
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Author,
year*

Country Funding
Design,
duration
(wks)

Arms(1)
Sugars
dose

(E%)(2)
Participants

Age, years
(mean � SEM)

Background diet(3) Food form
Outcome
clusters(4)

Q1 Q2 Q3 Q4

Raben et al.
(2002)*

DK NR P, 10 Artificial
sweeteners
Sucrose

0
23

21NR
21NR
OW

37.1 � 2.2
33.3 � 2.0

No target Mixed diet BF, GH, BP,
BL

I:23
R:0

– – –

Rasad et al.
(2018)

IR Public P, 6 Honey (70 g/
day)
Sucrose (70 g/
day)

–

–

30 M
30 M
GP

21.53 � 1.63
24.23 � 1.88

No target Beverages BP, BL – – – –

Saris et al.
(2000)*

EU Mixed P, 24 High complex
CHO Control
High simple
CHO

19
22
38

83/40F
77/40F
76/40F
OW/OB

38 � 9
38 � 9
41 � 9

No target Mixed diet BF, GH, BL I:38
R:19

– – –

Smith et al.
(1996)

NZ Public P, 24 Sugar-free diet
Sucrose (66 g/
day)

0
12

22NR
10NR
HTG

53 � 9
50 � 11

No target Mixed diet BF, BL I: 12 Sucr
R: 0

– – –

Stanhope
et al.
(2009)*

US Public P, 8 Fructose
Glucose

25
25

17/8F
15/8F
OW/OB

Range: 40–72 No target Beverages BF, EFD, GH,
BP, BL, UA

– I:25 Fr
R:25 Gl

– –

Werner et al.
(1984)

UK Mixed CX, 6 Artificial
sweeteners
Sucrose (100 g/
day)

0
24

12/8F
gallstones

Mean: 48
Range: 26–69

No target Mixed diet BF, GH, BL I:24
R:0

– – –

Yaghoobi
et al. (2008)

IR Private P, 4 Honey (70 g/
day)
Sucrose (70 g/
day)

–

–

38NR
17NR
OW/OB

39.6 � 10.6
42.4 � 8.7

No target Beverages GH, BL – – –

AO = abdominal obesity; ASSD = artificially sweetened soft drinks; BF = body fatness; BL = blood lipids; BP = blood pressure; UA = uric acid; CHO = carbohydrates; CX = cross-over; EFD = ectopic
fat deposition; F = females; Fr = fructose; GD = grape drink; GH = glucose homeostasis; GP = general population; HFCS = high fructose corn syrup; HGP = healthy general population; H-I =
hyperinsulinaemia; HTG = hypertriglyceridaemia; I: intervention group; IGT = impaired glucose tolerance; NAFLD = non-alcoholic fatty liver disease; NGT = normal glucose tolerance; N-I = normo-
insulinaemia; NMES = non-milk extrinsic sugars; NR = not reported; NW = normal weight; OB = obese; OC = oral contraceptives; OffT2DM = Offspring’s from parents with type 2 diabetes mellitus;
OW = overweight; P = parallel; R = reference group; RSS = rare sugars syrup; S = sucrose; SSFD = sugar-sweetened fruit drinks; SSSD = sugar-sweetened soft drinks; TFJ = total fruit juices.
Columns Q1 and Q2 identify the arms that were selected from each study to answer questions 1 and 2, respectively. Columns Q3 and Q4 identify the studies that address questions 3 and 4,
respectively.
*: Identifies whether the study has been reported in other publications from which one or more outcome variables could have been extracted (see Appendix D).
(1): In parenthesis, amount of sugars in g/day, either provided in the publication or calculated from the amount consumed from a given source (e.g. honey, sugar-sweetened beverages).
(2): Refers to the sugars contribution of the dietary fraction manipulated in the study to total energy intake.
(3): Carbohydrates (CHO), protein and fat are expressed as % of total energy (E%); fibre is given in g/day; P/S is the ratio of polyunsaturated to saturated fatty acids.
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(4): Identifies the outcome variables that have been assessed in a study (by cluster) which are eligible for this assessment considering the duration of the intervention, as described in the
protocol. Measures of body fatness (BF) include one or more of the following: body weight, BMI, body fat, waist circumference, lean body mass. For studies conducted in isocaloric conditions,
changes in body weight and BMI have only been considered as explanatory variables, and not as outcome variables. Measures of ectopic fat deposition (EFD) include one or more of the
following: visceral adipose tissue, liver fat, skeletal muscle fat. Measures of glucose homeostasis (GH) include either static measurements (fasting glucose, insulin and derived indices, such as
HOMA-IR), dynamic measurements (measures of glucose and insulin and derived indices during an OGTT or an euglycaemic–hyperinsulinaemic clamp) or both.

(5): All arms in neutral energy balance.
(6): All arms in positive energy balance.
(7): Only sugars arm in positive energy balance (vs. a control on neutral energy balance).
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Appendix F – Results of intervention studies on metabolic diseases

Study,
Year

Subjects
D/D
weeks

Arms
Sugars
dose

(E%)(1)
Food form

Body
fatness

Ectopic
fat

Glucose
homeostasis

Blood pressure Blood lipids Uric acid Comments

Isocaloric with neutral energy balance(2)

Bantle et al.
(2000)

24/12F
BMI ≤ 32 kg/m2

CX, 6 i: Fructose
c: Glucose

14
14

Mixed Diet NSD: Bw Note: glucose and
insulin reported
only 90 min after
breakfast and AUC
24-h not eligible x
this outcome

↑TG (men only)
NSD: T-c, LDL-
c, HDL-c

High fructose intake
increased fasting
triglycerides only in
men as compared to
glucose

Black et al.
(2006)

13 M
BMI < 35 kg/m2

CX, 6 c: Sucrose
i: Sucrose

10
25

Mixed Diet NSD: Bw NSD: WB-IS and
Hep IS (clamp);
FG and FI

NSD ↑ T-c, LDL-c
NSD: HDL-c,
TG

High sucrose intake had
no effect on insulin
sensitivity or BP but
increased total and LDL-
cholesterol

Despland
et al. (2017)

8 M
GP

CX, 8d c: Starch
i1: Honey
i2: Glu/Fr

0
25
25

Mixed Diet NSD: Bw NDS: glucose and
insulin responses
on OGTT

Fructose (pure or from
honey) did not affect
insulin sensitivity when
consumed with glucose

Gostner
et al. (2005)

19/12F
GP

CX, 4 i: Isomalt
c: Sucrose

0
6

Foods NSD: Bw NSD:
fructosamine

↓ Apo A-1
NSD: T-c,
LDL-c, HDL-c,
LDL-c:HDL-c
ratio, TG, Apo
B100

No effect of isomalt on
blood lipids or
fructosamine

Groen et al.
(1966)

8/6F
7/4F
GP

CX, 5 i: Starch
c: Sucrose

0
30

NSD: Bw ↑ T-c High sucrose intake
increased total
cholesterol

Hallfrisch
et al.
(1983a)*

12 M H-I
12 M N-I

CX, 5 c: Starch
i1: Fructose
i2: Fructose

0
7.5
15

Foods ↑ FG (data given
for H-I and N-I
combined)
↑ glucose and
insulin responses
(AUC) on OGTT
(i2)

↓ SBP
NSD: DBP

↑ T-c
↑ TG (i2 > i1,
H-I only)
↑ LDL-c
NSD: HDL-c,
VLDL-c

Fructose increased
glucose and insulin
responses but reduced
SBP; it also increased
TG (dose-response)
in men with
hyperinsulinaemia
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Study,
Year

Subjects
D/D
weeks

Arms
Sugars
dose

(E%)(1)
Food form

Body
fatness

Ectopic
fat

Glucose
homeostasis

Blood pressure Blood lipids Uric acid Comments

Israel et al.
(1983)*

24/12F H-I CX, 6 c: Sucrose
i1: Sucrose
i2: Sucrose

2
15
30

Foods NSD: Bw ↑ FG
↑ FI (i2 > i1)
↑ glucose response
(AUC) on OGTT(3)

↑ insulin response
(AUC) on OGTT
(i2 > i1)

↑ DBP (i2)
NSD: SBP

↑ TG (i2 > i1,
men only)
↑ T-c, LDL-c,
HDL-c, VLDL-c
↓ HDL-c:T-c
ratio22 (i2, men
only)

↑ FUA
↑ UA
response (i1
in men only,
i2)

High sucrose intakes
increased fasting
glucose and insulin
(dose-response), TG
(men only, dose-
response), DBP, blood
lipids and uric acid in
subjects with
hyperinsulinaemia

Johnston
et al. (2013)

15 M
17 M
AO

P, 2 i: Fructose
c: Glucose

25
25

Beverages NSD: Bw NSD: liver
fat, Skm
fat

NSD: W-B IS and
Hep IS (clamp; 12
subjects only, not
powered for these
outcomes as
reported by the
authors)

High fructose intake
had no effect on
glucose homeostasis or
ectopic fat deposition
as compared to
glucose

Koh et al.
(1988)

9/6F IGT
9/6F NGT

CX, 4 i: Fructose
c: Glucose

15
15

Mixed diet NSD: Bw ↓ FG (IGT only)
↓ FI
↓ glucose and
insulin responses
(iAUC) on OGTT(4)

↓ SBP (IGT only)
↓ DBP (IGT only)

↓ TG (IGT only)
↓ T-c
NSD: VLDL-c,
LDL-c, HDL-c

Moderate intake of
fructose lead to lower
fasting glucose and
insulin, lower BP and
lower cholesterol and
triglycerides compared
to glucose in subjects
with impaired glucose
tolerance

Lewis et al.
(2013)

9/4F, OW/OB CX, 6 c: Sucrose
i: Sucrose

5
15

Mixed diet NSD: Bw ↑ FG, FI, insulin
response (iAUC)
on OGTT
NSD: glucose
response (iAUC)
on OGTT; W-B IS
and Hep IS
(clamp)

NSD NSD: T-c, LDL-
c, HDL-c, TG

A low sucrose diet
reduced fasting glucose
and the incremental
insulin area under the
curve during an OGTT
with no effect on insulin
sensitivity, blood
pressure or blood lipids

22 Calculated as HLD-cholesterol/(total cholesterol-HDL-cholesterol).
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Study,
Year

Subjects
D/D
weeks

Arms
Sugars
dose

(E%)(1)
Food form

Body
fatness

Ectopic
fat

Glucose
homeostasis

Blood pressure Blood lipids Uric acid Comments

Lowndes
et al.
(2014a)

18/6F
17/8F
13/ 8F
17/9F
OW/OB

P,10 i1: Sucrose
i2: HFCS
i3: Sucrose
i4: HFCS

10
10
20
20

Beverages ↑ Bw, BF
(pooled
cohort)
NSD: Bw,
WC, BF, LBM
(for sugars
dose or
sugars type)

NSD (all arms
combined)
BP per study arm
at the end of the
intervention: NR

↓ HDL-c (pooled
cohort)
↓ T-c, LDL-c,
ApoB (i3 vs. i4)
↑ T-c/HDL-c
ratio (pooled
cohort)
NSD: TG; HDL-
c for sugars
dose or type

Sugar consumption
increased body fatness
and decreased HDL-c
but no effect of sugars
dose or source

Lowndes
et al.
(2014b)*

58/26F
69/42F
64/38F
60/30F
53/26F
51/28F
BMI < 35

P, 10 i1: Sucrose
i2: HFCS
i3: Sucrose
i4: HFCS
i5: Sucrose
i6: HFCS

8
8
18
18
30
30

Beverages ↑ Bw, BMI
and BF
(significant
time x sugar
dose
interaction)
↑ BW, BMI,
WC, BF, LBM
(pooled
cohort)
NSD for
time x sugar
dose x sugar
type
interaction

NSD: liver
fat, Skm
fat (data
available
for 64
subjects)

NSD: FG, FI (data
available for 138
subjects)

↓ SBP (i1)
NDS: DBP

↑ TG (pooled
cohort)
↓ HDL-c (pooled
cohort)
NSD: TG, HDL-
c for sugars
dose or type
NSD: T-c,
LDL-c

NSD Dose-response
increase in measures of
body fatness. No effect
of sugar source.
Changes in the lipid
profile compatible with
changes in body
weight, unaffected by
sugars dose or source

Lowndes
et al. (2015)

31/21F
30/14F
34/17F
33/18F
28/17F
BMI < 35 kg/m2

P, 10 c1: Milk
i1: Fructose
c2: Glucose
i2: Sucrose
i3: HFCS

0
9
9
18
18

Beverages ↑ Bw (pooled
cohort)
NSD for
sugars dose
or sugars
type
interaction

↑ insulin response
(AUC) and hepatic
insulin response on
OGTT (i1) (data
available for 93
subjects)
NSD: glucose
response (AUC)
and ISI on OGTT;
FG, FI and
HOMA-IR

Fructose increased the
insulin response and
hepatic insulin
resistance during an
OGTT. Effect not
observed when
consumed together
with glucose.
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Study,
Year

Subjects
D/D
weeks

Arms
Sugars
dose

(E%)(1)
Food form

Body
fatness

Ectopic
fat

Glucose
homeostasis

Blood pressure Blood lipids Uric acid Comments

Moser et al.
(1986)

6F non-OC
6F OC

CX, 4 c: Starch
i: Sucrose

0
43

Foods NSD: Bw ↓ insulin response
(AUC) on OGTT(5)

NSD: glucose
response (AUC) on
OGTT

↑ TG (OC vs.
non-OC)
NSD: T-c

Sucrose decreased
insulin responses
compared to starch
with no effect on blood
lipids

Reiser et al.
(1979a)*

19/9F
GP

CX, 6 Starch
Sucrose

0
30

Foods NSD: Bw NSD: insulin and
glucose response
on OGTT(3) (insulin
↑ only at 1 h)

↑ T-c, TG ↑ FUA
↑ UA
response

Sucrose consumption
increased total
cholesterol, fasting
triglycerides and uric
acid. Glucose and
insulin response to the
sucrose load was not
influenced by the
nature of the
carbohydrate fed
(insulin response was
significantly greater in
those consuming
sucrose only at 1 h
during the OGTT).

Reiser et al.
(1989a)*

10 M H-I
11 M N-I

CX, 5 c: Starch
i: Fructose

0
20

Foods ↑ TG, T-c (H-I
and N-I)
↑ VLDL-c, B-100
(H-I only)
↑ LDL-c (N-I
only)
NSD: HDL-c

↑ FUA
(pooled H-I
and N-I)

Fructose worsened the
blood lipid profile and
increased uric acid
(background diet high
in saturated fat)

Schwarz
et al. (2015)

8 M
Non-OB

CX, 9d c: Starch
i: Fructose

0
20

Beverages NSD: Bw ↑ Liver fat ↓ Hep-IS (clamp)
NSD: WB-IS
(clamp)

Fructose blunted
suppression of
endogenous glucose
production

Sunehag
et al. (2008)

6/3F OB
Tanner 5

CX, 1 c: Fructose
i: Fructose

6
24

Mixed diet NSD: WB-IS
(SLIVGTT), indices
of insulin secretion

Fructose had no effect
on insulin sensitivity in
obese adolescents
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Study,
Year

Subjects
D/D
weeks

Arms
Sugars
dose

(E%)(1)
Food form

Body
fatness

Ectopic
fat

Glucose
homeostasis

Blood pressure Blood lipids Uric acid Comments

Swanson
et al. (1992)

14/7F
GP

CX, 4 c: Starch
i: Fructose

0
16.6

Mixed diet NSD: Bw NSD: FG,
glycosylated
albumin

↑ T-c, LDL-c
NSD: TG, HDL-
c, HDL-c/LDL-c
ratio

Fructose increased total
and LDL-c compared to
starch

Szanto and
Yudkin
(1969)

19 M
GP

CX, 2 c: Starch
i: Sucrose

0
52

Mixed diet ↑ Bw ↑ insulin response
on OGTT
NSD: glucose
response on OGTT

Sucrose increased body
weight and insulin
response on OGTT
compared to starch.
Changes driven by a
subgroup of six
responders

Thompson
et al. (1978)

8 M
GP

CX, 10d i1:Corn syr
i2:Sucrose
i3:Corn syr
i4:Sucrose

45
45
65
65

Beverages ↓ glucose response
(AUC) on OGTT
(i4 vs. i1)
NSD: insulin
response on OGTT

No clear effect of high
intakes of sucrose or
corn syrup on glucose
homeostasis

Umpleby
et al. (2017)

11 M NAFLD
14 M no NAFLD
OW

CX, 12 c: NMES
i: NMES

6
26

Mixed diet ↑ Bw
Statistical
analyses for
other
variables
adjusted for
changes in
Bw

↑ Liver fat
(NAFLD
and no-
NAFLD)
NSD: VAT
(all in 17
subjects
with
available
data)

NSD: FI, FG,
HOMA-IR

↑ TG, VLDL-c
(NAFLD only)
NSD: LDL-c,
HDL-c, T-c

High sugars intakes
increased liver fat. High
liver fat lead to a
differential increase in
blood lipids in response
to high or low intake of
free sugars

Isocaloric with positive energy balance(6)

Beck-Nielsen
et al. (1978)

6 NR
6 NR
GP

P, 2 c: Fat
i: Sucrose

0
32

Mixed diet NSD: Bw ↓ WB-IS (IVITT) High sucrose intake
(and not fat) reduced
insulin sensitivity

Beck-Nielsen
et al. (1980)

8NR
7NR
GP

P, 1 i: Fructose
c: Glucose

33
33

Beverages NSD: Bw ↓ WB-IS (IVITT) High fructose (and not
glucose) intake reduced
insulin sensitivity
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Study,
Year

Subjects
D/D
weeks

Arms
Sugars
dose

(E%)(1)
Food form

Body
fatness

Ectopic
fat

Glucose
homeostasis

Blood pressure Blood lipids Uric acid Comments

Johnston
et al. (2013)

15 M
17 M
AO

P, 2 i: Fructose
c: Glucose

25
25

Beverages ↑ Bw (vs
neutral
energy
balance)

↑ liver fat,
Skm fat
(vs neutral
energy
balance)

NSD: W-B IS and
Hep IS (clamp; 12
subjects only, not
powered for these
outcomes as
reported by the
authors)

Increases in liver and
muscle fat correlated
with the increase in
body weight in both
groups

Silbernagel
et al. (2011)

10/3F
10/5F
BMI < 35kg/m2

P, 4 i: Fructose
c: Glucose

22
22

Beverages NSD: Bw NSD: liver
fat, SKm
fat, VAT

NSD: FG, FI,
HOMA-IR; ISI
(Matsuda) index
on OGTT (ISI ↓ in
both groups)

NSD ↑ TG
NSD: T-c,
LDL-c, HDL-c

NSD Fructose increased
triglycerides vs. glucose
with no effect on other
metabolic variables

Hypercaloric(7)

Le et al.
(2009)

8 M no-offT2DM
16 M offT2DM

CX, 1 No sugars
Fructose

0
35

Beverages ↑ Bw (vs
neutral
energy
balance)

↑ Hep-IS (clamp)
NSD: WB-IS
(clamp)

A hypercaloric diet with
high intake of fructose
had no effect on WB-IS
but decreased hepatic
insulin sensitivity

Ad libitum

Aeberli
et al. (2013)

9 M, NW CX, 3 i1: Fructose
i2: Fructose
c: Glucose
i3: Sucrose

8
16
16
16

Beverages ↓ Bw (i1, i2) ↓ Hep-IS (clamp,
i2)
NSD: WB-IS
(clamp)

High fructose intake
reduced hepatic insulin
sensitivity

Angelo-
poulos et al.
(2015)*

65NR
77NR
64NR
61NR
BMI < 35 kg/m2

P, 10 i1: Fructose
c: Glucose
i2: Sucrose
i3: HFCS

9
9
18
18

Beverages ↑ Bw, BMI,
WC (pooled
cohort)
NSD: Bw,
BMI, WC for
sugars dose
or sugars
type
interaction

NSD: FG ↓ SBP, DBP
(pooled cohort)
NSD for sugars
type interaction

↑ TG (pooled
cohort, men
only)
↑ TG (i3, men
only) NSD:
T-c, LDL-c,
HDL-c

NSD Moderate fructose
intakes had no effect
on fasting glucose or
uric acid. Increased
energy intake leads to
an increase in body
weight in the whole
cohort, while blood
pressure decreased.
Triglycerides increased
only in men.
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Study,
Year

Subjects
D/D
weeks

Arms
Sugars
dose

(E%)(1)
Food form

Body
fatness

Ectopic
fat

Glucose
homeostasis

Blood pressure Blood lipids Uric acid Comments

Campos
et al. (2015)

14/6F
13/7F
OW/OB

P, 12 i: ASB
c: SSB

0
18

Beverages NSD: Bw,
BMI, BF, LBM

↓ Liver fat
NSD: VAT

NSD: FG, FI,
HOMA-IR

NSD NSD: T-c,
HDL-c, TG

NSD Replacing SSBs in high
consumers with ASBs
decreases liver fat

Ruyter et al.
(2014)

319/147F
322/151F
GP

P, 72 i: ASSD
c: SSSD

0
5

Beverages ↓ BMI z
score, Bw,
WC

Consumption of ASSDs
reduced weight gain in
children as compared to
SSSDs

Ebbeling
et al. (2012)

110/48F
114/52F OW/OB

P, 52 i: ASSD
+water c:
SSSD+SSFD
+TFJ

0
17

Beverages ↓ Bw, BMI
(greatest in
Hispanics)

Increase in BMI and
body weight were
smaller in the
experimental group

Hernandez-
Cordero
et al. (2014)

120F
120F
OW/OB

P, 36 i: Water
c: SSBs

0
20

Beverages NSD: Bw,
BMI, BF, WC

NSD: HbA1c, FG NSD ↓ TG (obese
only)
NSD: T-c,
LDL-c, HDL-c,
TG

Replacing SSBs in high
consumers with water
did not affect body
fatness or metabolic
variables, except for a
decrease in triglycerides
in the obese (secondary
analysis)

Hollis et al.
(2009)

25NR
25NR
26NR
OW

P, 12 c2: No drink
i: GJ
c1: GD

0
18
18

Beverages NSD: Bw,
BMI, WC

↑ glucose and
insulin responses
(AUC) on OGTT
(vs c1 and c2)

NSD: T-c,
LDL-c, HDL-c,
TG

Grape juice increased
glucose and insulin
responses vs. grape
sugar drink or no
intervention

Huttunen
et al. (1976)

48NR
35NR
33NR
GP

P, 72 i1:Xylitol
i2:Fructose
i3:Sucrose

0
14
16

Mixed diet NSD: FG, FI,
glucose and insulin
response on
OGTT(8)

↓ T-c (i2 only)
NSD: TG

NSD Total cholesterol was
lower in the fructose
group. The change was
driven by
hypercholesterolaemic
participants.

Jin et al.
(2014)

9/6F
12/4F
OW NAFLD

P, 4 c: Fructose
i: Glucose

20
20

Beverages NSD: Bw NSD: Liver
fat

↓ Adipose tissue
IR index(9)

NSD: FG, FI,
HOMA-IR

↓ VLDL
NSD: TG

Sugar type had no
effect on body weight,
liver fat or triglycerides.
Adipose tissue IR and
VLDL decreased with
glucose vs. fructose
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Study,
Year

Subjects
D/D
weeks

Arms
Sugars
dose

(E%)(1)
Food form

Body
fatness

Ectopic
fat

Glucose
homeostasis

Blood pressure Blood lipids Uric acid Comments

Maersk
et al.
(2012)*

15/11F
16/11F
15/12F
14/6F
OW/Obese

P, 24 c1: SK milk
c2: Water
c3: ASSD
i: SSSD

0
0
0
18

Beverages NSD: Bw,
BMI, BF, LBM

↑ Liver fat
↑ VAT
↑ SKm fat
(data
available
for 47
subjects)

NSD: FG, FI,
HOMA-IR; glucose
and insulin
responses (AUC)
and derived
indices of IR on
OGTT

↑ SBP (c1, c3)
NSD: DBP

↑ T-c (vs c3)
↑ TG (vs c2 and
c3)
NSD: LDL-c,
HDL-c, T-c/HDL-
c ratio

↑ FUA
(data
available for
47 subjects)

Consumption of SSSD
increased triglycerides,
uric acid and ectopic fat
deposition with no
effect on body weight,
total body fat or
glucose homeostasis

Majid et al.
(2013)

31 M
32 M
GP

P, 4 c: No drink
i: Honey

0
8

Beverages ↓ FG ↓ T-c, LDL-c, TG
↑ HDL-c

Honey consumption
limited the rise in blood
glucose and improved
the blood lipid profile.
Background diet and
changes in body weight
were not assessed.

Mark et al.
(2014)

35F
38F
OW/OB

P, 4 i: Fructose(10)

c: Glucose(10)
15
15

Beverages NSD: BW,
BMI, WC

NSD: FG, FI,
HOMA-IR; glucose
and insulin
responses and ISI
on OGTT

NSD: T-c,
LDL-c, HDL-c,
TG

The type of sugar had
no effect on glucose
homeostasis, blood
lipids or body weight.

Markey
et al. (2016)

50/34F
Non-OB

CX, 8 i: NMES
c: NMES

6
16

Mixed diet NSD: Bw NSD: FG, FI NSD NSD: T-c,
LDL-c, HDL-c,
TG, T-c/HDL-c
ratio

Reduction of free
sugars intake did not
affect body weight,
fasting glucose or
insulin, or blood lipids.

Raben et al.
(2002)*

20NR
21NR
OW

P, 10 i1: AS
i2: Sucrose

0
23

Mixed diet ↑ Bw, BMI,
BF (all i2)
NSD:
Sagittal
height, LBM

↑ FI (i2)
NSD: FG, HOMA-
IR, HOMA-b
(data available for
23 subjects)

↑ SBP, DBP (i2) ↑ TG (i2)
NSD: T-c,
HDL-c
(data available
for 23 subjects)

High intakes of sucrose
increased body weight,
fat mass and blood
pressure. Sucrose
increased fasting insulin
and triglycerides.

Saris et al.
(2000)*

83/40F
77/40F
76/40F
OW/OB

P, 24 i1: LF/LS
c: Control
i2: LF/HS

19
22
38

Mixed diet ↓ Bw (i1, i2)
NSD: Bw (i1
vs. i2)

NSD: FG, FI NSD: T-c,
zLDL-c, HDL-c,
TG, HDL-c/LDL-
c ratio

The type of
carbohydrates in low fat
diets did not affect
body weight, the blood
lipid profile, or fasting
glucose or insulin.
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Study,
Year

Subjects
D/D
weeks

Arms
Sugars
dose

(E%)(1)
Food form

Body
fatness

Ectopic
fat

Glucose
homeostasis

Blood pressure Blood lipids Uric acid Comments

Smith et al.
(1996)

22 NR
10 NR
HTG

P, 24 i: Sugar-free
c: Sucrose

0
12

Mixed diet ↓ Bw ↓ TG
NSD: T-c,
HDL-c

Lower sucrose intake
reduced triglycerides
accounting for changes
in body weight in
subjects with
hypertriglyceridaemia.

Stanhope
et al.
(2009)*

17/8F
15/8F
OW/OB

P, 8 i: Fructose
c: Glucose

25
25

Beverages ↑ Bw, WC,
BF (both
groups)

↑ VAT
(men)

↑ FG; insulin
response on OGTT
↑ ISI on OGTT
↑ Glucose
response on OGTT
(both groups)
NSD: FI,
fructosamine

NSD ↑ T-c, LDL-c,
ApoB, ApoB/
ApoA1 ratio
NSD: TG,
HDL-c

↑ FUA Fructose decreased
insulin sensitivity,
increased insulin
excursions, visceral
adiposity and uric acid
and promoted
dyslipidaemia vs.
glucose.

Werner
et al. (1984)

12/8F
Gallstones

CX, 6 c: AS
i: Sucrose

0
24

Mixed diet ↑ Bw NSD: FG (data
not shown in the
paper)

↓ HDL-c
↑ TG
NSD: T-c,
LDL-c

High sucrose intake
increased body weight
and triglycerides while
decreasing HDL-c
concentrations.

Results presented in italics were not eligible as the studies did not meet the duration criteria outlined in the opinion protocol.
AO = abdominal obesity; AS = artificial sweeteners; ASB = artificially sweetened beverages; ASSD = artificially sweetened soft drinks; AUC = area under the curve; BF = body fat; BMI = Body mass
index; Bw = Body weight; C = control; CX = Crossover; DBP = diastolic blood pressure; D/D = study design and duration (in weeks); F = females; FG = fasting glucose; FI = fasting insulin;
FUA = fasting uric acid; GD = grape drink; GJ = grape juice; GR = glucose response; GP = General Population; HbA1c = Glycated haemoglobin; HDL-c = High density lipoprotein cholesterol; Hep-IS
= hepatic insulin sensitivity; HFCS = high fructose corn syrup; H-I = hyperinsulinaemia; HOMA-IR = homeostatic model assessment IR; HTG = hypertriglyceridaemia; I = intervention; IGT= impaired
glucose tolerance; IR = insulin resistance; IS = insulin sensitivity; ISI = insulin sensitivity (Matsuda) index; IVITT= intravenous insulin tolerance test; LBM = Lean body mass; LDL-c= Low density
lipoprotein cholesterol; LF/HS = low fat diet high in sugars; LF/LS = low fat diet low in sugars; OB = Obese; OC = oral contraceptives; offT2DM = offspring from parents with type 2 diabetes
mellitus; OGTT = Oral glucose tolerance test; OW = Overweight; NAFLD = non-alcoholic fatty liver disease; NGT = normal glucose tolerance; N-I = normoinsulinaemia; NMES = non-milk extrinsic
sugars; NR = not reported; NSD = no significant difference; NW = normal weight; M = males; P = Parallel; Skm = skeletal muscle; SBP = systolic blood pressure; SLIVGTT = stable labelled
intravenous glucose tolerance test; SSFD = sugar sweetened fruit drink; SSSD = sugar sweetened soft drinks; T-c = total cholesterol; TG = Triglycerides; TFJ = total fruit juice; UA = uric acid;
VAT = Visceral adipose tissue; VLDL = Very low density lipoprotein; WB-IS = whole body insulin sensitivity; WC = waist circumference.
*: Only within-group comparisons tested in the study.
(1): Refers to the sugars contribution of the dietary fraction manipulated in the study to total energy intake.
(2): All arms in neutral energy balance.
(3): OGTT with sucrose load of 2 g/kg body weight over 3 h.
(4): OGTT with 100 g dextrose solution over 3 h.
(5): OGTT with glucose load of 1 g/kg body weight over 3 h.
(6): All arms in positive energy balance.
(7): Only sugar arm in positive energy balance (vs a control on neutral energy balance).
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(8): OGTT with glucose load of 1 g/kg body weight.
(9): Adipose tissue IR index was calculated as fasting FFA (mEq/L) 9 insulin (mU/L).
(10): These intervention arms were in combination with either high or low advanced glycation end product diets.
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