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Abstract. The paper focuses on the experimental evaluation of one of the key microstructural 

parameters of a short fiber reinforced composite –orientation distribution of fibers. It is shown 

that computed tomography produce results suitable for reconstruction of the orientation 

distribution function. This function is used for calculation of the effective elastic properties of 

polymer fiber reinforced concrete. We derive explicit formulas for overall elastic moduli 

accounting for orientation distribution in the frameworks of non-interaction approximation, 

Mori-Tanaka-Benveniste scheme, and Maxwell scheme. The approach illustrated can be applied 

to any kind of composite material..  
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1. Introduction. 

The present paper focuses on the integration of computed tomography data into 

micromechanical homogenization techniques to account for orientation distribution of non-

spherical inhomogeneities in heterogeneous materials. In short fiber reinforced composites the 

fibers are usually neither perfectly parallel, nor perfectly randomly oriented, but have certain 

orientation distribution (Figure 1), which belongs to the major factors affecting the overall 

properties (Kachanov and Sevostianov, 2005). However, non-spherical inhomogeneities in 

composites have been considered as perfectly aligned till the beginning of 1980s. To the best of 

our knowledge, random orientation of fibers has been first considered by Chou and Nomura 

(1980-1981) and Takao et al (1982), who applied average induced strain approach to composites 

with 3-D randomly oriented short fibers. The averaging procedure was later used by Benveniste 

(1987) and Chen et al (1992) in the Mori-Tanaka scheme. Tandon and Weng (1986) considered 

two cases of random distribution of fibers - in space (overall isotropy) and in-plane (overall 

transverse isotropy). General case of the orientation distribution of short fibers has been first 

discussed by Ferrari and Johnson (1989) who presented a theoretical scheme in which the fiber 

orientation distribution was allowed to be arbitrarily specified. The authors first introduced an 

orientation distribution function (ODF) defined over the full Euler space. This approach was 

implemented into the Mori-Tanaka scheme by Ferrari (1991) and Marzari and Ferrari (1992).  

In the successive years many specific ODF have been discussed in literature. Lu and 

Liaw (1995) considered fiber reinforced composite and assumed independence of the orientation 

distribution of fibers with respect to different Euler angles  ,, , so that 

( ) ( ) ( ) ( ) PPP,,P =  (   ,,0  ). They used a combination of Gaussian and 

trigonometric distributions  
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which fit the distribution obtained by quantitative image analysis of SEM pictures. Applicability 

of this function to non-random orientation distribution is, however, unclear.  

Chen and Wang (1996) calculated the effective thermal conductivity of a transversely 

isotropic composite containing misoriented inhomogeneities. The orientation distribution was 

described by  
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 ( ) ( ) expP −=1          (1.2) 

where the zero value of the scatter parameter   corresponds to random distribution of the 

inhomogeneities and high values indicate a highly oriented material.  

Dunn et al (1996) considered SiC/Al short fiber reinforced composites and evaluated 

ODF using neutron-diffraction techniques (suitable for monocrystalline fibers). They expanded 

the orientation-distribution function in a series of generalized spherical harmonics and suggested 

to use the eighth-order transformation tensor relating a fourth-order tensor in the local and global 

coordinate systems. This approach was later used by Dunn and Ledbetter (1997, 2000) for the 

calculation of elastic-plastic and thermo-elastic properties of short-fiber reinforced composites 

and by Li (2000) for the calculation of piezoelectric properties. 

 A detailed analysis of the effect of the inclusion orientation distribution on the effective 

thermomechanical properties has been done by Pettermann et al (1997) who used the Mori-

Tanaka scheme and assumed exponential ODF 

( ) ( )22 2 −= expP          (1.3)  

This can be regarded as a truncated axisymmetric Gaussian distribution. The authors calculated 

overall Young's moduli, shear moduli and coefficients of thermal expansion, as well as the onset 

of yielding of the matrix phase under thermal and mechanical loading conditions. Duschlbauer et 

al (2003) used this approach for calculation of the effective thermal properties of composites. 

 Fu and Lauke (1998) used a two-parameter ODF 
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where p and q are the shape parameters which can be used to determine the shape of the 

distribution curves. A similar model (with one parameter) was used by Zhupanska (2013) to 

calculate mechanical properties of buckypaper nanocomposite. Turner et al (1999) used a 

Gaussian distribution for each Euler angle, assuming those distributions as statistically 

independent, and calculated effective mechanical properties and phase average stresses in SiC/Al 

composites. Similar approaches have been adopted by Fernandez et al.(2005) and Bruno and 

Fernandez (2008). Sevostianov and Kachanov (2000) considering transversely isotropic 

orientation distribution of cracks suggested to use ODF in the form 
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( ) ( ) 22 1
2

1 
 


 −− ++= eeP        (1.5) 

This function was used later by Sevostianov et al (2016) to calculate viscoelastic properties of 

short fiber reinforced composites. 

Kachanov et al (1994) showed that the form of the ODF does not noticeably affect the 

overall elastic and conductive properties of a composite. Thus the specific choice is mostly 

dictated by computational convenience. A more important issue is related to the experimental 

evaluation of the ODF and the incorporation of experimental data into analytical formulas. 

Certain progress in this direction has been obtained during the last decade. 

Perez et al (2008) determined the ODF in aligned single wall nanotube polymer 

nanocomposites using polarized Raman spectroscopy. Blanco (2013) analyzed various 

destructive and non-destructive methods for fiber orientation determination. Most of them are 

based on electrical resistivity and inductivity of fibers (see, for example, Lataste, 2008), which 

are applicable for metallic fibers only.  

 Another possibility to evaluate fiber orientation distribution is analysis of 2D images 

obtained by different methods. Considering extraction fiber orientation information from 

radiographs, Fourier image transform was proposed in Redon et al. (1998, 1999). Lee et al. 

(2009) suggested to use digital image analysis. This technique was practically implemented by 

Kanga et al. (2011, 2012). One of the most widely used 2-D methods for evaluation of fiber 

orientation is microscopy that evaluate ODF from the analysis of cross sections (Zhu et al., 1997, 

Tsuda, 2014). Clarke and Eberhardt (1999, 2001) showed that fiber orientation analysis can be 

performed by using confocal microscopy. However, microscopy methods are very time-

consuming (Bay et al., 1992), and connection between 3-D microstructure and its 2-D images is 

still an open question. Bernasconi et al. (2012) and Liu et al (2013) performed comparison 

between 2D optical methods and computed tomography (CT). Their results show that CT 

measurements have higher accuracy in evaluation of fiber orientation as compared to 2D image 

analysis. Suuronen el al. (2013) used CT measurements to study orientation distribution 

probability density in steel fiber reinforced concrete. Pujadas et al. (2014 a, b) discussed the link 

between the mechanical properties of fiber reinforced concrete and the fiber orientation. In 

particularly, they proved the efficiency of CT technique to evaluate the fiber orientation, but they 
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did not perform orientation distribution probability density analysis, and consequently did not 

insert ODF into their model.  

In the present paper, we use CT reconstructions to evaluate ODF in the form (1.5) and 

integrate the result into explicit expressions for effective elastic moduli of a polymer fiber 

reinforced concrete. The approach is based on the concept of property contribution tensors and is 

illustrated by using different homogenization schemes. We finally compare the calculations with 

experimental data of Young’s modulus obtained by three-point bending tests. 

 

2. Calculation of the effective elastic properties of a composite with non-randomly 

oriented inhomogeneities. 

 

2.1.Background results – property contribution tensors. 

Property contribution tensors are used in the context of homogenization problems to describe 

contribution of a single inhomogeneity to the property of interest – elasticity, thermal or 

electrical conductivity, diffusion coefficient, etc. In the context of the effective elastic properties, 

one can use the compliance contribution tensor of an inhomogeneity H, which gives the extra 

strain produced by the introduction of the inhomogeneity in the otherwise uniform stress field, or 

the stiffness contribution tensor N, which gives the extra stress due to the inhomogeneity when it 

is placed into the otherwise uniform strain field.  

 Compliance contribution tensors have been first introduced in the context of pores and cracks 

by Horii and Nemat-Nasser (1983) (see also detailed discussion in the book of Nemat-Nasser 

and Hori, 1993). For the general case of elastic inhomogeneities, these tensors were given for 

ellipsoidal shapes by Sevostianov and Kachanov (1999, 2002). For the reader’s convenience, we 

provide below a brief description of the property contribution tensors. 

 We first consider a homogeneous elastic material (matrix), with compliance and stiffness 

tensors 
0

S  and 
0C , assumed to be isotropic. The matrix contains an inhomogeneity, of volume 

( )1V , of a different elastic material with compliance and stiffness tensors 
1

S  and 
1

C . The 

contribution of the inhomogeneity to the overall strain per representative volume V  (the extra 

strain, as compared to the homogeneous matrix) is given by  

 
( )

= σHε :
V

V 1

                      (2.1) 
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where σ  is the “remotely applied” stress field, that, in absence of the inhomogeneity, would 

have been uniform within its site (“homogeneous boundary conditions”, Hashin, 1983); a colon 

denotes contraction over two indices (Note that Eq.(2.1) represents the definition of the fourth-

rank tensor H  – the compliance contribution tensor of the inhomogeneity).  In the case of 

multiple inhomogeneities, the extra compliance due to their presence is given by 

 
( ) ( ) = kkV

V
HS

1
                   (2.2) 

 Alternatively, one can consider the extra average (overV ) stress σ  due to an 

inhomogeneity under uniform displacement boundary conditions (displacements on V  have the 

form nεu =


0

V
 where 

0
ε  is a constant tensor). This defines the stiffness contribution tensor 

 of an inhomogeneity:  

 
( )

0
1

εNσ :
V

V
= ,                   (2.3) 

In the case of multiple inhomogeneities, the extra stiffness due to inhomogeneities is given by  

 
( ) ( ) = kkV

V
NC

1
                   (2.4) 

The H - and N -tensors are determined by the shape of the inhomogeneity and are independent 

of its size; they also depend on the elastic constants of the matrix and of the inhomogeneity.  

 For the ellipsoidal inhomogeneity, the fourth-order tensors H and N can be expressed in 

terms of elastic contrast (i.e., the difference between stiffness C or compliance S of matrix and 

inhomogeneity), and of the fourth-order Hill’s tensors P and Q, which describe the effects of 

shape of the inhomogeneity:  

 ( )
1
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−
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



+−= QSSH ,  ( )

1
101

−
−




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
+−= PCCN       (2.5) 

Note that the effects of elastic contrast and shape of the inhomogeneity can be separated for 

ellipsoidal shapes. The fourth-order Hill's (1965) tensor P is the integral over the volume of the 

inhomogeneity from the second gradient of Green’s tensor and tensor Q  is related to P  as 

follows (Walpole, 1966):  

 ( )00
rsklmnrsmnklijmnijkl CPJCQ −=                (2.6) 

N
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Here, ( ) 2kjilljikijklJ +=  and the inverse of symmetric (with respect to ji   and lk  ) 

fourth-order tensor Xijkl
−1

 is defined by Xijmn
−1

Xmnkl ijklmnklijmn JXX == −1 .  

 For a spheroidal inhomogeneity (with semi-axes 213 aa;a = ) embedded in an isotropic 

matrix, it is convenient to use representation of these tensors in terms of standard tensor basis 

( ) ( )61 ,...,TT  (see Appendix for detail): 

 
( )

=

=
6

1k

k
kp TP  ;  

( )
=

=
6

1k

k
kq TQ ;  

( )
=

=
6

1k

k
kh TH ;  

( )
=

=
6

1k

k
kn TN   (2.7) 

so that finding out these tensors reduces to the calculation of factors kp , kq , kh  and kn . The 

relations for these coefficients are given in the Appendix. 

Remark. Generally, H - and N -tensors in (2.2) and (2.4) have to reflect the interactions 

between the inhomogeneities. However, incorporating interactions into the micromechanical 

parameter amounts to solving the interaction problem, and hence it is not practical. Contributions 

of individual inhomogeneities are taken by treating them as non-interacting ones (in particular, 

mutual positions of inhomogeneities are not reflected) and then used in various approximate 

schemes that aim at accounting for interactions (effective media and effective field approaches)  

 

2.2. Effective elastic stiffnesses. 

If the interaction between inhomogeneities is neglected, the change in the elastic compliances (or 

stiffnesses) due to the inhomogeneities is calculated by (2.2) (or (2.4)). If the inhomogeneities in 

a composite have the same shape, size, and properties and their orientation is described by a 

known ODF, it is convenient to replace summation in ( ) ( )  kkV H  and ( ) ( )  kkV N  by 

averaging over the orientations, so that 

 HSS c+= 0 ; NCC c+= 0        (2.8) 

where c  is the volume fraction of the inhomogeneities.  

Following Sevostianov and Kachanov (2000), we express the unit vector m  along the i-th 

spheroid's symmetry axis in terms of two angles 20    and  20   (Figure 2): 

 ( ) 32 eeem 1  cossinsinsincos, ++=            (2.9) 
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and use statistics ( ) ,P  of fibers orientation - the probability density function defined on the 

upper semi-sphere of unit radius and subject to the normalization condition 

 ( )  =

 


2

0

2

0

1ddsin,P                 (2.10) 

We assume that the orientation distributions of fibers with respect to angles   and   are 

independent so that ( ) ( ) ( ) PP,P = , and consider the distributions that are intermediate 

between the random and the parallel ones, by specifying the following probability density 

containing the scatter parameter  : 

 ( ) ( ) 22 1












−−
++= eeP   ; ( ) 




 


 −−−−

+= eeP
2

1

2
   (2.11) 

Parameters   characterize the sharpness of the peak and the extent of the scatter; the extreme 

cases of the fully random and perfectly parallel fibers correspond to 0=  and →  

respectively. Note that the effective elastic moduli are relatively insensitive to the exact form of 

a function that has the above-mentioned features (Kachanov et al, 1994). Figure 3 shows 

dependencies of ( )P  on  and ( )P  on   for several values of  . For the reader’s 

convenience behavior of ( )  sinP  is also illustrated. Now, if parameter  is known, the 

following two tensors – averages over the orientation of fibers - can be evaluated: 

 jiij mmA =  lkjiijkl mmmmB =         (2.12) 

where components of the unit vector along a fiber in spherical coordinate system are given by 

(2.9). This operation is equivalent to averaging of basic tensors ( )iT  given by (A.1) over 

orientation of vectors 
( )p

m . In particular, if the orientation distribution with respect to   is 

approximately random (parameter   is sufficiently large),  

 ( ) ( ) ii eeθmm  21 gg +=  

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )6
5

543
4

21
3 TTTTTTmmmm  ggg +++++=   (2.13) 

where jiijij mm−=   and 
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and components of tensor basis ( )iT  are given in the Appendix by (A.1). Functions ( )ig  are 

shown in Figure 4. Then the orientation average tensor  

( )
=

=
6

1k

k*

kh TH           (2.16) 

is transversely isotropic with the symmetry axis 3x  and is characterized by the following 

coefficients: 

 ( ) ( ) 63543111
2

1
hghhhghh*  +








+++= ;  ( ) ( ) 635122 hghghh*  ++= ; 

 ( )( ) ( ) 644323 hghhgh*  ++= ;  
** hh 34 =  

 ( ) ( ) 64525 hghgh*  += ; ( ) 656 hgh* =         (2.17) 

where ih  are given by (A.15). Similar formulas can be written for tensor N . 

In the isotropic case of the inhomogeneities randomly oriented in-space 

 ijjimm 
3

1
= ; ( )jkiljlikklijlkji mmmm  ++=

15

1
    (2.18) 

So that 

( )6543211 466214
30

1
hhhhhhh* +++++= ;  ( )6543212 4644124

30

1
hhhhhhh* ++−−+=  

( )65432143 2288412
30

1
hhhhhhhh ** +−++−==  

( )6543215 81288248
30

1
hhhhhhh* ++−−+= ; 

( )6543216 6444816
30

1
hhhhhhh* +++++=       (2.19) 
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In the transversely-isotropic case of the inhomogeneities randomly oriented in- plane  

 ijjimm 
2

1
= .  ( ) ( ) ( )( )21

4

1

8

1
TT +=++= jkiljlikklijlkji mmmm    (2.20) 

and 

( )6543211 22662
8

1
hhhhhhh* +++++= ; ( )6543212 222272

8

1
hhhhhhh* ++−−−=  

( )413 2
2

1
hhh* += ; ( )314 2

2

1
hhh* +=  55 hh* = ; ( )216 2

2

1
hhh* +=   (2.21) 

(see Mishurova et al, 2016, for details) 

 Finally, one can write the following formulas for the effective elastic compliances of a short 

fiber reinforced composite (with orientation distribution of the fibers given by (2.13)) in the 

framework of non-interaction approximation: 

 
( )

*chs 1

00

0
1

14

1
+

+

−
=




;  

*chs 2

0

2
2

1
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( )
*chs 3

00

0
3

12
+

+

−
=




;  34 ss =  

 *chs 5

0

5

1
+=


;  

( )
*chs 6

00

6
12

1
+

+
=


      (2.22) 

where 0  and 0  are shear modulus and Poisson’s ratio of the matrix. 

Interaction between the inhomogeneities can be accounted for via deviation of the stress field 

acting on the inhomogeneities from remotely applied. In micromechanics, such a technique is 

called “effective field method”. Below, we discuss two approaches to describe this deviation.

 Mori-Tanaka-Benveniste scheme. This scheme, proposed by Mori and Tanaka (1973) and 

clarified by Benveniste (1987), assumes that each inhomogeneity, treated as isolated, is placed 

into a uniform field that is equal to its average over the matrix phase, and generally differs from 

the remotely applied one. The effective properties are calculated from the non-interaction 

approximation, by replacing the remotely applied field by the mentioned average one. The tensor 

of effective elastic compliances can be expressed in terms of the compliance contribution tensors 

iH of inhomogeneities as follows (see, for example, Sevostianov and Kachanov, 2013):  

 ( ) ( )
1

100 1
11

−
−









−+−








+=  JHSSHSS cV

V
V

V

ii

i i

i

i i

eff
::        (2.23) 

Replacing the summation by averaging over orientations, in the case of the inhomogeneities of 

the same shape having the same elastic properties, yields 
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 ( ) ( ) 1
11010 1

−
−−








 −
+−+= HSSSS

c

ceff   (2.24) 

i.e. the effective elastic properties are expressed in terms of tensor H  given by (2.16)-(2.17). 

 Maxwell scheme. Maxwell homogenization scheme (Maxwell, 1873) can also be considered 

as a variant of the effective field method (Sevostianov and Kachanov, 2014). Sevostianov and 

Giraud (2013) and Sevostianov (2014) reformulated Maxwell’s scheme for the general case of a 

composite with arbitrary orientation distribution of inhomogeneities of diverse shape using 

property contribution tensors. They suggested to cut the domain   of the volume 
V  from a 

composite and place it into the matrix material. The effect produced by this element is described 

either by the sum of compliance contribution tensors of the inhomogeneities 
i

iV
V

iH
1

 or by 

the compliance contribution tensor effH  of the entire domain considered as an individual 

inhomogeneity with homogenized unknown properties. Equating these two quantities, the 

general equation for the Maxwell scheme can be obtained: 

 =


i

iV
VV

V
ieff HH

1
                 (2.25) 

The right hand side of the equation is known; the left hand side reflects the combined effect of 

overall properties of the material in   and its shape. According to (2.5), for an ellipsoidal shape 

of  , equation (2.19) yields 

 

1
1

1
−

−













−







+=  QHSS 0eff

i

effi iV
V

             (2.26) 

where Q  reflects effect of the shape of   and has to be calculated by (A.12). Replacing the 

summation by averaging over orientations yields 

   11 −−
−+= QHSS 0eff cc                 (2.27) 

Thus, the effective elastic properties are again expressed in terms of tensor H . 

 The key parameter required for calculation of the components of this tensor is orientation 

scatter   entering (2.15) as the argument of functions ( )ig . This parameter can be evaluated 

experimentally using methods of computed X-ray tomography (CT). In the next section we show 
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the applicability of CT methodology for extraction of information on ODF on example of 

polymer fibers reinforced concrete. 

 

3. Experimental. 

Computed Tomography measures the linear absorption coefficient of the material in each point 

of the region of interest in the specimen. The coefficient is dependent on the incident X-ray 

energy and on the atomic number of the material. In most cases it can be regarded as linear, 

correlating to the specific density. In conventional systems, tomograms are measured slice by 

slice, and the sample is not only rotated, but also translated along a scan direction (Fig.5a). In 

more advanced types of tomography equipment, the object to be measured is moved constantly 

allowing the slices to generate a continuous volume. Measuring 2D slices allows using more 

efficient detectors and reduces stray radiation from the object.  

 In the case of 3D CT the detector no longer consists of a row of detectors but of a square 

field with an array of detector elements (Fig.5b). The detector measures conventional 

radiological images. Upon turning the object and acquiring a radiograph at each angle, a 

complete data set is collected within one turn. Computer programs are available to reconstruct 

the 3D volume from the radiographs. Resolutions in the micrometer range are achieved either by 

a high resolution detector (small pixel size, down to 0.2µm) and a parallel beam source (e.g., 

with synchrotron radiation), or by an X-ray beam spot in the micro-meter range, and a coarse but 

efficient detector; in this case the cone beam geometry is exploited using a magnification set-up.  

 High penetration lengths can be achieved by higher accelerator voltages, which nowadays 

can reach 12MeV. This would lead to a maximal penetration length of 400mm, for materials as 

dense as iron, usable in CT reconstructions. The disadvantage is the minimum achievable spot 

size, which for high-energy devices is in the range of 1mm: the larger the spot size, the coarser 

the resolution. Standard X-ray tubes fill the gap between synchrotron sources and high-energy 

devices: they possess beam spots in the rage or a few micrometers, and have energies in the 

range of 100- 600 keV (accelerating voltages in kV).  

 In order to investigate highly absorbing materials, the choice of the highest possible X-ray 

energy is appropriate; however, it is important to limit both multiple scattering and transmission 

(an optimal transmission lies around 10-30%). Artefacts from beam hardening effects are 

reduced for high energies. In the case of two dimensional detectors, stray radiation may be 
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prevented by appropriate filters. To generate images from the measured data, mathematical 

processes like filtered back-projection, algebraic reconstruction, or iterative processes have to be 

used.  

 

3.1. Specimens preparation. 

Two sets of cement mortar prisms with size 40 x 40 x 160 mm have been produced (Fig 6a). The 

first set, consisting of Portland cement (CEM I 32.5 R), ground limestone, standard sand and 

water, was used as a reference. The specimens in second set contained polyacrylonitrile (PAC) 

fibers of diameter 15 µm and length 4 mm of various volume fractions. The preparation of mortar 

prisms was performed according to DIN EN 196-1. A conventional mortar mixer was used. After 

mixing, test specimens were compacted by using vibrating table and placed into a container with 

water for 24 hours. Then, all specimens were stored under water with temperature of 20°C.  

Cylindrical specimens with length of 40 mm and diameter of 10 mm have been drilled from a 

mortar prism for CT measurements (Fig 6b). Before drilling, the prism was impregnated with 

epoxy resin in order to prevent disintegration of the sample. Fig 6c illustrates the geometry of the 

specimens relatively to the direction of mechanical tests. 

 

3.2.Computed tomography. 

The CT measurements were performed by using a CT scanner v|tome|x L 300 from 

General Electric. 3000 projection were acquired with acquisition time of 2s at voltage of 80 keV 

and tube current of 50µA. To obtain a better statistical sample of the orientation distribution of 

fibers within the sample, six CT measurements at different locations along the sample’s height 

were carried out with spatial resolution of 6.65 µm. Examples of reconstructed slices of one of 

the 3D reconstructions are presented in Figure 7. 

Image analysis of reconstructed volume was performed by using Amira ZIB Edition from 

Konrad-Zuse-Zentrum Berlin (ZIB). Due to the low contrast between the fibers and the matrix 

material, and because of the small fiber diameter (15 µm), identification of fibers by global 

segmentation was not possible. However, it was possible to trace fibers by using a template 

matching algorithm implemented in ZIB Amira. This tool creates correlation and orientation 

fields matching the reconstructed volume with a cylindrical template, which has to be defined by 

user. This approach helps to trace fibers (and others tube-like structure) even in noisy data. In the 
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present study, implementation of such algorithm had some limitations: Crossing of low-density 

fibers with pores and aggregates, as well as damage of fibers during sample drilling, resulted in 

difficulties in estimating fiber length. However, observations indicated that bending of fibers was 

not significant in this material. Therefore, reliable fiber orientation information could indeed be 

extracted even from incomplete or damaged fibers. The improper identification of material 

interface zones (such as the surface of aggregate particles) as fibers was minimized by 

introducing additional strategies, such as fiber length control and direction coefficient 

calculation.  

As an output of the template matching algorithm, two orientation angles in spherical 

coordinates   and   for each fiber were obtained. Figure 8 presents examples of fiber 

orientation distributions in   and   obtained for one CT scan. These data were used to produce 

orientation distribution histograms (Fig. 9) normalized by the number of fibers for the whole 

sample. It is to be noted that in the concrete casting process polymer fibers are difficult to 

distribute with a defined orientation, due to the tendency of the fibers to agglomerate. From the 

orientation distribution histogram, a high number of fibers were oriented roughly parallel to the 

X-Z plane (  near 0° or 180°) with orientation angle   larger than 45° can be observed. To 

obtain the orientation distribution probability density, normalized frequency has to be multiplied 

by 52  (since interval from 0 to 2  is subdivided on 26 subintervals). 

 

3.3.Reconstruction of the scatter parameter. 

A custom Matlab script was developed to determine the scatter parameters   from CT data 

using nonlinear least squares fitting. The Trust Region Reflective method was used to minimize 

the squared second norm of the vector e  denoting the error between the distribution (2.11) and 

the experimental data: 

 
( ) ( )

( ) ( )

( )

2

2

2

2 



 exp

exp

P

Psin,P
minmin

−
=e       (3.1) 

where ( ) ,P  is the vector of probability density calculated using first of the expressions (2.11) 

for the given scatter parameter   and the inclination angle  , ( )expP  is the vector of 

experimentally obtained normalized frequencies and ( )expP  is the mean value of ( )expP . Figure 
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10 a shows that the best fit is produced by 0=  with 963602 .R = . It means that the 

distribution with respect to angle   is isotropic and the material properties are transversely-

isotropic with the isotropy plane 32 xx  and symmetry axis 
1x . We now change the coordinate 

system as shown in the inset of Figure 10b and recalculate the orientation distribution probability 

density with respect to angle ~  (Figure 10b). Again we use first of the expressions (2.11)and the 

best fit is produced by 83.=  (red line in Figure 10b) with 948802 .R = . Thus the overall 

distribution of the fibers is transversely-isotropic (at least, in the sense of approximate symmetry, 

Sevostianov and Kachanov, 2007) with 1x -axis being the axis of symmetry and with the scatter 

parameter 83.= .  

With the fitted fiber orientation distribution function, we can calculate the effective elastic 

properties of the composite. Figure 11 shows the effective engineering elastic constants 

calculated in the frameworks of NIA, Mori-Tanaka and Maxwell schemes for these orientation 

distribution. Material constants of the constituents are given in Table 1. 

 

3.4.Mechanical tests. 

For illustration, we also performed three points bending test (whose scheme is shown in Figure 

6c) to evaluate the Young’s modulus 1E  along 1x -axis. To estimate the elastic properties of the 

matrix, the same test was performed on unreinforced mortar (that did not contain any fibers). All 

specimens were tested on a Zwick rig Z050TN with test speed of 0.5 mm/min. Poisson’s ratio of 

the mortar was measured independently and is 0.15. Young’s modulus was calculated from the 

ratio of force F  to maximal deflection maxw  and geometrical parameters of the specimen as 

 
4

3

1
4a

L

w

F
E

max

= ,         (3.2) 

where mmL 160=  is the specimen length and mma 40=  is the side of the (square) cross-section. 

The circles in Figure 11b show the experimental data. We observe a very good agreement 

between the experimental data and the calculations. In spite of the fact that experimental data are 

only available for small volume fractions c of fibers, and in that interval of c all homogenization 

schemes yield similar results. In spite of the fact that we cannot prefer either of the 

homogenization schemes proposed above, the agreement between experiments and theory 

suggests that the model based on measured microstructural features is reliable. 
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4. Concluding remarks. 

 In order to calculate the equivalent elastic constants of a plastic fibers reinforced concrete 

composite (a transversely isotropic material), we considered the use of X-ray computed 

tomography to experimentally obtain information about orientation distribution of fibers. This 

experimental information was incorporated into several micromechanical homogenization 

schemes (non-interaction approximation, Mori-Tanaka-Benveniste, and Maxwell scheme). The 

results for one of the Young moduli were compared with experimental data obtained by three-

point bending. They show very good agreement in the interval of moderate fiber volume fractions, 

and validate the approach set forth in this work. 
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Appendix. Tensor basis in the space of fourth rank tensors and representation of some 

tensors in its terms. 

We outline a convenient technique of analytic inversion and multiplication of 4th rank tensors. It 

is based on expressing tensors in “standard” tensor bases as suggested by Kunin (1983) and 

Walpole (1984). In the case of the transversely isotropic elastic symmetry, the following basis is 

most convenient: 
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where jiijij mm−=   and 332211 eeem mmm ++=  is a unit vector along the axis of transverse 

symmetry. 

 These tensors form the closed algebra with respect to the operation of (non-commutative) 

multiplication (contraction over two indices): 

 ( ) ( )( ) ( ) ( )  pqklijpqijkl TTTT :    (A.2) 

The inverse of any fourth rank tensor X , as well as the product YX:  of two such tensors are 

readily found in the closed form, as soon as the representations in the basis  

 
( )

=

=
6

1k

k
kX TX , 

( )
=

=
6

1k

k
kY TY   (A.3) 

are established. Indeed:  

 a) inverse tensor 1−
X  defined by Xijmn

−1
Xmnkl ( ) ijklmnklijmn JXX == −1  is given by 

 
( ) ( ) ( ) ( ) ( ) ( )615

5

44332

2

161 241

2

TTTTTTX



++



−



−+



=− X

X

XX

X

X
  (A.4) 

where ( )43612 XXXX −= . 

 b) product of two tensors YX:  (tensor with ijkl  components equal to mnklijmnYX ) is  
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If x3  is the axis of transverse symmetry, the general transversely isotropic fourth-rank tensor, 

being represented in this basis 

  ijkl = mTijkl
m           (A.6) 

has the following components: 

 1 = 1111 +1122( ) 2; 2 = 21212 ;  3 = 1133 ;  4 = 3311 ;  (A.7) 

  5 = 41313 ; 33336 =  

Utilizing (A.7) one obtains the following representations: 

 • The tensor of elastic compliances of an isotropic material = m
ijklmijkl TsS  has the 

following components 
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 • The tensor of elastic stiffness of an isotropic material by = m
ijklmijkl TcC  has 

components 

  +=1c ; 22 =c ; == 43 cc ; 45 =c ;  26 +=c .    (A.9) 

where ( ) 212 −= . 

 • Unit fourth rank tensors are represented in the form 
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• Tensor Q  defined by (2.6) , in the case of a spheroidal inhomogeneity ( aaa == 21 ) of the 

aspect ratio 3aa= , has the following components (see, for example, Sevostianov and 

Kachanov, 2002): 
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where ( )  −= 121  and functions 0f  and 1f  are given by 
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where  
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Factors entering the representation of the compliance contribution tensor H of the spheroidal 

inhomogeneity with bulk and shear moduli 1K  and 1  embedded in the matrix with elastic 

constants 0K  and 0    in terms of the tensor basis are given by (Sevostianov and Kachanov, 

1999; 2002): 
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where K  and   are defined by (2.15) and 
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Tables. 

Table 1. Mechanical properties of the constituents 

 Young’s 

modulus (GPa) 

Poisson’s 

ratio 

Concrete matrix 45.0 0.15 

Polyacrylonitrile 

fibers 

26.8 0.19 
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Figure captions 

Figure 1. Optical micrographs showing orientation distribution of fibers: (a)  -Al2O3 fibers 

reinforced aluminum alloy (from Kang et al, 2002); (b)  polypyrrole-coated amorphous silica 

short fibers reinforced polyvinylidene fluoride matrix (from Arenhart et al, 2015). 

Figure 2. Spherical coordinate system used in (2.9). 

Figure 3. (a) Dependence of the orientation distribution function P  defined by the first 

equation (2.11) on angle   at several values of  ; (b) dependence of  sinP  on angle  ; (c) 

dependence of the orientation distribution function P  defined by the second equation (2.11) on 

angle  . 

Figure 4. Dependence of functions ( )ig  on the scatter parameter. 

Figure 5. Schematic diagram of the computed tomography: (a) conventional system - 

tomograms are measured slice by slice, and the sample is not only rotated, but also translated 

along a scan direction; (b) 3D CT - the detector no longer consists of a row of detectors but of a 

square field with an array of detector elements 

Figure 6. (a) concrete specimens used in mechanical tests; (b) specimens used for computed 

tomography experiments; (c) schematic representation of samples used for mechanical testing 

and CT. 

Figure 7. 2D reconstructed slices from CT measurements (a) in plane x1x3 and (b) in plane x2x3. 

Figure 8. Depiction of fiber orientation distribution obtained by CT measurements with respect 

to angles   (a) and   (b). 

Figure 9. Histograms of normalized frequency distribution for angles   (a) and   (b). 

Figure 10. (a) Orientation distribution function for angle   and its best fit by the first equation 

(2.11); (b) orientation distribution function for angle ~  in the coordinate system shown in the 

inset and its best fit by the first equation (2.11). 

Figure 11. Dependence of the elastic constants (in GPa) of the PAC fibers reinforced concrete 

on the volume fraction of fibers. Calculations are done according to formulas (2.22) (non-

interaction approximation), (2.24) (Mori-Tanaka-Benveniste scheme), and (2.27) (Maxwell 

scheme). Figure (b) provides comparison with the experimental data indicated by circles. 
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2D reconstructed slices from CT measurements (a) in plane X1X3 and (b) in plane X2X3
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