This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

Aggregating Without Bloating: Hard Times
for TCP on Wi-Fi

Carlo Augusto Grazia™, Member, IEEE, Natale Patriciello

Martin Klapez

Abstract— Since the definition of the bufferbloat phenomenon,
several Linux kernel modules have been introduced in its TCP/IP
stack, and there is a lack of experimental studies on their effects
when coupled with WLAN technologies, in particular, IEEE
802.11n and IEEE 802.11ac. One essential algorithm introduced
is named TCP Small Queues (TSQ) and has the role of limiting
the number of packets that a TCP socket can enqueue in the
stack, waiting for the physical layer to send the packets before
enqueueing extra data. A second significant TCP algorithm is
named TCP Pacing (TP) and regulates the pace used by the
socket to enqueue packets in the stack, regulating the formation
of bursts of data. These mechanisms affect the frame aggregation
logic on WLAN networks and compromise the throughput-
latency tradeoff of all the TCP variants. This paper presents
an experimental evaluation of these techniques investigating the
wireless network performance of several TCP congestion control
variants under the presence of different TSQ and TP policies,
modeling also their interaction.

Index Terms— Congestion control, frame aggregation, latency,
pacing, TCP, TSQ, WLAN.

I. INTRODUCTION

HE increase of Wi-Fi usage encourages research and

development on new optimized standards, as well as
refinements of the current ones [1]-[3]. For instance, IEEE
802.11n/ac/ax need frame aggregation to boost the overall
throughput. Frame aggregation increases spectrum efficiency
by sending more than one frame in a single transmission
opportunity [4]. Simultaneously, the inflation of buffers along
network paths intended to limit the loss rates of links led to
the, now well recognized, bufferbloat problem [5], that could
cause up to seconds of needless queuing delay.

In this paper, we take the Linux kernel as the networking
reference point, as it is currently running the vast majority
of Internet-connected servers for its robustness, security, and
speed. Several solutions spanning the entire Linux networking

Manuscript received August 7, 2019; revised January 30, 2021, August 27,
2021, December 7, 2021, and January 7, 2022; accepted April 24, 2022;
approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor Y. Guan.
(Corresponding author: Carlo Augusto Grazia.)

Carlo Augusto Grazia, Martin Klapez, and Maurizio Casoni are with
the Department of Engineering Enzo Ferrari, University of Modena and
Reggio Emilia, 41125 Modena, Italy (e-mail: carloaugusto.grazia@unimore.it;
martin.klapez@unimore.it; maurizio.casoni @unimore.it).

Natale Patriciello was with the Centre Tecnologic de Telecomunicacions
de Catalunya (CTTC/CERCA), 08860 Barcelona, Spain. He is now with
Vonage, Video Media Platform Engineering, 08018 Barcelona, Spain (e-mail:
npatriciello@acm.org).

Toke Hgiland-Jgrgensen is with Red Hat, Raleigh, NC 27606 USA (e-mail:
toke @redhat.com).

Digital Object Identifier 10.1109/TNET.2022.3171594

, and Maurizio Casoni

, Toke Hgiland-Jgrgensen,
, Senior Member, IEEE

stack have been recently introduced to optimize network per-
formance. At the transport layer, the TCP congestion control
domain has seen proposals such as Google BBR [6], TCP
Small Queues (TSQ), and TCP Pacing (TP). The acronym
BBR derives from “bottleneck bandwidth” and “round-trip
propagation time”’; indeed, the BBR TCP congestion control
algorithm has been designed to make efficient use of the net-
work channel while keeping latency under control; BBR does
this by building a model of the network path in order to avoid
and respond to actual congestion. TSQ is a process coupled
with every TCP congestion control algorithm, designed to
limit the number of packets that can be enqueued down the
stack at any given time on the basis of the rate at which the
Network Interface Card (NIC) effectively dispatches frames.
TP is a third module that controls the pace at which the
enqueue occurs. Together, TSQ and TP regulate how much
data to enqueue and how fast it is enqueued, respectively.
At the network layer, a hybrid packet scheduler and Active
Queue Management (AQM) algorithm called FQ-CoDel [7]
has been instead introduced to address the bufferbloat problem
directly. FQ-CoDel prevents the formation of large buffers by
preferentially dropping packets that remain in the queue for
an excessive time.

TSQ and TP perform remarkably well over wired links,
but they can affect the frame aggregation logic of wireless
standards that use it. We analyzed this limitation in [8] for
Cubic coupled with TSQ, but, to the best of our knowledge,
literature is still lacking a precise analysis of the effects
of TSQ and TP on TCP congestion controls like BBR and
other TCP variants available in the Linux kernel. This paper
studies these effects both individually and in conjunction
over two wireless technologies: IEEE 802.11n and IEEE
802.11ac. These standards need frame aggregation to utilize
the spectrum fully. Among those requiring frame aggregation,
currently, they are also the most widely used. Our experiments
show that the only way to exploit the Wi-Fi bandwidth in
upload efficiently is to relax the limit imposed by TSQ and
TP, allowing for the frame-aggregation formation and higher
throughput. The solution is not a silver bullet and requires
a fine-grained tuning according to the aggregation size used
by the specific technology under investigation and the TCP
variant used, which affects the throughput-latency tradeoft.
We selected two specific values of TSQ, now included in the
Linux kernel mainline for the Atheros drivers, for the IEEE
802.11n and IEEE 802.11ac technologies.

The rest of the paper is organized as follows: Section II
describes the related work, while Section III presents the

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0534-995X
https://orcid.org/0000-0002-3011-4370
https://orcid.org/0000-0002-2947-204X
https://orcid.org/0000-0002-8417-4416

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

current Linux TCP/IP stack. Section IV models the interaction
with TSQ, TP, and frame aggregation mechanism. Section V
describes the testbed used to produce the results analyzed in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

TCP congestion controls performance is always under a
microscope. The literature contributions range over a variety of
scenarios, with different topologies and technologies, address-
ing several issues. To give an example, in [9] Zhou et al
classified and analyzed stalls at the server-side dealing with
a fundamental TCP characteristic: the Retransmission Time
Out (RTO) value. RTO can indeed affect TCP performance in
the wild. The authors realized the existence of this issue by
observing several real-traffic TCP traces concluding the neces-
sity to have tailored RTOs for different services. In another
recent study [10], the authors proposed a new method for
testing TCP congestion controls in a scalable way, leading
to a list of bugs never reported before. Another challenge is
to identify the TCP variant running on a network; for instance,
authors in [11] provided a tool to identify the TCP congestion
control used by a remote server.

TCP congestion controls performance is a well-studied topic
in the literature. Many contributions cover the main aspects,
while others focus on several niches. Some novel contributions
are based on machine learning to train the congestion control
algorithm in a large variety of networks. This is the case
of [12]-[14], to cite some of them which are challenging
the research on this topic comparing the performance with
existing congestion controls. There are also contributions
focusing on rethinking the TCP protocol entirely, deprecating
its macroscopic model after the introduction of BBR [15].
However, to the best of our knowledge, there is a relevant
part missing. That is a proper investigation of the TSQ and
TP algorithms and an experimental review of novel TCP
variants over WLANs. TSQ, TP, and other novel algorithms
like BBR and FQ-CoDel, have been introduced to mitigate the
bufferbloat phenomena. Still, the interaction with new Wi-Fi
modules carries uninvestigated drawbacks.

We now present relevant works that get close to our
contribution by following a bottom-up approach. A detailed
analysis of the WLAN frame-aggregation logic has been
provided through simulations in [16]. Moreover, a throughput
comparison between the new IEEE 802.11ax and the cur-
rent IEEE 802.11n/ac standards has been provided in [17]
through the ns-3 Network Simulator. Another work based on
simulations [18] analyzes the data rate of IEEE 802.11n/ac
under power constraints. These are all examples of works
close to the topic that miss the opportunity to investigate
possible issues arising from TSQ and TP due to the absence
of these mechanisms in the ns-3 simulation environment.
Nevertheless, real tests involving TCP over Wi-Fi exist. It is
the case of [19] that presents an experimental evaluation for the
power-throughput tradeoff of IEEE 802.11n/ac technologies,
including also smartphones in the testbed. Even papers related
to Multi-Path TCP (MPTCP) are supported by experimental

IEEE/ACM TRANSACTIONS ON NETWORKING

results [20]. However, the only available source revealing that
TSQ breaks the frame-aggregation logic of IEEE 802.11n/ac
is [8], which provides only data related to Cubic and does
not include TP analysis. For what concerns TCP pacing, there
is a decade of literature investigating the mechanism. This
is the case of [21] where TP is studied in multi-hop ad-hoc
wireless networks as well as [22] where the same mechanism
is investigated for solutions tailored for data-centers networks.

Moving towards general evaluations of different TCP
variants over wireless networks that do not deal with the
frame-aggregation problem and the TSQ/TP algorithms, there
are mainly works based on simulations [23], [24]. On the
other side, for the wired technologies, it is easy to find works
based on both simulations and real testbeds [25], [26]. Even
the learning-based congestion controls are part of this group.
PBE-CC [14] has been designed for cellular networks, where
the environment is highly dynamic, but the implementation
is a proof-of-concept unavailable in the Linux kernel for
real-test comparison involving TSQ and TP modules. Same
discussion for [13] which is based on emulated environments.
Even Rein [12], one promising learning-based congestion
control, has been implemented based on an old kernel version
4.14 never included in the mainline. Numerous scientific
contributions have analyzed BBR performance with different
technologies. For example, some recent works have tried to
answer this question: “will TCP work in mmWave 5G cellular
networks?”. One work [27] is based on simulation and also
includes BBR between the TCP congestion controls investi-
gated. A general issue for mmWave is that it is challenging
to exploit the available bandwidth during “irregular” time
intervals for the currently available TCP variants. Continuing
on the cellular network topic, with the current 4G available
technology, BBR has been tested in [28] and [29]; both the
papers conclude that BBR outperforms NewReno and Cubic
in terms of throughput and latency, while in some network
conditions, BBR struggles in maintaining fairness between
flows. Concerning fairness, when different RTT flows are in
place, this work [30] shows that it is hard to achieve fairness
between BBR and Cubic, while thanks to FQ-Codel [7]
the unfairness gap can be reduced remarkably. A variant of
BBR, called Modest-BBR [31], modifies BBR by reducing
its aggressiveness and increasing fairness with Cubic while
still maintaining similar performance to the original BBR.
To conclude the picture, the following two works investigate
the behavior of mixed BBR and Cubic traffic by dealing
with the internal parameters of BBR, in particular with its
cycle [32]. Considering real tests of BBR over Linux systems,
in [33] BBR and Cubic have been tested over standard Gigabit
Ethernet wired networks with a 4.9 kernel version. The paper
shows that BBR does not meet its standard behavior when
multiple flows are in place in terms of both fairness and
latency reduction due to high queue occupancy. On the other
side, the frame aggregation over WLAN technologies has been
investigated mainly through analytical models and simulations,
initially on IEEE 802.11n in [34] and, recently, on IEEE
802.11ac in [35]. Moving to the improvement of BBR per-
formance, several scientific works tried to solve well-known

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRAZIA et al.: AGGREGATING WITHOUT BLOATING: HARD TIMES FOR TCP ON WI-FI 3
TCP TCP Socket Queueing Layer Driver
LastACK LastSent :D[q] %
application data 1 8 Y
<
1 N YRRE BQL > NIC hardware
Congestion |[T5Q Pacing Classifier/ _~ _TIIH~ 8
Control @ Q P T
h h |
4 tg |2'/nI1711LLllecue when to send j & :
what to send A — I
1 1
'
1

Fig. 1. Linux TCP sender architecture.

issues of BBR related to RTT fairness and also Wi-Fi ineffi-
ciencies. Concerning the latter, Google itself proposed a patch
initially, through an RFC, named BBR-DEV [36], and then
a new BBR version that became available since the Linux
kernel version 5.x which is named BBR v2 [37]. BBR-DEV
can operate increasing the BBR throughput when the TCP
sender is ethernet-connected and the receiver is on a Wi-Fi
network. To do it, BBR-DEV instructs the sender to put
extra data in flight to keep the bottleneck utilized. Moreover,
BBR-DEV also introduces an adaptive drain technique that
has the goal of lowering queuing delays. BBR v2, instead,
aims to take advantage of a tailored TCP pacing to increase
frame aggregation and allow BBR to improve throughout in
WLAN environments, regardless of the sender connectivity,
either wired or wireless. We also proposed a BBR variant
named BBRp [38], which customizes the BBR cycle dealing
with the pacing gain and draining phase. The BBRp goal is
to allow frame aggregation without excessively bloating the
bottleneck queue, allowing for better performance in WLAN
environments without compromising the BBR model-based
nature in wired ones. The BBRp publication [38] includes tests
in which the transmitting node is not directly connected to a
Wi-Fi interface, and the Wi-Fi hop is just on the download
path; this masks the TSQ impact, and almost all the TCP
algorithm manifests similar results except for BBR v1, unable
to aggregate properly due to pacing issues.

To summarize, on one side, there is the community effort
to improve the performance of BBR over WLANSs, where TP
plays a critical role. On the other side, there are no works
that focus on different TCP variants together with TSQ or TP,
highlighting their interference. This manuscript aims to close
the gap, focusing on the challenging WLAN scenario, which
involves a frame aggregation mechanism.

III. LINUX TCP/IP STACK

This section describes the current TCP/IP stack of the Linux
kernel, including all the new parts covered in this paper, like
TSQ and TP, as well as the Queueing Layer (QDisc) and the
Driver blocks, all depicted in Figure 1. The current Linux
TCP module is composed of three algorithms: TCP Congestion
Control, TCP Small Queues, and TCP pacing. On top of
this module, there is the TCP Socket, which generates the
TCP segments and manages the ACKs. Every TCP connection
is mapped with a specific TCP socket, and the packets are
managed according to the three algorithms.

A. Congestion Control

It is a well-known part of the TCP module, rich in lit-
erature contributions about possible algorithms that can be
used as congestion control. In this paper, we test Cubic [39],
the current Linux default, BBR [6] (and three of its vari-
ants), designed by Google and incrementally deployed in
many nodes, New Vegas [40], a timestamp-based conges-
tion control like BBR, two window-based variants which
are New Reno [41] and HighSpeed (other TCP variants
like Westwood+, Reno, Bic, Illinois and Scalable, available
in [42], are not included here for space constraints), and a
window-rate hybrid TCP variant named YeAH [43]. These
algorithms are well different in terms of approach: BBR and
New Vegas are rate-based variants in which the concept of time
is stressed to reduce latency as the main goal, while Cubic
and the others are mainly window-based and have goodput
maximization as the primary goal. Each congestion control is
responsible for fundamental operations like the computation
of the sending rate and the congestion window size (CWND),
as well as the computation of the TCP parameters in the
presence of congestion events or packet loss.

B. TCP Small Queues (TSQ)

It is an algorithm introduced by Google to mitigate TCP
flows latency. The TSQ algorithm allows each TCP socket to
enqueue a limited number of packets in its node stack. The
goal is to mitigate the Bufferbloat [5] phenomena by avoiding
the accumulation of packets in the sender node queues; the
TCP socket is informed and allowed to enqueue a new packet
in the stack only when the NIC finalizes the dispatch of a
packet. The standard TSQ algorithm allows each TCP socket
to enqueue a specific number of packets equivalent to the
number of packets corresponding to 1 ms of latency at the
current sending rate; this mechanism introduces an upper
bound to the sending node queueing delay as a function of the
flow throughput. This global limit of 1 ms has been proved
in [8] to be too strict in a Wi-Fi environment where frame
aggregation is not efficient with such a limit.

C. TCP Pacing (TP)

The algorithm defines the pace used to push the packets
from the TCP module to the lower layers of the stack. While
TSQ limits the number of packets enqueued, TP limits the
internal rate for moving packets to the networking layer,

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Algorithm 1 TCP Pacing Rate.
Input: TCP_SOCKET sk, int basegrr;
1: int rate = mss * sk—cwnd / baseprT;

2: if sk—cwnd < sk—ssthresh / 2 then

3: rate ¥= tp_ss_ratio; /I SlowStart phase
4: else

5. rate *= tp_ca_ratio; /I Cong.Avoid. phase
6: end if

Algorithm 2 TCP Small Queue.

Input: TCP_SOCKET sk;

1: int limit;

2: limit = max(2 * sk—pktsize, sk—tp_rate > 10);
3: limit = min(limit, tcp_limit_output_bytes);

forcing a time interval between a packet enqueued and another.
Both TSQ and TP can help to avoid the formation of bursts,
thus mitigating the Bufferbloat effect. TP’s essence is to spread
packets in the time domain by using the base RTT computed
by the congestion control. Indeed, an essential parameter
of the pacing algorithm is the base RTT of the network.
Almost all the TCP congestion controls use a standard TP
algorithm; BBR, which implements its pacing mechanism,
is an exception. The standard Linux TP algorithm uses two
default rates for pacing, and both are expressed as a percentage
of the current rate of a TCP flow: 200% and 120%. The
former is used during the slow-start phase, allowing to enqueue
packets at a rate that is twice the current one, while the latter
is used during the congestion avoidance phase, allowing to
enqueue packets at a rate that is 20% higher than the current
one. BBR uses a similar value called TP Gain, hardcoded in
the BBR algorithm and not tunable in userspace, equal to a
rate that is 25% higher than the current one.

D. TSQ and TP Interaction

The cooperative work of these two TCP submodules
strongly impacts the way packets are delivered by the TCP
socket. The two variables mentioned before for TP are
tp_ss_ratio and tp_ca_ratio, used in the slow start
and the congestion avoidance phases, respectively. The TCP
socket’s final TCP paced rate to deliver data is then adjusted
with a tp_ratio that changes according to the TCP trans-
mission phase, as shown in Algorithm 1. Converting the
percentages described before, tp_ss_ratio is equal to
2 and tp_ca_ratio is equal to 1.2, respectively, allowing
to probe for more bandwidth without forming excessive bursts
of packets in the network queues.

On the other side, TP and TSQ define the number of
packets that a TCP socket can enqueue in the sender stack.
This quantity is a dynamic value, calculated according to
Algorithm 2, equal to the amount of data that corresponds to
a latency of 1 ms, by default. TSQ is also bounded between
a minimum amount of packets (2 by default) and a maximum
amount of bytes (128 KB by default). Algorithm 2 clarifies this
behavior: the dynamic amount of data that can be enqueued is

IEEE/ACM TRANSACTIONS ON NETWORKING

BDP

app :
lim. :

BDP + Buffer
buffer

bandwidth
imi limited

limited .

round-trip time

max agg. size
PPty

BtIBw+agg
] G:)D

BtlBw-noagg C,;\

delivery rate

— N0 aggr. (= wired)
aggregation

data amount inflight

Fig. 2. Wireless bottleneck.

calculated through tp_rate > 10, which is a 10-bit shift of
the current pacing rate that corresponds to a 1 ms latency. This
mechanism helps the sender congestion control to mitigate the
queueing delay inside the node, reducing the RTT.

In final, Figure 1 also reports the standard structure of
the FQ-Codel [7] algorithm, the default option of many
Linux distributions. Once the TCP socket forms a packet, the
packet moves into the QDisc layer, where packet scheduling
and AQM policies are applied to guarantee QoS constraints.
When the packet is dequeued from the networking layer, it is
delivered to the NIC driver, the piece of code that interacts
with the hardware and delivers packets on the medium. Finally,
a very last queue is present in the driver; it is typically a FIFO
and is ruled by a Byte Queue Limit (BQL) [44], [45] to avoid
excessive queueing.

IV. TSQ, TP AND AGGREGATION INTERFERENCE

The currently used model for representing bandwidth and
RTT of a TCP traffic over a standard wired bottleneck,
like the one employed by Google to design TCP BBR [6],
is reported with solid lines in Figure 2. The model represents
three regions: (i) the application limited one in which a TCP
flow can increase the delivery rate without affecting the RTT,
(i1) a bandwidth-limited one in which the TCP flow reaches the
bandwidth-delay product (BDP) of the system and increasing
the amount of data inflight has the sole effect to increase
the RTT, since packets start to accumulate at the bottleneck
link causing the so-called bufferbloat effect, and (iii) a buffer-
limited region, where the bottleneck is full and starts to drop
packets avoiding further RTT increments. For an additional
description of the wired model, we refer to [6]. This model
has been used to highlight the operating point of different
TCP congestion controls with, as an example, the delay-based
variant TCP New Vegas and the model-based variant BBR
operating close to point A, and the loss-based variants like TCP
Cubic and New Reno operating close to point C. The same
model also holds for wireless bottlenecks that do not operate
with frame aggregation, where each packet transmission is
independent of the other.

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRAZIA et al.: AGGREGATING WITHOUT BLOATING: HARD TIMES FOR TCP ON WI-FI 5

Moving to Wi-Fi, in which packets are aggregated, we lose
bandwidth and RTT linearity in the central region of
Figure 2 and the optimal operating point becomes B, where
frame-aggregation allows to reach the maximum throughput,
while loss-based variants operate close to point D. The reason
of the non-linear behavior is twofold: (i) the delivery rate is
not constant as a function of the bottleneck queue length, and
(ii) the increment of RTT is not merely the transmission delay
of the k packets at the bottleneck queue. Further details on this
effect can be found in [46]. Concluding, our goal is to model
the delivery rate and the RTT as a function of the aggregate
size, which depends on TSQ and TP rate.

We assume a single active station that transmits aggregates
of k packets at a constant bitrate r, which is our system’s
bottleneck. In practice, the aggregates are composed of k pack-
ets, including frame overhead and padding, and the aggregate
length is k- [- 8 4 [, bits, where [is the packet size in bits,
and [, is the physical layer overhead. Moreover, focusing
on the upload, the bottleneck link is directly the NIC of the
sender, allowing us to model the number of packets at the NIC
waiting to be transmitted as a function of the TSQ size (¢) and
TP ratio (p):

k(t,p)=t-p-c. M

To simplify the discussion, we refer to a steady-state case
in which the NIC queue is backlogged; this allows us to
express © as a static quantity expressed in packets, and p
as a multiplicative factor. This multiplication is indeed the
cascade execution of Algorithms 1 and 2. The parameter c
is a constant value, always in the [0, 1] range, that represents
which percentage of the product ¢- p is actually backlogged at
the NIC. This parameter is essential to fit the model into the
use-cases, where sender nodes may have different hardware or
software characteristics. While the TCP socket has an imposed
limit of ¢-p packets to enqueue in the stack, this does not mean
that these packets will all be backlogged at the NIC and ready
to form an aggregation. Depending on the load of the CPU
usage or the number of active flows, some packets can still be
waiting at the networking layers due to software bottleneck or
high congestion, respectively. The parameter c¢ includes these
details focusing on the amount of the ¢ - p product which is
actually enqueued in the NIC, and so ready to be part of an
aggregate. The time needed to transmit an aggregate of k(t, p)
packets is:

k(t,p)-1-84+1,
2 LA

TxTime(k(t,p)) =
where i, is the per-transmission overhead, which encapsu-
lates the inter-frame spacing, the average block acknowledg-
ment time, and the average back-off time before transmission.
A detailed explanation of t,, overhead is given in [47].
Starting from this, we can compute the expected effective
throughput Thr(k (%, p)), assuming no errors or collisions, and
no other active stations:

-~ TxTime(k(t,p))

If the number of packets k(, p) enqueued in the ath driver
is smaller than the maximum aggregation size (mxg), then

Thr(k(t, p)) A3)

the driver will transmit all the k(Z,p) packets in a single
aggregate. The time needed to complete the transmission is
TxTime(k(#,p)), under the steady-state hypothesis. Unfortu-
nately, the amount of time TxTime(k(f,p)) corresponds to
the delay of only the last packet pj, which is started to be
transmitted with the aggregate as soon as it arrives in the
queue. Instead, the first packet p;, which will experience the
same transmission delay of p; since they belong to the same
aggregate, has also waited in the queue for, at least, the arrival
of the other packets, waiting for the aggregate formation [48].
This effect leads to a delay of, at least, 2- TxTime(k(,p)),
since in [46] is demonstrated that the queueing delay, for the
aggregate formation, is equal to the transmission delay under
our hypothesis.

We consider the RTT experienced by our system as the sum
of the RTTy,s. of the network with the contribution imposed
by forming the bottleneck queue through queueing delay and
transmission delay, considering ACKs delay negligible. The
maximum RTT(k(t,p)) experienced in a queue of k(Z,p)
packets, with maximum aggregation size mxg, is:

RTT(k(t,p))
RTTyase+2 - TxTime(k(t, p)) if k(t,p) <mazg
= {RTTbase+ [@xﬂ TxTime(mxg) otherwise.
4)
k(t.p)

indeed, if k({,p) > maxg, there will be g integer
aggregates with TxTime(mxg) packets, and the queueing delay
of the residual packets waiting to be transmitted. While the
integer aggregates are transmitted, the residual packets in
the queue will be grouped with the new arriving packets
to form an aggregate of mxg size, which has a queueing
delay equal to TxTime(mxg) [46]. Consequently, the RTT
experienced by k(t,p) > mxg packets became RTTpqsc +

mLxg] TxTime(mxg). Similarly, we define the Wi-Fi bottle-
neck bandwidth as:

BW (k) = {T’“”(’f(tvp)) if k(,p) < mag

Thr(mag) ©)

otherwise.

Concluding the model description, it is important to notice
that imposing a static maximum aggregation size equal to on
packet (mxg = 1) we fallback to a wireless interface without
frame-aggregation mechanism enabled. This is the case of
the solid lines in Figure 2, obtained with this technique. For
further details, the model without frame-aggregation has been
investigated in [46].

V. TESTBED

This section describes our testbed, which is depicted in
Figure 3. Each test involves a client, a server, and the access
point that provides connectivity to the former two through
a Wi-Fi and an Ethernet connection, respectively. All nodes
run the Arch Linux distribution with a 5.4 kernel version.
This testbed represents a typical home/office connection with a
desktop or a laptop connected to a Wi-Fi Access Point using
the IEEE 802.11n or IEEE 802.11ac standard. The rest of
the network is wired with Gigabit Ethernet interfaces, so they

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
TABLE I
MODEL PARAMETERS
Notation Description Value
1 packet size 1500 bytes
lon physical overhead 48 bytes
r station bit-rate: AR9580 ath9k_htc 216 Mbit/s
mxg max agg. size: ms at the current rate 4ms
ton channel access overhead 0.5 ms
RT Tpase base network RTT 2.5 ms
3 TSQ size [1, 400] pkts
P TP Ratio 1.2 and 1.6
c Corrective backlog factor 0.8
TABLE 11
TESTBED PARAMETERS
parameter value
Kernel version 5.4-1ts
Linux Distribution Arch Linux
TCP Cubic, BBR, New Vegas, YeAH, New Reno,
Congestion Control HighSpeed, BBR-DEV, BBR v2, BBRp
TSQ type TSQ, 2TSQ, 4TSQ 8TSQ, 16TSQ, 32TSQ
TP Rate 1p (standard), 2p, 3p
QDisc FQ_Codel

Wired links 1 Gbit Ethernet
Atheros AR9271 1x1, AR9580 3x3 MIMO
Atheros ARSBHB116 2x2 MIMO
Qualcomm QCA6178 2x2, 9880v2 3x3 MIMO
ath9k: IEEE 802.11n 2.4 GHz (ch3) 40 MHz
ath9k_htc: USB IEEE 802.11n
athl0k: IEEE 802.11ac 5 GHz (ch58) 80 MHz
1-8 TCP Uploads, RRUL,
UDP flooding
TCP Throughput, TCP RTT,
ICMP Latency, Frame aggr. size

Wireless Chipsets

Wireless Drivers
and Channels

Tests

Metrics

do not affect our tests since they are not the bottleneck.
The wireless connectivity is given by PCle Atheros chipsets
supported by the ath9k and ath10k open drivers. The client
uses different TCP congestion control algorithms (reported
in Section IIl and Table II) and can set different possible
TSQ limits [8] and TP rates. To overcome the inflexible
standard behavior of TSQ, we patched the kernel to expose
the TSQ core parameters and make it possible to disable or
tune the TSQ logic or even impose static TSQ sizes expressed
in bytes or packets. We name this solution Controlled TSQ
(CoTSQ) [42]. While standard TSQ allows each socket to
enqueue “1 ms of data” at the current rate, the CoTSQ patch
allows changing the amount of data that can be enqueued at
the current rate on the basis of additional time-windows. This
limits the amount of data in the stack as a function of the ms
parameter, resulting in a dynamic constraint, i.e., autotuning
the number of bytes to enqueue as a function of the current
rate. In this paper, we use values of 1 (standard TSQ), 2,
4, 8, 16, and 32 ms, because, at the kernel level, the TSQ
size is managed as a bits shift operation (Algorithm 2) and
power of 2 integers are preferred. The other most critical
parameter introduced and tested in this paper is the TP rate.
Since BBR does not react to any modification to the current
Linux systems’ standard pacing value, we patched BBR itself,
exposing the TP Gain variable used internally. We named
this patched version BBR+ and selected three possible pacing
rates. These have been used for both the standard algorithm,
as well as for BBR+. These pacing rates are named 1p, 2p

IEEE/ACM TRANSACTIONS ON NETWORKING

Access
Point
Server Client

98 o e B2

Fig. 3. Physical testbed.

and 3p: where 1p represents the standard pacing rates used by
all the TCP variants, 2p doubles the values and so on. Details
about our BBR+ patch can be found in [42]. We followed
the best practice document [49] provided by the bufferbloat
community to configure our test computers and avoid the
most common testing pitfalls. We then disabled all hardware
offload features, turning them off (e.g., TSO/GSO). All of
these adjustments serve to reduce sources of delay other than
those induced by the algorithms themselves. We organized all
the experiments reported in this paper by using the Flent [50]
tool, which is a flexible and open network tester that allows
managing different traffic typologies as well as auto-collect
many performance results. Every test is organized as follows.
A standard TCP flow runs in upload from the wireless client
to the server. Each test runs for 40 seconds: the five initial
seconds run with only ICMP traffic, the 30 middle seconds
run with both ICMP traffic and the actual TCP transmission,
and the five final seconds run, again, with only the ICMP
traffic. This pattern enables to highlight the impact of the
TCP traffic on the ping RTT, together with many other
parameters related to the TCP traffic itself, e.g., throughput,
TCP RTT, and CWND size. The parameters used to configure
our experiments are reported in Table II. The testbed available
in Figure 3 is simple yet effective since it represents the
worst-case scenario for a single TCP upload on a Wi-Fi
bottleneck, where frame-aggregation is used to maximize the
available throughput. Different scenarios are available in our
repository [42]; anyway, enriching the testbed has the sole
effect of facilitating the TCP job. As an example, adding other
clients would help TCP since the available bandwidth per node
is reduced. The same consideration can be done moving the
Server; indeed, both increasing the RTT or migrating to a
remote bottleneck would reduce the gap toward the optimal
throughput. Moreover, moving the bottleneck to the wired side,
by reducing the ethernet bandwidth or by tuning the queueing
disciplines, would equalize the performance of different TCP
algorithms with respect to TP and TSQ, since the Wi-Fi frame-
aggregation would not be involved.

VI. RESULTS
A. Behind the Work

We start the numerical results section by showing evidence
of the TCP upload inefficiency over IEEE 802.11n channels,
under the premises exposed in Section IIl. In reference to
Figure 3, we hereafter call TCP upload a TCP stream from
Client C to Server S and TCP download a TCP stream from
S to C. Figures 4a and 4b report the results of a Cubic
download and upload, respectively, obtained using simple USB
dongles with Atheros AR9271 1 x 1 MIMO chipsets and
ath9k_htc as the driver. These are cheap devices that can

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRAZIA et al.: AGGREGATING WITHOUT BLOATING: HARD TIMES FOR TCP ON WI-FI

Download 3°

Ping (ms)

N

Mbits/s.

0 5

10 15 20

Time (s)

25 30 35

(a) TCP Download ath9k_htec.

— Download >0

P— Ping (ms)

250 250

200 200

150

Mbits/s
ms

100
50

00 5 10 15 20 25 30 35 0 0

Time (s)

(¢) TCP Download ath9k.

15 20

(d) TCP Upload ath9k.
Fig. 4. One TCP flow in download vs. upload: TCP cubic.

be used to easily add wireless connectivity to any Linux
computer since the Atheros drivers are supported by default.
It is possible to notice immediately that, regardless of the
hardware’s relatively low capacity, there is a considerable
discrepancy between the download and the upload stream in
terms of TCP goodput (measured in Mbit/s). The Wi-Fi bitrate
of the dongles is 150 Mbit/s, leading to a maximum TCP
goodput close to 100 Mbit/s. The TCP download goodput
reaches optimal and almost stable values close to 95 Mbit/s,
while the TCP upload cannot reach goodput values higher than
30 Mbit/s. To clearly understand the reason for this unbalance,
we repeated the same experiment with PCle Atheros AR9580
3 x 3 MIMO devices with the driver ath9k. Other than the
hardware being different, this also enables the possibility to
capture Wi-Fi statistics like the frame aggregation size. Wi-Fi
statistics data can be indeed collected only with ath9k, while
ath9k_htc and athl0k perform rate control operations in
firmware and do not allow to collect these results. Figures 4c
and 4d reveal that changing the hardware does not lead to
different conclusions, although in both cases is possible to
reach higher goodput values thanks to the higher maximum
bitrate of the 3 x 3 devices equal to 300 Mbit/s. The same
unbalance persists, as the maximum TCP goodput reached
in the download is higher than 200 Mbit/s, while the TCP
goodput reached in upload struggles in reaching a value
close to 100 Mbit/s. To investigate this phenomenon, we tried
different iperf instances in upload by using UDP instead
of TCP and incrementally increasing the bandwidth load from
50 up to 250 Mbit/s. The outcome has been that UDP can reach
values higher than 200 Mbit/s in both download and upload.
This enhances a gap between a single TCP upload goodput,
and a single UDP upload one. To complete the picture, we then
collected Wi-Fi statistics of both TCP and UDP experiments.
Figure 4e reports the average frame aggregation size of the dif-
ferent UDP instances as a function of the throughput load and
of the sole TCP upload that, as shown in Figure 4d, reaches
goodput values between 50 and 100 Mbit/s. The result is clear
and shows that while an increasing UDP load corresponds to

Time (s)

— Upload 30

— Ping (ms)
25

20

Mbits/s

0 5 10 15 20

Time (s)

25

(b) TCP Upload ath9k_htc.

25
— Upload >0
—— Ping (ms)

20

:

200M
250M

(e) Frame Aggregation ath9k.

an increased frame aggregation with a consequent goodput
increment, the aggregation almost does not happen at all with
TCP.

Hereafter, we refer with ath9k to the tests conducted with
PCle Atheros ARSBHB116 2 x 2 MIMO devices (maximum
TCP goodput of 200 Mbit/s) and with athl10k to the tests
conducted with PCle Qualcomm QCA6178 2 x 2 MIMO
devices (maximum TCP goodput of 400 Mbit/s).

We continue our analysis by altering the TCP congestion
control. We report the results of 7 selected variants, namely
Cubic, BBR, New Vegas, YeAH, New Reno, HighSpeed, and
BBR v2. As mentioned in Section III, these are the most
representative group of TCPs for our tests; we also tested all
the other Linux default variants, and the results can be found
in [42]. Figure 5a shows that none of the TCP variants are
able to reach the optimal TCP upload goodput of 200 Mbit/s.
In particular, BBR, BBR v2, and New Vegas perform very
similarly to Cubic with TCP goodput values close to 50 Mbit/s
and a latency close to 2 ms. The congestion-based variants
register a surprising result: YeAH, New Reno, and HighSpeed
are able to reach 140 Mbit/s of TCP goodput in upload by
paying the price of a higher latency of 3.5 ms. Although TCP
Cubic is a congestion-based algorithm like TCP New Reno,
its throughput result is lower since different TCP slow-start
algorithms are used. Such a result is different from our pre-
vious publication [38] (Figure 6a), where the performance of
the congestion-based TCPs is equalized by disabling the TSQ
logic. In other words, TCP Cubic manifests lower performance
compared to TCP New Reno since the different slow-start
algorithms interfere differently with the TSQ logic. Further
details on the impact of the different TCP slow-start algorithms
will be described in detail in Figure 12. Figure 5b, instead,
reports the result of 4 simultaneously active TCP uploads. The
first thing to notice is that the cumulative goodput increases
by increasing the number of active TCP flows, in particular
for the first three TCP variants of Cubic, BBR, BBR v2, and
New Vegas. Increasing the number of TCP uploads has limited
effects and does not change anything significant in terms of

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Upload Ping (ms)

200
180
160
140

]

120

ms

Mbits/s

100
80
60
40

k

[
1]

>
c

hs
nv
hs

.
Q
Qo

cubic
yeah
reno
bbr2
cubic
bbr
yeah
reno
bbr2

(a) 1 TCP Upload.

Fig. 5.

TCP upload: standard TSQ, Goodput vs. Ping, ath9k.

Upload

& data p=12
data p=16
model p = 1.2
model p = 1.6

mmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmm

IEEE/ACM TRANSACTIONS ON NETWORKING

Upload Ping (ms)

200
180
160

i

=

140
120

Mbits/s

100
80
60
40

L
{+
4+
i

>
c

hs
nv
hs

.
Q
Qo

reno

bbr
yeah
reno
bbr2

o~

o
Qo
e

RTT (ms)

cubic
yeah
cubic

(b) 4 TCP Uploads.

jeesesostans!

o

& datap=12 4
datap =16

model p=12 2
-+ model p = 1.6

mm

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Fig. 6. Throughput and RTT on an ath9k_htc wireless bottleneck: data vs. model. ¢ € [1,400] packets, p € {1.2,1.6}.

goodput for the other variants. Considering that the optimal
goodput value is around 200 Mbit/s, a clear inefficiency is
present. The reason is related to the TSQ algorithm that,
regardless of the TCP variant, breaks the frame aggregation
mechanism, impeding the TCP algorithm to enqueue the
number of packets needed to form larger frame aggregates to
reach higher goodput. The presence of multiple TCP flows
slightly improves the number of available packets; this is
why Figure 5b registered slightly higher goodput values than
Figure 5a.

B. Data vs. Model

To validate the model of Section IV, we run an experiment
involving a single TCP upload with the ath9k_htc devices
as a function of TSQ size ¢ and TP ratio p. We choose TCP
Cubic for this test since its loss-based behavior allows to
control the point C of Figure 2 by controlling the amount of
NIC packets through #, p and ¢, according to Equation 1. The
parameter ¢ has been calculated empirically through our test,
fitting our sender characteristics for this experiment. Moreover,
ath9k_htc is selected for the same reason; otherwise, with
ath9k, the integrated FQ-CoDel in the driver would not allow
us to increase the RTT over 5 ms as a function of the data
inflight. The results of this experiment are reported in Figure 6;
on the left, we correlate the throughput of the TCP Cubic flow
with Equation 3 while, on the right, we correlate the RTT
of the TPC flow with Equation 4. The model’s curves have
been computed using the parameters reported in Table I. It is
possible to notice how the data collected strictly resembles
the model of Section IV. We used the packet-size version
of our TSQ patch for two reasons. First, it allows us to use
fine-grained x-axes for the data collected (with the standard

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded

definition of TSQ based on the latency, the user can select only
discrete values of ms following the power of 2). Second, it is
more consistent with the model’s steady-state assumption since
the TSQ patch’s ms-version is rate-dependent. The results
show how both the initial ramp and the stairs behavior of the
RTT present and how the TP rate impact as a multiplicative
factor on the x-axes, increasing the amount of data inflight
with the same TSQ value.

C. Impact of TSQ

We continue our analysis by using the ms-version of TSQ
patch, which enables the tune of the TSQ size allowing each
TCP variant to enqueue more than 1 ms of data at the current
TCP rate. In particular, we allow to enqueue the equivalent
of x ms of data, naming each test xTSQ, with x being an
integer value. It is important to notice that this patch has been
included in the Linux kernel mainline, and each Wi-Fi driver
can now set the desired xTSQ value. The impact of different
TSQ sizes on all the TCP variants is reported in Figure 7.
We changed the TSQ size from the standard one of 1 ms,
named simply TSQ, up to 16 ms, named 16TSQ. The first
thing to notice when looking at Figure 7 is that, with the
exception of BBR, goodput significantly improves for all the
other TCP variants reaching 200 Mbit/s in several instances.
Another thing to notice is that, in general, the TCP goodput
grows as a function of the TSQ size and, at the same time,
an increment in TCP goodput corresponds to an increment of
the ping registered latency. Among the TCP algorithms able
to reach the optimal goodput of almost 200 Mbit/s, the best
one in terms of goodput-latency tradeoff is YeAH, with 7 ms of
latency compared to the 8 ms of latency of Cubic, New Reno,
and HighSpeed. New Vegas exhibited an unusual behavior; it

on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRAZIA et al.: AGGREGATING WITHOUT BLOATING: HARD TIMES FOR TCP ON WI-FI 9
200 ; Upload - - Ping (ms) 9
.- - -+ % -
175 = _ = CE = 8
+ - +
L) + + < o 7
150 + : u] o+ +
=0 = @ % : 6
L 125 Q5 o :
£ s] 5 ¢
2 w : €
= 100 -] :
2 n =g 4
: - I =)
75 : S g B 3
508 + =+ ——i= L] = F-==%a = >
25 : 1
[elelelelelolelololelololelolelololelololeololololololelolelololelololo Ml oo lolo o lo o lolololololololo o lo e lolo o lolo o lololololo o lo o lolo o]
nunununununununununununununununununnunununununununununununununununn nunununnnnnnnununununununununununununununununununnnnnnnn
FFEEEFFEEFEFEEEERFEERERRFEERERFEERERFEEE FEEEREREFEEERFEEEERFEEERRFEERERREREEREREEER
ONTRQLNTROSNTRYLANTRGHNTRO GATDOINTOY (NTOQ L NTDOSANTOG LNTOOHNTRO (ATOYLNT 0O
BoLLTQr eSS sTgcccTcoo0o0TChnunTeANNT ST Lt EesssdpgiccTcoooTCconnT e
52008 LC°8885 FECz0gponcogooo SLougEE SN 3008998885 CEEzOpenclooco SLLagE s
uass% a >‘>‘>‘q“>j‘] 2aag “333% K] >>>§] [aag
Fig. 7. One TCP flow in upload: different TCP & TSQ, Goodput vs. Ping, ath9k.
35 CUBIC BBR NVEGAS YEAH NRENO HS BBR2 1g CUBIC BBR NVEGAS =~ YEAH NRENO HS BBR2
- p
_ i 16 U
30 ¥ B ,L!f Iff
14
+ +
25 : it T"’ +
$ 'g 12 $ e =]
2] £ +
£ 20 3 + = <10
5 [9)
815 o Lt g8 i M :
¥ 3 +
4 i E: ¥ S s — —
10 % i i o - 0
¥ gr TR g @ 4 mon | Fo - ¥ &
L Iy L e '
0 " Y + ? o
Q0000 00000 OQOQ0 00000 Q00T QOO0T OO0 Q0000 Q0000 QQO0Q OO0 0000 OO0 OO0
nunnnn nnunnn nnnnn nnnnn nnnnn . nnnnn nnnnn nunnnn nnnnn uunnnn nnnnn nnnnn nunn nnnnn
FEEEE FEEEE FEEEE FEEEE FEEEE FEEEE FEEEE FEEEE FEEEE FEEEE FEEEE FEEEE FEEEE [
NSO NSO Nt oo© Nt oo©o NS00 NS00 N0 NS00 NS00 NS00 NS00 NS 0Ww NS00 NS00
— — — — — — — — — — — —
(a) Frame Aggregation. (b) TCP RTT.

Fig. 8.

responds to the TSQ increment by increasing the TCP goodput
from less than 50Mbit/t to almost 150 Mbit/s, maintaining a
latency stably below 3 ms. As already mentioned, the only
exception here is represented by BBR, which does not respond
to the TSQ variations due to its encoded behavior to control
the latency (down at 2 ms, even relaxing the TSQ constraints)
as a main figure of merit. On the other side, the new BBR v2
version can allow a throughput growth as a function of the
TSQ size, reaching almost optimal values in between YeAH
and New Vegas in terms of throughput, with optimal latency
close to New Vegas.

To deeply understand the impact of the TSQ size increment,
we refer now to Figure 8, where data regarding the frame
aggregation size and the TCP RTT are reported from the
same experiment of Figure 7. According to the discussion in
Section IV, the optimal goodput is reached by the combina-
tions of TCP and TSQ approaching the maximum aggregation
size. Except for New Reno and HighSpeed (as well as for
many not reported variants like Scalable, Illinois, Westwood+-,
and Hybla) that react very similarly to the TSQ variation, every
other TCP variant manifests different behaviors. Compared to
New Reno, Cubic aggregates less as a function of the TSQ
registering lower RTT values. Figure 8b reveals something
that is missing in Figure 7 and Figure 8a, i.e., the hidden
difference between New Reno with 8TSQ vs 16TSQ. Despite
the same aggregation size of 32, the same goodput of almost
200 Mbit/s, and the same ping latency of 8 ms, relaxing
the TSQ constraints from 8TSQ to 16TSQ entails a rise
of the TCP RTT from 12 to 18 ms. The same holds for
HighSpeed. This because, according to the TSQ mechanism,
more data is allowed to be pushed down in the stack, filling

One TCP flow in upload: Different TCP, frame aggregation and TCP RTT, ath9k.

the buffers and causing a queueing delay that increases the
TCP RTT measurements. Again, YeAH registered the best
tradeoff between aggregation size and TCP RTT; it reaches
an aggregation average of 30 packets, getting goodput values
close to 200 Mbit/s (Figure 7), yet being able to contain
the TCP RTT at 8 ms. The above considerations related to
New Vegas apply again here. Figure 8a gives some more
insights into the BBR behavior. The average BBR aggre-
gation size is firmly stable at 1, and increasing the TSQ
size causes only a few attempts to aggregate more (e.g., five
packets with 16TSQ). This likely happens during the BBR
probe phases, while the effects are immediately corrected by
the BBR drain phases, where the latency is locked as the
most important parameter to control. The evolution of BBR,
instead, confirm also with these figures of merit its good
performance; BBR v2 allows for frame aggregation while
still maintaining very low latencies, with a good tradeoff
comparable to YeAH, with the sole remarkable difference
at 16TSQ where YeAH almost reaches optimal throughput
while BBR v2 reaches 175 Mbit/s according to the previous
results.

As alast consideration, Figure 8a let us explain the different
TCP goodput values shown in Figure Sa. When standard TSQ
is in place, New Reno, YeAH, and HighSpeed can aggregate
between 6 and 7 packets, while Cubic, BBR, BBR v2, and
New Vegas do not aggregate at all. The reason for this
inequality lies in the way time is used in the TCP variant
code and the interaction with the TP module that will be
investigated in the following part of this section. The result
is that New Reno, YeAH, and HighSpeed are more likely
to enqueue bursts of packets simplifying the formation of

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

500 Upload
400 u .
o ° ‘
© 300 - 2 o
wn
E + +
g ¥ % Q s =
= 200 0 s
[u]
100 . -]
+ +
_ I + 3 5 L

[0/0/0,0.0/0/0/0,0/0/0/0/0.0.0/0/0/0,0.0/0/0,0,0.0/0/0,00.0/00,00.0/00,00.000]
NN

..

IEEE/ACM TRANSACTIONS ON NETWORKING

Ping (ms) 20.0

17.5
15.0
+ 12.5

%]
10.0 €
7.5
5.0
2.5

..

..

f= o
BO0OTNgL L L S>> TN E SO OTME v v v e
SE00LUR00QL L TCCCS>300M0CEUCCC00 Lt rAnN
2 55 Q00 CC>QUUmm-000Cce L0009
33390 > U “-S00 000
LVoLULUSS > e
v

Fig. 9.

aggregates and consequently reach higher TCP goodput values
with the standard TSQ. The drawback of these TCP variants
is that the TCP RTT is slightly higher and close to 4 ms even
with the standard TSQ in place.

D. IEEE 802.11ac

We now shift technology from IEEE 802.11n to IEEE
802.11ac, moving from the ath9k driver to the ath10k one.
It is important to remark that with ath10k it is not possible
to collect information related to frame aggregation as well
as any Wi-Fi statistic in general, due to the closed firmware.
Nevertheless, we are able to highlight the impact of the TSQ
size on the TCP goodput and latency. Similarly to Figure 5,
also in an IEEE 802.11ac environment, increasing the number
of simultaneous TCP uploads from 1 to 4 does not solve the
inefficiency imposed by standard TSQ size, the data related
to the same test on athl0k driver are available in [42] and
omitted here for space constraints.

The results related to the impact of the TSQ size during a
single TCP upload are depicted in Figure 9. Here, due to the
higher maximum bitrate allowed by IEEE 802.11ac, we also
included the results of 32TSQ in the plot. Indeed, optimal
throughput with ath10k can be reached by allowing more
data to be enqueued with respect to ath9k. The general trend
is similar to the analogous experiment with IEEE 802.11n;
HighSpeed and New Reno behave the same, but reaching
400 Mbit/s with the 16TSQ and 32TSQ configurations,
increasing the latency from 11 ms to 16 ms when moving
from the former to the latter. YeAH obtains similar results,
although more constrained in terms of goodput and latency for
the same TSQ sizes. New Vegas reacts to the TSQ size change
with a weaker goodput increment that is up to 150 Mbit/s,
paired to a negligible increment of latency. BBR continues
to be unresponsive to the relaxed TSQ constraints. Similarly,
BBR V2 poses itself in between New Vegas and YeAH in
terms of throughput with slightly higher latency values with
respect to New Vegas. Finally, Cubic get close to the optimal
goodput with the configurations of 16TSQ and 32TSQ, while
New Reno and HighSpeed show similar results. To conclude,
comparing Figure 7 to Figure 9 and despite the similar trends,
it is clear that IEEE 802.11ac needs to relax more the TSQ
constraints to boost goodput to a level close to its maximum
values, as these are higher than IEEE 802.11n.

..

! o
BUOOTNQE L eNES S ST L M ES S OTMNC 0 TV e NN
S000LVR00QL L TCCCS>300MRCEVUCCC00 CLCnnlhtrAnN
O oo SL00aa CC>UUUVCO-0OVCC 0000
23338 ere] SI>00 S~--00 Q
00 >> ==

One TCP flow in upload: different TCP & TSQ, Goodput vs. Ping, ath10k.

E. Impact of TP

For this run of tests, we patched the BBR internal pacing
module in order to make it respond to the same variations that
we are going to impose on the other TCP variants, i.e., when
we double the “global” pacing rate, we want the BBR pacing
rate to double as well. Since the BBR variants of BBR-DEYV,
BBR v2 and BBRp deals with specific modification on the
BBR pacing system, we include them here in the results with
a more fair comparison.

With the following set of experiments, we aim to highlight
TP’s effect on the frame aggregation size and, consequently,
on the tradeoff between goodput and latency. To isolate the
pacing effect, with the ath9k configuration, we adopt the
standard TSQ and transmit a single TCP upload. Figure 10
shows the results in terms of goodput vs. latency and frame
aggregation size vs. TCP RTT, registered by varying the TP
rate from the standard value identified with 1p, to 2p by dou-
bling it for both the slow start and congestion control phases,
and to 3p by triplicating it in the same way. It is possible to
notice that even if the standard TSQ limits the amount of TCP
data that can be enqueued in the NIC, TP plays a fundamental
role. Excluding for the moment YeAH, all the TCP variants
can form larger frame aggregates as a function of the pacing
rate, increasing the TCP goodput. This is because the higher
the pacing rate, the higher the probability of forming a burst of
packets instead of spreading them over time, therefore helping
the formation of frame aggregates that result in a higher
goodput. Cubic shifts from 45 Mbit/s at 1p to 140 Mbit/s at 3p
paying 1.5 ms of extra latency and moving from 1 to 7 packets
per aggregate. BBR and New Vegas behave very similarly,
reacting with less but still significant effects to the pacing
rate, starting to aggregate packets and doubling the goodput,
from 40 Mbit/s to 100 Mbit/s, in the BBR case. New Reno and
HighSpeed also improve as the TP parameter increases. Both
saturate the channel with 175 Mbit/s by forming aggregates
composed of 10 packets, already from a pacing rate equal to
2p. YeAH, instead, manifests a counterintuitive degradation of
performance. A possible explanation lies in the hybrid nature
of YeAH. For what concerns the BBR variants, BBR-DEV
provides similar results to standard BBR since it is unable
to improve BBR perform it the first hop is wireless, which
is the case of our upload experiment. BBR v2 and BBRp,
instead, close the gap with the loss-based TCP variants, with

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRAZIA et al.: AGGREGATING WITHOUT BLOATING: HARD TIMES FOR TCP ON WI-FI

Upload Ping (ms)

cusic

11

BBR NVEGAS YEAH NRENO HS cusic BBR NVEGAS YEAH NRENO HS

0 05 10 ‘ -
. N P LA
? s TB T AL i i i i 2
E © 2es ses sss sss sss sses © sse sse sss ses sas ses
(a) Goodput vs Ping ath9k. (b) Frame Aggregation ath9k. (c) TCP RTT ath9k
Fig. 10. Effect of TP: standard TSQ.
200 = Upload —=mreE CuBIC BBR NVEGAS YEAH NRENO HS 18 CcuBIC BBR NVEGAS YEAH NRENO HS
ws | == - oo Btop4y
150 = 7; | | | | i * | % + | 14 i i i i 0 i ?
3125 I ¥ E]Z il
0 ; 7 % a i + + glz % ® B}
™ I I I I 4 T - B R
; ; % g H * s ih
g : s |0 : |
(a) Goodput vs Ping ath9k. (b) Frame Aggregation ath9k. (c) TCP RTT ath9k

Fig. 11. Effect of TP: 4TSQ.

performance similar to Cubic coupled with a pacing rate of
2p, both in terms of throughput and latency.

We now show the same experimental results where we
relaxed the TSQ size at 4TSQ in Figure 11, focusing again on
the impact of different TP rates. We show the performance of
4TSQ since it is the default TSQ size included in the Linux
kernel for the ath9k driver. Other figures showing different
TSQ sizes can be found in our repository [42], not included
here for space constraints.

Cubic reaches the maximum aggregation size when TSQ is
relaxed to 4 ms, as Figure 11 attests. Also, BBR and YeAH
have a more significant response to the different TP rates with
the 4TSQ configuration, reaching almost the optimal goodput.
The TP increment is fundamental to BBR for enabling the
aggregation of packets and raising the goodput from less
than 50 Mbit/s to values higher than 175 Mbit/s. New Vegas,
instead, manifests almost negligible performance variations as
a function of the TP rate. It is crucial to notice how the TCP
RTT of New Reno and HighSpeed starts to increase signifi-
cantly with just 4TSQ if a high TP rate is applied, reaching
14 ms with 3p. The BBR variants all react positively, relaxing
the TSQ constraints. Indeed, they all increase the throughput
without compromising the latency. BBR-DEV improves the
performance of BBR with standard pacing, while BBR v2
and BBRp, again, register almost optimal throughput values,
close to the one obtained by BBR with high pacing rates. This
result confirms how both BBR v2 and BBRp take advantage
of higher customized pacing ratios, which help their respective
algorithms probe for more available bandwidth once the TSQ
allows it.

An important outcome of Figures 10 and 11 is the different
impact of TP on TCP Cubic, on one side, and TCP New
Reno and HighSpeed on the other side, all loss-based variants.
To understand this difference, in particular the one visible in
Figure 10, we show in Figure 12 a comparison between the
CWNDs of Cubic and New Reno, at a function of the pacing
ratios, in three different scenarios: standard TSQ in Figure 12a,
4TSQ in Figure 12b and with the TSQ mechanism disabled in
Figure 12c, respectively. This comparison is important since
TSQ masks the TCP congestion control algorithm behavior

when the bottleneck is local. In other words, if packets are
accumulated in the sender NIC, like in our upload experiments,
the CWND is then limited by TSQ, through the cross-layering
interrupts, and not by the classic TCP congestion control
algorithm. This mechanism is visible in Figures 12a and 12b,
with long periods of several seconds in which the CWND is
not updated. Such interference of TSQ with the CWND must
be coupled with TP, since we have seen in Section III how TSQ
and TP interact together to define the number of packets that
can be enqueued, limiting the CWND. TCP Cubic behaves dif-
ferently from TCP New Reno and, in general, from any other
loss-based variant, since it implements a different slow-start
algorithm, named Hybrid Slow-Start, and the interference of
TSQ when the bottleneck is local forces TCP Cubic to switch
to the congestion avoidance phase before, with respect to New
Reno. The effect of this mechanism is twofold. First, the rapid
growth of CWND is available only for TCP New Reno at slow-
start, thanks to the fact that the pacing rate in the slow-start
phase is higher. Second, it takes more time for TCP Cubic to
increase the CWND in the congestion avoidance phase since
the TP rate is lower. Anyway, the effect of increasing the TP
rate is visible from the two figures, and the gap between Cubic
and New Reno is reduced, increasing the TSQ size at 4 ms.
The drawback imposed by the hybrid slow-start compromise
a bit short-lived TCP streams. To conclude this analysis,
we also report the results of the same experiment with the TSQ
mechanism disabled, which can be done only with our patch,
which are depicted in Figures 12c; this Figure shows that,
by disabling the TSQ mechanism, the CWND is controlled
again by the TCP congestion control algorithm, with the Cubic
and New Reno shapes well identifiable and not affected by
TP changes, since TP can only affect the TCP congestion
control behavior through the TSQ mechanisms, according to
Algorithms 1 and 2.

The impact of TCP pacing has been then tested over IEEE
802.11ac with the ath1 0k driver. Even in this case, TP affects
performance with a remarkable impact in several contexts.
Unfortunately, as stated before, we cannot report data about
frame aggregation due to the driver limitation and, therefore,
we report only the TCP goodput, ping latency, and TCP RTT.

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

—— cwnd cubic 1p
-~~~ cwnd cubic 2p 1200
- - - cwnd cubic 3p
—®- cwnd reno 1p
400 cwnd reno 2p
—#- cwnd reno 3p

1000

800 —— cwnd cubic 1p
-~~~ cwnd cubic 2p
- - cwnd cubic 3p
—®- cwnd reno 1p
cwndreno2p |
—#-cwnd reno 3p]

600

Packets
Packets

20
Time (s)

(a) Standard TSQ, ath9k.

30 35 40 5 10 15

(b) 4TSQ, ath9k.

20
Time (s)

IEEE/ACM TRANSACTIONS ON NETWORKING

—— cwnd cubic 1p
-~ cwnd cubic 2p
-~ cwnd cubic 3p

~®- cwnd reno 1p
cwnd reno 2p
—m- cwnd reno 3p

10 15 20 30 35

Time (s)

(c) TSQ Disabled, ath9k.

25 30 35 40 25 40

Fig. 12. Cubic vs. New Reno: effect of TP on TCP congestion window.
500 Upload Ping (ms) 20.0 CUBIC BBR NVEGAS YEAH NRENO HS
14
17.5
400 15.0 12
1« 300 125 10
a)
) 10.0E§8
= 200 7.5 :
. g
o g - g6
100 " 5.0
- o sl _tpzem = Sttt roass P— R — 6 T e - & o+ -
o - = SR R & -+ 2.5
o o000 Q000Q0000000000>NQ o oo0oQo0Q0Q00Q >N Q0 2
SNy YYTYNTYNdan g Sss TG00 Bl A S - S
fgfss5ézeggseectteyas AR R R ER R EE 0
5283 3 §885568 2 2aa ooca agae oae ooea aaa
00 0 > > 5 = == > > > = = = - N - N - N M -~ M - N m - N M
(a) Goodput vs Ping athl10k. (b) TCP RTT athl10k.
Fig. 13. Effect of TP: standard TSQ.
500 Upload Ping (ms) 20.0 CuBIC BBR NVEGAS YEAH NRENO HS
+ * 14
17.5 a
400 +
Yo e o2 = 15.0 12 & 8
« 300 S = - . ? 125 510 —~ . F + it
2 g+ L= [=] - = o £
2 +
100 € =
Fao - E - 1 z® = *
- - =z 15 §, + s o ¥
+ s s a - 56 o 8
100 - o $-o 5.0 B .0
2.5 ©
0 ccscocooccecosccgooazNe ocoeoo2o00goo200Q00R RN 2
Lo R B AR LN B] T’?"?'T’?"?’;';’;’T’?"?'T’?"?E"."E%EE
CYeEETITILLEG90 90 9cesE L00ELY 22299999 0c54
883888°°°F888s88°°°2 5558888°°°588585° -3 ® a0 aca soca ssa assa aaa
333 333 288 288 288 288 288 =807
(a) Goodput vs Ping athl0k. (b) TCP RTT athl0k.

Fig. 14. Effect of TP: 8TSQ.

Moreover, starting from Figure 13 where we tested TP with
standard TSQ, we pushed queue sizes up to 8TSQ, as shown
in Figure 14, because the IEEE 802.11ac standard requires to
relax more the TSQ size to appreciate optimal performance
enhancements and 8TSQ is the default value imposed by
athl0k driver in the current Linux kernel thanks to our patch.
We demand to [42] the readers interested in the combination
of different TP ratios with different TSQ sizes, where the extra
plots are available. With standard TSQ, it is possible to notice
in Figure 13 how increasing the pacing rate has an impact
on some TCP variants. YeAH, New Reno and HighSpeed
react similarly, moving from 30 to 150 Mbit/s of goodput
when changing the pacing rate from 1p to either 2p or 3p,
without significative latency or TCP RTT increments. Even
Cubic increases a little its goodput from 25 to 60 Mbit/s,
when paired with a pacing rate of 3p. BBR, all the BBR
variants, and New Vegas, in this case, differently from the
IEEE 802.11n environment, do not manifest any performance
change dealing with pacing rate whilst standard TSQ are in
place. In Figure 14, instead, the configuration 8TSQ is showed;
Cubic, YeAH, New Reno, and HighSpeed all approach the
optimal goodput of 400 Mbit/s. In this case, for Cubic, New
Reno, and HighSpeed, the distinction of goodput between 2p
and 3p is less marked; the main consequence is the latency
increment that with 3p reach levels between 12 and 13 ms.
YeAH moves into a good trade-off interval of goodput and

latency, with the former ranging between 200 and 350 Mbit/s
and the latter that ranges between 5 and 9 ms, as a function
of the TP rate. Vegas is not able to boost its goodput more
than to 200 Mbit/s with no sensible distinction between 2p
and 3p, while BRR approaches 300 Mbit/s. The other BBR
variants take advantages of the TSQ relaxation from 1 to 8§ ms:
BBR-DEV equals the performance of Cubic with standard
paging rate, BBR v2 and BBRp, instead, slightly overcome
the performance of BBR with 2p pacing ratio in terms of
throughput with an almost equal latency, confirming how these
two BBR variants well perform in WLAN environments.

A curious detail can be observed moving from ath9k to
athlOk: with ath9k there is a clear distinction between
ping latency and TCP RTT, especially with a combination
of large TSQ and high pacing rates. This cause TCP RTT to
increase more than the ping latency. The same cannot be said
for athl0k. With athl 0k, the two different values of ping
latency and TCP RTT are the same in all the tests. The reason
lies in the queueing discipline adopted by the two drivers.
Indeed, ath9k has an integrated FQ-CoDel at the driver level,
enabling fine-grained QoS and adopting different queues for
TCP packets and ICMP (ping) packets. This means that when
many TCP packets are enqueued, the TCP RTT increases due
to the queueing delay. In contrast, according to the scheduling
policy, the ICMP packets are less affected due to the different
queues. The same does not apply to athl0k, that has not

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRAZIA et al.: AGGREGATING WITHOUT BLOATING: HARD TIMES FOR TCP ON WI-FI 13
250 Download Upload Induced latency (ms) 100 250 Download Upload Induced latency (ms) 100
I +
£ 200 = . 8o £ £200 = + 80 £
s N > = + + >
+
S50 = . * ?*‘“ 60§ 5 150 * + é,’“ 60§
3 ? ??7@ + 602 2 B
o kel o A o
S B8+ + + 3 S @ L 3
a 100 40 3 o 100 - @ %I 40 3
[g g ¥ .= 2
5 & § 5 & 00 L 5
2 50 20 2 2 50 _ 20 2
- -
0 T - 0 0 0
£525220 g52§2£Y gyzgeey £a2522y g52§2£Y gz
29 ¢¢ 8§ 3Z3° ¢¢ 3§ 3° ¢g¢ 3 29 ¢¢ 8§ 3Z3° ¢¢ 3§ Z° ¢g¢ 3

(a) Download and Upload goodput vs Ping ath9k: Standard TSQ.

Fig. 15. RRUL test: standard TSQ vs. 32TSQ.

FQ-CoDel integrated into the driver, so all the packets (TCP
and ICMP) fall in the same queue bloating both the ping
latency and TCP RTT as a function of the queueing delay.

F. Real-Time Response Under Load

To conclude our experimental evaluation, we report the out-
comes of tests performed by following the Real-time Response
Under Load (RRUL) test suite specification. RRUL is a
well-known test suite created by the Bufferbloat community to
analyze network performance under heavy workloads because,
under such circumstances, bufferbloat and other networking
problems such as congestion and packet drops are easily
induced. The Flent package integrates the RRUL test by
default; it consists of 8 bidirectional streams (4 TCP streams
in download and 4 TCP streams in upload) that run against
ICMP and UDP traffic. We configured the RRUL in order to
have always one TCP variant active for both the upload and
download streams.

Figure 15a reports the results of the average TCP goodput in
download, the average TCP goodput in upload, and the latency
calculated on the ping RTT with the ath9k driver and the
standard TSQ in place. The tests have duration and replication
parameters those used in the previous sections. The main find-
ing of these first tests is that there is a remarkable unfairness
between download streams and upload streams, with TCP
goodput close to 150 Mbit/s in download but constrained to
10 Mbit/s in upload for all the TCP variants tested, with the
exception of New Vegas. In fact, the latter is slightly fairer
with 125 and 25 Mbit/s for TCP goodput in download and
upload, respectively. What can be used to differentiate TCP
variants is the latency, which manifests different results as a
function of the congestion control algorithm used. Cubic has
the highest latency of 80 ms, while New Reno and HighSpeed
have high latencies over 60 ms. YeAH, BBR, and BBR v2 stay
steadily under 35 ms. In terms of latency, the best TCP variant
is New Vegas with less than 10 ms, confirming the well-known
characteristic of this algorithm to be less aggressive, thus
reducing the effects of congestion. One of the reasons for the
unbalance between the TCP goodput in download and upload
is the TSQ algorithm itself. In our testbed, the TCP download
streams are generated by the server, which is wired connected
to the router and does not have any constraint related to the
low-level aggregation of packets, i.e., each TCP variant is able

(b) Download and Upload goodput vs Ping ath9k: 32TSQ.

to reach the highest possible throughput without incurring in
limitations imposed by the TSQ mechanism. On the other side,
for what concerns the 4 TCP upload streams, each TCP variant
is experiencing the issue of a constrained frame aggregation.
This is due to the TSQ mechanism that hampers frame
aggregation when the node is wirelessly uploading content to
the router. We then relaxed the TSQ size up to an equivalent
of 32 ms and reported the results in Figure 15b. An important
thing to notice is that the global fairness between TCP goodput
in download and upload improves significantly, with different
results for each TCP variant relaxing the TSQ limit at 32 ms,
a significant value if compared to the values that we had tested
when the single TCP upload streams were in place. Almost
all the TCP variants manifest an increment in the TCP upload
goodput and a reduction of the TCP download goodput in the
32TSQ configuration, with a stable unchanged global latency.
Considering the entire picture provided by Figure 15, it is
clear that the only TCP variant able to get close to optimal
fairness between download and upload streams is New Vegas,
with no difference between download and upload goodput.
Furthermore, New Vegas is also the best in terms of latency,
continuing to guarantee ping RTTs lower than 10 ms. TCP
YeAH and BBR v2 are the following in terms of fairness,
with a difference of circa 30 Mbit/s between download and
upload goodput, while the worst variant is BBR that is unable
to provide enough upload throughput under a standard pacing
rate scenario.

Focusing on the last experiment with the 32TSQ configu-
ration, we also tested the impact of TP on the TCP upload
streams by using standard, double and triple TP rates of
1p, 2p, and 3p, respectively. The results are reported in
Figure 16. For the RRUL experiment, the TP rate of the
upload streams has a minor impact. The difference, in terms of
goodput, between the TCP download and upload is reduced
to a few Mbit/s by increasing the TP rate for all the TCP
variants. The impact of TP on the ping latency is instead
negligible, with tiny increments as a function of the TP rate.
The only TCP variant that benefits from the pacing increment
is BBR, especially considering the upload goodput, remarking
the inefficiency of BBR in the upload path for a Wi-Fi station.
Concluding, also in this scenario that involves different pacing
ratios, we report BBRp and BBR v2, whit similar results
also in the RRUL test, and we also report BBR-DEV, which
shows its nature of boosting the goodput only if the source is

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Download

Upload

IEEE/ACM TRANSACTIONS ON NETWORKING

Induced latency (ms)

250 g 100
— i —
n : + | + a
2 H
Z 200 EELQ + + 80 E
= + + 3 >

F : B 9
= ar g H + c
o H + : 9]
2 150 a i g 60 &
8 = °
& b +@* 7? ? : +]
S 100 + P i He i ; %7 03
O +9F iy + g °
= 2 T 2 & £
£ i + L : g + c
8 0 8]
g %0 fvgd o+ L0BbHREG : 20 3
-] ad + E : XN
0 : +i= 7 : 0
0000000000000 0Q000Q>NQ 0000000000000 00Q00Q0>NQ 0000000000000 0000Q>NQ
AANMAHANMEANMEAEANMANMENM O s HANMEAEANMAHNMEAENMANMAENM O s s AANMEAHANMANMEAENMEANMANM O s
VOUL L3338 6060nnPBE8 VOULee333L6660nnPBB8 VOULee333ccoobnnaP33
ooof88LQcccoewcmcccoC g ooofl8LQcccscmcccCC o Soo88LcccmommEcccEccc g
S55598°Q0 R R R IRT] a SS559°L0 VVVIVIU a S5559°QQa VOV YDU a
230 S>>E e 230 S>>E e 200 S>:>E -
Fig. 16. RRUL test with 32TSQ: ath9k varying TP.

wired-connected, aggregating efficiently only in the down-
stream with respect to the upstream.

To summarize, the results obtained with our experiments
can be discussed in terms of the tradeoff between throughput
and latency, where TCP, TSQ, TP, and frame aggregation
play a fundamental role. According to [15], the new direc-
tion for TCP macroscopic model design is the model-based
world opened with BBR and, in particular, the new ver-
sion BBR v2, which provides a remarkable balance between
optimal throughput and optimal latency in almost all the
experiments. The reason is that the only way to control the
latency once the optimal throughput is reached is to monitor
it. On the other side, latency cannot be statically imposed
like what happened with standard TSQ, with only 1 ms
allowed, in order to allow to boost the network efficiency when
frame-aggregation is available. According to our results, the
Linux kernel has been modified, introducing the possibility
to refine the TSQ quantity as a function of the Wi-Fi driver
characteristics. In particular, we selected 4TSQ and 8TSQ for
the Atheros drivers used for IEEE 802.11n and IEEE 802.11ac
technologies, respectively.

VII. CONCLUSION

The latest WiFi standards make extensive use of frame
aggregation to reach higher speeds by increasing spectrum
efficiency. On the other hand, higher layers have seen the
introduction of techniques to keep latency under control while
guaranteeing an increased utilization of the transmission chan-
nels. In this paper, we analyzed the impact that TSQ and TP
may have on the network performance over IEEE 802.11n and
IEEE 802.11ac channels, studying several figures of merit in
conjunction with various TCP congestion control algorithms.
Firstly, it has been clear that TSQ may have a strong negative
impact on the frame aggregation techniques used by the afore-
mentioned wireless standards by hampering it and resulting in
a significantly reduced goodput. We developed and tested a
patch that enables to tune the default TSQ size to address the
issue, which is now included in the Linux kernel mainline.
Extensive testings have been performed with various TSQ
sizes in conjunction with different TCP congestion controls
and over both wireless technologies. With the exception of
BBR, all TCP variants respond positively to increased TSQ
sizes at the cost of increased latencies, although with varying

degrees of success. BBR does show some enhancements in
the frame aggregation size, but they are limited and imme-
diately hampered by the algorithm drain phases. The effects
of different TP rates have also been isolated and analyzed,
enhancing how imposing local limits on the amount of data
that can be enqueued also impacts the congestion window
size calculated by the TCP congestion controls. TSQ and TP
interaction interferes with TCP congestion control algorithms
when the bottleneck is local (e.g., the hybrid slow-start), and
this research can help design new congestion controls that
could take this into account. With the exceptions of BBR and
YeAH, all TCP congestion controls allow forming larger frame
aggregates as the pacing rate increases, resulting in higher
goodput. As BBR embeds its own TP algorithm, we modified
it to make it follow the system TP rate. With this change, BBR
shows similar results to New Vegas, reacting with limited but
significant positive effects to a pacing rate increase. Variations
in TSQ sizes have then been studied in conjunction with vari-
ations in TP rates. Results indicate that they allow increasing
frame aggregation in most circumstances, consequently also
increasing goodput and latency. For most applications, the rise
of the latter is still kept under acceptable levels. Finally, tests
from the RRUL test suite have been performed to assess the
different congestion controls fairness versus diverse TSQ sizes
and TP rates, under the fundamental basis of having wired
and wireless connections for download and upload transfers,
respectively. While the fairness unbalances is in favor of wired
connections, as expected, findings indicate that variations in
TSQ size may improve it significantly, while deviations in TP
rates provide almost-negligible enhancements.

REFERENCES

[1] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A tutorial on
IEEE 802.11ax high efficiency WLANSs,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 1, pp. 197-216, 1st Quart., 2019

B. Bellalta, “IEEE 802.11ax: High-efficiency WLANSs,” IEEE Wireless
Commun. Mag., vol. 23, no. 1, pp. 3846, Feb. 2016

M. M. Islam, M. S. A. Mamun, N. Funabiki, and M. Kuribayashi,
“Dynamic access-point configuration approach for elastic wireless local-
area network system,” in Proc. 5th Int. Symp. Comput. Netw. (CANDAR),
Nov. 2017, pp. 216222

S. Das, P. Kar, and S. Barman, “Analysis of IEEE 802.11 WLAN
frame aggregation under different network conditions,” in Proc. Int.
Conf. Wireless Commun., Signal Process. Netw. (WiSPNET), Mar. 2017,
pp- 1240-1245.

J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
Queue, vol. 9, no. 11, p. 40, Nov. 2011.

[2]

[4]

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GRAZIA et al.: AGGREGATING WITHOUT BLOATING: HARD TIMES FOR TCP ON WI-FI 15

[6]

[7]

[8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Commun. ACM, vol. 60,
no. 2, pp. 58-66, 2017.

T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and
E. Dumazet. (2018). FlowQueue-CoDel. [Online]. Available:
https://tools.ietf.org/html/rfc8290

C. A. Grazia, N. Patriciello, T. Hgiland-Jgrgensen, M. Klapez,
M. Casoni, and J. Mangues-Bafalluy, “Adapting TCP small queues for
IEEE 802.11 networks,” in Proc. IEEE Int. Symp. Pers., Indoor Mobile
Radio Commun. (PIMRC), Sep. 2018, pp. 1-6.

J. Zhou et al., “TCP stalls at the server side: Measurement and mitiga-
tion,” IEEE/ACM Trans. Netw., vol. 27, no. 1, pp. 272-287, Feb. 2019.
W. Sun, L. Xu, and S. Elbaum, “Scalably testing congestion control
algorithms of real-world TCP implementations,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2018, pp. 1-7.

P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP congestion
avoidance algorithm identification,” IEEE/ACM Trans. Netw., vol. 22,
no. 4, pp. 1311-1324, Aug. 2014.

K. Chen, D. Shan, X. Luo, T. Zhang, Y. Yang, and F. Ren, “One
rein to rule them all: A framework for datacenter-to-user conges-
tion control,” in Proc. 4th Asia—Pacific Workshop Netw., Aug. 2020,
pp. 44-51.

S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets mod-
ern: A pragmatic learning-based congestion control for the internet,”
in Proc. Annu. Conf. ACM Special Interest Group Data Commun.
Appl., Technol., Architectures, Protocols Comput. Commun., Jul. 2020,
pp. 632-647.

Y. Xie, F. Yi, and K. Jamieson, “PBE-CC: Congestion control via
endpoint-centric, physical-layer bandwidth measurements,” in Proc.
Annu. Conf. ACM Special Interest Group Data Commun. Appl.,
Technol., Architectures, Protocols Comput. Commun., Jul. 2020,
pp. 451-464.

M. Mathis and J. Mahdavi, “Deprecating the TCP macroscopic model,”
ACM SIGCOMM Comput. Commun. Rev., vol. 49, no. 5, pp. 63-68,
Nov. 2019.

X. Qian, B. Wu, and T. Ye, “Two-level frame aggregation retransmission
scheme design in 802.11n/ac/ad,” Xi’an Dianzi Keji Daxue Xuebao/J.
Xidian Univ., vol. 45, no. 2, pp. 90-96, 2018.

A. Masiukiewicz, “Throughput comparison between the new hew
802.11ax standard and 802.11n/ac standards in selected dis-
tance windows,” Int. J. Electron. Telecommun., vol. 65, no. 1,
pp. 79-84, 2019.

Y. Daldoul, D.-E. Meddour, and A. Ksentini, “IEEE 802.11n/AC data
rates under power constraints,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2018, pp. 1-6.

S. K. Saha, P. Deshpande, P. P. Inamdar, R. K. Sheshadri, and
D. Koutsonikolas, “Power-throughput tradeoffs of 802.11n/AC in
smartphones,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2015, pp. 100-108.

J. Wu, B. Cheng, M. Wang, and J. Chen, “Quality-aware energy
optimization in wireless video communication with multipath TCP,”
IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 2701-2718, Oct. 2017.

S. M. ElRakabawy and C. Lindemann, “A practical adaptive pacing
scheme for TCP in multihop wireless networks,” IEEE/ACM Trans.
Netw., vol. 19, no. 4, pp. 975-988, Aug. 2011.

S. Zou, J. Huang, Y. Zhou, J. Wang, and T. He, “Flow-aware adaptive
pacing to mitigate TCP incast in data center networks,” in Proc. Int.
Conf. Distrib. Comput. Syst., 2017, pp. 2119-2124.

A. Pande and S. Devane, “Extensive simulation analysis of TCP variants
for wireless communication,” Commun. Comput. Inf. Sci., vol. 969,
pp- 529-542, 2019.

K. A. Yadav and S. Kumar, “A review of congestion control mechanisms
for wireless networks,” in Proc. 2nd Int. Conf. Commun. Electron. Syst.
(ICCES), Oct. 2017, pp. 109-115.

C. A. Grazia, N. Patriciello, M. Klapez, and M. Casoni, “A cross-
comparison between TCP and AQM algorithms: Which is the best
couple for congestion control?” in Proc. 14th Int. Conf. Telecommun.
(ConTEL), Jun. 2017, pp. 75-82.

C. Callegari, S. Giordano, M. Pagano, and T. Pepe, “A survey of
congestion control mechanisms in Linux TCP,” Commun. Comput. Inf.
Sci., vol. 279, pp. 28-42, Oct. 2014.

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[471

[48]

[49]

[50]

M. Zhang et al., “Will TCP Work in mmWave 5G cellular networks?”
IEEE Commun. Mag., vol. 57, no. 1, pp. 65-71, Jan. 2019.

A. Parichehreh, S. Alfredsson, and A. Brunstrom, “Measurement analy-
sis of TCP congestion control algorithms in LTE uplink,” in Proc. Netw.
Traffic Meas. Anal. Conf. (TMA), Jun. 2018, pp. 1-8.

E. Atxutegi, F. Liberal, H. K. Haile, K.-J. Grinnemo, A. Brunstrom, and
A. Arvidsson, “On the use of TCP BBR in cellular networks,” IEEE
Commun. Mag., vol. 56, no. 3, pp. 172-179, Mar. 2018.

K. Sasaki, M. Hanai, K. Miyazawa, A. Kobayashi, N. Oda, and
S. Yamaguchi, “TCP fairness among modern TCP congestion control
algorithms including TCP BBR,” in Proc. IEEE 7th Int. Conf. Cloud
Netw. (CloudNet), Oct. 2018, pp. 1-4.

Y. Zhang, L. Cui, and F. P. Tso, “Modest BBR: Enabling better fairness
for BBR congestion control,” in Proc. IEEE Symp. Comput. Commun.
(ISCC), Jun. 2018, pp. 646-651.

K. Miyazawa, K. Sasaki, N. Oda, and S. Yamaguchi, “Cycle and
divergence of performance on TCP BBR,” in Proc. IEEE 7th Int. Conf.
Cloud Netw. (CloudNet), Oct. 2018, pp. 1-6.

M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of
BBR congestion control,” in Proc. IEEE 25th Int. Conf. Netw. Protocols
(ICNP), Oct. 2017, pp. 1-10.

Y. Lin and V. W. S. Wong, “WSNO1-1: Frame aggregation and optimal
frame size adaptation for IEEE 802.11n WLANS,” in Proc. IEEE
GLOBECOM, Nov. 2006, pp. 1-6.

T. Moriyama, R. Yamamoto, S. Ohzahata, and T. Kato, “Frame aggrega-
tion size determination for IEEE 802.11ac WLAN considering channel
utilization and transfer delay,” in Proc. 14th Int. Joint Conf. e-Business
Telecommun., 2017, pp. 89-94.

N. Cardwell. (Apr. 2018). Linux TCP BBR Patch for Higher WiFi
Throughput and Lower Queuing Delays. RFC. [Online]. Available:
https://groups.google.com/forum/#!topic/bbr-dev/8pgyOyUavvY

N. Cardwell, “BBR V2: A model-based congestion control,” in
Proc. ICCRG IETF Meeting, p. 36, Mar. 2019. [Online]. Avail-
able: https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-
an-%update-on-bbr-00

C. Grazia, M. Klapez, and M. Casoni, “BBRp: Improving TCP BBR
performance over WLAN,” IEEE Access, vol. 8, pp. 344-354, 2020.
S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operat. Syst. Rev., vol. 42, no. 5, pp. 64-74,
2008.

G. Hasegawa, K. Kurata, and M. Murata, “Analysis and improvement
of fairness between TCP Reno and Vegas for deployment of TCP Vegas
to the internet,” in Proc. Int. Conf. Netw. Protocols, 2000, pp. 177-186.
S. Floyd, A. Gurtov, and T. Henderson, “The NewReno modi-
fication to TCP’s fast recovery algorithm,” Netw. Work. Group,
Tech. Rep. RFC3782, 2004.

(Jan. 2021). Linux Kernel Patch, Source Scripts and Tests. [Online].
Available: http://netlab.ing.unimo.it/sw/sourceton.patch

A. Baiocchi, A. P. Castellani, and F. Vacirca, “YeAH-TCP: Yet another
highspeed TCP,” in Proc. PFLDnet (ISI), Feb. 2007, pp. 37-42.

J. Corbet. (Aug. 2011). Network Transmit Queue Limits. LWN Article.
[Online]. Available: https://lwn.net/Articles/454390/

N. Mareev, D. Kachan, K. Karpov, D. Syzov, and E. Siemens, “Effi-
ciency of BQL congestion control under high bandwidth-delay product
network conditions,” in Proc. Int. Conf. Appl. Innov. IT, vol. 7, no. 1,
2019, pp. 19-22.

C. A. Grazia, “A performance model for Wi-Fi frame aggregation
considering throughput and latency,” IEEE Commun. Lett., vol. 24, no. 7,
pp. 1577-1580, Jul. 2020.

T. Y. Arif and R. F. Sari, “Throughput estimates for A-MPDU and
block ACK schemes using HT-PHY layer,” J. Comput., vol. 9, no. 3,
pp. 678—687, Mar. 2014.

H. Hassani, F. Gringoli, and D. J. Leith, “Quick and plenty: Achiev-
ing low delay and high rate in 802.1lac edge networks,” 2018,
arXiv:1806.07761.

D. Taht and J. Gettys. (2014). Best Practices for Benchmarking CoDel
and FQ CoDel. [Online]. Available: http://goo.gl/FpSW5z

T. Hgiland-Jgrgensen, C. A. Grazia, P. Hurtig, and A. Brunstrom, “Flent:
The flexible network tester,” in Proc. 11th EAI Int. Conf. Perform.
Eval. Methodologies Tools, ValueTools 2017, Venice, Italy, Dec. 2017,
pp. 1-6, doi: 10.1145/3150928.3150957.

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 21,2022 at 08:42:56 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3150928.3150957

