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Abstract—The lack of techniques and tools to estimate the
position of mobile devices with high accuracy and robustness is
one of the major causes that limit the provision of advanced
location-based services in indoor environments. An algorithm to
enable mobile devices to estimate their positions in known indoor
environments is discussed in this paper under the assumption
that fixed network nodes are available at known locations. The
discussed algorithm is designed to allow devices to estimate
their positions by actively measuring the distances from visible
fixed nodes. In order to reduce the errors introduced by the
arrangement of the fixed nodes in the environment, the discussed
algorithm transforms the localization problem into an optimiza-
tion problem, which is then solved using interval arithmetic.
Experimental results on the use of the discussed algorithm with
distance estimates obtained using ultra-wide band are presented
to assess the performance of the algorithm and to compare
it with a reference alternative. Presented experimental results
confirm that the discussed algorithm provides an increased level
of robustness with respect to the considered reference alternative
with no loss of accuracy.

Index Terms—localization as optimization, indoor localization,
ultra-wide band, software agents

I. INTRODUCTION

The possibility of robustly associating an accurate position

with a mobile device in an indoor environment has recently

become a major feature needed to increase the level of

personalization of services and applications offered to users

(e.g., [1]–[3]). Robust and accurate indoor localization can be

used, for example, to personalize and increase the interactivity

of visits to art exhibitions by means of educational games

(e.g., [4]), it can be used to support the automation of work in

warehouses (e.g., [5]), and it can be used to extend the services

of location-based social networks (e.g. [6]) to large indoor

areas like shopping malls, train stations, and airports. Solutions

to problems related to indoor localization can be found in

recent literature (e.g., [7]–[9]), but the general problem of

enabling a mobile device to accurately and robustly estimate

its position in a known environment is still an open issue

(e.g., [10], [11]) even if specific technologies like Ultra-Wide

Band (UWB) (e.g., [12], [13]) are readily available.

Software agents are expected to play a relevant role in the

delivery of mentioned services and applications (e.g., [14])

because agents are normally characterized as situated entities

capable of exhibiting context-aware behaviors. With this re-

spect, the position can be considered as just another context

information that agents can use to bring about their goals.

Therefore, the use of the position to enrich the behaviors of

agents is expected to be simple and effective. This is the reason

why the algorithm used to run the experiments documented

in this paper was implemented as an extension of the lo-

calization add-on module (e.g. [15]) for JADE (e.g., [16]).

The localization add-on module for JADE is responsible

for providing timely information to agents regarding their

positions using one of the available localization algorithms.

Actually, the localization add-on module extends a JADE

container (e.g., [16]) executed on a mobile device with the

possibility of interfacing the sensors of the device to obtain the

low-level information needed to apply the chosen localization

algorithm. The estimated position of the device is then passed

to interested agents hosted by the container so that they can

use it to bring about their goals. Note that, besides available

localization algorithms, additional algorithms like the one

discussed in this paper can be easily integrated in the add-on

module provided that they implement a specific Java interface.

The discussions in this paper are focused on the general

problem of allowing a mobile device, denoted as Target Node

(TN), to estimate its position inside an indoor environment

with known geometry under the assumption that fixed network

nodes, denoted as Anchor Nodes (ANs), are installed at known

locations. One of the major assumption of this work is that

mobile devices can actively measure the distances from the

ANs installed in the environment using one of the available

ranging technologies. An average error of 1 m in the estimation

of positions is considered acceptable for targeted application

scenarios, and experimental results discussed in Section V

show that such an accuracy is feasible using the discussed

localization algorithm when ranging information are obtained

using UWB. With minor loss of generality, it is assumed that

the considered indoor environment is composed of possibly

overlapping rectangular cuboids, called boxes in this paper to

follow a consolidated nomenclature. Under this assumption, it

is possible to focus the hunt for TNs in the environment on

the single boxes that compose the environment, and therefore

the localization problem can be simplified by considering

only box-shaped environments. Observe that the minimum

bounding box containing the considered environment can be

used if the environment cannot be split into boxes, but, in this

case, estimated positions of TNs should be filtered accordingly.
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One of the problems that make indoor localization difficult

is related to the fact that the positions of ANs in the envi-

ronment strongly affect the accuracy of ordinary localization

algorithms (e.g., [17], [18]), like the Two-Stage Maximum-

Likelihood (TSML) [19] algorithm discussed in Section V. In

particular, a significant loss of the accuracy provided by such

algorithms is normally observed when ANs are not positioned

properly in the environment. Such a problematic characteristic

of ordinary localization algorithms is critical for indoor envi-

ronments because ANs are normally located near the ceilings

of rooms, which is an arrangement that exacerbates the men-

tioned problem. The choice of installing all ANs at (roughly)

the same height near the ceilings of rooms degrades the

performance of ordinary localization algorithms because some

of the matrices involved in computations become strongly ill-

conditioned (e.g., [5], [20]). Unfortunately, the choice of the

positions of ANs in indoor environments is often dictated by

practical considerations intended, for example, to limit the

interference caused by people and furniture, and to maximize

coverage. Therefore, the positions of ANs cannot be changed

just to limit the mentioned problem of ordinary localization

algorithms. The remainder of this paper is devoted to study

the robustness of an alternative algorithm in situations in

which the accuracy of ordinary algorithm degrades sensibly.

Experimental results presented in Section V show that the

accuracy of the studied algorithm is acceptable even when

the accuracy of the TSML algorithm, which is used as a point

of reference, degrades sensibly.

This paper is organized as follows. Section II introduces

adopted notation. Section III describes the adopted approach

to localization. Section IV describes the discussed algorithm

and briefly presents its characteristics. Section V reports the

results of the experimental campaign performed to assess

the robustness of the studied algorithm. Finally, Section VI

concludes the paper.

II. NOTATION

This section summarizes the notation commonly used to

study real functions of several real variables, as it is used to

present the localization problem and the discussed algorithm in

the following sections. The set of natural numbers, including

zero, is denoted as N and the set of positive natural numbers

is denoted as N+. Given n ∈ N+, a multi-index I ∈ N
n is

defined as an n−tuple of natural numbers

I = (i1, i2, . . . , in) = (ik)
n
k=1. (1)

Note that it is a common notation to use an uppercase letter to

denote a multi-index and to use the same letter, but lowercase

and with a subscript, to denote its components. The following

notation is adopted to use a multi-index I ∈ N
n as an exponent

for t ∈ R
n with t = (t1, t2, . . . , tn) = (tk)

n
k=1

t
I =

n
∏

k=1

tikk . (2)

Note that it is a common notation to use a boldface letter

to denote an n−tuple of real numbers, and the same letter,

but lightface and with a subscript, for its components. Also

note that the common understanding of 00 = 1 is adopted

consistently throughout this paper.

Given two multi-indices I ∈ N
n and J ∈ N

n, they can be

compared using the following partial order

I ≤ J ⇐⇒ i1 ≤ j1 ∧ i2 ≤ j2 ∧ · · · ∧ in ≤ jn (3)

and they can also be added componentwise

I + J = (i1 + j1, i2 + j2, . . . , in + jn). (4)

The following abbreviation is introduced for multi-indices

H ∈ N
n, I ∈ N

n, and J ∈ N
n to express repeated sums

∑

H≤I≤J

(·) =

j1
∑

i1=h1

j2
∑

i2=h2

· · ·

jn
∑

in=hn

(·). (5)

Note that H is omitted in (5), so that only I ≤ J remains, if

it is the null multi-index (0)nk=1
.

The multi-index notation is particularly well-suited to study

polynomial functions. A polynomial function p : Rn 7→ R of

n ∈ N+ real variables with real coefficients can be written as

p(x) =
∑

I≤L

aIx
I , (6)

where {aI}I≤L ⊂ R is the set of the coefficients of p and

multi-index L ∈ N
n is the multi-degree of p.

Observe that the localization algorithm discussed in this

paper works by studying the bounds of polynomial functions

over boxes. Hence, it is worth recalling the following notation

for intervals and boxes. A closed (real) interval from a ∈ R

to a ∈ R is denoted as

[a, a] = {x ∈ R : a ≤ x ≤ a}, (7)

and it equals the empty set if and only if a > a. A

singleton (real) interval that contains only a ∈ R is denoted

as [a] = [a, a]. Given n ∈ N+, a (real) box B ⊂ R
n from

b = (bk)
n
k=1

∈ R
n to b = (bk)

n
k=1

∈ R
n is denoted as

B = [b,b] = [b1, b1]× [b2, b2]× · · · × [bn, bn], (8)

and it equals the empty set if and only if bi > bi for some

1 ≤ i ≤ n. Note that the notation Bi = [bi, bi] ⊂ R with

1 ≤ i ≤ n is used to refer to the closed intervals that compose

the nonempty box B. Also note that the notation Bi→W is

used to refer to the box obtained by replacing the i−th closed

interval that composes the nonempty box B with the nonempty

closed interval W ⊂ R.

Interval arithmetic (e.g., [21]) uses the introduced nota-

tion to express computations whose arguments and results

are closed intervals. Given two nonempty closed intervals

A = [a, a] ⊂ R and C = [c, c] ⊂ R, they can be added

A+ C = [a+ c, a+ c], (9)

and they can be multiplied

A · C = [min{a c, a c, a c, a c},max{a c, a c, a c, a c}]. (10)
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In both cases the result is a nonempty closed interval. Note that

the product among intervals can be used to define the m−th

power of a closed interval A ⊂ R, where m ∈ N+. Also note

that the convention [0]0 = [1] is adopted consistently in this

paper. Given n ∈ N+, a nonempty box B ⊂ R
n, and a multi-

index I ∈ N
n, the following notation that uses only products

among intervals is normally used

BI =

n
∏

j=1

B
ij
j . (11)

Using the introduced notation, which is typical of interval

arithmetic, a polynomial function p : Rn 7→ R of n ∈ N+

real variables with real coefficients can be extended to work

on boxes. If the function is expressed as in (6), then for any

box B ⊂ R
n

p(B) =
∑

I≤L

[aI ]B
I , (12)

where the notation for singleton intervals is used to treat the

coefficients of the polynomial function as closed intervals.

Observe that it is easy to prove that the result of the evaluation

of p(B) is a closed interval that includes the range of p over

box B (e.g. [21]).

III. LOCALIZATION AS OPTIMIZATION

The localization as optimization approach was proposed

in previous works (e.g., [5], [20]) with the aim of reducing

the loss of accuracy that characterizes ordinary algorithms

for critical arrangements of the ANs, as briefly recalled in

Section I. The localization as optimization approach is based

on the possibility of rewriting any localization problem into a

related optimization problem, which can then be solved using

one of the algorithms documented in the vast literature on

optimization. Observe that many of the optimization algo-

rithms available in the literature still have problems related

to ill-conditioned matrices. Therefore, specific attention must

be paid to the choice of a proper optimization algorithm in

order to guarantee that the reformulation of the localization

problem in terms of an optimization problem would lead to

high accuracy in scenarios where the arrangements of ANs is

critical. This is the reason why, among the large number of op-

timization algorithms, the use of Particle Swarm Optimization

(PSO) [22] was chosen for initial experiments. Experimental

results (e.g., [5], [20]) showed that the use of PSO to im-

plement localization as optimization proved to be effective in

solving the loss of accuracy caused by critical arrangements

of ANs. Unfortunately, PSO has two severe issues that limits

its applicability to solve practical localization problems. First,

just like all other general optimization algorithms, PSO does

not guarantee that global extrema of studied functions are

computed in finite time. Second, the performance of the PSO

algorithm depends on a set of parameters whose optimal

values can be determined only by simulating the behavior

of the algorithm in the considered environment. Therefore,

alternatives to the use of PSO to implement localization as

optimization are under experimentation. Among them, the

algorithm briefly recalled in Section IV is a specific instanti-

ation of an algorithmic framework proposed in an upcoming

paper. Interested readers can obtain from authors a preprint

of the paper where the algorithmic framework is proposed

and studied. In the remainder of this section, the approach of

localization as optimization is recalled for the tridimensional

case for the sake of clarity and to fix the adopted notation.

A set of m ≥ 4 ANs is positioned at fixed and known

locations in the considered indoor environment. The position

of the i−th AN is denoted as ai ∈ R
3 with 1 ≤ i ≤ m. The

true position of the TN is denoted as t ∈ R
3, and the true

distance between the TN and the i−th AN is

ri = ||t− ai||. (13)

The geometry of the problem suggests that the position of the

TN can be found by intersecting m spheres, the i−th of which

is centered at ai and has radius ri






















||t− a1||
2 = r21

||t− a2||
2 = r22

...

||t− am||2 = r2m

(14)

The localization problem is the problem of finding estimates

of the position of the TN provided that the distances between

the TN and each AN are estimated using one of the available

ranging technologies. The estimated position of the TN is

denoted as t̃ ∈ R
3, while the estimated distance between the

TN and the i−th AN is

r̃i = ||̃t− ai||. (15)

Therefore, the estimated position t̃ of the TN is expected to

satisfy the following system of nonlinear equations, which is

obtained by exchanging the true values with their correspond-

ing estimated values in (14)






















||̃t− a1||
2 = r̃21

||̃t− a2||
2 = r̃22

...

||̃t− am||2 = r̃2m

(16)

Note that (16) can be used to try to compute the position

estimate t̃. Unfortunately, even if (14) always has a single

solution, (16) may not have a single solution because of the

errors introduced in the estimation of distances. In general,

(16) may have no solutions, and only rarely it has one solution.

Note that (16) can be rewritten in matrix notation as follows

1mt̃
⊺
t̃− 2At̃ = k̃, (17)

where 1m ∈ R
m is a vector whose components are all equal to

1, k̃ ∈ R
m is a vector whose i−th element is k̃i = r̃2i −||ai||

2,

and A is the following m× 3 anchor matrix

A =











a
⊺

1

a
⊺

2

...

a
⊺

m











. (18)
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Many localization algorithms (e.g., [18]) perform algebraic

manipulations of matrices whose entries depend on the po-

sitions of the TN and of the ANs. The matrices involved

in such computations can become ill-conditioned in critical

situations, and this represents one of the inherent problems

of such algorithms. For example, it is evident from (18) that

the anchor matrix is rank deficient if all ANs are placed at the

same height because the entries in its last column are all equal.

As discussed in detail in Section V, the TSML algorithm is not

applicable if all ANs are installed at the same height because

it would require to invert a singular matrix. Similarly, if the

heights of the ANs are not exactly the same, but they are

sufficiently close, the TSML algorithm produces large errors

because the matrix to be inverted is strongly ill-conditioned.

If (17) has exactly one solution, such a solution can be

computed by using the equations of the system to state a proper

minimization problem. Actually, the solution t̃ of (17), which

is the estimated position of the TN, can be found by solving

the following minimization problem

t̃ = argmin
x∈D

f(x), (19)

where D ⊆ R
3 is the region of space where the TN is

supposed to be located, and f : D 7→ R is the function to

be minimized, normally called localization cost function

f(x) = ||1mx
⊺
x− 2Ax− k̃||2. (20)

Even if (17) does not have exactly one solution, the refor-

mulation of (17) in terms of a minimization problem can

still provide an estimate of the position of the TN. Note that

function f is a polynomial function of three variables whose

multi-degree is L = (4, 4, 4). Also note that since it is assumed

that the indoor environment can be split into disjoint boxes,

D can be considered as a box without loss of generality.

IV. THE POSTI ALGORITHM

The Polynomial Optimization using Subdivision Trees

(POST) algorithmic framework is introduced in an upcoming

paper as an effective means to support the localization as op-

timization approach described in previous section. The POST

framework is completed with a suitable method to compute

lower and upper bounds of polynomial functions to obtain an

algorithm to solve the minimization problems derived from

localization problems. In this paper, the instantiation of the

POST framework that uses interval arithmetic to compute

lower and upper bounds of polynomial functions over boxes,

normally called POSTI algorithm, is described. The experi-

mental results presented in Section V were obtained using an

implementation of the POSTI algorithm integrated within the

localization add-on module for JADE recalled in Section I.

The POSTI algorithm uses classic results from the literature

on interval arithmetic (e.g., [21]) to compute lower and upper

bounds of a given polynomial function over a given box. Then,

the POSTI algorithm uses such bounds to drive an ordinary

subdivision method to solve the minimization problem at hand.

In detail, the POSTI algorithm is based on the possibility of

rewriting a localization problem into a related optimization

problem that aims at finding a global minimum of the lo-

calization cost function f defined in (20). Given that one of

the adopted assumptions in this paper is that the considered

environment can be split into possibly overlapping boxes, as

discussed in Section I, the considered minimization problems

can be restricted to boxes. In summary, the POSTI algorithm

estimates the position of the TN by finding a global minimum

of a polynomial function f of n = 3 variables and multi-

degree L = (4, 4, 4) over a given box, which corresponds to

the considered indoor environment.

Note that the accuracy of the POSTI algorithm does not

depend on the positions of the TN or of the ANs, and therefore

it can be used when the accuracy of ordinary algorithms,

like the TSML algorithm, degrades sensibly. In addition, note

that experimental results discussed in Section V show that

the POSTI algorithm ensures an accuracy of localization

comparable to the accuracy of the TSML algorithm when the

arrangement of ANs is not critical. The comparison with the

TSML algorithm is particularly relevant because the TSML

algorithm is an accepted reference to assess the performance

of localization algorithms. Actually, the TSML algorithm is

particularly relevant in the context of localization because it is

proved [23] that it can attain the Cramér-Rao lower bound [24]

for the position estimator.

The literature on nonlinear programming proposes several

algorithms to minimize a polynomial function. When the

minimum is searched in a box, as in the scenarios considered

in this paper, most of the minimization algorithms make use

of the properties of the Bernstein polynomial basis (e.g., [25]

for a comprehensive review of the subject and a historical ret-

rospective). Actually, well-known properties of the Bernstein

polynomial basis can be used to compute lower and upper

bounds of a polynomial function over a given box, and such

bounds can be used to drive the subdivision of the box using

a branch-and-bound approach in search for a global minimum

(e.g., [26]). In particular, for each subdivision, the so called

Bernstein coefficients are computed on the two resulting sub-

boxes, and such coefficients are used to obtain the needed

lower and upper bounds of the polynomial function for the two

sub-boxes. Unfortunately, such an approach is problematic in

terms of computational cost when the polynomial function to

minimize is obtained from a localization problem because of

the number n = 3 of variables and because of multi-degree

L = (4, 4, 4) of the polynomial function. Even if effective

algorithms for the computation of Bernstein coefficients are

available (e.g., [27]–[31]), a total of 125 Bernstein coefficients

are needed for each considered sub-box in the worst case, and

preliminary tests showed that needed computation cost is too

high for the intended applications of indoor localization briefly

mentioned in Section I.

Classic results from the literature on interval arithmetic can

be used to compute lower and upper bounds for a given poly-

nomial function over a given box instead of using the bounds

provided by Bernstein coefficients. The bounds obtained from

the application of interval arithmetic are typically less strict
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than the bounds obtained using Bernstein coefficients, but the

needed computation cost for n = 3 variables and multi-degree

L = (4, 4, 4) is reduced and it is compatible with the intended

applications of indoor localization. In particular, the following

proposition can be used to compute lower and upper bounds

of a polynomial function over a box. The proposition is shown

without proof because it is a classic result of the literature on

interval arithmetic (e.g., [21]).

Proposition 1: Given a polynomial function p : Rn 7→ R of

n ∈ N+ variables with multi-degree L ∈ N
n

p(x) =
∑

I≤L

aIx
I , (21)

if B = [b,b] ⊂ R
n is a box from b ∈ R

n to b ∈ R
n, then

p ≤ min
x∈B

p(x) max
x∈B

p(x) ≤ p, (22)

where p(B) = [p, p] is computed using interval arithmetic.

V. EXPERIMENTAL RESULTS

In order to test the applicability of the POSTI algorithm for

indoor localization, an experimental campaign was performed

in an indoor environment, as discussed in this section. Re-

sults were obtained using a commercial Android smartphone

equipped with the necessary hardware and software to com-

municate with UWB tags and to derive distance estimates

from the time of flight of UWB signals. The smartphone used

for experiments was a SpoonPhone, produced by BeSpoon

(www.bespoon.com), which is, to the best of our knowledge,

the only commercial smartphone equipped with a dedicated

programming interface to easily estimate the distance between

the smartphone and a paired UWB tag. In the considered

experiments, four UWB tags were used as active ANs and

distance acquisition was performed by the SpoonPhone, which

was used as TN. The collected distance estimates were then

processed according to the POSTI algorithm to obtain esti-

mates of the position of the TN. In order to compare the

performance of the POSTI algorithm with that of a known

and appreciated algorithm, the distance estimates passed to

the implementation of the POSTI algorithm were also passed

to the implementation of the TSML algorithm that is readily

available in the localization add-on module for JADE.

The indoor environment used to perform reported experi-

ments is a 4 m wide, 10 m long, and 3 m tall corridor. All

obstacles were removed from the corridor during experiments

to guarantee that all ANs were in line of sight with the

TN, and to reduce errors caused by multipath interference.

Four different scenarios were considered, which correspond

to different configurations of the ANs. For each scenario,

twelve different positions of the TN were considered. Such

positions are shown as red dots in Fig. 1, which also shows a

schematization of the considered environment. Three different

heights for the TN were considered, i.e., 3 m (near the ceiling),

1.5 m, and 0 m (near the floor). The four positions of the TN

near the ceiling of the corridor are associated in Fig. 1 with

0

10

1

z
 [
m

]

2

9

3

8

7

6

y [m]

5

4

3 4

32

x [m]

2
1

1

0 0

6

2

7

3

5

9

1

10

11

12

8

4

Figure 1. A schematization of the considered indoor environment, i.e., a 4 m
wide, 10 m long, and 3 m tall empty corridor, is shown together with the
twelve positions of the TN used for experiments (numbered in red).

numbers from 1 to 4, and their coordinates are expressed in

meters in the coordinate system shown in the figure as

t1 = (0, 0, 3)

t3 = (2, 5, 3)

t2 = (2, 0, 3)

t4 = (0, 5, 3).

The four positions of the TN whose heights are all equal

to 1.5 m are associated with numbers from 5 to 8, and

their coordinates are expressed in meters in the considered

coordinate system shown in Fig. 1 as

t5 = (0, 0, 1.5)

t7 = (2, 5, 1.5)

t6 = (2, 0, 1.5)

t8 = (0, 5, 1.5).

The four positions of the TN near the floor are associated with

numbers from 9 to 12, and their coordinates are expressed in

meters in the coordinate system shown in the figure as

t9 = (0, 0, 0)

t11 = (2, 5, 0)

t10 = (2, 0, 0)

t12 = (0, 5, 0).

The localization accuracy of the two considered algorithms

is measured in terms of the following position error

e = t− t̃, (23)

where t is the true position of the TN and t̃ is the estimated

position of the TN. Since four different scenarios correspond-

ing to four different arrangements of the ANs were studied,

and since experimental results were derived in correspondence

of twelve positions of the TN for each scenario, a total of

48 experimental configurations were considered. For each

considered experimental configuration, r = 100 estimates of

the distance between the TN and each AN were acquired,

and such estimates were used to derive r position estimates

using the POSTI algorithm. Then, r position estimates were

also derived by processing the same distance estimates with
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Table I
EXPERIMENTAL RESULTS IN SCENARIO 1

Position eP [m] σP [m] eT [m] σT [m]

t1 0.352 0.236 N/A N/A
t2 0.284 0.103 N/A N/A
t3 0.249 0.411 N/A N/A
t4 0.251 0.258 N/A N/A
t5 0.316 0.093 N/A N/A
t6 0.316 0.070 N/A N/A
t7 0.730 0.247 N/A N/A
t8 0.608 0.185 N/A N/A
t9 0.255 0.088 N/A N/A
t10 0.392 0.259 N/A N/A
t11 0.312 0.220 N/A N/A
t12 0.506 0.151 N/A N/A

the TSML algorithm. Finally, the average and the standard

deviation of the Euclidean norm of e over the r acquisitions

obtained using the POSTI algorithm, denoted as eP and

σP , were computed together with the corresponding values,

denoted as eT and σT , obtained using the TSML algorithm.

A. Scenario 1

In the first scenario, the four ANs are placed at the same

height near the ceiling of the considered environment. Using

the coordinate system shown in Fig. 1, the positions of the

ANs have the following coordinates expressed in meters

a1 = (0, 0, 3)

a3 = (0, 10, 3)

a2 = (4, 0, 3)

a4 = (4, 10, 3).

As discussed in Section I, the fact that all ANs share the

same height is problematic for ordinary algorithms, and the

TSML algorithm is actually inapplicable in this scenario. For

this reason, only the accuracy of the POSTI algorithm can be

evaluated. Table I shows the results related to the accuracy

of the POSTI algorithm using the values eP and σP defined

above for the r = 100 experiments and for each one of

the twelve positions of the TN shown. Observe that values

of eP vary from 0.249 m to 0.730 m. Therefore, it can

be concluded that the accuracy of localization is compatible

with the intended applications discussed in Section I. The

values of standard deviations are also compatible with practical

applications because they vary from 0.07 m to 0.411 m.

B. Scenario 2

In the second scenario, the height of two of the four ANs

is reduced with respect to the previous scenario. Using the

coordinate system shown in Fig. 1, the positions of the ANs

have the following coordinates expressed in meters

a1 = (0, 0, 2.5)

a3 = (0, 10, 2.5)

a2 = (4, 0, 3)

a4 = (4, 10, 3).

Table II shows the accuracy of the algorithms in terms of

eP and σP (evaluated using the POSTI algorithm), and of eT
and σT (evaluated using the TSML algorithm). All values are

computed using r = 100 repetitions of the experiments for

each one of the twelve positions of the TN shown in Fig. 1.

Table II
EXPERIMENTAL RESULTS IN SCENARIO 2

Position eP [m] σP [m] eT [m] σT [m]

t1 0.400 0.489 0.430 0.198
t2 0.403 0.231 0.997 2.137
t3 0.628 0.580 2.190 2.572
t4 0.305 0.158 0.801 1.135
t5 0.350 0.174 1.421 2.468
t6 0.348 0.192 0.740 0.663
t7 0.793 0.229 0.754 0.818
t8 0.585 0.197 0.856 0.634
t9 0.246 0.092 2.387 2.903
t10 0.341 0.188 1.359 1.746
t11 0.435 0.189 1.679 1.575
t12 0.440 0.099 1.804 2.313

Results show that the accuracy of the POSTI algorithm is

similar to the accuracy measured in the first scenario. As a

matter of fact, the values of eP vary between 0.246 m and

0.793 m, and the values of σP vary between 0.092 m and

0.580 m. The similarity between the results obtained in the

two scenarios is not surprising because the position of the

ANs did not change significantly.

Table II also shows the results related to the accuracy

of the TSML algorithm, expressed in terms of eT and σT .

Observe that such results are affected by significant errors in

correspondence of some positions of the TN. In detail, the

value of the average error eT is larger than 2 m when the TN

was positioned in t3 and t9, and it is larger than 1 m when

the TN was positioned in t5, t10, t11, and t12. Moreover, for

8 positions out of 12, the value of σT is larger than 1 m and

it is often larger than 2 m, which emphasizes the inaccuracy

of position estimates obtained with the TSML algorithm for

the studied arrangement of ANs. From obtained results it can

be concluded that the performance of the POSTI algorithm is

good in this scenario, while the TSML algorithm leads to very

inaccurate position estimates.

C. Scenario 3

As observed in the previous scenario, the reduction of the

height of two ANs by 0.5 m is not sufficient to obtain accurate

position estimates with the TSML algorithm. For this reason,

in this scenario the height of two ANs is further reduced with

respect to the previous scenario and it equals 1.5 m. Hence,

using the coordinate system shown in Fig. 1, the positions of

the ANs have the following coordinates expressed in meters

a1 = (0, 0, 1.5)

a3 = (0, 10, 1.5)

a2 = (4, 0, 3)

a4 = (4, 10, 3).

Observe that the new height of the two relocated ANs may not

be sufficient to guarantee visibility in practical applications

because of the possible presence of obstacles. However, in

the considered scenario, the corridor is empty and, therefore,

visibility is guaranteed just like in previous scenarios.

Table III shows the accuracy of the algorithms in terms of

eP and σP (evaluated using the POSTI algorithm), and of eT
and σT (evaluated using the TSML algorithm). All values are
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Table III
EXPERIMENTAL RESULTS IN SCENARIO 3

Position eP [m] σP [m] eT [m] σT [m]

t1 0.335 0.382 0.314 0.126
t2 0.331 0.126 0.345 0.193
t3 0.533 0.388 0.479 0.708
t4 0.303 0.064 0.573 0.103
t5 0.404 0.276 0.446 0.745
t6 0.417 0.290 0.196 0.098
t7 0.557 0.474 0.896 0.706
t8 0.339 0.242 0.566 0.234
t9 0.287 0.070 0.756 0.745
t10 0.419 0.358 0.867 0.923
t11 0.335 0.161 0.650 0.456
t12 0.467 0.090 0.626 0.248

computed using r = 100 repetitions of the experiments for

each one of the twelve positions of the TN shown in Fig. 1.

Results show that the accuracy of the POSTI algorithm is

similar to the accuracy measured in the first and in the second

scenarios. Actually, the values of eP vary between 0.287 m

and 0.557 m, and the values of σP vary between 0.064 m and

0.474 m. The results obtained in the considered scenarios are

not surprising because the accuracy of the POSTI algorithm

is expected to be independent from the position of ANs.

Table III also shows the results related to the accuracy of

the TSML algorithm, expressed in terms of eT and σT . In

this scenario, results obtained with the TSML algorithm are

sufficiently accurate for many applications. As a matter of

fact, the values of the average error eT vary between 0.196 m

and 0.896 m, and the values of the standard deviation σT

vary between 0.098 m and 0.923 m. A comparison between

the values of the average errors eP obtained with the POSTI

algorithm and the values of the average errors eT obtained

with the TSML algorithm shows that the characteristics of the

two algorithms are comparable in this scenario. Analogous

considerations can be derived from the values of the standard

deviation σP obtained with the POSTI algorithm and the

value of the standard deviation σT obtained with the TSML

algorithm, even though the values of σP are actually lower

than the corresponding values of σT for 9 out of the 12
positions of the TN.

D. Scenario 4

In this scenario, the height of the two relocated ANs is

further reduced and they are placed near the floor of the

corridor while the other two ANs are still at their original

positions. Using the coordinate system shown in Fig. 1, the

positions of the ANs are expressed in meters as

a1 = (0, 0, 0)

a3 = (0, 10, 0)

a2 = (4, 0, 3)

a4 = (4, 10, 3).

As in the previous scenario, the new height of the two

relocated ANs may not be sufficient to guarantee visibility

in practical applications because of the presence of obstacles.

Table IV shows the accuracy of the algorithms in terms of

eP and σP (evaluated using the POSTI algorithm), and of

Table IV
EXPERIMENTAL RESULTS IN SCENARIO 4

Position eP [m] σP [m] e
T [m] σ

T [m]

t1 0.275 0.068 0.583 0.551
t2 0.309 0.065 0.298 0.111
t3 0.326 0.333 0.313 0.336
t4 0.454 0.144 0.783 0.374
t5 0.350 0.213 0.426 0.446
t6 0.271 0.111 0.315 0.103
t7 0.218 0.328 0.385 0.509
t8 0.241 0.121 0.600 0.114
t9 0.308 0.070 0.257 0.104
t10 0.483 0.420 0.627 0.589
t11 0.346 0.309 0.878 0.194
t12 0.409 0.069 0.782 0.168

eT and σT (evaluated using the TSML algorithm). All values

are computed using r = 100 repetitions of the experiments

for each one of the twelve positions of the TN shown in

Fig. 1. Results show that the accuracy of the POSTI algorithm

is similar to the accuracy measured in the first, second, and

third scenarios. As a matter of fact, the values of eP vary

between 0.218 m and 0.483 m, and values of σP vary between

0.065 m and 0.420 m. Such results are in agreement with

those obtained in previous scenarios, which is not surprising,

since the accuracy of the POSTI algorithm is expected to be

independent from the position of ANs.

Table IV also shows the accuracy of the TSML algorithm

using the quantities defined previously for the r = 100
repetitions of experiments and for the twelve positions of

the TN shown in Fig. 1. In this case, the accuracy obtained

with the TSML algorithm is similar to the accuracy obtained

in the third scenario. Actually, the values of the average

error eT vary between 0.257 m and 0.878 m, and the values

of the standard deviation σT vary between 0.103 m and

0.589 m, which ensures an accuracy of localization compatible

with intended applications discussed in Section I. As for the

previous scenarios, the results reported in Table IV show that

the performance of the two algorithms are similar in this case.

VI. CONCLUSIONS

The POSTI algorithm is discussed in this paper as a

viable opportunity to support the localization as optimization

approach (e.g., [5], [20]). The POSTI algorithm is based on

consolidated results from the literature on nonlinear program-

ming, and it relies on a subdivision method to search for

the position of the TN in the considered indoor environment,

which is assumed to be composed of possibly overlapping

rectangular cuboids. According to the current implementation

of the algorithm, the TN can actively obtain estimates of the

distances from ANs using UWB. An alternative implemen-

tation of the algorithm that uses WiFi signaling to obtain

distance estimates was experimented, but the accurate and

robust distance estimates that UWB provides ensures far better

localization performance and such an implementation is not

discussed in this paper.
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One of the most relevant characteristics of the POSTI algo-

rithm is that it provides a level of accuracy that is independent

from the position of the ANs in the environment. This is not

true for other localization algorithms, like the TSML algo-

rithm, whose performance significantly degrades when prob-

lematic arrangements of ANs are used. Experimental results

shown in the last part of this paper confirm that the POSTI

algorithm leads to accurate position estimates in all considered

scenarios, independently from the positions of ANs. Actually,

the average localization errors and the corresponding standard

deviations are independent from the considered position of the

TN and from the adopted arrangement of ANs. At the opposite,

significant localization errors are produced by the TSML

algorithm when ANs are installed in critical arrangements. In

detail, presented experimental results show that the POSTI al-

gorithm outperforms the TSML algorithm in terms of average

localization error and corresponding standard deviation when

considering scenarios where all the ANs are almost coplanar.

Such a result is particularly significant because the TSML

algorithm is often used as a reference for the assessment of

the performance of localization algorithms because it is well

known [23] that it can attain the Cramér-Rao lower bound [24]

for the position estimator.

Finally, it is worth noting that the critical arrangements

of the ANs that make the use of the TSML impractical

are those in which all the ANs are located at (roughly) the

same height. Unfortunately, this is one of the most common

arrangements in indoor environments, where all the ANs are

typically placed at the same height close to the ceilings of

rooms to ensure a good line-of-sight coverage. According to

such considerations, the use of the POSTI algorithm for robust

and accurate localization seems a valid opportunity for envis-

aged applications of indoor localization, which demands that

practical considerations regarding the line-of-sight coverage of

environments are seriously taken into consideration.
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