
Robustifying the Deployment of tinyML Models for
Autonomous mini-vehicles

Miguel de Prado ∗‡
miguel.deprado@he-arch.ch

Manuele Rusci †
manuele.rusci@unibo.it

Romain Donze ∗
romain.donze@he-arc.ch

Alessandro Capotondi §
alessandro.capotondi@unimore.it

Serge Monnerat ∗
Serge.Monnerat@he-arc.ch

Luca Benini †‡
lbenini@iis.ee.ethz.ch

Nuria Pazos ∗
Nuria.Pazos@he-arc.ch

∗ He-Arc Ingenierie, HES-SO †DEI, University of Bologna ‡Integrated System Lab, ETH Zurich §UNIMORE

Abstract—Standard-size autonomous navigation vehicles have
rapidly improved thanks to the breakthroughs of deep learning.
However, scaling autonomous driving to low-power systems de-
ployed on dynamic environments poses several challenges that
prevent their adoption. To address them, we propose a closed-
loop learning flow for autonomous driving mini-vehicles that
includes the target environment in-the-loop. We leverage a family
of compact and high-throughput tinyCNNs to control the mini-
vehicle, which learn in the target environment by imitating a
computer vision algorithm, i.e., the expert. Thus, the tinyCNNs,
having only access to an on-board fast-rate linear camera, gain ro-
bustness to lighting conditions and improve over time. Further, we
leverage GAP8, a parallel ultra-low-power RISC-V SoC, to meet
the inference requirements. When running the family of CNNs,
our GAP8’s solution outperforms any other implementation on
the STM32L4 and NXP k64f (Cortex-M4), reducing the latency
by over 13x and the energy consummation by 92%.

Index Terms—Autonomous driving, tinyML, robustness, and,
micro-controllers

I. INTRODUCTION

Autonomous driving has made giant strides since the advent
of deep learning (DL). However, scaling this technology to
micro- and nano- vehicles poses severe challenges in terms of
functionality and robustness due to their limited computational
and memory resources of the on-board processing unit [1], [2].

Micro-Controller Units (MCUs) are typically chosen on
small unmanned vehicles to balance the mW power cost of the
sensing front-end and keep the system-energy low to extend
the battery life. Traditionally, driving decisions have been off-
loaded and carried out remotely, implying energy-expensive,
long-latency, and unreliable transmissions of raw data to cloud
servers [3]. Off-system transfers can be prevented by processing
data on-board and directly driving the motor controllers. Thus,
tiny machine learning (TinyML) has appeared as a new field
to address these challenges and tackle on-device sensor data
analysis at hardware, algorithmic and, software level [4], [5].

A major challenge for the design of autonomous driving
decision models is that the real-world environment change
over time: the data distribution that has been initially learned
might not match the underlying distribution of the current
environment, e.g., the car driving through different landscapes
or weather conditions. Hence, there is an increasing need to
adapt to ever-changing environments to make vehicles more
robust and efficient over time.

Fig. 1: Automotive application use-case. A) Mini-vehicle running
on circuit track. B) Close-loop learning task. One linear camera feeds
the GAP8 (tinyCNN) and another the NXP k64f (CVA).

A. Goal specification: Robust low-power Autonomous Driving

We aim to shed light in the robustification of DL methods for
autonomous systems deployed on dynamic environments. We
specifically focus on enabling the deployment of tinyCNNs to a
low-power autonomous driving vehicle. We base our design on
the NXP cup framework [6], an autonomous racing competition
that offers a solid ground to test new ideas that can be
reproduced, ported to other autonomous devices, e.g., drones,
or scale up to bigger vehicles. Our vehicle consists of a battery-
powered mini-car that needs to detect autonomously 7 different
states in a controlled circuit: GoStraight, TurnLeft, TurnRight,
CrossingStreets, StartSpeedLimit and StopSpeedLimit as shown
in Fig. 1. The vehicle contains a linear camera and an on-board
NXP k64f MCU [7] to detect the current state, compute the
required action and drive the actuators accordingly.

The process was originally based on a conventional and
handcrafted computer-vision algorithm (named as CVA) that
predicts accurately only under stable light conditions. The
fragility to light condition is due to the nature of the CVA
as it calculates derivatives on the input image which requires
good contrast. The lack of robustness to light conditions is
countered by setting the camera with a variable acquisition
time that adapts to the lighting conditions (controlled by a PID)
to obtain clear images. However, the variability and length of
the time (≥2 ms) limit the vehicle’s agility. Thus, we take a
tinyML approach and aim at replacing the conventional CVA by
a tinyCNN to: i) improve the robustness to lighting variations,
and ii) increase the performance, i.e., actions/sec, by learning
challenging features from short and constant acquisition times.

978-1-7281-9201-7/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

IS
C

A
S)

 |
97

8-
1-

72
81

-9
20

1-
7/

20
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
C

A
S5

15
56

.2
02

1.
94

01
15

4

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 22,2022 at 09:19:39 UTC from IEEE Xplore. Restrictions apply.

B. Contributions

We present an end-to-end flow of data, algorithms, and
deployment tools that facilitates the deployment and enhance
the robustness of a family of tinyCNNs for an autonomous low-
power mini-vehicle. Thus, our contributions are the following:

1) We introduce a closed-loop learning flow that enables
the tinyCNNs to learn through demonstration. By imitating an
expert with access to good-quality images, the tinyCNNs gain
robustness to lighting conditions while having only access to a
fast-rate camera, thereby doubling the system’s throughput.

2) We leverage GAP8 [8], a parallel ultra-low-power RISC-
V SoC, to meet the CNN inference computing requirements by
adding it as a System-on-Module (SoM) on the NXP platform.

Further, we compare our deployment solution on GAP8 (50
MHz) with two Cortex-M: an STM32L4 (80 MHz) and an NXP
k64f (120 MHz). We present the Pareto-optimal front where
our solution dominates all other implementations, reducing the
latency by over 13x and the energy consumption by 92%.

II. RELATED WORK

We find 3 main topics related to this work in the literature:
1) High-Performance Autonomous Driving: There exist

multiple CNN approaches for autonomous driving [9], ranging
from standard-size to small-scale vehicles. On the higher end,
Nvidia and Tesla introduced PiloNet [10] and AutoPilot [11],
requiring dedicated platforms such as TESLA FSD chip and
NVIDIA drive, which provide TOPs of computing power and
tens of GBytes of memory for their large CNN solutions.
Other approaches such as DeepRacer [12], F1/10 [13], or
DonkeyCar [14] require GOPs and hundreds of MBytes that
cover using platforms like Nvidia Jetson, Raspberry PI or Intel
Atom. By constrast, we focus on end-to-end CNN solutions
suitable for very low-power vehicles with MCUs featuring
MOPs and up to a few MBytes, which is an unexplored field.

2) Learning Methodology: Imitation Learning (IL) leverages
the idea of a student learning from an expert that gives
directives through demonstration [15], [16]. In this context,
ALVINN [17] proposed a CNN-based system that learns to
infer the steering angle from images taken from a camera
on-board. Similarly, PilotNet [10] and J-Net [18] employed a
system that collects the driver’s signal to label a training dataset
with on-board cameras. However, these approaches only use
the expert to label the training datasets. Instead, we propose a
closed-loop learning flow where the learner confronts the expert
in real drive and gradually improves through demonstration. In
this direction, Pan et al. proposed [19] where they optimize the
policy (online) of an reinforcement learning agent that imitates
an expert driver with access to costly resources, while the agent
has only access to economic sensors. However, their approach
is not compatible with our use case where low-power systems
cannot hold such level of computation and memory.

3) Low-power DL deployment: Multiple software stacks
have been introduced on inference tasks for resource-
constrained MCUs. In this context, STMicroelectronics has
released X-CUBE-AI to generate optimized code for low-end

LeNet5 VNN4 VNN3 VNN2 VNN1
Parameters (K) 72,85 6.04 0.97 1.29 0.48
Complexity(KMAC) 181.25 163.41 28.69 5.82 7.5

TABLE I: Vehicle Neural Network (VNN) family

STM32 MCUs [20]. Similarly, ARM has provided the CMSIS-
NN [21], which targets Cortex-M processors and provides
a complete backend for quantized DL networks exploiting
2x16-bit vector MACs instructions [22], [23]. Recently, the
CMSIS-NN dataflow has been ported to a parallel low-power
architecture, PULP, originating PULP-NN [24], which exploits
4x8-bit SIMD MAC instructions on a parallel processor, such
as the GAP8. In this work, we leverage the GAP8 for the
autonomous driving use case and provide a quantitative energy-
latency-quality comparison of these solutions.

III. ROBUST NAVIGATION WITH TINYML

We aim to take a tinyML approach and replace the initial
CVA solution by a tinyCNN. First, we evaluate an initial setup
and verify the challenge of porting DL methods on MCUs.

A. Initial Evaluation and Challenges

1) Data collection: We manually collect and label 3 initial
datasets, each containing around 1000 samples per class (driv-
ing action) for the training set and 300 for the test set. The
first dataset, Dset-2.0, contains samples with a fixed acquisition
time of 2.0 ms - clear enough images - where the CVA can
still predict well the required action. On the other hand, the
second and third datasets, Dset-1.5 and Dset-1.0, hold more
challenging samples (low contrast) with 1.5 ms and 1.0 ms
acquisition times where the CVA fails to predict well, and thus,
we aim to use a CNN instead.

2) Training: We choose LeNet5 [25] for our initial evalua-
tion as it is small and well-known CNN architecture, which is
also used in [18]. We use PyTorch as training environment with
cross-entropy loss function, SGD optimizer, data augmentation
and dropout to avoid over-fitting. Thus, we obtain an accuracy
of 99.53% on the Dset-2.0 test set, but only 84.12% and 81.27%
on the more challenging Dset-1.5 and Dset-1.0 test sets.

3) Deployment: We employ CMSIS-NN (Int8) as a backend
to execute LeNet5 on the NXP k64f. The execution time turns
out to be 5.4 ms, far too long compared to the ≈2 ms achieved
by the conventional CVA on the same platform and conditions.

Given LeNet5’s fragility to lighting conditions and its long
latency, the initial CNN setup provides no benefit compared to
the original CVA. To address these challenges, first, we create
a family of tinyCNNs for efficient MCU deployment. Next, we
introduce the GAP8 as a SoM to accelerate the CNN inference
and finally, we detail the closed-loop learning methodology.

B. Vehicle Neural Network (VNN) Family

We modify LeNet5’s topology by varying the number of
convolutional (conv) layers and the stride to shrink the model
size, the number of operations, and the latency. To have a higher
tolerance to the diffusion of features in low-light conditions,
we opt for a relatively large kernel size (k=5) for both the
conv. and the pooling layers, having the latter a stride of 3 to

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 22,2022 at 09:19:39 UTC from IEEE Xplore. Restrictions apply.

reduce the number of activations. As a result, we have created
a family of tinyCNN called Vehicle Neural Networks (VNNs),
see Table I, containing a range of layers that span from 1 to
3 convs. followed by one fully-connected layer for the final
classification. Networks and datasets have been open-sourced1

C. System-on-Module (SoM) setup

We leverage GAP8 [8], a parallel ultra-low-power RISC-V
SoC, to meet the CNN’s inference computing requirements (we
describe GAP8 and efficient deployment in Section IV). We
add GAP8 as a SoM on the NXP platform and set up the
system with two synchronized cameras (calibrated to have the
same view of the circuit), one feeding the NXP and another
feeding the GAP8, see Fig. 1. We use the GAP8 as a CNN
accelerator, which is only in charge of inferring the VNN on the
input image, while the NXP controls all the other sensors and
actuators. The results from the VNN are constantly transferred
via UART from the GAP8 to the NXP to control the actuators.

D. Closed-loop Learning System

Initially, our family of VNNs achieves an accuracy of 78%-
83% on Dset-1.0, a drop of 15%-20% compared to the VNNs
trained on the Dset-2.0 setup. Thus, we need a learning strategy
to enhance the VNNs’ robustness on the low-contrast images
from the Dset-1.0 setup. Hence, we propose a closed-loop
learning system as a way to gradually improve the quality of
our datasets and boost the VNNs’ accuracy.

We implement this technique by collecting valuable data
from the sensors at runtime, training (offline) the model from
scratch on the cumulative set of data, and pushing back the
updates to the deployed VNN, see Fig. 2. Thus, we pursue two
main objectives: i) improve the robustness to lighting variations,
and ii) increase the performance, i.e., actions/sec, by learning
challenging features from shorter acquisition times.

We have experimentally tested2 that the CVA accurately
predicts provided adequate light conditions. We can assume the
predictions of the CVA as ground-truth and follow an imitation
learning (IL) approach where we use the CVA as a teacher to
help the VNNs learn better features. Hence, we decouple the
original system and propose a setup with two cameras:

• Cam-CVA: set with a variable (and long) acquisition time
that adapts to the lighting conditions (controlled by a PID)
and always provides clear images. This camera feeds the
CVA running on the NXP.

• Cam-VNN: set with a short and constant acquisition time
that captures the lighting variability of the environment.
This camera feeds the VNN on the GAP8.

By confronting the results of both algorithms while the mini-
vehicle runs in a lighting-changing environment, we can im-
prove the generalization capacity of the deployed VNN. More-
over, we can also leverage IL to increase the VNNs’ accuracy
on the more challenging Dset-1.5 and Dset-1.0 setups, which, in
turn, improves the system’s throughput (actions/sec). We carry

1https://github.com/praesc/Robust-navigation-with-TinyML
2Not possible to benchmark CVA statically on our Dsets as it uses previous

samples to predict the current one, i.e., it works on a continuous data stream.

Fig. 2: Closed-loop learning pipeline. End-to-end closed-loop learn-
ing cyclic methodology via Imitation Learning.

out the IL methodology at runtime and collect those input
images that lead VNN’s predictions to differ from those of
the CVA. The samples get automatically labeled by the CVA
and are sent over to the PC. We include the new samples in
the training set to reinforce those classes where the VNN has
failed. The learning procedure can be repeated multiple times.
However, we find that the frequency of new sample discovery
decreases over time as the deployed solution progressively
improves. Thus, we show an experiment with several phases.

E. Experimental setup and Results

We demonstrate the closed-loop learning methodology by
first training a VNN on Dset-1.0, the most challenging setup.
Next, we combine our three Dsets: 2.0, 1.5, and 1.0, and
train the VNNs on it to make them have access to richer data
distribution. Then, we deploy a VNN on the mini-vehicle and
set Cam-VNN’s acquisition time to 1 ms. We make the vehicle
run in a varying-light environment while the VNN and CVA
results are confronted. Those samples where the VNN failed
are collected at every stage and merged to Dset-1.0 training set
to conform an incremental dataset that we show in 3 phases:
+25%, +50% and +100% (new samples wrt. the original Dset-
1.0). In the last stage, i.e., +100%, we heavily alter the light
conditions of the environment to improve the robustness of the
VNN. We train the VNN from scratch at each phase for 1000
epochs on the complete set and send an update of the weights
to the vehicle before starting the next phase. We perform each
training three times to account for the variability in the random
initialization.

Fig. 3-A displays the results obtained on the Dset-1.0 test
set. Initially, our family of VNNs achieves an accuracy of
78%-83%. After training the VNNs on the combined dataset
(Dset-All), most of the VNNs are able to generalize better, and
their accuracy noticeably improves due to the richer diversity
of light conditions. Further, when leveraging the closed-loop
learning methodology through IL and training the networks on
the reinforced dataset, VNN3, VNN4, and LeNet5 reach a top
accuracy of 94.1%, 97.4%, and 98.3%. By contrast, VNN2’s
accuracy remains mostly constant while VNN1 decays at the
end, probably due to their shallow topology and lower capacity,
failing to learn from more challenging data. Overall, the closed-
loop learning approach allows an increase in accuracy of over
15% in Dset-1.0, matching the accuracy of the CVA on Dset-
2.0 while doubling the throughput of the system.

Fig. 3-B illustrates how VNN4 learns and forgets features.
We train VNN4 on the data from Dset-1.0 setup, i.e., same as in
Fig. 3-A, and compare VNN4’s accuracy on Dset-1.0 and Dset-
2.0 test sets, which contain samples with different acquisition

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 22,2022 at 09:19:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Closed-loop learning evaluation. X-axis is shared. A) VNNs
accuracy on Dset-1.0 test (8-bit). B) VNN4 trained on Dset-1.0
learns/forgets features from Dset-2.0.

time and therefore, lighting conditions. We can observe that,
at first, when the VNN4 has only been trained on Dset-1.0
initial’s data, the accuracy on Dset-2.0 is poor. Nonetheless,
when VNN4 receives data from Dset-All, it generalizes better
and performs well in both test sets. However, as the experiment
goes on and VNN4 only sees data from the Dset-1.0 setup,
it tends to forget and slowly decreases its accuracy on Dset-
2.0 test set. Finally, by heavily altering the lighting conditions
on the 100% point, VNN4 can rehearse with data similar to
those of Dset-2.0 and ”remembers”. This experiment depicts a
challenge of continuous learning. It slightly shows the effects
of catastrophic forgetting [26] and how rehearsal techniques
can tackle this issue [27], which we will address in the future.

IV. MCU EFFICIENT DEPLOYMENT

We first describe the compression of the VNNs and GAP8’s
capabilities to achieve an efficient deployment. Then, we offer a
comparison between different MCUs when running our VNNs.

A. Network Compression

Training of CNNs is normally carried out using floating-point
data types. Such types need specific arithmetic units which may
not even be present in MCUs due to their large area and costly
energy consumption. Quantization is a compression method that
reduces the storage cost of a variable by employing reduced-
numerical precision. In addition, low-precision data types can
improve the arithmetic intensity of the CNNs by leveraging the
instruction-level parallelism. Thus, we have quantized our VNN
models to fixed-point 8-bit to reduce memory footprint and
power consumption [28], [29]. We have employed post-training
quantization where the weights can be directly quantized while
the activations require a validation set (sampled from circuit
runs) to determine their dynamic range. Thus, we have observed
a low accuracy loss (<3%) on the initial Dsets and negligible
loss (<1%) after the closed-loop learning phases.

B. MCU Hardware/Software Inference Platforms

We have leveraged the GAP8 [8], which is based on the
PULP architecture. It includes a RISC-V core, acting as an
MCU, and an 8-core RISC-V (cluster) accelerator featuring
a DSP-extended ISA that includes SIMD vector instructions
such as 4x8-bit Multiply and Accumulate (MAC) operations.
Besides, the cluster is equipped with a zero-latency 64kB L1
Tightly Coupled Data Memory and an 512 kB L2 memory.

Fig. 4: Accuracy-Latency-Energy Trade-off. Accuracy (w.r.t. Dset-
1.0, y-axis), latency (x-axis), and energy-consumption (balloon area)
for an inference of the VNNs. Black line highlights Pareto front.

We compare the GAP8 (at 50 MHz) with two other classes
of MCUs: a low-power single-core MCU (STM32 L476 at 80
MHz [30]), and a high-performance single-core MCU (NXP
k64f at 120 MHz [7]). Besides, we also compare different
inference backends supported on these devices. We report the
GAP8 platform coupled with the PULP-NN [24], against the
STM32 supporting either X-Cube-AI [20] or CMSIS-NN [21]
and, the NXP coupled with the CMSIS-NN [21].

C. Energy-Accuracy-Latency Trade-off

Thanks to the high accuracy obtained through the closed-loop
learning methodology, we can now employ the camera with a
short-acquisition time (1 ms) and set it as our latency target
for the classification task. Fig. 4 summarizes the accuracy,
latency, and energy measured on the different MCUs. All
VNNs deployed on GAP8 meet the 1 ms target and establish
the Accuracy-Latency Pareto frontier, dominating all the other
implementations on STM32 L476 and NXP k64f. Remarkably,
only VNN2 performs under 1ms on the NXP k64f (0.97ms)
due to its shallow topology and the higher clock frequency of
the NXP. Interestingly, we observe that X-Cube-AI backend is
up to 27.8% slower than CMISIS-NN on the STM32 L476.

Looking at the energy consumption of a single classification,
VNN4 on GAP8 (8 cores, 50 MHz) consumes 18.9µJ , -65.2%
less compared to VNN2 on NXP k64f (120MHz) while being
over 20% more accurate. The same VNN2 on GAP8 consumes
3.9µJ , -92.8% less than the NXP k64f. The usage of STM32
L476 (80MHz) is only possible if executing VNN2 and relaxing
the target latency up to 1.5ms. Yet, it consumes the same
amount of energy as VNN4 on GAP8, while the latter provides
-13.5% latency and +21.4% accuracy.

V. CONCLUSION AND FUTURE WORK

We have shed light on the robustification of tinyCNN models
deployed on a low-power driving use case. We have intro-
duced a closed-loop learning methodology that enables the
tinyCNNs to imitate an expert, improving their robustness to
lighting conditions in the target deployment scenario. Further,
we have proposed a parallel ultra-low-power platform to meet
the latency specifications, which consume as little as 3.9µJ
for a single inference. we envision that this methodology can
be applied for other autonomous use cases, e.g., drones, to
improve the robustness and efficiency of tinyML methods. As
future work, we aim to perform the training of the CNNs on-
chip towards a continuous learning scenario.

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 22,2022 at 09:19:39 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and
L. Benini, “A 64mW DNN-based Visual Navigation Engine for Au-
tonomous Nano-Drones,” IEEE Internet of Things Journal, 2019.

[2] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis
of representative deep neural network architectures,” IEEE Access, vol. 6,
pp. 64 270–64 277, 2018.

[3] O. Mutlu, “Processing data where it makes sense in modern computing
systems: Enabling in-memory computation,” in 2018 7th Mediterranean
Conference on Embedded Computing (MECO). IEEE, 2018, pp. 8–9.

[4] “Tinyml,” 2020. [Online]. Available: https://www.tinyml.org/summit/
[5] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,

X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov et al., “Bench-
marking tinyml systems: Challenges and direction,” arXiv preprint
arXiv:2003.04821, 2020.

[6] “Nxpcup,” 2020. [Online]. Available: https://nxpcup.nxp.com/
[7] “NXP K64F,” 2019. [Online]. Available: https://www.nxp.com
[8] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and

L. Benini, “GAP-8: A RISC-V SoC for AI at the Edge of the IoT,” in 2018
IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors. IEEE, 2018, pp. 1–4.

[9] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of
deep learning applications to autonomous vehicle control,” arXiv preprint
arXiv:1912.10773, 2019.

[10] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner,
L. Jackel, and U. Muller, “Explaining how a deep neural network trained
with end-to-end learning steers a car,” arXiv preprint arXiv:1704.07911.

[11] “Auto Pilot,” 2019. [Online]. Available: https://www.tesla.com/autopilot
[12] “DeepRacer.” [Online]. Available: https://aws.amazon.com/deepracer/
[13] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant, R. Mang-

haram, D. Agarwal, M. Behl, P. Burgio et al., “F1/10: An open-source
autonomous cyber-physical platform,” arXiv preprint arXiv:1901.08567.

[14] “DonkeyCar.” [Online]. Available: github.com/autorope/donkeycar
[15] “Introduction to Imitation Learning,” 2019. [Online]. Available:

https://blog.statsbot.co/introduction-to-imitation-learning-32334c3b1e7a
[16] “ICML 2018: Imitation Learning Tutorial,” 2018. [Online]. Available:

https://sites.google.com/view/icml2018-imitation-learning/
[17] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural

network,” in Advances in neural information processing systems, 1989.
[18] J. Kocić, N. Jovičić, and V. Drndarević, “An end-to-end deep neural

network for autonomous driving designed for embedded automotive
platforms,” Sensors, vol. 19, no. 9, p. 2064, 2019.

[19] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile autonomous driving using end-to-end deep imitation
learning,” in Robotics: science and systems, 2018.

[20] STMicroelectronics, “X-CUBE-AI,” https://www.st.com/en/
embedded-software/x-cube-ai.html, accessed: 2019-09-12.

[21] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[22] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword
spotting on microcontrollers,” arXiv preprint arXiv:1711.07128, 2017.

[23] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and R. Rhodes, “Visual
wake words dataset,” arXiv preprint arXiv:1906.05721, 2019.

[24] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “Pulp-nn:
Accelerating quantized neural networks on parallel ultra-low-power risc-
v processors,” arXiv preprint arXiv:1908.11263, 2019.

[25] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, vol. 20, p. 5, 2015.

[26] “Continual Learning,” 2018. [Online]. Available: https://medium.com/
@culurciello/continual-learning-da7995c24bca

[27] V. Lomonaco, “Continual learning with deep architectures,” Ph.D. disser-
tation, alma, 2019.

[28] M. Rusci, A. Capotondi, F. Conti, and L. Benini, “Work-in-progress:
Quantized nns as the definitive solution for inference on low-power
arm mcus?” in 2018 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ ISSS). IEEE, 2018, pp. 1–2.

[29] M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low
precision quantization for enabling deep network inference on micro-
controllers,” arXiv preprint arXiv:1905.13082, 2019.

[30] “STMicroelectronics STM32L476xx,” 2019. [Online]. Available: https:
//www.st.com/resource/en/datasheet/stm32l476je.pdf

Authorized licensed use limited to: UNIVERSITA MODENA. Downloaded on June 22,2022 at 09:19:39 UTC from IEEE Xplore. Restrictions apply.

