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Chapter 1

Introduction

In the last decade, Deep Learning emerged as a hot topic and a disruptive tool in
the fields of Machine Learning and Computer Vision. It builds upon a learning
paradigm in which data (e.g., videos acquired by surveillance cameras placed on a
public road) play a crucial role. By leveraging a great number of data-points, it is
possible to fit complex and human-like tasks (e.g., recognizing abnormal actions
in a video-stream) with impressive results. However, if data availability represents
the source of the greatest strength of Deep Learning techniques, it also reveals the
greatest weakness: the development of applications and services is indeed often
restrained by such a requirement, as the acquisition and maintenance of a huge
amount of data are expensive activities that require expert staff and equipment.

However, the design of modern Deep Learning architectures offers several
degrees of freedom that can be exploited to mitigate the lack of training data, either
partial or complete. The underlying idea is to compensate for it by incorporating
prior beliefs that humans (specifically, those who control and guide the learning
process) hold about the domain at hand. Indeed, intrinsic rules and properties
extend far beyond training data and can often be identified and imposed on the
learner. If we take image classification into account, the success of Convolutional
Neural Networks (CNNs) over past solutions (such as Multi-Layered Neural
Networks) can be mainly ascribed to such a practice. Indeed, the design principle
of its fundamental building block (i.e., the convolution between two 2D-signals)
naturally reflect what we knew about images: in this regard, the correlations that
subsist between neighborhood regions of the image provided a powerful insight
for the development of effective models as CNNs still prove to be.

1



1.1. RESEARCH STATEMENT 2

1.1 Research Statement
The ultimate aim of this thesis is the investigation and proposal of novel ways of
modeling and injecting prior knowledge in Deep Learning applications. Import-
antly, we conduct such a discussion across the board: it focuses on several data
domains (e.g., images, videos, graph-structured data, etc.) and concerns different
levels of the overall training pipeline. In particular, each chapter discusses a dis-
tinct application field or domain, in which the adoption of techniques leveraging
prior knowledge has proven to be beneficial. Along with a comprehensive descrip-
tion of both settings and tools involved, this thesis presents extensive experimental
results and ablation studies demonstrating the value of the techniques proposed in
this research.

1.1.1 Organization
To guide the reader across this research, we now explain the organization of the
rest of this thesis: the strategies that have been investigated can be broadly divided
into three categories, reported in the following paragraphs.

Parameter-Based approaches A common way to introduce prior knowledge
consists in limiting the space of feasible solutions to those regions reflecting
geometrical properties of the data. This can be achieved by designing tailored
neural layers, engineered to reflect some noticeable properties of the underlying
domain. In this regard, this thesis analyzes two fields in which such a practice
proves to be beneficial: namely, graph classification and novelty detection.

• Chapter 2 – mainly based on [142] – showcases the use case of graph
classification: here, the examples come as complex and heterogeneous
structures, composed by multiple nodes (vertices) coupled with additional
prior information describing the interactions (edges) between each of them.
Specifically, the main subject of this chapter is an approach that takes
explicitly into consideration those interactions through a specific and novel
layer placed inside the network.

• Chapter 3 deals with novelty detection – which aims at recognizing the
occurrence of anomalous and novel events – and reports the discussion and
findings of [1]: here, an entire auxiliary network is dedicated to modeling
the regular traits of normal events. Remarkably, the original work introduces
a prior knowledge on the latent space (i.e. a causal structure lying between
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its latent variables): this is carried out through specific auto-regressive layers
making up the above-mentioned auxiliary network.

Data-Driven approaches Alternatively, one can use standard neural building
blocks and, differently, model prior knowledge in terms of the expertise of a
neural network, which has been already trained and hence knows the underlying
task. Here, the idea is to pin its output as a form of prior information we would
like to maintain and then transfer its capabilities to another network, typically
called the student network. Several works refer to this schema as the teacher-
student paradigm and place it within the field of Knowledge Distillation [63]. We,
therefore, discuss two potential applications of such a paradigm:

• Chapter 4 focuses on continual learning, a research field identifying all those
approaches that mitigate the occurrence of catastrophic forgetting [130]
while learning a sequence of tasks. Here, the prior knowledge we seek to
transfer regards the beliefs of the network about examples of old tasks: in
more details, Dark Experience Replay – the approach discussed in [23]
and reported in Chapter 4 – uses old model’s output responses to promote
consistency with its past.

• Re-Identification is the main subject of Chapter 5: here, the task is to match
images depicting the same identity (e.g., a car or a pedestrian) captured from
disjoint camera views. In particular, the chapter builds upon the intuition
investigated by [143]: in short, the prior knowledge aimed to be transferred
lies on the set of visual details concealed in many images of the given target.
In this regard, we impose that leveraging only some of the available views
is enough to recover the entire visual original content. We experimentally
show that such an objective leads to more robust feature extractors.

Initialization-oriented approaches We finally assess a strategy that injects
prior knowledge by providing a smart initialization of the network’s parameters.
Such a practice – often referred as pre-training – usually builds upon the introduc-
tion of a preliminary pretext task, which usually has the following characteristics:
i) its design encodes some advantageous, general and reusable skills that can
be easily transferred to the downstream task; ii) a huge volume of data can be
leveraged, thus lowering the risk of overfitting. To have a clear picture, Chapter 6
presents a practical scenario where the approach outlined above provides perform-
ance gains: in particular, the chapter recall [197] and deals with the classification
of satellite images.



Chapter 2

Graph Classification

Convolutional Neural Networks (CNNs) have been successfully applied in dif-
ferent domains, such as speech recognition [62], image classification [89], and
video analysis [180]. In these domains, data can be described as a signal defined
on a regular grid, whose underlying dimension can be 1d, 2d or 3d. One of the
key aspects of CNNs is that such a regular structure makes it possible to exploit
local and stationary properties of data. Moreover, the convolution operator, its
behaviour being equivariant to translations, allows filters with a limited support
on the input grid, leading to a significantly smaller number of parameters with
respect to Fully Connected Networks.

However, we are surrounded by data lying on an underlying structure, which
typically has an irregular and non-euclidean nature. This is the case, for instance,
of document databases, 3D skeletal data, information from social networks and
chemical compounds. In all these domains, the relationships among entities are
more complex than in the case of a simple grid-like connectivity. Instead, graphs
constitute better representation forms, because they model directly the topological
structures of such data domains, through edge weights. For this reason, many
efforts have recently been made [22, 84, 36] in an attempt to generalise CNNs for
graph-structured data.

In this chapter we focus on signal classification in homogeneus graphs. In
such context, each sample obeys a single G = (V, E) weighted graph, which
reflects the prior knowledge we dispose about the physics and the structure of
the underlying domain. Specifically, the point in which a sample differs from
the others is represented by the value of each vertex in the graph. As in the case

4



2.1. PRELIMINARIES 5

Classifying Signals on Irregular Domains via Convolutional Cluster Pooling

CCP Layer
CCP Layer

Fully Connected

Output

Figure 1: An overview of the proposed architecture. Multiple applications of the CCP layer lead to a multi-scale
clustering of the input graph, exploiting both local and global properties during the information’s flow from input
to output. Finally, a Multi-Layer Perceptron classifies a global representation of the input signal, captured by a
feature vector on a singleton graph.

graph’s neighbourhoods can be successfully exploited.
The contributions of this research are two-fold. Firstly,
we provide a hierarchical framework for supervised
learning in homogeneous graph contexts. Secondly, we
propose a spatial formulation for graph filtering which,
as for CNNs, exploits weight sharing.

2 Related Work

Because of its generality and potential applications
in different domains, the possibility to extend neural
networks to deal with graph-structured data has
recently become an active research area. In this regard,
two main approaches arise from the existing literature:
spectral methods, which encode the graph structure
using the graph Fourier Transform, and spatial
methods, modelling the filtering operation through the
construction of locally connected neighbourhoods.
In general terms, spectral approaches take advantage
of the fact that eigenvectors of the graph Laplacian
span a space in which the convolution operator is
diagonal [8]. Bruna et al. [2] exploited this property
and defined a frequency filtering operation for neural
networks. However, with such kind of formulation, it
is not possible to relate the filtering operation within
the spectral domain with the one performed in the
vertex domain. In order to define localized linear
transformations (i.e. operations also interpretable in
the vertex domain [8]), Defferrard et al. [4] proposed
the use of polynomial spectral filters, with a theoretical
guarantee of k-localisation in space. In addition, they
provided a recursive approximation of such filtering
through Chebyshev polynomials, which prevent
expensive computations needed by the Laplacian
eigenvectors.

The other branch concerns spatial methods, which
directly model convolutions as a linear combination of
vertices in a local neighbourhood. In this respect, the
authors of Diffusion-Convolutional Neural Networks

(DCNNs) [1] presented an approach in which feature
vectors are spread according to the hop distance in a
depth search tree, the latter having as parent root the
node for which the operation has to be done. Kipf
& Welling [14] proposed a fast and simple layer-wise
propagation rule, which involves the use of normalized
adjacency matrix. An interesting aspect of this method
is how, from a spectral perspective, it may also be seen
as an approximation of a localized first-order filter.
Notably, the framework described by Monti et al. [21]
led to a unified vision for all spatial approaches, in
which the differences among different types of methods
lie on the notion of the local coordinate system.

Our model is to be considered a spatial approach,
because we derive a convolution-like operation directly
from the clustering step, the latter creating groups
of spatially close vertices itself. Inspired by Deep
Locally Connected Networks [2], we then assimilate the
pooling operation with the filtering stage, providing
a strategy to enable weight sharing across graph’s
clusters. Moreover, we propose a learnable multilevel
strategy for graph coarsening, which may be performed
directly during the learning process. On the latter
point, our proposal differs from [4], where the Graclus
multilevel clustering algorithm [23] has been used, the
latter being performed during a pre-processing step.
On this note, we were inspired by the work of Such et
al. [25], who introduced graph embed pooling, a way to
produce pooled graphs with a parametrizable number
of vertices. However, our method is quite different
in the computation of the pooled vertices’ feature
maps. Indeed, while they consider output vertices as
a weighted combination of all input vertices (where
weights are given by clusters’ memberships), we only
sample a fixed number of vertices, and combine them
according to learnable kernel’s weights. Our spatial
formulation builds on the concept that the weight
sharing property can be inducted in a graph-oriented
architecture, provided that a nodes-ordering criteria

Figure 2.1: An overview of the proposed architecture. Multiple applications of
the CCP layer lead to a multi-scale clustering of the input graph, exploiting both
local and global properties during the information’s flow from input to output.
Finally, a Multi-Layer Perceptron classifies a global representation of the input
signal, captured by a feature vector on a singleton graph.

of [67], we refer to each sample as a realisation of a signal on G. The aim is
to learn a function which maps each sample into the label space. By doing so,
similarly to what CNNs do for images, at each step we shall exploit information
coming from the neighbouring nodes.

In the following we introduce a tailored architecture, built by stacking multiple
Convolutional Cluster Pooling (CCP) layers as depicted in Fig. 2.1. This layer
firstly performs a clustering operation on the input graph, resulting in a coarser
output graph, whose affinity matrix reflects relationships among clusters regressed
at training time. By doing so, a good basis for building local receptive fields
is achieved. Secondly, according to the neighbours’ vision dictated by the first
step, the layer selects for each cluster a fixed number of candidate nodes for the
aggregation phase, and sorts them depending on a centrality-based rank within the
cluster. In this respect, it is worth noting that weight sharing across the graph’s
neighbourhoods can be successfully exploited.

2.1 Preliminaries
Because of its generality and potential applications, the possibility to extend neural
networks to deal with graph-structured data has become an active research area.
Two main branches arise from the literature: spectral methods, which encode the
graph structure using the Fourier Transform, and spatial methods, modelling the
filtering operation through the creation of locally connected neighbourhoods.
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Spectral approaches In general terms, spectral approaches take advantage
of the fact that eigenvectors of the graph Laplacian span a space in which the
convolution operator is diagonal [67]. Brunaet al. [22] exploited this property and
defined a frequency filtering operation for neural networks. However, with such
kind of formulation, it is not possible to relate the filtering operation within the
spectral domain with the one performed in the vertex domain. In order to define
localized linear transformations (i.e. operations also interpretable in the vertex
domain [67]), Defferrardet al. [36] proposed the use of polynomial spectral filters,
with a theoretical guarantee of k-localisation in space. In addition, they provided a
recursive approximation of such filtering through Chebyshev polynomials, which
prevent expensive computations needed by the Laplacian eigenvectors.

Spatial approaches The other branch concerns spatial methods, which directly
model convolutions as a linear combination of vertices in a local neighbourhood. In
this respect, the authors of Diffusion-Convolutional Neural Networks (DCNNs) [5]
presented an approach in which feature vectors are spread according to the hop
distance in a depth search tree, the latter having as parent root the node for which
the operation has to be done. Kipf & Welling [84] proposed a fast and simple layer-
wise propagation rule, which involves the use of normalized adjacency matrix. An
interesting aspect of this method is how, from a spectral perspective, it may also be
seen as an approximation of a localized first-order filter. Notably, the framework
described by Montiet al. [132] led to a unified vision for all spatial approaches, in
which the differences among different types of methods lie on the notion of the
local coordinate system.

Relation with existing works Our model is to be considered a spatial approach,
because we derive a convolution-like operation directly from the clustering step,
the latter creating groups of spatially close vertices itself. Inspired by Deep Locally
Connected Networks [22], we then assimilate the pooling operation with the
filtering stage, providing a strategy to enable weight sharing across graph’s clusters.
Moreover, we propose a learnable multilevel strategy for graph coarsening, which
may be performed directly during the learning process. On the latter point, our
proposal differs from [36], where the Graclus multilevel clustering algorithm [158]
has been used, the latter being performed during a pre-processing step. On this
note, we were inspired by the work of Suchet al. [176], who introduced graph
embed pooling, a way to produce pooled graphs with a parametrizable number
of vertices. However, our method is quite different in the computation of the
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pooled vertices’ feature maps. Indeed, while they consider output vertices as a
weighted combination of all input vertices (where weights are given by clusters’
memberships), we only sample a fixed number of vertices, and combine them
according to learnable kernel’s weights. Our spatial formulation builds on the
concept that the weight sharing property can be inducted in a graph-oriented
architecture, provided that a nodes-ordering criteria has previously been defined.
A similar idea arised in PATCHY-SAN [136], in which a ranking procedure
and a graph normalisation technique have been used to generate local receptive
fields, resulting in an adjacency matrix for each selected node. This way, the
authors managed to exploit structural and local properties of input graph very
well. However, the authors did not address how intermediate sub-graphs should
be merged and, consequently, how that procedure should be stacked on multiple
layers. The latter point could make it difficult to capture global structures with the
same effectiveness. Differently, our method generates receptive fields for entire
clusters, enabling graph coarsening and a hierarchical architecture.

2.1.1 Hierarchical Graph Clustering
A graph G can be defined as an ordered pair (V, E), where V is a set of N nodes
and E ∈ V × V a set of edges. Here, we are interested in classifying signals
defined on an undirected and weighted graph, in which E can be described by
a real symmetric matrix A ∈ RN×N which, for each couple of vertices Vi and
Vj ∈ V , provides the strength (weight) of their connections. More generally, we
refer to A as an affinity matrix, in which each entry Ai,j gives an affinity score
between Vi and Vj . In addition to the affinity matrix, which describes the topology
of the graph and the relationships between nodes, it is common practice to define
a signal F : V → RdIN on the vertex set, which associates a dIN dimensional
feature vector to each node of the graph.

Graph Soft Clustering Given G = (V, E), we define a soft K-partition of the
graph a function that associates at each vertex Vi ∈ V a membership value, in
probabilistic terms, to each of the |K| cluster. The K-partition can be shortly
represented by a stochastic matrix K ∈ RN×|K| where the element Ki,k equals
the probability of vertex Vi belonging to cluster Kk, P(Vi ∈ Kk). Given the
affinity matrix A ∈ RN×N , we compute the following matrix:

AK = KT(A− IN ⊙A)K, (2.1)
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where IN indicates the identity matrix of size N 1. AK ∈ R|K|×|K| is highly
related to the affinity matrix of the graph that can be obtained by applying to the
original graph the soft K-partition described by K. Indeed, if all the membership
distributions behaved like a multivariate Kronecker Delta distribution, given an
adjacency matrixA describing an undirected graph,AK

k,k k = 1, 2, . . . , |K|would
be equal to the double of the number of edges existing between the nodes insides
the k-th cluster, and AK

k,k′ k, k′ = 1, 2, . . . , |K| k ̸= k′ would be equal to the
number of edges connecting pair of nodes respectively belonging to the k-th and
k′-th cluster. Likewise, in the soft case, we have:

AK
k,k = Cohesion (Kk) = 2

∑
(Vi,Vj)∈ (V2)

Ki,kKj,k Ai,j ,

AK
k,k′ =

N∑
i=1

Ki,k

N∑
j=1
j ̸=i

Kj,k′ Ai,j .
(2.2)

In such form, AK
k,k′ can be considered an affinity measure between the k-th and

k′-th nodes in the graph reduced by K. We consider as a ‘good’ soft K-partition
a partition that produces cluster with maximal cohesion. However, equivalent
to ratio and normalized cut [199], we penalise imbalanced solutions through the
addition of a penalty related to the size of each cluster:

max
K∈RN×|K|

C(K) =
1

2

|K|∑
k=1

Cohesion (Kk)

Vol (Kk)

=
1

2
1T
|K|

[
diag(AK)⊘ (KTD)

]

subject to
|K|∑
k=1

Ki,k = 1 i = 1, 2, . . . ,N ,

where Vol (Kk) =

N∑
i=1

Di P(Vi ∈ Kk) k = 1, 2, . . . , |K|.

(2.3)

and ⊘ indicates the entry-wise division between two vectors of the same length,
and D ∈ RN stand for a column vector in which each entry is equal to the degree

1The subtraction of the diagonal is performed to avoid the consideration of self-connections during
cluster affinity and Cohesion computations, in Eq. 2.2.
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of the corresponding node. This way, we obtain clusters with maximal cohesion
and, at the same time, minimum size. It is noted that the main difference between
such formulation and the well-known normalized cut relies on the membership’s
definition, the latter being defined in our case by means of soft assignments.

Graph Hierarchical Soft Clustering Let consider AK1 as the affinity matrix
of the graph that can be obtained by applying a soft K-partition, given by K(1) ∈
R|K0|×|K1|, to the original graph described by A, where |K0| = N . We can now
partition AK1 , based on the entries of a generic matrix K(2) ∈ R|K1|×|K2|, in
order to obtain a new affinity matrix AK2 , and so on. More generally, a cascade
of M soft-partitions, described by an ordered sequence of AK1 ,AK2 , . . . ,AKM ,
forms a soft dendrogram for the original graph. Thus, the problem of obtaining a
good dendrogram, in which clusters at each level are characterized by maximal
cohesion and minimum size, is formalised as follows:

max
K(i)∈R|Ki−1|×|Ki|

i=1,2,...,M

LK =
1

2

M∑
m=1

|Km|∑
k=1

Cohesion (K(m)
k )

Vol (K(m)
k )

subject to
|Km|∑
k=1

K
(m)
i,k = 1 i=1,2,...,|Km−1|

m=1,2,...,M.

(2.4)

2.2 Proposed Approach
The purpose of our proposal is to exploit the clustering mechanism in order to
define a convolutional-like operator, able to ensure equivariance to translation
and weight sharing in graph contexts as standard convolutions do. At a high
level, our CCP operator can be considered as a layer which, at step m, takes
in input an affinity matrix AKm and a multi-dimensional F (m) ∈ R|Km|×dIN

signal defined on the vertex set. The output is composed by a new reduced
affinity matrix AKm+1 (reflecting the results of the cluster step) and a pooled
signal F (m+1) ∈ R|Km+1|×dOUT (reflecting the results of the filter step where
dOUT is the dimension of the newly computed features). All architectures used
in our experiments are composed by stacking CCP layers, which combine the
pooling and filtering stage and, at the same time, increase the number of feature
maps, as suggested in [22]. The objective in Eq. 2.4 is consequently optimised by
backprogating gradients.
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Classifying Signals on Irregular Domains via Convolutional Cluster Pooling
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Figure 2: An illustration of the proposed CCP layer. Left, the cluster step outputs node’s membership distribution
among a pre-defined number of clusters. Centre, the filter step: a) selects, for each cluster, candidate nodes whose
feature vectors will be aggregated; b) arranges such candidates according to a with-in cluster centrality score,
building the support for the next step; c) aggregates feature vectors by means of a standard 1-d convolution, with
stride equal to the kernel width (in this case, L = 5). Right, the result of CPP layer consists in a coarsened graph
coupled with its filtered pooled signal. Best viewed in color.

on. More generally, a cascade of M soft-partitions, de-
scribed by an ordered sequence of AK1 ,AK2 , . . . ,AKM ,
forms a soft dendrogram for the original graph. Thus,
the problem of obtaining a good dendrogram, in which
clusters at each level are characterized by maximal
cohesion and minimum size, is formalised as follows:

max
K(i)∈R|Ki−1|×|Ki|

i=1,2,...,M

LK = 1
2

M∑

m=1

|Km|∑

k=1

Cohesion (K(m)
k )

Vol (K(m)
k )

subject to
|Km|∑

k=1
K

(m)
i,k = 1 i=1,2,...,|Km−1|

m=1,2,...,M.

(5)

4 Convolutional Cluster Pooling

The purpose of our proposal is to exploit the cluster-
ing mechanism in order to define a convolutional-like
operator, able to ensure equivariance to translation
and weight sharing in graph contexts as standard con-
volutions do. At a high level, our CCP operator can
be considered as a layer which, at step m, takes in
input an affinity matrix AKm and a multi-dimensional
F (m) ∈ R|Km|×dIN signal defined on the vertex set. The
output is composed by a new reduced affinity matrix
AKm+1 (reflecting the results of the cluster step) and
a pooled signal F (m+1) ∈ R|Km+1|×dOUT (reflecting the
results of the filter step where dOUT is the dimension of
the newly computed features). All architectures used in
our experiments are composed by stacking CCP layers,
which combine the pooling and filtering stage and, at
the same time, increase the number of feature maps, as
suggested in [2]. The objective in Eq. 5 is consequently
optimised by backprogating gradients.

Cluster Step. First of all, our model performs a soft-
clustering step on the input graph (Fig. 2, left). To the
purpose we define the stochastic matrix described in
Section 3 as the output of a row-wise softmax applied
on a variable matrix U (m+1) ∈ R|Km|×|Km+1| learned
during training:

K
(m+1)
i,k = P (V(m)

i ∈ K(m+1)
k ) = eU

(m+1)
i,k

∑|Km+1|
k′=1 e

U
(m+1)
i,k′

(6)
where i = 1, 2, . . . , |Km| and k = 1, 2, . . . , |Km+1|. In
the second place, the downsampled affinity matrix
AKm+1 describing the soft-partitioned graph induced
by K(m+1) is computed by means of the quadratic
form in Eq. 1. Eventually, we add a normalisation
operation based on the degree matrix D [14] in order
to prevent numerical instabilities:

AKm+1 = D−
1
2AKm+1D−

1
2 . (7)

Neighbourhood selection. For each cluster
K(m+1)
k , we select as candidate set N (m+1)

k for
the filtering stage the set containing the most L
representative nodes (where L is an hyperparameter)
as:
N (m+1)
k = argmax

V′⊂V(m),|V′|=L

∑

v∈V′
Rank (v � K(m+1)

k ),

(8)
where the rank of a vertex V(m)

i for a particular cluster
K(m+1)
k is given by its centrality in that cluster:

Rank (V(m)
i � K(m+1)

k ) = (1+K(m+1)
i,k )

|Km|∑

j=1
j 6=i

AKm
i,j K

(m+1)
j,k

(9)

Figure 2.2: An illustration of the proposed CCP layer. Left, the cluster step
outputs node’s membership distribution among a pre-defined number of clusters.
Centre, the filter step: a) selects, for each cluster, candidate nodes whose feature
vectors will be aggregated; b) arranges such candidates according to a with-in
cluster centrality score, building the support for the next step; c) aggregates feature
vectors by means of a standard 1-d convolution, with stride equal to the kernel
width (in this case, L = 5). Right, the result of CPP layer consists in a coarsened
graph coupled with its filtered pooled signal. Best viewed in color.

Cluster Step First of all, our model performs a soft-clustering step on the input
graph (Fig. 2.2, left). To the purpose we define the stochastic matrix described in
Section 2.1.1 as the output of a row-wise softmax applied on a variable matrix
U (m+1) ∈ R|Km|×|Km+1| learned during training:

K
(m+1)
i,k = P (V(m)

i ∈ K(m+1)
k ) =

eU
(m+1)
i,k∑|Km+1|

k′=1 e
U

(m+1)

i,k′
(2.5)

where i = 1, 2, . . . , |Km| and k = 1, 2, . . . , |Km+1|. In the second place, the
downsampled affinity matrix AK

m+1 describing the soft-partitioned graph induced
by K(m+1) is computed by means of the quadratic form in Eq. 2.1. Eventually, we
add a normalisation operation based on D [84] to prevent numerical instabilities:

AKm+1
= D− 1

2AKm+1D− 1
2 . (2.6)

Neighbourhood selection For each cluster K(m+1)
k , we select as candidate set

N (m+1)
k for the filtering stage the set containing the most L representative nodes
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Figure 2.3: The ranking function (described by Equation 2.8) underpinning the
filter step shown in Figure 2.2. The node colours denote cluster memberships. All
edges have weight equal to one.

(where L is an hyperparameter) as:

N (m+1)
k = argmax

V′⊂V(m),|V′|=L

∑
v∈V′

Rank (v � K(m+1)
k ), (2.7)

where the rank of a vertex V(m)
i for a particular cluster K(m+1)

k is given by its
centrality in that cluster:

Rank (V(m)
i � K(m+1)

k ) = (1 +K
(m+1)
i,k )

|Km|∑
j=1
j ̸=i

AKm
i,j K

(m+1)
j,k . (2.8)

Intuitively, we consider a node more central if it has a high membership value
for the cluster under consideration and, at the same time, a large part of its direct
neighbours nodes share the same cluster in the input graph (Fig. 2.2, centre top).

Further, for each cluster, we compute its features as a linear combination over
the feature vectors of its inner nodes. In doing so, we want to exploit the weight
sharing property across all neighbours, keeping the parameters’ number under
control. To this end, we create a coherent support across clusters, in terms of their
inner topological structure. In this respect, we propose to sort candidates by their
centrality within the neighbourhood and then apply the same kernel to all clusters.

−→N (m+1)
k = (F (m)

ϕ(1), F
(m)
ϕ(2), . . . , F

(m)
ϕ(L)),

with
−→N (m+1)

k (l, i) = F (m)
ϕ(l),i

l=1,2,...,L
i=1,2,...,dIN

.
(2.9)
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In simpler terms, the ordered set
−→N (m+1)

k is recovered by sorting the candidates
set N (m+1)

k according to the Rank function. By doing so, the l-th weight of the
kernel is always multiplied by the feature vector F (m)

ϕ(l) being owned by the l-th

node of the neighbour (in terms of centrality), namely V(m)
ϕ(l) . Fig. 2.3 shows an

example of the neighbourhood selection step for a simple graph.

Neighbourhood Aggregation The problem we face when sorting nodes by
cluster centrality and then applying the same kernel to all neighbours, is that, by
doing so we do not take into account the irregularity of the neighbour’s shapes.
As a matter of fact, the risk of this solution consists in the equal treatment, for
different clusters, of nodes indexed in the same position by the sorting stage,
whilst exhibiting considerably different centrality values. In order to mitigate such
risk, we once again use the centrality measure to implement a gating mechan-
ism on feature vectors during the aggregation phase. The underlying idea is to
make the filtering operation invariant to different neighbours and let the gating
mechanism address different cluster’s structures and shapes. Roughly speaking,
before applying the filtering operation described above, we are giving the centrality
scores in input to a generic smoothed function σ : R→ (0, 1) (e.g. the sigmoid
function). Once this has been done, we perform a point-wise multiplication on
the feature vectors of each candidate node. The desired effect of this operation
is to attenuate information coming from distant or non-central nodes and, at the
same time, preserve signals coming from nodes that reside in the inner part of the
cluster. Lastly, our model computes the pooled feature vector as follows:

F (m+1)
k,j =

dIN∑
i=1

L∑
l=1

Wl,i,j (σk,l ·
−→N (m+1)

k (l, i)) + bj , (2.10)

where W ∈ RL×dIN×dOUT and b ∈ RdOUT are learnable parameters of our CCP
layer, whereas σk,l refers to the gate’s activation value computed at Rank (V(m)

ϕ(l) →
K(m+1)

k ). As shown in Fig. 2.2 (centre bottom), this operation is equivalent to a
1-d convolution, enabling weight sharing across clusters.

Optimisation Given a particular task, we simply add to the task-specific loss
L0 (e.g. a cross-entropy) a term based on quality of the multi-level clustering
solutions (Eq. 2.4) provided during the training phase:

L = L0 + LK. (2.11)
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Experiment Input Architecture #params

NTU RGB-D (2000, 6)
(512, 256) (128, 384) (32, 512) (8, 768) (1, 1024)
L = 16 L = 16 L = 8 L = 8 L = 8

FC1024 ∼ 14 · 106

CIFAR-10 (1024, 3)
(256, 256) (64, 384) (16, 512) (4, 768) (1, 1024)
L = 16 L = 16 L = 8 L = 8 L = 4

FC1024 ∼ 10 · 106

20NEWS (10000, 1)
(2048, 128) (512, 192) (128, 256) (32, 384) (4, 512) (1, 512)
L = 16 L = 16 L = 8 L = 8 L = 8 L = 4

FC256 ∼ 25 · 106

Table 2.1: Summary of the architectures used in our experiments. We indicate
with (|K|, dOUT ) the number of nodes and feature maps of each layer. Note that a
further softmax layer is employed to estimate class probabilities.

It is important to note that the presence of the supervision signal may provide
information to the process of clusters formation, backpropagating its gradient
towards all U variables (Eq. 2.5).

2.3 Experiments
In order to show the generality and effectiveness of our model for classification,
we apply our architecture to three different domains. First, we train our model
to classify human actions, given the 3D coordinates of each skeleton’s joint: to
this end, we evaluate it on NTU RGB-D dataset [171]. Secondly, we conduct
experiments on image classification. More specifically, we use CIFAR-10 [88] as
benchmark test, which is a challenging dataset for non-CNN architectures. Finally,
we apply our solution on the 20NEWS dataset, where the goal is to address a text
categorisation problem.

Implementation details In each experiment, all parameters are learned using
Adam [82] as an optimisation algorithm, with an initial learning rate fixed to
0.001. We use ELU [32] as activation function and Batch Normalization [68]
in all layers to speed up the convergence. Moreover, we apply dropout and l2
weight regularisation (with value 10−4) to prevent overfitting, as well as standard
data augmentation for CIFAR-10 and noise injection coupled with random 3d
rotations for NTU RGB-D. All the others architectures’ hyperparameters are
summarised in Tab. 2.3. In each experiment, we subsample the input graph until
its cardinality becomes equal to one: afterwards, we feed its feature vector into
two fully connected layers, followed by a softmax layer providing the target class
predictions.
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Method Cross Subject Cross View

Lie Group [195] 50.1 52.8
HBRNN-L [44] 59.1 64.0
P-LSTM [171] 62.9 70.3

ST-LSTM+TS [108] 69.2 77.7
TGCNN [218] 71.4 82.9

Temporal Conv [81] 74.3 83.1
Deep STGCK [97] 74.9 86.3

C-CNN + MTLN [77] 79.6 84.8

CCP (our) 80.1 86.8

Table 2.2: Summary of results in terms of classification accuracy for NTU RGB+D.

2.3.1 Experimental Results
Action Recognition The NTU RGB+D Human Activity Dataset [171] is one of
the largest datasets for human action recognition. It contains 56,880 action samples
for 60 different actions, captured by the Kinect v.2 sensors. Each sample, showing
a daily action performed by one or two participants, is made available in 4 different
modalities: RGB videos, depth map sequences, 3D skeletal data and infrared
videos. Since we are interested in graph classification, in order to perform action
recognition, we just use the 3D skeletal data, represented by a temporal sequence
of 25 joints. To this end, we model each sequence as a signal F (0) ∈ R(25·T )×3

defined on a single fixed spatio temporal graph, whose structure can be summarised
as follows: a vertex set VST = {vi,t|i = 1, 2, . . . , 25 , t = 1, 2, . . . , T}, which
includes all joints captured in a fixed length sequence (T = 80). The edge set
EST can be defined as the union of two distinct subsets: ES , which contains all
edges within each frame according to the natural human-body connectivity, and
ET , which includes all edges existing between the same joint in two adjacent
frame. In order to evaluate the model’s performance, we run two different standard
benchmarks as in [171]: the cross-subject setting, in which the train/test split is
based on two disjoint sets of actors; and the cross-view setting, where the test
samples are captured from a different camera from those collecting the training
sequences. Tab. 2.2 reports the classification accuracy on both settings, comparing
it with other approaches: as can be appreciated, CCP outperforms previous state-of-
the-art methods, (including graph-oriented architectures [218, 97]) despite being
more general and not designed to only address action recognition settings.
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Method Accuracy

Graph-CNNs [176] 68.3
FC [105] 78.6

CCP (our) 84.4
Stochastic Pooling [211] 84.9

ResNet [58] 93.6

Table 2.3: Image classification accur-
acy on CIFAR-10.

Method Accuracy

Linear SVM † 65.9
Softmax † 66.3

Multinomial Naive Bayes † 68.5
FC2500-FC500 † 65.8

Chebyshev - GC32 [36] † 68.3
CCP (our) 70.1

† Baselines’ results published in [36].

Table 2.4: Text categorisation accuracy on
20NEWS.

1st CCP 2nd CCP 3rd CCP 4th CCP

Figure 2.4: Receptive fields learned during CIFAR10 training.

Image Classification We conduct experiments on CIFAR-10, a popular dataset
widely used for image recognition. Each image, labeled into one of ten classes,
can be treated as a signal defined on a graph, which can in turn be modeled
as a 32×32 grid structure. In particular, every pixel is a vertex such a graph,
linked to its neighbours following a 8-connectivity. The colour information is
encoded as a signal F (0) ∈ R1024×3 over such vertexes. As shown in Tab. 2.3,
CCP obtains an encouraging performance in terms of classification accuracy on
test set. Indeed, our method outperforms both the best reported fully connected
(FC) network [105] and Graph-CNNs [176] - to the best of our knowledge, the
only graph classification model in literature that reports results on CIFAR-10
- by a significant margin. To put our results into perspective, we report the
performance obtained by [211], which is the nearest score founded in the literature
given by a deep CNN, as well as the results of a state-of-art CNNs like [58].
The gap with respect to the latter is still consistent, suggesting that there is still
room for improvement in euclidean domains. Fig. 2.4 also depicts an illustration
of the hierarchical clustering computed on the input grid. As can be seen, as
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Filter Coarsen GAP CIFAR NTU-CS

Chebyshev [36] Graclus – 78.15 74.85
GCN [84] Graclus – 67.01 62.00
GAT Graclus – 72.82 59.48
GAT - ✓ 66.39 26.74 †
CCP (ours) CCP – 84.4 80.1

† We found it extremely hard to train due to the huge memory footprint required.

Table 2.5: Comparison of different graph corsening and filtering approches on
CIFAR-10 and Cross Subject NTU RGB+D.

the input image undergoes CCP layers, its representations are computed out of
compact regions, resembling dyadic clustering that has been proven a successful
downsampling strategy in CNNs.

Text Categorisation In order to further validate the quality of our proposal in
diverse data domains, we apply our model on text categorisation. In this respect,
we conduct experiments on the 20NEWS dataset [76], adhering to the guidelines
described in [36] for the construction of the shared graph. To summarise, such
protocol models each text as a graph which has a node for each common word
in the document set. On the other hand, the pairwise connectivities of such
graph are shared and obtained assessing the similarities inducted by word2vec
embeddings [131], followed by a discretisation step computed through a K-NN
pass (with K = 16). This way, each document D can be represented as a signal
over a fixed graph, implemented as the word’s distribution observed in D. As
indicated in Tab. 2.4, the discussed approach leads to good performances, defeating
both baselines and the graph convolutional layer based on polynomial spectral
filters. On this latter point, our architecture seems to take advantages of its depth
and hierarchical nature, differently from [36] where a shallow graph convolutional
network has been employed to categorise documents.

2.4 Model Analysis
Comparisons with other coarsening approaches We further compare our
proposal w.r.t. three different works (Tab. 2.5): GCN [84], Chebyshev filtering [36]
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Loss L Gradient CIFAR-10 NTU-CS

L0 + LK (Eq. 2.11) - 84.4 80.1
L0 - 66.7 73.1
L0 δL0/δU ← 0 56.8 70.6

L0 + LK δL0/δU ← 0 83.8 78.6

Table 2.6: Ablative results under different optimisations.

CCP 1 CCP 1 CCP 3 CCP 3

Epoch 0 Epoch 500 Epoch 0 Epoch 500

Figure 2.5: Receptive fields arising from L0 minimisation on CIFAR-10.

and Graph Attention Networks (GAT) [194]. In this respect we use the Graclus
algorithm [158] for coarsening the input graph and vary the graph filtering strategy
accordingly to the referenced work. For all the experiments we keep architectural
settings described in Tab. 2.3 and use the public implementation of these works.
Futhermore, we also design a non-coarsening baseline by performing a global
average pooling (GAP) on nodes features (after GAT manipulation) before the fully
connected classification layers. The experiment suggests that CCP outperforms,
by a consistent margin, the previous GCN+coarsening approach. Moreover, it
still outperforms Graclus as a coarsening strategy even though recent filters such
as GAT are applied. In this regard, we empirically observed that order-invariant
filters (e.g. GAT), despite being more general, may treat the same graph differently,
according to the attention scores. This is in fact a great advantage when graph
layout may vary across examples, though potentially unrewarding when the support
remains the same through all the dataset.

The impact of the task-specific loss We studied the contribution of the loss
L0 (Eq. 2.11) and found three evidences supporting its beneficial effect: i) if
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Figure 2.6: Loss landscapes under L0 minimisation.
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Figure 2.7: Results from the ablation study conducted on CIFAR-10. The top
picture shows test and training learning curve under both settings.

only L0 is optimised, then suppressing its gradients on membership variables
(i.e. cluster memberships are randomly fixed and cannot be changed during
training) leads to poorer performances (L0, δL0/δU ← 0 against L0, Tab. 2.6);
ii) when both objectives are optimised, discarding gradients of L0 on membership
variables yields slightly degraded results (L0+LK, δL0/δU ← 0, againstL0+LK,
Tab. 2.6); iii) even when only optimising L0 we can observe the emergence of
compact regions (i.e. clusters) in the clustering landscape (Fig. 2.5). Another
evidence of this effect is the lowering of the LK when the network is optimised
w.r.t. L0 (Fig. 2.6).

Effectiveness of the Ranking function Finally, we conducted an ablation study
for validating the effectiveness of the proposed within-cluster centrality measure
in capturing shift-invariant structures on the graph. To this end, we compared it
with a less principled criteria, involving a random permutation of the candidate
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nodes. Specifically, under the random setting, we still keep the definition of
neighbourhood N (m+1)

k given by Eq. 2.7. However, instead of sorting nodes
inside it, we randomly sample a fixed permutation for each cluster, before the start
of the learning. Without the sorting criteria, learnable kernels cannot rely on a
coherent topological structure within their support, weakening the effect of weight
sharing. We evaluated both of the policies on CIFAR-10, and reported our results
in Fig. 2.7, in terms of learning curves and test error. The figure suggests that the
sorting criterion indeed leads to a significant improvement in performance, due to
a proper exploitation of weight sharing.

2.5 Conclusion
In this chapter we have proposed a novel approach for graph signal classification,
leveraging both local and global structures, the latters arising from a multi-scale
and hierarchical representation of the input signal. The main contribution consists
in a layer which performs a (soft) clustering step on the input graph and, accord-
ingly, aggregates information within each cluster. Experiments show that our
model consistently outperforms recent graph-based classification models in differ-
ent data domains. The ablation study suggests that the proposed layer successfully
exploit the weight sharing property in a graph convolutional architecture.



Chapter 3

Novelty Detection

Novelty detection is defined as the identification of samples exhibiting signi-
ficantly different traits with respect to an underlying model of regularity, built
from a collection of normal samples. The awareness of an autonomous system
to recognize unknown events enables applications in several domains, ranging
from video surveillance [24, 56] to defect detection [91]. Moreover, the surprise
inducted by unseen events is emerging as a crucial aspect in reinforcement learning
settings, as an enabling factor in curiosity-driven exploration [141].

However, in this setting, the definition and labeling of novel examples are
not possible. Accordingly, the literature agrees on approximating the ideal shape
of the boundary separating normal and novel samples by modeling the intrinsic
characteristics of the former. Therefore, prior works tackle such problem by
following principles derived from the unsupervised learning paradigm [34, 160,
56, 111, 122]. Due to the lack of a supervision signal, the process of feature
extraction and the rule for their normality assessment can only be guided by a
proxy objective, assuming the latter will define an appropriate boundary for the
application at hand.

According to cognitive psychology [12], novelty can be expressed either in
terms of capabilities to remember an event or as a degree of surprisal [185] aroused
by its observation. The latter is mathematically modeled in terms of low probabil-
ity to occur under an expected model, or by lowering a variational free energy [71].
In this framework, prior models take advantage of either parametric [227] or
non-parametric [61] density estimators. Differently, remembering an event implies
the adoption of a memory represented either by a dictionary of normal prototypes

20
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Figure 3.1: The proposed framework. The overall architecture, depicted in (a),
consists of a deep autoencoder and an autoregressive estimation network operating
on its latent space. In (b), the joint minimization of their respective objective leads
to a measure of novelty obtained by assessing the remembrance of the model when
looking to a new sample, combined with its surprise aroused by causal factors.

- as in sparse coding approaches [34] - or by a low dimensional representation
of the input space, as in the self-organizing maps [86] or, more recently, in deep
autoencoders. Thus, in novelty detection, the remembering capability for a given
sample is evaluated either by measuring reconstruction errors [56, 111] or by
performing discriminative in-distribution tests [160]. Our proposal contributes to
the field by merging remembering and surprisal aspects into a unique framework:
we design a generative unsupervised model (i.e., an autoencoder, represented
in Fig. 3) that exploits end-to-end training in order to maximize remembering
effectiveness for normal samples whilst minimizing the surprisal of their latent
representation. This latter point is enabled by the maximization of the likelihood
of latent representations through an autoregressive density estimator, which is per-
formed in conjunction with the reconstruction error minimization. We show that,
by optimizing both terms jointly, the model implicitly seeks for minimum entropy
representations maintaining its remembering/reconstructive power. While entropy
minimization approaches have been adopted in deep neural compression [10], to
our knowledge this is the first proposal tailored for novelty detection. In memory
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terms, our procedure resembles the concept of prototyping the normality using
as few templates as possible. Moreover, evaluating the output of the estimator
enables the assessment of the surprisal aroused by a given sample.

3.1 Preliminaries
Reconstruction-based methods On the one hand, many works lean toward
learning a parametric projection and reconstruction of normal data, assuming
outliers will yield higher residuals. Traditional sparse-coding algorithms [220,
34, 118] adhere to such framework, and represent normal patterns as a linear
combination of a few basis components, under the hypotheses that novel examples
would exhibit a non-sparse representation in the learned subspace. In recent works,
the projection step is typically drawn from deep autoencoders [56]. In [122] the
authors recover sparse coding principles by imposing a sparsity regularization
over the learned representations, while a recurrent neural network enforces their
smoothness along the time dimension. In [160], instead, the authors take advantage
of an adversarial framework in which a discriminator network is employed as the
actual novelty detector, spotting anomalies by performing a discrete in-distribution
test. Oppositely, future frame prediction [111] maximizes the expectation of the
next frame exploiting its knowledge of the past ones; at test time, observed devi-
ations against the predicted content advise for abnormality. Differently from the
above-mentioned works, the proposal discussed in this chapter relies on modeling
the prior distribution of latent representations. This choice is coherent with recent
works from the density estimation community [183, 14]. However, to the best
of our knowledge, our work is the first advocating for the importance of such a
design choice for novelty detection.

Probabilistic methods A complementary line of research investigates different
strategies to approximate the density function of normal appearance and motion
features. The primary issue raising in this field concerns how to estimate such
densities in a high-dimensional and complex feature space. In this respect, prior
works involve hand-crafted features such as optical flow or trajectory analysis and,
on top of that, employ both non-parametric [2] and parametric [13, 124, 99] estim-
ators, as well as graphical modeling [80, 92]. Modern approaches rely on deep
representations (e.g., captured by autoencoders), as in Gaussian classifiers [159]
and Gaussian Mixtures [227]. In [61] the authors involve a Kernel Density Estim-
ator (KDE) modeling activations from an auxiliary object detection network. A
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recent research trend considers training Generative Adversarial Networks (GANs)
on normal samples. However, as such models approximate an implicit dens-
ity function, they can be queried for new samples but not for likelihood values.
Therefore, GAN-based models employ different heuristics for the evaluation of
novelty. For instance, in [163] a guided latent space search is exploited to infer it,
whereas [148] directly queries the discriminator for a normality score.

3.2 Proposed Approach
Maximizing the probability of latent representations is analogous to lowering the
surprisal for a normal configuration, defined as the negative log-density of a latent
variable instance [185]. Conversely, remembering capabilities can be evaluated by
the reconstruction accuracy of a sample under its latent representation.

We model these aspects in a latent variable model setting, where the density
function of training samples p(x) is modeled through an auxiliary random variable
z, describing the set of causal factors underlying all observations. By factorizing

p(x) =
∫

p(x|z)p(z)dz, (3.1)

where p(x|z) is the conditional likelihood of the observation given a latent rep-
resentation z with prior distribution p(z), we can explicit both the memory and
surprisal contribution to novelty. We approximate the marginalization by means
of an inference model responsible for the identification of latent space vector
for which the contribution of p(x|z) is maximal. Formally, we employ a deep
autoencoder, in which the reconstruction error plays the role of the negative logar-
ithm of p(x|z), under the hypothesis that p(x|z) = N (x|x̃, I) where x̃ denotes the
reconstruction. Additionally, surprisal is incorporate by equipping the autoencoder
with an auxiliary deep parametric estimator learning the prior distribution p(z)
of latent vectors, and training it by means of Maximum Likelihood Estimation
(MLE). Our architecture is therefore composed of three building blocks (Fig. 3.2):
an encoder f(x; θf ), a decoder g(z; θg) and a probabilistic model h(z; θh):

f(x; θf ) : Rm → Rd, g(z; θg) : Rd → Rm,

h(z; θh) : Rd → [0, 1].
(3.2)

The encoder processes input x and maps it into a compressed representation
z = f(x; θf ), whereas the decoder provides a reconstructed version of the input
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Figure 3.2: Building blocks employed in the autoencoder’s architecture.

x̃ = g(z; θg). The probabilistic model h(z; θh) estimates the density in z via
an autoregressive process, allowing to avoid the adoption of a specific family of
distributions (i.e., Gaussian), potentially unrewarding for the task at hand.

With such modules we can assess the two sources of novelty: elements whose
observation is poorly explained by the causal factors inducted by normal samples
(i.e., high reconstruction error); elements exhibiting good reconstructions whilst
showing surprising underlying representations under the learned prior.

Autoregressive density estimation Autoregressive models provide a general for-
mulation for tasks involving sequential predictions, in which each output depends
on previous observations [119, 193]. We adopt such a technique to factorize a
joint distribution, thus avoiding to define its landscape a priori [93, 187]. Formally,
p(z) is factorized as

p(z) =
d∏

i=1

p(zi|z<i), (3.3)

so that estimating p(z) reduces to the estimation of each single Conditional Probab-
ility Density (CPD) expressed as p(zi|z<i), where the symbol < implies an order



3.2. PROPOSED APPROACH 25

over random variables. Some prior models obey handcrafted orderings [192, 191],
whereas others rely on order agnostic training [188, 50]. Nevertheless, it is still not
clear how to estimate the proper order for a given set of variables. In our model,
this issue is directly tackled by the optimization.

From a technical perspective, the estimator h(z; θh) outputs parameters for
d distributions p(zi|z<i). In our implementation, each CPD is modeled as a
multinomial over B=100 quantization bins. To ensure a conditional estimate of
each underlying density, we design proper layers guaranteeing that the CPD of
each symbol zi is computed from inputs {z1, . . . , zi−1} only.

Objective and connection with differential entropy The three components f ,
g and h are jointly trained to minimize L ≡ L(θf , θg, θh) as follows:

L = LREC(θf , θg) + λLLLK(θf , θh)

= Ex

[
||x− x̃||2︸ ︷︷ ︸

reconstruction term

− λ log(h(z; θh))︸ ︷︷ ︸
log-likelihood term

]
, (3.4)

where λ is a hyper-parameter controlling the weight of the LLLK term. It is worth
noting that it is possible to express the log-likelihood term as

Ez∼p∗(z;θf )
[
− log h(z; θh)

]
= Ez∼p∗(z;θf )

[
− log h(z; θh) + log p∗(z; θf )− log p∗(z; θf )

]
= DKL(p

∗(z; θf ) ∥ h(z; θh)) +H[p∗(z; θf )],
(3.5)

where p∗(z; θf ) denotes the true distribution of the codes produced by the encoder,
and is therefore parametrized by θf . This reformulation of the MLE objective
yields meaningful insights about the entities involved in the optimization. On
the one hand, the Kullback-Leibler divergence ensures that the information gap
between our parametric model h and the true distribution p∗ is small. On the other
hand, this framework leads to the minimization of the differential entropy of the
distribution underlying the codes produced by the encoder f . Such constraint
constitutes a crucial point when learning normality. Intuitively, if we think about
the encoder as a source emitting symbols (namely, the latent representations), its
desired behavior, when modeling normal aspects in the data, should converge to
a ‘boring’ process characterized by an intrinsic low entropy, since surprising and
novel events are unlikely to arise during the training phase. Accordingly, among all
the possible settings of the hidden representations, the objective begs the encoder
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Figure 3.3: Estimated differential entropies delivered on each MNIST class in the
presence of different regularization strategies: our, divergence w.r.t a Gaussian
prior (VAE) and input perturbation (DAE). For each class, the estimate is computed
on the training samples’ hidden representations, whose distribution are fit utilizing
a Gaussian KDE in a 3D-space. All models being equal, ours exhibits lower
entropies on all classes.

to exhibit a low differential entropy, leading to the extraction of features that are
easily predictable, therefore common and recurrent within the training set. These
features are indeed the most useful to distinguish novel samples from the normal
ones, making our proposal a suitable regularizer in the anomaly detection setting.

We report empirical evidence of the decreasing differential entropy in Fig. 3.3
comparing the behavior of the same model under different regularization strategies.

3.2.1 Architectural Components
Autoencoder blocks Encoder and decoder are respectively composed by down-
sampling and upsampling residual blocks depicted in Fig. 3.2. The encoder ends
with fully connected (FC) layers. When dealing with video inputs, we employ
causal 3D convolutions [8] within the encoder (i.e., only accessing information
from previous time-steps). Moreover, at the end of the encoder, we employ a
temporally-shared full connection (TFC, namely a linear projection sharing para-
meters across the time axis on the input feature maps) resulting in a temporal series
of feature vectors. This way, the encoding procedure does not shuffle information
across time-steps, ensuring temporal ordering.
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Figure 3.4: Proposed autoregressive layers, namely the Masked Fully Connec-
tion (a, Eq. 3.6) and the Masked Stacked Convolution (b, Eq. 3.7). For both
layers, we represent type A structure. Different kernel colors represent different
parametrizations.

Autoregressive layers To guarantee the autoregressive nature of each output
CPD, we need to ensure proper connectivity patterns in each layer of the estimator
h. Moreover, since latent representations exhibit different shapes depending on
the input nature (image or video), we propose two different solutions.

When dealing with images, the encoder provides feature vectors with dimen-
sionality d. The autoregressive estimator is composed by stacking multiple Masked
Fully Connections (MFC, Fig. 3.4-(a)). Formally, it computes output feature map
o ∈ Rd×co (where co is the number of output channels) given the input h ∈ Rd×ci

(assuming ci = 1 at the input layer). The connection between the input element
hk
i in position i, channel k and the output element ol

j is parametrized by
wk,l

i,j if i < j{
wk,l

i,j if type = B
0 if type = A

if i = j

0 if i > j.

(3.6)

Type A forces a strict dependence on previous elements (and is employed only as
the first estimator layer), whereas type B masks only succeeding elements. As-
suming each CPD modeled as a multinomial, the output of the last autoregressive
layer (in Rd×B) provides probability estimates for the B bins that compose the
space quantization.

On the other hand, the compressed representation of video clips has dimen-
sionality t× d, being t the number of temporal time-steps and d the length of the
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code. Accordingly, the estimation network is designed to capture two-dimensional
patterns within observed elements of the code. However, naively plugging 2D
convolutional layers would assume translation invariance on both axes of the
input map, whereas, due to the way the compressed representation is built, this
assumption is only correct along the temporal axis. To cope with this, we apply
d different convolutional kernels along the code axis, allowing the observation
of the whole feature vector in the previous time-step as well as a portion of the
current one. Every convolution is free to stride along the time axis and captures
temporal patterns. In such operation, named Masked Stacked Convolution (MSC,
Fig. 3.4-(b)), the i-th convolution is equipped with a kernel w(i) ∈ R3×d kernel,
that gets multiplied by the binary mask M(i), defined as

m
(i)
j,k ∈M(i) =


1 if j = 0

1 if j = 1 and k < i and type=A
1 if j = 1 and k ≤ i and type=B
0 otherwise,

(3.7)

where j indexes the temporal axis and k the code axis.
Every single convolution yields a column vector, as a result of its stride along

time. The set of column vectors resulting from the application of the d convolutions
to the input tensor h ∈ Rt×d×ci are horizontally stacked to build the output tensor
o ∈ Rt×d×co, as follows:

o =

d

||
i=1

[(M(i) ⊙w(i)) ∗ h], (3.8)

where || represents the horizontal concatenation operation.

3.3 Experiments
We test our solution in three different settings: images, videos, and cognitive data.
In all experiments the novelty assessment on the i-th example is carried out by
summing the reconstruction term (RECi) and the log-likelihood term (LLKi) in
Eq. 3.4 in a single novelty score NSi:

NSi = normS(RECi) + normS(LLKi). (3.9)
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MNIST

OC SVM KDE DAE VAE Pix CNN GAN ours

0 0.988 0.885 0.991 0.998 0.531 0.926 0.993
1 0.999 0.996 0.999 0.999 0.995 0.995 0.999
2 0.902 0.710 0.891 0.962 0.476 0.805 0.959
3 0.950 0.693 0.935 0.947 0.517 0.818 0.966
4 0.955 0.844 0.921 0.965 0.739 0.823 0.956
5 0.968 0.776 0.937 0.963 0.542 0.803 0.964
6 0.978 0.861 0.981 0.995 0.592 0.890 0.994
7 0.965 0.884 0.964 0.974 0.789 0.898 0.980
8 0.853 0.669 0.841 0.905 0.340 0.817 0.953
9 0.955 0.825 0.960 0.978 0.662 0.887 0.981

avg 0.951 0.814 0.942 0.969 0.618 0.866 0.975

Table 3.1: AUROC results for novelty detection on MNIST. Each row represents a
different class on which baselines and our model are trained.

Individual scores are normalized using a reference set of examples S (different for
every experiment),

normS(Li) =
Li −minj∈S Lj

maxj∈S Lj −minj∈S Lj
. (3.10)

3.3.1 Image Novelty Detection
To assess the model’s performance in one class settings, we train it on each
class of either MNIST or CIFAR-10 separately. In the test phase, we present the
corresponding test set, which is composed of 10000 examples of all classes, and
expect our model to assign a lower novelty score to images sharing the label with
training samples. We use standard train/test splits, and isolate 10% of training
samples for validation purposes, and employ it as the normalization set (S in
Eq. 3.9) for the computation of the novelty score.

As for the baselines, we consider the following:

- standard methods such as OC-SVM [165] and Kernel Density Estimator
(KDE), employed out of features extracted by PCA-whitening;
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CIFAR10

OC SVM KDE DAE VAE Pix CNN GAN ours

0 0.630 0.658 0.718 0.688 0.788 0.708 0.735
1 0.440 0.520 0.401 0.403 0.428 0.458 0.580
2 0.649 0.657 0.685 0.679 0.617 0.664 0.690
3 0.487 0.497 0.556 0.528 0.574 0.510 0.542
4 0.735 0.727 0.740 0.748 0.511 0.722 0.761
5 0.500 0.496 0.547 0.519 0.571 0.505 0.546
6 0.725 0.758 0.642 0.695 0.422 0.707 0.751
7 0.533 0.564 0.497 0.500 0.454 0.471 0.535
8 0.649 0.680 0.724 0.700 0.715 0.713 0.717
9 0.508 0.540 0.389 0.398 0.426 0.458 0.548

avg 0.951 0.814 0.942 0.969 0.618 0.866 0.975

Table 3.2: AUROC results for novelty detection on CIFAR10.

- a denoising autoencoder (DAE) sharing the same architecture as our pro-
posal, but defective of the density estimation module. The reconstruction
error is employed as a measure of normality vs. novelty;

- a variational autoencoder (VAE) [83], also sharing the same architecture as
our model, in which the Evidence Lower Bound (ELBO) is employed as the
score;

- Pix-CNN [191], modeling the density by applying autoregression directly
in the image space;

- the GAN-based approach illustrated in [163].

We report the comparison in Tab. 3.1 and Tab. 3.2: as can be seen, results are
reported in terms ofthe Area Under Receiver Operating Characteristic (AUROC),
which is the standard metric for the task. As the table shows, our proposal
outperforms all baselines in both settings.

Considering MNIST, most methods perform favorably. Notably, Pix-CNN
fails in modeling distributions for all digits but one, possibly due to the complexity
of modeling densities directly on pixel space and following a fixed autoregression
order. Such poor test performance are registered despite good quality samples that
we observed during training: indeed, the weak correlation between sample quality
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Figure 3.5: ROC curves delivered by different scoring strategies on MNIST and
CIFAR-10 test sets. Each curve is an interpolation over the ten classes.

and test log-likelihood of the model has been motivated in [181]. Surprisingly,
OC-SVM outperforms most deep learning based models in this setting.

On the contrary, CIFAR10 represents a much more significant challenge, as
testified by the low performance of most models, possibly due to the poor image
resolution and visual clutter between classes. We observe that our proposal is the
only outperforming a simple KDE baseline; however, this finding should be put
into perspective by considering the nature of non-parametric estimators. Indeed,
non-parametric models access the whole training set for the evaluation of each
sample. Consequently, despite they benefit large sample sets in terms of density
modeling, they lead into an unfeasible inference as the dataset grows in size.

The possible reasons behind the difference in performance w.r.t. DAE are
twofold. Firstly, DAE can recognize novel samples solely based on the reconstruc-
tion error, hence relying on its memorization capabilities, whereas our proposal
also considers the likelihood of their representations under the learned prior, thus
exploiting surprisal as well. Secondly, by minimizing the differential entropy of
the latent distribution, our proposal increases the discriminative capability of the
reconstruction. Intuitively, this last statement can be motivated observing that
novelty samples are forced to reside in a high probability region of the latent space,
the latter bounded to solely capture unsurprising factors of variation arising from
the training set. On the other hand, the gap w.r.t. VAE suggests that, for the task at
hand, a more flexible autoregressive prior should be preferred over the isotropic
multivariate Gaussian. On this last point, VAE seeks representations whose aver-
age surprisal converges to a fixed and expected value (the differential entropy of
its prior), whereas our solution minimizes such quantity within its MLE objective.
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UCSD Ped2 ShanghaiTech

MPPC+SFA [124] 0.613 -
ConvAE [56] 0.850 0.609

ConvLSTM-AE [121] 0.881 -
Hinami et al. [61] 0.922 -

TSC [122] 0.910 0.679
Stacked RNN [122] 0.922 0.680

FFP [111] 0.935 -
FFP+MC [111] 0.954 0.728

Ours 0.954 0.725

Table 3.3: AUROC performance of our model w.r.t. state-of-the-art competitors.

This flexibility allows modulating the richness of the latent representation vs. the
reconstructing capability of the model. Differently, in VAEs, the fixed prior acts
as a blind regularizer potentially leading to over-smooth representations.

Fig. 3.5 reports an ablation study questioning the loss functions aggregation
presented in Eq. 3.9. The figure illustrates ROC curves under three different
novelty scores: i) the log-likelihood term, ii) the reconstruction term, and iii) the
proposed scheme that accounts for both. As highlighted in the picture, accounting
for both memorization and surprisal aspects is advantageous in each dataset.

3.3.2 Video Novelty Detection
In video surveillance contexts, novelty is often considered in terms of abnormal
human behavior. Thus, we evaluate our proposal against state-of-the-art anomaly
detection models. For this purpose, we considered two standard benchmarks in
literature, namely UCSD Ped2 [25] and ShanghaiTech [122]. Despite the differ-
ences in the number of videos and their resolution, they both contain anomalies
that typically arise in surveillance scenarios (e.g., vehicles in pedestrian walkways,
pick-pocketing, brawling). For UCSD Ped, we preprocessed input clips of 16
frames to extract smaller patches and perturbed such inputs with random Gaussian
noise with σ = 0.025. We compute the novelty score of each input clip as the
mean novelty score among all patches. Concerning ShanghaiTech, we removed
the dependency on the scenario by estimating the foreground for each frame of
a clip with a standard MOG-based approach and removing the background. We
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Figure 3.6: Novelty scores and localizations maps for samples drawn from UCSD
Ped2 and ShanghaiTech. For each example, we report the trend of the assessed
score, highlighting with a different color the time range in which an anomalous
subject comes into the scene.

fed the model with 16-frames clips, but ground-truth anomalies are labeled at
frame level. In order to recover the novelty score of each frame, we compute
the mean score of all clips in which it appears. We then merge the two terms of
the loss function following the same strategy illustrated in Eq. 3.9, computing
however normalization coefficients in a per-sequence basis, following the standard
approach in the anomaly detection literature. The scores for each sequence are
then concatenated to compute the overall AUROC of the model. Additionally, we
envision localization strategies for both datasets. To this aim, for UCSD, we denote
a patch exhibiting the highest novelty score in a frame as anomalous. Differently,
in ShanghaiTech, we adopt a sliding-window approach [212]: as expected, when
occluding the source of the anomaly with a rectangular patch, the novelty score
drops significantly.

Tab. 3.3 reports results in comparison with prior works. Despite a more general
formulation, our proposal scores on-par with the current state-of-the-art solutions
specifically designed for video applications and taking advantage of optical flow
estimation and motion constraints. Indeed, in the absence of such hypotheses
(FFP entry in Tab. 3.3), our method outperforms future frame prediction on UCSD
Ped2. Finally, we refer the reader to Fig. 3.6 for several qualitative assessments
regarding the novelty score and localization capabilities
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Figure 3.7: CIFAR-10 ROC curves with semantic input vectors. Each curve is an
interpolation among the ten classes.

3.4 Model Analysis
CIFAR-10 with semantic features We investigate the behavior of our model
in the presence of different assumptions regarding the expected nature of novel
samples. We expect that, as the correctness of such assumptions increases, novelty
detection performance will scale accordingly. Such a trait is particularly desirable
for applications in which prior beliefs about novel examples can be envisioned. To
this end, we leverage the CIFAR-10 benchmark described in Sec. 3.3.1 and change
the type of information provided as input. Specifically, instead of raw images, we
feed our model with semantic representations extracted by ResNet-50 [58], either
pre-trained on Imagenet (i.e., assume semantic novelty) or CIFAR-10 itself (i.e.,
assume data-specific novelty). The two models achieved respectively 79.26 and
95.4 top-1 classification accuracies on the respective test sets. Even though this
procedure is to be considered unfair in novelty detection, it serves as a sanity check
delivering the upper-bound performance our model can achieve when applied to
even better features. To deal with dense inputs, we employ a fully connected
autoencoder and MFC layers within the estimation network.

Fig. 3.7 illustrates the resulting ROC curves, where semantic descriptors
improve AUROC w.r.t. raw image inputs (entry “Unsupervised”). Such results
suggest that our model profitably takes advantage of the separation between normal
and abnormal input representations and scales accordingly, even up to optimal
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CIFAR-10

LSTM[100] 0.623
LSTM[32,32,32,32,100] 0.622
MFC[100] 0.625
MFC[32,32,32,32,100] 0.641

(a)

UCSD Ped2

LSTM[100] 0.849
LSTM[4,4,4,4,100] 0.845
MSC[100] 0.849
MSC[4,4,4,4,100] 0.954

(b)

Figure 3.8: Comparison of different architectures for the autoregressive density
estimation in feature space. We indicate with LSTM[F1,F2,...,FN ] - same goes
for MFC and MSC - the output shape for each of the N layers composing the
estimator. Results are reported in terms of test AUROC.

performance for the task under consideration. Nevertheless, it is interesting to
note how different degrees of supervision deliver significantly different results.
As expected, dataset-specific supervision increases the AUROC from 0.64 up to
0.99 (a perfect score). Surprisingly, semantic feature vectors trained on Imagenet
(which contains all CIFAR classes) provide a much lower boost, yielding an
AUROC of 0.72. This indicates that, even when the semantic of novelty can be
known in advance, its contribution has a limited impact in modeling the normality,
mostly because novelty can depend on other cues (e.g., low-level statistics).

Autoregression via recurrent layers To measure the contribution of the pro-
posed MFC and MSC layers described in Sec. 3.2, we test on CIFAR-10 and UCSD
Ped2, alternative solutions for the autoregressive density estimator. Specifically,
we investigate recurrent networks, as they represent the most natural alternative
featuring autoregressive properties. We benchmark the proposed building blocks
against an estimator composed of LSTM layers, which is designed to sequentially
observe latent symbols z<i and output the CPD of zi as the hidden state of the
last layer. We test MFC, MSC and LSTM in single-layer and multi-layer settings,
and report all outcomes in Fig. 3.8. Even though our solutions perform similarly
to the recurrent baseline when employed in a shallow setting, they significantly
take advantage of their depth when stacked in consecutive layers. MFC and MSC,
indeed, employ disentangled parametrizations for each output CPD. This property
is equivalent to the adoption of a specialized estimator network for each zi, thus
increasing the proficiency in modeling the density of its designated CPD. On the
contrary, LSTM networks embed all the history (i.e., the observed symbols) in
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Figure 3.9: Left, the distribution of novelty scores assigned to normal patterns
against attentional shifts labeled within the DR(eye)VE dataset. Right, DR(eye)VE
clips yielding the highest novelty score (i.e., clips in which the attentional pattern
shifts from the expected behavior). Interestingly, they depict some peculiar situ-
ations such as waiting for the traffic light or approaching a roundabout.

their memory cells, but manipulate each input of the sequence through the same
weight matrices. In this regime, the recurrent module needs to learn parameters
shared among symbols, losing specialization and eroding its capabilities.

Novelty in cognitive temporal processes As a potential application of our
proposal, we investigate its capability in modeling human attentional behavior. To
this end, we employ the DR(eye)VE dataset [139], introduced for the prediction
of focus of attention in driving contexts. It features 74 driving videos where frame-
wise fixation maps are provided, highlighting the region of the scene attended by
the driver. In order to capture the dynamics of attentional patterns, we purposely
discard the visual content of the scene and optimize our model on clips of fixation
maps, randomly extracted from the training set. After training, we rely on the
novelty score of each clip as a proxy for the uncommonness of an attentional
pattern. Moreover, since the dataset features annotations of peculiar and unfrequent
patterns (such as distractions, recording errors), we can measure the correlation of
the captured novelty w.r.t. those. In terms of AUROC, our model scores 0.926,
highlighting that novelty can arise from unexpected behaviors of the driver, such
as distractions or other shifts in attention. Fig. 3.9 reports the different distribution
of novelty scores for ordinary and peculiar events.
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3.5 Conclusion
In this chapter we have discussed a comprehensive framework for novelty detec-
tion, in which prior knowledge is embodied by an auxiliary component acting in
latent space. Specifically, we formalize our model to capture the twofold nature of
novelties, which concerns the incapability to remember unseen data and the sur-
prisal aroused by the observation of their latent representations. From a technical
perspective, both terms are modeled by a deep generative autoencoder, paired with
an additional autoregressive density estimator learning the distribution of latent
vectors by maximum likelihood principles. To this aim, two different masked
layers have been introduced to account for image and video data. We have shown
that the introduction of such an auxiliary module leads to the minimization of the
encoder’s differential entropy, which proves to be a suitable regularizer for the task
at hand. Experimental results have indicated that state-of-the-art performance in
one-class and anomaly detection settings, fostering the flexibility of our framework
for different tasks without making any data-related assumption.



Chapter 4

Continual Learning

This chapter showcase how the exploitation of prior knowledge is rewarding when
the model is asked to learn several classification tasks one after the other, in a
sequential manner. In this respect, we would expect the model to acquire new
knowledge on-the-fly, incorporating new classes with the current one. However, if
the learning focuses on the current set of examples solely, a sudden performance
deterioration occurs on the old data, referred to as catastrophic forgetting [130].
As a trivial workaround, one could store all incoming examples and re-train from
scratch when needed, but this is often impracticable in terms of required resources.

The research field of Continual Learning (CL) aims at relieving catastrophic
forgetting while limiting computational costs and memory footprint [130]. This
chapter focuses on General Continual Learning (GCL), which addresses the
peculiarities of real-world applications, where memory is bounded and tasks
intertwine and overlap. On this latter point, [37] has recently introduced a series
of guidelines that CL methods should realize to be applicable in practice: i) no
task boundaries: do not rely on boundaries between tasks during training; ii) no
test time oracle: do not require task identifiers at inference time; iii) constant
memory: have a bounded memory footprint throughout the entire training phase.

In the following, we show that GCL can be favorably addressed mixing re-
hearsal with knowledge distillation; our simple baseline, Dark Experience Replay
(DER), matches the network’s responses sampled throughout the optimization
trajectory, thus promoting consistency with its past. Such a regularization strategy
– which uses past examples to impose prior knowledge over network outputs – out-
performs consolidated approaches and leverages limited resources. We show that

38
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this holds on both standard benchmarks and a novel evaluation setting (MNIST-
360); we further explore its generalization capabilities, showing its regularization
being beneficial beyond mere performance.

4.1 Preliminaries
Rehearsal-based methods Several approaches tackle catastrophic forgetting
by replaying a subset of the training data stored in a memory buffer. Early
works [147, 154] proposed Experience Replay (ER), that is interleaving old
samples with current data in training batches. Several recent studies directly
expand on this idea: Meta-Experience Replay (MER) [151] casts replay as a
meta-learning problem to maximize transfer from past tasks while minimizing
interference; Gradient based Sample Selection (GSS) [4] introduces a variation
on ER to store optimally chosen examples in the memory buffer; Hindsight
Anchor Learning (HAL) [28] complements replay with an additional objective
to limit forgetting on pivotal learned data-points. On the other hand, Gradient
Episodic Memory (GEM) [117] and its lightweight counterpart Averaged-GEM
(A-GEM) [29] leverage old training data to build optimization constraints to
be satisfied by the current update step. These works show improvements over
ER when confining the learning to a small portion of the training set (e.g., 1k
examples per task). However, we believe that this setting rewards sample efficiency
– i.e., making good use of the few shown examples – which represents a potential
confounding factor for assessing catastrophic forgetting. Indeed, Sec. 4.3 reveals
that the above-mentioned approaches are not consistently superior to ER when
lifting these restrictions, which motivates our research in this kind of methods.

Knowledge Distillation Several approaches exploit Knowledge Distillation [63]
to mitigate forgetting by appointing a past version of the model as a teacher.
Learning Without Forgetting (LwF) [102] computes a smoothed version of the
current responses for the new examples at the beginning of each task, minimizing
their drift during training. A combination of replay and distillation can be found
in iCaRL [149], which employs a buffer as a training set for a nearest-mean-of-
exemplars classifier while preventing the representation from deteriorating in later
tasks via a self-distillation loss term.

Other Approaches Regularization-based methods extend the loss function with
a term that prevents network weights from changing, as done by Elastic Weight
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Methods PNN PackNet HAT ER MER GSS GEM A-GEM HAL iCaRL FDR LwF SI oEWC DER DER++
[157] [126] [170] [147, 151] [151] [4] [117] [29] [28] [149] [16] [102] [213] [85] (ours) (ours)

Constant – – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓memory

No task – – – ✓ ✓ ✓ – ✓ – – – – – – ✓ ✓boundaries

No test – – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ ✓time oracle

Table 4.1: Continual learning approaches and their compatibility with the General
Continual Learning major requirements [37].

Consolidation (EWC) [85], online EWC (oEWC) [168], Synaptic Intelligence
(SI) [213] and Riemmanian Walk (RW) [27]. Architectural methods, on the
other hand, devote distinguished sets of parameters to distinct tasks. Among these,
Progressive Neural Networks (PNN) [157] instantiates new networks increment-
ally as novel tasks occur, resulting in a linearly growing memory requirement. To
mitigate this issue, PackNet [126] and Hard Attention to the Task (HAT) [170]
share the same architecture for subsequent tasks, employing a heuristic strategy to
prevent intransigence by allocating additional units when needed.

Overall It is not always easy to have a clear picture of the merits of these works:
due to subtle differences in the way methods are evaluated, many state-of-the-art
approaches only stand out in the setting where they were originally conceived.
Several recent papers [37, 45, 64, 190] address this issue and conduct a critical
review of existing evaluation settings, leading to the formalization of three main
experimental settings [64, 190]. By conducting an extensive comparison on them,
we surprisingly observe that a simple Experience Replay baseline consistently
outperforms cutting-edge methods in the considered settings. As reported in
Tab. 4.1, ER also stands out being one of the few methods that are fully compliant
with GCL. MER [151] and GSS [4] fulfill the requirements as well, but they suffer
from a very long running time which hinders their applicability.

4.2 Proposed Approach
Formally, a CL classification problem is split in T tasks; during each task t ∈
{1, ..., T} input samples x and their corresponding ground truth labels y are drawn
from an i.i.d. distribution Dt. A function f , with parameters θ, is optimized
on one task at a time in a sequential manner. We indicate the output logits
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with hθ(x) and the corresponding probability distribution over the classes with
fθ(x) ≜ softmax(hθ(x)). The goal is to learn how to classify examples from any
of the observed tasks up to the current one t ∈ {1, . . . , tc}:

argmin
θ

tc∑
t=1

Lt, where Lt ≜ E(x,y)∼Dt

[
ℓ(y, fθ(x))

]
. (4.1)

This is challenging as data from previous tasks are assumed to be unavailable:
the best configuration of θ w.r.t. L1...tc must be sought without Dt for t ∈
{1, . . . , tc − 1}. Ideally, we look for parameters that fit the current task well
while approximating the behavior observed in the old ones: effectively, we encour-
age the network to mimic its original responses for past samples. To preserve the
knowledge about previous tasks, we seek to minimize the following objective:

Ltc + α

tc−1∑
t=1

Ex∼Dt

[
DKL(fθ∗

t
(x) || fθ(x))

]
, (4.2)

where θ∗t is the optimal set of parameters at the end of task t, and α is a hyper-
parameter balancing the trade-off between the terms. This objective, which re-
sembles the teacher-student approach, would require the availability of Dt for
previous tasks. To overcome such a limitation, we introduce a replay buffer
Mt holding past experiences for task t. Differently from other replay meth-
ods [4, 28, 151], we also retain the network’s logits z ≜ hθt(x).

Ltc + α

tc−1∑
t=1

E(x,z)∼Mt

[
DKL(softmax(z) || fθ(x))

]
. (4.3)

As we focus on General Continual Learning, we intentionally avoid relying on task
boundaries to populate the buffer as the training progresses. Therefore, in place of
the common task-stratified sampling strategy, we adopt reservoir sampling [198]:
this way, we select |M| random samples from the input stream, guaranteeing
that they have the same probability |M|/|S| of being stored in the buffer, without
knowing the length of the stream S in advance. We can rewrite Eq. 4.3 as follows:

Ltc + α E(x,z)∼M
[

DKL(softmax(z) || fθ(x))
]
. (4.4)

Such a strategy implies picking logits z during the optimization trajectory, so
potentially different from the ones that can be observed at the task’s local optimum.
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Even if counter-intuitive, we empirically observed that this strategy does not hurt
performance, while still being suitable without task boundaries. Furthermore, we
observe that the replay of sub-optimal logits has beneficial effects in terms of
flatness of the attained minima and calibration (see Sec. 4.4).

Under mild assumptions [63], the optimization of the KL divergence in Eq. 4.4
is equivalent to minimizing the Euclidean distance between the corresponding
pre-softmax responses (i.e. logits). We opt for matching logits, as it avoids the
information loss occurring in probability space due to the squashing function (e.g.,
softmax) [115]. With these considerations in hands, Dark Experience Replay
(DER, algorithm 1) optimizes the following objective:

Ltc + α E(x,z)∼M
[
∥z − hθ(x)∥22

]
. (4.5)

We approximate the expectation by computing gradients on buffer datapoints.

Dark Experience Replay++ It is worth noting that the reservoir strategy may
weaken DER under some specific circumstances. Namely, when a sudden distribu-
tion shift occurs in the input stream, logits that are highly biased by the training
on previous tasks might be sampled for later replay: leveraging the ground truth
labels as well – as done by ER – could mitigate such a shortcoming. On these
grounds, we also propose Dark Experience Replay++ (DER++, algorithm 2),
which equips the objective of Eq. 4.5 with an additional term on buffer datapoints,
promoting higher conditional likelihood w.r.t. their ground truth labels:

Ltc + α E(x′,y′,z′)∼M
[
∥z′ − hθ(x

′)∥22
]
+ β E(x′′,y′′,z′′)∼M

[
ℓ(y′′, fθ(x

′′))
]
,

(4.6)
where β is an additional coefficient balancing the last term. The model is not
overly sensitive to α and β: setting them both to 0.5 yields stable performance.

4.2.1 Relation With Previous Works
While both DER and LWF [102] leverage knowledge distillation in Continual
Learning, they adopt remarkably different approaches. The latter does not replay
past examples, so it only encourages the similarity between teacher and student
responses w.r.t. to datapoints of the current task. Alternatively, iCaRL [149]
distills knowledge for past outputs w.r.t. past exemplars, which is more akin to
our proposal. However, the former exploits the network appointed at the end
of each task as the sole teaching signal. On the contrary, our methods store
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Algorithm 1: Dark Experience Replay
Input: dataset D, parameters θ, scalar α, learning rate λ,M = {}
for (x, y) in D do

(x′, z′, y′)← sample(M)
xt, x

′
t ← augment(x), augment(x′)

z ← hθ(xt)
reg ← α ∥z′ − hθ(x

′
t)∥

2
2

θ ← θ + λ · ∇θ[ℓ(y, fθ(xt)) + reg]
M← reservoir(M, (x, z))

end for

Algorithm 2: Dark Experience Replay ++
Input: dataset D, parameters θ, scalars α and β, learning rate λ,M = {}
for (x, y) in D do

(x′, z′, y′)← sample(M)
(x′′, z′′, y′′)← sample(M)
xt ← augment(x)
x′
t, x

′′
t ← augment(x′), augment(x′′)

z ← hθ(xt)
reg ← α ∥z′ − hθ(x

′
t)∥

2
2 + β ℓ(y′′, fθ(x

′′
t ))

θ ← θ + λ · ∇θ[ℓ(y, fθ(xt)) + reg]
M← reservoir(M, (x, z, y))

end for

logits sampled throughout the optimization trajectory, resembling several different
teacher parametrizations.

A close proposal to ours is given by Function Distance Regularization (FDR)
for combatting catastrophic forgetting (Sec. 3.1 of [16]). Like FDR, we use past ex-
emplars and network outputs to align past and current outputs. However, similarly
to the iCaRL discussion above, FDR stores network responses at task boundaries
and thus cannot be employed in a GCL setting. Instead, the experimental analysis
we present in Sec. 4.4 reveals that the need of task boundaries can be relaxed
through reservoir without experiencing a drop in performance; on the contrary we
empirically observe that DER and DER++ achieve significantly superior results
and remarkable properties. We finally highlight that the motivation behind [16]
lies chiefly in studying how the training trajectory of NNs can be characterized in a
functional L2 Hilbert space, whereas the potential of function-space regularization
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for Continual Learning problems is only coarsely addressed with a single experi-
ment on MNIST. In this respect, we present extensive experiments on multiple CL
settings as well as a detailed analysis (Sec. 4.4) providing a deeper understanding
on the effectiveness of this kind of regularization.

4.3 Experiments

4.3.1 Datasets
We adhere to [64, 190] and model the sequence of tasks using three settings:

Task Incremental Learning (Task-IL) and Class Incremental Learning
(Class-IL) split the training samples into partitions of classes (tasks). Although
similar, the former provides task identities to select the relevant classifier for
each example, whereas the latter does not; this difference makes Task-IL and
Class-IL the easiest and hardest scenarios among the three [190]. In practice, we
follow [37, 213] by splitting CIFAR-10 [88] and Tiny ImageNet [175] in 5 and
10 tasks, each of which introduces 2 and 20 classes respectively. We show all the
classes in the same fixed order across different runs.

Domain Incremental Learning (Domain-IL) feeds all classes to the network
during each task, but applies a task-dependent transformation to the input; task
identities remain unknown at test time. For this setting, we leverage two common
protocols built upon the MNIST dataset [96], namely Permuted MNIST [85] and
Rotated MNIST [117]. They both require the learner to classify all MNIST digits
for 20 subsequent tasks, but the former applies a random permutation to the pixels,
whereas the latter rotates the images by a random angle in the interval [0, π).

As done in previous works [45, 149, 190, 204], we provide task boundaries
to the competitors demanding them at training time (e.g. oEWC or LwF). This
choice is meant to ensure a fair comparison between our proposal – which does
not need boundaries – and a broader class of methods in literature.

4.3.2 Evaluation Protocol
Architecture For tests we conducted on variants of the MNIST dataset, we
follow [117, 151] by employing a fully-connected network with two hidden layers,
each one comprising of 100 ReLU units. For CIFAR-10 and Tiny ImageNet, we
follow [149] and rely on ResNet18 [58] (not pre-trained).
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Augmentation For CIFAR-10 and Tiny ImageNet, we apply random crops and
horizontal flips to both stream and buffer examples. We propagate this choice to
competitors for fairness. It is worth noting that combining data augmentation with
our regularization objective enforces an implicit consistency loss [6, 15], which
aligns predictions for the same example subjected to small data transformations.

Hyperparameter selection We select hyperparameters by performing a grid-
search on a validation set, the latter obtained by sampling 10% of the training set.
For the Domain-IL scenario, we make use of the final average accuracy as the
selection criterion. Differently, we perform a combined grid-search for Class-IL
and Task-IL, choosing the configuration that achieves the highest final accuracy
averaged on the two settings.

Training To provide a fair comparison among CL methods, we train all the
networks using the Stochastic Gradient Descent (SGD) optimizer. Despite being
interested in an online scenario, with no additional passages on the data, we reckon
it is necessary to set the number of epochs per task in relation to the dataset
complexity. Indeed, if even the pure-SGD baseline fails at fitting a single task with
adequate accuracy, we could not properly disentangle the effects of catastrophic
forgetting from those linked to underfitting1. For MNIST-based settings, one
epoch per task is sufficient. Conversely, we increase the number of epochs to
50 for Sequential CIFAR-10 and 100 for Sequential Tiny ImageNet respectively,
as commonly done by works that test on harder datasets [149, 204, 213]. We
deliberately hold batch size and minibatch size out from the hyperparameter space,
thus avoiding the flaw of a variable number of update steps for different methods.

4.3.3 Experimental Results
In this section, we compare DER and DER++ against two regularization-based
methods (oEWC, SI), two methods leveraging Knowledge Distillation (iCaRL,
LwF2), one architectural method (PNN) and six rehearsal-based methods (ER,
GEM, A-GEM, GSS, FDR [16], HAL)3. We further provide a lower bound, consist-
ing of SGD without any countermeasure to forgetting and an upper bound given

1We refer the reader to Sec. 4.3.3 for an experimental discussion regarding this issue
2In Class-IL, we adopted a multi-class implementation as done in [149].
3We omit MER as we experienced an intractable training time on these benchmarks (e.g. while

DER takes approximately 2.5 hours on Seq. CIFAR-10, MER takes 300 hours – see Sec. 4.4 for
further comparisons).
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Buffer Method S-CIFAR-10 S-Tiny-ImageNet P-MNIST R-MNIST
Class-IL Task-IL Class-IL Task-IL Domain-IL Domain-IL

– JOINT 92.20±0.15 98.31±0.12 59.99±0.19 82.04±0.10 94.33±0.17 95.76±0.04

SGD 19.62±0.05 61.02±3.33 7.92±0.26 18.31±0.68 40.70±2.33 67.66±8.53

oEWC [168] 19.49±0.12 68.29±3.92 7.58±0.10 19.20±0.31 75.79±2.25 77.35±5.77

– SI [213] 19.48±0.17 68.05±5.91 6.58±0.31 36.32±0.13 65.86±1.57 71.91±5.83

LwF [102] 19.46±0.31 63.65±1.80 8.57±0.11 16.57±0.37 - -
PNN [157] - 95.13±0.72 - 67.84±0.29 - -

ER [151] 48.33±1.57 91.49±0.92 8.77±0.17 38.97±0.97 72.37±0.87 85.01±1.90

GEM [117] 25.54±0.76 90.44±0.94 - - 66.93±1.25 80.80±1.15

A-GEM [29] 20.04±0.34 83.88±1.49 8.07±0.08 22.77±0.03 66.42±4.00 81.91±0.76

iCaRL [149] 60.58±1.32 93.97±0.53 14.72±0.59 42.84±0.92 - -
200 FDR [16] 30.91±2.74 91.01±0.68 8.70±0.19 40.36±0.68 74.77±0.83 85.22±3.35

GSS [4] 39.07±5.59 88.80±2.89 - - 63.72±0.70 79.50±0.41

HAL [28] 34.90±2.55 83.14±3.66 - - 74.15±1.65 84.02±0.98

DER (ours) 61.93±1.79 91.40±0.92 11.87±0.78 40.22±0.67 81.74±1.07 90.04±2.61

DER++ (ours) 64.88±1.17 91.92±0.60 10.96±1.17 40.87±1.16 83.58±0.59 90.43±1.87

ER [151] 60.98±1.48 94.19±0.32 11.06±0.32 49.89±0.73 80.60±0.86 88.91±1.44

GEM [117] 26.20±1.26 92.16±0.69 - - 76.88±0.52 81.15±1.98

A-GEM [29] 22.67±0.57 89.48±1.45 8.06±0.04 25.33±0.49 67.56±1.28 80.31±6.29

iCaRL [149] 55.42±4.16 91.43±1.84 20.18±0.56 52.07±0.58 - -
500 FDR [16] 28.71±3.23 93.29±0.59 10.54±0.21 49.88±0.71 83.18±0.53 89.67±1.63

GSS [4] 49.73±4.78 91.02±1.57 - - 76.00±0.87 81.58±0.58

HAL [28] 46.19±4.14 86.08±2.48 - - 80.13±0.49 85.00±0.96

DER (ours) 70.51±1.67 93.40±0.39 17.75±1.14 51.78±0.88 87.29±0.46 92.24±1.12

DER++ (ours) 72.70±1.36 93.88±0.50 19.38±1.41 51.91±0.68 88.21±0.39 92.77±1.05

ER [151] 84.30±0.73 97.02±0.15 29.93±0.47 67.89±0.50 89.90±0.13 93.45±0.56

GEM [117] 25.26±3.46 95.55±0.02 - - 87.42±0.95 88.57±0.40

A-GEM [29] 21.99±2.29 90.10±2.09 7.96±0.13 26.22±0.65 73.32±1.12 80.18±5.52

iCaRL [149] 63.47±1.33 95.47±0.26 31.60±0.33 64.54±0.30 - -
5120 FDR [16] 19.70±0.07 94.32±0.97 28.97±0.41 68.01±0.42 90.87±0.16 94.19±0.44

GSS [4] 67.27±4.27 94.19±1.15 - - 82.22±1.14 85.24±0.59

HAL [28] 64.99±3.71 89.01±2.64 - - 89.20±0.14 91.17±0.31

DER (ours) 83.81±0.33 95.43±0.33 36.73±0.64 69.50±0.26 91.66±0.11 94.14±0.31

DER++ (ours) 85.24±0.49 96.12±0.21 39.02±0.97 69.84±0.63 92.26±0.17 94.65±0.33

Table 4.2: Classification results for standard CL benchmarks, averaged across 10
runs. ‘-’ indicates experiments we were unable to run, because of compatibility
issues (e.g. between PNN, iCaRL and LwF in Domain-IL) or intractable training
time (e.g. GEM, HAL or GSS on Tiny ImageNet).
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by training all tasks jointly (JOINT). Tab. 4.2 reports performance in terms of
average accuracy at the end of all tasks; results are averaged across ten runs, each
one involving a different initialization.

DER and DER++ achieve state-of-the-art performance in almost all settings.
When compared to oEWC and SI, the gap appears unbridgeable, suggesting that
regularization towards old sets of parameters does not suffice. We argue that this is
due to local information modeling weights importance: as it is computed in earlier
tasks, it could become untrustworthy in later ones. While being computationally
more efficient, LWF performs worse than SI and oEWC on average. PNN, which
achieves the strongest results among non-rehearsal methods, attains lower accuracy
than replay-based ones despite its memory footprint being much higher.

When compared to rehearsal methods, DER and DER++ show strong per-
formance in the majority of benchmarks, especially in the Domain-IL scenario.
For these problems, a shift occurs within the input domain, but not within the
classes: hence, the relations among them also likely persist. As an example, if it
is true that during the first task number 2’s visually look like 3’s, this still holds
when applying rotations or permutations, as it is done in the following tasks. We
argue that leveraging soft-targets in place of hard ones (ER) carries more valuable
information [63], exploited by DER and DER++ to preserve the similarity struc-
ture through the data-stream. Additionally, we observe that methods resorting to
gradients (GEM, A-GEM, GSS) seem to be less effective in this setting.

The gap we observe in Domain-IL is also found in the Class-IL setting, as
DER is remarkably capable of learning how classes from different tasks are related
to each other. This is not so relevant in Task-IL, where DER performs on par
with ER on average. In it, classes only need to be compared in exclusive subsets,
and maintaining an overall vision is not especially rewarding. In such a scenario,
DER++ manages to effectively combine the strengths of both methods, resulting
in generally better accuracy. Interestingly, iCaRL appears valid when using small
buffers; we believe this is due to its helpful herding strategy, ensuring that all
classes are equally represented in memory. As a side note, other ER-based methods
(HAL and GSS) show weaker results than ER itself on such challenging datasets.

Single-Epoch Setting Several Continual Learning works present experiments
even on fairly complex datasets (e.g.: CIFAR-10, CIFAR-100, Mini ImageNet) in
which the model is only trained for one epoch for each task [4, 28, 29, 117]. As
showing the model each example only once could be deemed closer to real-world
CL scenarios, this is a very compelling setting and somewhat close in spirit to the
reasons why we focus on General Continual Learning.



4.3. EXPERIMENTS 48

Buffer ER FDR DER++ JOINT JOINT

#epochs 1 1 1 1 50/100

Seq.
CIFAR-10

200 37.64 21.22 41.93
500 45.22 21.06 48.04 56.74 92.20
5120 50.28 20.57 53.31

Seq.
Tiny ImageNet

200 5.98 4.87 6.35
500 8.39 4.76 8.65 19.37 59.99
5120 16.04 4.96 16.41

Table 4.3: Single-epoch evaluation setting (Class-IL).

However, we see that committing to just one epoch (hence, few gradient steps)
makes it difficult to disentangle the effects of catastrophic forgetting from those
of underfitting. This is especially relevant when dealing with complex datasets
and deserves further investigation: for this reason, we conduct a single-epoch
experiment on Seq. CIFAR-10 and Seq. Tiny ImageNet. We include in Tab. 4.3
the performance of different rehearsal methods; additionally, we report the results
of joint training when limiting the number of epochs to one and, vice versa, when
such limitation is removed (see last two columns). While the multi-epoch joint
training achieves a satisfactory accuracy, the single-epoch counterpart (which is
the upper bound of the other CL methods) yields a much lower accuracy and
underfits dramatically. In light of this, it is hard to evaluate the merits of CL
methods, whose evaluation is severely undermined by this confounding factor.
Although DER++ proves reliable even in this setting, we feel that future works
should strive for realism by designing experimental settings which are fully in line
with the guidelines of GCL [37] rather than adopting the single-epoch protocol.

MNIST-360 To address the General Continual Learning desiderata, we propose
a novel protocol: MNIST-360. It models a stream of data presenting batches of two
consecutive MNIST digits at a time (e.g. {0, 1}, {1, 2}, {2, 3} etc.), as depicted
in Fig. 4.1. We rotate each example of the stream by an increasing angle and, after
a fixed number of steps, switch the lesser of the two digits with the following one.
As it is impossible to distinguish 6’s and 9’s upon rotation, we do not use 9’s in
MNIST-360. The stream visits the nine possible couples of classes three times,
allowing the model to leverage positive transfer when revisiting a previous task.
Moreover, we guarantee that: i) each example is shown once during training; ii)
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Figure 4.1: Example batches of the MNIST-360 stream.

JOINT SGD Buffer ER [151] MER [151] A-GEM-R [29] GSS [4] DER DER++

200 49.27±2.25 48.58±1.07 28.34±2.24 43.92±2.43 55.22±1.67 54.16±3.02

82.98±3.24 19.09±0.69 500 65.04±1.53 62.21±1.36 28.13±2.62 54.45±3.14 69.11±1.66 69.62±1.59

1000 75.18±1.50 70.91±0.76 29.21±2.62 63.84±2.09 75.97±2.08 76.03±1.61

Table 4.4: Accuracy on the test set for MNIST-360.

two digits of the same class are never observed under the same rotation.
It is noted that such a setting presents both sharp (change in class) and smooth

(rotation) distribution shifts; therefore, for the algorithms relying on explicit
boundaries, it would be hard to identify them. As outlined in Sec. 4.1, just ER,
MER, and GSS are suitable for GCL. However, we also explore a variant of
A-GEM equipped with a reservoir memory buffer (A-GEM-R). We compare these
approaches with DER and DER++, reporting the results in Table 4.4 (we keep
the same fully-connected network used on MNIST-based datasets). As can be
seen, DER and DER++ outstand in such a challenging scenario, supporting the
effectiveness of the proposed baselines against alternative replay methods.

4.4 Model Analysis
We provide here an in depth analysis of DER and DER++ by comparing them
against FDR and ER. By so doing, we gather insights on logits sampled throughout
the optimization trajectory, as opposed to ones at task boundaries and true labels.

DER converges to flatter minima Recent studies [26, 72, 78] link Deep Net-
work generalization to the geometry of the loss function, namely the flatness of
the attained minimum. While these works link flat minima to good train-test
generalization, here we are interested in examining their weight in Continual
Learning. Let us suppose that the optimization converges to a sharp minimum
w.r.t. L1...tc (Eq. 4.1): in that case, the tolerance towards local perturbations is
quite low. As a side effect, the drift we will observe in parameter space (due to
the optimization of L1...t′ for t′ > tc) will intuitively lead to an even more serious
drop in performance.



4.4. MODEL ANALYSIS 50

10 15 20 25 30 35
Perturbation [σ×10−3]

0

10

20

30

40
Tr

ai
ni

ng
 L

os
s 
Σ t


t

(a) Perturbation [↓ ]
(S-CIFAR-10, buffer 500)

FDR
ER
DER
DER++

200 500 5120
Buffer Size

0

2

4

6

8

10

12

Tr
(F

) [
×1

04
]

D
E

R
D

E
R

+
+

E
R

FD
R

D
E

R
D

E
R

+
+

E
R

FD
R

D
E

R
D

E
R

+
+

E
R

(b) Fisher Eigenvalues [↓ ]
(S-CIFAR-10)

1 2 3 4 5 6 7 8 9 10
Task Number

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

E
C

E

(c) Calibration Error [↓ ]
(S-TINYIMG, buffer 500)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perf
ect

 Calib
ratio

n

(d) Final Calibration
(S-TINYIMG, buffer 500)

200 500 5120
Buffer size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Av
g.

 A
cc

.→
Fi

ne
-t

un
in

g

D
E

R
D

E
R

+
+

E
R FD

R D
E

R
D

E
R

+
E

R
FD

R E
R

FD
R

(e) Buffer fitting [↑ ]
(S-CIFAR-10)

0 3 6 9 12 15 18
Time [hours]

GSS
GEM

DER++
DER

A-GEM
FDR

ER
iCaRL

(f) Training Times [↓ ]
(S-CIFAR-10, buffer 500)

Figure 4.2: Results for the model analysis. [↑] higher is better, [↓] lower is better.

On the contrary, reaching a flat minimum for L1...tc could give more room for
exploring neighbouring regions of the parameter space, where one may find a new
optimum for task t′ without experiencing a severe failure on tasks 1, . . . , tc. We
conjecture that the effectiveness of the proposed baseline is linked to its ability
to attain flatter and robust minima, which generalizes better to unseen data and,
additionally, favors adaptability to incoming tasks. To validate this hypothesis,
we compare the flatness of the training minima of FDR, ER, DER and DER++
utilizing two distinct metrics.

Firstly, as done in [215, 219], we consider the model at the end of training and
add independent Gaussian noise with growing σ to each parameter. This allows us
to evaluate its effect on the average loss across all training examples. As shown in
Fig. 4.2(a) (S-CIFAR-10, buffer size 500), ER and especially FDR reveal higher
sensitivity to perturbations than DER and DER++. Furthermore, [26, 72, 78]
propose measuring flatness by evaluating the eigenvalues of∇2

θL: sharper minima
correspond to larger Hessian eigenvalues. At the end of training on S-CIFAR-10,
we compute the empirical Fisher Information Matrix F =

∑∇θL ∇θLT /N w.r.t.
the whole training set (as an approximation of the intractable Hessian [26, 85]).
Fig. 4.2(b) reports the sum of its eigenvalues Tr(F ): as one can see, DER and
especially DER++ produce the lowest eigenvalues, which translates into flatter
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minima following our intuitions. It is worth noting that FDR’s large Tr(F ) for
buffer size 5120 could be linked to its failure case in S-CIFAR-10, Class-IL.

DER converges to more calibrated networks Calibration is a desirable property
for a learner, measuring how much the confidence of its predictions corresponds
to its accuracy. Ideally, we expect output distributions whose shapes mirror
the probability of being correct, thus quantifying how much one can trust a
specific prediction. Recent works find out that modern Deep Networks – despite
largely outperforming the ones from a decade ago – are less calibrated [54], as
they tend to yield overconfident predictions [90]. In real-world applications, AI
tools should support decisions in a continuous and online fashion (e.g. weather
forecasting [21] or econometric analysis [52]); therefore, calibration represents
an appealing property for any CL system aiming for employment outside of a
laboratory environment.

Fig. 4.2(c, d) shows, for TinyImageNet, the value of the Expected Calibration
Error (ECE) [133] during the training and the reliability diagram at the end of
it respectively. It can be seen that DER and DER++ achieve a lower ECE than
ER and FDR without further application of a posteriori calibration methods (e.g.,
Temperature Scaling, Dirichlet Calibration, ...). This means that models trained
using Dark Experience are less overconfident and, therefore, easier to interpret. As
a final remark, Liu et al. link this property to the capability to generalize to novel
classes in a zero-shot scenario [110], which could translate into an advantageous
starting point for the subsequent tasks for DER and DER++.

On the informativeness of DER’s buffer Network responses provide a rich
description of the corresponding data point. Following this intuition, we posit
that the merits of DER also result from the knowledge inherent in its memory
buffer: when compared to the one built by ER, the former represents a more
informative summary of the overall (full) CL problem. If that were the case, a
new learner trained only on the buffer would yield an accuracy that is closer to the
one given by jointly training on all data. To validate this idea, we train a network
from scratch using the memory buffer as the training set: we can hence compare
how memories produced by DER, ER, and FDR summarize well the underlying
distribution. Fig. 4.2(e) shows the accuracy on the test set: as can be seen, DER
delivers the highest performance, surpassing ER, and FDR. This is particularly
evident for smaller buffer sizes, indicating that DER’s buffer should be especially
preferred in scenarios with severe memory constraints.
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Further than its pure performance, we assess whether a model trained on the
buffer can be specialized to an already seen task: this would be the case of new
examples from an old distribution becoming available on the stream. We simulate
it by sampling 10 samples per class from the test set and then fine-tuning on them
with no regularization; Fig. 4.2 reports the accuracy on the remainder of the test
set of each task: here too, DER’s buffer yields better performance, thus providing
additional insight regarding its representation capabilities.

On training time When facing up with a data-stream, one often cares about
reducing the overall processing time: otherwise, training would not keep up
with the rate at which data are made available to the stream. In this regard, we
assess the performance of both DER and DER++ and other rehearsal methods
in terms of wall-clock time (seconds) at the end of the last task. To guarantee a
fair comparison, we conduct all tests under the same conditions, running each
benchmark on a Desktop Computer equipped with an NVIDIA Titan X GPU
and an Intel i7-6850K CPU. Fig. 4.2(f) reports the execution time we measured
on S-CIFAR10, indicating the time necessary for each of 5 tasks. We draw the
following remarks: i) DER has a comparable running time w.r.t. other replay
methods such as ER, FDR, and A-GEM; ii) the time complexity for GEM grows
linearly w.r.t. the number of previously seen tasks; iii) GSS is extremely slow
(0.73 examples per second on average, while DER++ processes 3.71 examples per
second), making it hardly viable in practical scenarios.

4.5 Conclusion
In this chapter, we have introduced Dark Experience Replay: a simple baseline
for Continual Learning, which leverages Knowledge Distillation for retaining
past experience and therefore avoiding catastrophic forgetting. We have shown
the effectiveness of our proposal through an extensive experimental analysis,
carried out on top of standard benchmarks. Also, we have argued that the recently
formalized General Continual Learning provides the foundation for advances
in diverse applications; for this reason, we have proposed MNIST-360 as an
experimental protocol for this setting. We recommend DER as a starting point for
future studies on both CL and GCL in light of its strong results on all evaluated
settings and of the properties observed in Sec. 4.4.



Chapter 5

Person Re-Identification

Recent advances on Metric Learning [166, 174, 201, 189] give to researchers
the foundation for computing suitable distance metrics between data points. In
this context, Re-Identification (Re-ID) – which aims at associating images or
videos of the same entity taken from different angles and cameras – has greatly
benefited in diverse domains [222, 79, 164], as the common paradigm requires
distance measures exhibiting robustness to variations in background clutters, as
well as different viewpoints. To meet these criteria, various deep learning based
approaches leverage videos to provide detailed descriptions for both query and
gallery items. However, such a setting – known as Video-To-Video (V2V) Re-ID –
does not represent a viable option in many scenarios (e.g. surveillance) [214, 205,
135, 53], where the query comprises a single image (Image-To-Video, I2V).

As observed in [53], a large gap in Re-ID performance still subsists between
V2V and I2V, highlighting the number of query images as a critical factor in
achieving good results. Contrarily, we advise the learnt representation should
not be heavily affected when few images are shown to the network (e.g. only
one). To bridge such a gap, [53, 18] propose a teacher-student paradigm, in which
the student – in contrast with the teacher – has access to a small fraction of the
frames in the video. Since the student is educated to mimic the output space of its
teacher, it will show higher generalisation properties than its teacher when a single
frame is available. It is noted that these approaches rely on transferring temporal
information: as datasets often come with tracking annotation, they can guide
the transfer from a tracklet into one of its frames. In this respect, we argue the
limits of transferring temporal information: in fact, it is reasonable to assume high
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(a) Two examples of tracklets.

MARS VeRi-776

(b) Distances between tracklets features.

(c) Two examples of multiview sets. (d) Distances when ensambling views.

Figure 5.1: Visual comparison between tracklets and viewpoints variety, on person
(MARS [221]) and vehicle (VeRi-776 [113]) re-id. Right: pairwise distances
computed on top of features from ResNet-50. Inputs batches comprise 192 sets
from 16 different identities, grouped by ground truth identity along each axis.

correlation between frames from the same tracklet (Fig. 5a), which may potentially
underexploit the transfer. Moreover, limiting the analysis to the temporal domain
does not guarantee robustness to variation in background appearances.

Here, we make a step forward and consider which information to transfer,
shifting the paradigm from time to views: we argue that more valuable inform-
ation arises when ensembling diverse views of the same target (Fig. 5c). This
information often comes for free, as various datasets [221, 203, 113, 17] provide
images capturing the same target from different camera viewpoints. To support
our claim, Fig. 5 (right) reports pairwise distances computed on top of ResNet-50,
when trained on Person and Vehicle Re-ID. In more details: matrices from Fig. 5b
visualise the distances when tracklets are provided as input, whereas Fig. 5d shows
the same for sets of views. As one can see, leveraging different views leads to a
more distinctive blockwise pattern: namely, activations from the same identity
are more consistent if compared to the ones computed in the tracklet scenario.



5.1. PRELIMINARIES 55

As shown in [186], this reflects a higher capacity to capture the semantics of the
dataset, and therefore a graceful knowledge a teacher can transfer to a student.

Based on the above, we propose Views Knowledge Distillation (VKD), which
transfers the knowledge lying in several views in a teacher-student fashion. VKD
devises a two-stage procedure, which pins the visual variety as a teaching signal
for a student who has to recover it using fewer views. We remark the following
contributions: i) the student outperforms its teacher by a large margin, especially
in the Image-To-Video setting; ii) a thorough investigation shows that the student
focuses more on the target compared to its teacher and discards uninformative
details; iii) importantly, we do not limit our analysis to a single domain, but instead
achieve strong results on Person, Vehicle and Animal Re-ID.

5.1 Preliminaries
Image-To-Video Re-Identification The I2V Re-ID task has been successfully
applied to multiple domains. In person Re-ID, [200] frames it as a point-to-set
task, where image and video domains are aligned using a single deep network.
The authors of [214] exploit time information by aggregating frames features
via a Long-Short Term Memory. Eventually, a dedicated sub-network aggreg-
ates video features and match them against single image query ones. Authors
of MGAT [11] employ a Graph Neural Network to model relationships between
samples from different identities, thus enforcing similarity in the feature space.
Dealing with vehicle Re-ID, authors from [114] introduce a large-scale dataset
(VeRi-776) and propose PROVID and PROVID-BOT, which combine appearance
and plate information in a progressive fashion. Differently, RAM [112] exploits
multiple branches to extract global and local features, imposing a separate supervi-
sion on each branch and devising an additional one to predict vehicle attributes.
VAMI [226] employs a viewpoint aware attention model to select core regions for
different viewpoints. At inference time, they obtain a multiview descriptor through
a conditional generative network, inferring information regarding the unobserved
viewpoints. Differently, our approach asks the student to do it implicitly and in
a lightweight fashion, thus avoiding the need for additional modules. Similarly
to VAMI, [31] predicts the vehicle viewpoint along with appearance features; at
inference, the framework provides distances according to the predicted viewpoint.

Knowledge Distillation Knowledge Distillation has been first investigated
in [156, 63, 210] for model compression: the idea is to instruct a lightweight
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model (student) to mimic the capabilities of a deeper one (teacher): as a gift, one
could achieve both an acceleration in inference time as well as a reduction in
memory consumption, without experiencing a large drop in performance. The
approach discussed in this chapter uses the same techniques proposed in [63, 186]
but for a different purpose: we are not primarily engaged in educating a light-
weight module, but on improving the original model itself. In this framework
– often called self-distillation [49, 206] – the transfer occurs from the teacher
to a student with the same architecture, with the aim of improving the overall
performance at the end of the training. Here, we get a step ahead and introduce an
asymmetry between the teacher and student, which has access to fewer frames. In
this respect, our approach closely relates to what [18] devises for Video Classi-
fication. Besides facing another task, a key difference subsists: while [18] limits
the transfer along the temporal axis, our proposal advocates for distilling many
views into fewer ones. On this latter point, we shall show that the teaching sig-
nal can be further enhanced when opening to diverse camera viewpoints. In the
Re-Identification field, Temporal Knowledge Propagation (TKP) [53] similarly
exploits intra-tracklet information to encourage the image-level representations
to approach the video-level ones. In contrast with TKP: i) we do not rely on
matching internal representations but instead their distances solely, thus making
our proposal viable for cross-architecture transfer too; ii) at inference time, we
make use of a single shared network to deal with both image and video domains,
thus halving the number of parameters; iii) during transfer, we benefit from a
larger visual variety, emerging from several viewpoints.

5.2 Proposed Approach
We pursue the aim of learning a function Fθ(S) mapping a set of images S =
(s1, s2, ..., sn) into a representative embedding space. Specifically, S is a sequence
of bounding boxes crops depicting a target (e.g. a person or a car), for which
we are interested in inferring its corresponding identity. We take advantage of
Convolutional Neural Networks (CNNs) for modelling Fθ(S). Here, we look
for two distinctive properties, aspiring to representations that are i) invariant to
differences in background and viewpoint and ii) robust to a reduction in the number
of query images. To achieve this, our proposal frames the training algorithm as a
two-stage procedure, as follows:

• First step (Sec. 5.2.1): the backbone network is trained for the standard
Video-To-Video setting.
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Figure 5.2: An overview of Views Knowledge Distillation (VKD): a student
network is optimised to mimic the behaviour of its teacher using fewer views.

• Second step (Sec. 5.2.2): we appoint it as the teacher and freeze its para-
meters. Then, a new network with the role of the student is instantiated: we
feed frames representing different views as input to the teacher and ask the
student to mimic the same outputs from fewer frames (see Fig. 5.2).

5.2.1 Teacher Network
Without loss of generality, we will refer to ResNet-50 [58] as the backbone
network, namely a module fθ : RW×H×3 7→ RD mapping each image si from
S to a fixed-size representation di (in this case D = 2048). Following previous
works [120, 53], we initialise the network weights on ImageNet and additionally
include few amendments [120] to the architecture. First, we discard both the last
ReLU activation function and final classification layer in favour of the BNNeck
one [120] (i.e. batch normalisation followed by a linear layer). Second: to benefit
from fine-grained spatial details, the stride of the last residual block is decreased
from 2 to 1.

Set representation Given a set of images S, several solutions [116, 214, 107]
may be assessed for designing the aggregation module, which fuses a variable-
length set of representations d1, d2, . . . , dn into a single one. Here, we naively
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compute the set-level embeddingF(S) through a temporal average pooling. While
we acknowledge better aggregation modules exist, we do not place our focus on
devising a new one, but instead on improving the earlier features extractor.

Teacher optimisation We train the base network - which will be the teacher
during the following stage - combining a classification term LCE (cross-entropy)
with the triplet loss LTR

1. The first can be formulated as:

LCE = −y log ŷ (5.1)

where y and ŷ represent the one-hot labels (identities) and the output of the
softmax respectively. The second term LTR encourages distance constraints in
feature space, moving closer representations from the same target and pulling
away ones from different targets. Formally:

LTR = ln(1 + eD(Fθ(Si
a),Fθ(Si

p))−D(Fθ(Si
a),Fθ(Sj

n))), (5.2)

where Sp and Sn are the hardest positive and negative for an anchor Sa within the
batch. In doing so, we rely on the batch hard strategy [60] and include P identities
coupled with K samples in each batch. Importantly, each set Si comprises images
drawn from the same tracklet [107, 48].

5.2.2 Views Knowledge Distillation (VKD)
After training the teacher, we propose to enrich its representation capabilities,
especially when only few images are made available to the model. To achieve
this, our proposal bets on the knowledge we can gather from different views,
depicting the same object under different conditions. When facing re-identification
tasks, one can often exploit camera viewpoints [221, 152, 113] to provide a larger
variety of appearances for the target identity. Ideally, we would like to teach a new
network to recover such a variety even from a single image. Since this information
may not be inferred from a single frame, this can lead to an ill-posed task. Still,
one can underpin this knowledge as a supervision signal, encouraging the student
to focus on important details and favourably discover new ones. On this latter
point, we refer the reader to Sec. 5.4 for a comprehensive discussion.

Views Knowledge Distillation (VKD) stresses this idea by forcing a student
network FθS (·) to match the outputs of the teacher FθT (·). In doing so, we: i)

1For the sake of clarity, all the loss terms are referred to one single example. In the implementation,
we extend the penalties to a batch by averaging.
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allow the teacher to access frames ŜT = (ŝ1, ŝ2, . . . , ŝN ) from different view-
points; ii) force the student to mimic the teacher output starting from a subset
ŜS = (ŝ1, ŝ2, . . . , ŝM ) ⊂ ŜT with cardinality M < N (in our experiments,
M = 2 and N = 8). The frames in ŜS are uniformly sampled from ŜT without
replacement. This asymmetry between the teacher and the student leads to a
self-distillation objective, where the latter can achieve better solutions despite
inheriting the same architecture of the former.

To accomplish this, VKD exploits the Knowledge Distillation loss [63]:

LKD = τ2 KL(yT ∥ yS) (5.3)

where yT = softmax(hT /τ) and yS = softmax(hS/τ) are the distributions –
smoothed by a temperature τ – we attempt to match2. Since the student experiences
a different task from the teacher one, Eq. 5.3 resembles the regularisation term
imposed by [101] to relieve catastrophic forgetting. In a similar vein, we intend to
strengthen the model in the presence of few images, whilst not deteriorating the
capabilities it achieved with longer sequences.

In addition to fitting the output distribution of the teacher (Eq. 5.3), our
proposal devises additional constraints on the embedding space learnt by the
student. In details, VKD encourages the student to mirror the pairwise distances
spanned by the teacher. Indicating with DT [i, j] ≡ D(FθT (ŜT [i]),FθT (ŜT [j]))
the distance induced by the teacher between the i-th and j-th sets (the same
notation DS [i, j] also holds for the student), VKD seeks to minimise:

LDP =
∑

(i,j)∈ (B2)

(DT [i, j]−DS [i, j])
2, (5.4)

where B equals the batch size. Since the teacher has access to several viewpoints,
we argue that distances spanned in its space yield a powerful description of corres-
ponding identities. From the student perspective, distances preservation provides
additional semantic knowledge. Therefore, this holds an effective supervision
signal, whose optimisation is made more challenging since fewer images are
available to the student.

Even though VKD focuses on self-distillation, we highlight that both LKD
and LDP allow to match models with different embedding size, which would not
be viable under the minimisation performed by [53]. As an example, it is still
possible to distill ResNet-101 (D = 2048) into MobileNet-V2 [162] (D = 1280).

2Since the teacher parameters are fixed, its entropy is constant and the objective of Eq. 5.3 reduces
to the cross-entropy between yT and yS .



5.3. EXPERIMENTS 60

Student optimisation The VKD overall objective combines the distillation
terms (LKD and LDP) with the ones optimised by the teacher - LCE and LTR -
that promote higher conditional likelihood w.r.t. ground truth labels. To sum up,
VKD aims at strengthening the features of a CNN in Re-ID settings through the
following optimisation problem:

argmin
θS

LVKD ≡ LCE + LTR + αLKD + βLDP, (5.5)

where α and β are two hyperparameters balancing the contributions to the total loss
LVKD. We conclude with a final note on the student initialisation: we empirically
found beneficial to start from the teacher weights θT except for the last convo-
lutional block, which is reinitialised according to the ImageNet pretraining. We
argue this represents a good compromise between exploring new configurations
and exploiting the abilities already achieved by the teacher.

5.3 Experiments
Evaluation Protocols We indicate the query-gallery matching as x2x, where
both x terms are features that can be generated by either a single (I) or multiple
frames (V). In the Image-to-Image (I2I) setting features extracted from a query
set image are matched against features from individual images in the gallery.
This protocol has a light impact in terms of resources footprint: however, a
single view of the identity may not be enough for identities exhibiting multi-
modal distributions. Contrarily, the Video-to-Video (V2V) setting enables to
capture and combine different modes in the input, but with a significant increase
in the number of operations and memory. Finally, the Image-to-Video (I2V)
setting [225, 226, 112, 202, 114] represents a good compromise: building the
gallery may be slow, but it is often performed offline. Moreover, matchings
perform extremely fast, as a query comprise only a single image. We remark that
i) We adopt the standard “Cross Camera Validation” protocol, not considering
examples of the gallery from the same camera of the query at evaluation and ii)
even if VKD relies on frames from different camera during train, we strictly adhere
to the common schema and switch to tracklet-based inputs at evaluation time.

Evaluation Metrics While settings vary between different dataset, evaluation
metrics for Re-Identification are shared by the vast majority of works in the field.
We report performance in terms of top-k accuracy and Mean Average Precision
(mAP), thus evaluating both recognition accuracy and ranking performance.
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5.3.1 Datasets
Person Re-ID MARS [221] comprises 19680 tracklets from 6 different cameras,
capturing 1260 different identities (split between 625 for the training set, 626 for
the gallery and 622 for the query) with 59 frames per tracklet on average. MARS
has been automatically annotated, thus leading to errors and false detections [222].
The Duke [152] dataset was first introduced for multi-target and multi-camera
surveillance purposes, and then expanded to include person attributes and identities
(414 ones). Consistently with [53, 173, 107, 129], we use the Duke-Video-
ReID [203] variant, where identities have been manually annotated from tracking
information3. It comprises 5534 video tracklets from 8 different cameras, with
167 frames per tracklet on average. Following [53], we extract the first frame of
every tracklet when testing in the I2V setting, for both MARS and Duke.

Vehicle Re-ID VeRi-776 [113] has been collected from 20 fixed cameras, cap-
turing vehicles moving on a circular road in a 1.0 km2 area. It contains 18397
tracklets with an average number of 6 frames per tracklet, capturing 775 identities
split between train (575) and gallery (200). The query set shares identities con-
sistently with the gallery, but differently from the other two sets it includes only
a single image for each couple (id, camera). Consequently, all recent methods
perform the evaluation following the I2V setting.

Animal Re-ID The Amur Tiger [98] Re-Identification in the Wild (ATRW)
is a dataset collected from a diverse set of wild zoos. The training set includes
107 subjects and 17.6 images on average per identity; no information is provided
to aggregate images into tracklets. It is possible to evaluate only the I2I setting
through a remote http server. As in [106], we horizontally flip the training images
to double the number of identities available, thus resulting in 214 training identities.

Implementation details Following [60, 107] we adopt the following hyperpara-
meters for MARS and Duke: i) each batch contains P = 8 identities with K = 4
samples each; ii) each sample comprises 8 images equally spaced in a tracklet.
Differently, for image-based datasets (ATRW and VeRi-776) we increase P to
18 and use a single image at a time. All the teacher networks are trained for 300
epoch using Adam [82], setting the learning rate to 10−4 and multiplying it by

3In the following, we refer to Duke-Video-ReID simply as Duke. Another variant of Duke named
Duke-ReID exists [153], but it does not come with query tracklets.
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MARS Duke VeRi-776
I2V V2V I2V V2V I2I I2V

cmc1 mAP cmc1 mAP cmc1 mAP cmc1 mAP cmc1 mAP cmc1 mAP

ResNet-34 80.8 70.7 86.7 78.0 81.3 78.7 93.5 91.9 92.3 70.3 93.8 75.0
ResVKD-34 82.2 73.7 87.8 79.5 83.3 80.6 93.7 91.6 95.3 76.0 94.8 79.0

ResNet-50 82.2 73.4 87.9 81.1 82.3 80.2 95.0 94.2 93.5 73.2 93.3 77.9
ResVKD-50 83.9 77.3 88.7 82.2 85.6 83.8 95.0 93.4 95.2 79.2 95.2 82.2

ResNet-101 82.8 75.0 88.6 81.7 83.8 82.9 96.0 94.7 94.3 74.3 94.5 78.2
ResVKD-101 85.9 77.6 89.6 82.7 86.3 85.1 95.4 93.7 95.5 80.6 96.1 83.3

ResNet-50bam 82.6 74.1 88.5 81.2 82.5 80.2 94.9 93.8 93.3 72.7 93.8 77.1
ResVKD-50bam 84.3 78.1 89.4 83.1 86.2 84.5 95.2 93.5 96.0 78.7 95.7 81.6

DenseNet-121 82.7 74.3 89.8 81.9 82.9 80.3 93.7 91.7 91.2 69.2 91.8 74.5
DenseVKD-121 84.0 77.1 89.8 82.8 86.5 84.1 95.4 93.5 94.3 76.2 93.8 79.8

MobileNet-V2 78.6 67.9 86.0 77.1 78.1 74.7 93.3 91.6 88.8 64.7 89.8 69.9
MobileVKD-V2 83.3 74.0 88.1 79.6 83.8 80.8 94.3 92.5 92.9 70.9 92.6 75.3

Table 5.1: Self-Distillation results across datasets, settings and architectures.

0.1 every 100 epochs. During the distillation stage, we feed N = 8 images to the
teacher and M = 2 ones (picked at random) to the student. We found beneficial to
train the student longer: so, we set the number of epochs to 500 and the learning
rate decay steps at 300 and 450. We keep fixed τ = 10 (Eq. 5.3), α = 10−1 and
β = 10−4 (Eq. 5.5) in all experiments. To improve generalisation, we apply data
augmentation as described in [120]. Finally, we put the teacher in training mode
during distillation (consequently, batch normalisation [69] statistics are computed
on a batch basis): as observed in [7], this provides more accurate teacher labels.

5.3.2 Experimental Results
Self-Distillation

In this section we show the benefits of self-distillation for person and vehicle
re-id. We indicate the teacher with the name of the backbone (e.g. ResNet-50)
and append “VKD” for its student (e.g. ResVKD-50). To validate our ideas,
we do not limit the analysis on ResNet-*; contrarily, we test self-distillation on
DenseNet-121 [65] and MobileNet-V2 1.0X [162]. Since learning what and where
to look represents an appealing property when dealing with Re-ID tasks [48], we
additionally conduct experiments on ResNet-50 coupled with Bottleneck Attention
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Figure 5.3: Performance (mAP) in the Image-To-Video setting when changing at
evaluation time the number of frames in each gallery tracklet.

Modules [140] (ResNet-50bam). Tab. 5.1 reports the comparisons for different
backbones: in the vast majority of the settings, the student outperforms its teacher.
Such a finding is particularly evident when looking at the I2V setting, where
the mAP metric gains 4.04% on average. The same holds for the I2I setting
on VeRi-776, and in part also on V2V. We draw the following remarks: i) in
accordance with the objective the student seeks to optimise, our proposal leads
to greater improvements when few images are available; ii) bridging the gap
between I2V and V2V does not imply a significant information loss when more
frames are available; on the contrary it sometimes results in superior performance;
iii) the previous considerations hold true across different architectures. As an
additional proof, plots from Fig. 5.3 draw a comparison between models before
and after distillation. VKD improves metrics considerably on all three dataset,
as highlighted by the bias between the teachers and their corresponding students.
Surprisingly, this often applies when comparing lighter students with deeper
teachers: as an example, ResVKD-34 scores better than even ResNet-101 on
VeRi-776, regardless of the number of images sampled for a gallery tracklet.

Comparison with State-Of-The-Art

Image-To-Video Tables 5.2, 5.3.2 and 5.3.2 report a thorough comparison
with current state-of-the-art (SOTA) methods, on MARS, Duke and VeRi-776
respectively. As common practice [53, 11, 146], we focus our analysis on ResNet-
50, and in particular on its distilled variants ResVKD-50 and ResVKD-50bam.
Our method clearly outperforms other competitors, with an increase in mAP w.r.t.
top-scorers of 6.3% on MARS, 8.6% on Duke and 5% on VeRi-776. This results
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Method top1 mAP

P2SNet[200] 55.3 -
Zhang[214] 56.5 -
XQDA[103] 67.2 54.9
TKP[53] 75.6 65.1
STE-NVAN[107] 80.3 68.8
NVAN[107] 80.1 70.2
MGAT[11] 81.1 71.8

ResVKD-50 83.9 77.3
ResVKD-50bam 84.3 78.1

Table 5.2: MARS I2V

Method top1 mAP

STE-NVAN[107] 42.2 41.3
TKP[53] 77.9 75.9
NVAN[107] 78.4 76.7

ResVKD-50 85.6 83.8
ResVKD-50bam 86.2 84.5

Table 5.3: Duke I2V

Method top1 mAP

PROVID[114] 76.8 48.5
VFL-LSTM[3] 88.0 59.2
RAM[112] 88.6 61.5
VANet[31] 89.8 66.3
PAMTRI[179] 92.9 71.9
SAN[146] 93.3 72.5
PROVID-BOT[114] 96.1 77.2

ResVKD-50 95.2 82.2
ResVKD-50bam 95.7 81.6

Table 5.4: VeRi-776 I2V

Method top1 mAP

DuATN[173] 81.2 67.7
TKP[53] 84.0 73.3
CSACSE+OF[30] 86.3 76.1
STA[48] 86.3 80.8
STE-NVAN[107] 88.9 81.2
NVAN[107] 90.0 82.8

ResVKD-50 88.7 82.2
ResVKD-50bam 89.4 83.1

Table 5.5: MARS V2V

Method top1 mAP

DuATN[173] 81.2 67.7
Matiyali[129] 89.3 88.5
TKP[53] 94.0 91.7
STE-NVAN[107] 95.2 93.5
STA[48] 96.2 94.9
NVAN[107] 96.3 94.9

ResVKD-50 95.0 93.4
ResVKD-50bam 95.2 93.5

Table 5.6: Duke V2V

Method top1 mAP

PPbM-a [98] 82.5 62.9
PPbM-b [98] 83.3 60.3
NWPU [208] 94.7 75.1
BRL [109] 94.0 77.0
NBU [106] 95.6 81.6

ResNet-101 92.3 75.7
ResVKD-101 92.0 77.2

Table 5.7: ATRW I2I

is totally in line with our goal of conferring robustness when just a single image is
provided as query. In doing so, we do not make any task-specific assumption, thus
rendering our proposal easily applicable to both person and vehicle Re-ID.

Video-To-Video Analogously, we conduct experiments on the V2V setting and
report results in Tab. 5.5 (MARS) and Tab. 5.6 (Duke)4. Here, VKD yields the
following results: on the one hand, on MARS it pushes a baseline architecture as
ResVKD-50 close to NVAN and STE-NVAN [107], the latter being tailored for
the V2V setting. Moreover – when exploiting spatial attention modules (ResVKD-
50bam) – it establishes new SOTA results, suggesting that a positive transfer
occurs when matching tracklets also. On the other hand, the same does not hold
true for Duke, where exploiting video features as in STA [48] and NVAN appears
rewarding. We leave the investigation of further improvements on V2V to future
works. As of today, our proposals is the only one guaranteeing consistent and
stable results under both I2V and V2V settings.

4Since VeRi-776 does not include any tracklet information in the query set, following all other
competitors we limit experiments to the I2V setting only.
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MARS Duke VeRi-776

Prior Class. 0.19 0.14 0.06

ResNet-34 0.61 0.73 0.55
ResVKD-34 0.40 0.67 0.51

ResNet-101 0.71 0.72 0.73
ResVKD-101 0.51 0.70 0.68

Table 5.8: Analysis on camera bias, in terms of viewpoint classification accuracy.

In the absence of camera information Here, we address the setting where we do
not have access to camera information. As an example, when dealing with animal
re-id this information often lacks and datasets come with images and labels solely:
can VKD still provide any improvement? We think so, as one can still exploit
the visual diversity lying in a bag of randomly sampled images. To demonstrate
our claim, we test our proposal on Amur Tigers re-identification (ATRW), which
was conceived as an Image-To-Image dataset. During comparisons: i) since other
works do not conform to a unique backbone, here we opt for ResNet-101; ii) as
common practice in this benchmark [106, 109, 208], we leverage re-ranking [223].
Tab. 5.3.2 compares VKD against the top scorers in the “Computer Vision for
Wildlife Conservation 2019” competition. Importantly, the student ResVKD-101
improves over its teacher (1.5% on mAP and 2.9% on top5) and places second
behind [106], confirming its effectiveness in a challenging scenario. Moreover, we
remark that the top-scorer requires additional annotations - such as body parts and
pose information - which we do not exploit.

5.4 Model Analysis
VKD reduces the camera bias As pointed out in [182], the appearance encoded
by a CNN is heavily affected by external factors surrounding the target object
(e.g. different backgrounds, viewpoints, illumination . . . ). In this respect, is
our proposal effective for reducing such a bias? To investigate this aspect, we
perform a camera classification test on both the teacher (e.g. ResNet-34) and
the student network (e.g. ResVKD-34) by fitting a linear classifier on top of
their features, with the aim of predicting the camera the picture is taken from.
We freeze all backbone layers and train for 300 epochs (lr = 10−3 and halved
every 50 epochs). Tab. 5.8 reports performance on the gallery set for different
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Input Bags MARS I2V MARS V2V Duke I2V Duke V2V

cmc1 mAP cmc1 mAP cmc1 mAP cmc1 mAP

ResNet-50 ViewpointsN=2 80.1 71.2 84.7 77.0 77.2 75.2 89.2 87.7

ResNet-50 TrackletsN=2 82.3 73.7 87.3 79.9 81.8 80.3 93.7 92.9

ResVKD-50 ViewpointsN=2 83.9 77.3 88.7 82.2 85.6 83.8 95.0 93.4

Table 5.9: Analysis on different modalities for training the teacher.

teachers and students. To provide a better understanding, we include a baseline
that computes predictions by sampling from the cameras prior distribution. As
expected: i) the teacher outperforms the baseline, suggesting it is in fact biased
towards background conditions; ii) the student consistently reduces the bias,
confirming VKD encourages the student to focus on identities features and drops
viewpoint-specific information.

Distilling viewpoints vs time Fig. 5.4 shows results of distilling knowledge
from multiple views against time (i.e. multiple frames from a tracklet). On one
side, as multiple views hold more “visual variety”, the student builds a more
invariant representation for the identity. On the opposite, a student trained with
tracklets still considerably outperforms the teacher. This shows that, albeit the
visual variety is reduced, our distillation approach still successfully exploits it.

Can performance of the student be obtained without distillation? To high-
light the advantages of the two-stage procedure above discussed, we here consider
a teacher (ResNet-50) trained straightly using few frames (N = 2) only. First two
rows of Tab. 5.4 show the performance achieved by this baseline (using tracklets
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Student Teacher (#params)
MARS I2V Duke I2V VeRi-776 I2V

cmc1 mAP cmc1 mAP cmc1 mAP

ResNet-34
ResNet-34 (21.2M) 82.2 73.7 83.3 80.6 94.8 79.0
ResNet-50 (23.5M) 83.1 75.5 84.1 82.6 95.1 80.1
ResNet-101 (42.5M) 83.4 75.5 85.8 83.7 94.9 80.4

ResNet-50
ResNet-50 (23.5M) 83.9 77.3 85.6 83.8 95.2 82.2
ResNet-101 (42.5M) 84.5 77.5 85.9 84.3 95.4 83.0

MobileNet-V2
MobileNet-V2 (2.2M) 83.3 74.0 83.8 80.8 92.6 75.3
ResNet-101 (42.5M) 83.4 74.7 83.8 81.4 93.0 76.4

Table 5.10: Measuring the benefit of VKD for cross-architecture transfer.

and views respectively). Results show that major improvements come from the
teacher-student paradigm we devise (third row), instead of simply reducing the
number of input images available to the teacher.

Cross-Distillation Differently from other approaches [18, 53], VKD is not
confined to self-distillation but instead allows cross-distillation i.e. the transfer
from a complex architecture (e.g., ResNet-101) into a simpler one (e.g., MobileNet-
V2). Here, drawing inspirations from the model compression area, we attempt to
reduce the network complexity but, at the same time, increase the profit we already
achieve through self-distillation. Tab. 5.10 shows results of cross-distillation, for
various combinations of a teacher and a student. It appears that better the teacher,
better the student: as an example, ResVKD-34 gains an additional 3% mAP on
Duke when educated by ResNet-101 rather than “itself”.

Student explanation To further assess the differences between teachers and
students, we leverage GradCam [169] to highlight the input regions that have been
considered paramount for predicting the identity. Fig. 5.5 depicts the impact of
VKD for various examples from MARS, VeRi-776 and ATRW. In general, the
student network pays more attention to the subject of interest compared to its
teacher. For person and animal Re-ID, background features are suppressed (third
and last columns) while attention tends to spread to the whole subject (first and
fourth columns). When dealing with vehicle Re-ID, one can appreciate how the
attention becomes equally distributed on symmetric parts, such as front and rear
lights (second, seventh and last columns).
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Figure 5.5: Model explanation via GradCam[169] on ResNet-50 (teacher) and
ResVKD-50 (student). The student favours visual details characterising the target,
discarding external and uninformative patterns.

5.5 Conclusion
An effective Re-ID method requires visual descriptors robust to changes in both
background appearances and viewpoints. Moreover, its effectiveness should be
ensured even for queries composed of a single image. To accomplish these, the
approach discussed in this chapter, called Views Knowledge Distillation (VKD),
consists of a teacher-student architecture where the student observes only a small
subset of input views. This strategy encourages the student to discover better
representations: as a result, it outperforms its teacher at the end of the training.
Importantly, VKD shows robustness on diverse domains (person, vehicle and
animal), surpassing by a wide margin the state of the art in I2V. The extensive
experimental analysis reported in this chapter highlights that the student presents
stronger focus on the target and reduces the camera bias.



Chapter 6

Land-Cover Classification

Over the last decades, Remote Sensing has become an enabling factor for a broad
spectrum of applications such as disaster prevention [167], wildfire detection [47],
vector-borne disease [70], and climate change [155]. These applications benefit
from a higher number of satellite imagery captured at unprecedented rhythms [43],
making every aspect of the Earth’s surface constantly monitored. Machine learning
and Computer Vision provide valid tools to exploit these data in an efficient way.
Indeed, a synergy between Earth Observation and Deep Learning techniques led
to promising results, as highlighted by recent advances in land use and land cover
classification [74], image fusion [128], and semantic segmentation [172].

Despite the amount of raw information being significant, the exploitation of
these data still raises an open problem. Indeed, the prevailing learning paradigm
– the supervised one – frames the presence of labeled data as a crucial factor.
However, acquiring a huge amount of ground truth data is expensive and requires
expert staff, equipment, and in-field measurements. This often restrains the
development of many downstream tasks that are important for paving the way to
the above-mentioned applications.

To mitigate such a problem, a common solution [66] exploits models that are
pre-trained on the ImageNet [38] dataset. In detail, the learning phase is conducted
as follows: firstly, a deep network is trained on ImageNet until it reaches good
performance on image categorization; secondly, a fine-tuning step is carried out on
a target task (e.g. land cover classification). This way, one can achieve acceptable
results even in the presence of few labeled examples, as the second step just adapts
a set of general-purpose features to the new task. However, this approach is limited
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only to the tasks involving RGB images as input. Satellite imagery represents
a domain that is quite different from the RGB one, thus making the ImageNet
pre-training only partially suitable.

These considerations reveal the need for novel approaches that are tailored for
satellite imagery. To build transferable representations, two kinds of approaches
arise from the literature: annotation-based methods and self-supervised ones. The
authors of [134] fulfill the principle of the first branch by investigating in-domain
representation learning. They shift the pre-training stage from ImageNet to a
labeled dataset specific for remote sensing. As an example, one could leverage
BigEarthNet [177], which has been recently released for land-cover classification.
On the other hand, Tile2Vec [73] extracts informative features in a self-supervised
fashion. The authors rely on the assumption that spatially close tiles share similar
information: therefore, their corresponding representations should be placed
closer than tiles that are far apart. In doing so, one does not need labeled data for
extracting representations, but lacks robustness when close tiles are not similar.

Similarly to [73], we discuss in the following a representation learning proced-
ure for satellite imagery, which devises a self-supervised algorithm. In more detail,
we require the network to recover the RGB information by means of other spectral
bands solely. For the rest of the chapter, we adopt the term “spectral bands” for
indicating the subset of the bands not including the RGB. Our approach closely
relates to colorization, which turns out to encourage robust and high-level feature
representations [95, 217]. We feel this pretext task being particularly useful for
satellite imagery, as the connection between colors and semantics appears strong:
for instance, sea waters feature the blue color, vegetation regions the green one
or arable lands prefer warm tones. We inject such a prior knowledge through an
encoder-decoder architecture that – differently from concurrent works – exploits
spectral bands (e.g. short-wave infrared, near-infrared, etc.) instead of grayscale
information to infer color channels. Once the model has reached good capabilities
on tile colorization, we use its encoder as a feature extractor for the later step,
namely fine-tuning on a remote sensing task. We found that the representations
learnt by colorization leads to remarkable results and semantically diverge from
the ones computed on top of RGB channels. Taking advantage of these findings,
we set up an ensemble model, which averages the predictions from two distinct
branches at inference time (the one fed with spectral bands, the other with RGB
information). We show that ensembling features this way leads to better results.
To the best of our knowledge, our work is the first investigating colorization as a
guide towards suitable features for remote sensing applications.

To show the effectiveness of our proposal, we assess it in two different set-
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tings. Firstly, we conduct experiments on land-cover classification, comparing
our solution with two baselines, namely training from scratch and fine-tuning the
ImageNet pre-training. We show that colorization is particularly effective when
few annotations are available for the target tasks. This makes our proposal viable
for scenarios where gathering many labeled data is not practicable. To demonstrate
such a claim, we additionally conduct experiments on the “West Nile Virus” cases
collected in the frame of the Surveillance plan put in place by the Ministry of
Health, with the aim of predicting presence/absence across the Italian territory.

6.1 Preliminaries

6.1.1 Land Cover - Land Use Classification
Recently, the categorization of land-covers has attracted wide interest, as it allows
for the collection of statistics, activities planning, and climate changes monitoring.
To address these challenges, the authors of [125] exploit Convolutional Neural
Networks (CNN) to extract representations encoding both spectral and spatial
information. To speed up the learning process, they advocate for a prior dimension-
ality reduction step across the spectra, as they observe a high correlation in this
dimension. Among works focusing on how to exploit spectral bands, [55] devises
Recurrent Neural Networks (RNNs) to handle the redundancy underlying adjacent
spectral channels. Similarly, [100] proposes a 3D-CNN framework, which can
naturally joint spatial and spectral information in an end-to-end fashion without
requiring any pre-processing step.

While these approaches concern the design of the feature extractor, our work
is primarily engaged in the scenarios in which few labeled examples are available.
In these contexts, fine-tuning pre-trained models often mitigate the lack of a large
annotated dataset, yielding great performance in some cases [127, 137]. Intuitively,
the representations learned from ImageNet (1 million images belonging to 1000
classes) encode a prior knowledge on natural images, thus facilitating the transfer
to different domains. Instead, [134] proposes in-domain fine-tuning, where the
pre-training stage performs on a remote sensing dataset. The authors found in-
domain representations to be effective with limited data (1000 training examples),
surpassing the performance given by the ImageNet initialization. Finally, one
could reduce overfitting through data augmentation [209] (i.e. flip, translation, and
rotation), which affects both the diversity and volume of training data.
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6.1.2 Unsupervised Representations Learning
Unsupervised and self-supervised methods were introduced to learn general visual
features from unlabeled data [75]. These approaches often rely on pretext tasks,
which attempt to compensate for the lack of labels through an artificial supervision
signal. In so doing, the learned representations hopefully embody meaningful
information that is beneficial to downstream tasks.

Reconstructions-based methods Under this perspective, generative models
can be considered as self-supervised methods, where the reconstruction of the
input acts as a pretext task. Denoising Autoencoders [196] contribute to this line
of research: here, the learner has to recover the original input from a corrupted
version. The idea is that good representations are those capturing stable patterns,
which should be recovered even in the presence of a partial or noisy observation.
In remote sensing, autoencoders are often applied [104, 123, 125] to reduce
the dimensionality of the feature space. This yields the twofold advantage of
decreasing the correlation lying in spectral bands and reducing the computational
effort.

Classification-based methods [51] frames the pretext task as a classification
problem, where the learner guesses which rotation (0°, 90°, 180° and 270°) has
been applied to its input. The authors observe that recognizing the transformation
behaves as a proxy for object recognition: the higher the accuracy on the upstream
task, the higher the accuracy on the downstream one. Considering two random
patches from a given image, [41] asks the network to infer the relative position
between those. This encourages the learner to recognize the parts that make up the
object as well as their relations. Similarly, [138] presents a puzzle to the network,
which has to place the shuffled patches back to their original locations.

Colorization-based methods Given a grey-scale image as input, colorization
is the process of predicting realistic colors as output. A qualitative analysis
conducted in [95] shows that colorization-driven representations capture semantic
information, grouping together high-level objects that display low-level variations
(e.g. color or pose). [40] concerns the ambiguity and ill-posedness of colorization,
arguing that several solutions may be assessed for a given grey-scale image. On
this basis, the authors exploit Conditional Variational Autoencoder (CVAE) to
produce diverse colorizations, thus naturally complying with the multi-modal
nature of the problem. Instead, [94] focuses on the design of the inference pipeline
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Figure 6.1: An overview of the proposed pipeline.

and proposes a two-stage procedure: i) a pixel-wise descriptor is built by VGG-16
feature maps taken at different resolutions; ii) the descriptors are then fed into a
fully connected layer, which outputs hue and chroma distributions. Split-Brain
Autoencoders [217] relies on a network composed of two disjoint modules, each
of which predicts a subset of color channels from another. The authors argue that
this schema induces transferable representations, the latter taking into account all
input dimensions (instead of gray-scale solely).

6.2 Proposed Approach
Overview Our main goal consists in finding a good initialization for the classifier,
in such a way that it can later capture meaningful and robust patterns even in
presence of few labeled data. To this purpose, we devise a two-stage procedure
tailored for satellite imagery tasks, which prepends a colorization step (Sec. 6.2.1)
to a fine-tuning one (Sec. 6.2.2).

As depicted in Fig. 6.1 (a), our proposal leverages an encoder-decoder archi-
tecture for feature learning. In doing so, we do not require the model to reconstruct
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its input: differently, we set up an asymmetry between input (spectral bands) and
output (color channels). This way, we expect the encoder to capture meaningful
information about soil and environmental characteristics. Afterward, we exploit
the encoder and its representation capabilities to tackle a downstream task (e.g.
land cover classification, see Fig. 6.1 (b)). Eventually, an ensemble model (see
Sec. 6.2.3 for additional details) further refines the final prediction combining the
outputs from the two input modalities (RGB and spectral bands).

6.2.1 Colorization
In formal terms, the encoder network F takes S ∈ RH×W×C as input, where
C equals the number of spectral bands available to the model and H and W the
input resolution (height and width respectively). The decoder network produces a
tensor X̂ ∈ RH×W×2, which yields the pixel-wise predictions in terms of a and b
coordinates in the CIE Lab color space. On this latter point, a naive strategy would
simply define the expected output in terms of RGB: nevertheless, as pointed out
in [94], modeling colors as RGB values may not yield an effective training signal.
Differently, we adhere to the guideline described in [216] and frame the problem
in the CIE Lab space. Here, a color is defined with a lightness component L and
a ∗ b values carrying the chromatic content. The effectiveness of this space comes
from the fact that colors are encoded accordingly to human perception: namely,
the distance between two points reflects the amount of visually perceived change
between the corresponding colors.

Encoder We opt for ResNet18 [58] as backbone network for the encoder, which
hence consists of four blocks with two residual units each. As pointed out in [87],
thanks to their residual units and skip connections, ResNet-based networks are
more suitable for self-supervised representation learning. Indeed, when compared
to other popular architectures (e.g. AlexNet), residual networks favorably preserve
representations from degrading towards the end of the network and therefore
results in better performance.

Decoder In designing the decoder network, we mirror the architecture of the
encoder, replacing the first convolutional layer of each residual block with its
transposed counterpart. Moreover, we add an upsampling operation to the top of
the decoder, followed by a batch normalization layer, a ReLU activation, and a
transposed convolution. The latter reduces the number of features maps to 2: this
way, the output dimensionality matches the ground truth one.
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Colorization Loss Recent works [217, 216, 95] investigate various loss func-
tions, questioning their contributions to colorization results (intended as perform-
ance on either the target task or the pretext one). Despite a regression objective
(e.g. the mean squared error) being a valid baseline, these works show that treating
the problem as a multinomial classification leads to better results. However, the
overall training time increases considerably because of the additional information
taken into account. In our case, this would add up to the burdensome computations
required by hyperspectral images, thus resulting even more expensive. For this
reason, we limit our experiments to the mean absolute error L1(·, ·), as follows:

L1(X̂,X) = λ
∑
h,w

∣∣∣x̂ (a)
h,w − x

(a)
h,w

∣∣∣+ ∣∣∣x̂ (b)
h,w − x

(b)
h,w

∣∣∣ , (6.1)

where X represents the a ∗ b ground truth colorization and λ = 100 is a weighting
term that prevents numerical instabilities.

6.2.2 Fine-tuning
Once the encoder-decoder has been trained, we turn our attention to the down-
stream task exploiting the encoder F(·) as pre-trained feature extractor. We need
just a single amendment to the network: a final linear transformation that maps
bottleneck features H = F(S) to the classification output space ŷ = WTH+ b.

Classification Loss We make use of two different losses in our experiments:
when dealing with a multi-label task as the land cover classification one (i.e. each
example can be categorized into multiple classes), the objective function resembles
a binary cross-entropy term averaged over C classes:

L(ŷ,y) = − 1

C

∑
i

yi log σ (ŷi) + (1− yi) log (1− σ (ŷi)) ,

where y is the ground-truth multi-hot encoding vector and σ the sigmoid function.
Differently, we use the binary cross-entropy for the West Nile Disease case study.

6.2.3 Model Ensemble
As pointed out in [217], a network trained on colorization specializes just on a
subset of the available data (in our case, spectral bands) and cannot exploit the
information coming from its ground truth (the RGB color images). To further
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take advantage of color information, we set up an ensemble model at inference
time (so, no additional training steps required). As shown in Fig. 5.2 (c), the
ensemble is formed by two independent branches taking the RGB channels and the
spectral bands as input respectively. The first one is pre-trained on classification
(ImageNet) and the second one on colorization; both are fine-tuned separately on
the given classification task. The ensemble-level predictions are simply computed
by averaging the responses from the two branches ŷENS = σ(ŷRGB)+σ(ŷSPECTRAL)/2.

6.3 Experiments
In this section, we test our proposal as a pre-training strategy for the later fine-
tuning step. We compare the results yielded by colorization to those achieved by
two baselines: training from scratch [57] and the common ImageNet pre-training.
In doing so, we mimic scenarios with few labeled data by reducing the amount of
examples available at training time (e.g. 1 000, 5 000, etc. . . ).

6.3.1 Datasets
The two datasets we rely on data acquired through the Sentinel-2A and 2B satellites
developed by the European Space Agency (ESA). These satellites provide a multi-
spectral imagery over the earth with 12 spectral bands (covering the visible, near
and short wave infrared part of the electromagnetic spectrum) at three different
spatial resolutions (10, 20 and 60 meters per pixel).

Land-cover classification - BigEarthNet In Remote Sensing, the main bottle-
neck in the adoption of deep networks was the lack of a large training set. Indeed,
existing datasets (as Eurosat [59], PatterNet [224], UC Merced Land Use Data-
set [207]) include a small number of annotated images, hence resulting inadequate
for training very deep networks. To overcome this problem, [177] introduces
BigEarthNet, a novel large scale dataset collecting 590 326 tiles. Each example
comprises of 12 bands (RGB included) and multiple land-cover classes (provided
by the CORINE Land Cover (CLC) database [46]) as ground truth.

Originally, the number of classes amounted to 43: but, the authors of [178]
argue that some CORINE classes cannot be easily inferred by looking at Sentinel-2
images solely. Indeed, some labels may not be recognizable at such low resolution
(the highest one is 120× 120 pixels for 10m bands) and other ones would require
temporal information for being correctly discriminated (e.g. non-irrigated arable
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land vs. permanently irrigated land). For these reasons, in our experiments we
adopt the class-nomenclature proposed in [178], which reduces the number of
classes to 19. Moreover, we discard the 70 987 patches displaying lands that are
fully covered by clouds, cloud shadows, and seasonal snow.

West Nile Disease Dataset Numerous studies have examined the complex in-
teractions among vectors, hosts, and pathogens [70, 184]: one of the major threat
worldwide studied is represented by West Nile Disease (WND), a mosquito-borne
disease caused by West Nile virus (WNV). Mosquitoes presence and abundance
have been extensively proved to be associated with climatic and environmental
factors such as temperatures, vegetation, rainfall [184, 19, 35], and remote sensing
has been an important key source for data collection. Our ability to store data
continues to expand rapidly; this requires new techniques processing Earth Obser-
vation (EO) data and establishing pipelines that turn near real-time “big data” into
“smart data” [144]. In this context, Deep techniques could provide useful tools
to identify patterns able to make accurate predictions of the re-emergence and
spread of the West Nile Disease in Italy. With this aim, we collected data from the
Copernicus program and paired Sentinel 2 EO data with ground truth WND data.

Disease sites are collected through the National Disease Notification System
of the Ministry of Health (SIMAN www.vetinfo.sanita.it) [33]. We start with the
analysis of the 2018 epidemic, one of the most spread on the Italian territory. We
frame the problem as a binary classification task with the final purpose of predicting
positive and negative WND sites analyzing multi-spectral bands. Positive cases
are geographically located mainly in Po valley, in Sardinia and some spots in the
rest of Italy [150]: the location of each case of birds, mosquitoes and horses, was
visually inspected for the accuracy needs in the analysis. Negative sites, being not
always available in the national database due to the surveillance plan strategy, were
derived as pseudo-absence ground truth data, either in the space (points located in
areas where the disease was never reported in the past) and in the time (a random
date in months previous the reported positivity in mosquitoes collections).

WND dataset contains 1 488 distinct cases (962 negatives and 526 positives):
each case comes with a variable number of Sentinel-2 patches (corresponding to
various acquisitions over time), leading to 18 684 images in total.

6.3.2 Evaluation Protocol
Land-Cover Classification We strictly follow the guidelines provided by [134]
when assessing the performance on the BigEarthNet benchmark. Namely, we
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form the training set by sampling 60% of the total examples considered, retaining
20% for the validation set and 20% for the test set. We measure the results in
terms of Mean-Average-Precision (mAP), which also considers the order in which
predictions are given to the user. We check the performance every 10 epochs and
retain the weights that yield the higher mAP score on the validation set.

West Nile Disease Here, we adopt the stratified holdout strategy, which ensures
the class probabilities of training and test being close to each other. In detail, we
exploit 80% of the total examples for the training set and the remaining 20% for
the test set. The metrics of interest are precision, recall and F1 score, the latter
accounting for the slight imbalance that occurs at class level (indeed, negatives
cases appear more frequently than positives ones).

Implementation details

BigEarthNet We exploit the normalization technique described in [145, 144]
computing the 2nd and 98th percentile values to normalize each band. This method
is more robust than the common min-max normalization, as it is less sensitive to
outliers. As the spectral bands come at different spatial resolutions, we apply a
cubic interpolation to get a dimension of 128× 128.

Colorization To broaden the diversity of available data, we apply data augment-
ation (i.e. rotation, horizontal and vertical flip). We train for 50 epochs on the
full BigEarthNet, setting the batch size equal to 16 and using Stochastic Gradient
Descent (SGD) (with a learning rate fixed at 0.01).

Land-Cover Classification We train the model for 30 epochs whether the full
dataset is available; otherwise we increase the epochs to 50. The learning rate is
set to 0.1 and divided by 10 at the 10th and 40th epoch. The batch size equals 64.

West Nile Disease Differently from the previous cases, we apply neither upscal-
ing nor pixel-normalization, as all channels are provided at the same resolution
(224× 224) and their values lie within the range [0, 1]. We leverage the network
trained for colorization on BigEarthNet. Since we rely on a subset of the spectral
bands (B1, B8A, B11 and B12), we fix the first convolutional layer so that it takes
4 channels as input. We optimize the model for 30 epochs, with a batch size of 32
and an initial learning rate of 0.001, multiplied by 0.1 after 25 epochs.
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Input pre-training 1k 5k 10k 50k Full

RGB from scratch .486 .608 .645 .744 .851
RGB ImageNet .620 .695 .726 .786 .879

Spectral from scratch .555 .667 .711 .767 .866
Spectral ImageNet .578 .627 .681 .773 .879
Spectral Color. (our) .622 .730 .760 .793 .860

Ensemble ImagNet+ImageNet .649 .707 .749 .815 .904
Ensemble Color.+ImageNet .656 .751 .778 .823 .896

Table 6.1: Performance (mAP) on BigEarthNet for different strategies to vary the
number of training examples.

Input pre-training 1k 5k 10k 50k Full

RGB ImageNet .620 .695 .726 .786 .879

Spectral Colorization .622 .730 .760 .793 .860

Ensemble ImagNet+ImageNet .649 .707 .749 .815 .904
Ensemble Color.+ImageNet .656 .751 .778 .823 .896

Table 6.2: Ensemble model – results (mAP) on BigEarthNet.

6.3.3 Experimental Results
Results of Colorization Based on the performance reported in Tab. 6.1, the
initialization offered by colorization surpasses the other alternatives. This holds in
presence of scarce data, thus complying with the goals outlined at the beginning
of the chapter. This does not apply when the entire training set (519k examples) is
available: such evidence – already encountered in [134] – deserves more investiga-
tions that we will conduct in future studies. Results shown by Tab. 6.1 let us draw
additional remarks: i) as one would expect, the ImageNet pre-training performs
good for RGB inputs; however, when dealing with the spectral domain, even a
random initialization outperforms it; ii) colorization is the sole that rewards the
exploitation of spectral bands and justifies their usage in place of RGB.
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Input pre-training acc. pr. rc. F1

Random - .503 .391 .395 .393classifier

RGB from scratch .652 .542 .941 .688
RGB ImageNet .865 .819 .857 .838

B1,8A,11,12 from scratch .756 .662 .817 .732
B1,8A,11,12 Colorization .852 .823 .811 .817

Ensemble Color.+ImageNet .880 .855 .850 .852

Table 6.3: Performance (acc. accuracy, pr. precision, rc. recall) on the West Nile
Disease case study, for different methods and pre-training strategies.

Method pr. rc. F1

K-Branch CNN .716 .789 .727
VGG19 .798 .767 .759
ResNet-50 .813 .774 .771
ResNet-101 .801 .774 .764
ResNet-152 .817 .762 .765

Ensemble (our) .843 .781 .811

Table 6.4: Comparison between baselines and our ensemble (BigEarthNet).

Results of the model ensemble We first assess the effectiveness of the ensemble
discussed in Sec. 6.2.3 on BigEarthNet. In this regard, Tab. 6.2 compares the
performance that can be reached when using a twofold source of information
(RGB and spectral bands): firstly, the ensemble model largely outperforms those
considering a single modality; secondly, colorization presents an improvement
over the ImageNet pre-training.

Tab. 6.3 reports the results achieved on the West Nile Disease case study
discussed in Sec 6.3.1. To provide a better understanding, we additionally furnish
a simple baseline (i.e. “random classifier”) that computes predictions by randomly
guessing from the class-prior distribution of the training set. As a first remark, all
the networks we trained exceed random guessing, hence suggesting they effectively
learned meaningful and suitable features for the problem at hand. Secondly, the
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ensemble model plays an important role even in this case, surpassing networks
based on a single modality by a consistent margin.

Comparison with the state of the art To further highlight the contributions
of our proposal, we compare it with the networks discussed in [177]. Results
reported in Tab. 6.4 confirm the above intuitions: the ensemble we build upon
ResNet-18 outperforms heavier and overparametrized networks like ResNet-101
or ResNet-152. Notably, we found a large improvement in precision, suggesting
that our proposal is capable of returning only the categories that are relevant to the
semantics of the input tile.

It is noted the fairness of the comparisons above, as both our ensemble and
the baselines leverage the same amount of information in input (namely, spectral
bands and color channels). Nevertheless, an important difference subsists in the
way information is consumed: while [177] stacks both the input modalities to
form a single input tensor, we distinguish two independent paths that eventually
cross in the output space. This way, we can benefit from two different pre-training,
each one being devoted to its modality: the one offered by colorization – which
works well for spectral bands – and the ImageNet one – which instead represents
a natural and reasonable choice for dealing with RGB images.

6.4 Model Analysis
Towards diverse feature sets We believe the strength of our ensemble approach
being a result of the diversity among the individual learners. We investigate the
truthfulness of such a claim from a model explanation perspective, questioning
which information in the input makes our models arrive at their decisions [161].
In particular, we take advantage of GradCam [169] to assess whether the two
branches look for different properties within their inputs. The third and fourth
rows of Fig. 6.2 highlight the input regions that have been considered important
for predicting the target category (we limit the analysis to the class denoting
the highest confidence score). As one can see, the explanations provided by the
two branches visually diverge, thus qualitatively confirming the weak correlation
between their representations.
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Figure 6.2: Examples of the BigEarthNet dataset, the predicted colorizations and
visual explanations provided by the ensemble method for RGB and spectral inputs.

6.5 Conclusion
This chapter has discussed a self-supervised approach for satellite imagery, which
moves towards a proper initialization for Remote Sensing tasks. It builds upon
two steps: firstly, we ask an encoder-decoder architecture to predict color channels
from those capturing spectral information (colorization); secondly, we exploit its
encoder as a pre-trained feature extractor for a classification task (e.g. land-cover
categorization). We have observed that the proposed initialization leads to remark-
able results, exceeding the baselines in presence of scarce labeled data. Moreover,
the representations learned through colorization are different from the ones driven
by the RGB channels. Based on this finding, we have set up an ensemble model
that achieves the highest results in the scenarios under consideration.



Chapter 7

Conclusions

This thesis has explored several widespread Computer Vision tasks, highlighting
how modern Deep Learning techniques can pave the way towards impressive
advances in terms of performance. This has been made possible by outstanding and
continuous developments that occurred in the last decade: essentially, researchers
and practitioners can now benefit from both more powerful hardware resources [9]
and larger datasets [39]. However, these assets can be more profitably exploited
by exploiting the principled and insightful approaches presented in each chapter of
this thesis. In particular, we have extensively shown that the incorporation of prior
beliefs (i.e. a set of reasonable guesses about the phenomenon under examination)
into the learning process leads to deep learning models characterized by higher
generalization capabilities. In this regard, the author feels that the value of this
work lies in the diversity and heterogeneity of the domains and fields covered
during these three years. Remarkably, it has been shown that a common and
longstanding design principle – such as the incorporation of prior knowledge –
can be effectively applied to disparate contexts, featuring diverse input modalities,
tasks and architectures. To provide a brief summary:

• Chapter 2 deals with graph classification and points out that a tailored layer
exploiting the underlying geometrical structure provides better classification
results.

• Chapter 3 proposes a framework for novelty detection in which prior know-
ledge is embodied by an auxiliary component acting in latent space.
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• Chapter 4 remarks that catastrophic forgetting can be strongly mitigated by
using prior model’s responses while learning new tasks.

• Chapter 5 shows that prior information can be imposed as a reasonable
property in terms of feature representation (i.e. being able to recover many
visual details from a few views of the target object).

• Chapter 6 finally highlights network pretraining as a further convenient way
to incorporate a preliminary guess on the usage of a land territory depicted
in an image.

As a final note, the author would like to report a very recent trend regarding the
design of deep architectures, which seems to point towards a slightly different
direction. Indeed, Vision Transformers [42] – which have recently arisen as
promising architectures for computer vision tasks – relax the rigid interaction
pattern of 2D-convolutions (i.e., locality and weight sharing) and, instead, exploit
a self-attention mechanism across embeddings of patches of pixels (thus allowing
for both global interactions and flexible spatial relations). Such an increased degree
of freedom has proven to be especially rewarding for scenarios featuring large
datasets (in the order of 14M-300M images); otherwise, the small-data regime still
promotes those architectures incorporating the above-mentioned convolutional
constraints. In light of this, we feel that future works should strive for new advances
in the design of the self-attention mechanism, investigating how soft prior beliefs
can be introduced without involving restrictions to the learning process.
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List of publications

Statement of contributions

In the following, the author of this thesis outlines his contributions to each covered
topic:

• Graph Classification. The research presented in Chapter 2 has been also
published in [142], which is the first peer-reviewed article by the author.
In this work, the author delved firsthand into the study of graph convolu-
tions, with particular focus on pooling techniques tailored for graph signals.
Therefore, he firstly formalized a preliminary mathematical background and
then developed an approach on top of it. Eventually, he set up the entire
experimental evaluation. The other authors involved in the publications gave
a valuable contribution in terms of writing, as well as ideas and insights to
extend the analysis with meaningful ablation studies.

• Novelty Detection. The publication [1] underlying Chapter 3 is the second
article the author worked on. Even though he is not the lead author of
the research, he gave a valuable contribution, consisting of the following
points: i) he shaped the mathematical modeling of the original idea; ii)
he provided insightful suggestions to improve the model performance; iii)
several ablation studies and qualitative experiments originated from his
intuitions; iiii) he heavily contributed to the final draft of the article.

• Continual Learning. Chapter 4 is based on [23]. Similar to the previous
chapter, the author furthered the research in both theoretical and experi-
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mental terms. In particular, he spent his efforts principally on Sec. 4.4,
which explains the effectiveness of the proposed approach from multiple
points of view.

• Re-Identification The teacher-student paradigm introduced in [143], which
is the source for Chapter 4, came from an idea of the author of this thesis.
Following his intuition, he developed the approach from scratch and then
experimentally compared it with other existing methods. Importantly, the
author considers this work worth mentioning, as it allowed him to delve
deeply into the topic of Knowledge Distillation, which has become a great
source of inspiration for several subsequent works [23, 20].

• Land-Cover Classification. Finally, the author was involved in [197]: he
oversaw both the development and experimental validation of the proposed
method, giving as well an important contribution in terms of writing.
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The following list of publications includes all conference papers, journal articles,
and book chapters published during my Ph.D. period, as well as recent pre-prints.
Content and experimental results published in some of these papers have been
included in the previous chapters, with explicit permission given by the other
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Activities carried out during
Ph.D.

Teaching activities

• Teaching assistant for the “Pattern Recognition and Machine Learning”
graduate course (2018, 2019).

• Lecturer for the training course on Artificial Intelligence, organized by The
Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe
Caporale” (2018).

• Lecturer for the Master ADBoT – Autonomous Driving and enaBling Tech-
nologies – organized by the University of Trento (UNITN) in collaboration
with the University of Modena and Reggio Emilia (2019).

• Lecturer for the Short Master in Machine learning e Deep learning, organised
by Fondazione Democenter (2018, 2019, 2020).

Participation to national and international projects

• “FAR2016” – Ubiquitous objective measures of intergroup nonverbal be-
haviors, UBIVNB – financed by the University of Modena and Reggio
Emilia

88



89

• “AI4VECT” – Artificial Intelligence and Remote Sensing: innovative meth-
ods for monitoring vectors and the associated ecological/environmental
variables – financed by the Italian Ministry of Health.

• “InSecTT” – Intelligent Secure Trustable Things – funded by the Electronic
Component Systems for European Leadership Joint Undertaking under grant
agreement 876038.
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• SITIS 2018: 14th International Conference on Signal Image Technology &
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• ICIAP 2019: 20th International Conference on Image Analysis And Pro-
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