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Fine-Grained Human Analysis Under Occlusions and Perspective Constraints
in Multimedia Surveillance

RITA CUCCHIARA and MATTEO FABBRI, Department of Engineering “Enzo Ferrari”, University of Modena

and Reggio Emilia, Italy

Human detection in the wild is a research topic of paramount importance in Computer Vision and it is the starting step for designing
intelligent systems oriented to human interaction that works in complete autonomy. To achieve this goal, Computer Vision and
Machine Learning should aim at superhuman capabilities. In this work, we address the problem of fine-grained human analysis under
occlusions and perspective constraints. More specifically, we discuss some issues and some possible solutions to effectively detecting
people using pose estimation methods, to detect humans under occlusions both in the 2D image plane and in the 3D space exploiting
single monocular cameras. Dealing with occlusion can be done at joint level or pixel-level: we discuss two different solutions, the
former based on a supervised neural network architecture for detecting occluded joints and the former based on a semi-supervised
specialized GAN which exploits both appearance and human shape attributes, to hallucinate the missing parts of the visible shape.
To deal with perspective constraints, we further discuss a neural approach based on a double-architecture that learns to create an
optimal neural representation, useful to reconstruct the 3D position of human keypoints starting with simple RGB images. All these
approaches have a critical point in common, that is the need for large annotated datasets. To have large, fair, consistent, transparent,
and ethic-complaint datasets we propose the adoption of synthetic datasets as, for example, JTA and MOTSynth. In this paper, we
discuss the pros and cons of using synthetic datasets while tackling several human-centered AI issues in respect of European GDPR
rules for privacy. We further explore and discuss an application in the field of risk assessment by space occupancy estimation during
the COVID-19 pandemic, called Inter-Homines.
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1 INTRODUCTION

Video-Surveillance is one of the most classical applications for Computer Vision and Multimedia. In particular, Multi-
media Surveillance has been deeply explored in the last fifteen years. Multimedia surveillance refers to the study and
understanding of real scenes for interactive tasks, where the automatic processes of identifying phenomena of interest
and forecasting anomalous situations are designed to empower human capabilities in monitoring for safety and security
[8]. The targets could be whatever moving object that could appear in the scene: people, vehicles, animals, or even
weapons.
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2 Rita Cucchiara and Matteo Fabbri

Fig. 1. Three dimensions for de-occluding fine grained human detections.

Indeed, humans and their anomalous activities are the main focus of recent research in surveillance: human detection,
human motion tracking, people re-identification, and human behavior understanding are some of the tasks that
contribute to finding solutions in Multimedia Surveillance for human users. Let’s consider, for instance, systems that
analyze the risk of COVID contagion: those systems should be conceived not only as mere automatic social distancing
systems, capable of measuring the mutual distance of people to keep them far enough from each other, but they should
be designed to give multimedia information about the risk of contagion in an area by modeling the space occupancy
and forecasting risk information for human controllers. To this aim, we need a new generation of surveillance systems
capable of seeing better than their human counterpart, despite relying on a much simpler monocular vision.

Video processing surveillance has been scientifically explored for more than 20 years, starting from the famous Pfinder
MIT program [49], followed by several other projects in the early twenties [9, 19]. Even though many products for
automatic surveillance are now installed everywhere, the problem of having a complete human behavior understanding
is still far from being solved.

In this paper, we discuss a very specific aspect, namely the ability of deep learning-based architectures to see humans
and their fine-grained details with superhuman vision, i.e., with a technology that could be better than humans by
design. In particular, this paper proposes some discussion points and shows some possible solutions for the problem of
detecting humans in extreme conditions in surveillance contexts: estimating their aspect and their pose under severe
occlusions and estimate their 3D position under unknown perspective constraints due to the distance between target
and camera. These challenges are difficult and mostly impossible for human sight but are strategic for surveillance and
multimedia applications for human behavior understanding.

The people detection problem, which is the starting step for all human-centered surveillance tasks, ideally is not
complex per-se, since the human shape presents low variability and a very characteristic boundary aspect. However,
“people detection in the wild” is still an open problem as there is not a single solution capable of detecting people from
whichever view and for partial or occluded views, as well as to detect their position in the 3D world space, employing a
simple monocular camera.
Manuscript submitted to ACM
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For many years the main constraint has been the use of fixed calibrated cameras, to have the required intrinsic
and extrinsic camera parameters to reconstruct the geometry of the scene. This constraint has recently been relaxed
thanks to supervised learning approaches. In particular, artificial neural networks are now able to produce accurate 3D
locations for an undefined number of people by solely relying on an RGB image [15, 28, 30]. Those solutions can be
easily employed for processing videos from PTZ and moving cameras (also mounted on vehicles or moving robots) as
well as for elaborating multimedia data taken from the web.

Recently, people detection approaches inputting image frames and outputting bounding boxes as human descriptors
also exploit deep learning architectures. Among them, YOLOv3 [32], CenterNet [56] and Faster R-CNN [33] are the
most widely utilized convolutional neural networks. Those approaches have been coupled with other methods based on
pose estimation [37, 50]. Technically, pose estimation refers to the capability of localizing the main body joints of a
person [6, 16]. Pose estimation approaches are generally adopted for fine-grained people analysis but they often replace
regular people detectors as they are usually more robust to occlusions.

This work does not intend to be a review of the methods that target human analysis in surveillance, but instead, it
aims at discussing some possibilities of going beyond human vision with artificial systems. How can we design artificial
systems capable of having a fine-grained understanding of people that is superior to human capabilities? Here, we do
not consider augmented sensors such as high-resolution, high-frame cameras, thermal, depth, stereo, or event cameras,
but we rather address the vision-related problems from a single monocular camera.

In order to provide humans with tools that could be useful empowering instruments to enrich their capabilities, we
analyze the problem of de-occluding people. Thus, a more specific question could be: how can we achieve a fine-grained
understanding of people even under severe visual occlusions or perspective aberrations? The answer can be formulated
by looking at a three-dimensional space of search, as in Figure 1, where the three dimensions refer to i) how to detect
people and their fine-grained poses under severe occlusions, ii) how to reconstruct the person aspect and people shape
in presence of missing information, iii) how to reconstruct occluded people position in the 3D space from a monocular
camera.

For each of these three lines of research, we present some recent solutions proposed at AImageLab UNIMORE,
Italy, with a special focus on critical discussion on results and limitations. In particular, we will describe i) a neural
architecture that focuses on finding occluded body joints in order to discriminate and better detect overlapping people
in surveillance environments, ii) a semi-supervised approach based on a triple-discriminative Generative Adversarial
Network tasked to fill the missing parts of occluded people and iii) a bottom-up approach based on an auto-encoder
which learned how to compress people pose representations in the space. All these methods have in common a powerful
paradigm: learning by synthetic data in virtual environments, which will be discussed as well.

2 LEARNING HUMANS FROM SIMULATED DATA

Modern Machine Learning has a basic statement i.e., neural networks require a huge amount of training data, and,
especially for current supervised or semi-supervised approaches, data is never enough: the more the better. But we
could also say that this is not true in general as we also need “good” data with a large variety and uniformly distributed
redundancy. Moreover, in order to create correct and transparent AI solutions, datasets should be collected with fairness.

As data concern humans, the first critical issue is the type of collected human data. The data variety should be
respectful of all human-related issues regarding privacy, gender balance, and other important values as defined in the
“White Paper on Artificial Intelligence” [1], depending on the scope of the data collection and data processing. In this
paper, we do not address the problem of human identity and neither any other issue that could affect ethics, since the
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4 Rita Cucchiara and Matteo Fabbri

Fig. 2. Examples from the JTA dataset exhibiting its variety in viewpoints, number of people and scenarios. @Rockstar Games, Inc.

task is to detect people and their position without storing any sensitive information. Although we know that each
technique can have a dual-use for unethical purposes, we aim at designing valuable applications for our society, like
security systems to recognize anomalous activities (e.g. vandalism and shoplifting); techniques for safety purposes such
as monitoring systems for the contagion risk in crowded areas or vision products that assess the safety of workers in
machine-robot interaction; systems designed for statistical analysis with the goal of economic sustainability or systems
applicable to sport surveillance. For all these applications, a tremendous amount of work is put on annotating a massive
quantity of data with information concerning, ad example, the people position in the three-dimensional space, their
posture, or their attributes useful for statistical purposes (e.g. gender, age, wearing glasses or carrying a pack).

Another critical issue regards the distribution of diversity in the data collection. The data must be well representative
of the elements that we would like to describe: humans in our case. We must ensure that a trained algorithm capable of
detecting people is independent of the human race, gender, age, dressing style, and other appearance properties to be
accurate and exhaustive. Many datasets have been proposed for people detection, people pose estimation and tracking
such as MOT-17 [29], MOT-20 [11] and PoseTrack [2]. The data acquisition and annotation of those datasets required an
enormous amount of manual effort. Indeed, manual annotation inherits all the drawbacks connected with the limited
capabilities of the human senses. Manual annotation can be:

• error-prone due to human errors (e.g., missing annotations);
• imprecise because of human inaccuracy (e.g., bounding boxes can be too tight or too loose for object detection);
• unaffordable due to the annotation cost (e.g., instance segmentation in videos with hundreds of people at 30 fps);
• inconsistent for subjective tasks (e.g., determining the age of a person in attribute recognition);
• unfeasible due to the need for different sensors (e.g., 3D pose estimation in public crowded areas);
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• impossible because of missing information (e.g., annotation of occluded body joints for 2D pose estimation).

As more data is constantly required to train ever-growing models, the effort required for collecting such datasets
is becoming prohibitive. This burden can either limit the quantity or the quality of data acquired, slowing down the
progress in Computer Vision. If we want to reach superhuman capabilities in AI we should put a special effort into
collecting “superhuman” datasets, thanks to which AI solutions can learn superhuman abilities. A possible way of
providing superhuman datasets while also providing solutions to the aforementioned problems is to employ virtual
worlds.

An example of a synthetic dataset for human behavior understanding is the Joint Track Auto (JTA) dataset [16]
produced at AImageLab - UNIMORE and collected using the highly photorealistic Grand Theft Auto V videogame
developed by Rockstar North. JTA has been conceived for making automatic annotation available for the community, in
order to speed up the research in many Computer Vision fields. The annotations provided encompass many tasks like
people detection, people tracking and multi-person 2D and 3D pose estimation. In Figure 2 some examples of JTA are
presented.

The first version of the JTA dataset contains 512 clips recorded for surveillance purposes. The collected videos feature
a vast number of different body poses, in several urban scenarios at varying illumination conditions and viewpoints.
The dataset also contains moving sequences where the camera moves through the crowd. It contains almost half a
million frames and about 10 million poses with a range of 0 to 60 people per frame. The majority of people walk or
stay in a still position but it is sometimes possible to spot people sitting on a bench or running. People’s gender and
ethnicity are balanced. Every clip provides a precise annotation of visible and occluded body parts, as well as people
tracking with 2D and 3D key-point locations in the standard camera system. JTA overcomes most of the limitations of
existing datasets in terms of volume of data.

Data acquisition has been carried out using a tool that allows the integration of native functions of the video game
in custom scripts. Those scripts are generally used by players to create game modifications (mods) that alter one or
more aspects of the video game, such as how it looks or behaves. For the creation of JTA, we took advantage of the full

Table 1. Comparison on MOT17 against synthetic and real datasets.

Dataset AP MODA FAF TP FP FN Rec. Pr.

YO
LO

v3

COCO [25] 69.76 62.02 1.25 47824 6650 18569 72.03 87.79
VIPER [35] 26.65 22.02 0.16 15447 838 50910 23.28 94.85
JTA [16] 53.18 48.77 0.79 36578 4200 29815 55.09 89.70
MOTSynth–256 62.99 62.31 0.58 44458 3090 21935 66.96 93.50
MOTSynth 71.90 64.51 1.07 48500 5673 17893 73.05 89.53

Ce
nt
er
N
et

COCO [25] 67.01 44.38 3.37 47398 17935 18995 71.39 72.55
VIPER [35] 44.58 36.92 1.24 31122 6611 35271 46.88 82.48
JTA [16] 60.15 45.38 2.32 42435 12308 23958 63.91 77.52
MOTSynth–256 61.82 50.11 2.03 44067 10795 22326 66.37 80.32
MOTSynth 70.49 55.25 2.11 47883 11204 18510 72.12 81.04

FR
-C
N
N

COCO [25] 76.68 53.86 3.45 54127 18364 12266 81.52 74.67
VIPER [35] 60.93 42.87 2.87 43707 15241 10593 65.82 74.14
JTA [16] 69.69 38.38 5.12 52726 27242 13667 65.93 79.41
MOTSynth–256 78.61 58.65 3.10 55441 16504 10952 83.50 77.06
MOTSynth 78.98 54.96 3.51 55121 18634 11272 83.02 74.74
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Table 2. Overview of the publicly available datasets for pedestrian detection and tracking. For each dataset, we report the numbers of
clips, annotated frames and instances. We also report the presence of 3D data and occlusion information, as well as the availability of
labels for pose estimation, instance segmentation, and depth estimation. The next column shows the data type: autonomous driving
(AD), diverse (DV) or urban surveillance (US). Last two columns provide information about publication conference or journal and year
of publication.

Dataset #Clips #Frames #Instances 3D Occl. Pose Segm. Depth Type Pubbl. Year

KITTI [18] 50 22k 160k ✓ ✓ ✓ AD CVPR 2012
nuSCENES [5] 1,000 40k 280k ✓ AD CVPR 2020
BDD100k-MOTS [52] 70 14k 129k ✓ ✓ AD TDV 2018
BDD100k-MOT [52] 1,600 100k 3,300k ✓ AD TDV 2018
Waymo Open [43] 1,150 230k 2,700k ✓ AD CVPR 2020

PoseTrack [2] 1,356 46k 276k ✓ DV CVPR 2018
MOTS [45] 4 3k 27k ✓ ✓ US CVPR 2019
MOT-17 [29] 14 11k 293k ✓ US arXiv 2016
MOT-20 [11] 8 13k 1,652k ✓ US arXiv 2020

VIPER [35] 187 254k 2,750k ✓ ✓ ✓ AD ICCV 2017
GTA [23] - 250k 3,875k ✓ ✓ DV CVPR 2018
JTA [16] 512 460k 15,341k ✓ ✓ ✓ US ECCV 2018

MOTSynth [13] 768 1,382k 40,781k ✓ ✓ ✓ ✓ ✓ US ICCV 2021

potential of the videogame by altering the weather, the time of day, the camera position, and the people’s appearances
and behaviors. Specifically, we utilized two different mods: one for the scenario creation and one for the actual recording.
Using a film-making analogy, the first mod represents the pre-production where the screenplay is written and the
various locations are chosen while the second mod consists in the actual production stage where raw footage and other
elements are recorded. A straightforward advantage of using synthetic datasets is that we can annotate invisible details
of humans, that is, for instance, the occluded people joints, thus providing a superhuman visual annotation.

An open question remains: how much synthetic datasets are useful when a network trained on them is employed
in real-world scenarios? Some discussions can be found in Fabbri et al. [16]. The answer is the same as we were
discussing the usefulness of real but limited datasets. The generalization capabilities of networks trained on a dataset are
constrained by the variety and by the completeness of the dataset itself. In our first paper [16], we observed that results
are good after a small fine-tuning that copes with domain-shift-related problems. In general, training solely on JTA and
testing on real-world scenarios do not yield good performance due to the low diversity of pedestrian appearance and
low variability of camera position.

In order to better understand the problems related to the domain shift between synthetic and real data, we recorded
a second version of JTA: MOTSynth [13]. The improved version has three times the number of annotated frames with
a higher variety of environments, camera position, and pedestrian models. Moreover, along with 2D and 3D pose
annotations, the new dataset also provides ground-truth for instance segmentation, and depth estimation. All the almost
1.4 billion frames are densely annotated at 25 fps. Global IDs are also provided for re-identification purposes. Preliminary
results leveraging the newly recorded dataset show superior performances when compared against real-world datasets
like COCO [25].

To understand how training on MOTSynth compares to large-scale real-world datasets, we perform a series of
experiments involving three heterogeneous object detectors: Faster RCNN [34] as two-stage detector, YOLOv3 [32] and
Manuscript submitted to ACM
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Fig. 3. Examples from the AiC dataset exhibiting its variety in viewpoints, illuminations and scenarios. @Rockstar Games, Inc.

Table 3. Overview of the publicly available datasets for Human Attribute Classification. For each dataset we reported the numbers of
scenes, the number of samples, as well as the number of annotated visual attributes, the image resolution, publication journal or
conference, and year of publication.

Dataset # Scenes # Samples # Attributes Resolution Publication Year

PETA [12] - 19,000 61(+4) 17 × 39 to 169 × 365 ACMM 2014
Market-1501 [55] - 34,213 13 63 × 128 ICCV 2015
RAP [24] 26 41,585 69(+3) 36 × 92 to 344 × 554 arXiv 2016
PA-100K [26] 598 100,000 26 50 × 100 to 758 × 454 ICCV 2017
AiC [17] 512 125,000 24 35 × 85 to 602 × 1080 CVIU 2019

CenterNet [56] as single-stage detectors. For each detector, we compared MOTSynth training against COCO training
by testing on MOTChallenge.

As shown in Table 1, MOTSynth training clearly outperforms the real COCO dataset and alternative synthetic
datasets consistently. What is the advantage of MOTSynth over MOTSynth – is it the diversity or sheer amount
of data? To answer this question, we conduct the following experiment. We train each detector using the subset of
MOTSynth, MOTSynth–256, containing only 256 sequences, generated from the screenplays used to generate [16]. The
only difference between JTA and MOTSynth–256 is in people appearance variation – high person appearance variety
was one of the key goals when generating MOTSynth sequences. As can be seen, with YOLOv3 and Faster R-CNN
MOTSynth–256 models, we obtain +9.81𝐴𝑃 and +8.92𝐴𝑃 over JTA trained models. This shows that the MOTSynth
diversity in terms of people appearance is a crucial ingredient for bridging the domain gap.

Manuscript submitted to ACM



8 Rita Cucchiara and Matteo Fabbri

Fig. 4. Results in a real setting. The Figure is taken from the paper “Learning to Detect and Track Visible and Occluded Body Joints in
a Virtual World” [16]

Table 2 shows the most widely used publicly available datasets for people detection and people tracking in videos.
Both JTA and MOTSynth, which focus on urban scenarios, are superior in terms of the number of frames and types
of annotations. In particular, MOTSynth contains two orders of magnitude more frames than manually annotated
datasets like PoseTrack and MOT-17, while having a richer annotation that encompasses 3D keypoint location, occlusion
information, instance segmentation, and depth data.

Similar considerations can be done for existing datasets dealing with human attribute classification. Most of the
publicly available pedestrian attribute datasets, like RAP [24], Market-1501 [55], PETA [12] and PA-100K [26] does not
contemplate occlusion events. They only provide samples of fully visible people, completely ignoring crowded situations
of pedestrians occluding each other (which is indeed common in urban scenarios). To overcome this limitation,
we collected Attributes in Crowd dataset [17], a synthetic dataset for people attribute recognition in presence of
strong occlusions. AiC features 125,000 samples, all being unique subject, each of which is automatically labeled with
information concerning sex, age, etc. Each of the 24 attributes occurs at least in 10% of samples which highlights a good
balance in terms of labels. Each image sample has its vanilla version where each obstacle is removed from the image.
Thus, for each occluded pedestrian, we know exactly how it really is behind the occlusion (this is indeed not achievable
in real environments). Fig. 3 exhibits some examples of AiC while Table 3 shows the comparison against other publicly
available datasets.

3 HUMAN DETECTION BY POSE COPYINGWITH OCCLUSIONS

A first dimension for supporting humans with artificial detection systems is to provide missing pose information, that is,
the estimation of the position of occluded or self-occluded body joints. The value of such solutions is straightforward: it
Manuscript submitted to ACM
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Fig. 5. The THOPA-Net architecture for occlusion pose detection and tracking. The VGG-19 backbone takes 𝑁 frames as input and
produces 𝑁 intermediate representations 𝑓 0, 𝑓 1, ..., 𝑓 𝑁−1. The 𝑁 representations are fed to the Time Linker to produce a single set of
feature maps 𝐹 ′ which are subsequently processed by a three-branch multi-stage CNN where each branch focuses on a different
aspect of body pose estimation: the first branch predicts the heatmaps𝐻 of the visible parts, the second branch predicts the heatmaps
𝑂 of the occluded parts, the third branch predicts the part affinity fields 𝑃 , which are vector fields used to link parts together in
space, and the fourth branch predicts the temporal affinity fields𝑇 that links parts together in time.

could be useful to avoid false negatives or to have a more precise detection that makes tracking solutions more robust in
crowded scenarios where people often occlude each other. As well, in the case of not overlapping people, understanding
occluded joints could be useful to estimate the motion, the direction, and the people activity.

A simple but effective method to detect occluded body joints is THOPA-Net (Temporal Heatmaps and Occlusions
based body Part Association) [16] which improves the architecture in [6] by taking into account the occlusion and the
motion of every joint in the image.

THOPA-net jointly extracts people’s body parts and associates them across short temporal spans. The model explicitly
deals with occluded body parts, by hallucinating plausible solutions of not visible joints. The architecture trained on JTA
exhibits good generalization capabilities also on public real tracking benchmarks, when image resolution and sharpness
are high enough, producing reliable tracklets useful for further batch data association or re-id modules. Indeed, temporal
continuity in the detection phase gains more importance when scene cluttering introduces the challenging problems of
occluded targets. Figure 4 shows some qualitative results of the method.

More specifically, the approach exploits both intra-frame and inter-frame information in order to jointly solve
the problem of multi-person pose estimation and tracking in videos. For individual frames, it integrates a branch
for handling occluded joints in the detection process. Subsequently, a temporal linking network integrates temporal
consistency by jointly achieving detection and short-term tracking. The Single Image model takes an RGB frame as
input and produces, as output, the pose prediction for every person in the image. Conversely, the complete architecture
(Figure 5) takes a clip of 𝑁 frames as input (e.g. 𝑁 = 8) and outputs the pose prediction for the last frame of the clip and
the temporal links with the previous frame.
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10 Rita Cucchiara and Matteo Fabbri

Table 4. Tracking Results on JTA Dataset

MOTA IDF1 MT ML FP FN IDs FRAG
Solera et al. [42] + our det 57.4 57.3 45.3 21.7 40096 103831 15236 15569
Solera et al. [42] + DPM det 31.5 27.6 25.3 41.7 80096 170662 10575 19069
THOPA-net 59.3 63.2 48.1 19.4 40096 103662 10214 15211
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Fig. 6. Results on PoseTrack dataset compared with a BBox-Tracking + CPM (trained on MPII) baseline (used also in [20]; red/green
lines are the average of performances on the selected sequences to avoid plot clutter)

Fig. 7. Samples taken from Posetrack. First row: sequences with low pose variability (sequence numbers 00028, 00003, 00026, and
04891). Second row: sequences with high pose variability (sequence numbers 003223, 007128, 009268, and 009521).

This supervised approach was only possible thanks to synthetic data for two reasons: the first is that virtual data is
always complete and precise. In fact, 3D coordinates are always available even when the person is under complete
occlusion. The second reason is that, for precise localization, the target’s camera distance information should be
exploited during training. In fact, people far from the camera look way different than people close to the camera. For
this reason, they should be differentiated during training in order to help the network have a richer understanding of
the world. Specifically, given a visible heatmap 𝐻 𝑗 , let 𝑞 𝑗,𝑘 ∈ R2 be the ground truth location of the body part 𝑗 of the
person 𝑘 . For each body part 𝑗 the ground truth 𝐻∗

𝑗
at location 𝑝 ∈ R2 is given by:

𝐻∗
𝑗 (𝑝) = max

𝑘
exp

(
−
𝑝 − 𝑞 𝑗,𝑘

2
2

𝜎2

)
, 𝜎 = exp

(
1 − 𝑑

𝛼

)
(1)
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Table 5. Results on MOT-16 benchmark ranked by MOTA score

MOTA IDF1 MT ML FP FN IDs FRAG
Yu et al. [51] 66.1 65.1 34.0 20.8 5061 55914 805 3093
Wojke et al. [48] 61.4 62.2 32.8 18.2 12852 56668 781 2008
THOPA-Net 56.0 29.2 25.2 27.9 9182 67059 4064 5557
Sadeghian et al. [39] 47.2 46.3 14.0 41.6 2681 92856 774 1675
Chu et al. [7] 46.0 50.0 14.6 43.6 6895 91117 473 1422
Bae et al. [4] 43.9 45.1 10.7 44.4 6450 95175 676 1795
Cavallaro et al. [40] 38.8 42.4 7.9 49.1 8114 102452 965 1657

where 𝜎 regulates the spread of the peak in function of the distance 𝑑 of each joint from the camera.
Having precise joints positions, of both visible and occluded ones, is essential to disambiguate people in-crowd. In

fact, in our work, we used the joint positions, the PAFs (Part Affinity Fields), and the TAFs (Temporal Affinity Fields) to
assess the spatiotemporal coherency of each person with high accuracy and displaying superhuman capabilities.

Table 4 reports results in terms of Clear MOT tracking metrics [29] obtained on JTA. Results indicate that the network
trained on the virtual world scores positively in terms of tracked entities but suffers from a high number of IDs and
FRAGS. This behavior is motivated by the absence of a strong appearance model capable of re-associating the targets
after long occlusions. Additionally, the motion model is purposely simple suggesting that a batch tracklet association
procedure can lead to longer tracks and reduce switches and fragmentations.

The main limitation, as previously stated, is on the capability of the network trained solely on synthetic datasets to
generalize in real scenes. We tested the network on different real contexts using the Posetrack dataset and we showed
that domain adaptation is possible only if people posture and movement are consistent between the two domains. In
figure 6 MOTA and mAP per-sequence results of THOPA-net on PoseTrack are shown. The plot only shows the 40
sequences that obtained the best results.

Figure 7 (first row) shows some samples taken from the top four scoring sequences. As can be seen, the postures
of the subjects are similar to the ones provided by the training set of JTA, as people are walking or running. Figure 7
(second row), on the other hand, shows some samples collected from the sequences where our method failed to properly
predict human poses. In fact, the pose variability of those sequences does not align with the training set of JTA.

In general, results are satisfying even if the network is trained solely on CG data, suggesting it could be a viable
solution for fostering research in the joint tracking field, especially for urban scenarios where real joint tracking datasets
are missing.

Additionally, we fine-tuned THOPA-Net on MOT-16 training set, with the exception of the occlusion branch. Table
5 reports the results of our fine-tuned network compared with state-of-the-art competitors. We include in the table
only online trackers. Our method performs positively in terms of MOTA placing at the top positions, showing that
fine-tuning on real data is still required to bridge the gap between synthetic and real domains.

4 HUMAN APPEARANCE HALLUCINATION UNDER OCCLUSIONS

Supervised learning can be adopted for training a network to recognize occluded joints by predicting heatmaps where,
for each pixel, a corresponding value indicates the probability that there is an occluded joint in that specific location.

A more complex task is to hallucinate the occluded parts of a body when not visible. This is a relatively simple
cognitive exercise for humans that have been constantly trained to see people, their clothes, and their aspect throughout
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Fig. 8. A schematic representation of the training procedure adopted in our work. The Generator takes the occluded image 𝐼𝑜𝑐𝑐 as
input and the attributes of the person 𝐴𝑔𝑡 as a further conditioning element. To train the Generator, we fed the generated image to
three different networks: ResNet-101, VGG-16, and the Discriminator in order to compute the relative losses. ResNet-101 is used
to maximize high-level similarity. VGG-16 is used to encourage low-level similarity. The Discriminator, which gives the judgment
between “real” and “fake” distributions, has to be fooled by the Generator in order to produce images belonging to the non-occluded
domain of pedestrians.

their lives. Probably, if we ask a person to draw the missing part of a body shape we will achieve satisfactory results.
But, at the same time, it is unfeasible to create a large and manually annotated training set containing couples of the
same instance of occluded and visible people. To this aim, computer graphics come again to our aid with the AiC [17]
dataset.

In this context, semi-supervised methods like GANs (Generative Adversarial Nets) are particularly suitable. The
basic idea is to train a conditioned-GAN to generate an image of a person that could be virtually acceptable, i.e., that
could be precise enough to confuse a discriminator tasked to distinguish between fake and real images. This was a
former approach followed in [14] where we proposed a GAN to create a de-occluded version of a person.

In order to improve the results, we enriched the adversarial paradigm where a more complex Generative Adversarial
Network has been conditioned on three objectives. Specifically, the reconstructed image is i) without occlusion ii)
similar at pixel level to its completely visible version iii) capable to conserve similar visual attributes (e.g. male/female)
of the original one. As depicted in Figure 8, the network is trained to optimize a Loss function which takes into account
the three aforementioned objectives:

L𝑡𝑜𝑡𝑎𝑙 =

total loss︷                                   ︸︸                                   ︷
L𝑎𝑑𝑣︸︷︷︸

adver. loss

+ _1 · L𝑣𝑔𝑔︸    ︷︷    ︸
cont. loss

+ _2 · L𝑎𝑡𝑟︸    ︷︷    ︸
attr. loss

(2)
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Table 6. Ablation study results on RAP dataset

Method mean Accuracy Accuracy Precision Recall F1 SSIM PSNR
Baseline 70.74 56.55 70.61 71.78 71.19 0.7982 20.31
VGG loss 72.48 58.89 72.58 73.56 73.06 0.8293 20.88
VGG and attr. loss 72.18 59.59 73.51 73.72 73.62 0.8239 20.65
VGG and attr. loss (+ input attr.) 81.1 74.8 84.29 85.61 84.94 0.8274 20.7
Occlusion 65.74 51.06 68.72 64.36 66.47 0.7153 14.57
GT data 78,66 66,23 77.85 79.71 78.77 - -

Table 7. Ablation study results on AiC dataset

Method mean Accuracy Accuracy Precision Recall F1 SSIM PSNR
Baseline 72.72 45.48 48.23 80.87 60.42 0.6236 20.49
VGG loss 78.12 53.11 55.52 85.65 67.37 0.7088 21.5
VGG and attr. loss 78.37 53.3 55.73 85.46 67.46 0.7101 21.81
VGG and attr. loss (+ input attr.) 90.86 72.15 74.0 95.1 83.23 0.6986 21.47
Occlusion 72.24 45.77 48.78 79.03 60.32 0.6148 18.38
GT data 91.89 74.87 76.80 95.43 85.11 - -

Table 8. Comparison with the state-of-the-art method on RAP dataset

Method mA Accuracy Precision Recall F1 SSIM PSNR
Pix2Pix [21] 69.49 52.05 65.07 70.06 67.47 0.7348 17.91
RN [14] 65.92 51.44 65.77 67.94 66.84 0.6798 18.4
Ours 72.18 59.59 73.51 73.72 73.62 0.8239 20.65
Occlusion 65.74 51.06 68.72 64.36 66.47 0.7153 14.57

In order to generate people without occlusion, a classical adversarial loss is employed where a discriminator is tasked
to distinguish between real and fake fully visible people. To generate images that have similar feature representations
we adopted a perceptual loss [22]. Rather than encouraging the pixels of the output image to exactly match the pixels
of the target image, we instead encourage them to have similar feature representations as computed by the VGG16
network. Finally, since our main purpose is not limited to naively restore the occluded parts of pedestrians, but also to
maintain and highlight their attributes, we introduced an additional loss component. As for the perceptual loss, we
used a classification network as loss function. In particular, we adapted ResNet-101, pre-trained on ImageNet, to the
task of multi-attribute classification. Differently, from the VGG loss, we work on a higher level of abstraction, forcing
the Generator network to produce images that exhibit characteristics coherent with the attributes of the person. This is
another example of a superhuman capability that would never be possible without the help of a synthetic “superhuman”
dataset.

Fig. 9 shows some qualitative results. The baseline performs considerably worse than the other experiments, not
being able to completely remove the occlusions on AiC. The synthetic dataset is, in fact, more challenging compared to
our corrupted version of RAP. For the same reason, RAP results are overall more appealing than the ones obtained on
AiC. Moreover, no substantial difference appears between the other setups, highlighting the fact that the VGG loss is
the main component that guides the network to produce high-quality results.
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GT OCC Baseline Vgg Vgg+Att Entire GT OCC EntireVgg Vgg+AttBaseline

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 9. Qualitative results based on the ablation study on RAP dataset (leftmost) and AiC dataset (rightmost). GT columns indicate
ground truth images while in the OCC columns are presented the input occluded images. Columns 3 and 9 indicate the outputs of
our baseline. Columns 4 and 10 represents results of the VGG loss. On 5 and 11 we have results of experiments using all the 3 losses
combined: adversarial loss, VGG loss, and attribute loss. Finally, columns 6 and 12 show results where attributes are injected as input
to the network. The Figure is taken from “Can Adversarial Networks Hallucinate Occluded People With a Plausible Aspect?” [17]

Table 6 and Table 7 present quantitative results for RAP and AiC respectively based on our ablation study. The
tables also provide metrics referred to the occluded images before the restoration process. Despite being visually
indistinguishable, the images obtained from the VGG loss and from our Entire configuration produce very different
results in terms of attribute metrics. We can also observe that there is no substantial difference between the VGG loss
and the VGG loss with Attributes loss. In fact, RAP shows a gap of one percentage point in almost all the classification
metrics, while AiC shows very little differences, due to the more challenging nature of AiC.

Moreover, Table 6 shows that the Entire setup reaches higher scores compared to the upper bound of the ground
truth images. Also, Table 7 shows performances that are close to the ground truth metrics when we input attribute
information directly to the Generator. In fact, with attributes as input, the Generator network, by restoring the occluded
images, is able to produce an output that has enhanced attribute characteristics (although this is not visible to the naked
eye).

This is an example of what can be done with Generative Networks tasked to fill the gaps due to occlusions and by
creating a fine-grained representation of the human shape. As the matter of fact, this approach could be improved by
a deeper exploration of the best architectures to extract human information that is used to produce the supervised
signal that guides the training procedure. However, in spite of the choice of the generative architecture (the U-net
in our example) and the discriminative networks (VGG-16, ResNet-101, and a two-class CNN), the lesson learned is
that the goal of a good design is to match the embedding capabilities with the specific task. The compressed neural
representation of the body shape learned by the generative network is conditioned by an estimated knowledge, i.e., the
attribute vector of the shape. Indeed, the reconstructive capability of the network can be compared with a human-like
imagination, which is equally affected by biases.
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Table 9. Comparison on the CMU Panoptic dataset. Results are shown in terms of MPJPE [mm] and F1 detection score. Last row:
results with ground truth volumetric heatmaps

Haggl. Mafia Ultim. Pizza Mean F1

Rogez et al. [31] 218 187 194 221 203 -
Zanfir et al. [53] 140 166 151 156 153 -
Zanfir et al. [54] 72 79 67 94 72 -
LoCO 45 95 58 79 69 89.21
GT 9 12 9 9 10 100

Table 10. Comparison on the Human3.6m dataset in terms of average MPJPE [mm]. “(a)" indicates the addition of rigid alignment to
the test protocol; 𝑁 is the number of joints considered by the method. “TD" and “BU" indicates top-down and bottom-up methods
respectively. Last row: results with ground truth volumetric heatmaps

Method N P1 P1 (a) P2 P2 (a)

TD

Rogez et al. [36] 13 63.2 53.4 87.7 71.6
Debral et al. [10] 16 - - - 65.2
Rogez et al. [38] 13 54.6 45.8 65.4 54.3
Moon et al. [30] 17 35.2 34.0 54.4 53.3

BU

Mehta et al. [28] 17 - - 80.5 -
Mehta et al. [27] 17 - - 69.9 -
LoCO 14 51.1 43.4 61.0 49.1

GT Vol. Heatmaps 14 15.6 14.9 15.0 14.3

This network could be used as a support for Multimedia Surveillance, forensics, or security-related applications in
order to give more information about the appearance of a person that has been acquired under severe occlusion. Finally,
it is important to note that the reconstruction ability of the network is dependent on the fairness of the training dataset
as biases on the dataset could distort the results considerably.

5 HUMAN 3D ASSESSMENT BY SUPERVISED POSE LEARNING

A third example of what can be generated artificially by a network is the 3D estimation of the spatial distribution
of people in surveillance scenes. Humans are not able to accurately predict the distance of objects and persons by
simply looking at them. In few meters, humans can estimate distances by relying on their stereo vision. Exceeded this
distance, humans use learned perspective information to infer the 3D distances, in accordance with our long-lasting
visual experience. Similarly, surveillance systems are able to do the same thanks to Machine Learning. The goal of
estimating three-dimensional human positions and pose by solely relying on monocular images is a very new and
challenging task in Computer Vision, that has been recently tackled in a top-down manner by firstly detecting the
target people and then estimating the distance of the joints of a single person w.r.t. the camera location.

A more efficient approach exploits bottom-up supervised learning approaches trained on synthetic data which
outputs a 3D pose estimation for every person in the image in a single forward pass, as proposed by the Learning on
Compressed Output (LoCO) architecture [15].

In LoCO we infer the localization of every person starting from an estimation of the 3D position of all the detected
joints in an image. Thus, the basic idea is to predict the 3D positions of all heads, knees, feet, etc., and then to group
them into a skeleton by relying on some (learned) physical constraints of the human body. For instance, we learn that
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Fig. 10. Schematization of the LoCO pipeline. At training time, the Encoder takes the Volumetric Heatmaps 𝐻 1, ..., 𝐻𝑁 and produces
the compressed volumetric heatmaps𝐶𝑔𝑡 which are used as ground truth from the Code Predictor. At test time, the intermediate
representation computed by the Code Predictor is fed to the Decoder for the final output.

the distance between hands or between head and feet is limited and changes in accordance with the distance due to the
perspective constraints.

Specifically, LoCO is an approach for bottom-upmulti-person 3D human pose estimation frommonocular RGB images
which models joint location with high-resolution volumetric heatmaps, devising a simple and effective compression
method to drastically reduce the size of this representation. At the core of the method lies the Volumetric Heatmap
Autoencoder, a fully-convolutional network tasked with the compression of ground-truth heatmaps into a dense
intermediate representation. Figure 10 shows a schematization of the LoCO pipeline.

A second model, the Code Predictor, is then trained to predict these codes, which can be decompressed at test time
to re-obtain the original representation. The experimental evaluation shows that this method performs favorably when
compared to state of the art on both multi-person and single-person 3D human pose estimation datasets and, thanks to
the novel compression strategy, can process full-HD images at the constant run-time of 8 fps regardless of the number
of subjects in the scene.

The core of the proposal relies on the creation of an alternative ground-truth representation that preserves the
most informative content of the original ground-truth but reduces its memory footprint. Indeed, this new compressed
representation is used as the target ground-truth during our network training. By leveraging on the analogy between
compression and dimensionality reduction on sparse signals [3, 41, 46], we empirically follow the intuition that 3D body
poses can be represented in an alternative space where data redundancy is exploited towards a compact representation.
This is done by minimizing the loss of information while keeping the spatial nature of the representation, a task for
which convolutional architectures are particularly suitable. Concurrently w.r.t. LoCO, compression-based approaches
have been effectively used for both dataset distillation and input compression [44, 47] but, to the best of our knowledge,
this is the first time they are applied to ground truth remapping. For this purpose, deep self-supervised networks such
as autoencoders represent a natural choice for searching, in a data-driven way, for an intermediate representation.
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Fig. 11. Qualitative results of our LoCO approach. 1st and 2nd rows: result of LoCO on the CMU Panoptic dataset; 3rd and 4th rows:
result of LoCO on the Human3.6m dataset. The Figure is taken from “Compressed Volumetric Heatmaps for Multi-Person 3D Pose
Estimation” [15].

Our LoCO approach allows us to exploit Volumetric Heatmaps as a ground truth representation for the 3D pose
estimation task. Instead, without compression, this would lead to a sparse and extremely high dimensional output space
with consequences on both the network size and the stability of the training procedure. In comparison with top-down
approaches, we removed the dependency on the people detector stage, hence gaining both in terms of robustness and
assuring a constant processing time at the increasing of people in the scene. The experiments show state-of-the-art
performance on all the considered datasets. Figure 11 shows some qualitative results of the method.

Results obtained on the CMP Panoptic dataset are shown in Table 9, divided by action type and expressed in terms of
Mean Per Joint Position Error (MPJPE). The obtained results show the advantages of using volumetric heatmaps for 3D
Human Pose Estimation, as LoCO achieves the best result. Table 10 further shows a comparison with state-of-the-art
multi-person methods on the single person Human3.6M dataset, showing that LoCO is well suited even in the single
person context, as it achieves state of the art results among bottom-up methods.

This can be considered a mixed approach taking the pros and cons of the two methods previously discussed. Assuming
that 2D pose estimation has acceptable results and that extracting fine-grained information (i.e., the joints) without
appearance information prevents having misleading information that is distorted by perspective, we use a network to
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Fig. 12. GUI of our system. In the main frame, anonymized bounding boxes are superimposed to the image. Colored links encodes
people reciprocal distance. On the right, two maps shows the bird-eye view of the area. The estimated risk level of the scene resides
at the bottom of the interface.

hallucinate not the pixel-level appearance but the skeleton. In this manner, every joint can be reconstructed at the same
time in the 3D space, with very high confidence even when overlapped and occluded.

6 AN EXAMPLE OF APPLICATION

The previously discussed datasets can be also exploited for real-world applications. In fact, we utilized our synthetic
dataset to benchmark an in-edge AI system designed to monitor the acceptance of social distancing prevention measures
during the COVID-19 pandemic. The proposed system can model the risk of possible contagious in a given area
monitored by RGB cameras where people freely move and interact. The system, called Inter-Homines, evaluates in
real-time the contagion risk by analyzing video streams: it is able to locate people in 3D space, calculate interpersonal
distances and predict risk levels by building dynamic maps of the monitored area. The system has been tested on our
synthetically generated datasets. Despite being synthetic, our data features highly challenging and complex situations,
peculiar of surveillance scenarios, where people are often dominated by severe body part occlusions and truncation.
For those reasons, we believe this data is the perfect choice to validate a system that targets global safety.

The system has a twofold goal. The first is to provide a reliable tool, in accordance with European privacy and
usage guidelines of the AI, to calculate in real-time the actual compliance with the prevention measures for "people
spacing", also interactively reporting any risky situations. In particular, the implemented system can generate real-time
alarms when people form crowds. The second goal is to provide an innovative model for the dynamic calculation of the
risk of the monitored site that can be used as a tool for prevention, control, monitoring, and planning, support to the
population and workers in order to implement conscious attendance, linked to effective compliance with the measures
in force. The aim of our Inter-Homines system is to detect people, compute their distance and provide a dynamic risk
Manuscript submitted to ACM
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Fig. 13. Examples of CenterNet bounding boxes (pink), refined bounding boxes and head localization (green).

level of the area, as well as producing a human-readable visualization with anonymized people. For GDPR constraints,
no visual data is recorded but, instead, only people coordinates are extracted and stored. Data is acquired with a variable
rate, up to one time per second for each camera. Figure 12 shows the graphic user interface of the application.

In this project, we provide a novel detection pipeline running in real-time. It exploits standard fast camera calibrations,
a people detector, and pose estimation methods. As we are interested in the best speed-accuracy trade-off, we choose
CenterNet [56] as a people detector which yields 51.3% AP for the people class on MS COCO, running at 52 FPS on a
Titian XP. CenterNet is capable of producing a precise localization of every person in the image, however, it does not
take into account occlusions that usually happen in real-world scenarios. If a person is occluded by an object or by
other people, CenterNet predicts a tight bounding box that only contains the visible part of the person, ignoring his
full shape. This usually happens with the bottom part of the body, as the camera is commonly placed several meters
above the ground. Since we are ultimately interested in recovering the ground plane coordinate of each person through
homography, we need to know the exact position (in the image plane) of the feet of each detected person. This task
cannot be accomplished by solely relying on CenterNet.

To overcome the aforementioned limitations without introducing complexity to the overall system, we propose to
utilize a small network to predict the feet position given a bounding box containing a person, even if the feet are not
visible. To this aim we rely on a simple modification of THOPA-Net, given an image tightly containing a person, to
regress to the midpoint of the segment having the two feet as endpoints. This ensures that we know the exact position
in the image plane where every person touches the ground. Figure 13 shows some examples of refined bounding boxes.
Since we are also interested in anonymizing the face of each detected person, we further predict the location of the
head, by the same network.

For this module, we used JTA as the training dataset since it is the only surveillance dataset available in the literature
that provide pose estimation annotations with occlusion information. Thanks to this, we were able to simulate occlusion
situations by simply picking, during training, the pedestrians with the bottom keypoints occluded, like ankles, knees,
and hips. During training, we also randomly shortened some of the bounding boxes in order to simulate CenterNet
behaviors. This step ensures a more precise localization of the feet while also coping with truncated bounding boxes.
Our network can effectively obtain an accurate position of each head and it is used to extend the bounding box to its
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regular shape. In this application, we do not exploited the LoCO estimation of 3D joints since we can rely on fully
calibrated cameras to infer the distances between people.

7 CONCLUSIONS AND ACKNOWLEDGE

This paper discussed some ideas for 2D and 3D people detection for surveillance applications, with a specific focus on
occlusion. Having Artificial Intelligence modules capable of estimating the human pose in the space also under severe
occlusions and perspective size deformation allows surveillance systems to reach some superhuman vision capabilities,
that can be exploited in multimedia interfaces to empower human capabilities in monitoring and control. This can be
exploited both in real-time to assess dangerous situations or for forecasting and statistical evaluation of the context, as
in the case of risk assessment for contagiousness in monitored areas. Nowadays, neural architectures are becoming
effective in supervised and semi-supervised related tasks thanks to the availability of open-source datasets. These
datasets should be rich, collected with fairness, and in accordance with the values of equity (e.g. gender equity) and
explainable capabilities. For this reason, the use of simulated environments could be a good answer to such constraints.
We would like to acknowledge the researchers at AimageLab who supported and co-authored some of the cited works.
The projects discussed in this paper are supported by the Italian Ministry of University and Research under PRIN
Project PREVUE (PRediction of Events in Urban Environments) and the European projects ARTEMIS Arrowhead Tools,
as well as the NVIDIA AI Technology Center at UNIMORE.
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