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Abstract

THIS PAPER IS SUBMITTED WITH THE OPTION ’YOUR PAPER

YOUR WAY’. FOR THIS REASON LAYOUT AND STYLE MAY DIFFER

FROM THE JOURNAL ONE.

This work focuses on a DG-SOFC-MGT (downdraft gasifier- solid oxide

fuel cell - micro gas turbine) power plant for electrical energy production and

investigates two possible performance-upgrading systems: polyphenylene ox-

ide (PPO) membrane and zeolite filters. The first is used to produce oxygen-

enriched air used in the reactor, while the latter separates the CO2 content

from the syngas. In order to prevent power plant shutdowns during the gasi-

fier reactor scheduled maintenance, the system is equipped with a gas storage

tank. The generation unit consists of a SOFC-MGT system characterized by

higher electrical efficiency when compared to conventional power production

technology (IC engines, ORC and EFGT). Poplar wood chips with 10% of

total moisture are used as feedstock. Four different combinations with and

without PPO and zeolite filtrations are simulated and discussed. One-year
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energy and power simulation were used as basis for comparison between all

the cases analyzed. The modeling of the gasification reactions gives results

consistent with literature about oxygen-enriched processes. Results showed

that the highest electrical efficiency obtained is 32.81%. This value is reached

by the power plant equipped only with PPO membrane filtration. Contrary

to the PPO filtering, zeolite filtration does not increase the SOFC-MGT unit

performance while it affects the energy balance with high auxiliary electrical

consumption. This solution can be considered valuable only for future work

coupling a CO2 sequestration system to the power plant.

Keywords:

Biomass, Gasification, Modeling, Solide Oxide Fuel Cells, Zeolites, PPO

membrane

1. Introduction1

Due to the abundant availability and distribution, biomasses hold key-2

roles in plans for renewable energy production. This trend is becoming even3

more relevant thanks to the good degree of reliability and efficiency of the4

biomass-based technologies together with the high subsidies granted by sev-5

eral government for sustainable electrical energy production [1].6

Depending on the feedstock quality and availability, biomasses are con-7

verted into energy through different technologies. In the case of ligno-cellulosic8

biomasses, a technolgy of great validity is gasification. This thermo-chemical9

process turns solid biomass into a gaseous fuel known as syngas, which can10

be converted into electrical energy through all those systems used for power11

production from gaseous fuels [2]. Gasification is today one of the most effi-12
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cient technologies to convert wood into electricity and it is also sustainable13

in terms of the environmental balance of CO2 [3, 4].14

Most of the gasification power plants use an IC engine-generator to con-15

vert the syngas chemical energy into electrical power. However, in some cases16

other conversion machines are used, i.e. Organic Rankine Cycles (ORC), Ex-17

ternal Firing Gas Turbines (EFGT)[5] and Stirling engines are used with the18

major advantage of having minor limitation about the syngas level of purifica-19

tion [2, 6, 7, 8, 9]. These systems are usually characterized by low conversion20

efficiencies of about 10-12%. Major conversion rates can be obtained only21

with electrochemical devices such as proton exchange membrane fuel cells22

[10], Molten Carbonate Fuel Cells (MCFC) [11, 12], Solid Oxide Fuel Cells23

(SOFC) [13, 14, 15], systems composed of SOFC and Micro Gas Turbines24

(MGT) [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] and systems composed of25

SOFC-MGT-ORC [27]. Despite the high rate of energy conversion, these26

systems require perfectly clean syngas [28]. Downdraft gasifiers are the most27

suitable architecture due to the low tar and particulate content in their gas28

when compared to updraft, crossdraft or fluidized bed gasifiers [2, 6, 29].29

However, downdraft gasifiers commonly use air as gasification agent. This30

solution generates a syngas with a low calorific value where the hydrogen,31

methane and carbon monoxide are diluted in non-burnable gases: N2 (about32

50%) and CO2 (from 10 to 20%). Otherwise, it is possible to choose oxygen33

gasification that produces a syngas with negligible N2 content. However, oxy-34

gen gasification is a complex and expensive technology due to the gasification35

agent supply sub-systems and reactor material choice. Indeed, temperatures36

inside the reactor can reach 1200-1300 K when oxygen is used instead of air37
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[30].38

The basic system discussed in this study is composed of an air blown-39

downdraft-fixed bed gasifier fed with poplar wood chips. This work is aimed40

at investigating the effects of different power plant designs on the overall41

energy conversion efficiency.42

The first power plant upgrading sub-system consists of a polyphenylene43

oxide (PPO) membrane used to produce oxygen-enriched air. The gas sep-44

aration characterization of this membrane is reported in literature [31, 32].45

In practice, membrane gas separation is applied to increase the oxygen con-46

tent in the inlet air of biomass boilers [33]. Bisio et al. studied the ther-47

modynamics of combustion with enriched air and reviewed several types of48

memebranes [34]. Coombe and Nieh developed a membrane-based device for49

air enrichment in small scale burners [35]. Hao et al. applied an oxygen-50

permeable membrane to a reactor for the co-production of dimethyl ether51

(DME)/methanol and electricity [36]. This paper uses PPO membrane in52

order to obtain air with about 50% of oxygen then used as gasification agent.53

This solution is a hybrid between air and pure oxygen gasification. Enriched54

air reduces the reactor thermal stress compared to pure oxygen gasification,55

while the syngas has a lower N2 content than the one obtained in pure air56

gasification. In addition, the syngas flow rate decreases because, for a fixed57

power output, the enriched air flow required for gasification is lower than air58

used in conventional gasification. This happens because the same amount of59

oxygen is used in both cases and its concentration in enriched air is higher60

than untreated air. Finally, the tar production is lower than air gasification61

as consequence of the higher temperature that cracks more efficiently the62
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primary tars from pyrolysis [37].63

A second solution discussed in this work consists of a porous media used64

to upgrade the syngas. In fact, syngas has a variable CO2 content depending65

on gasification process as well as several boundary conditions. This value66

ranges from 10% to 30% and it reduces significantly the higher heating value67

of the syngas [37]. A solution to overcome this issue is to adopt a pressure-68

swing selective synthetic zeolite filter. This system is placed before the gas69

storage in order to separate carbon dioxide from syngas [38, 39]. The filter70

can be constantly regenerated using a rotary valve packaged into modules71

as described by Tagliabue et al. [40]. Literature investigation about zeolite72

filtration outlines several works. Bacsik et al. studied the biogas CO2-CH473

separation through zeolites [41]. Kacem et al. investigated the pressure swing74

adsorption for CO2/N2 and CO2/CH4 separation using activated carbon and75

several types of zeolites [42]. Dirar et al. investigated intrinsic adsorption76

properties of CO2 on 5A and 13X zeolite [43].77

The syngas obtained from gasification is stored and then used in a SOFC78

unit able to produce electrical and thermal energy. The number of stacks79

within the cell is optimized taking into account the optimal electrical cur-80

rent density. The chosen number guarantees a good efficiency, however the81

gas discharged from the cell still contains some chemical energy. For this82

reason, this work suggests to convert this residual energy in a micro gas tur-83

bine (MGT). The syngas storage allows the generation unit to operate in its84

optimal point, furthermore it prevent the power plant shoutting down dur-85

ing the maintenance operations of the gasifier. This management preserves86

the SOFC and MGT reliability. However, it is difficult to design the stor-87
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age capacity because an oversize storage rises the systems costs, while an88

undersized capacity reduces the time gained for the maintenance. For this89

reason, the storage was designed taking into account the tanks pressure, the90

electrical power production of the SOFC-MGT unit and the time required91

for scheduled stops of the gasifier for maintenance operations.92

The mathematics of the whole system was developed starting from lit-93

erature. The overall model has been implemented in Matlab SimulinkTM94

software environment in order to simulate the behavior of the system under95

different conditions over a year long simulation.96

2. System modeling97

The basic system layout is reported in Figure 1. The most relevant com-98

ponents are:99

• Downdraft gasifier: The gasifier is equipped with a subsystem for100

the syngas filtering and cooling with water scrubber and electrostatic101

filters.102

• Syngas storage: It consists of a tank of a total volume of 650 m3.103

• SOFC unit: This subsystem consists of 10875 solid oxide cells and it104

is connected to the electrical grid by a power inverter.105

• Micro gas turbine (MGT): this turbo-machinery is used to convert106

the last part of chemical energy content in the syngas purged by the107

SOFC.108
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This work investigates the effect of the implementation of the following109

sub-systems to the basic scheme:110

• PPO membrane filter module: The PPO sub-system consists of111

the membrane filter and a compressor that increases the pressure of112

the air before the PPO membrane filter to about 1 MPa. The oxygen113

enriched air is sent to the gasifier at atmospheric pressure. A flow of114

nitrogen is purged from the PPO module.115

• Zeolite (ZEO) filter module: the zeolite (ZEO) filter module is116

placed after the first syngas compressor. There is a further syngas117

compression stage ahead the storage tanks because the ZEO module118

works at 0.5 MPa of pressure as described in Section 2.3, while the119

pressure in the storage is often higher.120

The syngas is used as fuel in the SOFC stack. In this device, the fuel121

reforming occurs at the anode and there is a recirculation of the 20% of122

the anode exhaust to increase the fuel reforming performance [18, 22]. The123

anode exhaust is used to preheat the syngas, then it is finally burned in the124

MGT burner together with the cathode exhaust. The air required for the125

electrochemical reaction is compressed and preheated in the recuperator of126

the MGT as well as in the air preheater of the SOFC.127

The SOFC stack generates DC current which is converted into AC current128

by an inverter and it is sent to the electrical grid. The MGT drags the air129

compressor and the remaining mechanical energy is converted into electrical130

energy by an alternator.131
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2.1. PPO module modeling132

Polymeric membranes allow to separate different gaseous components de-133

pending on the pore size and pressure applied to the filter [31]. In this work134

a membrane is used to separate nitrogen from air. The membranes widely135

used for this purpose are: Matrimid, Polyphenylenoxide (PPO) and Poly-136

dimethylsiloxan (PDMS) [31]. As showed in Figure 2, in membranes the137

inlet air flow is divided in permeate and retentate molar flows. The inlet138

flow (Qair [mol/s]) has a pressure pfeed [atm] and it is composed of xO2Feed139

and xN2Feed molar fractions of oxygen and nitrogen. The permeate molar140

flow (QP [mol/s]) has a pressure ppermeate [atm] and it is composed of yO2141

and yN2 molar fractions of oxygen and nitrogen. The retentate molar flow142

(QR [mol/s]) has a pressure pfeed [atm] and it is composed of xO2Retentate and143

xN2Retentate molar fractions of oxygen and nitrogen.144

Each membrane behavior is identified through two parameters: the selec-145

tivity (α) and the permeability to oxygen (γ). The first factor represents the146

attitude of the membrane to attract oxygen, the second quantifies the atti-147

tude of the membrane to be crossed by it. High selectivity and permeability148

ensure great filtering performance in terms of high value of yO2 and a small149

membrane surface area is required to filter a given amount of air. Table 1150

presents the parameters of Matrimid, PPO and PDSM membranes.151

The choice of a PPO membrane is a compromise in terms of acceptable152

values of selectivity and permeability. In order to simulate the behavior of153

the membranes, a mathematical model has been implemented from Melin154

and Rautenbach [31]. The model is based on the following assumptions:155

• Air is considered a binary gas mixture with 21% oxygen and 79% ni-156
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trogen.157

• Steady state conditions.158

• Isotherm conditions.159

• Isobaric conditions.160

• Perfect gas law.161

• Constant permeability.162

• Perfect mixing conditions on upstream and downstream sides.163

• Concentration polarization at the membrane is neglected.164

• Pressure loss in the porous support layer is neglected.165

• The permeate can drain off freely.166

The calculation of the permeate composition is made with the following167

formula taken from the work of Melin and Rautenbach [31]:168

yO2 =
1

2

[
1 + φ ∗

(
xO2Feed +

1

α− 1

)]
−

√[
1

2

[
1 + φ ∗

(
xO2Feed +

1

α− 1

)]]2

− α ∗ φ ∗ xO2Feed

α− 1

(1)

yN2 = 1− yO2 (2)

where φ [-] is the feed-permeate pressure ratio given by the following169

equation:170
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φ = pfeed/ppermeate (3)

Figure 3 reports the permeate composition over pressure ratio for the171

three membrane types considered. It can be seen that only a certain maxi-172

mum of oxygen ratio can be achieved because all the graphs are leveling off.173

Therefore a pressure ratio of 1 MPa was chosen for further calculations as174

suggested in Melin and Rautenbach [31] and the pretentate was fixed at 1 atm.175

The Matrimid membrane is able to produce the highest oxygen ratio176

of 0.58 % vol. in the permeate, however PPO membrane presents a good177

value of oxygen ratio (0.49 % vol.) and an acceptable value of permeability,178

therefore this membrane is adopted in the simulations. The active area of179

the membrane can be assessed from the molar flow of oxygen required for180

the gasification QPO2 [mol/s]:181

Amembrane =
QPO2

γ ∗ (xO2Feed ∗ pfeed + yO2 ∗ ppermeate)
(4)

The molar flow of nitrogen QPN2 [mol/s] and the total permeate molar182

flow QP [mol/s] is given by the following equations:183

QPN2 =
γ

α
∗ [pfeed ∗ (1− xO2Feed) + ppermeate ∗ (1− yO2)] (5)

QP = QPN2 +QPO2 (6)

The molar flow of the inlet air Qair, the retentate molar flow QR and the184

retentate composition (xO2Retentate and xN2Retentate) are calculated setting to185

zero the amount of oxygen in the retentate flow as suggested by Melin and186
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Rautenbach[31]. Thus, a mass balance equation can be applied to estimate187

Qair and QR:188

Qair ∗ xO2Feed = QP ∗ yO2 → Qair =
QP ∗ yO2

xO2Feed

(7)

Qair = QP +QR → QR = Qair −QP (8)

Finally, the electrical power consumption to pressurize the inlet air flow189

is calculated as a polytropic compression by Equation 15 assuming Tin = 20190

o C; m = 1.2 and ηcomp = 90 %.191

2.2. Gasifier modeling192

In this work, the gasification process is simulated using a black-box model193

based on Barman’s work [44]. The model is validated for downdraft gasifiers;194

it is based on the following gasification equation:195

CHxOyNz + wH2O +m (O2 + 3.76N2)→

nH2H2 + nCOCO + nCO2CO2 + nH2OH2O

+nCH4CH4 + (z/2 + 3.76m)N2 + ntarCHpOq

(9)

where CHxOyNz is the equivalent chemical formula of ”dry and ash196

free” (daf) biomass; CHpOq is the equivalent chemical formula of tar [45];197

w [mol/molbio] is the specific molar amount of the biomass moisture; m198

[mol/molbio] is the specific molar amount of oxygen calculated starting from199

the equivalence ratio ER as suggested by Jarungthammachote and Dutta[46];200

nH2 , nCO, nCO2 , nH2O, nCH4 , ntar [mol/molbio] are the specific molar amounts201

of H2, CO,CO2, H2O,CH4 and tar which constitute the syngas.202
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This model is used and discussed in several other works [47, 48, 49]. It203

consists of a chemical and a thermal sub-models that converge to the final204

composition of the gas. The first step is to choose an initial temperature T205

[K] and calculate the equilibrium constant of the following reactions:206

• K1: Water-gas shift CO +H2O ↔ CO2 +H2207

• K2: Hydrogasification C + 2H2 ↔ CH4208

• K3: Methane steam reforming CH4 +H2O ↔ CO + 3H2209

The system of equations 10 reported below is composed of three chemical210

balances calculated from Equation 9 (carbon, hydrogen and oxygen) and211

the three equilibrium constants for water-gas, hydrogasification and methane212

reforming reactions. The system is solved with the Newton-Raphson method.213



nCO + nCO2 + nCH4 + ntar − 1 = 0

2nH2 + 2nH2O + 4nCH4 + pntar − x− 2w = 0

nCO + 2nCO2 + nH2O + qntar − w − 2m− y = 0

K1 =
nCO2

∗nH2

nCO∗nH2O

K2 =
nCH4

∗ ṅtot,wet
ṅbio,daf

n2
H2

K3 =
nCO∗n3

H2(
ṅtot,wet
ṅbio,daf

)2

nH2O
nCH4

(10)
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Once the molar specific amounts of the syngas species are evaluated, it is214

possible to solve the thermodynamic energy balance of the system reported215

in the following equation:216

∑
j=react

nj ∗HF 0
j =

∑
i=prod

ni ∗
(
HF 0

i + ∆HT,i

)
(11)

where nj [moles] and HF 0
j [kJ/kmol] are the specific moles amount and217

standard heat of formation of the j-th reagent (biomass, air and moisture); ni218

[moles] and HF 0
i [kJ/kmol] are the specific moles amount and the standard219

heat of formation of the i-th product (H2, CO, CO2, H2O ,CH4 and N2) and220

∆HT,i is the enthalpy difference between any given state and the standard221

state for the i-th product. ∆HT,i can be calculated starting from the specific222

heat of the product:223

∆HT,i =

∫ T

298.15

Cp(T ) dT =

∣∣∣∣aT + b
T 2

2
+ c

T 3

3
+ d

T 4

4

∣∣∣∣T
298.15

(12)

where the coefficient a,b,c and d are defined for each gas by Jarungtham-224

machote and Dutta[46]. In order to find the equilibrium temperature Tnew,225

the system is considered adiabatic and the the Newton-Raphson method is226

applied to the equations. If abs(T − Tnew) < 0.1 K then the calculated equi-227

librium temperature and molar specific gases amounts are the final results;228

otherwise, a new iteration is done in order to satisfy the previous condi-229

tion. The model is implemented in Python and the input are the biomass230

equivalent molecule, the equivalence ratio ER and the initial temperature.231

The temperature input is used only as a starting point for the iterating232

system; after few cycles the temperature converges to the ones that satisfy233

both the chemical and thermal sub-systems. About the ER, a value of 0.335234
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is assumed. This value is consistent with air blown gasification parameters235

[50, 37] and it is confirmed by the low tar content in the syngas. Poplar wood236

chips properties and gasifier model parameters are summarized in Table 1.237

2.3. ZEO module modeling238

The zeolite filter is able to reduce the total syngas molar flow of about239

20% - 30 % by the adsorption of CO2. Zeolite 5A is chosen because it has240

a great selectivity for carbon dioxide in comparison with the other gases241

that constitute syngas [38]. The gas adsorption in porous solids has been242

described by the Langmuir equation [38, 39]:243

qi =
qmi ∗Bi ∗ pi

1 +
∑n

j=1 Bj ∗ pj
(13)

where qi [mmol/g] is the adsorbed amount of the component i; qmi [mmol/g]244

is the saturation adsorbed amount of the component i; Bi [1/kPa] is the Lang-245

muir constant of the component i; pi [kPa] is the equilibrium partial pressure246

of the component i; Bj [1/kPa] is the Langmuir constant of the component247

j; pj [kPa] is the equilibrium partial pressure of the component j; i and j are248

the gas species of the syngas. Table 1 reports the Langmuir constants and249

the saturation adsorbed amounts for Zeolite 5A, while Figure 4 depicts the250

adsorption trends of the syngas gases as function of pressure. It can be noted251

the high CO2 selectivity of the zeolite in comparison with others gases.252

The mass of zeolite required for adsorbing all the carbon dioxide of the253

syngas depends on the molar flow of the dry syngas, its CO2 molar fraction254

and kinetic constant of adsorption. The ZEO filter module can be constantly255

regenerated using a rotary valve packaged into modules as described in [40].256

14



The mass of zeolite that needs to be regenerated every cycle with duration257

of tcycle can be calculated as follows:258

mzeo = tcycle ∗ ṅDG ∗
1 +

∑n
j=1Bj ∗ pj

qm,CO2 ∗BCO2 ∗ pads ∗ xCO2

(14)

where pads [kPa] is the total pressure of the syngas inside the ZEO filter.259

A constant temperature of the zeolite filter and of the inlet syngas of 303 K is260

assumed and the pressure of the inlet syngas is set to 500 kPa as suggested in261

[38, 39]. The cycling time of regeneration depends on kinetic CO2 adsorption262

constant. In this study a plausible time of 60 seconds is assumed and future263

work will investigate this aspect. Zeolites adsorption generates heat, Ranjani264

et al. [51] suggests that 64-70 kJ are released for every mole of CO2 adsorbed.265

This heat needs to be discharge by the ZEO module in order to keep the266

temperature constant at 303 K. In this preliminary study, no attention was267

paid to the ZEO module heat balance. Furthermore, the gas filtering sub-268

system considered in this work is based on the power plant described by269

Allesina et al. [50]. It was designed with the idea of coupling the gasifier with270

an internal combustion engine. Since the minimum presence of tars could271

negatively affect the performance of the zeolite adsorber, syngas purification272

unit should be properly designed. A potential alternative to water scrubber273

is oil scrubber with subsequent stripping of tars [52, 53].274

2.4. Compressor and storage system modeling275

The modeling of the syngas compression is carried out considering it as276

a polytropic transformation. The electrical power required for compression277

is given by Pedrazzi et al. [54]:278
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Pcomp =
ṅgasLcomp,is

ηcomp
=

ṅgas
ηcomp

zRTin
z − 1

[
1−

(
pout
pin

) z−1
z

]
(15)

where z is the polytrophic coefficient, R is the universal gas constant279

equal to 8.314 J mol−1 K−1, Tin is the gas inlet temperature (25oC for syngas280

compressor 1 and 30oC for syngas compressor 2), pin and pout [atm] are the gas281

inlet and outlet pressures, ṅgas [mol/s] is the gas molar flow and ηcomp is the282

compressor efficiency available from manufacturer’s data [54]. The maximum283

pressure value inside the storage system is a fundamental parameter required284

todesign the tanks and the compressor properly. Assuming ideal gas and a285

constant syngas storage temperature Ts = 25 oC, the pressure inside the286

tanks is calculated by the ideal gas law:287

ps =
nRTs
V

(16)

where n [mol] are the moles of syngas inside the tanks and V [m3] is the288

storage total volume. Assuming a value of the initial syngas moles nin inside289

the storage, the moles of syngas at the time τ [s] are given by:290

n = nin +

∫ τ

0

(ṅin,s(t)− ṅout,s(s)) dt (17)

where ṅin,s(t) and ṅout,s(t) [mol/s] are the inlet and the outlet molar flow291

at the instantaneous time t [s]. Table 2 reports the model parameters of the292

storage and compressor sub-systems. The total volume of storage and the293

initial syngas amount in the tank are reduced of about 50% in comparison294

with the conventional system without PPO and ZEO modules as investigated295

in [55, 56]. This result is reached thanks to the PPO adoption that decreases296
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the molar flow of dry syngas of about the 20% - 30%, while the filtration297

in the ZEO module further reduces the syngas molar flow of about another298

20% - 30% as shown in the results.299

2.5. SOFC modeling300

The SOFC model used in this study is based on the work of Bang-Møller301

and Rokni [18]. This model does not take into account the recirculation302

of gas at the cell anode. This feature may strongly compromise the fuel303

cell efficiency in case of the presence of gases that do not take part in the304

electro-chemical, shift and reforming reactions. Unfortunately, syngas con-305

tains considerable amounts of CO2 and N2. To overcome this issue, the306

model previously cited is implemented with the reforming model presented307

by Rami Salah El-Emam et al. [22]. As described by Rami Salah El-Emam,308

the electro-chemical reactions take place in both the anode and the cathode309

of the cell (Eq.22), while the reforming and the monoxide water shift occur310

only near the anode (Eqs. 18, 19). Equation 22 presents the overall electro-311

chemical reaction that is divided into two sub-reactions: the hydrogen reacts312

with the oxygen ions to form water and electrons according to Eq. 20 at313

the anode, while, at the cathode, the oxygen from inlet air reacts with the314

electrons from the anode (Eq. 21) to form oxygen ions that flow to the anode315

through the solid oxide electrolyte.316

CH4 +H2O → CO + 3H2 (18)

CO +H2O → CO2 +H2 (19)
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H2 +O2− → H2O + 2e− (20)

1

2
O2 + 2e− → O2− (21)

H2 +
1

2
O2 → H2O (22)

The mathematical modeling of reforming and electrochemical reactions317

is explained in References [22] and [18]. Using these models, it is possible318

to calculate the electrical power production and the electrical conversion319

efficiency for a given syngas inlet flow with a specific composition. The320

SOFC model parameters adopted in the simulations are reported in Table 2.321

2.6. MGT modeling322

Mathematical description of gas turbines is well described in literature.323

Details and assumptions of the present model can be found in Bang-Møller324

and Rokni work [18]. Characteristics of the turbine and others components325

connected to the MGT are listed in Table 2.326

3. Simulation results and discussion327

In this work four different cases are simulated. First of all, the basic328

system composed of a downdraft gasifier, a storage tank and a SOFC-MGT329

is simulated. After this step, the two possible solutions consisting of N2330

purging from air or CO2 separation from syngas are discussed separately.331

Finally, the complete system provided with PPO module and ZEO module332

is simulated.333
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3.1. Case I (Gasifier + SOFC + MGT)334

The SOFC-MGT unit constantly produces energy all over the year of335

simulation in order to preserve the stability of the cells and their gaskets,336

which are very sensitive to thermal stresses [57]. The syngas molar flow con-337

sumed by the SOFC-MGT unit is calculated by Equation 23 that considers338

the cycling working of the DG:339

ṅsyngas−SOFC =
hoperationṅDG

hoperation + hmaintenance
(23)

340

Figure 5 depicts the overall model implemented in Matlab SimulinkTM soft-341

ware environment. Table 3 reports the simulation results. Gasifier cold342

efficiency is about 79%, this value is confirmed by literature that suggests343

an efficiency of 70% - 80% for air-blown downdraft gasifier [37, 4, 44]. Syn-344

gas composition consists of about 19% vol. of H2 and 15% vol. of CO, the345

higher heating value of 4.75 MJ/Nm3 is similar to the results reported by346

Basu [37] for this kind of gasifier. SOFC-MGT unit has a constant electrical347

power production of 197.43 kW all over the simulated year. The auxiliary348

consumption of the whole system strongly depends on tank pressurization349

level. The average annual value is 34.24 kW. For this reason, the net average350

power production is reduced to 163.19 kW and the electrical efficiency of the351

system is 25.43%.352

3.2. Case II (PPO + Gasifier + SOFC + MGT)353

Table 4 shows the results of the simulation of the system previously de-354

scribed and now equipped with the PPO module. The oxygen enriched air355
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flow is about 1.27 mol/s. This value is lower than 2.94 mol/s obtained with-356

out PPO membrane (Case I). Syngas composition is consistent with the work357

of Wang et al. [58], where oxygen-enriched air (50% oxygen and 50% nitro-358

gen) is used as gasifying agent in a double stage downdraft gasifier fueled359

with pine sawdust pellets. Differences of 1-2% between the model outputs360

and Wang’s results about CO and H2 contents are achieved (29% vs. 27%361

for H2 and 26% Vs. 25% for CO). The gasification with oxygen-enriched air362

assures high gasifier performance in terms of cold gas efficiency (92%), tar363

production (0.27 g/Nm3) and syngas higher heating value (7.55 MJ/Nm3).364

The syngas outlet flow is 3.589 mol/s, consistently lower than Case I where365

syngas flow is 5.01 mol/s. The average equilibrium temperature of gasifi-366

cation in this case is 931 K. This value is only 36 K higher than Case I.367

Wang et al.[58] suggestes a peak temperature of about 1200 K with oxygen-368

enriched air. With this temperature, conventional material adopted in air369

gasifier can be used (i.e. stainless steel and refractory brick [2, 6]). In Case370

II, the overall net power production is 210.52 kW and the electrical efficiency371

is boosted to 32.81%. The average auxiliary consumption is 42 kW, 8 kW372

higher than Case I. This is due to the PPO module that uses air at 1 MPa373

pressure generated by an air compressor. The electrical consumption of the374

air compressor is 15.3 kW and it is fully compensated by the increasing of375

the gasifier efficiency and the SOFC-MGT unit efficiency.376

3.3. Case III (Gasifier + ZEO + SOFC + MGT)377

Table 5 resumes the simulation results of the system with the ZEO fil-378

tering module instead of PPO membrane. The filtered syngas has a higher379

heating value of 5.9 MJ/Nm3. This value falls between Case I (4.75 MJ/Nm3)380
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and Case II (7.55 MJ/Nm3). The pressure of the storage tank ranges between381

0.267-0.488 MPa, similar to the values obtained in Case II (0.266-0.462 MPa)382

and Case I (0.267-0.539 MPa). The zeolite mass required to perform con-383

tinuosly the filtration is 23.742 kg. The value obtained is consistent with384

Tagliabue et al. work [40]. However, in future work, the CO2 adsorbed by385

the ZEO module can be stored in order to create a carbon sequestration sys-386

tem. The power production and the net electrical efficiency of the system is387

low (148.74 kW of power production and 22.87% of electrical efficiency) as a388

consequence of the energy absorbed by the syngas compressor 1 (see Figure389

1) to increase the pressure of the syngas to 0.5 MPa before the ZEO module.390

This electrical energy consumption is higher than Cases II and I, in addition391

the efficiency of the SOFC-MGT module fueled with the filtered syngas is392

lower. As shown in Table 5, the SOFC-MGT efficiency in Case III is about393

34%, thus lower than Case II (42.08%) and Case I (37.46%).394

3.4. Case IV (PPO + Gasifier + ZEO + SOFC + MGT)395

The results about the fully equipped gasifier power system are reported396

in Table 6. A high power production (194.53 kW) and electrical efficiency397

(30.32%) is reached thanks to the high H2 and CO amounts in the filtered398

syngas. In fact, the H2 volume percentange reaches 41.53% and the CO399

volume percentange is boosted to 32.54%. As a consequence of this com-400

position, the higher heating value of the syngas is 10.19 MJ/Nm3, a value401

typical for oxygen-blown gasifiers [37]. Therefore, the SOFC-MGT unit syn-402

gas consumption is 2.696 mol/s. This value is about 45% lower than Case I403

(4.95 mol/s), 24% lower than Case II (3.545 mol/s) and 33% lower than Case404

III (4.02 mol/s). A pressure range of 0.266-0.415 MPa is achieved. In this405
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case power production and efficiency is lower than Case II as result of higher406

average auxiliary consumption (51.80 kW) and lower SOFC-MGT unit ef-407

ficiency (38.41%). However, the utilization of the ZEO module has several408

advantages: separates the CO2 and reduces the storage peaks pressure.409

3.5. Performance and energy considerations410

Figure 6 shows the electrical efficiency and the average power production411

in every scenario. Case II resulted the best in terms of energy conversion; the412

overall electrical efficiency reaches 32% and the power production is about413

210 kW. These values are higher than commercial gasification power systems414

with internal combustion engines where the maximum electrical efficiency415

hardly reaches 25% [37, 4, 2]. This result is given by the PPO module that416

increases the gasifier efficiency to 92% (75% is the reference value for air417

blown gasifier [37]) and the SOFC-MGT module which has a higher electri-418

cal conversion efficiency (about 42%) compared to common engine-alternator419

generator units (about 27% [4, 59, 3]). Case II is the best in terms of energy420

balance as shown in Figure 7. These graphs do not consider the thermal421

energy that can be recovered from the gasifier or the SOFC-MGT unit. The422

highest energy loss occurs at the SOFC-MGT unit (about 52%), while aux-423

iliary consumption of the blowers and the auxiliary equipment of the gasifier424

are low (9%). In Cases I and III, the low efficiency of the gasifier reduces the425

overall electrical performance of the system. In Cases III and IV the ZEO426

module consumes energy to separate the CO2 from the gas, however no effi-427

ciency increase occours in the SOFC-MGT unit with a CO2 free syngas and428

the final result is a lower power production. The system modeled in this work429

is obtained starting from a reference power plant described by Allesina et. al430
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[50] where IC engines are used instead of the SOFC-MGT unit. The author431

reports an experimental cold gasification efficiency of 67%. Considering an432

electrical IC engine-alternator unit efficiency of about 27%, as suggested by433

Puglia at al. [3], the total electrical efficiency is about 18%. This value is434

30% lower than Case I and it is 45% lower than Case II. Another study made435

by Patuzzi et al. [60] reports the values of the net electrical efficiency of three436

different commercial biomass gasifier - IC engine power plants. The average437

efficiency is about 20%, this value is consistent with the one obtained for438

Allesina et al. [50].439

4. Conclusions440

The biomass fueled system with PPO module (Case II) shows the higher441

electrical efficiency of about 33%. The reasons behind this result are vari-442

ous. First of all, oxygen-enriched air boosts the gasifier cold efficiency from443

79% (Case I with air) to 92% (Cases II and IV with oxygen-enriched air).444

In addition, the SOFC-MGT unit presents a higher efficiency (about 42%)445

compared to IC engine-alternator unit (about 27%), ORC cycle (about 20%)446

or EFGT cycle (about 20%). In Cases III and IV, the zeolites adsoption447

module consumes energy to increases the higher heating value of the syngas448

but not the performance of the SOFC-MGT system, this reduces the overall449

system efficiency. The energy balances of four cases investigated show that450

the greater losses are in the SOFC-MGT unit. This unit has the difficult451

task to convert the chemical energy of a gas fuel into electrical energy in452

an efficient way. An efficiency of about 50% is reached with natural gas, in453

this study the maximum electrical efficiency is about 42% using a syngas454
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produced with an oxygen-enriched air as gasifying agent. This difference is455

given by the presence of several inert gases into the syngas that reduces the456

electrochemical conversion of the SOFC. The removal or the conversion of457

these gases into syntethic natural gases (SNG) is possible and, in this way,458

the efficiency of the SOFC-MGT unit will be similar to the value reach for459

natural gas one. But, cost and energy self-consumption of the upgrading460

process are very high and not convenient for this kind of power plants. Cases461

III and IV has a lower efficiency compared to Case II, however, with the462

ZEO module, it is possible to seperate the CO2 content of the syngas with463

environmental benefits in case the module is coupled with a CO2 sequestra-464

tion system. Future work will consider exergy calculations and experimental465

tests on a micro-scale power system (5-20 kW of electrical power) with PPO466

module and SOFC module in order to validate modeling results and to assest467

system durability. In addition, economical net present value analysis will be468

done to estimate the economic sustainability of the power plant.469
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Figure 1: DG-SOFC-MGT hybrid system with zeolite CO2 adsorption and oxygen-

enriched air layout
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Figure 2: Oxygen enriched air membrane separator principle

Figure 3: Characteristics of the separation membranes
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Figure 4: Zeolite 5A adsorbing curve Vs. pressure
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Figure 5: DG-SOFC-MGT hybrid system with zeolite CO2 adsorption and oxygen-

enriched air implemented in Matlab SimulinkTM

Figure 6: Efficiencies and eletrical production values of the studied cases
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Figure 7: Energy balances of the studied cases
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Table 1: Model parameters I

Membranes properties [31]

Material Selectivity Oxigen Permeability

α [ad] γ [mol m−2 s−1 bar−1]

Matrimid 6.7 62.0 x 10−5

PPO 4.7 37.2 x 10−4

PDMS 2.1 39.6 x 10−2

Poplar wood chips properties [61]

Description Symbol Value

Total moisture M 10 %

Carbon content (as received) Car 41.62 %

Hydrogen content (as received) Har 5.30 %

Nitrogen content (as received) Nar 0.52 %

Oxygen content (as received) Oar 39.81 %

Ash content ASH 2.75 %

Higher heating value (dry basis) HHVdb 15.7 MJ/kg

Gasifier model parameters[48]

Description Symbol Value

As received biomass consumption ṁbio 187 kg/h

Nominal gasifier thermal power Pth,gas 800 kW

Initial calculation temperature Tin 900 K

Pressure p 1 atm

Equivalence ratio ER 0.335

Gasifier and filters auxiliary consumption PDG,self 12.5 kW

Cyclic operation hours hoperation 360 h

Cyclic maintenance hours hmaintenance 4 h

Zeolite 5A parameters of adsorption at 303 K [39]

Component B [1/kPa] qm [mmol/g]

CO2 0.019500 3.91900

H2 0.000361 0.54464

N2 0.000837 2.62543

CH4 0.002535 2.75403

CO 0.004350 2.75800
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Table 2: Model parameters II

Storage and compressor model parameters

Description Symbol Value

Politropic exponent of the syngas [54] m 1.33

Syngas compressor efficiency [54] ηcomp 92 %

Storage tank temperature Ts 298.15 K

Initial syngas amount in the tanks nin 7 ∗ 104 mol

Total tanks volume V 650 m3

SOFC model parameters

Description Symbol Value

Fuel utilization factor Uf 0.85

Recirculation factor r 0.2

Operating temperature Tsofc 1073.15 K

Anode pressure loss ∆pa 500 Pa

Cathode pressure loss ∆pc 1000 Pa

Anode pressure loss ∆pa 500 Pa

Current density i 300 mA/cm2

Active cell area Acell 81 cm2

Cells for each stack ncell,stack 75 cells

Number of stacks nstack 145 stacks

Cathode air excess vent 1.15

Pressure ratio PR 2.5

Steam to carbon coefficient STC 1.4

Electrochemical parameters taken from [18]

MGT model parameters [18]

Description Symbol Value

Politropic exponenet of the air m 1.33

Turbine isoentropic efficiency ηis,turb 84 %

Air compressor isoentropic efficiency ηis,comp 75 %

Turbine mechanical efficiency ηmec,turb 99 %

Air compressor mechanical efficiency ηmec,comp 98 %

Recuperator effectiveness ηrec 85 %

Burner efficiency ηeff,burner 99 %

MGT generator efficiency ηalt,MGT 95 %

Pressure ratio PR 2.5
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Table 3: Case I (Gasifier + SOFC + MGT) simulation results

Gasifier

Description Symbol Value

H2 syngas fraction xH2
19.03 %

H2O syngas fraction xH2O 7.78 %

CO syngas fraction xCO 15.10 %

CH4 syngas fraction xCH4
1.18 %

CO2 syngas fraction xCO2
13.99 %

N2 syngas fraction xN2 42.92 %

Air inlet flow Qair 2.94 mol/s

Syngas molar flow ṅsyngas 5.01 mol/s

Syngas higher heating value HHV syngas,db 4.75 MJ/Nm3

Specific volumetric tar production mtar,Nm3 23.63 g/Nm3

Gasifier cold gas efficiency ηcold 78.98 %

Average temperature of gasification T 895 K

SOFC + MGT

Description Symbol Value

Syngas molar flow to SOFC-MGT unit ṅSOFC 4.95 mol/s

SOFC electrical power production PSOFC 136.70 kW

MGT electrical power production PMGT 60.73 kW

Total SOFC-MGT electrical power production PSOFC+MGT 197.43 kW

SOFC+MGT electrical efficiency ηSOFC+MGT 37.46 %

Overall system

Description Symbol Value

Storage tank pressure range pserb 2.67-5.39 bar

Average electrical auxiliary consumption Pself 34.24 kWel

Average electrical total power production Ptot 163.19 kWel

Average total electrical efficiency ηtot 25.43 %
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Table 4: Case II (PPO + Gasifier + SOFC + MGT) simulation results

PPO module

Air inlet flow Qair 2.97 mol/s

Permeate molar flow QP 1.27 mol/s

Retentate molar flow QR 1.69 mol/s

Molar fraction of O2 in permeate yO2 48.9 %

Molar fraction of N2 in permeate yN2 51.1 %

Electric power consumption Pel,PPO 15.3 kW

Gasifier

Description Symbol Value

H2 syngas fraction xH2
28.49 %

H2O syngas fraction xH2O 9.91 %

CO syngas fraction xCO 26.33 %

CH4 syngas fraction xCH4 1.66 %

CO2 syngas fraction xCO2
17.2 %

N2 syngas fraction xN2
16.41 %

Syngas molar flow ṅsyngas 3.589 mol/s

Syngas higher heating value HHV syngas,db 7.55 MJ/Nm3

Specific volumetric tar production mtar,Nm3 0.27 g/Nm3

Gasifier cold gas efficiency ηcold 92.0 %

Average temperature of gasification T 931 K

SOFC + MGT

Description Symbol Value

Syngas molar flow to SOFC-MGT unit ṅSOFC 3.545 mol/s

SOFC electrical power production PSOFC 184.20 kW

MGT electrical power production PMGT 68.33 kW

Total SOFC-MGT electrical power production PSOFC+MGT 252.53 kW

SOFC+MGT eletrical efficiency ηSOFC+MGT 42.08 %

Overall system

Description Symbol Value

Storage tank pressure range pserb 2.67-4.62 bar

Average electrical auxiliary consumption Pself 42.01 kWel

Average electrical total power production Ptot 210.52 kWel

Average total electrical efficiency ηtot 32.81 %

43



Table 5: Case III (Gasifier + ZEO + SOFC + MGT) simulation results

Gasifier (see Case I)

ZEO

Description Symbol Value

H2 syngas fraction after adsoption xH2
25.36 %

CO syngas fraction after adsoption xCO 17.08 %

CH4 syngas fraction after adsoption xCH4
1.43 %

CO2 syngas fraction after adsoption xCO2 0.39 %

N2 syngas fraction after adsoption xN2
55.73 %

Syngas molar flow after adsoption ṅsyngas 4.065 mol/s

Syngas higher heating value after adsoption HHV syngas,db 5.9 MJ/Nm3

Active zeolite mass for every regeration cycle mzeo 23.742 kg

SOFC + MGT

Description Symbol Value

Syngas molar flow to SOFC-MGT unit ṅSOFC 4.020 mol/s

SOFC electrical power production PSOFC 138.50 kW

MGT electrical power production PMGT 44.00 kW

Total SOFC-MGT electrical power production PSOFC+MGT 182.5 kW

SOFC+MGT electrical efficiency ηSOFC+MGT 34.33 %

Overall system

Description Symbol Value

Storage tank pressure range pserb 2.66-4.88 bar

Average electrical auxiliary consumption Pself 33.76 kWel

Average electrical total power production Ptot 148.74 kWel

Average total electrical efficiency ηtot 22.87 %
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Table 6: Case IV (PPO + Gasifier + ZEO + SOFC + MGT) simulation results

PPO module (see Case II)

Gasifier (see Case II)

ZEO

Description Symbol Value

H2 syngas fraction after adsoption xH2
41.53 %

CO syngas fraction after adsoption xCO 32.54 %

CH4 syngas fraction after adsoption xCH4 2.21 %

CO2 syngas fraction after adsoption xCO2 0.43 %

N2 syngas fraction after adsoption xN2
23.30 %

Syngas molar flow after adsoption ṅsyngas 2.726 mol/s

Syngas higher heating value after adsoption HHV syngas,db 10.19 MJ/Nm3

Active zeolite mass for every regeration cycle mzeo 20.244 kg

SOFC + MGT

Description Symbol Value

Syngas molar flow to SOFC-MGT unit ṅSOFC 2.696 mol/s

SOFC electrical power production PSOFC 184.70 kW

MGT electrical power production PMGT 51.80 kW

Total SOFC-MGT electrical power production PSOFC+MGT 236.50 kW

SOFC+MGT electrical efficiency ηSOFC+MGT 38.41 %

Overall system

Description Symbol Value

Storage tank pressure range pserb 2.66-4.15 bar

Average electrical auxiliary consumption Pself 51.80 kWel

Average electrical total power production Ptot 194.53 kWel

Average total electrical efficiency ηtot 30.32 %
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This work focuses on a DG-SOFC-MGT (downdraft gasifier- solid oxide

fuel cell - micro gas turbine) power plant for electrical energy production and

investigates two possible performance-upgrading systems: polyphenylene ox-

ide (PPO) membrane and zeolite filters. The first is used to produce oxygen-

enriched air used in the reactor, while the latter separates the CO2 content

from the syngas. In order to prevent power plant shutdowns during the gasi-

fier reactor scheduled maintenance, the system is equipped with a gas storage

tank. The generation unit consists of a SOFC-MGT system characterized by

higher electrical efficiency when compared to conventional power production

technology (IC engines, ORC and EFGT). Poplar wood chips with 10% of

total moisture are used as feedstock. Four different combinations with and

without PPO and zeolite filtrations are simulated and discussed. One-year
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energy and power simulation were used as basis for comparison between all

the cases analyzed. The modeling of the gasification reactions gives results

consistent with literature about oxygen-enriched processes. Results showed

that the highest electrical efficiency obtained is 32.81%. This value is reached

by the power plant equipped only with PPO membrane filtration. Contrary

to the PPO filtering, zeolite filtration does not increase the SOFC-MGT unit

performance while it affects the energy balance with high auxiliary electrical

consumption. This solution can be considered valuable only for future work

coupling a CO2 sequestration system to the power plant.

Keywords:

Biomass, Gasification, Modeling, Solide Oxide Fuel Cells, Zeolites, PPO

membrane

1. Introduction1

Due to the abundant availability and distribution, biomasses hold key-2

roles in plans for renewable energy production. This trend is becoming even3

more relevant thanks to the good degree of reliability and efficiency of the4

biomass-based technologies together with the high subsidies granted by sev-5

eral government for sustainable electrical energy production [1].6

Depending on the feedstock quality and availability, biomasses are con-7

verted into energy through different technologies. In the case of ligno-cellulosic8

biomasses, a technolgy of great validity is gasification. This thermo-chemical9

process turns solid biomass into a gaseous fuel known as syngas, which can10

be converted into electrical energy through all those systems used for power11

production from gaseous fuels [2]. Gasification is today one of the most effi-12
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cient technologies to convert wood into electricity and it is also sustainable13

in terms of the environmental balance of CO2 [3, 4].14

Most of the gasification power plants use an IC engine-generator to con-15

vert the syngas chemical energy into electrical power. However, in some cases16

other conversion machines are used, i.e. Organic Rankine Cycles (ORC), Ex-17

ternal Firing Gas Turbines (EFGT)[5] and Stirling engines are used with the18

major advantage of having minor limitation about the syngas level of purifica-19

tion [2, 6, 7, 8, 9]. These systems are usually characterized by low conversion20

efficiencies of about 10-12%. Major conversion rates can be obtained only21

with electrochemical devices such as proton exchange membrane fuel cells22

[10], Molten Carbonate Fuel Cells (MCFC) [11, 12], Solid Oxide Fuel Cells23

(SOFC) [13, 14, 15], systems composed of SOFC and Micro Gas Turbines24

(MGT) [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] and systems composed of25

SOFC-MGT-ORC [27]. Despite the high rate of energy conversion, these26

systems require perfectly clean syngas [28]. Downdraft gasifiers are the most27

suitable architecture due to the low tar and particulate content in their gas28

when compared to updraft, crossdraft or fluidized bed gasifiers [2, 6, 29].29

However, downdraft gasifiers commonly use air as gasification agent. This30

solution generates a syngas with a low calorific value where the hydrogen,31

methane and carbon monoxide are diluted in non-burnable gases: N2 (about32

50%) and CO2 (from 10 to 20%). Otherwise, it is possible to choose oxygen33

gasification that produces a syngas with negligible N2 content. However, oxy-34

gen gasification is a complex and expensive technology due to the gasification35

agent supply sub-systems and reactor material choice. Indeed, temperatures36

inside the reactor can reach 1200-1300 K when oxygen is used instead of air37
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[30].38

The basic system discussed in this study is composed of an air blown-39

downdraft-fixed bed gasifier fed with poplar wood chips. This work is aimed40

at investigating the effects of different power plant designs on the overall41

energy conversion efficiency.42

The first power plant upgrading sub-system consists of a polyphenylene43

oxide (PPO) membrane used to produce oxygen-enriched air. The gas sep-44

aration characterization of this membrane is reported in literature [31, 32].45

In practice, membrane gas separation is applied to increase the oxygen con-46

tent in the inlet air of biomass boilers [33]. Bisio et al. studied the ther-47

modynamics of combustion with enriched air and reviewed several types of48

memebranes [34]. Coombe and Nieh developed a membrane-based device for49

air enrichment in small scale burners [35]. Hao et al. applied an oxygen-50

permeable membrane to a reactor for the co-production of dimethyl ether51

(DME)/methanol and electricity [36]. This paper uses PPO membrane in52

order to obtain air with about 50% of oxygen then used as gasification agent.53

This solution is a hybrid between air and pure oxygen gasification. Enriched54

air reduces the reactor thermal stress compared to pure oxygen gasification,55

while the syngas has a lower N2 content than the one obtained in pure air56

gasification. In addition, the syngas flow rate decreases because, for a fixed57

power output, the enriched air flow required for gasification is lower than air58

used in conventional gasification. This happens because the same amount of59

oxygen is used in both cases and its concentration in enriched air is higher60

than untreated air. Finally, the tar production is lower than air gasification61

as consequence of the higher temperature that cracks more efficiently the62
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primary tars from pyrolysis [37].63

A second solution discussed in this work consists of a porous media used64

to upgrade the syngas. In fact, syngas has a variable CO2 content depending65

on gasification process as well as several boundary conditions. This value66

ranges from 10% to 30% and it reduces significantly the higher heating value67

of the syngas [37]. A solution to overcome this issue is to adopt a pressure-68

swing selective synthetic zeolite filter. This system is placed before the gas69

storage in order to separate carbon dioxide from syngas [38, 39]. The filter70

can be constantly regenerated using a rotary valve packaged into modules71

as described by Tagliabue et al. [40]. Literature investigation about zeolite72

filtration outlines several works. Bacsik et al. studied the biogas CO2-CH473

separation through zeolites [41]. Kacem et al. investigated the pressure swing74

adsorption for CO2/N2 and CO2/CH4 separation using activated carbon and75

several types of zeolites [42]. Dirar et al. investigated intrinsic adsorption76

properties of CO2 on 5A and 13X zeolite [43].77

The syngas obtained from gasification is stored and then used in a SOFC78

unit able to produce electrical and thermal energy. The number of stacks79

within the cell is optimized taking into account the optimal electrical cur-80

rent density. The chosen number guarantees a good efficiency, however the81

gas discharged from the cell still contains some chemical energy. For this82

reason, this work suggests to convert this residual energy in a micro gas tur-83

bine (MGT). The syngas storage allows the generation unit to operate in its84

optimal point, furthermore it prevent the power plant shoutting down dur-85

ing the maintenance operations of the gasifier. This management preserves86

the SOFC and MGT reliability. However, it is difficult to design the stor-87
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age capacity because an oversize storage rises the systems costs, while an88

undersized capacity reduces the time gained for the maintenance. For this89

reason, the storage was designed taking into account the tanks pressure, the90

electrical power production of the SOFC-MGT unit and the time required91

for scheduled stops of the gasifier for maintenance operations.92

The mathematics of the whole system was developed starting from lit-93

erature. The overall model has been implemented in Matlab SimulinkTM94

software environment in order to simulate the behavior of the system under95

different conditions over a year long simulation.96

2. System modeling97

The basic system layout is reported in Figure 1. The most relevant com-98

ponents are:99

• Downdraft gasifier: The gasifier is equipped with a subsystem for100

the syngas filtering and cooling with water scrubber and electrostatic101

filters.102

• Syngas storage: It consists of a tank of a total volume of 650 m3.103

• SOFC unit: This subsystem consists of 10875 solid oxide cells and it104

is connected to the electrical grid by a power inverter.105

• Micro gas turbine (MGT): this turbo-machinery is used to convert106

the last part of chemical energy content in the syngas purged by the107

SOFC.108
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This work investigates the effect of the implementation of the following109

sub-systems to the basic scheme:110

• PPO membrane filter module: The PPO sub-system consists of111

the membrane filter and a compressor that increases the pressure of112

the air before the PPO membrane filter to about 1 MPa. The oxygen113

enriched air is sent to the gasifier at atmospheric pressure. A flow of114

nitrogen is purged from the PPO module.115

• Zeolite (ZEO) filter module: the zeolite (ZEO) filter module is116

placed after the first syngas compressor. There is a further syngas117

compression stage ahead the storage tanks because the ZEO module118

works at 0.5 MPa of pressure as described in Section 2.3, while the119

pressure in the storage is often higher.120

The syngas is used as fuel in the SOFC stack. In this device, the fuel121

reforming occurs at the anode and there is a recirculation of the 20% of122

the anode exhaust to increase the fuel reforming performance [18, 22]. The123

anode exhaust is used to preheat the syngas, then it is finally burned in the124

MGT burner together with the cathode exhaust. The air required for the125

electrochemical reaction is compressed and preheated in the recuperator of126

the MGT as well as in the air preheater of the SOFC.127

The SOFC stack generates DC current which is converted into AC current128

by an inverter and it is sent to the electrical grid. The MGT drags the air129

compressor and the remaining mechanical energy is converted into electrical130

energy by an alternator.131
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2.1. PPO module modeling132

Polymeric membranes allow to separate different gaseous components de-133

pending on the pore size and pressure applied to the filter [31]. In this work134

a membrane is used to separate nitrogen from air. The membranes widely135

used for this purpose are: Matrimid, Polyphenylenoxide (PPO) and Poly-136

dimethylsiloxan (PDMS) [31]. As showed in Figure 2, in membranes the137

inlet air flow is divided in permeate and retentate molar flows. The inlet138

flow (Qair [mol/s]) has a pressure pfeed [atm] and it is composed of xO2Feed139

and xN2Feed molar fractions of oxygen and nitrogen. The permeate molar140

flow (QP [mol/s]) has a pressure ppermeate [atm] and it is composed of yO2141

and yN2 molar fractions of oxygen and nitrogen. The retentate molar flow142

(QR [mol/s]) has a pressure pfeed [atm] and it is composed of xO2Retentate and143

xN2Retentate molar fractions of oxygen and nitrogen.144

Each membrane behavior is identified through two parameters: the selec-145

tivity (α) and the permeability to oxygen (γ). The first factor represents the146

attitude of the membrane to attract oxygen, the second quantifies the atti-147

tude of the membrane to be crossed by it. High selectivity and permeability148

ensure great filtering performance in terms of high value of yO2 and a small149

membrane surface area is required to filter a given amount of air. Table 1150

presents the parameters of Matrimid, PPO and PDSM membranes.151

The choice of a PPO membrane is a compromise in terms of acceptable152

values of selectivity and permeability. In order to simulate the behavior of153

the membranes, a mathematical model has been implemented from Melin154

and Rautenbach [31]. The model is based on the following assumptions:155

• Air is considered a binary gas mixture with 21% oxygen and 79% ni-156

8



trogen.157

• Steady state conditions.158

• Isotherm conditions.159

• Isobaric conditions.160

• Perfect gas law.161

• Constant permeability.162

• Perfect mixing conditions on upstream and downstream sides.163

• Concentration polarization at the membrane is neglected.164

• Pressure loss in the porous support layer is neglected.165

• The permeate can drain off freely.166

The calculation of the permeate composition is made with the following167

formula taken from the work of Melin and Rautenbach [31]:168

yO2 =
1

2

[
1 + φ ∗

(
xO2Feed +

1

α− 1

)]
−

√[
1

2

[
1 + φ ∗

(
xO2Feed +

1

α− 1

)]]2

− α ∗ φ ∗ xO2Feed

α− 1

(1)

yN2 = 1− yO2 (2)

where φ [-] is the feed-permeate pressure ratio given by the following169

equation:170
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φ = pfeed/ppermeate (3)

Figure 3 reports the permeate composition over pressure ratio for the171

three membrane types considered. It can be seen that only a certain maxi-172

mum of oxygen ratio can be achieved because all the graphs are leveling off.173

Therefore a pressure ratio of 1 MPa was chosen for further calculations as174

suggested in Melin and Rautenbach [31] and the pretentate was fixed at 1 atm.175

The Matrimid membrane is able to produce the highest oxygen ratio176

of 0.58 % vol. in the permeate, however PPO membrane presents a good177

value of oxygen ratio (0.49 % vol.) and an acceptable value of permeability,178

therefore this membrane is adopted in the simulations. The active area of179

the membrane can be assessed from the molar flow of oxygen required for180

the gasification QPO2 [mol/s]:181

Amembrane =
QPO2

γ ∗ (xO2Feed ∗ pfeed + yO2 ∗ ppermeate)
(4)

The molar flow of nitrogen QPN2 [mol/s] and the total permeate molar182

flow QP [mol/s] is given by the following equations:183

QPN2 =
γ

α
∗ [pfeed ∗ (1− xO2Feed) + ppermeate ∗ (1− yO2)] (5)

QP = QPN2 +QPO2 (6)

The molar flow of the inlet air Qair, the retentate molar flow QR and the184

retentate composition (xO2Retentate and xN2Retentate) are calculated setting to185

zero the amount of oxygen in the retentate flow as suggested by Melin and186
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Rautenbach[31]. Thus, a mass balance equation can be applied to estimate187

Qair and QR:188

Qair ∗ xO2Feed = QP ∗ yO2 → Qair =
QP ∗ yO2

xO2Feed

(7)

Qair = QP +QR → QR = Qair −QP (8)

Finally, the electrical power consumption to pressurize the inlet air flow189

is calculated as a polytropic compression by Equation 15 assuming Tin = 20190

o C; m = 1.2 and ηcomp = 90 %.191

2.2. Gasifier modeling192

In this work, the gasification process is simulated using a black-box model193

based on Barman’s work [44]. The model is validated for downdraft gasifiers;194

it is based on the following gasification equation:195

CHxOyNz + wH2O +m (O2 + 3.76N2)→

nH2H2 + nCOCO + nCO2CO2 + nH2OH2O

+nCH4CH4 + (z/2 + 3.76m)N2 + ntarCHpOq

(9)

where CHxOyNz is the equivalent chemical formula of ”dry and ash196

free” (daf) biomass; CHpOq is the equivalent chemical formula of tar [45];197

w [mol/molbio] is the specific molar amount of the biomass moisture; m198

[mol/molbio] is the specific molar amount of oxygen calculated starting from199

the equivalence ratio ER as suggested by Jarungthammachote and Dutta[46];200

nH2 , nCO, nCO2 , nH2O, nCH4 , ntar [mol/molbio] are the specific molar amounts201

of H2, CO,CO2, H2O,CH4 and tar which constitute the syngas.202
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This model is used and discussed in several other works [47, 48, 49]. It203

consists of a chemical and a thermal sub-models that converge to the final204

composition of the gas. The first step is to choose an initial temperature T205

[K] and calculate the equilibrium constant of the following reactions:206

• K1: Water-gas shift CO +H2O ↔ CO2 +H2207

• K2: Hydrogasification C + 2H2 ↔ CH4208

• K3: Methane steam reforming CH4 +H2O ↔ CO + 3H2209

The system of equations 10 reported below is composed of three chemical210

balances calculated from Equation 9 (carbon, hydrogen and oxygen) and211

the three equilibrium constants for water-gas, hydrogasification and methane212

reforming reactions. The system is solved with the Newton-Raphson method.213



nCO + nCO2 + nCH4 + ntar − 1 = 0

2nH2 + 2nH2O + 4nCH4 + pntar − x− 2w = 0

nCO + 2nCO2 + nH2O + qntar − w − 2m− y = 0

K1 =
nCO2

∗nH2

nCO∗nH2O

K2 =
nCH4

∗ ṅtot,wet
ṅbio,daf

n2
H2

K3 =
nCO∗n3

H2(
ṅtot,wet
ṅbio,daf

)2

nH2O
nCH4

(10)
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Once the molar specific amounts of the syngas species are evaluated, it is214

possible to solve the thermodynamic energy balance of the system reported215

in the following equation:216

∑
j=react

nj ∗HF 0
j =

∑
i=prod

ni ∗
(
HF 0

i + ∆HT,i

)
(11)

where nj [moles] and HF 0
j [kJ/kmol] are the specific moles amount and217

standard heat of formation of the j-th reagent (biomass, air and moisture); ni218

[moles] and HF 0
i [kJ/kmol] are the specific moles amount and the standard219

heat of formation of the i-th product (H2, CO, CO2, H2O ,CH4 and N2) and220

∆HT,i is the enthalpy difference between any given state and the standard221

state for the i-th product. ∆HT,i can be calculated starting from the specific222

heat of the product:223

∆HT,i =

∫ T

298.15

Cp(T ) dT =

∣∣∣∣aT + b
T 2

2
+ c

T 3

3
+ d

T 4

4

∣∣∣∣T
298.15

(12)

where the coefficient a,b,c and d are defined for each gas by Jarungtham-224

machote and Dutta[46]. In order to find the equilibrium temperature Tnew,225

the system is considered adiabatic and the the Newton-Raphson method is226

applied to the equations. If abs(T − Tnew) < 0.1 K then the calculated equi-227

librium temperature and molar specific gases amounts are the final results;228

otherwise, a new iteration is done in order to satisfy the previous condi-229

tion. The model is implemented in Python and the input are the biomass230

equivalent molecule, the equivalence ratio ER and the initial temperature.231

The temperature input is used only as a starting point for the iterating232

system; after few cycles the temperature converges to the ones that satisfy233

both the chemical and thermal sub-systems. About the ER, a value of 0.335234
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is assumed. This value is consistent with air blown gasification parameters235

[50, 37] and it is confirmed by the low tar content in the syngas. Poplar wood236

chips properties and gasifier model parameters are summarized in Table 1.237

2.3. ZEO module modeling238

The zeolite filter is able to reduce the total syngas molar flow of about239

20% - 30 % by the adsorption of CO2. Zeolite 5A is chosen because it has240

a great selectivity for carbon dioxide in comparison with the other gases241

that constitute syngas [38]. The gas adsorption in porous solids has been242

described by the Langmuir equation [38, 39]:243

qi =
qmi ∗Bi ∗ pi

1 +
∑n

j=1 Bj ∗ pj
(13)

where qi [mmol/g] is the adsorbed amount of the component i; qmi [mmol/g]244

is the saturation adsorbed amount of the component i; Bi [1/kPa] is the Lang-245

muir constant of the component i; pi [kPa] is the equilibrium partial pressure246

of the component i; Bj [1/kPa] is the Langmuir constant of the component247

j; pj [kPa] is the equilibrium partial pressure of the component j; i and j are248

the gas species of the syngas. Table 1 reports the Langmuir constants and249

the saturation adsorbed amounts for Zeolite 5A, while Figure 4 depicts the250

adsorption trends of the syngas gases as function of pressure. It can be noted251

the high CO2 selectivity of the zeolite in comparison with others gases.252

The mass of zeolite required for adsorbing all the carbon dioxide of the253

syngas depends on the molar flow of the dry syngas, its CO2 molar fraction254

and kinetic constant of adsorption. The ZEO filter module can be constantly255

regenerated using a rotary valve packaged into modules as described in [40].256
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The mass of zeolite that needs to be regenerated every cycle with duration257

of tcycle can be calculated as follows:258

mzeo = tcycle ∗ ṅDG ∗
1 +

∑n
j=1Bj ∗ pj

qm,CO2 ∗BCO2 ∗ pads ∗ xCO2

(14)

where pads [kPa] is the total pressure of the syngas inside the ZEO filter.259

A constant temperature of the zeolite filter and of the inlet syngas of 303 K is260

assumed and the pressure of the inlet syngas is set to 500 kPa as suggested in261

[38, 39]. The cycling time of regeneration depends on kinetic CO2 adsorption262

constant. In this study a plausible time of 60 seconds is assumed and future263

work will investigate this aspect. Zeolites adsorption generates heat, Ranjani264

et al. [51] suggests that 64-70 kJ are released for every mole of CO2 adsorbed.265

This heat needs to be discharge by the ZEO module in order to keep the266

temperature constant at 303 K. In this preliminary study, no attention was267

paid to the ZEO module heat balance. Furthermore, the gas filtering sub-268

system considered in this work is based on the power plant described by269

Allesina et al. [50]. It was designed with the idea of coupling the gasifier with270

an internal combustion engine. Since the minimum presence of tars could271

negatively affect the performance of the zeolite adsorber, syngas purification272

unit should be properly designed. A potential alternative to water scrubber273

is oil scrubber with subsequent stripping of tars [52, 53].274

2.4. Compressor and storage system modeling275

The modeling of the syngas compression is carried out considering it as276

a polytropic transformation. The electrical power required for compression277

is given by Pedrazzi et al. [54]:278
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Pcomp =
ṅgasLcomp,is

ηcomp
=

ṅgas
ηcomp

zRTin
z − 1

[
1−

(
pout
pin

) z−1
z

]
(15)

where z is the polytrophic coefficient, R is the universal gas constant279

equal to 8.314 J mol−1 K−1, Tin is the gas inlet temperature (25oC for syngas280

compressor 1 and 30oC for syngas compressor 2), pin and pout [atm] are the gas281

inlet and outlet pressures, ṅgas [mol/s] is the gas molar flow and ηcomp is the282

compressor efficiency available from manufacturer’s data [54]. The maximum283

pressure value inside the storage system is a fundamental parameter required284

todesign the tanks and the compressor properly. Assuming ideal gas and a285

constant syngas storage temperature Ts = 25 oC, the pressure inside the286

tanks is calculated by the ideal gas law:287

ps =
nRTs
V

(16)

where n [mol] are the moles of syngas inside the tanks and V [m3] is the288

storage total volume. Assuming a value of the initial syngas moles nin inside289

the storage, the moles of syngas at the time τ [s] are given by:290

n = nin +

∫ τ

0

(ṅin,s(t)− ṅout,s(s)) dt (17)

where ṅin,s(t) and ṅout,s(t) [mol/s] are the inlet and the outlet molar flow291

at the instantaneous time t [s]. Table 2 reports the model parameters of the292

storage and compressor sub-systems. The total volume of storage and the293

initial syngas amount in the tank are reduced of about 50% in comparison294

with the conventional system without PPO and ZEO modules as investigated295

in [55, 56]. This result is reached thanks to the PPO adoption that decreases296
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the molar flow of dry syngas of about the 20% - 30%, while the filtration297

in the ZEO module further reduces the syngas molar flow of about another298

20% - 30% as shown in the results.299

2.5. SOFC modeling300

The SOFC model used in this study is based on the work of Bang-Møller301

and Rokni [18]. This model does not take into account the recirculation302

of gas at the cell anode. This feature may strongly compromise the fuel303

cell efficiency in case of the presence of gases that do not take part in the304

electro-chemical, shift and reforming reactions. Unfortunately, syngas con-305

tains considerable amounts of CO2 and N2. To overcome this issue, the306

model previously cited is implemented with the reforming model presented307

by Rami Salah El-Emam et al. [22]. As described by Rami Salah El-Emam,308

the electro-chemical reactions take place in both the anode and the cathode309

of the cell (Eq.22), while the reforming and the monoxide water shift occur310

only near the anode (Eqs. 18, 19). Equation 22 presents the overall electro-311

chemical reaction that is divided into two sub-reactions: the hydrogen reacts312

with the oxygen ions to form water and electrons according to Eq. 20 at313

the anode, while, at the cathode, the oxygen from inlet air reacts with the314

electrons from the anode (Eq. 21) to form oxygen ions that flow to the anode315

through the solid oxide electrolyte.316

CH4 +H2O → CO + 3H2 (18)

CO +H2O → CO2 +H2 (19)
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H2 +O2− → H2O + 2e− (20)

1

2
O2 + 2e− → O2− (21)

H2 +
1

2
O2 → H2O (22)

The mathematical modeling of reforming and electrochemical reactions317

is explained in References [22] and [18]. Using these models, it is possible318

to calculate the electrical power production and the electrical conversion319

efficiency for a given syngas inlet flow with a specific composition. The320

SOFC model parameters adopted in the simulations are reported in Table 2.321

2.6. MGT modeling322

Mathematical description of gas turbines is well described in literature.323

Details and assumptions of the present model can be found in Bang-Møller324

and Rokni work [18]. Characteristics of the turbine and others components325

connected to the MGT are listed in Table 2.326

3. Simulation results and discussion327

In this work four different cases are simulated. First of all, the basic328

system composed of a downdraft gasifier, a storage tank and a SOFC-MGT329

is simulated. After this step, the two possible solutions consisting of N2330

purging from air or CO2 separation from syngas are discussed separately.331

Finally, the complete system provided with PPO module and ZEO module332

is simulated.333
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3.1. Case I (Gasifier + SOFC + MGT)334

The SOFC-MGT unit constantly produces energy all over the year of335

simulation in order to preserve the stability of the cells and their gaskets,336

which are very sensitive to thermal stresses [57]. The syngas molar flow con-337

sumed by the SOFC-MGT unit is calculated by Equation 23 that considers338

the cycling working of the DG:339

ṅsyngas−SOFC =
hoperationṅDG

hoperation + hmaintenance
(23)

340

Figure 5 depicts the overall model implemented in Matlab SimulinkTM soft-341

ware environment. Table 3 reports the simulation results. Gasifier cold342

efficiency is about 79%, this value is confirmed by literature that suggests343

an efficiency of 70% - 80% for air-blown downdraft gasifier [37, 4, 44]. Syn-344

gas composition consists of about 19% vol. of H2 and 15% vol. of CO, the345

higher heating value of 4.75 MJ/Nm3 is similar to the results reported by346

Basu [37] for this kind of gasifier. SOFC-MGT unit has a constant electrical347

power production of 197.43 kW all over the simulated year. The auxiliary348

consumption of the whole system strongly depends on tank pressurization349

level. The average annual value is 34.24 kW. For this reason, the net average350

power production is reduced to 163.19 kW and the electrical efficiency of the351

system is 25.43%.352

3.2. Case II (PPO + Gasifier + SOFC + MGT)353

Table 4 shows the results of the simulation of the system previously de-354

scribed and now equipped with the PPO module. The oxygen enriched air355

19



flow is about 1.27 mol/s. This value is lower than 2.94 mol/s obtained with-356

out PPO membrane (Case I). Syngas composition is consistent with the work357

of Wang et al. [58], where oxygen-enriched air (50% oxygen and 50% nitro-358

gen) is used as gasifying agent in a double stage downdraft gasifier fueled359

with pine sawdust pellets. Differences of 1-2% between the model outputs360

and Wang’s results about CO and H2 contents are achieved (29% vs. 27%361

for H2 and 26% Vs. 25% for CO). The gasification with oxygen-enriched air362

assures high gasifier performance in terms of cold gas efficiency (92%), tar363

production (0.27 g/Nm3) and syngas higher heating value (7.55 MJ/Nm3).364

The syngas outlet flow is 3.589 mol/s, consistently lower than Case I where365

syngas flow is 5.01 mol/s. The average equilibrium temperature of gasifi-366

cation in this case is 931 K. This value is only 36 K higher than Case I.367

Wang et al.[58] suggestes a peak temperature of about 1200 K with oxygen-368

enriched air. With this temperature, conventional material adopted in air369

gasifier can be used (i.e. stainless steel and refractory brick [2, 6]). In Case370

II, the overall net power production is 210.52 kW and the electrical efficiency371

is boosted to 32.81%. The average auxiliary consumption is 42 kW, 8 kW372

higher than Case I. This is due to the PPO module that uses air at 1 MPa373

pressure generated by an air compressor. The electrical consumption of the374

air compressor is 15.3 kW and it is fully compensated by the increasing of375

the gasifier efficiency and the SOFC-MGT unit efficiency.376

3.3. Case III (Gasifier + ZEO + SOFC + MGT)377

Table 5 resumes the simulation results of the system with the ZEO fil-378

tering module instead of PPO membrane. The filtered syngas has a higher379

heating value of 5.9 MJ/Nm3. This value falls between Case I (4.75 MJ/Nm3)380
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and Case II (7.55 MJ/Nm3). The pressure of the storage tank ranges between381

0.267-0.488 MPa, similar to the values obtained in Case II (0.266-0.462 MPa)382

and Case I (0.267-0.539 MPa). The zeolite mass required to perform con-383

tinuosly the filtration is 23.742 kg. The value obtained is consistent with384

Tagliabue et al. work [40]. However, in future work, the CO2 adsorbed by385

the ZEO module can be stored in order to create a carbon sequestration sys-386

tem. The power production and the net electrical efficiency of the system is387

low (148.74 kW of power production and 22.87% of electrical efficiency) as a388

consequence of the energy absorbed by the syngas compressor 1 (see Figure389

1) to increase the pressure of the syngas to 0.5 MPa before the ZEO module.390

This electrical energy consumption is higher than Cases II and I, in addition391

the efficiency of the SOFC-MGT module fueled with the filtered syngas is392

lower. As shown in Table 5, the SOFC-MGT efficiency in Case III is about393

34%, thus lower than Case II (42.08%) and Case I (37.46%).394

3.4. Case IV (PPO + Gasifier + ZEO + SOFC + MGT)395

The results about the fully equipped gasifier power system are reported396

in Table 6. A high power production (194.53 kW) and electrical efficiency397

(30.32%) is reached thanks to the high H2 and CO amounts in the filtered398

syngas. In fact, the H2 volume percentange reaches 41.53% and the CO399

volume percentange is boosted to 32.54%. As a consequence of this com-400

position, the higher heating value of the syngas is 10.19 MJ/Nm3, a value401

typical for oxygen-blown gasifiers [37]. Therefore, the SOFC-MGT unit syn-402

gas consumption is 2.696 mol/s. This value is about 45% lower than Case I403

(4.95 mol/s), 24% lower than Case II (3.545 mol/s) and 33% lower than Case404

III (4.02 mol/s). A pressure range of 0.266-0.415 MPa is achieved. In this405
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case power production and efficiency is lower than Case II as result of higher406

average auxiliary consumption (51.80 kW) and lower SOFC-MGT unit ef-407

ficiency (38.41%). However, the utilization of the ZEO module has several408

advantages: separates the CO2 and reduces the storage peaks pressure.409

3.5. Performance and energy considerations410

Figure 6 shows the electrical efficiency and the average power production411

in every scenario. Case II resulted the best in terms of energy conversion; the412

overall electrical efficiency reaches 32% and the power production is about413

210 kW. These values are higher than commercial gasification power systems414

with internal combustion engines where the maximum electrical efficiency415

hardly reaches 25% [37, 4, 2]. This result is given by the PPO module that416

increases the gasifier efficiency to 92% (75% is the reference value for air417

blown gasifier [37]) and the SOFC-MGT module which has a higher electri-418

cal conversion efficiency (about 42%) compared to common engine-alternator419

generator units (about 27% [4, 59, 3]). Case II is the best in terms of energy420

balance as shown in Figure 7. These graphs do not consider the thermal421

energy that can be recovered from the gasifier or the SOFC-MGT unit. The422

highest energy loss occurs at the SOFC-MGT unit (about 52%), while aux-423

iliary consumption of the blowers and the auxiliary equipment of the gasifier424

are low (9%). In Cases I and III, the low efficiency of the gasifier reduces the425

overall electrical performance of the system. In Cases III and IV the ZEO426

module consumes energy to separate the CO2 from the gas, however no effi-427

ciency increase occours in the SOFC-MGT unit with a CO2 free syngas and428

the final result is a lower power production. The system modeled in this work429

is obtained starting from a reference power plant described by Allesina et. al430
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[50] where IC engines are used instead of the SOFC-MGT unit. The author431

reports an experimental cold gasification efficiency of 67%. Considering an432

electrical IC engine-alternator unit efficiency of about 27%, as suggested by433

Puglia at al. [3], the total electrical efficiency is about 18%. This value is434

30% lower than Case I and it is 45% lower than Case II. Another study made435

by Patuzzi et al. [60] reports the values of the net electrical efficiency of three436

different commercial biomass gasifier - IC engine power plants. The average437

efficiency is about 20%, this value is consistent with the one obtained for438

Allesina et al. [50].439

4. Conclusions440

The biomass fueled system with PPO module (Case II) shows the higher441

electrical efficiency of about 33%. The reasons behind this result are vari-442

ous. First of all, oxygen-enriched air boosts the gasifier cold efficiency from443

79% (Case I with air) to 92% (Cases II and IV with oxygen-enriched air).444

In addition, the SOFC-MGT unit presents a higher efficiency (about 42%)445

compared to IC engine-alternator unit (about 27%), ORC cycle (about 20%)446

or EFGT cycle (about 20%). In Cases III and IV, the zeolites adsoption447

module consumes energy to increases the higher heating value of the syngas448

but not the performance of the SOFC-MGT system, this reduces the overall449

system efficiency. The energy balances of four cases investigated show that450

the greater losses are in the SOFC-MGT unit. This unit has the difficult451

task to convert the chemical energy of a gas fuel into electrical energy in452

an efficient way. An efficiency of about 50% is reached with natural gas, in453

this study the maximum electrical efficiency is about 42% using a syngas454
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produced with an oxygen-enriched air as gasifying agent. This difference is455

given by the presence of several inert gases into the syngas that reduces the456

electrochemical conversion of the SOFC. The removal or the conversion of457

these gases into syntethic natural gases (SNG) is possible and, in this way,458

the efficiency of the SOFC-MGT unit will be similar to the value reach for459

natural gas one. But, cost and energy self-consumption of the upgrading460

process are very high and not convenient for this kind of power plants. Cases461

III and IV has a lower efficiency compared to Case II, however, with the462

ZEO module, it is possible to seperate the CO2 content of the syngas with463

environmental benefits in case the module is coupled with a CO2 sequestra-464

tion system. Future work will consider exergy calculations and experimental465

tests on a micro-scale power system (5-20 kW of electrical power) with PPO466

module and SOFC module in order to validate modeling results and to assest467

system durability. In addition, economical net present value analysis will be468

done to estimate the economic sustainability of the power plant.469

Nomenclature470

ṁ mass flow [kg/s]471

ṅ molar flow [mol/s]472

τ time [s]473

ASH ash content of the biomass [%]474

B Langmuir constant [1/kPa]475

C carbon476
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Cp specific heat [J/(mol K)]477

DG downdraft gasifier478

e electron479

EFGT external firing gas turbine480

ER equivalence ratio [ad]481

H hydrogen482

HT enthalpy [kJ/kmol]483

HF 0 standard heat of formation [kJ/kmol]484

HHV higher heating value [MJ/Nm3 or MJ/kg]485

IC internal combustion486

K equilibrium constant [ad]487

L work [kJ]488

M total moisture content of the biomass [%]489

m specific molar amount of oxygen [mol/molbio]490

mtar,Nm3 volumetric tar amount [g/Nm3]491

MCFC molten carbonate fuel cell492

MGT micro gas turbine493

MW molecular weight [g/mol]494
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N nitrogen495

n specific molar amount of gases and tar [mol/molbio]496

O oxygen497

ORC organic rankine cycle498

P power [kW]499

p pressure [atm]500

PDSM polydimethylsiloxan501

PPO polyphenylene oxide502

Q molar flow [mol/s]503

q adsorbed amount [mmol/g]504

R universal gas constant [J/(mol K)]505

SOFC solide oxide fuel cell506

T temperature [K]507

t time [s]508

V volume [m3]509

w specific molar amount of biomass moisture [mol/molbio]510

x molar fraction511

y molar fraction512
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z polytrophic coefficient513

ZEO zeolite514

α selectivity515

∆ difference516

γ permeability [mol m−2 s−1 bar−1517

φ pressure ratio518

Subscripts519

ads adsorption520

ar as received521

bio biomass522

comp compressor523

daf dry ash free524

db dry basis525

g gas526

in inlet527

m saturation528

out outlet529

P permeate530
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p hydrogen coefficient of tar531

prod product532

q oxygen coefficient of tar533

R retentate534

react reactant535

s storage536

x hydrogn coefficient of the biomass537

y hydrogen coefficient of the biomass538

z nitrogen coefficient of the biomass539
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– 42, 2005.626

[26] Mahsa Aghaie, Mehdi Mehrpooya, and Fathollah Pourfayaz. Introduc-627

ing an integrated chemical looping hydrogen production, inherent carbon628

capture and solid oxide fuel cell biomass fueled power plant process con-629

figuration. Energy Conversion and Management, 124:141 – 154, 2016.630

[27] Masood Ebrahimi and Iraj Moradpoor. Combined solid oxide fuel cell,631

micro-gas turbine and organic rankine cycle for power generation (sofc–632

mgt–orc). Energy Conversion and Management, 116:120 – 133, 2016.633

[28] Ph. Hofmann, K.D. Panopoulos, P.V. Aravind, M. Siedlecki,634

A. Schweiger, J. Karl, J.P. Ouweltjes, and E. Kakaras. Operation of635

solid oxide fuel cell on biomass product gas with tar levels &gt;10 g636

nmâ’3. International Journal of Hydrogen Energy, 34(22):9203 – 9212,637

2009.638

32



[29] Lopamudra Devi, Krzysztof J Ptasinski, and Frans J.J.G Janssen. A re-639

view of the primary measures for tar elimination in biomass gasification640

processes. Biomass and Bioenergy, 24(2):125–140, 2003.641

[30] Jinsong Zhou, Qing Chen, Hui Zhao, Xiaowei Cao, Qinfeng Mei,642

Zhongyang Luo, and Kefa Cen. Biomass–oxygen gasification in a high-643

temperature entrained-flow gasifier. Biotechnology Advances, 27(5):606644

– 611, 2009. Bioenergy Research &amp; Development in ChinaICBT645

2008.646

[31] T. Melin and R. Rautenbach. Membranverfahren, Grundlagen der647

Modul- und Anlagenauslegung. 2007.648

[32] K.C. Khulbe, T. Matsuura, G. Lamarche, and H.J. Kim. The morphol-649

ogy characterisation and performance of dense ppo membranes for gas650

separation. Journal of Membrane Science, 135(2):211 – 223, 1997.651

[33] Janusz Kotowicz and Adrian Balicki. Enhancing the overall efficiency652

of a lignite-fired oxyfuel power plant with {CFB} boiler and membrane-653

based air separation unit. Energy Conversion and Management, 80:20654

– 31, 2014.655

[34] Giacomo Bisio, Alessandro Bosio, and Giuseppe Rubatto. Thermody-656

namics applied to oxygen enrichment of combustion air. Energy Con-657

version and Management, 43(18):2589 – 2600, 2002.658

[35] H. Scott Coombe and Sen Nieh. Polymer membrane air separation per-659

formance for portable oxygen enriched combustion applications. Energy660

Conversion and Management, 48(5):1499 – 1505, 2007.661

33



[36] Yanhong Hao, Yi Huang, Minhui Gong, Wenying Li, Jie Feng, and Qun662

Yi. A polygeneration from a dual-gas partial catalytic oxidation coupling663

with an oxygen-permeable membrane reactor. Energy Conversion and664

Management, 106:466 – 478, 2015.665

[37] Prabir Basu. Biomass Gasification and Pyrolysis: Practical Design and666

Theory. Academic Press, Elsevier, 2010.667

[38] Saeed Pakseresht, Mohammad Kazemeini, and Mohammad M. Akbarne-668

jad. Equilibrium isotherms for co, co2, {CH4} and {C2H4} on the 5a669

molecular sieve by a simple volumetric apparatus. Separation and Pu-670

rification Technology, 28(1):53 – 60, 2002.671

[39] Gi-Moon Nam, Byung-Man Jeong, Seok-Hyun Kang, Byung-Kwon Lee,672

and Dae-Ki Choi. Equilibrium isotherms of ch4, c2h6, c2h4, n2, and h2673

on zeolite 5a using a static volumetric method. Journal of Chemical &674

Engineering Data, 50(1):72–76, 2005.675

[40] Marco Tagliabue, David Farrusseng, Susana Valencia, Sonia Aguado,676

Ugo Ravon, Caterina Rizzo, Avelino Corma, and Claude Mirodatos.677

Natural gas treating by selective adsorption: Material science and chem-678

ical engineering interplay. Chemical Engineering Journal, 155(3):553 –679

566, 2009.680

[41] Zoltán Bacsik, Ocean Cheung, Petr Vasiliev, and Niklas Hedin. Selective681

separation of {CO2} and {CH4} for biogas upgrading on zeolite naka682

and sapo-56. Applied Energy, 162:613 – 621, 2016.683

34



[42] Mariem Kacem, Mario Pellerano, and Arnaud Delebarre. Pressure swing684

adsorption for co2/n2 and co2/ch4 separation: Comparison between ac-685

tivated carbons and zeolites performances. Fuel Processing Technology,686

138:271 – 283, 2015.687

[43] Qassim Hassan Dirar and Kevin F. Loughlin. Intrinsic adsorption prop-688

erties of co2 on 5a and 13x zeolite. Adsorption, 19(6):1149–1163, 2013.689

[44] Niladri Sekhar Barman, Sudip Ghosh, and Sudipta De. Gasification of690

biomass in a fixed bed downdraft gasifier – a realistic model including691

tar. Bioresource Technology, 107:505–511, 2012.692

[45] Takashi Yamazaki, Hirokazu Kozu, Sadamu Yamagata, Naoto Murao,693

Sachio Ohta, Satoru Shiya, and Tatsuo Ohba. Effect of superficial ve-694

locity on tar from downdraft gasification of biomass. Energy & Fuels,695

19:1186–1191, 2005.696

[46] S. Jarungthammachote and A. Dutta. Thermodynamic equilibrium697

model and second law analysis of a downdraft waste gasifier. Energy,698

32(9):1660 – 1669, 2007.699

[47] Giulio Allesina, Simone Pedrazzi, Luca Guidetti, and Paolo Tartarini.700

Modeling of coupling gasification and anaerobic digestion processes for701

maize bioenergy conversion. Biomass and Bioenergy, 81:444 – 451, 2015.702

[48] Giulio Allesina, Simone Pedrazzi, Federico Sgarbi, Elisa Pompeo,703

Camilla Roberti, Vincenzo Cristiano, and Paolo Tartarini. Approaching704

sustainable development through energy management, the case of fongo705

35



tongo, cameroon. International Journal of Energy and Environmental706

Engineering, 6(2):121–127, 2014.707

[49] Giulio Allesina, Simone Pedrazzi, Emma La Cava, Michele Orlandi,708

Miriam Hanuskova, Caludio Fontanesi, and Paolo Tartarini. Energy-709

based assessment of optimal operating parameters for coupled biochar710

and syngas production in stratified downdraft gasifiers. In International711

Heat Transfer Conference 15, Kyoto, Japan, 2014.712

[50] Giulio Allesina, Simone Pedrazzi, and Paolo Tartarini. Modeling and713

investigation of the channeling phenomenon in downdraft stratified714

gasifers. Bioresource Technology, 146(0):704 – 712, 2013.715

[51] Ranjani V. Siriwardan, Ming-Shing Shen, and Edward P. Fisher. Ad-716

sorption of co2 on zeolites at moderate temperatures. Energy and Fuels,717

19:1153–1159, 2005.718

[52] Thana Phuphuakrat, Tomoaki Namioka, and Kunio Yoshikawa. Absorp-719

tive removal of biomass tar using water and oily materials. Bioresource720

Technology, 102(2):543–549, 2011.721

[53] Shunsuke Nakamura, Shigeru Kitano, and Kunio Yoshikawa. Biomass722

gasification process with the tar removal technologies utilizing bio-oil723

scrubber and char bed. Applied Energy, 170:186 – 192, 2016.724

[54] S. Pedrazzi, G. Zini, and P. Tartarini. Complete modeling and soft-725

ware implementation of a virtual solar hydrogen hybrid system. Energy726

Conversion and Management, 51(1):122 – 129, 2010.727

36



[55] Simone Pedrazzi, Giulio Allesina, Alberto Muscio, and Paolo Tartarini.728

Modeling and simulation of a dg-sofc-mgt hybrid system. In 7 ◦ Con-729

gresso Nazionale AIGE, Rende (CZ) Italy, 2013.730

[56] Simone Pedrazzi. Modeling and optimization of advanced systems for731

electrical energy production from wood biomass. PhD thesis, HIGH ME-732

CHANICS AND AUTOMOTIVE DESIGN & TECHNOLOGY, Univer-733

sity of Modena and Reggio Emilia, Dep. of Engineering ’Enzo Ferrari’,734

2013.735

[57] DOE. Fuel Cell Handbook (Seventh Edition). 2004.736

[58] Zhiqi Wang, Tao He, Jianguang Qin, Jingli Wu, Jianqing Li, Zhongyue737

Zi, Guangbo Liu, Jinhu Wu, and Li Sun. Gasification of biomass with738

oxygen-enriched air in a pilot scale two-stage gasifier. Fuel, 150:386 –739

393, 2015.740

[59] H.A.M. Knoef. Handbook of Biomass Gasification, Second Edition.741

BTG, 2012.742

[60] Francesco Patuzzi, Dario Prando, Stergios Vakalis, Andrea Maria Rizzo,743

David Chiaramonti, Werner Tirler, Tanja Mimmo, Andrea Gasparella,744

and Marco Baratieri. Small-scale biomass gasification {CHP} systems:745

Comparative performance assessment and monitoring experiences in746

south tyrol (italy). Energy, 112:285 – 293, 2016.747

[61] S. Pedrazzi, G. Allesina, and P. Tartarini. Aige conference: A kinetic748

model for a stratified downdraft gasifier experimental assessment and749

37



modeling of energy conversion effectiveness in a gasification power plant.750

International Journal of Heat and Technology, 30(1):41–44, 2012.751

Figure captions and tables752

38



Figure 1: DG-SOFC-MGT hybrid system with zeolite CO2 adsorption and oxygen-

enriched air layout
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Figure 2: Oxygen enriched air membrane separator principle

Figure 3: Characteristics of the separation membranes
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Figure 4: Zeolite 5A adsorbing curve Vs. pressure
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Figure 5: DG-SOFC-MGT hybrid system with zeolite CO2 adsorption and oxygen-

enriched air implemented in Matlab SimulinkTM

Figure 6: Efficiencies and eletrical production values of the studied cases
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Figure 7: Energy balances of the studied cases
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Table 1: Model parameters I

Membranes properties [31]

Material Selectivity Oxigen Permeability

α [ad] γ [mol m−2 s−1 bar−1]

Matrimid 6.7 62.0 x 10−5

PPO 4.7 37.2 x 10−4

PDMS 2.1 39.6 x 10−2

Poplar wood chips properties [61]

Description Symbol Value

Total moisture M 10 %

Carbon content (as received) Car 41.62 %

Hydrogen content (as received) Har 5.30 %

Nitrogen content (as received) Nar 0.52 %

Oxygen content (as received) Oar 39.81 %

Ash content ASH 2.75 %

Higher heating value (dry basis) HHVdb 15.7 MJ/kg

Gasifier model parameters[48]

Description Symbol Value

As received biomass consumption ṁbio 187 kg/h

Nominal gasifier thermal power Pth,gas 800 kW

Initial calculation temperature Tin 900 K

Pressure p 1 atm

Equivalence ratio ER 0.335

Gasifier and filters auxiliary consumption PDG,self 12.5 kW

Cyclic operation hours hoperation 360 h

Cyclic maintenance hours hmaintenance 4 h

Zeolite 5A parameters of adsorption at 303 K [39]

Component B [1/kPa] qm [mmol/g]

CO2 0.019500 3.91900

H2 0.000361 0.54464

N2 0.000837 2.62543

CH4 0.002535 2.75403

CO 0.004350 2.75800
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Table 2: Model parameters II

Storage and compressor model parameters

Description Symbol Value

Politropic exponent of the syngas [54] m 1.33

Syngas compressor efficiency [54] ηcomp 92 %

Storage tank temperature Ts 298.15 K

Initial syngas amount in the tanks nin 7 ∗ 104 mol

Total tanks volume V 650 m3

SOFC model parameters

Description Symbol Value

Fuel utilization factor Uf 0.85

Recirculation factor r 0.2

Operating temperature Tsofc 1073.15 K

Anode pressure loss ∆pa 500 Pa

Cathode pressure loss ∆pc 1000 Pa

Anode pressure loss ∆pa 500 Pa

Current density i 300 mA/cm2

Active cell area Acell 81 cm2

Cells for each stack ncell,stack 75 cells

Number of stacks nstack 145 stacks

Cathode air excess vent 1.15

Pressure ratio PR 2.5

Steam to carbon coefficient STC 1.4

Electrochemical parameters taken from [18]

MGT model parameters [18]

Description Symbol Value

Politropic exponenet of the air m 1.33

Turbine isoentropic efficiency ηis,turb 84 %

Air compressor isoentropic efficiency ηis,comp 75 %

Turbine mechanical efficiency ηmec,turb 99 %

Air compressor mechanical efficiency ηmec,comp 98 %

Recuperator effectiveness ηrec 85 %

Burner efficiency ηeff,burner 99 %

MGT generator efficiency ηalt,MGT 95 %

Pressure ratio PR 2.5
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Table 3: Case I (Gasifier + SOFC + MGT) simulation results

Gasifier

Description Symbol Value

H2 syngas fraction xH2
19.03 %

H2O syngas fraction xH2O 7.78 %

CO syngas fraction xCO 15.10 %

CH4 syngas fraction xCH4
1.18 %

CO2 syngas fraction xCO2
13.99 %

N2 syngas fraction xN2 42.92 %

Air inlet flow Qair 2.94 mol/s

Syngas molar flow ṅsyngas 5.01 mol/s

Syngas higher heating value HHV syngas,db 4.75 MJ/Nm3

Specific volumetric tar production mtar,Nm3 23.63 g/Nm3

Gasifier cold gas efficiency ηcold 78.98 %

Average temperature of gasification T 895 K

SOFC + MGT

Description Symbol Value

Syngas molar flow to SOFC-MGT unit ṅSOFC 4.95 mol/s

SOFC electrical power production PSOFC 136.70 kW

MGT electrical power production PMGT 60.73 kW

Total SOFC-MGT electrical power production PSOFC+MGT 197.43 kW

SOFC+MGT electrical efficiency ηSOFC+MGT 37.46 %

Overall system

Description Symbol Value

Storage tank pressure range pserb 2.67-5.39 bar

Average electrical auxiliary consumption Pself 34.24 kWel

Average electrical total power production Ptot 163.19 kWel

Average total electrical efficiency ηtot 25.43 %
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Table 4: Case II (PPO + Gasifier + SOFC + MGT) simulation results

PPO module

Air inlet flow Qair 2.97 mol/s

Permeate molar flow QP 1.27 mol/s

Retentate molar flow QR 1.69 mol/s

Molar fraction of O2 in permeate yO2 48.9 %

Molar fraction of N2 in permeate yN2 51.1 %

Electric power consumption Pel,PPO 15.3 kW

Gasifier

Description Symbol Value

H2 syngas fraction xH2
28.49 %

H2O syngas fraction xH2O 9.91 %

CO syngas fraction xCO 26.33 %

CH4 syngas fraction xCH4 1.66 %

CO2 syngas fraction xCO2
17.2 %

N2 syngas fraction xN2
16.41 %

Syngas molar flow ṅsyngas 3.589 mol/s

Syngas higher heating value HHV syngas,db 7.55 MJ/Nm3

Specific volumetric tar production mtar,Nm3 0.27 g/Nm3

Gasifier cold gas efficiency ηcold 92.0 %

Average temperature of gasification T 931 K

SOFC + MGT

Description Symbol Value

Syngas molar flow to SOFC-MGT unit ṅSOFC 3.545 mol/s

SOFC electrical power production PSOFC 184.20 kW

MGT electrical power production PMGT 68.33 kW

Total SOFC-MGT electrical power production PSOFC+MGT 252.53 kW

SOFC+MGT eletrical efficiency ηSOFC+MGT 42.08 %

Overall system

Description Symbol Value

Storage tank pressure range pserb 2.67-4.62 bar

Average electrical auxiliary consumption Pself 42.01 kWel

Average electrical total power production Ptot 210.52 kWel

Average total electrical efficiency ηtot 32.81 %
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Table 5: Case III (Gasifier + ZEO + SOFC + MGT) simulation results

Gasifier (see Case I)

ZEO

Description Symbol Value

H2 syngas fraction after adsoption xH2
25.36 %

CO syngas fraction after adsoption xCO 17.08 %

CH4 syngas fraction after adsoption xCH4
1.43 %

CO2 syngas fraction after adsoption xCO2 0.39 %

N2 syngas fraction after adsoption xN2
55.73 %

Syngas molar flow after adsoption ṅsyngas 4.065 mol/s

Syngas higher heating value after adsoption HHV syngas,db 5.9 MJ/Nm3

Active zeolite mass for every regeration cycle mzeo 23.742 kg

SOFC + MGT

Description Symbol Value

Syngas molar flow to SOFC-MGT unit ṅSOFC 4.020 mol/s

SOFC electrical power production PSOFC 138.50 kW

MGT electrical power production PMGT 44.00 kW

Total SOFC-MGT electrical power production PSOFC+MGT 182.5 kW

SOFC+MGT electrical efficiency ηSOFC+MGT 34.33 %

Overall system

Description Symbol Value

Storage tank pressure range pserb 2.66-4.88 bar

Average electrical auxiliary consumption Pself 33.76 kWel

Average electrical total power production Ptot 148.74 kWel

Average total electrical efficiency ηtot 22.87 %
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Table 6: Case IV (PPO + Gasifier + ZEO + SOFC + MGT) simulation results

PPO module (see Case II)

Gasifier (see Case II)

ZEO

Description Symbol Value

H2 syngas fraction after adsoption xH2
41.53 %

CO syngas fraction after adsoption xCO 32.54 %

CH4 syngas fraction after adsoption xCH4 2.21 %

CO2 syngas fraction after adsoption xCO2 0.43 %

N2 syngas fraction after adsoption xN2
23.30 %

Syngas molar flow after adsoption ṅsyngas 2.726 mol/s

Syngas higher heating value after adsoption HHV syngas,db 10.19 MJ/Nm3

Active zeolite mass for every regeration cycle mzeo 20.244 kg

SOFC + MGT

Description Symbol Value

Syngas molar flow to SOFC-MGT unit ṅSOFC 2.696 mol/s

SOFC electrical power production PSOFC 184.70 kW

MGT electrical power production PMGT 51.80 kW

Total SOFC-MGT electrical power production PSOFC+MGT 236.50 kW

SOFC+MGT electrical efficiency ηSOFC+MGT 38.41 %

Overall system

Description Symbol Value

Storage tank pressure range pserb 2.66-4.15 bar

Average electrical auxiliary consumption Pself 51.80 kWel

Average electrical total power production Ptot 194.53 kWel

Average total electrical efficiency ηtot 30.32 %
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