
13/07/2024 11:13

Basic composition and enriched integration in idiom processing: An EEG study / Canal, Paolo; Pesciarelli,
Francesca; Vespignani, Francesco; Molinaro, Nicola; Cacciari, Cristina. - In: JOURNAL OF EXPERIMENTAL
PSYCHOLOGY-LEARNING MEMORY AND COGNITION. - ISSN 0278-7393. - STAMPA. - 43:6(2017), pp. 928-
943. [10.1037/xlm0000351]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



Author’s Accepted Manuscript

A heuristic algorithm for a single vehicle static bike
sharing rebalancing problem

Fábio Cruz, Anand Subramanian, Bruno P. Bruck,
Manuel Iori

PII: S0305-0548(16)30248-9
DOI: http://dx.doi.org/10.1016/j.cor.2016.09.025
Reference: CAOR4098

To appear in: Computers and Operation Research

Received date: 20 April 2016
Revised date: 13 September 2016
Accepted date: 30 September 2016

Cite this article as: Fábio Cruz, Anand Subramanian, Bruno P. Bruck and Manuel
Iori, A heuristic algorithm for a single vehicle static bike sharing rebalancing
p r o b l e m , Computers and Operation Research,
http://dx.doi.org/10.1016/j.cor.2016.09.025

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/caor

http://www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.09.025
http://dx.doi.org/10.1016/j.cor.2016.09.025


A heuristic algorithm for a single vehicle static bike sharing

rebalancing problem

Fábio Cruza,∗, Anand Subramaniana, Bruno P. Bruckb, Manuel Iorib

aCentro de Informática, Universidade Federal da Paráıba, CEP 58059-900, João Pessoa, Brazil.
bDISMI, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy.

Abstract

The static bike rebalancing problem (SBRP) concerns the task of repositioning bikes among

stations in self-service bike-sharing systems. This problem can be seen as a variant of

the one-commodity pickup and delivery vehicle routing problem, where multiple visits are

allowed to be performed at each station, i.e., the demand of a station is allowed to be split.

Moreover, a vehicle may temporarily drop its load at a station, leaving it in excess or,

alternatively, collect more bikes from a station (even all of them), thus leaving it in default.

Both cases require further visits in order to meet the actual demands of such station. This

paper deals with a particular case of the SBRP, in which only a single vehicle is available

and the objective is to find a least-cost route that meets the demand of all stations and

does not violate the minimum (zero) and maximum (vehicle capacity) load limits along

the tour. Therefore, the number of bikes to be collected or delivered at each station must

be appropriately determined in order to respect such constraints. We propose an iterated

local search (ILS) based heuristic to solve the problem. The ILS algorithm was tested on

980 benchmark instances from the literature and the results obtained are competitive when

compared to other existing methods. Moreover, our heuristic was capable of finding most of

the known optimal solutions and also of improving the results on a number of open instances.

Keywords: Bike-sharing, Vehicle Routing, Split pickup and delivery, Iterated local search.

1. Introduction

The task of repositioning a commodity from one location to another is a well-known

problem arising in different contexts such as logistics, transportation, and various disciplines,

notably industrial engineering and operations management. A practical application arises in

∗Corresponding author
Email addresses: fabiocba@di.ufpb.br (Fábio Cruz), anand@ct.ufpb.br (Anand Subramanian),

bruno.p.bruck@gmail.com (Bruno P. Bruck), manuel.iori@unimore.it (Manuel Iori)

Preprint submitted to Computers & Operations Research October 1, 2016



self-service bike sharing systems (BSS), which are becoming increasingly popular in recent

years. Users rent bikes and return them at stations distributed over a region. In such

systems, each station has an inventory with a load capacity, an initial number of bikes, and

consequently a number of free slots where users can return bikes to the system. Throughout

the day, some stations may have no bike to be rented or free slots to store returned bikes.

Therefore, an attempt to avoid this scenario, which is unpleasant for users, is to determine

an initial acceptable number of bikes (and free slots) at each station. This task can be done

based on demand history and peaks at each station [1, 4, 34, 43]. A vehicle with limited

load capacity then periodically collects and delivers bikes across different stations so as to

rebalance the system.

Alternatives to the street traffic are important not only because of its impact in urban

congestion, but also in the environment, commuting, and so on. The emerging worldwide

BSS are proving to be an effective solution to mitigate the effects of traffic issues in large

urban centers Detailed information on several bike sharing systems worldwide can be found

on the interactive bike sharing world map available at http://bikesharingmap.com. By

August of 2016, there were approximately 1, 392, 170 bikes and pedelecs (bikes assisted by

a small electric motor) being used worldwide. According to the website, in 2015 there were

at least 1005 cities with an operating BSS and 324 cities with programs under planning or

construction. One of the most famous systems is the Vélib’ in Paris, with 1800 stations and

more than 20, 000 bikes.

The activity of repositioning bikes among stations on a regular basis is called rebalancing,

and this is done by one or more vehicles that move bikes from one station to another in

order to restore its inventory to the initial desired configuration. As per DeMaio [10], good

rebalancing systems are present in successful bike sharing programs, and since the vehicles

move back and forth across an urban area, a vehicle routing optimization can be utilized.

The rebalancing is either static, performed when nearly no bikes are being used, or

dynamic, which is done while the system is still in use. The static bike rebalancing problem

(SBRP) is motivated by the fact that very few bikes are being used at night.

In this work we consider the single vehicle SBRP, which is clearly NP-hard, because it

includes, among others, the classical traveling salesman problem (TSP) as a special case.

The SBRP can be seen as a variant of the one-commodity pickup and delivery TSP [20, 21],

with the difference that multiple visits are allowed to be performed at each station, i.e., the

demand of a station is allowed to be split. Moreover, a vehicle may arbitrarily drop its load

at a station, leaving it in excess or, alternatively, collect more bikes from a station (even all

of them), thus leaving it in default. Both cases require further visits in order to meet the

2

http://bikesharingmap.com


actual demands of such station. This strategy of allowing a station to act as a buffer or a

temporary depot is denoted as temporary operation (i.e., temporary pickup and temporary

dropoff). Finally, visits to balanced stations are optional for the SBRP. Salazar-González

and Santos-Hernández [36] considered a similar yet different problem, in which an upper

limit is imposed on the number of visits to the customers and to the depot, and the single

vehicle that performs the rebalancing is not forced to leave the depot with an empty load.

An increasing number of works regarding bike sharing systems and related issues, such

as the balancing of their stations, has been published over the last years. Exact approaches

for multiple vehicle SBRPs were suggested by Dell’Amico et al. [8], Di Gaspero et al. [11, 12,

13], Kloimüllner et al. [24], Raviv et al. [35]. Moreover, Alvarez-Valdes et al. [1], Dell’Amico

et al. [9], Forma et al. [16], Papazek et al. [28, 29], Raidl et al. [31], Rainer-Harbach et al.

[32, 33] also addressed different types of multiple vehicle SBRPs, but with heuristics.

Several exact [2, 6, 14, 15, 36] and heuristic [22, 27] algorithms were proposed for single

vehicle SBRPs. Furthermore, in contrast to static rebalancing, there are relatively few works

related to dynamic rebalancing [4, 5, 7, 23, 37].

The works of Chemla et al. [6] and Erdoğan et al. [14] were the only ones to consider the

same variant dealt in the present paper. Chemla et al. [6] proposed a mathematical formu-

lation over an extended graph, where each station is replicated according to an upper bound

on the number of visits. Due to its visible intractability, two relaxations were developed.

The authors also presented among other contributions, a polynomial algorithm to compute

optimal bike displacements for a given sequence of vertices, which is useful to determine if

a route is feasible or not, as well as tabu search heuristics and a branch-and-cut algorithm

that solves a relaxation of the problem. Erdoğan et al. [14] proposed the first exact method

for the problem, which consists of a branch-and-cut algorithm that makes use of no-good

cuts (also known as Benders combinatorial cuts), and they reported optimal solutions for

instances with up to 60 stations.

Despite the advances on the development of efficient exact approaches for SBRPs, heuris-

tic methods still appear to be more suitable for dealing with medium and large size instances

of this challenging class of problems. This work proposes a hybrid iterated local search (ILS)

based heuristic for the single vehicle SBRP considered in Chemla et al. [6] and Erdoğan et al.

[14]. Hybridized ILS algorithms, especially when combined with randomized variable neigh-

borhood descent (RVND), revealed to be very effective when solving a large variety of vehicle

routing problems [9, 30, 39, 40, 44], including those involving only a single vehicle [3, 41].

The algorithm that was developed combines successful ingredients from previous works

with some problem-specific procedures suggested in Chemla et al. [6] to improve the solution

3



quality, as well as to check if a solution is infeasible. We also implemented several perturba-

tion mechanisms and the impact of each possible combination on the solution quality and

CPU time are measured by extensive computational experiments on a subset of challenging

test-problems. The results obtained on 980 benchmark instances from the literature show

that our algorithm is competitive when compared to other methods, and a number of new

best known solutions is reported. We also conduct an analysis on how the performance of

the algorithms in terms of solution quality and CPU time varies according to the number

of stations and the vehicle capacity.

The remainder of the paper is organized as follows. Section 2 presents a formal problem

definition. Section 3 describes the proposed heuristic algorithm. Section 4 reports and

discusses the computational results, and Section 5 contains the concluding remarks.

2. Problem description

Let n be the number of stations, V = {1, ..., n} be the set of vertices representing their

locations (station 0 represents the depot), and A be the set of arcs in a complete and directed

graph G = (V ∪ {0}, A). For each arc a(i,j) ∈ A, there is a cost ca, satisfying the triangular

inequality (c(i,j) + c(j,k) ≥ c(i,k),∀i, j, k ∈ V ).

For each i ∈ V , let pi ∈ Z be the amount of bikes initially stored, p′i ∈ Z be the

number of bikes requested by i after the service is performed, and di = p′i − pi be the total

demand. When di > 0 and di < 0, we assume that i ∈ V is a delivery and a pickup station,

respectively. A station i ∈ V may have no demand (pi = p′i) and in this case the visit

becomes optional. Each station i ∈ V has a capacity qi ∈ Z and the depot is assumed to

have no bikes, i.e., q0 = p0 = p′0 = 0. Finally, let Q ∈ Z be the vehicle capacity.

The objective is to find a least-cost route that starts and ends at the depot, visits each

station with non-zero demand at least once, meets the demands of all stations (i.e., the initial

load pi is changed to the target demand p′i,∀i ∈ V ), and does not violate the minimum

(zero) and maximum (Q) load limits. Therefore, the number of bikes to be collected or

delivered at each visit to a station should be appropriately determined in order to respect

such constraints.

Finally, stations may serve to perform temporary operations, either as a temporary

depot or a temporary buffer, i.e., supply more bikes than their initial demand or hold more

bikes (without exceeding its inventory load capacity), and in both cases have their demand

satisfied in later visits.

Figure 1 shows a graphical representation of an optimal solution for the benchmark

instance n20q10D (n = 20 and Q = 10). The nodes are distributed according to the spatial

4



coordinates of the stations. The positive and negative values next to the nodes are the

number of bikes collected and delivered, respectively. The arcs and their associated values

represent the vehicle traveling to the next station in the sequence and the vehicle load,

respectively. For example, the vehicle delivers 2 bikes in the first visit to station 12, collects

10 at station 10, returns to 12 to deliver 6 more (meeting the demand of 8) and then travels

to station 14 with a load of 4 bikes.

0

1

−5;+1

2

−1

3

−2

4+7

5 −8

6

+1

7

+7

8

+9

9+7

10
+10

12 −6;−2

13

+4

14

+6

15 −5

16 −9

17

−9

18

−5

19

+8

20

−8

1

10

2
0

7

6

10

2

0

10

4

10

1

29
0

7

2

10

5

Figure 1: Representation of optimal solution with value 5989 for instance n20q10D

3. Proposed heuristic

ILS iteratively alternates between local search (intensification) and perturbation (diver-

sification) mechanisms with a view of finding high quality solutions. In our case, we embed

a variable neighborhood descent (VND) [26] based procedure in the local search phase of the

metaheuristic. As in previous works (e.g., 30, and 39), the neighborhoods of our algorithm

are examined in a random manner during the search (RVND).

5



As opposed to most of the former ILS implementations cited in Section 1, infeasible

solutions are temporary accepted after the application of perturbation moves, not only for

the sake of diversification, but also as an attempt to escape from local optimal solutions.

This modification, sometimes referred to as strategic oscillation (see, e.g., Gendreau et al.

[17], Glover [18], Glover and Hao [19]), was crucial for the favorable performance of the

heuristic when dealing with the single vehicle SBRP considered here, which appears to be

more challenging to solve than other VRPs where ILS was successfully applied to obtain

high quality solutions by only considering the feasible search space.

The proposed hybrid heuristic, called ILSSBRP, combines multiple restarts, local search,

perturbations mechanisms, and a repair phase. Figure 2 illustrates the flowchart of ILSSBRP.

For each of the IR restarts, a feasible initial solution is generated using a simple greedy ran-

domized constructive algorithm (see Section 3.3). Next, local search, perturbation and

repair procedures are successively applied until the stopping criterion is met, that is, when

the number of consecutive attempts to escape from a local optimal solution reaches IILS

trials. Because perturbation moves are allowed to produce infeasible solutions, we imple-

mented a procedure called AddUnbalancedVertex (see [6] and Section 3.2 below for details),

which includes additional visits to stations whose demands are not exactly met, with the

aim of repairing such solutions. Nevertheless, there is no guarantee that a solution will be

feasible after applying this procedure. When an infeasible solution is not totally repaired

and the local search does not find a move that leads to a feasible solution, then the infeasible

solution is disregarded and the perturbation procedure is called. Note that perturbation is

always applied over the best solution of the current multi-start iteration. Finally, ILSSBRP

returns the best solution found among all restarts.

3.1. Solution representation

A solution for the single vehicle SBRP considered in the present work can be represented

as a sequence of visits to stations, starting and ending at the depot, along with the amount

of bikes collected or delivered at each visit.

Three vectors are used as data structures to store: (i) the route, where the first and last

element are fixed at 0, i.e., the depot; (ii) the operation performed by the vehicle during a

visit, where negative and positive values indicate the amount of bikes delivered and collected,

respectively; and (iii) the vehicle load during the route.

As in Chemla et al. [6], a flow network is used to check in polynomial time whether or

not a solution is feasible, with respect to bike displacements and vehicle capacity, given a

sequence of vertices representing visits to stations. A detailed explanation can be found in

Appendix A.

6



ILSSBRP

iterR = 0

iterR < IR ?

iterILS = 0

Stop

Generate initial solution s

iterILS < IILS ?

Is s feasible?f (s′) < f? ?

s = RVND(s)

s = AddUnbalanced(s)

f (s) < f (s′) ?

s′ = s

s = Perturb(s′)

iterILS = 0

iterILS = iterILS + 1

s? = s′

iterR = iterR + 1

No

Yes

YesNo

No

Yes

Yes

No

Yes

No

Figure 2: ILSSBRP flowchart

We also use another data structure which consists of a key-value map composed by

n+ 1 elements that store the number of visits performed at each station. This is useful, for

example, to check whether a solution includes all stations with non-zero demand. Note that

7



information held in (ii) is extracted from the computed bike displacements when solving the

max-flow problem (see Appendix A). From such, it is possible to derive, in linear time, the

vehicle loads in (iii) by the adding or subtracting the bike displacements at each visit.

3.2. Repairing infeasible solutions

As already mentioned, infeasible solutions are allowed after perturbations. We therefore

re-implemented the procedure called AddUnbalancedVertex in [6], which tries to repair a

solution by adding stations to the route. More precisely, both the most unbalanced station

in excess and in default, i and j, respectively, are selected and three moves are possible: (i)

adding arcs (j, i) and (i, j) after the existing visit to j; (ii) adding arcs (i, j) and (j, i) after

the existing visit to i; (iii) if both i and j are not in the sequence, adding (i, j) at the end

of the sequence, before returning to the depot.

For example, let us consider a scenario where stations i = 12 and j = 14 are the most

unbalanced. More precisely i has initially 20 bikes and a demand of −10, i.e., a pickup

station, while j is initially holding 3 out of 10 (target) bikes, i.e., a delivery station with

demand 7. An infeasible solution is presented in Figure 3a, where the referred stations

are not balanced, that is, their demands are not met, since only 4 bikes were collected in

station 12 and 4 bikes were delivered at station 14. Figure 3b shows a modified solution,

where after the addition of arcs (14, 12) and (12, 14), a new and feasible configuration of

bike displacements were determined by means of the maximum flow check (see Appendix

A). We can observe that the second visit complements the first one, meeting the demand of

both stations: the vehicle deliveries 1 bike at station 14, collects the remaining 7 at station

12, now balanced, and finally meets the demand of station 14 by delivering 6 more bikes.

It is worth emphasizing that the AddUnbalancedVertex procedure does not necessary

lead to a feasible solution. However, in general, experimental results showed that such

procedure has a high level of success in fully repairing infeasible solutions.

3.3. Constructive Procedure

The pseudocode of the greedy randomized constructive procedure is presented in Alg. 1.

The algorithm stores and maintains a list of open vertices (OV ) corresponding to stations

whose demands are still not fully met. Stations without demand are also included in this

list. In order to ensure a level of diversity during the process of generating an initial solution,

OV is randomly shuffled (line 4).

The algorithm follows a greedy procedure by selecting the first vertex to be inserted at

the end of the route (before the depot) whose demand is completely met by a single visit

8



3

+8

6

+8

...

11 −2

12

+4

14−4

15

−5

...

20 −9

0

4 2

10

1

9
4

0

(a) Infeasible solution

3+8

6

+8

...

11 −2

12

+3;+7

14 −1;−6

15

−5

...

20

−9

0

3
1

9

0

8

3

2

9

3

(b) Feasible solution after additional visits to unbalanced stations 12 and 14

Figure 3: Handling an infeasible solution by considering additional visits to unbalanced stations

without violating the load limits ([0, Q]). Next, the vehicle load is updated and the station

that was inserted into the partial solution is removed from OV (lines 8-12).

However, it may come to a point where no station can be fully served in a single visit,

either because the vehicle has not enough bikes to deliver, or the residual capacity is not

sufficient to collect the required bikes at once. Hence, a split becomes necessary. The

second part of the constructive procedure (lines 13-17) iterates over OV searching for a

station whose demand maximizes the number of bikes that can be delivered or collected.

Ties are broken according to the nearest insertion criterion. The station demand and vehicle

load are updated after the insertion. Next, the algorithm restarts from line 5 and the entire

insertion procedure is repeated until OV becomes empty. Note that the generated initial

solution is always feasible.

9



Algorithm 1 Initial Solution Constructive Procedure

1: Procedure GenerateInitialSolution
2: Q′ ← Q
3: Solution← ∅
4: OV ← List randomly shuffled with stations where di 6= 0 + random ones with di = 0
5: repeat
6: inserted ← false
7: for all i ∈ OV do
8: if di ≤ Q′ or Q−Q′ ≥ di then
9: Solution← Solution ∪ i

10: Update vehicle capacity and remove i from OV
11: inserted ← true
12: break
13: if not inserted then
14: for all j ∈ OV do
15: compute exchangej
16: i← max{exchangej | j ∈ exchange}
17: Solution← Solution ∪ i
18: update OV
19: update Q′

20: until OV 6= ∅
21: return Solution
22: end GenerateInitialSolution.

3.4. Local search

Initial and perturbed solutions are possibly improved by means of an RVND based pro-

cedure during the local search. RVND consists of systematically examining different types

of neighborhoods in a random manner. In particular, if the best neighbor consists of an

improving move, then the search may continue from any of the existing neighborhoods (in-

cluding the last one that has been explored) at random. Otherwise, a different neighborhood

other than those that did not succeed in finding an improving move is randomly selected.

The procedure ends when all neighborhoods fail to refine the current solution. Only feasible

moves are accepted.

The following six neighborhood structures were implemented.

• Reinsertion — N (1): A station is removed and then reinserted in another position of

the sequence.

• Or-opt2 — N (2): Two consecutive stations are removed and then inserted in another

position.

10



• Or-opt3 — N (3): Three consecutive stations are removed and then inserted in another

position.

• 2-opt — N (4): Two non-adjacent arcs are removed from the sequence and then two

new ones are inserted. In other words, a subsequence of the tour is reversed.

• Swap — N (5): Permutation of two stations.

• Suppression — N (6): Given a sequence L = i0, i1, ..., ik, a suppression list is composed

of visits to stations ij, ∀j ∈ {1, . . . , k − 1}, such that p′ij = pij (zero demand) or

p′ij 6= pij and ij is visited more than once in the tour. The best move, if any, consists

in selecting one station to be removed from L so that the solution cost is minimized

and the resulting new sequence L′ is feasible. For example, Figure 4b shows the

removal of an additional visit to station 2, thus modifying the subsequence 2, 6, 2, 9, 0

to 2, 6, 9, 0. This neighborhood was originally proposed by Chemla et al. [6], but the

authors considered all stations.

The first five are well-known TSP neighborhood structures, while the last is a problem-

specific neighborhood. Figure 4a depicts an initial solution and Figures 4b to 4g illustrate

modified solutions that were obtained after changing the previous one by means of one of the

neighborhoods described above. For example, Figure 4d shows a solution in which a 2-opt

move was applied over the solution shown in Figure 4c. For ease of presentation, values of

pickup/delivery operations as well as the vehicle load are omitted.

3.5. Perturbation mechanisms

One of the four mechanisms described below is selected at random whenever the algo-

rithm enters the perturbation phase.

• AddBuffer — P (1): An additional visit to a station is included, expecting to act as

buffer, using the cheapest insertion criterion. Unrouted stations are inserted twice

using the same criterion [6].

• AddStations — P (2): This perturbation mechanism generalizes the previous one in

the sense of allowing multiple visits to be added in the solution, but with a different

insertion criterion. More precisely, an additional visit (or two, in the case of unrouted

stations) to up to three random stations are included towards the end of the route.

Here we only consider stations that are visited at most once. Adjacent visits to the

same station are forbidden.

11



0
1

2

3

4

5

6

7

89

(a) Initial solution

0
1

2

3

4

5

6

7

89

(b) Suppression of second visit
to station 2 after visiting 6

0
1

2

3

4

5

6

7

89

(c) Or-Opt3 of three consecu-
tive stations 8 ,7 and 1

0
1

2

3

4

5

6

7

89

(d) 2-opt on subsequence
5, 8, 7, 1, 3

0
1

2

3

4

5

6

7

89

(e) Swap between station 1
and station 3

0
1

2

3

4

5

6

7

89

(f) Or-Opt2 of two consecutive
stations 1 and 3

0
1

2

3

4

5

6

7

89

(g) Reinsertion of station 9 be-
fore station 7

Figure 4: Example regarding the application of neighborhood structures

• Double-Bridge — P (3): Introduced by Martin et al. [25] for the TSP, this perturbation

consists of a permutation of two subsequences. As a result, four arcs are removed and

four new ones are added so as to generate a new sequence.

12



• Suppression — P (4): A suppression move (see Section 3.4) is applied at random, but

in this case the resulting modified sequence is allowed to be infeasible.

Figure 5 shows an example of perturbations applied over a (supposedly) local optimal

solution (Figure 5a). Figure 5b shows the AddBuffer perturbation, when an additional visit

to station 7 is performed expecting it to act as a buffer. In Figure 5c, the perturbation

AddStations is applied by adding two random visits: one to station 8 and another one to

station 6. In Figure 5d, a Double-Bridge move is applied by interchanging subsequence

6, 4, 1 with subsequence 7, 9.

0
1

2

3

4

5

6

7

89

(a) Solution before perturba-
tion

0
1

2

3

4

5

6

7

89

(b) AddBuffer

0
1

2

3

4

5

6

7

89

(c) AddStations

0
1

2

3

4

5

6

7

89

(d) Double-Bridge

Figure 5: Example regarding the application of perturbation mechanisms

4. Computational experiments

The ILSSBRP algorithm was coded in C++ (g++ 4.6.4) and the computational tests were

carried on an Intel R©CoreTM i7-3770 with 3.40 GHz and 16 GB of RAM running Ubuntu

14.04. Only a a single thread was used during the experiments.

13



4.1. Instances

The benchmark instances used to test the proposed algorithm are those suggested by

Hern�andez-P�erez and Salazar-Gonz�alez [20], which were originally created for the one-

commodity pickup and delivery traveling salesman problem. The benchmark contains in-

stances ranging from 20 to 500 customers (stations), and vehicle capacities ranging from 10

to 1000. For each pair of problem size and vehicle capacity, there are 10 instances named

from A to J and, for each vertexi, there is a demanddi 2 [�10; 10]. Chemla et al. [6] and

Erdo�gan et al. [14] only reported results for a subset of instances of the referred benchmark.

Therefore, in order to compare our results with theirs, we tested ILSSBRP for all instances

considered in at least one of the two works (see Section 4.4). Furthermore, to compute the

initial and �nal targets as well as the load capacity for each station, the same procedures

adopted by such authors were employed: for each vertexi, pi = � � 10, p0
i = � � (10 + di ),

qi = � � 20, where� is an input parameter, and experiments were conducted with� = 1 and

� = 3. In order to properly compare our results with those in Chemla et al. [6] and Erdo�gan

et al. [14], we adopted their same convention of rounding down the values of the cost matrix

to the nearest integer (
oor), although we noticed that this can cause slight violations of

the triangle inequality. As a consequence of such violations, some stations might be visited

an additional time with no pickup nor delivery services being performed, serving only as a

shortcut to arrive to another station.

4.2. Impact of the perturbation mechanisms

In this section we are interested in evaluating the impact of the perturbation mechanisms

described in Section3.5, that is, AddBu�er (P (1) ), AddStations (P (2) ), Double-Bridge (P (3) ),

and Suppression (P (4) ). In view of this, we selected a subset of 30 challenging instances for

performing the experiments. These instances were chosen according to the largest gap

values between the upper bounds obtained by our method on preliminary experiments and

the lower bounds reported in Erdo�gan et al. [14]. We ran ILSSBRP 10 times for each of

the 30 instances considering all possible combinations of perturbations. For this testing we

arbitrarily adopted I R = 10 and I ILS = n.

Table 1 shows the impact of each combination over the average gaps (computed as

(UB � LB )=LB , where UB is the solution found by ILSSBRP and LB is the lower bound

computed by Erdo�gan et al. [14]) and CPU times required by ILSSBRP to run to completion.

From the results presented in such table, we were capable of deriving the Pareto e�cient

frontier from each combination that is not dominated by any other in neither solution quality

nor computational time, as shown in Figure6. We can see that the combinationP (2) +

14


