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popsicleR workflow. The package is composed of seven main functions to perform exploration 

of quality-control metrics, filtering of low-quality cells, identification of cell doublets, data 

normalization, removal of technical and biological biases, cell clustering, and cell annotation. 
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Abstract 

The advent of single-cell sequencing is providing unprecedented opportunities to disentangle 

tissue complexity and investigate cell identities and functions. However, the analysis of single 

cell data is a challenging, multi-step process that requires both advanced computational skills 

and biological sensibility. When dealing with single cell RNA-seq (scRNA-seq) data, the 

presence of technical artifacts, noise, and biological biases imposes to first identify, and 

eventually remove, unreliable signals from low-quality cells and unwanted sources of variation 

that might affect the efficacy of subsequent downstream modules. Pre-processing and quality 

control (QC) of scRNA-seq data is a laborious process consisting in the manual combination 

of different computational strategies to quantify QC-metrics and define optimal sets of pre-

processing parameters. 

Here we present popsicleR, a R package to interactively guide skilled and unskilled command 

line-users in the pre-processing and QC analysis of scRNA-seq data. The package integrates, 

into several main wrapper functions, methods derived from widely used pipelines for the 

estimation of quality-control metrics, filtering of low-quality cells, data normalization, removal 

of technical and biological biases, and for cell clustering and annotation. popsicleR starts from 

either the output files of the Cell Ranger pipeline from 10X Genomics or from a feature-

barcode matrix of raw counts generated from any scRNA-seq technology. Open-source code, 

installation instructions, and a case study tutorial are freely available at 

https://github.com/bicciatolab/popsicleR. 

 

Highlights 

● Pre-processing and quality control (QC) of single cell RNA-seq data is a laborious 

process, entailing both computational skills and biological sensibility 

● An effective pre-processing requires the manual combination of different 

computational strategies to quantify QC-metrics and define optimal sets of pre-

processing parameters 



● Currently, no generally applicable set of methods and optimized threshold values has 

been unanimously defined to pre-process single cell RNA-seq data 

● popsicleR is a R package for the interactive, standardized, and reproducible pre-

processing and quality control of single cell RNA-seq data 

● popsicleR main functions integrates, into a user-friendly environment, pre-processing 

methods derived from widely used computational workflows 

 

Introduction 

The constantly growing applications of single-cell technologies are flooding biologists with a 

new wave of high-dimensional and complex data that demands advanced computational 

expertise for their effective interpretation [1, 2]. As compared to bulk experiments, the analysis 

of single cell data is further complicated by the inherent heterogeneity of the datasets that 

widely vary in terms of experimental protocols and biological context [3]. This issue, combined 

with the limited interactivity between software tools and the lack of unanimously defined 

standard procedures, severely hampers the applicability of general processing pipelines, thus 

limiting the efficacy of analysis tasks and the reproducibility of results. Despite considerable 

efforts [4-8], there is still a pressing need to develop computational tools that interactively 

guide the user in assembling custom, dataset-specific workflows starting from different 

modules of widely used pipelines [9, 10]. In the analysis of single cell RNA-seq (scRNA-seq), 

a critical step is represented by pre-processing and quality control (QC) of input data, as, in 

this phase, signals from low-quality cells, technical artifacts, and unwanted sources of variation 

that might compromise the subsequent downstream analyses are identified and removed. Pre-

processing and quality control (QC) of scRNA-seq data is a laborious process that requires 

the combination of different computational strategies and the manual definition of appropriate 

sets of parameters derived from the quantification of specific QC-metrics. Yet, no consensus 

has been reached, and, considering the heterogeneity of scRNA-seq data, is unlike to be 

reached soon, on the definition of a gold standard pipeline for scRNA-seq data pre-



preprocessing and quality control, thus increasing the difficulty to choose an optimal analysis 

workflow [11]. 

Here we introduce popsicleR, a R package that combines methods implemented in widely 

used pipelines to interactively perform all major pre-processing and QC steps of scRNA-seq 

data analysis. The package is composed of seven main functions capable of performing 

exploration of quality-control metrics, filtering of low-quality cells, data normalization, removal 

of technical and biological biases, and some explorative analyses as detection of differentially 

expressed genes, cell clustering, and cell annotation. popsicleR accepts as input either files 

from the Cell Ranger pipeline of 10X Genomics or a feature-barcode matrix of raw counts 

generated from any microfluidic-, microwell plates-, or droplet-based scRNA-seq technology. 

During each step of the analysis, popsicleR interactively guides the user with colored text 

messages and saves in dedicated folders a variety of plots to investigate several QC-metrics 

and assess the impact of filtering and regression parameters on the identification and 

classification of cell populations. To test and illustrate the functionalities of our package, we 

applied popsicleR to the analysis of the transcriptional profiles of 14,972 cells from a sample 

of human early-stage lung adenocarcinoma [12]. 

 

Methods 

Workflow overview 

popsicleR comprises seven major wrapping functions implemented in R, i.e., i) PrePlots to 

import data and quantify QC metrics; ii) FilterPlots to filter low-quality cells; iii) 

CalculateDoublets to detect the presence of doublet cells; iv) Normalize to normalize data and 

identify highly variable genes; v) ApplyRegression to calculate cell cycle phase scores and 

subtract unwanted sources of variation (regression); vi) CalculateCluster to cluster cells and 

identify differentially expressed features (cluster markers); and vii) MakeAnnotation to assign 

cell type identities. popsicleR exploits the structure of the Seurat object for scRNA-seq data, 

i.e., a class containing both expression data (raw and normalized count matrices) and analysis 



results and metadata (projections, clusters, annotations) for a single-cell sample or a dataset 

[6]. The major functions build on several commonly used packages for the analysis of scRNA-

seq data, as Seurat [6], Scater [13], scCancer [14], SingleR [15], and scMCA [16]. Doublet 

detection is implemented using the R version of Scrublet [17] (provided at 

https://rdrr.io/github/ChengxiangQiu/rscrublet/) and the scDblFinder R package [18, 19]. 

Violin, feature, dimensionality reduction, and dot plots are based on the graphical routines of 

Seurat and ggplot2 R packages. 

 

Installation 

popsicleR requires R version 4.0.0 or higher and depends on the following R packages: ape, 

celldex, clustree, corrplot, crayon, dplyr, future, ggExtra, ggplot2, ggplotify, gtools, grid, 

gridExtra, limma, magrittr, patchwork, pheatmap, neldermead, RANN, RColorBrewer, 

reticulate, R.utils, scDblFinder, scMCA, session, shinythemes, umap, Seurat, and SingleR. 

After the installation of all required dependencies, the package can be installed from Github 

via the install_github function of the devtools R package. In addition, an Anaconda yaml file 

and a detailed installation guide are available in the repository, granting the possibility to 

generate a complete working environment using the Anaconda platform. Details on the 

installation of popsicleR package and dependencies are described in the “Installation in R” 

section of https://github.com/bicciatolab/popsicleR. 

 

Results 

scRNA-seq example data 

We applied popsicleR to the analysis of scRNA-seq data of tumor and immune cell populations 

from a human early-stage lung adenocarcinoma obtained using 10X Genomics [12]. The 

analyzed sample (sample N1) is composed of 14,972 single cells that were sequenced on the 

Illumina Hiseq X platform. Raw data have been downloaded from 



https://ngdc.cncb.ac.cn/biosample/browse/SAMC106013. A guided tutorial of the entire 

analysis is available at https://github.com/bicciatolab/popsicleR. 

Input data preparation 

Prior to the analysis with popsicleR, raw data has been processed with Cell Ranger software 

(version 3.1.0) to align reads to the hg38 version of the human genome and generate feature-

barcode matrices. Cell Ranger data, comprising the gzipped TSV files of the feature-barcode 

matrix and of feature and barcode sequences, can be found at 

https://drive.google.com/drive/folders/15rpnxWik0XQIv5LIrQVYfB_9XufPVnOP?usp=sharing

. To organize input data and result files, it is convenient to create a directory named as the 

sample name and containing a subfolder with the input data (either in the form of Cell Ranger 

gzipped TSV files or of a tab-delimited matrix; refer to the guided tutorial at 

https://github.com/bicciatolab/popsicleR for details). 

Quality controls 

The analysis workflow starts with the PrePlots function that first reads the input data and 

creates a unique molecular identifier (UMI) count matrix in the form of a Seurat object, i.e., a 

class container for expression data, analysis results, and cell metadata (Figure 1). The values 

in the count matrix represent the number of molecules for each feature (i.e., gene; rows) that 

are detected in each cell (columns). During the generation of the count matrix, a soft filter is 

applied to remove low quality cells. By default, PrePlots removes genes that are expressed in 

less than 0.1% of cells and cells that express less than 200 genes. The structure of the Seurat 

object is maintained throughout the whole pipeline and updated by each popsicleR function. 

Once created the Seurat object, PrePlots explores several QC metrics to help detecting those 

columns of the count matrix that contain gene expression signals from low-quality cells. Low-

quality cells result from the capture of cells in stressed conditions or dead, of cell debris from 

broken cells, of more than one cell (cell doublets) or of no cell and represent artifacts that 

might deceive downstream analyses [20]. The number of unique genes detected in each cell, 

the total number of molecules detected within a cell (UMIs), the percentage of reads that map 

to the mitochondrial genome, and to ribosomal and dissociation genes are commonly used 



QC metrics to detect low-quality cells [14, 20]. Low number of detected genes or low 

expression signals are often indicative of low-quality cells or empty captures, aberrantly high 

numbers of genes or of UMIs are frequently due to cell doublets, elevate fractions of 

mitochondrial genes are commonly indicative of loss of cytoplasmatic mRNA due to cell lysis, 

and high levels of dissociation-associated genes are often expressed by tumor cells stressed 

by the dissociation process. To guide the choice of appropriate filtering thresholds for low-

quality cells, PrePlots generates violin, density, and scatter plots of the number of unique 

genes and total UMIs detected within each cell and of the percentage of reads mapped to the 

mitochondrial, ribosomal, and dissociation genes (Figure 2A). Caution must be taken when 

samples are composed by an heterogenous mixture of cell populations, since some 

populations are intrinsically characterized by ranges of unique genes, total UMIs, and 

mitochondrial fractions that may appear as outliers in the general distribution. As an effect, the 

application of thresholds on QC metrics could remove not only low-quality but also biologically 

relevant cells, e.g., T cells, that are intrinsically characterized by low RNA content and number 

of expressed genes. To help the user avoiding this pitfall, PrePlots also returns the cell 

abundance and the distributions of several features (i.e., number of unique genes, total UMIs 

detected, mitochondrial fraction) within specific cell populations identified by a list of user-

selected marker genes (e.g., SFTPC for alveolar cells and CD3D for T cells; Figure 2A-C). 

To set more accurate thresholds on the minimum number of genes and on the minimum 

number of molecules detected within a cell, density and scatter plots are also provided as 

graphs zoomed-in on low value ranges of these features.  

Cell filtering 

Custom filters to discard low-quality cells can be applied using the FilterPlots function. Since 

scRNA-seq datasets vary widely in number and type of profiled cells, of investigated biological 

samples, and for technical aspects, no set of fixed filters is generally applicable to filter out low 

quality cells. Thus, FilterPlots allows the user to design combinations of filtering criteria based 

on the QC metrics quantified by PrePlots. Thresholds can be set on the minimum and 

maximum number of genes detected in each cell, on the minimum and maximum number of 



molecules detected within a cell, and on the maximum percentage of mitochondrial, ribosomal, 

and dissociation genes. Once thresholds are applied, FilterPlots returns summary graphs with 

data distributions and correlations that highlight cells passing the filtering procedure (Figure 

2D-E). These plots can be further investigated to adaptively optimize the filtering criteria. 

Doublet detection 

As an additional QC and filtering step, the function CalculateDoublets allows detecting and, 

eventually, removing cell doublets, i.e., groups of cells captured and associated to the same 

unique barcode that typically present gene expression profiles of mixed cell populations. 

Doublet detection can be obtained through Scrublet [17] or scDblFinder [18, 19], i.e., two 

methods that use k-nearest neighbor (KNN) classifiers to distinguish doublets from singlets. 

Scrublet infers the likelihood for each cell to be a doublet (doublet score) by randomly sampling 

and combining observed transcriptomes. The distribution of the simulated doublet scores is 

typically bimodal, separating expected doublet cells with similar expression profiles (lower 

values of the doublet score) from doublet cells with separate transcriptomes (higher values of 

the doublet score) that are likely to affect downstream analyses. Doublets are identified as 

those cells with a doublet score higher than the automatically detected minimum score 

separating the two modes of the simulated doublet histogram. In CalculateDoublets, Scrublet 

has been coded in R starting from the script provided at 

https://rdrr.io/github/ChengxiangQiu/rscrublet/. The doublet detection approach implemented 

in scDblFinder creates artificial doublets combining cells taken from different clusters obtained 

by a fast clustering. Dimensionality reduction is then performed on the union of real cells and 

artificial doublets and a nearest neighbor network is constructed to estimate the proportion of 

artificial doublets among each cell nearest neighbors. This feature, together with library size 

and co-expression score of each cell, is used to train multiple gradient-boosted trees to 

distinguish artificial doublets from real cells and to assign doublet scores [19]. For both 

Scrublet and scDblFinder, CalculateDoublets returns the visualization of detected cell 

doublets and of doublet scores on a UMAP projection (Figure 2F), adds doublet classifications 

and scores in the metadata of the Seurat object, and eventually removes cells classified as 



doublets. The UMAP projections allow to visualize how cells with high doublet score are 

organized, since potential doublets tend to co-cluster or to form branches or bridges between 

separate groups of cells. If the Scrublet method is selected, CalculateDoublets also displays 

the distributions of observed and simulated doublets and the minimum score to call cell 

doublets. In this case, the function might be run twice, the first time to inspect the score 

distributions and evaluate the automatically detected minimum score and the second to select 

the appropriate score threshold (either automatically detected or user-defined) to mark doublet 

cells. 

Data normalization and identification of highly variable genes 

After removing low-quality cells from the dataset, data are normalized using the Normalize 

function. By default, Normalize applies the global-scaling normalization method implemented 

in the NormalizeData function of the Seurat package. The function normalizes the feature 

expression measurements for each cell by the total expression, multiplies this by a scale factor 

(10,000 by default), and log-transforms the result. The Normalize function also calculates a 

subset of features that exhibit high cell-to-cell variation in the dataset (i.e., that are highly 

expressed in some cells, and lowly expressed in others) and that are used to later perform 

dimensionality reduction with Principal Component Analysis (PCA). This step is based on the 

FindVariableFeatures function of the Seurat package. Normalize returns histograms of signal 

distributions before and after normalization and scatter plots highlighting the highly variable 

genes. 

Cell cycle scoring, scaling, and regression 

Before dimensionality reduction, scaling and, eventually, regression must be performed. 

Scaling is required for PCA and makes the data to have zero-mean and unit standard deviation 

(standardization). Regression is used to mitigate the effect of unwanted sources of variation, 

as experimental and biological biases. One source of biological variation is represented by 

cell cycle that is quantified, before scaling or regression, using the ApplyRegression function. 

This quantification exploits the method implemented in the Seurat CellCycleScoring function 

to assign each cell with cell cycle scores and a predicted cell cycle phase, based on the 



expression of G2/M and S phase markers. In popsicleR, scaling and regression are executed 

by the ApplyRegression function that uses the functionalities of Seurat ScaleData. 

ApplyRegression simply scales the data, if no variable to regress is indicated, or performs 

regression on several variables specified by the user. By default, ApplyRegression is first run 

without regressing any variable (data scaling only) to observe, in reduced embeddings as 

PCA, t-SNE (t-distributed stochastic neighbor embedding), or UMAP (Uniform Manifold 

Approximation and Projection), if any experimental or biological covariate influences the data. 

In case regression is needed, ApplyRegression can be executed a second time inputting 

covariates like the number of genes, the number of UMIs, the percentage of mitochondrial 

genes, or the cell cycle as regression variables. The function returns post-regression PCA, t-

SNE, and UMAP plots to investigate the efficacy of regression in removing the effect of 

confounding variables. Once completed the scaling or regression process, ApplyRegression 

performs PCA on the scaled (or regressed) data and returns several graphs (i.e., heatmap, 

jackstraw, and elbow plots from the Seurat functions DimHeatmap, JackStraw, and ElbowPlot) 

to guide the user in selecting the optimal number of principal components for the subsequent 

dimensionality reduction and clustering steps. 

Cell clustering 

Cell clustering is used to group cells based on their transcriptomes assuming that, in a low-

dimensional embedding, cells with the same identity or in the same state map close together. 

In popsicleR cell clustering is executed by the CalculateCluster function. CalculateCluster 

exploits the graph-based clustering approach implemented in Seurat FindNeighbors and 

FindClusters functions using as input the previously identified number of principal components 

and a resolution parameter that sets the granularity of the clustering. The resolution parameter 

can be either a single value or a set of values to explore cell grouping at different resolutions. 

Cells clusters are visualized in dimensionality reduced planes as UMAP or t-SNE embeddings, 

while a phylogenetic tree is used to show correlation between the identified clusters (Figure 

3A). Beside cluster membership, in UMAP and t-SNE embeddings cells are colored according 

to several features that might aid in the assessment of cluster quality or in the identification of 



clusters of problematic cells that escaped the previous filters. For instance, an extremely high 

expression of MALAT1, a nuclear retained transcript, coupled with a small number of unique 

genes, can be a proxy for cells that lost most of their cytoplasmic mRNA. If multiple resolutions 

have been selected, the clustree package is used to produce a clustering tree that shows how 

cells are assigned to the clusters at the various clustering resolutions (Figure 3B). In case a 

single resolution is indicated, CalculateCluster uses the FindAllMarkers function of Seurat to 

determine genes differentially expressed in the comparison between cells in each cluster and 

those in all other clusters (cluster markers). The function returns a table, in the form of a tab-

delimited file, containing, for each cluster, the list of all its putative markers and their 

associated statistics. Expression values of the top 10 markers of each cluster are used to 

generate a heatmap and the expression of the top two markers is visualized through t-SNE, 

UMAP, and violin plots. Finally, CalculateCluster returns dot plots showing, for a list of user-

defined genes and in all clusters identified at the various resolutions, the fraction of cells 

expressing a gene (dot size) and its average expression in those cells (dot color; Figure 3C). 

Cell annotation 

In the last step of popsicleR, the MakeAnnotation function is used to automatically assign cell 

type identities matching the transcriptome of each single cell to gene expression signatures of 

known cell types [21]. MakeAnnotation annotates cells using SingleR and scMCA built-in 

tissue-specific reference data. Specifically, SingleR is used to annotate data from human and 

mouse samples with the references of the celldex package [15]. For human samples, celldex 

includes the Human Primary Cell Atlas (HPCA) and the Blueprint Encode (BpEn) references 

generated from microarrays of human primary cells and RNA-seq profiles of human stroma 

and immune cells, respectively. For mouse samples, references are derived from a collection 

of mouse bulk RNA-seq datasets (Mouse RNA-seq) and from the microarray profiles of pure 

mouse immune cells provided by the Immunological Genome Project (ImmGen). scMCA is 

used to annotate data from mouse samples with a reference constructed from the single-cell 

Mouse Cell Atlas (scMCA) and covering all mouse cell types [16]. Single cell annotations for 

the different references are displayed color-coding cells in t-SNE and UMAP embeddings 



(Figure 3D). Since annotation can be performed either at the cluster or at the single cell level, 

cells can be colored based on clusters or on cell type identity. In the annotation at single cell 

level, it can be difficult to discern the different populations in the low-dimensional embeddings, 

as cells are overlapping, and the color scales might be inefficient in separating the various cell 

types. To overcome this limitation, MakeAnnotation produces a plot for each identified 

population with only cells of the given type highlighted in color on top of all other cells colored 

in grey. Finally, MakeAnnotation returns dot plots for a set of user-defined genes in the 

predicted cell populations and a pie-chart plot showing the clusters composition according to 

the various annotations (Figure 3E). The MakeAnnotation function returns a Seurat object 

that includes all the calculated cell features in the metadata slot and that can be used for 

downstream analyses. 

Usage statistics 

Memory usage and computation time depends on the number of cells composing each 

sample. As an example, popsicleR required about 1.5 hours to entirely process the example 

data (using Scrublet to detect doublets) on a personal computer with 64 GB of RAM and R 

version 4.1.2. 

 

Discussion and conclusions 

Pre-processing and quality control of scRNA-seq data are complex processes based on the 

application of different computational methods and the manual definition of appropriate sets 

of parameters derived from the investigation of several QC-metrics. Accordingly, several 

bioinformatics workflows and strategies have been developed to explore the quality of the data 

and to identify and remove low-quality cells, technical artifacts, and unwanted sources of 

variation that might compromise the subsequent identification of cell populations that are 

biologically meaningful [6, 8, 13, 14, 22, 23]. Despite major efforts, no consensus has been 

reached yet on the definition of a reference pipeline of general use for scRNA-seq data pre-

processing and quality control. Consequently, the choice of appropriate thresholds to filter out 



low quality cells, while preserving high quality ones and biologically relevant data, is still a 

laborious task that involves multiple iterative runs of quantification, visualization, and 

application of different QC-metrics. All these issues urge the deployment of flexible 

computational tools that interactively guide the user along the various pre-processing and 

explorative steps of the scRNA-seq data analysis, thus improving their efficacy and the 

reproducibility of results. 

In this paper we presented popsicleR, a R package capable of performing all major scRNA-

seq data pre-processing and QC steps through the integration of methods from different 

workflows. The package implements functions to explore QC metrics, filter low-quality cells, 

normalize data, remove technical and biological biases, and perform cell clustering and 

annotation. popsicleR can be used either starting from the output files of specific pipelines (as, 

for instance, Cell Ranger of 10X Genomics) or from feature-barcode matrices generated from 

any scRNA-seq technology. During the analysis, popsicleR returns graphs and colored text 

messages to interactively guide even inexperienced command-line users in investigating 

several QC-metrics and in evaluating the impact of filtering parameters on the identification 

and classification of cell populations. These latter functionalities constitute a distinctive 

characteristic of our package over other tools developed in R. At each step of the analysis, 

popsicleR allows the user to adapt and store parameters in a sequential manner directly from 

the R console, without the need to edit external files or search for commands in precompiled 

menus. Moreover, popsicleR returns a variety of graphs that, without requiring any experience 

in programming graphical routines, support the user in defining the most appropriate set of 

parameters and in monitoring its impact on the analysis results. 

We evaluated the usability of our package in comparison with other R-based workflows 

comprising pre-processing modules, as scCancer [14], iCellR [24], and SingleCellTK [25]. All 

tools are based on wrapper functions that allow performing data pre-processing, quality 

control, analysis, and visualization directly from the R console. In addition to the console 

analysis, SingleCellTK offers the possibility to analyze the data through a R Shiny graphical 

user interface (GUI). Although the various pipelines can pre-process datasets composed of 



multiple samples, they are all conceptually designed to be applied on a single sample base. 

SingleCellTK quantifies QC metrics and detects doublets separately for each sample and then 

performs all other pre-processing steps (as filtering or dimensionality reduction) on the 

aggregated dataset. iCellR can be run in aggregate mode to merge multiple datasets (data 

frames/matrices) into one file prior its analysis as a single meta-sample. Similarly, scCancer 

and popsicleR can perform pre-processing and quality control of a multi-sample dataset 

obtained through the cellranger aggr pipeline that can be used to aggregate cells from different 

replicates, tissues, or individuals into a single feature-barcode matrix. It is worth noting that 

pre-processing and QC analysis on a single sample is intended for small size experiments 

where a rigorous assessment of the quality of each single sample is considered critical for 

further downstream analyses (as integration with reference datasets) and might result 

practically untenable with datasets comprising large number of samples. Nonetheless, when 

the number of samples is limited, it is preferable to assess data quality on single sample base 

and perform multi-sample integration as a downstream analysis (through SeuratMNN, 

Harmony, and Liger algorithms), since each sample might be affected by sample-specific 

biases, that require dedicated pre-processing and filtering steps, and some pre-processing 

procedures (as doublet detection) has to be performed separately for each sample (see 

https://github.com/swolock/scrublet and https://github.com/plger/scDblFinder for details). 

Since the pre-processing and QC approaches of the various tools are rooted in major 

packages for the analysis of scRNA-seq data (e.g., Seurat [6], Harmony [5], Liger [7], and 

scater [13]), their differences are mostly limited to functional aspects, i.e., the strategy adopted 

to assemble the wrapper functions, their functionalities, and the type of graphical outputs, that 

marginally influence the overall result of the analysis. For instance, even though scCancer 

implements, as compared to popsicleR, different approaches for the identification of cell 

doublets and cell-type annotation (based on the scds [26] and gelnet [27] packages, 

respectively), when used on the same scRNA-seq sample, the two pipelines returned similar 

results both in terms of cells passing the filtering steps (12,167 and 11,608 for popsicleR and 

scCancer, respectively), cell clusters (18 and 21 for popsicleR and scCancer, respectively at 



a resolution of 0.8), and cell types composing the lung tumor tissue (e.g., as macrophages, 

NK cells, T cells and B cells, and epithelial cells). Nevertheless, popsicleR and scCancer 

significantly differ in the design of their wrapper functions. The workflow of scCancer consists 

of three modules, i.e., scStatistics for pre-processing, scAnnotation for basic analyses, and 

scCombination for the integration of data from multiple samples. As compared to popsicleR, 

this minimal structure simplifies the overall analysis pipeline but, at the same time, limits the 

possibility of the user to sequentially adapt threshold values and parameters while performing 

each step of the analysis. As an example, the parameters for the scAnnotation module, which 

performs cell filtering, functional analyses, and visualizations, are inferred, and automatically 

set, by scStatistics, i.e., the function that quantifies thresholds based on QC metrics. Thus, to 

modify the QC thresholds and optimize the strength of the filters, the user is required to 

manually edit the output file of scStatistics and run the entire workflow several times. The 

various tools also present differences in the available functionalities as exemplified by the 

various options to detect doublets, ranging from the multiple algorithms proposed by 

SingleCellTK to the absence of any doublet detection module in iCellR; the possibility to 

perform cell clustering at multiple resolutions, implemented only in popsicleR; or the 

application of multiple cell annotation methods, available only in popsicleR and iCellR. As to 

the type of graphical outputs, all workflows return scatter and violin plots of the major QC 

metrics (as the number of unique genes and total UMIs and the percentage of mitochondrial, 

and ribosomal genes), but only scCancer and popsicleR plot their distributions within specific 

cell populations identified by a list of user-selected marker genes. This type of graphs is 

extremely helpful in guiding the selection of appropriate thresholds to remove only low-quality 

cell while preserving biologically relevant cells, as T cells, intrinsically characterized by low 

levels of some QC metrics. Conversely, only iCellR and SingleCellTK result interactive plots 

created using the graphical routines of Plotly, a R package to generate interactive web 

graphics. Finally, only popsicleR returns dot plots showing, for a list of user-defined genes, 

the fraction of cells expressing a gene and its average expression level across all cells within 

clusters identified at a given resolutions. The dot plot visualization represents a valuable tool 



to select the most appropriate clustering resolution, to identify the presence of clusters 

composed by mixed cell types, to refine cell annotation, and to enhance the exploration of cell 

heterogeneity. 

All in all, we believe that, as single cell assays progressively become indispensable 

approaches to investigate the fundamental mechanisms regulating cell identity and tissue 

complexity, automated and user-friendly workflows must be developed to facilitate the routine 

analysis of single cell genomic data, standardize the computational approaches, and improve 

the reproducibility of results. 

 

Availability 

popsicleR is written in R language and is released under a GPL License. The package can be 

downloaded from GitHub (https://github.com/bicciatolab/PoPsicleR) along with an installation 

guide and an application tutorial. popsicleR is continuously maintained by the developers, 

providing continuous support to all external users. Users can report issues and comments 

directly at the GitHub repository. 
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Figure legends 

Figure 1. Workflow. The workflow of popsicleR. 

Figure 2. Pre-processing and filtering. A. Distributions of the number of unique genes 

(nFeature_RNA) detected in all cells. B. Distributions of the number of unique genes 

(nFeature_RNA) detected in cells expressing SFTPC, a marker of lung alveolar cells. C. 

Distributions of the number of unique genes (nFeature_RNA) detected in cells expressing 

CD3D, a marker of T lymphocytes. In A., B., and C. the X axis is zoomed in the range 0 to 

2000. D. Scatter plot showing the correlation between the total number of unique genes 

(nFeature_RNA) and the total number of UMIs (nCount_RNA), across all single cells. Dashed 

grey lines indicate the thresholds set on minimum and maximum number of genes detected 

in each cell and on the maximum number of molecules detected within a cell. E. Scatter plot 

showing the correlation between the total number of unique genes (nFeature_RNA) and the 

percentage of mitochondrial genes (percent_mt), across all single cells. Dashed grey lines 

indicate the thresholds set on minimum and maximum number of genes detected in each cell 

and on the maximum percentage of mitochondrial genes. In D. and E., cells that passed the 

combinations of filters are highlighted in red (D.) and blue (E.), while cell filtered out are colored 

in gray. F. Doublet score of each single cell projected in the UMAP plane. 

Figure 3. Clustering and annotation. A. UMAP visualization of cells colored by cluster 

membership at resolution 0.8. Numbers indicate the cluster identity. B. Clustering tree 

displaying how cells move among clusters as resolution increases from 0.4 to 0.8. The tree is 

shown only for selected clusters. Cluster identity is displayed inside the circle; circle color 

indicates the clustering resolution; circle size is proportional to the number of cells in the 

cluster. Edge color is related to the number of cells whereas its transparency shows how many 

cells of the incoming node are assigned to the destination node. C. Dot plot reporting, in the 

clusters identified at resolution 0.8, the expression of genes commonly associated to general 

immune populations. Dot size is proportional to the fraction of cells with non-zero expression 

of the marker gene. Dots are color-coded based on the average scaled normalized expression. 



D. UMAP visualization of cells colored by population label assigned using the Blueprint 

ENCODE reference atlas. E. Pie-chart plot displaying, for each cluster at resolution 0.8, the 

proportion of cells annotated with a specific label using the Blueprint ENCODE reference atlas. 
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