
symmetryS S

Article

Electron Transfer via Helical Oligopeptide to Laccase
Including Chiral Schiff Base Copper Mediators

Kumpei Kashiwagi 1, Francesco Tassinari 2, Tomoyuki Haraguchi 1, Koyel Banerjee-Gosh 2,
Takashiro Akitsu 1,* and Ron Naaman 2

1 Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku,
Tokyo 162-8601, Japan; 1318525@ed.tus.ac.jp (K.K.); haraguchi@rs.tus.ac.jp (T.H.)

2 Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl Street,
76100 Rehovot, Israel; francesco.tassinari@weizmann.ac.il (F.T.);
koyel.banerjee-ghosh@weizmann.ac.il (K.B.-G.); ron.naaman@weizmann.ac.il (R.N.)

* Correspondence: akitsu2@rs.tus.ac.jp; Tel.: +81-3-5228-8271

Received: 30 March 2020; Accepted: 6 May 2020; Published: 12 May 2020
����������
�������

Abstract: The oxygen reduction efficiency of a laccase-modified electrode was found to depend on
the chirality of the oligopeptide linker used to bind the enzyme to the surface. At the same time,
the electron transfer between the cathode electrode and the enzyme is improved by using a copper(II)
complex with amino-acid derivative Schiff base ligand with/without azobenzene moiety as a mediator.
The increased electrochemical current under both O2 and N2 proves that both the mediators are active
towards the enzyme.
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1. Introduction

To our knowledge, the first report of enzymatic biofuel cells appeared in 1964, and intensive
research has been conducted on the subject ever since [1]. An enzymatic biofuel cell uses enzymes
as catalysts at the anode to oxidize fuel as an electron donor and enzymes at the cathode to reduce
oxygen [2]. The whole cell can convert chemical energy into electrical energy [3]. In this way, biofuel
cells may be a device providing electric power by the conversion of chemical energy [2]. This principle
resembles a living body with enzymes to catalyze oxidation and reduction reactions. These catalytic
functions can convert the energy of the redox reaction into bioenergy [4]. An enzymatic biofuel cell has
advantages, such as low environmental burden, easy safety handling, and practical downsizing [5].
However, it also has disadvantages, such as low enzyme durability and low power conversion.
Therefore, it is necessary to improve the electron transfer from the cathode electrode to the active
sites of the enzyme (laccase, etc.). The goal of our study is to overcome the environmental and
energetic issues by developing suitable materials for low-cost and renewable energy systems using a
chemical approach.

Laccase is one of the few enzymes which can be used on the cathode side of the fuel cell to reduce
oxygen to water by four-electron reduction [6–8], similarly to cytochrome c oxidase [9–11]. Laccase
is classified into a family of multi copper oxidases which include at least four copper ions of three
types as active centers. This multi-copper oxidase receives external electrons with Type-1 copper and
reduces oxygen with Type-2 copper and two Type-3 coppers [6,7]. Electron injection from the outside
of the molecular surface to the nearest active center (Type-1) of laccase is a very important step of the
enzymatic reaction and an interesting research subject towards industrial applications. It is known
that a hydrophobic pocket (having a high affinity for hydrophobic groups of substrates) exists near
the Type-1 site. As described above, a major problem of the enzymatic biofuel cell is to efficiently
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transfer electrons from the electrode to this active center. At present, there are two main methods for
promoting a more efficient electron transfer: (1) “Direct Electron Transfer” using linker molecules or
appropriately molecular orientation [12,13]; (2) “Mediated Electron Transfer” using a mediator that
relays electrons between the electrode surface and the molecules of enzyme proteins [14,15].

In this study, we use a combination of these two strategies, using a mediator as well as an
oligopeptide bridge to order to improve the electron transfer from cathode to laccase [16]. Laccase from
Trametes versicolor was employed as the enzyme catalyst in the cathode of this biofuel cell. The present
study is composed of three steps (Scheme 1). The first step describes the preparation of the mediator
Cu-complexes, incorporating a dipeptide Schiff base ligand with a photochromic azobenzene moiety
or without it [17]. The second step describes the assembly of the mediator complex to the laccase and
the characterization of the mediator functions, as well as the catalytic activity of the laccase/mediator
complex. The third step describes the preparation of a modified electrode in which chiral oligopeptide
linkers are used to bind the laccase/mediator complex to the electrode, in order to pass spin-polarized
electrons. The third step’s objective is to elucidate if the phenomenon called as Chiral-Induced Spin
Selectivity (CISS) [18,19] plays a role in the electron injection into the laccase/mediator complex.
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Scheme 1. Hierarchical structures of electrode materials.

2. Materials and Methods

2.1. General Procedures

Chemicals of the purest commercial grade were used as received without further purifications. All
solvents were acquired from Kanto Chemical (Tokyo, Japan), reagents from Tokyo Chemical Industry
(Japan), metal sources and laccase (from Trametes versicolor) from Wako (Osaka, Japan), oligopeptides
(L- and D-) NH2-(Ala-Aib)5-CONH-CH2-CH2-SH (where Ala = Alanine, Aib = aminoisobutyric
acid) from Genemed Synthesis Inc. (USA). Complex 1 [20] and a precursor of the azo-ligand
(azobenzenesalicylaldehyde) for 2 [21,22] were prepared according to literature procedures with
slight modifications.

2.2. Preparation

2.2.1. Preparation of 1

Glycylglycine (2.0 mmol) was dissolved slowly and refluxed at 313 K in methanol (20 mL)
containing LiOH·H2O (2.0 mmol) for 30 min. After cooling to 298 K, a solution (20 mL) of salicylaldehyde
(2.0 mmol) as methanol solution was added slowly during stirring. After addition and stirring of this
solution for 10 min, Cu(NO3)2·2.5H2O (2.0 mmol) was added as powder to this solution and the pH
adjusted to be pH = 10 by the addition of a 1.0 M NaOH aqueous solution. After stirring for 30 min
at 298 K, the volume of the solution was reduced with a rotary evaporator to obtain crude product.
Ethanol solvent was added to precipitate the product out, which was then (for purify) recrystallized
using methanol. Yield: 56.73%. Anal. Found: C; 37.07, H; 3.62, N; 7.08. Calcd. For C11H13N2O6CuNa:
C; 37.14, H; 3.68, N; 7.87%. IR (KBr): 1634 cm−1 (C=N). UV-vis (methanol): 240, 290, 380 nm.
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2.2.2. Preparation of 2

Glycylglycine (2.0 mmol) was dissolved completely and refluxed at 313 K in methanol
(20 mL) containing LiOH·H2O (2.0 mmol) for 30min. After cooling to 298 K, a solution of
azobenzenesalicylaldehyde (2.0 mmol) in methanol (20 mL) was added slowly (almost dropwise)
under stirring. After stirring for 10 min, then Cu(NO3)2·2.5H2O (2.0 mmol) was added as powder to
this solution and the pH adjusted to be pH = 10 by the addition of a 1.0 M NaOH solution. After
stirring at the same temperature for 30 min, the volume of the solution was reduced slowly with a
rotary evaporator to obtain crude product. The solvent was dried, and the final sample was isolated
by recrystallization from methanol (Scheme 2). Anal. Found: C; 43.64, H; 3.80, N; 13.03. Calcd. For
C17H17N4O6CuNa: C; 44.40, H; 3.73, N; 13.18%. IR (KBr): 1622 cm−1 (C=N). UV-vis (methanol): 240,
290 (sh), 375 nm.
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2.2.3. Electrode Fabrication

In order to elucidate the electron transfer process within the enzyme, we adsorbed the laccase onto
a Self-Assembled Monolayer (SAM) coated on a gold electrode. For the formation of the monolayer,
oligopeptides having the structure Cya-(Ala-Aib)5-NH2 (Cya = Cysteamine) were used. Two different
types of this oligopeptide were used separately in the experiments, one having L-Ala amino acids in
the sequence, the other having D-Ala amino acids. The L-oligopeptide with terminal groups forms a
right-handed, α-helix structure in the SAM, while the D-form, with terminal groups, a left-handed helix.

The procedure for preparing the electrode is described below. Before preparation, the electrodes
were then washed with ethanol, acetone and water and then used for the experiments. The gold
surfaces were carefully washed by boiling them in acetone solvent without further treatment and
then in ethanol for 10 min each time, and then immersing them in ethanol solvent for 40 min without
plasma cleaning. Thereafter, 1 mg of the oligopeptide was completely dissolved in 1.6 mL of a mixed
solution of 2,2,2-trifluoroethanol (TFE)/H2O = 2/3 v/v, and the cleaned electrode was incubated in this
solution for 48 h. The electrode was removed from the oligopeptide solution, rinsed with ethanol,
acetone, and isopropanol and then dried with N2. Then, the electrode was placed in a solution in
which 20 mg of laccase and 10 mg of the complex were carefully dissolved in 4 mL of phosphate buffer
(pH 7.3), and incubated for 48 h.

2.2.4. ABTS Assay Procedures

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) is often used as an oxidation substrate
to assess the catalytic activity of the laccase. The absorbance of the UV-vis spectral peak at about
417 nm was attributed to the oxidized ABTS and can indicate the activity of enzyme as the biocatalyst.

2.3. Physical or Instrumental Measurements

Elemental analyses (C, H and N) were measured using a Perkin–Elmer (Waltham, USA) 2400
II CHNS/O analyzer. Infrared (IR) spectra were measured on a JASCO (Tokyo, Japan) FT-IR 4200
spectrophotometer in the range of 400–4000 cm−1 at 298 K. UV-vis (electronic) spectra were measured
on a JASCO (Tokyo, Japan) V-650 spectrophotometer in the range of 800–220 nm at 298 K. Circular
dichroism (CD) spectra were measured on a JASCO (Tokyo, Japan) J-725 spectropolarimeter in the
range of 200–800 nm at 298 K. Electrochemical, namely cyclic voltammetry (CV), measurements
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were carried out on a BAS (Tokyo, Japan) SEC2000-UV/VIS and ALS2323 system in the range of
+0.80–−0.50 V vs. Ag/AgCl reference electrode. Light irradiation was carried out using a lamp (1.0
mW/cm2) by Hayashi Tokei (Tokyo, Japan) with head cut filters and optical filters (UV λ = 200–400 nm),
leading to a sample by using optical fibers and polarizer through flexible optical filters by Sigma Koki
(Tokyo, Japan). Spectroscopic ellipsometry was measured with a J. A. Woollam Japan (Tokyo, Japan)
M-2000V-SUT ellipsometer.

2.4. x-ray Crystal Structure Analysis

Green prismatic crystals of 2 were set on top of a glass capillary, coated with a thin layer of
Araldite epoxy resin. Intensity data were collected on a Bruker APEX2 CCD diffractometer (Bruker,
Billerica, MA, USA) with Mo-Kα radiation monochromated by graphite (λ = 0.71073 Å). Data treatment
used a program package “SAINT” (Bruker, Billerica, MA, USA). An empirical absorption correction
for intensity was applied by the program SADABS (Bruker, Billerica, MA, USA). In this program
package, the structures (phase problem) were initially solved by direct methods with a SHELXS-97 [23],
expanded by Fourier techniques, and finally refined by full-matrix least-squares methods based on F2

using a SHELXL-97 program [23]. All non-hydrogen (heavy) atoms were readily located to construct
a model and refined by anisotropic (thermal) displacement parameters. All hydrogen atoms were
not located at observed positions but at geometrically calculated positions and they were refined
using riding models on the parent atoms. Low electron density due to solvent molecules could not be
completely assigned as reasonable disorder or smoothing. Unfortunately, a suitable single crystal of 1
could not be obtained.

Crystallographic data for 2: C17H13CuN4O4·H2O, Triclinic, space group P-1 (#2), Z = 2, a = 6.4450(3)
Å, b = 8.5210(4) Å, c = 16.3926(8) Å, α = 77.986(2), β = 89.626(2)◦, γ = 80.815(2)◦, V = 868.91(7) Å3,
ρcalc = 1.548 gcm−3, µ = 1.28 mm−1, F(000) = 416, S= 1.116, R1[I > 2σ(I)] = 0.0699, wR2 = 0.1861.
T = 173 K.

2.5. Computational Calculations

The calculations of the optimized structure of 1 and 2 were carried out using the Gaussian 09W
software package Revision D.02 (Gaussian, Inc., Wallingford, CT, USA) [24] with a Windows 10
personal computer. All geometries have been optimized by using B3LYP level of theory and basis set
SDD. The frequency calculations were performed for the optimization of geometries using the identical
level of theory and basis set.

The complexes 1 and 2 and laccase docking simulations were performed using a GOLD suite (ver.
5.5.0) [25]. We used structural data 1GYC of Laccase from Trametes versicolor from the Protein Data
Bank [26] and used them to calculate how 1 and 2 behave in the vicinity of a so-called hydrophobic
pocket at the surface outside of Type-1 site.

3. Results and Discussion

3.1. Copper Complexes

The dipeptide derivative of 2 affords a four-coordinated square planar coordination environment
(Figure 1). There are no planar geometries in similar types of dipeptide Schiff base ligands [27,28],
or azobenzene [29] moieties. In contrast to crystal structure, the optimized structure of 2 affords a
distorted tetrahedral coordination environment (Figure 2).
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200 to 300 nm due to the Schiff base ligand moiety (and a quite weak d-d band), whose assignment 
was also confirmed by simulated spectra from DFT calculations giving theoretical values of 267.17, 
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Figure 1. Crystal structures of 2. Hydrogen atoms and water molecule were omitted for
clarity. Selected bond distances [Å] and angles [◦]: Cu1-N1 = 1.894(4), Cu-O3 = 1.899(3),
Cu1-N2 = 1.927(4), Cu1-O2 = 1.978(3), N3-N4 = 1.260(6), N1-Cu1-O3 = 176.80(16), N1-Cu1-N2 = 84.07(15),
O3-Cu1-N2 = 94.78(14), N1-Cu1-O2 = 83.06(14), O3-Cu1-O2 = 97.91(13), N2-Cu1-O2 = 166.77(14).

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 16 

 

 
Figure 1. Crystal structures of 2. Hydrogen atoms and water molecule were omitted for clarity. 
Selected bond distances [�] and angles [°]: Cu1-N1 = 1.894(4), Cu-O3 = 1.899(3), Cu1-N2 = 1.927(4), 
Cu1-O2 = 1.978(3), N3-N4 = 1.260(6), N1-Cu1-O3 = 176.80(16), N1-Cu1-N2 = 84.07(15), O3-Cu1-N2 = 
94.78(14), N1-Cu1-O2 = 83.06(14), O3-Cu1-O2 = 97.91(13), N2-Cu1-O2 = 166.77(14). 

The UV-vis spectrum of 1 (taken as a methanol solution) exhibits intense π-π* bands at around 
200 to 300 nm due to the Schiff base ligand moiety (and a quite weak d-d band), whose assignment 
was also confirmed by simulated spectra from DFT calculations giving theoretical values of 267.17, 
308.03, 374.29, and 411.39 nm (Figure 2). The UV-vis spectrum of 2 in methanol solution exhibits 
intense π-π* bands as well as an n-π* transition of azo-group around 375 nm (Figure 3). After 
alternative irradiation of UV light and visible light, trans-photoisomerization/cis-photoisomerization 
of 2 could be observed reversibly for at least four cycles [30]. 

 
Figure 2. Optimized structures and experimental and calculated electronic spectra of 1 and 2. Figure 2. Optimized structures and experimental and calculated electronic spectra of 1 and 2.

The UV-vis spectrum of 1 (taken as a methanol solution) exhibits intense π-π* bands at around 200
to 300 nm due to the Schiff base ligand moiety (and a quite weak d-d band), whose assignment was
also confirmed by simulated spectra from DFT calculations giving theoretical values of 267.17, 308.03,
374.29, and 411.39 nm (Figure 2). The UV-vis spectrum of 2 in methanol solution exhibits intense π-π*
bands as well as an n-π* transition of azo-group around 375 nm (Figure 3). After alternative irradiation
of UV light and visible light, trans-photoisomerization/cis-photoisomerization of 2 could be observed
reversibly for at least four cycles [30].
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Figure 3. (Left) UV-vis spectra of 2 with azo-group. (Right) Cycle index of trans/cis-photoisomerization
of 2.

The results of cyclic voltammetry (CV) of 1 and 2 are shown in Figure 4. The anaerobic measurement
was carried out using a carbon paste electrode as the working electrode (excluded the effect of carbon
paste electrode). The buffer used was a 10 mM phosphate buffer at pH = 7.3, and the scan rate of CV
was 50 mV/s. In both complexes, a redox peak derived from the central Cu(II/I) ion (E0 = +0.157 V) was
observed. For 1 a second, smaller redox peak due to the ligand (E0 = −0.322 V) was also observed [28].
As for 2, a second peak deriving from the redox activity of the azo-moiety (E0 = −0.309 V) was seen to
depend on whether the solution was irradiated with UV or visible light. Thus, the current density for 2
was increased by cis-trans isomerization by light irradiation [31,32]. However, in contrast to UV-vis
spectra, the CV pattern of 2 was not reversible after cis-trans isomerization, because of unexpected
changes in azo-moiety such as protonation. Thus, the red curve did not go back on the blue one by
visible light in this case.
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3.2. Copper Complexes and Laccase

CD measurements of pure laccase (16 µM) and of a mixture of laccase and Cu-complexes 1 or
2 in a 1:1 ratio (16 µM) were carried out in 10 mM phosphate buffer solution of pH 7.3 (Figure 5).
Compared to laccase, laccase with complexes showed a decreased intensity of the negative peaks at
216 nm (attributed to β-sheet) and 230 nm (attributed to random coil). This behavior seems to hint at a
loss of both β-sheet and β-turn content in the laccase structure, suggesting that complexing the laccase
with the Cu(II) complexes may result in slightly structural changes in the enzyme, allowing easier
access to the Type-1 copper active site.
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Figure 5. (Left) circular dichroism (CD) spectra for laccase (blue), laccase+1 (red), and laccase+2 (green).
(Right) Docking simulation with GOLD for laccase+1 and laccase+2 to estimate distance between
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Docking simulation suggested thermodynamically stable docking conformation of the complexes
onto the surface of laccase, especially around the hydrophobic pocket near the Type-1 copper site [33–35].
The lowest energy docking poses for both complexes are very close to the laccase, with interatomic
distance of the two Cu atoms of 8.107 Å (docking score = 41.4037) for 1 and 6.330 Å (docking
score = 46.1320) for 2. The better docking score of 2 may be due to hydrophobic interactions between
the pocket and the azobenzene moiety (Figure 5) [22,31,32].

An ABTS essay measurement was performed to confirm the activity of the laccase/mediator
complex (Figure 6) [36]. 0.1 mL laccase, laccase+1 or laccase+2 solutions (0.5 mg/mL) was mixed with
a 2.9 mL ABTS solution (0.5 mM) fast, and the enzyme activity was examined by following the UV-vis
peak at 420 nm (peak of the oxidized ABTS) over time. However, reliable standard values of laccase’s
activity were not clear in this case. The resulting slopes (Abs/Time) were 3.23 × 10−4, 4.89 × 10−4,
and 2.05 × 10−4 min−1 for laccase, laccase+1 or laccase+2, respectively. The laccase enzymatic activity
after complexation with the two different mediators stayed in the same order of magnitude qualitatively.
Unfortunately, quantitatively reliable values of activity could not be obtained because of the addition
of mediators and treatment of background throughout this study.
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Figure 6. ABTS assay for laccase (blue), laccase+1 (red), and laccase+2 (green).

The CV of laccase+1 and laccase+2 are shown in Figure 7. The redox peak of the Type-1 copper
due to the four-electron reduction of oxygen to water by laccase and a reduction peak can be seen under
oxygen filling. A modified glassy carbon (GC) electrode was employed as the working electrode. First,
5 mg of the complex was carefully dissolved in 0.5 mL of ultrapure water and sonicated, and 40 µL of
the obtained solution was drop-casted on the GC electrode. After this, 10 µL of a 20% w/w methanol
solution of glutaraldehyde was added dropwise. In the end, a laccase solution (5 mg of laccase, 20 µL
of Nafion® in 0.5 mL of ultrapure water) was added dropwise. All the subsequent drop-casting was
performed without letting the surface to dry completely. At this point, the surface was allowed to dry
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completely and a Nafion® membrane was formed. In order to confirm the four-electron reduction of
oxygen by laccase, monitoring with an O2 meter, measurements under saturated (saturation is known
to be 7.97 mg/L for pure water at 300 K under 1 Pa air) oxygen filling (added O2 20 mg/L or more,
which was monitored by decreasing of gas and resulting in oxygen monitor’s constant saturation) and
under nitrogen filling were performed and compared [32,34,35]. Possible data corresponding to the
blank tests may be found in Figure 4 and Figure S1), in this case. Blank experiments for laccase only
systems were also added as Figures S2 and S3. No experimental proof of releasing free Cu(II) ion from
chelate ligand could be observed in Figure 4 at least.
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It was found that under oxygen filling the onset of the reduction peaks of the Type-1 copper, where
usually value was observed for the pure laccase (shown in Figure S1), were shifted to more positive
potentials for both the laccase/mediator complexes. This onset of shifts increases the total current
density and shows the usefulness of the mediator. The redox peak due to the Cu-complex was also
observed. For the laccase+2 complex, light-dependent measurements were performed after irradiating
the surface with ultraviolet light and visible light. The redox current increased upon irradiation with
ultraviolet light. Electron transfer seems to be more efficient after the laccase/complex is irradiated
with UV light, that is, when the azo-group is in the cis-form [31,32,37]. For both complexes, the current
density was increased in the presence of oxygen. Both complexes of 1 and 2 were confirmed to be
useful as mediators.

3.3. Electrode on Gold Substrate Composed of Oligopeptide, Copper Complexes, and Laccase

Two different oligopeptides were used for linking the laccase/mediator complex to a gold electrode.
Their general structure was NH2-(Ala-Aib)5-CONH-CH2-CH2-SH, where Aib is aminoisobutyric acid,
and Ala is either L-alanine or D-alanine. The presence of the thiol group allows for the formation
of a SAM on the electrode gold surface. These oligopeptides form α-helixes of opposite chirality
on the surface, depending on which alanine enantiomer is present in their molecular structure
(Scheme 3). Previous studies by Kiran, Cohen and Naaman have shown that these oligopeptides
can give spin selectivity [38]. The amine group present on the terminal end is used to adsorb the
laccase/mediator complex, exploiting the carboxylic residues on the laccase surface. ABTS essay
measurements were performed to confirm the activity of the laccase including a mediator complex
bound to the surface through the oligopeptide monolayer. As mentioned in 3.2 (mentioned in the
slope values), the resulting slopes (Abs/Time) were 3.44 × 10−4, 2.79 × 10−4. 4.86 × 10−4 and 3.31
× 10−4 min−1 for L-oligopeptide+laccase+1, L-oligopeptide+laccase+2, D-oligopeptide+laccase+1,
D-oligopeptide+laccase+2, respectively. Thickness of the inclined monolayers of L- and D-oligopeptides
(1.71 ± 0.067 nm and 1.80 ± 0.066 nm) and L- and D-oligopeptides+laccase (4.93 ± 0.068 nm and 5.11 ±
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0.068 nm) was measured using ellipsometry (Figure 8). The catalytic activity of laccase was preserved
even after adsorption of the Cu(II) complexes on the oligopeptide-bridging electrodes.Symmetry 2020, 12, x FOR PEER REVIEW 9 of 16 
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Figure 8. ABTS assay for L-oligopeptide+laccase+ 1 (red), L-oligopeptide+laccase+ 2 (orange),
D-oligopeptide+laccase+ 1 (blue), D-oligopeptide+laccase+2 (violet).

The results of cyclic voltammetry using the SAM-modified electrodes are shown in Figures 9
and 10. The redox peak around 0.21 V observed for both the L-form and D-form can be inferred to be
due to the laccase Type-1 copper. The redox peak was significantly reduced upon consecutive cycling
only in the case of D-form without magnetic field in this case. For complex 2, the redox peak at around
0.23 V observed for both the L-form and the D-form can be presumed to be due to laccase Type-1 copper.
The reduction in the redox peak was remarkably observed only in the D-form, as in the case of complex
1. The difference in the current of CV could be observed, and the difference between the two samples
compared for each case was only the chirality of polypeptides as bridges for electron conduction.
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For 2, CV measurements were performed after light irradiation (Figure 11). Interestingly, it was
observed that the performance of the mediator, seen in the increase in current density upon irradiation
with ultraviolet light, was exhibited only through the D-form oligopeptide.
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Theoretical models of electron conduction through helical molecules were proposed, considering
the interaction between molecular orbitals and spins [39–43]. According to these studies, the dipole
moment of helical molecules and a spin–orbit term coming from the chiral potential are important
for the emergence of the CISS effect. The electron spin can thus have a large effect upon the electron
transport, which can also be enhanced by spin–orbit interaction and accompanying tunnel effect.
However, electron conductivity observed experimentally through short helical organic molecules is
much larger than what expected based on theoretical calculations. In this way, while there have been
only few experimental examples, the electron transfer mechanism depending on spin polarization
should be considered in the presence of chiral small molecules.

To date, CISS effect has been confirmed for oligopeptides [19,38], double-stranded DNA [44],
and other biomolecules [45]. Among them, especially, it should be noted that in cytochrome c (whose
functions are electron donor to an oxygen-reducing enzyme cytochrome c oxidase [46]), spin-polarized
electron transport was reported, suggesting the possible application of the CISS effect in improving
the electron transfer in biochemical reactions, focusing on spatial properties of the enzymes, such as
orientation of dipoles [47].

In recent years, we have studied the employment of spatial interactions between various metal
complexes as mediators and laccase to improve the oxygen reduction ability, mainly focusing on the
effect of substituent groups of the complexes prepared. On the other hand, for enhancing the efficiency
of electron transfer to the enzyme using different approaches, the CISS effect could also be valid.
In this work we have succeeded in proposing a new concept of hybrid system of “direct and mediated”
electron transfer to laccase [48] in which transmission of spin-polarized electrons could be controlled
by chirality of the oligopeptide as spin filter.

4. Conclusions

In summary, two dipeptide-based Schiff base Cu(II) complexes (1 and 2) were compared as a
mediator between an electrode and laccase. One of them incorporates azobenzene moiety exhibiting
cis-trans photoisomerism accompanied by changing electrochemical properties. ABTS assay indicated
that laccase did not lose the activity of enzymatic reactions when the complexes are included into
laccase molecules. The surface of gold substrate and laccase, including the complexes, were linked with
enantiomers of oligopeptide acting as a path of electron transfer. In these hybrid electrode materials,
laccase indicated enzymatic activity and the complexes acted as a mediator, which can be tuned by
molecules (1 or 2) as well as cis-trans photoisomerization for 2. For the first time, the CV behavior
indicated that difference in electron transfer to laccase with the mediator via oligopeptide could be
observed due to chirality of oligopeptide, which can be regarded as a spin filter without an external
magnetic field.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/12/5/808/s1,
Figure S1: CV for only laccase, Figure S2: CV of a bare GC electrode.
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