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Abstract 
The huge number of alerts generated by network-based defense systems prevents detailed 

manual inspections of security events. Existing proposals for automatic alerts analysis work well 

in relatively stable and homogeneous environments, but in modern networks, that are 

characterized by extremely complex and dynamic behaviors, understanding which approaches 

can be effective requires exploratory data analysis and descriptive modeling. We propose a novel 

framework for automatically investigating temporal trends and patterns of security alerts with the 

goal of understanding whether and which anomaly detection approaches can be adopted for 

identifying relevant security events. Several examples referring to a real large network show that, 

despite the high intrinsic dynamism of the system, the proposed framework is able to extract 

relevant descriptive statistics that allow to determine the effectiveness of popular anomaly 

detection approaches on different alerts groups. 

Keywords: Security analytics, Network alerts, Temporal characterization, Time series analysis, 

Anomaly detection. 

1. Introduction 
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The quantity of digital information augments every year and the number of attacks for 

gaining illegitimate access to these data increases as well. We focus on network defense systems 

that fire an alert whenever a packet matches a signature related to malware, botnets or any 

suspicious network activity (e.g., [1, 2, 3]). One of the main issues affecting these systems is the 

huge number of security alerts generated by sensors that requires a manual inspection by security 

analysts. In a relatively complex network, it is not uncommon to have from thousands to 

hundreds of thousands of alerts per day. As a consequence, security analysts tend to focus on a 

limited portion of the alerts with the risk of missing important events and relations. 

Anomaly detection approaches [4, 5] can assist the security analyst in the management of 

huge volumes of alerts, and are also useful for the identification of relevant events and state 

changes that may correspond to incidents and infection propagations. However, these techniques 

work well in relatively stable contexts and for specific datasets, but modern large networked 

systems are extremely dynamic and heterogeneous [6]. Hence, any automatic and 

semi-automatic approach for anomaly detection should be combined with preliminary 

investigations on the observed environment and data. The goal is to understand the main 

behavioral characteristics and to determine which statistical techniques can be applied 

legitimately, and which can offer the best results. 

This paper focuses on the phases that are often referred to as exploratory data analysis 

and descriptive modeling [7, 8]. In this context, we propose a novel framework that takes as its 

input any dataset of security alerts, and is able to discover whether and which anomaly detection 

algorithms can be effective in the observed environment and data. In particular, the framework 

investigates temporal trends and patterns in the security alerts, and automatically extracts 

relevant descriptive statistics that are used to understand the applicability of popular anomaly 

detection approaches (e.g., distribution-based, regression-based [4]). This is achieved by 

properly separating the alerts in different groups, and by analyzing their data distribution and 

temporal dependence at different time granularities. The extracted descriptive statistics are also 

useful for acquiring information about the security status of the observed system, because they 

allow us to identify the most active classes of alerts, and the most critical subnets and hosts in 

terms of infection. 

To the best of our knowledge, this is the first paper proposing a framework for the 

automatic investigation of security alerts with the purpose of determining whether and which 

anomaly detection algorithms can be applied effectively. Our focus on security alerts instead of 

traffic and netflows information differentiates our proposal from related literature on anomaly 

detection for security (e.g., [9, 10, 11, 12]). Other works considering temporal analysis and 

anomaly detection of security alerts either consider outdated datasets [13, 14], or propose novel 

anomaly detection algorithms that assume specific statistical characteristics of data (e.g., [5, 15, 

16]). 

We evaluate the proposed framework on real-world alerts referring to a large network 

environment observed for several months, and we do not make any assumption about the 

statistical nature of the data. The considered environment is extremely challenging, but 

approaches that are similar to our agnostic analysis are necessary if you face any modern large 

network that is dynamic, and affected by several endogenous and exogenous human factors that 

may intervene on the quantity and type of generated alerts. For example, hosts (dis)connections, 

activities of network and system administrators on firewall rules, patching and cleaning of hosts. 

Although all these factors complicate the temporal analysis, our results show that the proposed 
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framework is able to extract relevant descriptive statistics that allow to understand the 

effectiveness of popular anomaly detection approaches with respect to different alerts groups. 

The remainder of this paper is structured as follows. Section 2 compares the proposal 

against related work. Section 3 presents the proposed framework and its main phases that are 

detailed in the successive sections. The first three phases involve preprocessing and partitioning 

(Section 4), time-based separation of alerts (Section 5), and extraction of descriptive statistics 

(Section 6). Then, Section 7 describes how from the extracted statistics it is possible to 

understand which anomaly detection approaches can be applied effectively, and Section 8 

presents an evaluation of the anomaly detection choice on real alerts. Section 9 discusses how the 

proposed framework automatically suggests possible re-aggregations of the alerts for obtaining 

groups on which anomaly detection could be performed more effectively. Finally, Section 10 

outlines conclusions and directions for future research. 

2. Related work 
Automatic analysis of huge volumes of security alerts represents an increasing research 

challenge. Existing proposals work well on stable environments, for specific datasets or when 

they assume a-priori knowledge about possible attack scenarios. These assumptions are 

becoming less effective in modern networks that are characterized by complex, variable and 

heterogeneous architectures. Moreover, modern environments present dynamic behaviors at 

different scales and, in some contexts, many operations on client and mobile hosts are difficult or 

impossible to be controlled by system administrators. All these reasons induce us and other 

authors (e.g., [6]) to believe that preliminary studies based on exploratory data analysis and 

descriptive modeling are necessary as a basis for understanding which (semi-)automatic 

approaches may be really effective. We propose the first framework for the automatic 

investigation of temporal trends and patterns in possibly huge volumes of security alerts related 

to modern networks with the goal of understanding whether and which existing anomaly 

detection approaches can be applied effectively. Preliminary studies on temporal statistics of the 

alerts can also help the security analyst in identifying the most critical alerts classes and subnets 

in terms of network and host infections. 

Related analytics efforts are applied in the following three main contexts: attribute-based 

alerts correlation; anomaly detection in network traffic; anomaly detection in alerts time series. 

Most alerts analyses mainly rely on correlations based on similarity between alerts 

attributes, such as source and destination addresses, or timestamps [17, 18, 19]. Normalization 

and fusion approaches unify alerts coming from different sources (e.g., IDMEF format [20]). 

Verification heuristics (e.g., [21, 22]) determine whether an attack related to an alert may be 

successful or not. Prioritization algorithms [23] associate a level of risk to each alert also by 

referring to an asset database, where an interesting solution is proposed in [24]. Root cause 

analysis [25] has the purpose of reducing future alerts by identifying and removing the 

fundamental causes of alerts. Multi-step attack detection and reconstruction (e.g., [13, 26, 27, 28]) 

aim at identifying relations between alerts that might be part of the same attack. Most of these 

correlation approaches work well in stable environments or when a-priori knowledge about 

possible attacks and alerts statistics is available. The huge number of alerts, the dynamism and 

complexity of modern networked systems limit the effectiveness of some approaches when 

applied to real environments. 

In this context, anomaly detection approaches [4] can be useful for highlighting the most 

relevant alerts and state-changes to the security analyst (e.g., possibly corresponding to incidents 

or infection propagations). The purpose of our framework is to automatically conduct 
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preliminary temporal investigations of the alerts with the goal of understanding whether and 

which anomaly detection approaches can be applied effectively on different alerts groups. In [29], 

the authors propose an original solution for post-correlation of meta-alerts that differs from our 

paper that focuses on preliminary alerts investigation for anomaly detection purposes. An alerts 

correlation approach that is more related to our studies since it considers time series analysis for 

detecting novel attacks without assuming any a-priori knowledge about attack scenarios is 

presented in [13]. Besides the different goals (multi-step attack detection vs preliminary analyses 

for anomaly detection), their proposal does not take into account the dynamism intrinsic in 

modern network environments and their results refer to outdated DARPA datasets [14], while 

our evaluation is done on real and recent alerts referring to a large network observed for several 

months. 

We observe that we do not consider anomaly detection as a replacement for existing 

alerts correlation strategies, but rather as a complementary approach to help the security analyst 

in the management of huge volumes of alerts in modern network environments. Indeed, the 

preprocessing phase of our framework takes into account the application of existing alerts 

correlation approaches, for example for unifying alerts coming from different sensors. 

Most studies related to anomaly detection [4] that adopt time series analysis [30] do not 

consider security alerts and mainly focus on traffic and netflows information [9, 10, 11] typically 

for identifying Distributed Denial of Service attacks [12, 31] and worm propagations [32, 33]. 

Our work differs from these studies because of the goal and the considered datasets. We are 

interested in preliminary analyses for understanding the applicability of existing anomaly 

detection approaches, whereas most literature proposes anomaly detection algorithms where 

applicability is not really considered or it depends on the nature of the underlying data. Moreover, 

we consider security alerts instead of network traffic behavior. An advantage of our approach is 

that each alert is related to a signature corresponding to some malicious activity (e.g., 

trojan-activity, botnet, scan), while traffic anomalies are more difficult to interpret in highly 

dynamic contexts. For these reasons, our work is more related to the research of Viinikka et al. 

that in different papers [5, 15, 165] study anomaly detection of huge volumes of alerts. They are 

mainly interested in low priority alerts series related to normal system activity (e.g., SNMP and 

ICMP messages) because some of these signatures generate huge volumes of possibly 

non-relevant alerts. As these rules are often deactivated or neglected by security analysts, the 

authors propose different regression-based anomaly detection algorithms for alerts series. Unlike 

these studies, we do not consider only low priority alerts characterized by strong periodic and 

trend components, and we do not assume just individual signatures but also different 

aggregations of alerts. Moreover, our framework identifies which anomaly detection algorithms 

can be effective on different groups of security alerts; on the other hand, they propose 

regression-based algorithms that are effective only when applied to series exhibiting strong 

temporal dependence. 

3. Framework overview 
The framework proposed in this paper automatically investigates temporal trends and 

patterns of security alerts to extract relevant descriptive statistics that are analyzed to understand 

effectiveness of popular anomaly detection approaches in the observed environment. Moreover, 

the proposed framework is also useful for acquiring information about the security status of the 

observed system for example by identifying the most active classes/signatures of alerts, and the 

most critical subnets in terms of infection. 
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Figure 1 reports the main phases of the proposed framework that are identified by white 

squared boxes: 

1. preprocessing and partitioning; 

2. time-based separation; 

3. extraction of descriptive statistics; 

4. analysis of descriptive statistics; 

5. identification of possible re-aggregations. 

The circles represent inputs and outputs of the different phases. The initial input is a 

dataset of security alerts collected by one or more network sensors, and the final output is a set of 

guidelines for the choice of popular anomaly detection approaches [4] that can be effective on 

different alerts groups. 

The gray boxes in Figure 1 represent input parameters that must be chosen by the 

security analyst. The choice of the input parameters allows to adapt the framework to different 

contexts and purposes of the analysis. The context determines the amount of alerts available (e.g., 

one year), the topology of the observed network (e.g., the presence or not of subnets), the 

number of hosts and the network activity, because higher number of hosts and network activity 

may correspond to higher number of alerts [5]. The purpose of the analysis depends on the 

objectives of the security analyst. For example, if he is interested in understanding the 

applicability of anomaly detection approaches with a responsiveness equal to a hour or a minute, 

then he must set the time granularity for the analysis accordingly. Moreover, he might be 

interested in separately monitoring specific subnets or aggregations of internal hosts. Details for 

the choice of the input parameters are discussed in the following sections. 

The first phase of the framework (Figure 1) handles the preprocessing and initial 

separation of the security alerts into groups. The choice of the groups depends on the topology of 

the network (e.g., subnets), and on the purposes of the security analyst (e.g., monitoring specific 

subnets or alerts classes). If the alerts are generated from different network sensors, the security 

analyst can remove duplicate alerts by combining them through IDMEF [17, 20]. The first phase 

is discussed in Section 4. 

In the second phase, for each alerts group, the framework computes a time series and 

partitions it on the basis of temporal aggregations (e.g., daytime vs night). This further 

partitioning is useful to isolate different temporal behaviors (e.g., businessdays vs holidays). If 

the security analyst has some domain knowledge suggesting possible temporal aggregations for 

this phase, he can specify them from the beginning. Otherwise, the fifth phase suggests possible 

re-aggregations by analyzing the descriptive statistics extracted in the third phase. More details 

on the second phase are discussed in Section 5. 

In the third phase, the framework extracts relevant descriptive statistics related to the 

distribution and temporal dependence of each alerts series. The distribution can be represented 

through central tendency (e.g., mean, median) and dispersion (e.g., variance, interquartile range, 

coefficient of variation) of the data. Moreover, this phase also evaluates the stability of alerts 

distribution statistics over time, as it influences applicability of many anomaly detection 

approaches [4]. A series exhibits temporal dependence if it has any trend, periodic or seasonal 

components, or if it may be predicted. Hence, the temporal dependence can be represented 

through the predictability and/or the periodicity of a series. More details on the third phase are 

discussed in Section 6. 

The fourth phase (Sections 7 and 8) analyzes the extracted descriptive statistics to infer 

the applicability and effectiveness of popular anomaly detection algorithms. For example, 
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regression-based anomaly detection (e.g., [16]) could be applied only if the series is predictable 

[4, 30]. 

The fifth phase (Section 9) aims to automatically suggest to the security analyst possible 

re-aggregations of the alerts groups and series that might be more effective for anomaly detection 

purposes. For example, if the number of alerts is dependent on business hours, then it would be 

more convenient to extract different descriptive statistics for its distribution (e.g., daytime vs 

night). This phase might be useful also as a basis to determine time-dependent anomaly detection 

thresholds. 

The upcoming sections present the details of each phase along with examples referring to 

real-world alerts generated over five months by a network analyzer situated at the edge of a large 

academic network. 

4. Preprocessing and partitioning 
The first phase of the framework handles preprocessing and partitioning of the security 

alerts. The accepted input may be represented by any type of security dataset, such as raw alerts 

generated by one or more network sensors, hyper-alerts or meta-alerts resulting from some 

heuristics for alerts correlation (e.g., [17, 25]) or multi-step attack detection (e.g., [13, 26, 27, 

28]). Without loss of generality, as in related literature (e.g., [5]), we focus on raw alerts because 

they facilitate the identification of temporal patterns that are important for anomaly detection. 

The preprocessing step of the framework offers to the security analyst the possibility of 

applying normalization and fusion algorithms (e.g., [17]) that are required to obtain a unique set 

of non-duplicated alerts with standardized attributes, such as the IDMEF format [20]. 

The partitioning step separates the security alerts into groups that can be specified by the 

security analyst through the initial aggregations parameter denoted as φ in Figure 1. The choice 

of these groups depends on the objectives of the security analyst. On the basis of our experience, 

we suggest to consider at least the following criteria: 

a) alerts origin, that is, the source address of an alert; 

b) alerts type, that can refer to common classifications [34] or hyper-alerts [13, 17, 27]. 

The aggregation criterion based on the alerts origin separates the internal alerts that are 

generated from packets issued from internal hosts, and the external alerts referring to packets 

coming from outside the observed network. The motivation for this aggregation should be clear. 

Internal alerts tend to exhibit temporal behaviors that depend on business hours and users 

behavior [35], whereas external alerts tend to be more variable and noisy. Finer grained 

aggregations of the internal alerts can be considered on the basis of the topology of the observed 

network and the purposes of the analysis. For example, the security analyst can be interested in 

considering separately groups of hosts subject to different network and firewall policies, such as 

different subnets/departments or wired/wifi hosts. 

The second aggregation criterion based on the alerts type is motivated by the observation 

that different types of attacks or security events tend to exhibit different behaviors. As a 

consequence, considering all the alerts in one group would prevent any efficacious anomaly 

detection [5]. For example, in the common case of one class generating a huge number of alerts, 

the contributions of the other classes would be masked. 

The expected output of the first phase of the framework is represented by a set of N alert 

groups, namely 
Ni

AAAA ,...,,...,,
21

 in Figure 1. 

Let us now consider an example by referring to an alerts dataset generated by a sensor 

situated at the edge of a large academic network over five months. For the initial partitioning 
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with respect to the alerts origin and type, we separate the alerts according to the previously 

defined criteria: 

a) wired, wifi, external; 

b) classes of alerts taken by [34]. 

In particular, we are interested in inspecting wired and wifi alerts separately because most 

PC clients of internal personnel and all servers have wired connections, while most laptops and 

all smartphones of internal personnel and guests leverage wireless connections. Moreover, as in 

most networks, the wifi devices are subject to policies that limit their accesses only to Web and 

mail applications. For these reasons, we expect different temporal behaviors for the alerts 

generated from wired and wifi hosts. 

The separation of the alerts by type is also relevant to determine the numerosity of each 

subset. In Table 1 we report the percentage of alerts related to the different classes, with respect 

to the total number of alerts generated in the observed period. (The classes contributing less than 

1% are omitted.) We can observe that more than 80% of the alerts are related to the 

trojan-activity class. This result is credible because in the observed academic environment the 

network administrators do not have direct control on most of the host devices. The proposed 

framework can be applied to all alerts groups independently of their numerosity. However 

automatic analysis is more useful for investigating groups generating huge numbers of alerts, 

hence in the examples of the next phases we focus on the three most active groups: trojan wired, 

trojan wifi, trojan external. 

5. Time-based separation 

The second phase takes as input the alerts groups Ai, {1, 2, ..., }i N  and consists of 

three main operations that are preliminary for the extraction of descriptive statistics: time series 

computation, marking series as active/inactive, and time-based partitioning. 

For each alerts group Ai, an alerts time series tsi is computed on the basis of two input 

parameters: 

• time window w determining the amount of data to be analyzed (e.g., one month, 

one year); 

• time granularity g denoting the temporal unit on which the alerts numerosity 

should be evaluated (e.g., time series of alerts per day, per hour, or per minute). 

These input parameters must be specified by the security analyst, and depend on the 

context (e.g., amount of available data, level of activity of the observed system) and the 

objectives of the analysis. For example, if the goal is to find anomalous days or high-level trends 

in the alerts, then the time granularity g could be set equal to a day (so that tsi contains the 

number of alerts per day), and the time window w equal to six or more months. On the other 

hand, if the goal is to investigate whether there is a different alerts distribution between daytime 

and night, the time granularity g can be equal to a hour or less, and the time window w should be 

equal to one or more months. In the context of security alerts, excessively fine granularities (e.g., 

seconds) should be avoided because they cause a lot of noise in the data and prevent the 

identification of relevant temporal characteristics, such as trends and periodicity [5, 15, 16]. 

Then, the framework evaluates if each series tsi is active or not in the time window w. 

The purpose of this step is to discard inactive series from further analyses. As a criterion for 

checking the level of activity of a series, we consider a series active if it has generated at least 

one alert 50% of the time, that is, 0>)(
i

tsmedian . Other criteria and thresholds for filtering 

inactive series could be defined depending on the analysis objectives and on the average level of 
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activity of the observed network. To investigate series marked as inactive, we could consider a 

coarser time granularity g, or a smaller time window w. 

After the computation of tsi, and if the series is marked as active, then a further 

partitioning is performed on the basis of the input parameter temporal aggregations δi, that is 

defined as a set of temporal groups (e.g., δi={daytime, night}). On the basis of this parameter, the 

time series tsi is partitioned in M sub-series 
ij

ts , {1, 2, ..., }j M . This further partitioning is 

useful to isolate possibly different temporal behaviors. If the security analyst has some domain 

knowledge suggesting possible temporal aggregations for this phase, he can specify δi from the 

beginning. On the other hand, if the security analyst does not have any expectation from the 

temporal behavior of the alerts, he can specify a fine-grained value of δi that is equal for all alerts 

groups Ai (e.g., that separates the different hourly time-slots of the day). This is motivated by the 

fact that the fifth phase (Section 9) automatically suggests possible coarser temporal 

re-aggregations by analyzing the descriptive statistics extracted in the third phase. 

The output of this second phase of the framework is a set of M sub-series 
ij

ts , along with 

the complete series tsi, that is, M + 1 time series for each alerts group Ai. 

We now present an application of the second phase by referring to the same alerts dataset 

presented in the previous section, and by focusing on the three most active alerts groups: trojan 

wired, trojan wifi, and trojan external. We consider a time window w equal to five months and a 

time granularity g equal to one hour. This granularity allows us to study the temporal behavior of 

the alerts in different time-slots (e.g., comparing daytime vs night), and it offers a good trade-off 

between noise and trends [16]. The time series per hour referring to the trojan wired, trojan wifi 

and trojan external alerts are reported in Figures 2. The X-axis represents the hours, whereas the 

Y-axis reports the number of alerts. In all figures, the Y-axis ranges from 0 to 800 alerts per hour. 

Since all these three series have median values above zero, they are marked as active. From 

Figures 2 we can observe that the trojan wifi series is the most active. The trojan wired series is 

characterized by frequent spikes, whereas the trojan external series presents weaker activity. 

After computing the series tsi, we have to specify the input parameter δi that defines the 

temporal aggregations on which the descriptive statistics will be extracted. In the examples of the 

upcoming phases, we will consider two values of δi. On the basis of our domain knowledge, and 

in order to analyze how the distribution varies depending on the time of the day, and on the day 

of the week, we first consider 1

i
  = {businessdays (daytime), businessdays (night), holidays 

(daytime), holidays (night)}. This aggregation consists of M = 4 sub-series 
ij

ts  for each alerts 

group Ai. 

As an example for automatic temporal re-aggregations, in Section 9 we consider also a 

finer grained aggregation 2

i
  in which tsi is separated into businessdays and holidays, and then 

in the 24 time-slots of the day (from 12am to 11pm). This aggregation is useful for studying the 

similarity of alerts distribution in different time-slots. 

In the third phase, the series tsi and 
ij

ts  are used as a basis for the extraction of 

descriptive statistics for understanding the applicability of anomaly detection approaches on the 

alerts groups Ai. 

6. Extraction of descriptive statistics 
The third phase extracts the descriptive statistics useful for understanding the 

applicability and effectiveness of anomaly detection approaches [4, 36], and for evaluating 

whether filtering is required [30]. To these purposes, for each alerts group Ai the third phase 

Page 8 of 26



takes as input the time series tsi and the M sub-series 
ij

ts  computed in the second phase of the 

framework. From them, this phase extracts three relevant sets of descriptive statistics, related to 

distribution (Section 6.1), temporal dependence (Section 6.2), and stability (Section 6.3). 

6.1. Distribution 

There are two main properties for characterizing a distribution [37]: central tendency and 

dispersion. In the considered context that is highly dynamic, we consider the following statistics 

that are robust to outliers and that can be visually represented through boxplots: 

• median (m) for representing the central tendency of the data; 

• interquartile range (iqr) for representing dispersion around the central tendency. 

To represent the impact of outliers on data dispersion, we also consider the coefficient of 

variation 
||

=



 , where μ and σ are the mean and standard deviation of a distribution/series, 

respectively. High values of ν (ν >> 0) imply that the series is very dispersed and/or has 

out-of-scale outliers, whereas low values of ν (e.g., ν ≈ 0 ÷ 1) correspond to a more compact 

distribution. 

We present an example by referring to the same alerts dataset of the previous phases, and 

to the most active alerts groups: trojan wired, trojan wifi and trojan external. We consider the 

temporal aggregation 1

i
  defined in Section 5 (that is 1

i
 ={businessdays (daytime), 

businessdays (night), holidays (daytime), holidays (night)}). Figures 3 report side-by-side 

boxplots [37] related to 1

i
 . The X-axis reports the temporal aggregations (e.g., daytime vs 

night), and the Y-axis reports the number of alerts per unit of time (in the example, number of 

alerts per hour). Each boxplot reports the following statistical properties: lower quartile (q1), 

median (m), upper quartile (q3), interquartile range (
13

= qqiqr  ), lower whisker 

( iqrqw
l

 1.5=
1

) and upper whisker ( iqrqw
u

 1.5=
3

). All values above wu or below wl are 

considered outliers. 

In Table 2, we report the values of the coefficient of variation 
ij

v  related to the different 

aggregations in 1

i
 . This statistic is useful for capturing the variability of the data. 

From Figures 3, we can observe that most of the alerts activity is generated by the trojan 

wifi during businessdays (daytime). On the other hand, the trojan wifi activity is lower during 

holidays (daytime), and is almost inactive during night. From Table 2, we can observe that the 

coefficient of variation of the trojan wifi alerts is lower during businessdays (daytime), whereas 

in the other aggregations it is higher than one, thus indicating that the series is more noisy and/or 

presents some out-of-scale outliers. 

The trojan wired alerts present a similar central tendency (m) and dispersion (iqr) of the 

alerts with respect to all four aggregations in Figures 3(a) and 3(d), with a slightly higher activity 

during businessdays (daytime). However, during businessdays there is a high number of outliers, 

both during daytime and during night. These outliers are almost one order of magnitude higher 

than the central tendency, and this is captured by the high values of the coefficient of variation in 

Table 2. 

On the other hand, trojan external alerts are almost equally distributed between daytime 

and night, with a slightly weaker activity during businessdays (daytime), that is probably related 

to attacks coming from different time zones. The dispersion of the trojan external alerts is low, 

and their coefficients of variation are approximately 1.5 in all the temporal aggregations. This 

suggests that the trojan external series is mainly independent of the detection time, and that it 
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could be studied as a single aggregation (i.e., without differentiating between 

businessdays/holidays, daytime/night). This latter conclusion can be automatically achieved by 

the fifth phase of the framework, as we will discuss in Section 9. 

6.2. Temporal dependence 

The descriptive statistics related to the temporal dependence are useful to understand the 

applicability of regression-based anomaly detection [4, 16, 30]. A time series exhibits temporal 

dependence if it has any trend, periodic or seasonal components in the alerts. The trend 

represents a general systematic component that does not repeat within the time range captured by 

the data. For sufficiently long periods, a time series might display periodic or seasonal patterns 

that repeat in systematic intervals over time. 

To extract descriptive statistics about temporal dependence, we consider two popular 

techniques for the analysis of the time series: filtering and autocorrelation [30]. 

Filtering has the objective of reducing the time series noise related to the intrinsic 

dynamism of any modern network environment that affects alerts generation. This noise might 

hide trends and temporal patterns that are useful to model the series for anomaly detection 

purposes. In this phase it is important to consider only simple smoothing filters because more 

advanced filtering techniques (e.g., [38, 39]) could alter the nature of the data. For this reason, 

we adopt a Simple Moving Average (SMA) [30] filter based on a centered window of radius r 

hours. For the sake of clarity, let us define Bt as an alerts time series, where each element bt is the 

number of alerts at time t (e.g., if time granularity g is equal to a day, then bt represents the 

number of alerts of day t). The SMA filtering creates a new series SMA(t) where each value of 

the alerts series bt is replaced by the mean of bt and its 2r neighbors, as it follows: 
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where bt is an element of the alerts time series at time t, and (2r + 1) is the size of the moving 

average window. For example, we suggest to consider a radius r = 1 for analyzing the effect of a 

low impact smoothing, and a radius r = 5 for a more aggressive filtering. 

We also remark that before applying the smoothing filter, it is important to interpolate the 

values of the most relevant out-of-scale outliers because they could corrupt the autocorrelation 

analysis and might hide trends or periodicities [30]. For example, outliers above the 99th quantile 

could be replaced with values corresponding to the upper whisker (wu) or the upper quartile (q3) 

of the distribution. 

After filtering, the framework computes the autocorrelation function (ACF) [30] that is 

defined as: 
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where τ is the lag of the autocorrelation, Bt is the alerts time series per hour, E is the expected 

value operator, μ and σ
2
 are the mean and variance of Bt, respectively. A high value and a slow 

decay of the autocorrelation suggest that future values are related to past values. The opposite is 

true when the autocorrelation between two values tends to zero. A time series is considered 

predictable with an adequate accuracy for a prediction window k if its autocorrelation function 

| ( ) | 0.3ACF k   [30]. Hence, if this last condition is satisfied, regression-based anomaly 

detection algorithms could be applied effectively. 

Page 10 of 26



Unlike the descriptive statistics about the distribution, the temporal dependence statistics 

are extracted only from the whole series tsi because the autocorrelation function requires 

temporal continuity of the data for identifying predictability, trends and periodicity. 

In particular, with respect to the temporal dependence we extract the following 

descriptive statistics: 

• the number of lags ki as the number of predictable values; 

• the dominant period Ti of the time series tsi (if any). 

We observe that there might be more than one period (e.g., 24-hour and 7-day 

periodicity), but also no periodicity at all (in which case, we consider Ti = 0). Moreover, we 

remark that each of these statistics is extracted with and without the application of smoothing 

filters to the alerts series tsi. This means that if we consider three configurations (e.g., no SMA 

filtering, weak SMA filtering, strong SMA filtering), then there will be three pair of values (ki, 

Ti). 

We present an application for the extraction of the descriptive statistics about temporal 

dependence by referring to the same alerts and aggregations considered in the previous sections. 

In Figures 4 we report the ACFs computed for the trojan wired, trojan wifi and trojan external 

series tsi. The X-axis represents the lag τ in hours, and the Y-axis represents the values of the 

ACF. The vertical dashed lines denote 24-hour shifts. The horizontal dashed line at 0.3 

corresponds to the threshold for determining if a series is predictable or not [30]. Each figure 

reports the results related to three configurations in order to evaluate whether the conclusions are 

affected by the choice of the filter: no filtering, SMA filter with radius r = 1 and r = 5, 

respectively. 

In Figure 4(a), the trojan wired alerts exhibit a weak 24-hour periodicity, that is slightly 

enhanced by the SMA filtering, but remains below the 0.3 threshold (hence, the period Ti is equal 

to zero). The filtering slightly improves the prediction lag ki, especially for r = 5, but the series 

remains weakly correlated. On the other hand, in Figure 4(b) the trojan wifi alerts exhibit a 

strong 24-hour periodicity, that is evident even without applying the smoothing filters. This 

means that at each hour the highest probability of finding the same value is every 24 hours ahead. 

The ACF of the trojan external series (Figure 4(c)) exhibits a trend component that is enhanced 

by the smoothing filter, reaching values of prediction lag ki higher than 24 hours for r = 5. 

6.3. Stability of descriptive statistics 

We now propose a method for evaluating the stability of the descriptive statistics related 

to the alerts distribution, because this information can lead to different conclusions for the 

applicability of anomaly detection approaches (Section 7). 

In order to study the stability of the descriptive statistics of the distribution for each series 

ij
ts , we consider the median 

ij
m  and the interquartile range 

ij
iqr . In the second phase of the 

framework, we have defined w as the time window of the dataset to be analyzed (e.g., one year). 

In this step, we want to verify how the distribution statistics have evolved during the time 

window w. To this purpose, we consider two additional parameters: a sliding window of size s 

(e.g., one month) and a time-shift Δ (e.g., one week), where Δ < s < w. By changing these 

parameters, the security analyst can evaluate the stability of descriptive statistics over different 

time periods. This information is also useful to determine how frequently anomaly detection 

parameters should be re-estimated. The framework computes the values of inter-quartile range 

ij
iqr  and median 

ij
m  starting from time interval t0 = [0, s], then ],[=

1
 st , then 
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]2,[2=
2

 st , and so on until the time window w is covered. The result of this process is a 

history of the descriptive statistics 
ij

iqr  and 
ij

m . 

An example is reported in Figures 5 that show the evolution of the descriptive statistics 

with respect to the alerts dataset considered in the previous sections. The X-axis represents the 

time-shifts Δ, and the Y-axis represents the values of 
ij

iqr  and 
ij

m  in terms of number of alerts 

per hour. In this example, we consider a time window w equal to five months, a sliding window s 

equal to one month, and a time-shift Δ equal to one week. For example, for X=0 we have the 

values of 
ij

m  and 
ij

iqr  computed on the first month. For X=1, we have the values of 
ij

m  and 

ij
iqr  computed one week ahead, and so on. This allows us to estimate how the descriptive 

statistics have evolved on a weekly basis. 

From Figures 5, we can observe that the trojan wired (daytime) statistics have been 

unstable in the initial period, but have then stabilized. On the other hand, the trojan wifi alerts 

always exhibit almost null activity during night, whereas during daytime the activity increases 

significantly. The trojan external alerts statistics are rather stable for the whole period of 

observation. 

We propose a formal criterion for automatically verifying if the descriptive statistics 

related to the alerts distribution are stable or not. Let us define d as a descriptive statistic (e.g., 

iqr), and dt as the value of the descriptive statistic d at time-shift t (e.g., 
ij

iqr  at time-shift 5·Δ). 

In order to evaluate the stability of d, we refer to a popular measure of dispersion: the median 

absolute deviation (MAD) [40, 41], defined as the median of the absolute deviations from the 

median. In particular, for each descriptive statistic d, we compute a stability index βd that is 

defined as: 
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where the numerator represents the MAD, and the denominator }),...,,({=)(
110 T

dddmediandm  

is a normalization factor required to compare descriptive statistics of different scales. Low values 

of βd (near zero) indicate that the descriptive statistic d has been stable in the observed period, 

whereas the opposite is true for higher values of βd. In particular, the distribution of a time series 

ij
ts  is stable in central tendency and dispersion if the following relation is satisfied: 

   },{0
ij

iqr
ij

m
max  (4) 

where τ is a stability threshold that can be adjusted by the security analyst according to the 

characteristics of dynamism of the observed network environment. In our context, we have 

heuristically verified that τ = 0.2 is an adequate threshold for automatically discriminating stable 

and unstable descriptive statistics. In Eq. 4, we consider the maximum between the two stability 

indexes related to 
ij

m  and 
ij

iqr , because large variations of just one descriptive statistics are 

enough to consider the distribution unstable. The stability indexes related to Figures 5 are 

reported in Table 3, where values higher than τ are reported in bold. Our framework identifies 

the distributions related to the wired (daytime) and wifi (daytime) as unstable, whereas the 

indexes of the other four distributions are lower than the threshold. 

7. Analysis of descriptive statistics 
The fourth phase analyzes the descriptive statistics extracted from the third phase with 

the purpose of evaluating the applicability and effectiveness of existing anomaly detection 

approaches on the observed alerts series. In this paper, we consider the three most popular 
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families of anomaly detection algorithms [4]: threshold-based (Section 7.1), regression-based 

(Section 7.2), and distribution-based (Section 7.3). We first introduce the applicability criteria for 

each of these anomaly detection families, and in Section 7.4 we present a flow-chart for the 

decision process of the fourth phase, that shows how by analyzing the descriptive statistics the 

framework is able to suggest the most effective anomaly detection family for each alerts series. 

7.1. Threshold-based anomaly detection 

Threshold-based algorithms detect anomalies whenever a time series overcomes a certain 

threshold [4]. If we consider the descriptive statistics related to a series 
ij

ts , a threshold-based 

approach would be effective for identifying outliers in the data when the distribution of 
ij

ts  has 

a low dispersion. In particular, we consider a 
ij

ts  dataset compact if its interquartile range is 

lower than the median, that is, 
ijij

miqr <<  [37]. This criterion can be expressed as the following 

ratio: 

 1<

ij

ij

m

iqr
 (5) 

This ratio is analogous to the definition of coefficient of variation ν, but it is based on 

interquartile range instead of standard deviation, and median instead of mean. 

If the distribution of 
ij

ts  is compact, and the coefficient of variation 0
ij

 , it implies 

that a threshold based on the first two moments of the distribution (i.e., mean and variance) 

would be effective for detecting anomalies. On the other hand, if the distribution is compact and 

0>>
ij

 , then the distribution presents some out-of-scale outliers. In this case, threshold-based 

algorithms require more robust statistics for finding anomalies, such as boxplot statistics or 

higher order moments [37]. 

Let us now consider the case in which the distribution is not compact (i.e., 
ijij

miqr >> ). 

In such a case, threshold-based approaches are unlikely to work well, since the high data 

dispersion and noise may lead to the detection of an excessively high number of anomalies, 

possibly corresponding to non-relevant events. In order to understand if a threshold might work 

well in case of high dispersion, it is necessary to evaluate the stability of the descriptive statistics 

related to the distribution (see Section 6.3). We have two possibilities: 

• if 
ij

iqr  and 
ij

m  are stable over time, then threshold-based approaches have 

some chances of working well on the observed data, even if data have high variance. 

• if 
ij

iqr  and/or 
ij

m  have frequent changes, then threshold-based approaches will 

probably lead to the detection of an excessively high number of anomalies possibly 

corresponding to false positives. 

If the descriptive statistics are unstable but follow some trend (e.g., if median and 

dispersion tend to grow), a possible solution would be to consider dynamic thresholds [42] that 

evolve over time. As a further observation, we consider that if an alerts group Ai exhibits a 

different distribution between daytime and night, then we suggest to define multiple thresholds 

for detecting anomalies. The number of thresholds should match the number of temporal 

aggregations defined in δi (see Section 5). Section 9 discusses a methodology for unifying 

similar groups. 

We now consider examples of applicability of threshold-based anomaly detection 

approaches by referring to the alerts dataset considered in the previous sections. In the 

distributions of trojan wired, trojan wifi and trojan external we have that 
ijij

miqr >  is always 
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true. In most cases we have that 21 

ij

ij

m

iqr
. This implies that the alerts distribution is not 

compact in any of the classes. Hence, threshold-based approaches have little chances of working 

well. However, in order to estimate the possibility of applying threshold-based approaches on 

such alerts series, we evaluate the stability of the descriptive indexes reported in Figures 5 and 

Table 3. The most stable groups in terms of descriptive statistics are: wired (night), wifi (night), 

external (daytime), external (night). In these groups, threshold-based algorithms based on robust 

statistics (e.g., median and inter-quartile range) could be considered for detecting anomalies. It is 

interesting to observe that in Figure 5(b) the trojan wifi activity has been increasing over time. 

From this information, the security analyst could consider a dynamic threshold that could take 

into account this growing trend. 

7.2. Regression-based anomaly detection 

Regression-based approaches assume that a series can be modeled and predicted through 

some statistical model. Anomalies are detected whenever the value of the prediction residual is 

too high [4, 30]. 

We recall that for each series tsi we have extracted the number of predictable lags ki and 

the period Ti. The first value of the ACF is always equal to one (ACF(1) = 1), hence the 

minimum value of ki is one, even if there is no temporal dependence in the data [30]. By 

analyzing the value of ki, we can understand the applicability of regression-based models for 

anomaly detection: 

• if the ACF decays slowly (ki >  > 1), then the series presents a strong trend 

component, and even simple regression algorithms can work well for detecting 

anomalies; 

• if the ACF decays rapidly (ki is small but higher than 1), then more complex 

regression algorithms should be considered for modeling the temporal dependence 

appropriately; 

• if the ACF decays too rapidly (ki ≈ 1), then the temporal dependence of the data is 

very weak, and regression-based algorithm could be applied for anomaly detection only if 

the series exhibit a strong periodicity Ti [30]. 

Examples of simple regression algorithms [30] include LR [43] (Linear Regression), 

OLS (Ordinary Least Squares), MA (Moving Average), WMA (Weighted MA), EWMA [15, 44] 

(Exponential WMA), and AR model [16] (AutoRegressive model). Examples of complex 

regression algorithms [4] that aim to model more sophisticated relationships between 

observations are represented by ARMA (AR Moving Average), ARIMA [30] (Integrated 

ARMA), robust regression [45], and others based on Kalman filter [5] or spline interpolation 

[38]. 

Let us consider the case in which ki ≈ 1 and Ti = 0, that is, the series does not exhibit any 

temporal dependence. This result may be caused by the presence of a strong noise component 

that is not eliminated by the SMA filter applied automatically in our framework. In this case, 

more sophisticated and ad-hoc filters may be able to reduce noise and reveal some possible 

temporal dependence in the data that could be modeled for regression-based anomaly detection. 

In particular, for each sub-series 
ij

ts , if 
ijij

miqr >>  and/or 0>>
ij

 , it implies that data is 

highly dispersed, and strong filtering (possibly including removal of out-of-scale outliers) should 

be considered for revealing possible temporal dependence. However, the security analyst must be 

aware that strong filters may alter the nature of the data. 
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We now consider the applicability of regression-based anomaly detection approaches by 

referring to Figures 4 that report the autocorrelation results for the trojan wired, trojan wifi and 

trojan external alerts. The small value of ki for the trojan wired alerts shows that regression-based 

approaches would not be effective on this class. On the other hand, the strong 24-hour 

periodicity of the trojan wifi alerts suggests that regression models can be applied, and that there 

is a different behavior between daytime and night. The high dispersion of the trojan wifi alerts 

during daytime (boxplots in Figures 3) suggests that filtering may be useful during daytime hours. 

Finally, the trojan external series exhibits a trend that corresponds to higher values of ki, 

especially when considering the simple smoothing filter with radius r = 5, where ki ≈ 30 hours. 

7.3. Distribution-based anomaly detection 

Distribution-based anomaly detection assumes that data can be modeled through some 

parametric or non-parametric distribution (e.g., Gaussian, Gamma), and that anomalous events 

occur in low-probability areas of the stochastic model or when the distribution changes 

significantly [4]. These algorithms can be useful when data exhibit no temporal dependence and 

regression-based approaches are not applicable. 

A series can be modeled through a distribution if its central tendency and dispersion 

remain stable over time [46]. Hence, if both 
ij

m  and 
ij

iqr  are stable (see Section 6.3), 

distribution-based anomaly detection can be applied effectively. 

Distribution-based algorithms can be parametric or non-parametric. Parametric 

techniques are useful when there is some evidence or knowledge about the underlying 

distribution of the data. For example, if the median 
ij

m  is stable and centered in the 

interquartile range 
ij

iqr , it is possible that data might be modeled through a Gaussian 

distribution [37], although further analyses would be required, such as χ
2
 goodness-of-fit test [30, 

47, 48]. Other popular parametric distributions are Gamma and Long-tail. More complex 

distributions might be even represented or approximated as a mixture of distributions, such as 

MoG [4] (Mixture of Gaussians). 

Non-parametric techniques are useful when there is no a-priori knowledge about the 

underlying data distribution [4]. Popular examples are histogram-based techniques (e.g., [49]) 

and kernel function-based techniques (e.g., parzen window estimation [50]). 

As an additional consideration, we observe that if 
ij

iqr  is unstable but median 
ij

m  is 

stable, CUSUM-like approaches [51, 52] that adopt the median as descriptive statistics could be 

effective for anomaly detection. 

By referring to Figures 5 and Table 3, we can observe that the trojan external (daytime, 

night), trojan wifi (night) and trojan wired (night) alerts could be modeled as a distribution, 

whereas the trojan wifi (daytime) alerts are constantly growing both in mean and in variance, 

thus complicating the modeling of such alerts series through a distribution. It is interesting to 

observe that the trojan wired distribution is unstable only in the first period, and then stabilizes. 

This suggests that distribution-based approaches can be effective on trojan wired after the initial 

period of instability. 

7.4. Flow-chart for the decision process 

In Figure 6, we report a flow-chart that merges the applicability criteria together and that 

suggests the anomaly detection approaches that are most likely to operate on the observed alerts 

by examining the descriptive statistics collected in the previous phases. 

We observe that lower/inner steps of the flow-chart are intended to detect anomalies in 

more complex and noisy series, that require algorithms with either higher computational 
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complexities or that are more difficult to configure in terms of parameters. Hence, the flow-chart 

aims to select the easiest algorithms that are likely to operate for detecting significant anomalies 

on an observed series. 

Let us summarize the decision process by referring to Figure 6. The first step evaluates 

the compactness index: if a series is compact, then threshold-based approaches can be effective 

for detecting relevant anomalies in the series. In this case, the coefficient of variation can be 

useful to determine if more robust statistics are required if the series presents out-of-scale 

outliers. On the other hand, if the series is not compact, but exhibits temporal dependence, then 

regression-based approaches can operate well for detecting anomalies. In particular, we recall 

that if the series exhibits a strong trend component (k >  > 1), then even simple regression-based 

approaches could be effective for detecting anomalies on the observed data. If the series has a 

low prediction lag k but a strong periodicity T, then regression-based approaches could be 

effective as well, although more sophisticated models are required to represent such periodicity. 

Finally, if the data does not exhibit any temporal dependence, the stability of the distribution 

statistics is evaluated: if central tendency and dispersion are stable over time, then 

distribution-based approaches can be adopted. Otherwise, the framework will try to identify 

more feasible spatial and temporal re-aggregations of the alerts (details will be discussed in 

Section 9). 

8. Evaluation of the anomaly detection choice 
We now evaluate the benefits of the proposed framework in determining the most 

feasible family of anomaly detection algorithms for different alerts series. We refer to the 

flow-chart in Figure 6 for determining the most feasible anomaly detection family and to the 

previous alerts datasets. For each family, we consider a popular anomaly detection algorithm and 

evaluate which is the most effective for each series. 

• Simple threshold [4, 37]: an anomaly is detected whenever the alerts series 

overcomes a threshold determined through the boxplot rule; 

• ARIMA [30] (complex regression-based): an anomaly is detected whenever the 

prediction error is too high; 

• Histogram-based [4] (distribution-based): an anomaly is detected through a 

similarity metric (i.e., Bhattacharyya coefficient [53]) between a reference histogram and 

histograms computed in the other days. 

As examples, we apply each of these algorithms to two datasets: trojan alerts in wired and 

wifi traffic. 

8.1. Wired traffic 

We consider a series referring to trojan alerts in wired traffic and the flow-chart in Figure 

6 to determine which is the most convenient family of anomaly detectors applicable to the 

considered series. Since it is highly dispersed, threshold-based approaches are expected to be 

ineffective. As the autocorrelation results show that its prediction lag is low with no periodicity, 

hence even regression-based algorithms are unlikely to work well. On the other hand, the central 

tendency and dispersion of this series become stable (see Figures 5), hence distribution-based 

algorithms are expected to be effective. 

We now evaluate whether the conclusions obtained through the flow-chart are correct. To 

this purpose, in Figures 7 we report the results related to the three considered algorithms: simple 

threshold, ARIMA, and histogram-based. In these figures, the lines represent the same input 

series and the markers on the bottom denote the anomalies signaled by each algorithm. 
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From Figure 7(a) we can easily observe that the simple threshold algorithm is ineffective 

because it generates too many detections corresponding to the frequent spikes that characterize 

the considered series. 

The anomalies detected by the ARIMA [30] algorithm are reported at the bottom of Figure 

7(b). The ARIMA parameters (p = 3, d = 1, q = 2) are determined by applying the Akaike 

Information Criterion [4]. The prediction is performed every 24 hours by considering the filtered 

series with SMA for radius r = 5. The bottom part of this figure evidences that the 

regression-based approach signals many inappropriate anomalies in correspondence of noise. For 

the sake of clarity, we report in Figure 8 an enlargement of the period going from X = 978 to 

X = 1584, where we compare the original alerts series with the predicted series. This figure 

confirms that a regression-based algorithm is unable to model the trend of the trojan wired series 

properly. These poor results are consistent with the low autocorrelation results evidenced by the 

analysis reported in Figure 4(a). 

Finally, we consider the histogram-based algorithm as a representative example of 

distribution-based approaches [4]. We compute a reference histogram of alerts occurrences on 

the whole series, and normalize it between 0 and 1. The result of this process is an histogram that 

models the most frequent occurrences in the series. Then, we consider the Bhattacharyya 

Coefficient (BC) as a similarity measure for comparing this reference histogram with the 

normalized histograms computed on the other days of the trojan wired series. In particular, we 

have BC∈[0,1], where BC = 1 implies perfect similarity, whereas BC = 0 implies that the 

compared distributions have nothing in common [53]. If BC ≤ 0.5, then a day is marked as 

anomalous. The results of the histogram-based approach are reported in Figure 7(c), where 

Figure 9 reports the detailed BC values computed for the different days of the series. It is 

interesting to observe that this algorithm is able to find three main groups of anomalies in 

correspondence of x1 ≈ 600, x2 ≈ 2050 and x3 ≈ 2150. Further inspections on these anomalies 

reveal that they correspond to infection propagations on new hosts. Hence, as suggested by the 

flow-chart, the distribution-based anomaly detection has been able to detect the main points in 

time where hosts got infected, thus confirming that this family of detectors is preferable when the 

series has the considered features. 

8.2. WiFi traffic 

We now apply the flow-chart of Figure 6 to the time series corresponding to trojan alerts 

related to wifi traffic. Given the high dispersion of this series, threshold-based approaches are 

expected to be ineffective. Despite the small prediction lag, this series presents a strong 24-hour 

periodicity (Figure 4(b)). Hence, according to the flow-chart, the most feasible family of 

anomaly detectors should be regression-based. Distribution-based algorithms are expected to be 

ineffective because if we evaluate also the stability index of this series, we have that it is unstable 

as its daytime distribution increases over time (see Section 6.3). Let us confirm these conclusions 

through some experimental analysis. 

Figures 10 report the results corresponding to the simple threshold, ARIMA and 

histogram-based algorithms. The poor results in Figure 10(a) referring to the simple threshold 

algorithm evidence that it signals too many anomalies. Even by considering different threshold 

values, there are two intrinsic problems: this series is characterized by a peak in the middle of 

almost each day, but a threshold signals them as anomalies even if they refer to normal system 

activities; moreover, the distribution of this alerts group tends to increase over time, hence the 

number of anomalies detected by the threshold tend to increase over time as well. 
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Figure 10(c) reports the results related to the histogram-based approach, and Figure 11 

shows the values of the Bhattacharyya Coefficient (BC). We can observe that the 

histogram-based approach is ineffective for modeling the distribution of the trojan wifi series, as 

most BC values are situated around the threshold BC = 0.5. This is related to the fact that during 

night most values of the trojan wifi series are close to zero, while during daytime the distribution 

tends to increase over time. Hence, the distribution-based algorithm is unable to model the 

distribution of the trojan wifi series appropriately, and cannot detect relevant anomalies 

effectively. It is also interesting to observe that the number of signaled anomalies tends to 

increase over time (see Figure 10(c)), because the daytime distribution increases as well. 

As anticipated by the flow-chart, the most effective results are achieved by the second 

class of approaches, here represented by the ARIMA regression-based algorithm, where the 

parameters (p = 6, d = 1 and q = 4) are determined through the Akaike Information Criterion [4]. 

In order to better visualize the results shown in Figure 10(b), we also report in Figure 12 a detail 

of the trojan wifi series, where we compare the filtered series (solid line) with the predicted 

function (dashed line). We can observe that this approach is able to signal only the most relevant 

anomalies of the trojan wifi series, with respect to the predicted behavior in a certain period. 

Hence, in a time frame characterized by higher activity, only the most deviating periods are 

marked as anomalous. 

As a final remark, we can observe that the most effective anomaly detector that better fits 

the characteristics of the trojan wifi series is represented by the regression-based family, as 

established by the flow-chart in Figure 6. 

9. Possible re-aggregations 
This phase of the framework proposes a method for automatically suggesting possible 

re-aggregations δi and φ of the alerts that might provide novel insights when aggregations chosen 

by the security analyst give little chances of effectiveness for anomaly detection algorithms. As 

in related literature [54], this phase should be considered as a facilitator in the identification of 

possible re-aggregations although some manual investigations may still be required. Indeed, 

completely automatic and unsupervised analyses are almost impossible in modern network 

domains [6] that are extremely complex and much more dynamic than other security contexts, 

such as identifying spam in emails [55]. 

We consider re-aggregations based on temporal and spatial features. 

9.1. Temporal re-aggregation 

The temporal re-aggregations may be convenient, for example, if in a group Ai there is a 

strong difference between daytime and night distribution. Otherwise, if the alerts distribution 

does not depend on time, then a unique set of statistics for the series tsi should be considered. 

We recall from Section 4 that the parameter δi is chosen on the basis of the expectations 

and domain knowledge of the security analyst (e.g., businessdays vs holidays, daytime vs night), 

that may not correspond to the actual behavior of the alerts. Hence, this phase could yield a 

better choice of the parameter δi for each alerts group Ai. 

The identification of different classes of temporal behavior is carried out through 

clustering [56] on the descriptive statistics related to alerts distribution. In particular, for each 

alerts group Ai, the framework clusters the descriptive statistics of the M sub-series 
ij

ts  related 

to δi. Then, a cluster separation index ρ (e.g., [57]) is measured to determine if the clusters are 

well-separated: 

• if ρ is low, then δi is properly represented by one group because all aggregations 

have similar distribution. 
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• if ρ is high, then the periodicity Ti is analyzed: 

– if Ti ≠ 0 (e.g., 24-hour, 7-day), the distribution of the alerts in Ai is dependent on 

time, and each cluster represents a possible class for the temporal aggregations δi; 

– if Ti = 0, that is, there is no periodicity, then further analyses are required to 

determine whether δi consists of one or more groups; in this case, some filtering is 

required because noise may be hiding periodicity in tsi. 

This phase automatically suggests possible re-aggregations, but the input parameter δi 

should be modified manually by the security analyst. We recall from Section 5 that if there is no 

expectation on possible temporal aggregations, it is better to initialize δi by considering 

fine-grained aggregations (e.g., separate tsi for each time-slot of the day, from 0 to 23), so that 

the clustering algorithm can be able to identify groups with similar distribution. 

A flow-chart summarizing this phase is presented in Figure 13, where we also observe 

that if temporal re-aggregation gives unclear results, then spatial re-aggregation can be 

considered (Section 9.2). 

It is important to observe that different clustering algorithms and distance metrics could 

be adopted for re-aggregation. As the evaluation of an optimal algorithm for identifying temporal 

aggregations is out of the scope of this paper, in the remainder we show the results referring to 

the K-means algorithm [56]. In Figures 14, we consider as an example the boxplots 

corresponding to the trojan wired, trojan wifi and trojan external alerts groups, and to the 

fine-grained aggregation 2

i
 . (We recall from Section 5 that 2

i
  considers businessdays vs 

holidays, and each time-slot of the day separately.) From Figures 14 it is clear that for the trojan 

wifi alerts there is a strong difference in the alerts distribution between daytime and night, while 

in the trojan wired and trojan external alerts the distribution is similar in different time-slots of 

the day (hence, their distribution could be studied as a single group). While this conclusions may 

be intuitive through a visual representation, the objective of the re-aggregation phase is to 

automatically detect such a difference. We aim to extract this information automatically through 

the K-means algorithm. Determining the optimal number of clusters K for a dataset is a 

well-known issue in literature [58] and is out of the scope of this paper. Since we are interested 

in identifying if the alerts follows at least two different temporal behaviors (e.g., daytime vs 

night), or if their distribution is similar independently of the time, for the K-means algorithm we 

consider a parameter K = 2. In this way, the K-means will separate the hourly time-slots in two 

clusters: if these two clusters are well separated (i.e., if the separation index ρ is high), then there 

are at least two different temporal behaviors in the alerts distribution (e.g., daytime vs night); on 

the other hand, if ρ is low, we can conclude that the distribution of the alerts are similar, and 

could be studied together as a single group. 

As an input for the clustering phase, for each of the alerts groups (e.g., wifi businessdays) 

we consider a two-dimensional feature vector where each feature consists of the pairs ),(
ijij

iqrm  

representing the central tendency and dispersion of each time-slot. At the end of the K-means 

algorithm, each time-slot is assigned to one of the K = 2 clusters. In order to measure the distance 

between the clusters, we refer to a cluster separation index ρ defined as: 

 
)},(),,({

),(
=

10

10

origincdistorigincdistmax

ccdist
  (6) 

where dist is the Euclidean distance operator, c0 and c1 are the centroids of the two clusters, and 

origin is the point corresponding to (0,0). The numerator in Eq. 6 represents the inter-cluster 

distance, whereas the denominator is a normalization factor that makes ρ independent of the 
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scale of the values, so that 2<<0  . Low values of ρ imply that the distribution of the 

clusters is similar, whereas high values of ρ suggest that the two clusters are well separated. A 

similarity threshold   must be set to determine if two clusters are distant or could be unified in 

the same group. In general, we can consider a threshold equal to 0.7
2

2
=  , that is in the 

middle of the interval of ρ. The security analyst could change the threshold in order to adjust its 

sensitivity in identifying clusters with similar distribution. 

In Table 4, we report the results of the K-means applied to the groups considered in 

Figures 14. In Table 4, the time-slots (from 0 to 23) assigned to the first and second clusters are 

denoted by empty cells or an x symbol, respectively. 

From these results, we can observe that by considering a similarity threshold 0.7= , in 

both trojan wired and trojan external groups, we have that ρ < 0.7, thus suggesting that the 

distribution of the alerts in these groups is similar and could be treated as the same. However, it 

is interesting to observe that the K-means is able to detect that in the trojan external during 

businessdays, there is a weaker activity between 9am and 4pm (that is possibly related to attacks 

coming from different time zones). In this example, the smallest value of ρ is represented by the 

trojan external during holidays, that exhibit a similar distribution in all the time-slots. On the 

other hand, the trojan wifi alerts are signaled because they form two separate clusters with 

ρ ≈ 0.95, and a period Ti = 24 that confirms the different behavior of these two groups. In 

particular, during wifi businessdays, the K-means correctly identifies the daytime time-slots 

between 8am and 4pm. 

9.2. Spatial re-aggregation 

The choice of the initial aggregations φ depends on the specific objectives of the security 

analyst, such as monitoring specific subnets and/or classes of alerts. However, if the descriptive 

statistics of a specific alerts group Ai are unstable, and if the temporal re-aggregation is unable to 

determine relevant separations δi, then it is difficult to determine which anomaly detection 

approaches could be effective on Ai. In this case, we suggest to perform a spatial re-aggregation 

where the framework refines the alerts group Ai into finer grained aggregations, such as 

individual hosts. 

Spatial re-aggregation is motivated by the fact that the considered alerts series are the 

result of several contributions related to different hosts and alerts signatures, and depend on 

several endogenous and exogenous factors that may complicate the detection of robust trends 

and patterns useful for anomaly detection. An indicator suggesting the need for spatial 

re-aggregation is represented by the instability of descriptive statistics (see Section 6.3), because 

if the descriptive statistics related to Ai are unstable, then it is difficult that an anomaly detection 

algorithm can be effective on tsi (see Section 7). 

By considering series related to finer aggregations, it could be possible to identify 

whether anomaly detection approaches could work well on novel subgroups. A spatial 

re-aggregation based on individual hosts is the most intuitive, although other choices are possible, 

such as individual alerts signatures. This host-based approach produces a group of series in 

which each element represents the number of alerts generated by each host. By comparing these 

series, it is possible to identify which are the most active hosts, whether some of them exhibit 

robust trends and patterns on which anomaly detection approaches can work, whether novel 

aggregations among similarly behaving hosts may be feasible or convenient. 
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We describe the spatial re-aggregation by considering as example the trojan wired series 

considered in the previous sections. We recall that Figure 5(a) shows that in the former period 

the descriptive statistics of the trojan wired series are unstable, especially in terms of dispersion 

(iqr), and then they are stable in the latter period. We consider a spatial re-aggregation in which 

we separate individual hosts series. As each host may generate a small number of alerts, it is 

convenient to adopt a time granularity g equal to a day. In Figures 15 we report the host-based 

alerts series corresponding to the four most active hosts in this aggregation. In each plot, the 

X-axis reports time in terms of days, and the Y-axis represents the number of alerts related to 

each host. The figures are aligned vertically and share the same X-axis for a better comparison. 

Host 1 is the first generating alerts, followed by hosts 2, 3 and 4, respectively. This order is 

important because further inspections revealed that most alerts are due to a malware (specifically, 

a fake antivirus software) that propagated from host 1 to hosts 2, 3 and then 4. 

From Figures 15, we can observe that hosts 1 and 3 present a continuous and relatively 

stable generation of alerts, and they are uniformly active during the different time-slots of the 

day. This might be motivated by the fact that wired clients may be left on 24/7, even during night 

hours. On the other hand, hosts 2 and 4 exhibit a more sporadic activity, that is probably due to 

the fact that they are often turned on/off. From an anomaly detection perspective, the most stable 

results of hosts 1 and 3 indicate that threshold- and distribution-based anomaly detection could 

be effective on these two hosts, whereas the temporal behavior of hosts 2 and 4 is too noisy and 

should be studied separately. 

This example also evidences an issue that must be addressed if we want to reach an even 

better effectiveness in the extraction of relevant descriptive statistics for anomaly detection: if we 

refer to clients and not to 24/7 active servers, we should consider that some hosts may be turned 

off (e.g., host 2 and host 4), and hence they might not show any alerts activity even for long 

periods. Hence, further margins of improvement exist for fully automatic data analyses. 

10. Conclusions 
Modern network environments are extremely dynamic and complex, hence preliminary 

studies based on exploratory data analysis and descriptive modeling are needed to understand 

which (semi-)automatic algorithms can highlight relevant security events. We propose the first 

framework for the investigation of temporal trends and patterns of security alerts related to large 

networks with the purpose of identifying whether and which anomaly detection approaches can 

be effective on different alerts groups. We present several applications of the proposed 

framework by referring to real alerts collected from a large network environment over several 

months. The results show that, although the alerts exhibit different behaviors and statistics, the 

framework is able to evaluate the effectiveness of the most popular anomaly detection 

approaches even in dynamic contexts influenced by many endogenous and exogenous factors 

that determine high variations in the number and nature of security alerts. As a future research, 

we are considering the integration of studies on cross-correlation and causality of alerts series, 

and solutions for online tuning and estimation of parameters for anomaly and system state 

change detection. 
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Figure 1: Framework overview. 

Figure 2: Time series per hour of the trojan wired, trojan wifi and trojan external alerts. 

Figure 3: Boxplots related to the descriptive statistics for alerts distribution (aggregation 1

i
 ). 

Figure 4: Temporal dependence for trojan-activity wired, wifi and external alerts. 
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Figure 5: Stability of descriptive statistics. 

Figure 6: Flow-chart for the choice of the anomaly detection family. 

Figure 7: Results of different anomaly detection algorithms on trojan wired. 

Figure 8: Detail of regression results (trojan wired). 

Figure 9: Values of the Bhattacharyya coefficients (trojan wired). 

Figure 10: Results of different anomaly detection algorithms on trojan wifi. 

Figure 11: Values of the Bhattacharyya coefficients (trojan wifi). 

Figure 12: Detail of regression results (trojan wifi). 

Figure 13: Flow-chart for determining possible re-aggregations. 

Figure 14: Boxplots related to the descriptive statistics for alerts distribution (aggregation 2

i
 ). 

Figure 15: Example of spatial re-aggregation. 

 

Table 1: Percentage of alerts in the most active classes. 

Alerts class [34] Percentage 

trojan-activity 83.98% 

successful-recon-limited 4.67% 

misc-activity 3.04% 

bad-unknown 2.96% 

attempted-admin 2.48% 

misc-attack 2.04% 

 

Table 2: Statistics on coefficient of variation (aggregation 1

i
 ). 

Aggregation Coeff. of variation (
ij

 ) 

wired wifi ext 

businessdays daytime 9.06 1.11 1.56 

night 24.01 3.25 1.11 

holidays daytime 2.42 2.77 1.59 

night 1.35 5.07 1.49 

 

Table 3: Values of stability indexes. 

Aggregation Stability indexes 

βm 
iqr

  

wired daytime 0.10 0.27 

night 0.10 0.12 

wifi daytime 0.49 0.31 

night 0.00 0.12 

ext daytime 0.17 0.12 

night 0.12 0.05 
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Table 4: K-means results for suggesting temporal re-aggregations. 

time-slots Clustering labels Ti ρ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

wired bday          x x  x x x x x        0 0.50 

hday    x x                    0 0.43 

wifi bday         x x x x x x x x x        24 0.95 

hday              x x x         24 0.91 

ext bday        x x x x x x x x x         0 0.48 

hday x x x  x x x x      x x x x x x x x    0 0.27 
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