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Experimental Investigation of Shaft Radial Load
Effect on Bearing Fault Signatures Detection

Fabio Immovilli, Member, IEEE, and Marco Cocconcelli

Abstract—This paper investigates the influence of external
radial load applied to the shaft on bearing fault detection based
on vibration or current in induction motors operating under
different conditions. This paper details the results of a laboratory
trial comprising different test sets on the condition monitoring
and fault diagnostic of a 6-poles induction motor using a design of
experiment (DOE) approach. The dedicated test setup comprises
a custom-made fixture that allows to dynamically vary the radial
load applied to the output shaft. The aim is to investigate the
effects of radial load on the fault diagnosis of shaft bearings
and the interactions between other operating parameters such
as output torque. Specific scalar parameters have been proposed
for the condition monitoring of the test motor from vibration and
current data. The correct choice of the significant parameters is
proven by the strong dependency on the damage returned by
DOE results.

Index Terms—Fault diagnosis, Condition monitoring, Induc-
tion motors, Ball bearings, Air gaps, Modulation, Frequency
domain analysis, Harmonic analysis, Current measurement, Vi-
bration measurement

I. NOMENCLATURE

fcar fault characteristic frequency
Fbe stator current fault characteristic frequency
f mains electric supply frequency
Fr rotor mechanical frequency
Fcage cage fault frequency
Fouter outer raceway fault frequency
Finner inner raceway fault frequency
Fball ball fault frequency
Z number of ball bearing’s spheres

II. INTRODUCTION

Electrical and mechanical fault diagnosis in induction ma-
chines is an extensively investigated field for cost and main-
tenance savings, as induction motors operating at mains fre-
quency are still the most widespread rotating electric machines
in industry, mainly because of their low price, ruggedness and
reliability. Many papers can be found in the literature concern-
ing the general condition monitoring of induction machines
[1] - [3]. The distribution of failures within the machine sub-
assemblies is reported in many reliability survey papers [4],
[5]. A rough classification identifies four classes: bearings
faults, stator related faults, rotor related faults, other faults
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(lack of cooling, loose terminal box connection). Bearing
faults are one of the most common failures in electrical
machines especially in the small-medium power sizes [6].
Bearing faults that are not detected in time cause malfunction,
loss of performance, reduced efficiency and may even lead to
failure of the driven machinery, [7], [8].

In many situations diagnostics methods based on the analy-
sis of the vibration signals have proved their effectiveness [9],
[10]. Among the mechanical problems detected by vibration
spectra there are: imbalance, misalignment, loose fitting, bent
shafts, and bearing localized faults. On-line fault detection can
be obtained by vibration analysis, but the diagnosis equipment
is costly and invasive, requiring dedicated equipment and
specific sensors to be installed.

Motor current signature analysis (MCSA) is an alternative
method that relies on the monitoring of electrical quantities,
that are already acquired in the final application, e.g. to imple-
ment the control of an electric drive, thus do not require the
installation of dedicated transducers. Many research activities
were focused on the diagnosis of bearing faults by MCSA
[11] - [13]. In many cases mechanical signals cannot be
directly acquired, e.g. in harsh environments, remote locations,
or because the application is difficult to access. Under such
conditions, electric signal measurements would be preferable
as they are more immune to external disturbances, [14]. Non-
invasive fault diagnosis should ideally detects faults at the
early stage, to allow for scheduled maintenance, minimizing
system downtime. Under this circumstances, fault signature
components feature a very small amplitude that is usually
buried in noise and can lead to false positive detection [15].
The use of suitable signal processing techniques is required to
efficiently extract the fault signatures from raw signals. The
use of current and/or voltage signal constitutes a non-invasive
method to bring information necessary to diagnose a fault in
the system via on-line monitoring of the electric machine [16],
[17].

The present work aims at investigating the effects of radial
load at the shaft end of the machine on the shaft bearings
fault signature detection. This paper details the results of a
laboratory trial comprising different test sets on the condition
monitoring and fault diagnostic of a 6-poles induction motor
using a design of experiment (DOE) approach. In particular,
the paper focuses on the diagnostics of ball bearings support-
ing the drive end shaft of the motor.

Considering realistic installations in the industry, radial
forces at the shaft of the motor can vary remarkably both under
different mounting and operating conditions. Radial forces at
the shaft can be almost zero in case of planetary gearboxes or
centrifugal pump applications; on the other hand they can be
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very high in case of grooved belt transmissions or industrial
vibrators applications. The presence of a relevant radial force
produces a defined high contact pressure area between the
outer case and the revolving elements of the bearing, that can
result in a periodic vibration of the shaft. Results in literature
suggest that this condition can in turn lead to false positive
detection in bearing diagnostics even in case of vibration based
condition monitoring [18].

The effect can be explained by analyzing radial force trans-
mission among the bearing components: the radial load acts on
the shaft that is supported to the stator by the rolling bearings.
In particular the radial load is transmitted from the inner
raceway of the bearing, to the rolling elements, than to the
outer raceway fixed on the stator (see Fig.1 for a description
of the bearing elements). Under working conditions the inner
raceway is rotating at the shaft speed, the rolling elements are
advancing at the cage speed (Eq. 2), while the outer raceway is
fixed. Indeed, only a fraction of the rolling elements supports
the radial load, specifically those which are passing through
the radial load zone. The exact number oscillates between a
minimum and a maximum value, since the rolling elements
are moving and a new element continuously enters the load
zone while another one exits. This causes a fluctuation of the
bearing’s radial stiffness, with a periodicity that has the same
frequency of the outer race characteristic frequency (Eq. 3), a
detailed model was presented in [14].

The paper contribution is to experimentally investigate the
effects and the interactions of a radial load at the shaft end on
the diagnostics of ball bearings by means of both vibration and
current analysis with the motor under test (MUT) operating
under different conditions (load torque).

Multivariable problems can be approached following a
statistical method. The Design of Experiment (DOE) proce-
dure, a powerful statistical technique based on the analysis
of variance (ANOVA), can be conveniently applied to these
classes of problems. The DOE is the branch of science that
deals with designing the correct sequence of experiments to
minimize measurement errors and maximize the evidence of
dependencies between causes and results.

In [19] the foundation of the DOE is defined, suggesting
methodologies like the comparison between results, random-
ization of the test, the statistical replication of the experiment,
the blocking of experimental units into groups, the orthog-
onality and the factorial experiment. The latter is efficient
at evaluating the effects and possible interactions of several
factors on the output. Nowadays several software are available,
helping the user to design a correct layout of the experiment,
with a selected number of independent inputs and resulting
outputs. The inputs to the system are called “factors” and
each of them could have more than one value (usually called
“levels”). The number of factors and the number of levels
determine the complexity of the experimental plan and the
total number of tests to be done.

The paper is organized as follows: section III reviews
the relationship between vibration and current components
presented in literature. Section IV outlines the proposed fault
indexes to be used in the Design of Experiment analysis.
Section V and VI presents the experimental setup and the

factorial design of experiment respectively. Section VII reports
the results for test runs at different working conditions and
bearing damage, followed by conclusion and final remarks.

III. VIBRATIONS AND CURRENTS BASED CONDITION
MONITORING

As previously seen, numerous papers in literature deal with
the detection and diagnosis of electrical and mechanical faults
based on MCSA in induction motors [20], [21]. The link
between vibrations and motor current spectral components is
still under investigation in the scientific community and is
treated in literature according to different approaches.

The first approach links the vibration component to a torque
ripple that produces a speed ripple on the electric machine
[22]. Hence the vibration is seen as a torque component that
generates in the current a chain of components at frequencies
Fbe:

Fbe =| f ± k fcar | (1)

where k is an integer.
According to the second approach, the vibration component

causes a rotor eccentricity [23]. A unifying approach is pre-
sented in [24].

In all cases, vibrations introduce modulation in the stator
currents at frequencies Fbe related to the mechanical frequen-
cies and electrical supply frequency, Eq. (1).

Radial bearings consist of two concentric rings containing
inner and outer races, separated by rolling elements, Fig. 1.
Rolling elements are separated by a cage: a component that
maintains a constant angular pitch between adjacent rolling
elements, preventing contacts.

Fig. 1. Bearing structure and characteristic dimensions.

Localized faults will produce characteristic vibration fre-
quency components. These bearing fault frequencies are a
function of the bearing geometry and the relative speed of the
outer and the inner ring. Characteristic vibration frequencies
can be calculated from the bearing’s physical dimensions, Fig.
1. In particular, considering the outer ring fixed to the frame:

Fcage =
1
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TABLE I
VIBRATION RELATED COMPONENTS IN THE STATOR CURRENT SPECTRUM.

Model based on torque fluctuations
Outer raceway defect f ± k Fouter

Inner raceway defect f ± k Finner

Ball defect f ± k Fball

Cage defect f ± k Fcage

Fball =
Dc

Db
Fr

[
1−

(
Db cosβ

Dc

)2
]

(5)

where Db stands for the ball diameter, Dc for the pitch
diameter, n for the number of rolling elements, β for the ball
contact angle, Fig.1. Table I summarizes the corresponding
vibration related components on the machine current for the
torque fluctuation model.

Considering the torque ripple model, vibration effects on
machine currents are caused by small speed fluctuations of
the rotor. Because of electromechanical filtering effects (due
to the rotor inertia and winding inductance) MCSA is more
sensitive to low frequency phenomena [25].

In summary, it is usually very difficult to retrieve bearing
fault signature components by MCSA. Especially because
when dealing with realistic incipient faults, the fault signature
is buried in noise or is a small fraction of the fundamental
supply current, especially when operating at rated load. In
[25] the torque ripple associated with a realistic (not drilled)
localized fault was experimentally measured on a machine of
similar size: the peak value of the torque ripple was measured
to be 6 mNm, corresponding to a current ripple referred to
the active current amplitude of 0.2–0.5 mA. Such harmonic
components are 3-4 orders of magnitude smaller than the
nominal current of the machine, lying near the accuracy class
of common industrial current transducers. The aim of this
paper is to investigate the influence of the working conditions
of the motor on two scalar indicators used for condition
monitoring of the bearing. In particular the working conditions
comprise the radial load, the torque applied at the motor shaft
and the bearing condition.

In the following paragraphs, the proposed scalar indicators
for two test sets are presented and a factorial design of
experiment is detailed to assess the sensitivity of the indi-
cators. Finally the results obtained on dedicated test bench are
presented and discussed.

IV. SIGNAL PROCESSING AND PROPOSED FAULT INDEXES

Usually vibration and current signals are processed in order
to detect fault signature data: a short outline of the most
common signal processing techniques used for fault detection
is reported hereafter. Statistical scalar indicators are used to
provide a single parameter representative of the health status
of the electro-mechanical system being monitored. Usually
the quantity of interest is the vibration signal and the most
commonly used indicators are the Root Mean Square value
(RMS) of the vibration velocity and the Kurtosis [26]. The

TABLE II
SPECIFICATIONS OF THE BALL BEARING USED IN THE EXPERIMENTS

Inner diameter 25 [mm]
Outer diameter 52 [mm]
Number of spheres 9
Basic static load rating 7800 [N ]
Finner/Fr 5.41
Fouter/Fr 3.585
Fcage/Fr 0.398
Fball/Fr 4.715

RMS value is closely related of the energy lost due to dissipa-
tive phenomena: indicative RMS thresholds are suggested in
[27] and [28].

The Kurtosis can be seen as the deviation from the standard
probability distribution of a real-valued random variable. In
case of a healthy bearing, white noise is expected with
a normal Gaussian distribution. A fault introduces specific
components that depart from the normal distribution, thus in-
creasing Kurtosis value [29]. More refined statistical approach
and feature extraction algorithms are also employed, especially
for fault classification purposes [30].

Frequency domain analysis is the most important technique
used so far in literature [26]. Usually a fault on a moving
element modulates the amplitude of vibration signal with a
frequency which is characteristic of the damage [31], [32].
Envelope analysis can be used to effectively retrieve the
fault signature components, e.g. Hilbert transform via the
analytical signal, which is a generalization of the phasor
concept that allows to conveniently separate the effects of
amplitude modulation and phase modulation.

In the last decade Randall and Antoni [33], [34] proposed
that the vibration signal from a faulty bearing is a second-
order cyclostationary process. Introduced by Gardner [35], a
cyclostationary process can be viewed as multiple interleaved
stationary processes, having statistical properties that vary
cyclically with time. A second-order statistics cyclostationary
process exhibits a cyclic variation of the autocorrelation func-
tion. Instead of a simple spectrum, significant results have been
reached so far [26] by computing the auto-power-spectrum
of the vibration signal. The Wiener-Khinchin theorem states
that the autocorrelation function of a wide-sense-stationary
random process has a spectral decomposition given by the
power spectrum of that process [36].

Because the present paper employs a factorial design of
experiment to investigate the effects of the operating condi-
tions on the fault indicators, statistical scalar fault indicators
are preferred and will be used to assess the response of the
system.

In this paper two scalar fault indexes are proposed for
bearing fault detection. Since the working condition of the
motor is stationary, a frequency domain analysis is used for the
processing of vibration data. In particular the power spectrum
of the vibration signal is computed and bandpass filtered
in a specific frequency band to better highlight the possible
presence of characteristics fault frequencies.

With reference to the characteristics fault frequencies de-
fined in Eqs. 2-5, summarized in Tabs. II and III, the rotational
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TABLE III
EXPECTED FAULT FREQUENCIES OF THE BALL BEARING USED IN THE

EXPERIMENTS

f 50 Hz
Fr 15.9 Hz
Finner 86.2 Hz
Fouter 57.1 Hz
Fcage 6.3 Hz
Fball 75.1 Hz

frequency used in the tests, the chosen bandpass frequency
band is [50 Hz - 80 Hz]. The frequency span is suitable for
both localized defect on the outer race and ball fault damage
in case of artificial brinneling. The maximum amplitude of
the spectrum in that frequency range is the fundamental fault
frequency and is taken as fault index for the vibration analysis.
The use of a frequency band instead of the single fault
frequencies is intended to simplify the computation of the
signature recognition. The selected band is relatively flat and
the presence of any fault signature is clearly identified, as
confirmed by the experiments in Section VII. Figure 2 shows
the post-processing flowchart of the vibration signal.

Fig. 2. Post-processing flowchart of the vibration signal.

The current signal has been filtered by a series of notch
filters in order to the remove the 50 Hz fundamental mains
supply frequency and its higher harmonics over all the fre-
quency range. The Root Mean Square (RMS) value of the
filtered current is taken as fault index for the current analysis.
The RMS is used to take into account the energy of the residual
signal, considering that any damage to the motor requires
additional energy, appearing in the spectrum as sideband
modulations according to Table I. Since the torque ripple due
to the bearing fault impacts is independent of the torque load
on the machine [25], the residual signal was chosen as a
good candidate for a robust scalar fault index. Figure 3 shows
the post-processing flowchart of the current signal. A detailed
description of the experimental setup is provided in the next
section.

Fig. 3. Post-processing flowchart of the current signal.

V. TEST SETUP

The experimental setup, Fig. 4, comprises the electrical
motor under test (MUT) that is installed on a test bench in
order to vary both the radial and the torque load conditions.
The chosen MUT is a three phase induction machine operated
directly connected to the 50 Hz mains grid. The test bench also
houses a brake/dynamometer consisting of a vector controlled
induction machine in order to vary the load torque on the
MUT. Table IV summarizes the nameplate data of the MUT.

TABLE IV
NAMEPLATE DATA OF THE MOTOR UNDER TEST

Nominal Power 1100 [W ]
Number of poles 6
Nominal current 2.8 [A]
Power Factor 0.76
Nominal Torque 11.5 [Nm]
Stator Resistance 5.65 [Ω]

Radial load on the MUT shaft is provided by a specially
designed test fixture, Fig. 5, comprising a pneumatic cylinder
coupled to a manifold with pressure regulator and transducer
to modulate the radial load. The cylinder is connected to a
crosshead carrying an extension shaft that allows to apply a
variable radial force at the motor shaft’s end.

Fig. 4. Test setup overview: (1) MUT; (2) brake/dynamometer; (3) torque
meter; (4) crosshead; (5) pneumatic cylinder; (6) accelerometer position. The
compressed air hose connecting the cylinder to the manifold with pressure
regulator and transducer is not shown.

Fig. 5. Test fixture detail: (1) pneumatic cylinder; (2) crosshead assembly;
(3) slide guides; (4) extension shaft. The compressed air hose connecting the
cylinder to the manifold with pressure regulator and transducer is not shown.

The cylinder is supplied with compressed air at a pressure
up to 6 bar, corresponding to a radial force of up to 1180 N
exerted on the front bearing.

The test bearing is a SKF 6205 deep grove ball bearing,
Tab. II summarizes the characteristic dimensions and fault fre-
quencies supplied by the manufacturer. Table III summarizes
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the characteristic fault frequencies with the MUT operated at
nominal frequency.

Two different damages were artificially made on the bear-
ings, in order to apply DOE to different data test set:

• a single defect on the outer raceway, created by chemical
etching of the bearing outer race, Fig. 6-left.

• a simulated brinelling defect, generated applying a me-
chanical load of 4 tons (40 kN) to the bearing, Fig. 6-
right;

Fig. 6. Micrography of the chemically etched outer race defect (left). Photo
of the hydraulic press employed to impart bearing brinneling damage (right).

The physical quantities monitored are: the radial vibration
of the motor, the stator currents fed to the machine, the radial
force exerted by the pneumatic cylinder and the load torque
at the motor shaft. The vibration of the motor is measured
by means of a mono-axial accelerometer placed on the frame
of the test rig (sensitivity: 10.28 mV/g). The currents are
measured by means of LEM LTSR 6-NP closed loop Hall
current transducers (nominal current: 6 Arms; output voltage:
104,16 mV/A, accuracy: ±0,2%) and the pressure by mean of
a pressure sensor (output voltage: 0–10 V; measurement range:
0–10 bar, accuracy: ±0,5%). The torque is measured by a
torque meter mounted between the motor and the brake shafts
(maximum torque: 20 Nm, linearity: ±0,2% of full scale).

VI. DESIGN OF EXPERIMENT

In an experiment, the relation between an output of the sys-
tem and a given input is not straightforward. The output could
be influenced by other initial conditions, machine parameters
or the way the researcher had set up the experiment. The
DOE approach fixes some procedures in order to minimize
the influence of parameters other than the selected inputs,
and proposes statistical tools to determine the significance of
dependencies between the input and output of the system [37].

In this paper, the design of experiment for each test set
consists of three independent factors with two levels each: the
value of radial load, the load torque and the type of damage on
the front bearing. Table V summarizes the factors and levels
used in the first and second test run.

The output parameters, as described in the previous section,
are the two scalar quantities defined as:

• The maximum amplitude of the auto power spectrum for
the vibration signal filtered in the range [50Hz - 80Hz];

TABLE V
FACTORS AND LEVELS OF THE INDEPENDENT VARIABLES USED IN THE

DESIGN OF EXPERIMENT (DOE).

First test set
Factors: Radial load Load torque Bearing status
Level 1 3 bar / 590 N 50% healthy
Level 2 6 bar / 1180 N 100% Outer race

Second test set
Factors: Radial load Load torque Bearing status
Level 1 3 bar / 590 N 50% healthy
Level 2 6 bar / 1180 N 100% Brinneling

• The RMS value of the residual current signal, i.e. once
the 50 Hz and harmonics have been filtered out.

Two test set were performed in the laboratory trial, one
employing a bearing with a localized fault on the outer
race, the other employing a bearing with artificial brinneling.
The resulting full factorial experimental plans consist of 8
randomized tests each, which are not replicated. The statistical
analysis software Minitab was used to lay out the randomized
test plan and to perform the analysis of variance (ANOVA)
on the results. The levels of the independent variables were
normalized: torque was normalized to the rated torque of the
machine, radial load was normalized to the maximum value
obtainable, while the fault is modeled as a binary variable
(healthy = 0, faulty = 1).

VII. EXPERIMENTAL RESULTS

The test runs were performed according to the DOE and
the physical quantities defined in Section V were acquired
using 24 Bit, 51.2 kS/s data acquisition modules: for each
test run, a 10 s length file was recorded for post processing
and analysis. Figure 7 shows a comparison of the time signal
of the vibration signal, in case of healthy and faulty front
bearing. Figure 8 shows a comparison of the auto power
spectrum of the vibration signal, in case of healthy and faulty
front bearing. Figure 9 shows the effect of notch filtering
on the FFT spectra of the healthy MUT current signal. The
sidebands already present are due to the intrinsic unbalance
of the electric machine caused by manufacturing tolerances.
Figure 10 shows - on the same picture - a comparison of
the spectrum of the current signal, in case of healthy and
faulty front bearing (localized defect on the outer race). For
uniformity of presentation, both the faulty and the healthy case
shown are for a machine operated at rated output torque and
6 bar pressure on the radial load cylinder.

Since in a deep groove ball bearing the impact forces due
to the bearing fault act mainly along a radial direction, it is
reasonable to expect the torque ripple due to the bearing fault
to be dependent upon radial load, but to be independent of the
torque transmitted by the shaft. From preliminary observations
on the radial vibration signals, no significant difference was
observed between the test run with the MUT operating at no
torsional load and at rated-torque: if the fault is present, fault
signature is evident regardless of output torque.

Subsequently, currents and vibration signals were processed
as described in Section IV to perform ANOVA on the results.
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Fig. 7. Time domain signal of machine vibration operated at rated output
torque and 6 bar pressure on the radial load cylinder: healthy bearing (upper),
faulty bearing with single defect on the outer race (middle), faulty bearing
with simulated brinneling (lower).

Fig. 8. Auto power spectrum of the vibration signal of the machine operated
at rated output torque and 6 bar pressure on the radial load cylinder: healthy
bearing (upper), faulty bearing (lower). The main components of the outer
race fault frequency and its harmonics are side-banded with the periodicity
of the cage.

Table VI shows a subset of values of the scalar fault indicators
normalized to the healthy case, for the machine operated at
rated torque and with 6 bar pressure on the radial load cylinder.

Useful for statistical analysis of multivariate problems and
systems, ANOVA calculates the variance (standard deviation)
of a response considering a specific variable and the global
variance of the responses. The ratio between these two vari-
ances is called the F-Test value. In a stochastic (random)
process F-value is equals to one, meaning that the considered
variable has no effect on the response, i.e. it cannot be

Fig. 9. Effect of notch filtering on the FFT spectra of the healthy MUT
current signal operated at rated output torque and 6 bar pressure on the radial
load cylinder: original signal (upper plot), residual signal after notch filtering
of supply frequency harmonics (lower plot).

Fig. 10. Comparison of FFT spectra of the notch-filtered current signal of
the MUT operated at rated output torque and 6 bar pressure on the radial
load cylinder: healthy bearing (blue), faulty bearing with localized outer race
defect (red).

distinguished from experimental noise or numerical error.
Conversely the larger the F-Test value the more the variable
influences the process. There are a number of approaches to
represent the results graphically to demonstrate the effects of
the variables on the system outputs. One of the most popular is
the normal plot, used to estimate whether a certain set of data
follows a Gaussian distribution or not. If the data approximates
a straight line the phenomenon is statistically ”normal” i.e.
follows a stochastic law. The variables affecting the system
response will then fall outside the normal distribution line,
thus their effect cannot be ascribed to a stochastic process.
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TABLE VI
SCALAR FAULT INDICATORS NORMALIZED TO HEALTHY CASE.

Indicator: Healthy Outer race Brinnelling
Current 1 2 1.9
Vibration 1 25.6 11.1

The greater the deviation of the point from the normal line
the larger the confidence interval (i.e. the probability that the
variables are significant is higher). The half normal plot, used
in this paper is interpreted in the same way as the normal plot
but allows absolute values of the effects to be considered. The
analysis was performed on the two system response described
in Section IV: Figures 11 and 13 together with 12 and 14 show
the half-normal probability plots from an ANOVA of vibration
and current signals fault indicator respectively in case of the
first (single point defect) and the second (brinneling) test runs.

The ANOVA highlights the effects that significantly influ-
ence a physical phenomenon by comparing these effects of
the output variable with a stochastic effect. This is obtained
by comparing the results coming from the several levels of
the selected experimental variable, driven by the stochastic
experimental error. These values represent the probability that
the effect of the variable is significant.

Half normal plots show the magnitude of the experiment’s
effects ordered in increasing magnitude along the x-axis. The
effect for a factor is the difference of the average response
variable over ”high” factor levels minus the average response
over the ”low” factor levels. As said before, half normal plot
show the distribution of the abs(X) with X having a normal dis-
tribution with mean zero. The points comprising factors with
small and/or insignificant effects on the response will describe
(roughly) a straight line on the plot. The points for factors with
a ’large’ and thus significant effects will visually fall off of
the straight line described by the insignificant factors. A line
through the insignificant factors helps to graphically delineate
the difference between significant and insignificant factors. To
visually interpret half normal plots: selecting the factor points
which lie reasonably off of the line describing insignificant
factors is an easy graphical way to identify important factors
and start the process of optimizing the model.

Further details and additional statistical information on the
half normal plot construction can be found in [38] and [39].

Fig. 11. Test set 1 (single point defect on outer race): Half normal plot of
the scalar vibration fault indicator.

Fig. 12. Test set 1 (single point defect on outer race): Half normal plot of
the scalar current fault indicator.

Fig. 13. Test set 2 (brinneling defect): Half normal plot of the scalar vibration
fault indicator.

Fig. 14. Test set 2 (brinneling defect): Half normal plot of the scalar current
fault indicator.

Concerning the first test set on a single point defect on the
outer race, Fig. 11 shows the half normal plot of the vibration
fault indicator: as it can be seen, only the effect of the fault
presence is significant, while load torque and radial load and
their interactions have negligible effect. Figure 12 shows the
half normal plot of the current fault indicator: in this case
too the response is dominated only by the fault presence.
Concerning the second test set on a simulated brinneling fault
Fig. 13 shows the half normal plot of the vibration fault
indicator: as it can be seen, only the effect of the fault presence
is significant, while load torque and radial load and their
interactions have negligible effect. Figure 14 shows the half
normal plot of the current fault indicator: in this case too the
response is dominated only by the fault presence.

As mentioned in section II, the presence of radial load
could lead to false positive fault detection due to the cyclic
variation of the load, which is modulated by the passage of
the revolving elements of the bearing. In order to investigate
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this effect, further analysis has been done on a subset of
the data available. Focusing on the healthy case only, Figs.
15 and 16 show the effects of the torque and load for the
vibration and current signals respectively. In both cases the
results suggest that the radial load has a negligible effect
on the fault descriptors parameters. It is worth pointing out
that with the present test setup, the maximum pressure in the
pneumatic cylinder (6 bar) results in a radial loading force that
is 1/6 of the maximum permissible static force provided by
the bearing’s manufacturer. This represents a normal working
condition: much higher values of load could cause an increase
of the importance of radial load factor, but would result in
reduced lifetime of the bearing and not typical of practical
applications in everyday use.

Fig. 15. Half normal plot of the scalar vibration fault indicator, healthy case
subset.

Fig. 16. Half normal plot of the scalar current fault indicator, healthy case
subset.

VIII. CONCLUSION

This paper investigated the influence of external radial loads
applied to the output shaft on bearing fault detection. The
assessment was carried out experimentally, by applying a DOE
approach to fault detection based on two scalar indicators for
vibration and current signals respectively. A dedicated test
setup was developed, comprising an extension shaft mounted
on a sliding crosshead that allows to monitor vibration and
current signals on a machine operating under different amount
of radial load on the output shaft. The DOE approach was
applied to a laboratory trial comprising two test sets with
different faults on the machine’s bearing: a localized defect
on the outer race and an artificial brinneling fault. The salient
results are summarized in the following:

• The chosen scalar fault indicators allowed to positively
identify the fault case with respect to the healthy one.

• For both test sets, only the effect of the fault presence is
significant. This indicates a fair robustness of the chosen
scalar fault indicators under different operating conditions
and in case of different faults.

• Output torque, radial load and their interactions have
negligible effect on both scalar fault indicators.

• Even in case of healthy bearing, the effect of radial load
has no relevant effect on the vibration and current signals.
The occurrence of false positive fault detection due to
radial load is avoided.

The dedicated test rig developed in the present paper allows
to independently apply radial and torque load on the machine’s
shaft end. By using more elaborate DOE, it will allow to
further investigate the influence of other factors and their
interactions: e.g. the influence of operating speed, the influence
of number of pole-pairs for a given power size.
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