
Journal of Optimization Theory and Applications (2019) 180:500–517
https://doi.org/10.1007/s10957-018-1395-1

Splitting Methods for a Class of Horizontal Linear
Complementarity Problems

Francesco Mezzadri1 · Emanuele Galligani1

Received: 6 April 2018 / Accepted: 14 September 2018 / Published online: 25 September 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In this paper, we propose two splitting methods for solving horizontal linear com-
plementarity problems characterized by matrices with positive diagonal elements.
The proposed procedures are based on the Jacobi and on the Gauss–Seidel iterations
and differ from existing techniques in that they act directly and simultaneously on
both matrices of the problem. We prove the convergence of the methods under some
assumptions on the diagonal dominance of thematrices of the problem. Several numer-
ical experiments, including large-scale problems of practical interest, demonstrate the
capabilities of the proposed methods in various situations.

Keywords Horizontal linear complementarity problem · Matrix splitting · Projected
methods
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1 Introduction

Horizontal linear complementarity problems (HLCPs) are a well-known generaliza-
tion of linear complementarity problems (LCPs) [1] and have applications in many
different fields, including structural mechanics, mechanical and electrical engineering
and transportation science. Several solution techniques have, then, been devised and
new ones are proposed to this day. In particular, some popular approaches are based
on Interior Point (IP) methods (see, e.g., [2]) or rely on reducing the HLCP to an LCP
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[3,4]. Homotopy approaches [5] and, more recently, neural networks [6] have been
studied as well.

Some drawbacks to these procedures, however, exist. Reduction techniques, for
instance, require permutations or matrix inversions and can be computationally oner-
ous. The other aforementioned methods, on the other hand, avoid reductions but
generally involve complex iterations. It would nonetheless be desirable to tackle more
directly the HLCP, especially for applications to large, practical problems.

We here do so by introducing two projected splitting methods that act directly on
the matrices of the complementarity problem. Conceptually, the idea is similar to
projected splitting methods for LCPs, like [7–9]. However, HLCPs are characterized
by the presence of twomatrices, which we hereafter denote as A and B. Then, we need
to split them both, which we do simultaneously. Thus, we set up Jacobi or Gauss–
Seidel iterations which involve elements of both A and B, while complementarity is
enforced by two projections.

For these projections to be meaningful, the diagonals of A and B must be positive.
Thus, we consider such a class of HLCPs and introduce our projected Jacobi and
projected Gauss–Seidel methods in Sects. 2 and 3, respectively. We there also prove
the convergence of the procedures when A and B are strictly diagonally dominant
by columns. In Sect. 4, we then provide some insights into cases where diagonal
dominance does not hold in a strict sense. In particular, we do so in the framework of
irreducibly diagonally dominant matrices [10, p. 23]. In this context, we also provide
some results on the uniqueness of the solution of the HLCP in these cases. In Sects. 5
and 6,we then present and solve several numerical examples, ranging from random test
problems to HLCPs of practical interest. We thus validate the procedures, demonstrate
their efficiency and also perform a comparison with an IP method recently introduced
for solving HLCPs in hydrodynamic lubrication [11]. Finally, the conclusions of this
work are summarized in Sect. 7.

2 The Projected Jacobi Iteration for HLCPs

Given A, B ∈ R
n×n and a source term c ∈ R

n , the horizontal complementarity
problem HLCP(A, B, c) consists in finding a pair of vectors x, y ∈ R

n satisfying

Ax − B y = c, x ≥ 0, y ≥ 0, xT y = 0. (1)

Throughout the paper, we assume that A and B have positive diagonal. To solve this
problem, let us apply a Jacobi splitting to both A and B. Thus, given two arbitrary
vectors x(0) ∈ R

n and y(0) ∈ R
n , for k = 0, 1, . . ., let {x(k+1), y(k+1)} be the solution

of the complementarity problem
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a11x1 + ∑n
j=2 a1 j x

(k)
j − b11y1 − ∑n

j=2 b1 j y
(k)
j = c1

a22x2 + ∑n
j=1
j �=2

a2 j x
(k)
j − b22y2 − ∑n

j=1
j �=2

b2 j y
(k)
j = c2

a33x3 + ∑n
j=1
j �=3

a3 j x
(k)
j − b33y3 − ∑n

j=1
j �=3

b3 j y
(k)
j = c3

...

annxn + ∑n−1
j=1 anj x

(k)
j − bnn yn − ∑n−1

j=1 bnj y
(k)
j = cn

x ≥ 0; y ≥ 0; xT y = 0,

where xi and yi denote the i-th component of the unknown vectors x and y and x (k)
i

and y(k)
i indicate the i-th component of x(k) and y(k), respectively.

More compactly, collecting terms in x(k) and in y(k) on the right-hand side of the
system, for i = 1, . . . , n we obtain {x (k+1)

i , y(k+1)
i } as the solution of the horizontal

complementarity problem

aii xi − bii yi = w
(k)
i

xi ≥ 0; yi ≥ 0; xi yi = 0,
(2)

with aii , bii > 0 by the positivity of the diagonals of A and B and with

w
(k)
i =ci −

∑

j �=i

ai j x
(k)
j +

∑

j �=i

bi j y
(k)
j , (3)

where, for compactness, we have set
∑

j �=i � = ∑n
j=1
j �=i

�.

Thus, for i = 1, . . . , n, the solution {x (k+1)
i , y(k+1)

i } of (2) has the simple form

x (k+1)
i = max

{

0,
w

(k)
i

aii

}

; y(k+1)
i = max

{

0,−w
(k)
i

bii

}

. (4)

We refer to this method as projected Jacobi method for HLCPs.
In the following, it is useful to denote

w
(k)
i+ := max

{
0, w(k)

i

}
; w

(k)
i− := max

{
0,−w

(k)
i

}
(5)

and to introduce a few results involving sums and differences of terms w
(k)
i+ and w

(k)
i− .

In particular, it is easy to notice that w
(k)
i+ + w

(k)
i− = |w(k)

i |. Moreover, for any two
arbitrary real numbers c, d, we have

|c+ − d+| + |c− − d−| = |c − d|. (6)

Indeed, if c > d ≥ 0 or if 0 > c ≥ d, one of the two terms in absolute value in the
left-hand side vanishes and the equality is readily proved. Similarly, if c ≥ 0 > d, the
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left-hand side becomes |c| + |d|, with |c| = c and |d| = −d. Then, c − d = |c − d|
and the equality holds true. All other possible cases easily follow.

Using these results, we hereafter analyze the convergence of the projected Jacobi
method. We first assume A, B strictly diagonally dominant, case where (assuming
also the positivity of the diagonals) the solution of the HLCP(A, B, c) is unique [12].

Theorem 2.1 Let A, B ∈ R
n×n be strictly diagonally dominant by columns with posi-

tive diagonal elements. Then, the sequence {x(k), y(k)} generated by (3)–(4) converges
to the unique solution (x∗, y∗) of the HLCP(A, B, c) for all initial vectors x(0), y(0).

Proof For i = 1, . . . , n, define

w∗
i = ci −

∑

j �=i

ai j x
∗
j +

∑

j �=i

bi j y
∗
j (7)

and consider that we can thus write1 x∗
i = max{0, w∗

i /aii }, y∗
i = max{0,−w∗

i /bii }.
Then, noticing that, by (5), we can express the iterates in (4) as

x (k+1)
i = w

(k)
i+
aii

; y(k+1)
i = w

(k)
i−
bii

, (8)

and considering the definitions of w
(k)
i in (3) and of w∗

i in (7), we can express the
residual at the i-th index and at k-th iteration as

∣
∣
∣w

(k)
i − w∗

i

∣
∣
∣ =

∣
∣
∣−

∑

j �=i

ai j
(
x (k)
j − x∗

j

)
+

∑

j �=i

bi j
(
y(k)
j − y∗

j

)∣
∣
∣

=
∣
∣
∣−

∑

j �=i

ai j
a j j

(
w

(k−1)
j+ − w∗

j+
)

+
∑

j �=i

bi j
b j j

(
w

(k−1)
j− − w∗

j−
)∣
∣
∣

≤
∑

j �=i

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣

∣
∣
∣w

(k−1)
j+ − w∗

j+
∣
∣
∣ +

∑

j �=i

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

∣
∣
∣w

(k−1)
j− − w∗

j−
∣
∣
∣.

(9)

In the trivial case of A and B diagonal, the residual is evidently zero in a single
iteration. Otherwise, let us define

ρ := max
j �=i

{∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ ,

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

}

.

1 It is easy to prove that max{0, w∗
i /aii } and max{0,−w∗

i /bii } are the solution x∗
i , y∗

i of the
HLCP(A, B, c), i = 1, . . . , n. Indeed, replacing in the i-th row of Ax− B y = c, we have aii x∗

i − bii y
∗
i =

max{0, w∗
i } − max{0,−w∗

i } = w∗
i . By the positivity of aii and bii , we then have the nonnegativity of xi

and yi and that xi is positive when yi = 0 (and vice versa).
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Applying (6), we obtain

∣
∣
∣w

(k)
i − w∗

i

∣
∣
∣ ≤ ρ

∑

j �=i

(∣
∣
∣w

(k−1)
j+ − w∗

j+
∣
∣
∣ +

∑

j �=i

∣
∣
∣w

(k−1)
j− − w∗

j−
∣
∣
∣

)

= ρ
∑

j �=i

∣
∣
∣w

(k−1)
j − w∗

j

∣
∣
∣ ≤ ρ

n∑

j=1

∣
∣
∣w

(k−1)
j − w∗

j

∣
∣
∣.

Let us then evaluate this new expression. Proceeding as in (9), we can write

n∑

j=1

∣
∣
∣w

(k−1)
j − w∗

j

∣
∣
∣ ≤

n∑

j=1

⎛

⎝
∑

l �= j

∣
∣
∣
∣
a jl

all

∣
∣
∣
∣

∣
∣
∣w

(k−2)
l+ − w∗

l+
∣
∣
∣ +

∑

l �= j

∣
∣
∣
∣
b jl

bll

∣
∣
∣
∣

∣
∣
∣w

(k−2)
l− − w∗

l−
∣
∣
∣

⎞

⎠

=
n∑

l=1

∣
∣
∣w

(k−2)
l+ − w∗

l+
∣
∣
∣
∑

j �=l

∣
∣
∣
∣
a jl

all

∣
∣
∣
∣ +

n∑

l=1

∣
∣
∣w

(k−2)
l− − w∗

l−
∣
∣
∣
∑

j �=l

∣
∣
∣
∣
b jl

bll

∣
∣
∣
∣,

(10)
where, in the last passage, we have reversed the order of the summations [13, p. 36]
and have brought terms not dependent on the index j out of the inner sum.

If we now define

μ := max
l=1,n

{∑

j �=l

∣
∣
∣
∣
a jl

all

∣
∣
∣
∣ ,

∑

j �=l

∣
∣
∣
∣
b jl

bll

∣
∣
∣
∣

}

, (11)

we can make a further evaluation and write

n∑

j=1

∣
∣
∣w

(k−1)
j − w∗

j

∣
∣
∣ ≤ μ

n∑

l=1

∣
∣
∣w

(k−2)
l − w∗

l

∣
∣
∣,

where μ ∈]0, 1[ by the strict column diagonal dominance of A and B.
Then, proceeding iteratively, we find

∣
∣
∣w

(k)
i − w∗

i

∣
∣
∣ ≤ ρ

n∑

j=1

∣
∣
∣w

(k−1)
j − w∗

j

∣
∣
∣ ≤ ρμ

n∑

j=1

∣
∣
∣w

(k−2)
j − w∗

j

∣
∣
∣

≤ ρμ2
n∑

j=1

∣
∣
∣w

(k−3)
j − w∗

j

∣
∣
∣ ≤ . . . ≤ ρμk−1

n∑

j=1

∣
∣
∣w

(0)
j − w∗

j

∣
∣
∣

(12)

for any generic i-th index. Thus, limk→∞
∣
∣
∣w

(k)
i − w∗

i

∣
∣
∣ = 0 for i = 1, . . . , n. This

implies that w
(k)
i → w∗

i for k → ∞ for all i = 1, . . . , n and then limk→∞ x (k)
i =

max{0, w∗
i /aii } = x∗

i and limk→∞ y(k)
i = max{0,−w∗

i /bii } = y∗
i . 	
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3 The Projected Gauss–Seidel Iteration for HLCPs

Ifwe apply aGauss–Seidel splitting to A and B instead of the Jacobi splitting employed
in the previous section, we can analogously formulate a projected Gauss–Seidel
method. In this regard, let us again consider (1) with A, B real matrices with pos-
itive diagonal elements. Then, given two arbitrary vectors x(0) ∈ R

n and y(0) ∈ R
n ,

for k = 0, 1, . . . and for i = 1, . . . , n, let {x (k+1)
i , y(k+1)

i } be the solution of the
horizontal linear complementarity problem

aii xi − bii yi = w̃
(k)
i

xi ≥ 0; yi ≥ 0; xi yi = 0,
(13)

with aii , bii > 0 by the positivity of the diagonals of A and B and with

w̃
(k)
i = ci −

i−1∑

j=1

ai j x
(k+1)
j −

n∑

j=i+1

ai j x
(k)
j +

i−1∑

j=1

bi j y
(k+1)
j +

n∑

j=i+1

bi j y
(k)
j . (14)

Thus, for i = 1, . . . , n, the solution of (13) has the simple form

x (k+1)
i = max

{

0,
w̃

(k)
i

aii

}

; y(k+1)
i = max

{

0,− w̃
(k)
i

bii

}

. (15)

We refer to this method as projected Gauss–Seidel method for HLCPs. Let us now
prove that the iterates computed by (15) converge to the solution (x∗, y∗).

Theorem 3.1 Let A, B ∈ R
n×n be strictly diagonally dominant by columns with pos-

itive diagonal elements and let c ∈ R
n. Then, the sequence {x(k), y(k)} generated

by (14)–(15) converges to the unique solution (x∗, y∗) of the HLCP(A, B, c) for all
initial vectors x(0), y(0).

Proof Similarly to what done for the projected Jacobi method, we define

w̃
(k)
i+ := max

{
0, w̃(k)

i

}
; w̃

(k)
i− := max

{
0,−w̃

(k)
i

}
. (16)

Then, by (15), we can write the solution {x (k+1)
i , y(k+1)

i } of (13) as

x (k+1)
i = w̃

(k)
i+
aii

; y(k+1)
i = w̃

(k)
i−
bii

. (17)
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By (14) and (17) and proceeding similarly as in Theorem 2.1, we find that, at the
generic k-th iteration, we have

n∑

i=1

∣
∣
∣w̃

(k)
i − w∗

i

∣
∣
∣ =

n∑

i=1

∣
∣
∣
∣−

i−1∑

j=1

ai j
(
x (k+1)
j − x∗

j

)
−

n∑

j=i+1

ai j
(
x (k)
j − x∗

j

)

+
i−1∑

j=1

bi j
(
y(k+1)
j − y∗

j

)
+

n∑

j=i+1

bi j
(
y(k)
j − y∗

j

)∣
∣
∣
∣

≤
n∑

j=1

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

n∑

i= j+1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k−1)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣

+
n∑

j=1

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

n∑

i= j+1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k−1)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣.

(18)
On the other hand, by (6), we also have

n∑

h=1

∣
∣
∣w̃

(k)
h − w∗

h

∣
∣
∣ =

n∑

h=1

(∣
∣
∣w̃

(k)
h+ − w∗

h+
∣
∣
∣ +

∣
∣
∣w̃

(k)
h− − w∗

h−
∣
∣
∣

)

>

n∑

h=1

∣
∣
∣w̃

(k)
h+ − w∗

h+
∣
∣
∣
∑

l �=h

∣
∣
∣
∣
alh
ahh

∣
∣
∣
∣ +

n∑

h=1

∣
∣
∣w̃

(k)
h− − w∗

h−
∣
∣
∣
∑

l �=h

∣
∣
∣
∣
blh
bhh

∣
∣
∣
∣,

(19)

since
∑

l �=h |alh/ahh | and∑
l �=h |blh/bhh | are strictly smaller than one by strict column

diagonal dominance of A and B. Combining (18) and (19), we then obtain

n∑

h=1

∣
∣
∣w̃

(k)
h+ − w∗

h+
∣
∣
∣
∑

l �=h

∣
∣
∣
∣
alh
ahh

∣
∣
∣
∣ +

n∑

h=1

∣
∣
∣w̃

(k)
h− − w∗

h−
∣
∣
∣
∑

l �=h

∣
∣
∣
∣
blh
bhh

∣
∣
∣
∣ <

n∑

h=1

∣
∣
∣w̃

(k)
h − w∗

h

∣
∣
∣

≤
n∑

j=1

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

n∑

i= j+1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k−1)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣

+
n∑

j=1

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

n∑

i= j+1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k−1)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣.

Hence, subtracting
∑n

j=1 |w̃(k)
j+ −w∗

j+| ∑n
i= j+1

∣
∣
∣
ai j
a j j

∣
∣
∣+∑n

j=1 |w̃(k)
j− −w∗

j−| ∑n
i= j+1

∣
∣
∣
bi j
b j j

∣
∣
∣

from all members of the previous chain of inequalities, we obtain
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n∑

j=1

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

<

n∑

j=1

∣
∣
∣w̃

(k)
j − w∗

j

∣
∣
∣−

n∑

j=1

∣
∣
∣w̃

(k)
j+ −w∗

j+
∣
∣
∣

n∑

i= j+1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣−

n∑

j=1

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

n∑

i= j+1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

≤
n∑

j=1

∣
∣
∣w̃

(k−1)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k−1)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣.

(20)

Consider the middle expression. By (6), we can write any of its terms as

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

(

1 −
n∑

i= j+1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣

)

+
∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

(

1 −
n∑

i= j+1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

)

, (21)

where

1 −
n∑

i= j+1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ =

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ + ξ1 j ; 1 −

n∑

i= j+1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣ =

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣ + ξ2 j , (22)

with ξ1 j := 1−∑ j−1
i=1

∣
∣
∣
ai j
a j j

∣
∣
∣−∑n

i= j+1

∣
∣
∣
ai j
a j j

∣
∣
∣ > 0 by strict column diagonal dominance

of A and, analogously, ξ2 j > 0 by strict column diagonal dominance of B, for j =
1, . . . , n. Moreover, considering the first and the last member of (20) and proceeding
iteratively, we also have

n∑

j=1

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

<

n∑

j=1

∣
∣
∣w̃

(k−1)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k−1)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

<

n∑

j=1

∣
∣
∣w̃

(k−2)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k−2)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣ < . . .

<

n∑

j=1

∣
∣
∣w̃

(0)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(0)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣.

(23)

Thus, the sequence
{∑n

j=1 |w̃(k)
j+ −w∗

j+| ∑ j−1
i=1 | ai ja j j

|+∑n
j=1 |w̃(k)

j− −w∗
j−| ∑ j−1

i=1 | bi jb j j
|
}

for k = 0, 1, . . . is bounded, monotonic decreasing and, hence, convergent. Then,
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lim
k→∞

( n∑

j=1

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

)

= lim
k→∞

( n∑

j=1

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣ξ1 j

+
n∑

j=1

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣ξ2 j

)

= lim
k→∞

( n∑

j=1

∣
∣
∣w̃

(k−1)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w̃

(k−1)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

)

,

where we have exploited (20) with the middle member written by using (21) and (22).
Thus,

n∑

j=1

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣ξ1 j +

n∑

j=1

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣ξ2 j → 0 for k → ∞, (24)

which, in turn, implies that w̃
(k)
j → w∗

j for k → ∞ for all j = 1, . . . , n, since
ξ1 j , ξ2 j > 0 for any j = 1 . . . , n. Therefore, the method converges to the solution of
the HLCP(A, B, c). 	


4 Convergence for A, B Not Strictly Diagonally Dominant

We now provide some remarks on the uniqueness of solution and on the convergence
of the presented procedures when A and B are not strictly diagonally dominant by
columns. The proofs here provided exploit the concepts of column representativeness
and of column W-property [12].

Theorem 4.1 Let A, B ∈ R
n×n be column diagonally dominant matrices with positive

diagonal elements. Then,

(i) if A, B and all their column representative matrices are irreducibly diagonally
dominant by columns, the solution of the HLCP(A,B,c) is unique;

(ii) if a j j >
∑

i �= j |ai j | and b j j >
∑

i �= j |bi j | for at least one same index j2, with
∑ j

i=k+1 aik,
∑ j

i=k+1 bik �= 0 for k = 1, . . . , j − 1 and
∑k−1

i= j aik,
∑k−1

i= j bik �= 0
for k = j +1, . . . , n, the iterates generated by (3)–(4) and by (14)–(15) converge
to the solution of the HLCP(A, B, c).

Proof Regarding uniqueness, the hypotheses of the first point of the theorem imply
that all eigenvalues of all column representative matrices of the setM := {A, B} have
positive real part [14, §6.2.27]. Then, all column representative matrices of M have
positive determinants. Hence, M has the column W-property and the solution of the
HLCP(A, B, c) is unique [12, Theorem 2].

2 It is easy to notice that this is necessarily true if the hypotheses at the first point of the theorem hold.
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Regarding convergence of themethods, let us start from the projected Gauss–Seidel
method.Assume, for simplicity andwith no loss of generality, that only the first column
of A and B is strictly diagonally dominant. Proceeding as in Theorem 3.1, we find the
same result as in (24), where, however,

ξ11, ξ21 > 0; ξ1 j = ξ2 j = 0 for j = 2, . . . , n.

We thus only find that w̃(k)
1 → w∗

1 for k → ∞.

Next, consider
∑n

i=2 |w̃(k)
i − w∗

i |. By proceeding as in Theorem 3.1, we find

n∑

i=2

∣
∣
∣w̃

(k)
i − w∗

i

∣
∣
∣ ≤

n∑

j=1

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

n∑

i= j+1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k−1)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣

+
n∑

j=1

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

n∑

i= j+1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k−1)
j− − w∗

j−
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣.

Moreover, by the column diagonal dominance of A and B, we can also write

n∑

h=2

∣
∣
∣w̃

(k)
h − w∗

h

∣
∣
∣ >

n∑

h=2

∣
∣
∣w̃

(k)
h+ − w∗

h+
∣
∣
∣

∑

l �=h,l≥2

∣
∣
∣
∣
alh
ahh

∣
∣
∣
∣ +

n∑

h=2

∣
∣
∣w̃

(k)
h− − w∗

h−
∣
∣
∣

∑

l �=h,l≥2

∣
∣
∣
∣
blh
bhh

∣
∣
∣
∣.

This inequality still holds in strict sense, since
∑ j−1

i=1 |ai j | �= 0 and
∑ j−1

i=1 |bi j | �= 0

for j = 2, . . . n implies
∑

i �=2,i≥2

∣
∣
∣
ai2
a22

∣
∣
∣ < 1 and

∑
i �=2,i≥2

∣
∣
∣
bi2
b22

∣
∣
∣ < 1. Thus, combining

these inequalities and subtracting the same term
∑n

j=2 |w̃(k)
j+ − w∗

j+| ∑n
i= j+1

∣
∣
∣
ai j
a j j

∣
∣
∣ +

∑n
j=2 |w̃(k)

j− − w∗
j−| ∑n

i= j+1

∣
∣
∣
bi j
b j j

∣
∣
∣ from all of them, we obtain

n∑

j=2

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

<

n∑

j=2

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

≤
∣
∣
∣w̃

(k)
1+ − w∗

1+
∣
∣
∣

n∑

i=2

∣
∣
∣
∣
ai1
a11

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k−1)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣

+
∣
∣
∣w̃

(k)
1− − w∗

1−
∣
∣
∣

n∑

i=2

∣
∣
∣
∣
bi1
b11

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k−1)
j− − w∗

j−
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣,

(25)

where the middle expression has been obtained analogously as in (21)–(22), with
ξ1 j = ξ2 j = 0 for j = 2, . . . , n, as A and B are (not strictly) diagonally dominant
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in the columns j = 2, . . . , n. For compactness, let us denote by αk the first member
of (25). Then, the inequality between the first and the last member can be written
compactly as αk < βk + αk−1, where βk contains the terms of iteration k of the last
member of (25). Moreover, αk is bounded, since all of its terms are contained in the
k–th term of (23), which is bounded. Then, since we also have that βk tends to zero
for k → ∞, the sequence of the {αk} converges and, by (25), we can write

lim
k→∞

( n∑

j=2

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

)

= lim
k→∞

( n∑

j=2

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

j−1∑

i=1

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

)

= lim
k→∞

( n∑

j=2

∣
∣
∣w̃

(k−1)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k−1)
j− − w∗

j−
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

)

.

Thus, since the middle member of the previous expression can be rewritten as

lim
k→∞

( n∑

j=2

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

∣
∣
∣
∣
a1 j
a j j

∣
∣
∣
∣

+
n∑

j=2

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

j−1∑

i=2

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

∣
∣
∣
∣
b1 j
b j j

∣
∣
∣
∣

)

,

we finally find

n∑

j=2

∣
∣
∣w̃

(k)
j+ − w∗

j+
∣
∣
∣

∣
∣
∣
∣
a1 j
a j j

∣
∣
∣
∣ +

n∑

j=2

∣
∣
∣w̃

(k)
j− − w∗

j−
∣
∣
∣

∣
∣
∣
∣
b1 j
b j j

∣
∣
∣
∣ → 0 for k → ∞.

However,
∣
∣
∣
a12
a22

∣
∣
∣ > 0 and

∣
∣
∣
b12
b22

∣
∣
∣ > 0 by hypothesis. Thus, w̃

(k)
2 → w∗

2 for k → ∞
must hold true. By induction, the same applies also to successive components of the
residual.

Finally, the convergence of the projected Jacobi method can be proved analogously.
Indeed, proceeding as done for Gauss–Seidel, by (10) and (19), we find

n∑

j=1

∣
∣
∣w

(k)
j+ − w∗

j+
∣
∣
∣
∑

i �= j

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w

(k)
j− − w∗

j−
∣
∣
∣
∑

i �= j

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣

<

n∑

j=1

∣
∣
∣w

(k)
j+ − w∗

j+
∣
∣
∣

(∑

i �= j

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ + ξ1 j

)

+
n∑

j=1

∣
∣
∣w

(k)
j− − w∗

j−
∣
∣
∣

(∑

i �= j

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣ + ξ2 j

)

123



Journal of Optimization Theory and Applications (2019) 180:500–517 511

≤
n∑

j=1

∣
∣
∣w

(k−1)
j+ − w∗

j+
∣
∣
∣
∑

i �= j

∣
∣
∣
∣
ai j
a j j

∣
∣
∣
∣ +

n∑

j=1

∣
∣
∣w

(k−1)
j− − w∗

j−
∣
∣
∣
∑

i �= j

∣
∣
∣
∣
bi j
b j j

∣
∣
∣
∣.

where, if A and B are, for instance, strictly diagonally dominant only at the first
column,

ξ11, ξ21 > 0; ξ1 j = ξ2 j = 0 for j = 2, . . . , n.

Proceeding as we did for the projected Gauss–Seidel method, we thus find |w(k)
1 −

w∗
1 | → 0 for k → ∞ and, by induction, we finally have w

(k)
j → w∗

j for k → ∞ also
for the following j = 2, . . . , n. 	


5 Numerical Experiments

In this section, we present the numerical experiments that we use to show the effec-
tiveness of the proposed methods.

First, we solve a set of problems where A and B are randomly generated. Full,
randommatrices are generated by the rand function in MATLAB 2015b and scaled so
that every component belongs to the interval [− 10, 10]. Then, diagonal elements are
set equal to the sum of the absolute values of the respective column plus, potentially, a
random number in ]0, 1[. In particular, we consider bothmatrices where strict diagonal
dominance holds for all columns and full, column diagonally dominantmatriceswhere
strict diagonal dominance holds only at the first column. The HLCPs defined by these
matrices admit a unique solution for any c. Thus, also c is generated at random, with
values between − 10 and 10. We also consider problems where random matrices have
a particular structure, like triangular strictly diagonally dominant matrices or matrices
where all off-diagonal elements have the same sign. In all cases, initial iterates are
chosen as random sequences of zeros and ones satisfying complementarity. Since all
these problems are meant as a first validation of the procedure, we do not impose a
stopping condition, but we simply evaluate the residual after a given number k∗ of
iterations by replacing x and y in Ax − B y = c by the computed iterates x(k∗) and
y(k∗) (which satisfy also the complementarity by the projection).

Then, we consider HLCPs arising in mechanical engineering to model cavitation
(which is the formation of gaseous bubbles) in hydrodynamic lubrication. The for-
mulation of the problem in complementarity form can be found in [15], while we
follow [11] for the HLCP formulation arising from finite difference discretizations of
the differential problem. The complementarity variables represent here pressure and
density and are thus denoted by p and r (instead of x and y). Moreover, they depend
on the space variables, which we denote by ζ in 1D problems and by (ζ, η) in 2D
problems.

We solve the four test problems presented in [11] and identify them by P1, P2, P3
and P4, respectively. These problems, whose solution is known, encompass various
cases which can occur. In particular, P1, P2 and P3 regard 1D cases, while P4 refers
to a 2D case. In all these problems, A and B are M-matrices. Moreover, in 1D, A is
tridiagonal and B is lower bidiagonal. In 2D, A is block tridiagonal and B is block
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Table 1 Mean and maximum residuals after 20 iterations for 100 HLCP(A, B, c) with A, B generated at
random as in Sect. 5

Problem n Mean Max Mean Max

SDD 20 2.59e−9 5.54e−8 9.16e−15 1.40e−13

100 1.52e−14 2.02e−14 1.49e−14 1.98e−14

1000 1.43e−13 1.58e−13 1.43e−13 1.58e−13

DD 20 2.23e−9 2.53e−8 9.25e−15 1.84e−13

100 1.53e−14 2.13e−14 1.52e−14 2.06e−14

1000 1.44e−13 1.63e−13 1.44e−13 1.63e−13

Projected Jacobi: left. Projected Gauss–Seidel: right

diagonal. Numerical experiments are here performed in Fortran and compared with
the results in [11], where the test problems were solved by an IP method. In order
to perform a consistent comparison, we enforce a stopping criterion as similar as
possible to that of the IP method in [11]. We then stop the procedures as the norms
of the residual and of the difference between two successive iterates become smaller
than a given tolerance tol. Due to the low computational complexity of the iterations,
the stopping criterion is checked every 1000 iterations.

All experiments have been performed in Unix environment on a laptop equipped
with a dual core 2.7 GHz Intel Core i5 processor (Broadwell series).

6 Results and Analysis

We first validate the procedures by applying the projected Jacobi and Gauss–Seidel
methods to solving series of 100 HLCPs(A, B, c) with random A, B and c, generated
as described in Sect. 5. For each problem, we compute the l2-norm of the residual after
20 iterations of themethods. Finally, we evaluate whether the algorithms converged by
analyzing the arithmetic mean and the maximum of all these residuals, thus ensuring
that the procedures converged for every single problem. We repeat the process for
problems of different dimensions n. In Table 1, by SDD we refer to problems with
strictly column diagonally dominant matrices, while DD refers to A, B random, full
and column diagonally dominantmatriceswith positive diagonal entries andwith strict
diagonal dominance holding only at the first column. Moreover, in all tables, we use
the e-notation to denote the powers of 10.

In all cases, we compute the correct solution of the considered HLCPs. Indeed, the
mean and the maximum of the l2-norms of the residuals of the considered problems
are always small. Moreover, both methods converge quickly for this kind of problems.
Indeed, both the mean and the maximum of residuals decrease rapidly to values in
the order of 10−13−10−14. More significant differences between the Jacobi and the
Gauss–Seidel procedures can only be seen when n is small, but the residuals are
nonetheless in the order of at most 10−8−10−9 also in this case.

After this first validation by full, random matrices, we then pass to the analysis
of structured matrices, which are not only more interesting but also potentially more
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Table 2 Mean and maximum residuals after 20, 000 iterations for 100 HLCP(A, B, c) with A, B generated
at random as in Sect. 5 and with off-diagonal elements of uniform sign

n Mean Max Mean Max

100 4.68e−8 7.79e−7 7.11e−13 4.42e−12

Projected Jacobi: left. Projected Gauss–Seidel: right

Table 3 Analysis of row and column diagonal dominance in random, triangular matrices

SDD Mean Max Mean Max

by columns 1.29e−8 3.45e−7 3.18e−11 1.02e−9

by rows 1.19e+41 1.19e+43 1.73e+87 1.74e+89

Projected Jacobi: left. Projected Gauss–Seidel: right

challenging. Let us then consider random matrices that present a structure which,
arguably, could hinder convergence.

In this regard, let us consider, for instance, a series of HLCPs(A, B, c) where A
and B are column diagonally dominant matrices (strictly at the first column) with
positive diagonal elements, A has negative off-diagonal elements and B has positive
off-diagonal elements. In this case, several evaluations performed in the convergence
theorems apply with the equality sign. The results for these problems for n = 100
after 20,000 iterations are reported in Table 2.

Again, both algorithms converge in all cases. As expected, convergence is how-
ever slower. Notwithstanding this, the proposed procedures are not computationally
onerous and, as we will see later, they are competitive also when structured matrices
are used. Finally, we also notice a significant difference between the projected Jacobi
and the Gauss–Seidel iterations: indeed, the convergence of the Gauss–Seidel method
appears much faster for these problems.

Lastly, we provide also experimentally a few insights into the convergence of the
proposed methods. On one hand, experiments conducted with completely random,
full matrices generally converge also when A and B are row diagonally dominant.
However, row-diagonal dominance does not ensure, in general, the convergence of the
algorithm. To see this experimentally, let us consider A lower triangular matrix with
positive diagonal elements and negative off-diagonal elements and B upper triangular
matrix with positive elements. By the structure of A and B, column diagonal domi-
nance implies that several rows are not diagonally dominated. Analogously, A and B
row diagonally dominant have, in general, several columns which are not diagonally
dominated. We can then more accurately study the effect of diagonal dominance on
convergence. Let us then consider the cases of A and B strictly column or row diag-
onally dominant and apply the methods to solving 100 problems of this kind with
n = 100. The results after 20 iterations are reported in Table 3.

As expected and consistently with the convergence analysis earlier performed,
column diagonal dominance ensures the convergence of both projected Jacobi and
Gauss–Seidel iterations. Instead, row-diagonal dominance is, in general, not sufficient
for the methods to converge. This is consistent also with the role of the columns of
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A and B in horizontal complementarity, highlighted by the role of the column W-
property for the uniqueness of solution of HLCPs.

Let us now pass to the analysis of horizontal complementarity problems arising in
practical applications. In particular, let us consider theHLCPs arising in hydrodynamic
lubrication and described in Sect. 5. Both the projected Jacobi and the Gauss–Seidel
iterations have then been implemented so to exploit sparsity, in order to increase the
efficiency of the procedures. Thus, computational times remain reasonable also when
thousands of iterations are run in large problems.

Starting from 1D problems, the results for P1 and P3 with tol = 10−8 are shown
in Table 4, where we report the number of iterations i t , the computational time t and
the l2-norm of the residual res and of the difference between two successive iterates at
convergence, Δp and Δr . The computed solutions for n = 100 are reported in Fig. 1.
The results for P2 are analogous to those for P1 and hence not reported.

Both the Jacobi and the Gauss–Seidel iterations converge in all cases and the effi-
ciency of the algorithm is apparent, especially when n is quite small. Nonetheless, this
is enough to compute accurate solutions of 1D problems: indeed, the curves in Fig. 1,
obtained with n = 100 in t � 10−2 s, are in perfect agreement with results in the
literature (see [11]), further validating the proposed approaches. Increasing n, more
iterations are triggered but computational times remain, nonetheless, reasonable. In
this context, it is also interesting to notice that the Jacobi iteration converges in roughly
twice as many iterations as Gauss–Seidel’s.

Finally, we analyze 2D problems with tol = 10−4. In this context, we analyze
the behavior of the proposed procedure in larger scale problems. Table 5 reports the
results obtained applying the projected Gauss–Seidel iteration to solving problem P4.
Analogous results can be obtained using the projected Jacobimethod, with a difference
in efficiency comparable to 1D cases. For instance, with n = 100, projected Jacobi
requires 10,000 iterations and t = 2.86 to compute a solution with the same accuracy
of the one computed by projected Gauss–Seidel in Table 5. Figure 2 represents the
complementarity solutions computed by the Gauss–Seidel method for n = 500. We
remark that, dealing with 2D problems, A and B are block matrices of order n2. We
therefore consider cases where A and B are up to 250,000 × 250,000.

Again, both Jacobi and Gauss–Seidel methods converge for all considered n. Com-
putational times are remarkable as well. For instance, in [11], P4 was solved by an
IP method with a tolerance of 10−4 on the norm of the residual and of the increment.
Using an efficient implementation (where inner linear systemswere solved by efficient
PETSc routines [16]), solving the problem with n = 100 required more than 600s.
Here, on the other hand, we achieved the same accuracy in less than 2s using the same
discretization.

Considering larger dimensions, which were not treated in previous works, the num-
ber of iterations and computational times increase, but the procedure always converge.
Moreover, also computational times are not problematic, especially considering that
all computations have been performed in series.
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(a) (b)
Fig. 1 Plots of solutions of P1 and P3 computed by projected Gauss–Seidel with n = 100. a Results for
problem P1, b results for problem P3

Table 5 Results for P4 solved
by the projected Gauss–Seidel
method with various n

n it t ‖res‖ ‖Δp‖ ‖Δr‖
100 6000 1.46 8.60e−9 2.71e−5 1.34e−5

200 19,000 40.00 2.35e−8 7.39e−5 5.00e−5

500 98,000 1668 2.98e−8 9.38e−5 9.94e−5

Fig. 2 Plots of the solution of P4 with n = 500. a plot of p for Problem 4. b plot of r for Problem 4

7 Conclusions

Wehave presented two splitting procedures for solvingHLCPs characterized bymatri-
ces with positive diagonal elements. Contrarily to existing techniques, the proposed
methods act directly on splittings of the matrices of the problem. Hence, the iteration
is fast and simple to implement. We have proved the convergence of the proposed
methods under some conditions over the diagonal dominance of A and of B. Then, we
have performed several numerical experiments, demonstrating the capabilities of the
procedures in both random test problems and in HLCPs of practical interest. For these
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latter problems, in several cases, computational times have been smaller than those in
the literature. This highlights the efficiency of the procedure and is interesting also in
view of future developments of this study to include other splitting techniques.
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