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Abstract: The aim of this work is to assess the potentialities of the synergistic combination of an
ultra-fast chromatography-based electronic nose as a fingerprinting technique and multivariate
data analysis in the context of food quality control and to investigate the influence of some factors,
i.e., basil variety, cut, and year of crop, in the final aroma of the samples. A low = level data
fusion approach coupled with Principal Component Analysis (PCA) and ANOVA—Simultaneous
Component Analysis (ASCA) was used in order to analyze the chromatographic signals acquired
with two different columns (MXT-5 and MXT-1701). While the PCA analysis results highlighted the
peculiarity of some basil varieties, differing either by a higher concentration of some of the detected
chemical compounds or by the presence of different compounds, the ASCA analysis pointed out that
variety and year are the most relevant effects, and also confirmed the results of previous investigations.

Keywords: basil; aroma; fast GC; electronic nose; untargeted fingerprint; PCA; ASCA; cut; variety

1. Introduction

Aromatic herbs of the Laminacae family are largely employed worldwide in culinary
and health-related uses [1]. Among them, basil is largely used and very appreciated for
its distinctive flavour, and its essential oils possess numerous health properties. Basil’s
origin dates back to over thousands of years; its name seems to derive from the ancient
Greek “basilikon” (plant of the king), seemingly given for its peculiar characteristics [2].
There is a large number of basil cultivars and, for this reason, a standardized descriptor
list, based on morphological characteristics, was developed by the International Union
of Protection of New Varieties Plants (UPOV) [3]. In this list, O. basilicum is divided into
six distinct morphotypes: 1. purple A, 2. purple B, 3. purple C, 4. lettuce, 5. small
leaves, and 6. true basil [4]. Basil flavor is composed of different classes of molecules,
such as ketones, alcohols, terpenoids, and esters [5], and for these reasons, a further
classification scheme was proposed considering the different chemotypes: 1. high-linalool,
2. linalool/trans-α-bergamotene, 3. linalool/estragole, 4. linalool/trans-methyl cinnamate,
and 5. high-estragole [6,7].

Basil has a relevant place in the Italian culinary culture, in the context of which it
is largely used and appreciated [8]. There are different basil varieties [9] and are used,
for example, in “pesto”, a typical green sauce of the Italian region Liguria, in which a
linalool/estragole basil chemotype prevails. In the last few years, in Italy, basil demand
has increased: from 2015 to 2020, the harvested surface was more than doubled as was
the produced quantity [10]. In this context, the selection of new varieties with improved
agronomic characteristics and richer in appreciated flavor notes also became a relevant
aspect. Traditionally, basil for food industry use has been cultivated on open fields, but
greenhouses are sometimes used in early or late crops for productivity reasons. Normally,
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in warmer climates, such as Italy, three-to-five cuts per harvesting year can be carried out;
the first cut usually begins in late spring or early summer and the following cuts after
about 20 days, depending on the weather conditions, and just before or at the start of
flowering [11,12].

The development of ‘artificial senses’ for the evaluation of food quality and consumer
preferences is nowadays well established [13]. In fact, on the one hand, they mimic food
perceptions, and, on the other hand, they may furnish a quick evaluation and characteriza-
tion of specific food attributes. In particular, under the general term electronic nose (e-nose)
are comprised all types of sensors capable of detecting volatile organic compounds (VOCs),
and include optical, electrical, electrochemical and mass-based detection [14,15]. Despite
their different mechanisms, most of these sensors show non-specific recognition since they
interact non-selectively with volatile molecules. In recent years, a new generation of e-nose
instruments, based on ultra-fast gas chromatography with flame ionization detection (FID),
i.e., fast GC-enose, has emerged as an appealing technology for VOC detection [16,17]. In
fact, it shares the fast-screening capability of other types of e-noses, while allowing, at the
same time, specificity and the putative identification of the detected molecules, which can
be afterward confirmed by using a chromatographic run with standards or by GC-MS.

In order to characterize the basil flavor pattern, many analytical methods have been
developed [18], such as the solvent extraction of the essential oil, or the direct sampling
of the released volatile molecules by means of different analytical tools [19]. In fact, the
more common tools are based on the direct collection of the headspace, or the trapping of
the volatile molecules by Solid-Phase Micro Extraction (SPME) or by Head-Space Sorptive
Extraction (HSSE) [20], while for the determination of the essential oil, gas chromatogra-
phy (GC) is mainly employed, either coupled with mass spectrometry (MS) to have an
identification, or just using flame ionization detection (FID), if identification is not the
main concern.

In a previous study [21], our team developed an analytical method, based on e-nose
ultrafast GC-FID, to characterize the basil flavor profile of some of the varieties currently
employed in the production of Italian pesto sauce. Among the more than thirty peaks
detected, only eighteen were tentatively identified on the basis of Kovats relative retention
indices, and finally nine were confirmed by the analysis of the pure molecules. For these
nine molecules, quantification was performed, constructing, for each one, a calibration
curve with internal standards. These chemical markers allowed a partial chemical charac-
terization of basil aroma profiles, and a differentiation of basil samples according to the
studied agronomic factors.

The possibility to observe the complete chromatogram in an unsupervised way was
the natural progression to fully benefit from the potential of the fast GC method. To
this aim, in the present paper, the raw chromatographic signals, acquired in a very short
time (110 s) by two different GC columns, are integrated according to a low-level data
fusion approach [22,23], instead of considering (and quantifying) only the nine a priori
known markers and the outcome of a single column. In addition, a higher number of basil
samples collected from 2019 to 2021 (this year has not been previously considered) are
measured, at the same time that the number of varieties studied is increased. Finally, the
focus is the extraction of reliable chemical information from the raw signals aided by proper
data analysis and preprocessing tools. In this way, without the need and the effort of the
identification and quantification of specific markers, it is possible to study the different
factors linked to production aspects and their influence on the product quality. This kind of
approach could be easily and rapidly exported to other products where the knowledge of
the individual molecules is more challenging or time consuming.

Multivariate data analysis pipeline included proper preprocessing, exploratory anal-
ysis by Principal Component Analysis (PCA), and ANOVA Simultaneous Component
Analysis (ASCA) [24] to assess the effect of varieties, cuts period and harvesting years (2019,
2020 and 2021) on basil aroma. These are very critical aspects to consider when planning
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the basil agronomic campaign in order to control the quality of pesto sauce, which is the
product of interest.

2. Materials and Methods
2.1. Basil Plants

Plants of basil (Ocimum basilicum) of 20 commercial varieties of the “Genovese” type
have been supplied by local producers over three different harvest years from 2019 to
2021. The varieties name was declared as code for confidentiality reasons and only the
“Italiano Classico” variety was clearly indicated due to its largely commercial use. A total
of 253 samples were collected and analysed.

Each basil variety was collected at different plant ages indicated as “cut”. The plants
were cut leaving about 5–6 cm from the soil, to allow the plants to regrow before the next
cut. Typically, the first cut (labeled as 1 in Table 1) is performed after about 40 days from
sowing and, then, the following cuts (numbered in time order from 2 to 5 in Table 1) after
about 20 days each, depending on the weather and the agronomic conditions. Details of all
samples (352 in total) are reported in Table 1. Varieties and cuts were not regularly varied
during the three years because of company and producer constraints.

Table 1. Samples analyzed during the three years with the indication of the number of samples
considered for each cut and, in italics, the number of replicates for each sample.

Harvesting Year Basil Variety Cut in Bold (n◦ of Samples; Total Replicates)

2019

Italiano Classico 1 (5; 18) 2 (2; 6) 3 (2; 6) 4 (2; 6)

variety 5 1 (1; 3)

variety 7 1 (2; 9)

variety 9 1 (1; 5) 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 13 1 (2; 3)

variety 14 2 (1; 3) 3 (1; 2) 4 (1; 3)

variety 17 1 (2; 5) 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 18 1 (2; 33)

variety 19 1 (2; 6) 2 (1; 3) 3 (1; 3) 4 (1; 3)

2020

Italiano Classico 2 (2; 6) 3 (1; 3) 4 (2; 6)

variety 1 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 3 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 5 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 6 4 (1; 3)

variety 9 4 (1; 3)

variety 10 3 (1; 3)

variety 12 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 14 2 (1; 3) 4 (1; 3)

2021

Italiano Classico 1 (1; 3) 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 2 1 (1; 3) 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 4 1 (1; 3) 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 8 1 (1; 3) 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 9 1 (1; 3) 2 (1; 3) 3 (1; 3) 4 (1; 3) 5 (1; 3)

variety 11 1 (1; 3) 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 12 1 (1; 3) 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 14 1 (1; 3) 2 (1; 3) 3 (1; 3) 4 (1; 3) 5 (1; 3)

variety 15 1 (1; 3) 2 (1; 3) 3 (1; 3) 4 (1; 3)

variety 16 1 (1; 3) 2 (1; 3) 3 (1; 3) 4 (1; 3)
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2.2. Sample Preparation and VOC Sampling

Samples of the basil plants were collected in the early morning, typically from 4 to
8 a.m., and rapidly sent to the lab for characterization. All samples were analyzed within
6–8 h from the cut to minimize deterioration. For the analysis, about 30 g of the whole
basil plant (leaves and stems), exactly weighted with a precision of 0.1 g, were hashed
in a blender (Oster, Sunbeam Products Inc., Boca Raton, FL, USA) for 30 s in 300 mL of
extraction solution at room temperature. The extraction solution was 100 g L−1 of NaCl
and 6 mg kg−1 of ethyl iso-butyrate in water. NaCl was added to increase the volatile
molecules release in the extraction headspace and ethyl iso-butyrate was added as an
internal standard for the fast GC analysis. After the 30 s blending step, the suspension
was left for 30 s, then 20 µL was collected and transferred in 20 mL amber vials that were
immediately sealed and sent to analysis. Each extract was sampled at least three times in
different vials. All reagents, standard and solvents were of analytical grade (Sigma Aldrich,
St. Louis, MO, USA).

2.3. Heracles E-Nose Fast-GC Analysis

The analysis of the volatile molecules in the sample headspace was carried out using a
Heracles II (Alpha MOS, Tuluse, France) ultra-fast chromatography electronic nose [25].
The e-nose consists of a double-columns ultra-fast-chromatography system, with FID
detectors, interfaced with a PAL-RSI automatic headspace autosampler. Sample headspace
air was collected and injected in the e-nose. The injected air was trapped on a Tenax TA
polymer trap positioned before the columns. The two columns are mounted in parallel in
the oven and have different polarities, MXT-5 (non-polar) and MXT-1701 (slightly polar);
both have a length of 10 m, internal diameter of 0.18 mm and a phase thickness of 0.40 µm.
A temperature ramp was employed, starting from 50 ◦C for 2 s, then increasing to 80 ◦C at
1 ◦C/s and finally reaching 250 ◦C at 3 ◦C/s. The total fast GC analysis time was 110 s. The
carrier gas was hydrogen.

Each replicate of the extracted samples was loaded in the instrument auto sampler and
incubated for 20 min at 40 ◦C before injection with 500 rpm agitation (5 s on, 2 s off). Then,
1 mL of air headspace was injected with a syringe at the temperature of 50 ◦C. Trap loading
conditions were 18 s at 40 ◦C, then flashed to 250 ◦C for the release in the two columns at a
split ratio 1:1.

The AlphaSoft v 16.0 software was used for a preliminary process of the data that
were subsequently exported for further elaborations.

Volatile compounds were putatively identified on the basis of Kovats’ relative retention
indices (KI) and can be related to specific aromas that are collected in the AroChemBase v 7.0
database (Alpha MOS, Tuluse, France) built-in software. In this way, eighteen compounds
were tentatively identified, as reported in a previous work [21].

2.4. Data Analysis
2.4.1. Data Preprocessing

Since the proper preprocessing of the different instrumental signals is very impor-
tant to achieve trustworthy results, a preprocessing strategy was implemented to align
the chromatograms.

The raw chromatograms, resulting from each of the two columns, were separately
preprocessed as follows:

- First, they were normalized for the respective internal standard;
- Then, they were aligned by using the icoshift algorithm [26] applied by intervals,

taking as reference the average signal. The intervals were manually defined, holding
a single peak or small groups of peaks, as reported in Figure 1a. Alignment was
necessary to compensate for the peaks shift, along retention time, among different
chromatographic runs, which could introduce variability among samples not due to
actual differences;
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- The aligned chromatograms were baseline corrected by using the automatic weighted
least squares algorithm (2nd order polynomial) [27];

- Considering that, in the analyzed chromatograms, the peaks’ intensity and variance
reflect the presence of major and minor constituents, it was important to use a proce-
dure able to make the different chromatographic regions comparable in influence on
the developed statistical models. In particular, block scaling to equal block variance
(defining the blocks to be the same as the intervals used for the alignment with icoshift)
was used, including column mean centering.
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The preprocessed chromatograms are shown in Figure 1b.
A low-level data fusion approach was applied in order to simultaneously capture

information coming from the analysis of samples through the two columns as well as to
combine two potentially different sources of information. Indeed, from a chemical point
of view, the slightly different polarity between the columns could highlight the presence
of different analytes or obtain a better resolution, avoiding the loss of information due to
possible co-elution issues. To this aim, the two singularly preprocessed chromatographic
data sets were then concatenated in a single matrix of 352 (samples including replicates)
× 20,002 (retention time points) dimensions. The MXT-5 and MXT-1701 chromatographic
signals have a retention time ranging from 0 to 110 s sampled at 100 Hz, giving each
10,001 data points.

Prior to PCA, the concatenated data sets were block-scaled by considering as distinct data
block each GC column (each data block comprises 10,001 variables, which are the respective
sampled retention times), in order to let them equally contribute in PCA modelling.

2.4.2. ASCA

After data pretreatment (as detailed above in Section 2.4.1), the low-level fused chro-
matographic data (352 × 20,002 matrix dimensions) were subject to multivariate data
analysis. As described in Table 1, samples varied according to three factors: harvesting
year, variety and cut.
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Principal Component Analysis (PCA) was applied on the entire data matrix to obtain
a global overview of the trend, similarity and differences among the investigated samples
according to the entire aroma profiles.

Furthermore, in order to assess the significance of the three factors (year, variety
and cut) and their interactions, the ANOVA-Simultaneous Component Analysis (ASCA)
method was used [24]. As a first step, ASCA performs an ANOVA, partitioning the data
matrix X into the contribution of each factor or interaction, as shown in Equation (1):

Xc = X − 1mT = X1 + X2 + X3 + X1×2 + X2×3 + X1×3 + X1×2×3 + Xres (1)

where Xc is the centered data matrix, mT is the mean profile of the samples, X (1, 2 and 3)
is the main effect matrices, X (1 × 2, 2 × 3, 1 × 3 and 1 × 2 × 3) is the interaction effect
matrices and Xres is the residuals matrix. Then, a Simultaneous Component Analysis
(SCA) is performed, obtaining a scores matrix T and a loadings matrix P for each effect or
interaction matrix, as described by Equation (2):

Xi = TiPi
T (2)

ASCA needs balanced designs to provide reliable results. In order to avoid the
construction of a design where the number of combinations per factor level is not equal,
18 conditions were selected from the original dataset for a total of 54 experiments, as shown
in Table 2. Thus, in this model, three levels for factor “year” (2019, 2020 and 2021), three
for factor “variety” (Italiano Classico, VAR 9 and VAR 14) and two levels for factor “cut”
(2 and 4) were considered.

Table 2. Structure of the experimental design for ASCA for the years 2019, 2020 and 2021.

Year Variety Cut

2019 Italiano Classico 2

2019 Italiano Classico 4

2019 VAR 9 2

2019 VAR 9 4

2019 VAR 14 2

2019 VAR 14 4

2020 Italiano Classico 2

2020 Italiano Classico 4

2020 VAR 9 2

2020 VAR 9 4

2020 VAR 14 2

2020 VAR 14 4

2021 Italiano Classico 2

2021 Italiano Classico 4

2021 VAR 9 2

2021 VAR 9 4

2021 VAR 14 2

2021 VAR 14 4

Moreover, in order to further investigate the influence of varieties and cuts on basil
aromatic profiles, another ASCA model was computed considering the year 2021 (where a
higher number of varieties was cultivated), giving the sub-set of experiments described
in Table 3. In this case, 9 basil varieties and 3 different cuts were inspected, for a total of
27 conditions and 81 experiments. It was not possible to investigate all levels for each
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experimental factor, due to the limited varieties available that could be cultivated by a
single producer.

Table 3. Structure of the experimental design for ASCA for the year 2021.

Variety Cut

Italiano Classico 1

Italiano Classico 2

Italiano Classico 4

VAR 2 1

VAR 2 2

VAR 2 4

VAR 4 1

VAR 4 2

VAR 4 4

VAR 8 1

VAR 8 2

VAR 8 4

VAR 9 1

VAR 9 2

VAR 9 4

VAR 12 1

VAR 12 2

VAR 12 4

VAR 14 1

VAR 14 2

VAR 14 4

VAR 15 1

VAR 15 2

VAR 15 4

VAR 16 1

VAR 16 2

VAR 16 4

The significance of the effect of each design factor or interaction was evaluated through
permutation tests (1000 randomizations), which compared the experimental sum of squares
of each effect matrix with its related distribution under the null hypothesis [28].

2.4.3. Software

The raw chromatograms were imported and processed under a MATLAB 2020a
(The MathWorks, Inc., Natick, MA, USA) environment. Chromatogram alignment was
performed by using the icoshift 3.0, freely available on www.models.kvl.dk (last access on
7 March 2021). PCA and preprocessing were performed by PLS-Toolbox v. 8.9 (Eigenvector
Inc., Manson, WA, USA). ASCA was carried out by using routines developed and kindly
made available by Dr. F. Marini, University of Roma La Sapienza (Italy).

www.models.kvl.dk
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3. Results and Discussions
3.1. PCA Exploratory Analysis

In this first exploratory analysis, the aim was to obtain a general overview of the
variation of the aroma volatile fraction of basil samples. Punctual considerations of the
influence of harvested year, variety and cut could not be conducted, since it was not possible
to plain a systematic sampling beforehand, due to company and producer constrains. Three
principal components were considered according to their explained variances (58%). In
Figure 2, the PC1 vs. PC2 score plot is reported, representing the different basil samples
with different symbols and color as function of harvesting year and basil variety (Figure 2a)
or cut and basil variety (Figure 2b).
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From the score plot of the first two components, it is difficult to highlight a clear sepa-
ration of samples according to all the different basil varieties, due to the slight differences in
the flavor pattern among commercial varieties that belong to the same species (O. basilicum).
However, interesting information can be pointed out. In particular, the VAR 1 (harvested
only in 2019) and VAR 11 (harvested only in 2021) samples have the highest PC2 score
values and leads to their separation from the other samples (Figure 2a). These varieties
also present a trend, from higher to lower score values, according to their different cut
(Figure 2b). Another peculiar variety seems to be VAR 4 (harvested only in 2021), with
positive scores for both PC1 and PC2. This variety shows differences in aroma according to
different basil cuts as well.

As far as the other samples are concerned, they are distributed along the first principal
component, which seems to be the most responsible for the differences in the separation
between the VAR 14 samples (higher positive PC1 score values) and first cut of VAR 7, VAR
18 and Italiano Classico (negative PC1 score values).

Furthermore, the in-depth analysis of the figure shows that two samples belonging
to the third cut of VAR 16 (higher PC1 score values) seem to have quite a similar aroma
profile to VAR 14.

No further observations to assess any pattern can be performed considering the
different basil cuts, years and varieties, since it is not certain what the real cause is as some
varieties were measured only in one year.

The score plot of the third component (Figure S1 reported in Supplementary Material)
highlights the differences among the first basil cut of the VAR 8 and VAR 17 samples (higher
positive score values) with respect to all the others.

From the PC1 loading plot (Figure 3a), for both MXT5 and MXT17 columns, it is
possible to point out that, with almost all the loadings values being positive (from 40 to
110 s), the separation between the VAR 14 samples and the other basil varieties is mainly
due to a global higher concentration of aroma compounds in these samples, and roughly
speaking, most of the samples harvested in 2021 (positive PC1 score values) seem to present
a similar trend.
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Figure 3. (a) PC1, (b) PC2 and (c) PC3 loading plots. Numbered peaks correspond to the volatile
compounds putatively identified on the basis of Kovats’s relative retention indices: (1) hexanal,
(2) 2-hexanal, (3) 5-methylfurfural, (4) myrcene, (5) eucalyptol, (6) linalool, (7) β-caryophyllene, and
(8) eugenol (9) not identified.
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Notwithstanding the aim of the present study, which is to make a fast model to
discriminate basil samples with an untargeted approach, some considerations on the
presence of some chemical compounds can be presented on the basis of our previous study.
Regarding the second principal component (Figure 3b), which is mainly responsible for the
separation of VAR 1 and VAR 11 from the others, the same chromatographic regions (Rt,
retention time: 76.8 s and 85.3 s for MXT-5 and 79.9 s and 90.4 s for MXT-17), for both the
MXT-5 and MXT-17 columns, with the same trend (loadings value and sign), are relevant.
Thus, both the estragole (Rt: 76.8 s and 79.9 s in MXT-5 and MXT-1701, respectively) and
eugenol compounds (Rt: 85.3 s and 90.4 s in MXT-5 and MXT-1701, respectively), with high
positive and negative loading values, respectively, are important to characterize VAR 1 and
VAR 11. However, the samples belonging to these two varieties, presented a particular
aroma, probably due to the presence of anethole, which co-elutes with estragole in both
column separations.

As regards the third principal component (Figure 3c), unassigned compounds (in the
first 40 s of both columns), which have positive loadings, seem more abundant in the VAR 8
and VAR 17 samples (located at positive scores values). Hence, further investigation will
be conducted for the identification of these volatile compounds.

Notwithstanding the overall interpretation of PCA results, which offered some insights,
more specific information is difficult to gain, since the contributions to variance of all the
investigated factors (i.e., year, variety and cut) overlap. Therefore, after this preliminary
investigation, the ASCA methodology was used in order to systematically assess the
influence of each factor and their interaction on the basil aroma profile.

3.2. ASCA Results

The first ASCA model was computed according to the experimental design scheme
shown in Table 2 (Section 2.4.2). The original data matrix variation was split in eight
submatrices: three corresponding to the main effect of each experimental factor, three
accounting for the effect of each second-order interaction, one describing the effect of
the third-order interaction and one holding the residuals. The significance of all these
effects was assessed by performing a permutation test, whose results are shown in Table 4.
The p-value of all the inspected factors and interactions was lower than 0.001. However,
the factors “variety” and “year” explained most of the data variance (39.9% and 24.8%,
respectively), suggesting their higher influence on the aromatic profile of basil compared to
the factor “cut”. This can also be observed by the fact that explained variance values of
interactions including “cut” are systematically lower than values related to interactions in
which “cut” is not involved. Additionally, the third-order interaction effect explains less
than 3% variance.

Table 4. Explained variance and p-values for main factors and their second and third order interactions.

Factor Explained Variance (%) p

Variety 39.9 <0.001

Year 24.8 <0.001

Year x Variety 8.5 <0.001

Year x Cut 7.2 <0.001

Cut 2.9 <0.001

Variety x Cut 2.5 <0.001

Year x Variety x cut 2.8 <0.001

Afterwards, the ASCA algorithm performed a SCA on each effect matrix individually,
with the aim of interpreting the observed variation.

Figure 4a shows the score plot for the factor “year”. The first component (SC1),
which explains 67.7% of the total variance, describes the difference between the samples
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harvested in 2019 and the samples harvested in 2020 and 2021. The loadings plot of the first
component, shown in Figure 4b, explains this difference. In fact, the 2020 and 2021 samples
appear to have a richer aroma profile, as the concentration of the compounds between 40
and 110 s, associated with statistically significant loadings, are higher compared to 2019
samples. On the other hand, 2019 samples present higher concentrations of unassigned
peaks before 40 s mainly highlighted by the MXT-1701 column, confirming the need of
further investigation for their identification.
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The second component (SC2) and the related loadings plot (Figure 4c) show how the
2021 samples (positive scores values) present lower peaks in MXT-1701 that can be ascribed
to 2-hexanal and β-caryophyllene (negative loadings values), but higher peaks assigned to
all other compounds.

Figure 5a shows the score plot for the factor “variety”. It can be observed that most
of the explained variance (96.3%) describes how VAR 14 is different compared to Italiano
Classico and VAR 9. Indeed, as shown by the loadings plot in Figure 5b, VAR 14 presents
higher concentrations of all the chromatographic peaks, suggesting a richer aroma profile
with respect to the other two varieties. SC2, even though the related explained variance is
very low (3.7%), mainly shows how VAR 9 has more β-caryophyllene than Italiano Classico
(Figure 5c), as their peaks are basically the only ones that had statistically significant results.

The results of the SCA for the effect of the interaction “year x variety” are reported in
Figure 6. In the score plot (Figure 6a), it can be observed that SC1 describes the difference
among VAR 14 samples throughout the years. In detail, the VAR 14 samples collected
in 2020 presented a higher concentration of all aroma compounds compared to the ones
collected in 2019 and 2021, as assumed by the loadings plot shown in Figure 6b. As regards
Italiano Classico, the best year in terms of intensity of aroma profile is 2019, whereas for
VAR 9, the years 2019 and 2021 were better than 2020.



Chemosensors 2022, 10, 105 12 of 17
Chemosensors 2022, 10, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 5. SCA for the effect of the factor “variety”. (a) SC1 vs. SC2 score plot. Empty symbols repre-

sent the projected residuals; (b) SC1 and (c) SC2 loadings plot. In the loading plots, red lines indicate 

statistically significant regions, whereas blue lines indicate regions associated with loadings statis-

tically indistinguishable from zero. 

The results of the SCA for the effect of the interaction “year x variety” are reported 

in Figure 6. In the score plot (Figure 6a), it can be observed that SC1 describes the differ-

ence among VAR 14 samples throughout the years. In detail, the VAR 14 samples collected 

in 2020 presented a higher concentration of all aroma compounds compared to the ones 

collected in 2019 and 2021, as assumed by the loadings plot shown in Figure 6b. As regards 

Italiano Classico, the best year in terms of intensity of aroma profile is 2019, whereas for 

VAR 9, the years 2019 and 2021 were better than 2020. 

Figure 5. SCA for the effect of the factor “variety”. (a) SC1 vs. SC2 score plot. Empty symbols
represent the projected residuals; (b) SC1 and (c) SC2 loadings plot. In the loading plots, red lines
indicate statistically significant regions, whereas blue lines indicate regions associated with loadings
statistically indistinguishable from zero.

It can also be observed how VAR 14 appears to change more over time, having a higher
variation through the years than the other two varieties.

Moreover, Italiano Classico is the basil variety that presents the lowest variability
among its replicates. In fact, red and green samples in the score plot (VAR 9 and VAR 14,
respectively) are more spread and farther apart, especially along SC2. This limits further
comments about the difference between the years 2020 and 2021 with respect to the Italiano
Classico samples (blue triangles and diamonds in Figure 6a, respectively), which is due
to the statistically significant peaks between 50 and 70 s, linked to the majority of the
aromatic compounds.

Regarding the factor “cut”, the SCA showed how samples collected during cut 2 detain
a richer aroma profile than samples acquired during cut 4. However, according to the
authors, since this factor explained less than 3% of the total variance, these results are not
relevant compared to the ones described above. Both for this reason and for the sake of
brevity, plots related to the factor “cut” were not shown.

The second ASCA model was computed taking into account only samples collected in
2021. In this case, it was possible to build a balanced design, including nine varieties and
three cuts, according to the scheme shown in Table 3 (Section 2.4.2). The data matrix was
partitioned in four submatrices: two corresponding to the main effect of each experimental
factor, one describing the effect of the second-order interactions and the residuals matrix.
The results of the permutation test for the significance of the effects are shown in Table 5.
As for the first ASCA model, also in this case, all the factors and their interactions were
significant (p < 0.001). Furthermore, the explained variance for the factor “cut” (6.9%) was
significantly lower than the variance explained by the factor “variety” (63.5%), suggesting,
once again, the small impact of plant age on the basil aroma profile.
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Figure 6. SCA for the effect of the interaction “year x variety”. (a) SC1 vs. SC2 Score plot. Empty
symbols represent the projected residuals; (b) SC1 and (c) SC2 loadings plot. In (a), the different
colors refer to the different varieties (blue—Italiano Classico; red—VAR 9; green—VAR 14), whereas
different symbols refer to different harvesting years (circles—2019; triangles—2020; diamonds—2021).
In loading plots, red lines indicate statistically significant regions, whereas blue lines indicate regions
associated with loadings statistically indistinguishable from zero.

Table 5. Explained variance and p-values for main factors and their second order interactions related
to the ASCA model.

Factor Explained Variance (%) p

Variety 63.5 <0.001

Variety x Cut 20.3 <0.001

Cut 6.9 <0.001

The results related to the SCA on the “variety” effect matrix are shown in Figure 7.
From the score plot (Figure 7a), it is clear how the first principal component shows

the difference between VAR 4 and all the other varieties. In the loadings plot (Figure 7b),
it is shown that the peak that is mainly responsible for this difference can be ascribed to
myrcene, of which VAR 4 is particularly rich. Observing SC2 scores and loadings (Figure 7c),
it can be concluded that VAR 14 and VAR 16 present the richest aroma profiles, whereas
Italiano Classico and VAR 15 have the poorest profiles.

Figure 8a shows the frequency histogram of the SC1 scores values for the different
levels of the factor “cut”. Eucalyptol and β-caryophyllene are less present in cut 4 samples,
and in general, they are the compounds responsible for describing the difference between
cut 4 samples and cut 1 and 2 samples, as shown in Figure 8b.
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whereas blue lines indicate regions associated with loadings statistically indistinguishable from zero.

The ASCA results show how the entire aromatic profile has a significant influence
in the discrimination of samples according to the investigated factors (i.e., years, variety
and cut), highlighting the presence of new potential biomarkers (for instance the species
with retention time in the first 30 s of the chromatogram or the ones falling in the area
between the retention of 2-hexanal and 5-methylfurfural), which have not been quantified
in this study, but that could be relevant in further investigations. For the sake of clarity, an
example signal fingerprint with all the chemical analytes, putatively identified for both the
chromatographic separations, is reported in Figure 9.
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Figure 9. Chromatograms of the Italiano Classico variety obtained by elution on columns MXT-5 and
MXT-1701 of Heracles II.

4. Conclusions

In this study, the development of a fast analytical screening strategy based on an
ultra-fast chromatography e-nose and multivariate analysis was proposed as a useful
tool for quality control of food. The proposed approach, relying on the simultaneous
analysis of the chromatographic profiles coming from two GC-columns of different polarity,
permits to explore fully the volatile profile of foodstuff and may represent a fast and
simpler alternative to other chromatographic techniques. The chemical identification and
quantification of the single chemical species, responsible for differentiation of the studied
food products, can be undertaken on a few samples for a second time. In fact, once the main
chromatographic peaks, mostly responsible for the differentiation between samples, have
been underlined, their respective chemical species can be identified with a considerable
reduction in costs and analysis time.

In particular, this approach was applied on the analysis of the basil samples involved
in the production of Italian pesto sauce, where the entire e-nose signals, coming from two
columns with different polarity, were fused and used as a fingerprint of the aroma profile.
The obtained results highlighted the possibility of differentiating basil samples on the
basis of the three investigated factors, years, cut and variety, taking also into account the
interactions among them. The low-level data fusion approach allowed the computing of a
single ASCA model, which effectively pointed out the different significant peaks between
the two columns taken into account, thus underlining that enhanced information may
be gained.

The knowledge of the influence of the investigated factors on the quality of basil is
very important, since it may allow a company to achieve useful information both to plan
future campaign strategies for the acquisition of the raw materials and to improve the
quality of the final pesto sauce.
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