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Abstract

Shape memory alloy (SMA) actuators have generated a great deal of interest in recent years 
due to their reusability and ability to exhibit a wide spectrum of actuation properties. In this 
work we present an analytical approach through which one may predict the actuation stroke as 
well as recovery potential of a two-component SMA-based composite actuator. The predictions 
of the analytical model were validated using Finite Element (FE) simulations on a composite 
SMA actuator designed in the form of an SMA strip embedded within an elastic matrix, where 
the shape memory effect of the SMA component was modelled using the numerical Souza-
Auricchio model. The results obtained from the two approaches show extremely good 
agreement. The trends found upon altering various geometric and material parameters within 
the system provide a thorough understanding of how one can vary these parameters in order to 
obtain a tailored actuation and recovery response from the SMA-based actuator.  

Keywords: Shape Memory Alloys, Actuators, Composites, Analytical Modelling, Finite 
Element Analysis.

Nomenclature:

F Force
d Displacement
Fi Applied force due to initial pre-stretch 
di Applied initial pre-stretch 
kM Stiffness of twinned martensitic state of SMA component
kT Stiffness of transition phase of SMA component
kDM Stiffness of detwinned martensitic state of SMA component
FT Force threshold required to transform from twinned martensite to transition phase
dT Displacement threshold required to transform from twinned martensite to transition phase
FDM Force threshold required to transform from transition phase to fully detwinned martensite
dDM Displacement threshold required to transform from transition phase to fully detwinned martensite
kA Stiffness of the linear austenitic phase of SMA component
kCB Stiffness of counterbalance component
FEQ,C1 Initial cold state equilibrium force between SMA component and counterbalance
dEQ,C1 Initial cold state equilibrium displacement between SMA component and counterbalance
FEQ,H Hot state equilibrium force between SMA component and counterbalance
dEQ,H Hot state equilibrium displacement between SMA component and counterbalance
FEQ,C2 Recooling cold state equilibrium force between SMA component and counterbalance
dEQ,C2 Recooling cold state equilibrium displacement between SMA component and counterbalance 
m Slope factor relating di with (dT, FT)
FA Morphing Force
dA Actuation Stroke (Displacement)
FR Recovery Force
dR Recovery Stroke (Displacement)
l0 Initial length of SMA composite system before the application of pre-stretch
hMatrix Length of matrix counterbalance component
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EMatrix Young’s Modulus of matrix counterbalance component 
νMatrix Poisson’s Ratio of matrix counterbalance component
hSMA Length of SMA component
νSMA Poisson’s Ratio of SMA component
EA Young’s Modulus of initial linear austenitic state of SMA
EM Young’s Modulus of twinned martensitic SMA
EDM Young’s Modulus of detwinned martensitic SMA
H Hardening parameter
R Elastic limit
eL Maximum transformation strain
T0 Reference conversion temperature
β Temperature scaling parameter
εi Applied pre- strain
Tf Final temperature following heating of SMA component
εT Strain threshold required to transform from twinned martensite to transition phase 
σT Stress threshold required to transform from twinned martensite to transition phase
εDM Strain threshold required to transform from transition phase to fully detwinned martensite 
σDM Stress threshold required to transform from transition phase to fully detwinned martensite
εEQ,C1 Initial cold state equilibrium strain between SMA component and counterbalance
εEQ,H Hot state equilibrium strain between SMA component and counterbalance
εEQ,C2 Recooling cold state equilibrium strain between SMA component and counterbalance 
TTrans Phase Transformation Temperature 

1. Introduction

Shape memory alloys (SMAs) are materials that ‘remember’ their shape after loading and 
return to their original conformation after heating [1–5]. This effect comes about due to a phase 
transition from the cold martensitic phase to the hot austenitic phase and makes these materials 
ideal for a number of applications [6] such as stents [7–10], sensors [11,12] and sports apparel 
including golf clubs [13,14]. SMAs have also been implemented in composite structures in 
order to enhance the functionality of such systems [15–17]. Another field in which SMAs have 
generated a great deal of interest is that of actuation. SMA-based actuators have the potential 
to exhibit a wide range of actuation properties ranging from high force/low stroke ratios for 
SMA wires to low force/high stroke ratios for SMA spring-based systems [18–21]. Typical 
SMA actuators are designed as two component systems incorporating an agonist-antagonistic 
relationship. The counterbalance effect provided by the additional component to the system 
besides the SMA part may come about in various forms, including a fixed load, an elastic 
material or even an opposing SMA system, and its main function is to impart reusability to the 
SMA actuator [22–28].

One method to produce such two-component SMA actuators is by embedding SMA wires in a 
matrix [29–32]. This technique involves stretching an SMA wire and forming a matrix by 
pouring the uncured resin around the pinned, stretched wire. Once the resin cures and the matrix 
is formed, the wire is released and the system equilibrates at a fixed displacement point, 
provided that there is a good level of adhesion between the matrix and the wire. One may obtain 
an actuation effect from this composite system by heating the wire. Then, once the system is 
cooled, the matrix, which acts as a counterbalance to the SMA wire, forces the actuator to 
return to its original equilibrium point, hence reversing the contraction of the wire and making 
the actuator reusable. 

The efficacy of an SMA composite actuator is dependent primarily on the relative stiffnesses 
of the counterbalance and the SMA component [26,28]. If the counterbalance component is too 
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stiff, then the SMA component will not be able to return to its original size when heated. On 
the other hand, if the counterbalance is too soft, it will not be able to reverse the actuation of 
the SMA component, rendering the actuator unsuitable for multiple usage. These problems 
highlight the delicate balance which one must consider when designing a SMA composite 
actuator.

In view of this, in this work, we present a method through which one may design and optimize 
the geometry of an SMA composite actuator in order to obtain a tailored stroke based on the 
individual force-displacement curves of the SMA and counterbalance components of the 
system. An analytical model which can predict the actuation output and recovery of the actuator 
was derived and validated using Finite Element (FE) simulations. This model is expected to 
facilitate the pre-design of SMA composite actuators by quantifying the relationship between 
the material properties of the individual components of the composite and the geometric 
parameters of the system. This model also improves on previous models found currently in 
literature [22,33] by considering the recovery potential of the actuator and by considering the 
force-displacement behaviour of the martensitic SMA in terms of three distinct regions rather 
than as one linear model.    

2. Theoretical Approach

The model presented in this work is based on a two-component actuator system made up of an 
SMA and a counterbalance force. The model presented here is unidimensional, i.e. it considers 
only uniaxial tensile and compressive deformations and the actuator is assumed to be produced 
by the same principles described for the SMA wire/matrix composite actuator mentioned 
previously [29]. Broadly, this means that first the martensite SMA component is pre-stretched 
and then the counterbalance component is added and the system is allowed to reach its 
equilibrium point. Then the SMA component is heated to obtain an actuation effect, followed 
by re-cooling in order to recover the actuation stroke. A schematic of this process is presented 
in Figure 1. 
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Figure 1: A schematic of the construction and function of a generalized two component SMA actuator.

As shown in Figure 1, the system has three equilibration point displacements: dEQ,C1, dEQ,H, 
and dEQ,C2, where the first is the equilibrium point of the cold pre-stretched SMA component 
and the counterbalance component, the second, the equilibrium point of the heated SMA 
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component and counterbalance and the last, that of the cooled SMA component and the 
counterbalance. At each of these equilibrium points, the force exerted by the SMA component 
must be equal to the opposing force imparted by the counterbalance component of the system. 
This means that through force-displacement plots of the two separate components such as the 
one shown in Figure 2a, one may be able to predict the exact displacements at which 
equilibrium is achieved in each of the three cases.

Force

Displacementdi

(dEQ,C1,FEQ,C1) = (dEQ,C2,FEQ,C2)

(dEQ,H,FEQ,H)

-kCB

kDM

kM

kA

kT

dDMdT

FT

FDM

Fi

Figure 2: A qualitative force-displacement plot of an SMA actuator showing the separate plots of the 
components making up the system. The blue line represents the force-displacement behaviour of the cold 
martensitic SMA component, the red line the hot austenitic SMA and the green line the behaviour of the 
counterbalance, which in this case is represented as a linear elastic deformation behaviour.

Figure 2 shows a qualitative example of a force-displacement of the components making up 
an SMA actuator. The blue line represents an idealised typical material martensitic SMA force-
displacement relationship, which may be represented by three linear plots each of which depict 
the different deformation behaviour observed in the three distinct regions shown in Figure 2. 
The first region represents the linear elastic deformation of twinned martensitic SMA and has 
a stiffness of kM. The second is the transition phase from twinned martensitic SMA to 
detwinned martensitic SMA and is usually marked by a relatively low stiffness value in 
comparison to the initial linear region of deformation, is denoted by the stiffness value kT. The 
third region, which has a stiffness of kDM, represents the detwinned martensite phase of the 
SMA component. The transition points between these regions are indicated by (dT, FT) and 
(dDM, FDM) as shown in Figure 2. On the other hand, the red line represents the linear elastic 
region of deformation of the hot austenitic SMA component and has a stiffness value of kA. In 
the case presented here, for the sake of simplicity, the counterbalance component is depicted 
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in the form of a linear elastic system with a constant stiffness value of kCB. However, it is 
important to note that in reality any force-displacement plot may be used to depict the 
elongation of the counterbalance component upon loading and that the method presented here 
is not limited solely to a linear model.  

As shown in Figure 2, at a cold temperature, the equilibration point of the system may be 
defined as the point where the force-displacement plot of the martensitic SMA meets that of 
the counterbalance, (dEQ,C1, FEQ,C1). Upon heating, if a complete conversion to austenite is 
assumed to be achieved, then the equilibrium point shifts to the point where the matrix plot 
crosses the linear region of the austenitic SMA force-displacement graph (dEQ,H, FEQ,H). The 
difference in displacement between the two points may be defined as the actuation stroke of 
the system, dA, while the morphing force (or force required to achieve this displacement), FA, 
is the difference in force between these two points. In the case shown in Figure 2, upon re-
cooling the SMA back to its initial temperature, the equilibrium point shifts back to its original 
equilibrium point (dEQ,C2, FEQ,C2).

The three linear equations of the cold martensitic SMA component may be written in terms of 
k, F and d as follows:

MF k d Eq. 1

T T T TF k d F k d   Eq. 2

DM DM DM DMF k d F k d   Eq. 3

while for the austenitic SMA, the equation may be defined as:

AF k d Eq. 4

A similar term may also be used to describe the counterbalance force-displacement 
relationship, although the slope is negative in this case since the displacement of the 
counterbalance occurs in the opposite direction to that of the initial pre-stretch displacement, 
di.

( )CB CB iF k d k d   Eq. 5

These five equations may be obtained by fitting linear plots on the experimental force-
displacement plots of martensitic SMA, austenitic SMA and the counterbalance component 
respectively. In order for the model to function properly, the fitting must return a positive slope, 
k, value for all equations from the force-displacement plots. For the counterbalance (Eq. 9), 
the fitting should return only the kCB value (which is positive), which is then inserted into Eq. 
9. 

If the SMA component is applied a pre-stretch load which is higher than FDT, then the 
equilibrium force at a cold temperature, FEQ,C1, may be defined as the point where the force 
imparted by the counterbalance component is equal to that exerted by the detwinned martensite 
region, i.e. where Eq. 5 is equal to Eq. 3. This assertion holds also for values where FEQ,C1 is 
lower than FDT since once the load is released, the SMA does not follow the same path, i.e. 
force-displacement curve, as loading when unloading, but rather follows the linear detwinned 
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behaviour (indicated by the dashed blue line in Figure 2). At cold temperatures, the martensitic 
return may normally be defined in a linear manner by Eq. 3. Thus, the equilibrium cold force, 
FEQ,C1, and displacement, dEQ,C1, values may be found as follows:

, 1
( )CB DM DM i DM DM

EQ C
CB DM

k d k d k FF
k k

 
 


Eq. 6

, 1
DM DM i CB DM

EQ C
CB DM

d k d k Fd
k k

 



Eq. 7

Once the system is heated and complete austenite transformation is achieved, the equilibrium 
translates to the point where Eq. 5 is equal to Eq. 4. Therefore, the equilibrium hot force, FEQ,H, 
and displacement, dEQ,H, values may be written as:

,
A CB i

EQ H
CB A

k k dF
k k




Eq. 8

,
CB i

EQ H
CB A

k dd
k k




Eq. 9

The resultant actuation stroke, dA, and morphing force, FA, may be calculated from the 
differences between the two equilibrium points and may be defined as:

, , 1A EQ H EQ CF F F  Eq. 10

, 1 ,A EQ C EQ Hd d d  Eq. 11

A similar approach is used in order to calculate the recovered force and displacement after the 
SMA is cooled back to its initial temperature. However, upon cooling, the system returns to its 
original equilibration point of FEQ,C1 and dEQ,C1 only if FEQ,C1 > FDM. Otherwise the cooling 
equilibration point (dEQ,C2, FEQ,C2) will be either at the point where Eq. 5 is equal to Eq. 1 or 
the point where Eq. 5 is equal to Eq. 2. In order to determine which pair of equations will yield 
the correct cooling equilibrium point, one must first find the force-displacement slope of the 
initial pre-stretch, di, relative to the first transition point of the martensitic SMA, (dT, FT). This 
value, denoted as m may be found as follows:

T

T i

Fm
d d

 


Eq. 12

If kCB < m, then the values for FEQ,C2 and dEQ,C2 may be quantified through:

, 2
M CB i

EQ C
CB M

k k dF
k k




Eq. 13

, 2
CB i

EQ C
CB M

k dd
k k




Eq. 14
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However, if kCB > m, such as in the example shown in Figure 3a, then the point (dEQ,C2, FEQ,C2) 
is equal to the solution of Eq. 5 and Eq. 2, which may be found by: 

 
, 2

CB i T T T T
EQ C

CB T

k d k F d k
F

k k
 




Eq. 15

, 2
T T i CB T

EQ C
CB T

d k d k Fd
k k
 




Eq. 16

Finally, as stated previously, if, like the example shown in Figure 2, FEQ,C1 > FDM, then FEQ,C1 
= FEQ,C2 and thus the whole actuation length and force is recovered completely. The magnitude 
of the recovered stroke, dR, and force, FR, may be calculated as follows:

, , 2R EQ H EQ CF F F  Eq. 17

, 2 ,R EQ C EQ Hd d d  Eq. 18

The equations shown above may be used to calculate the actuation stroke and force of a system 
where the SMA component has been subjected to a pre-stress or pre-strain which results in a 
complete detwinned martensite transformation. While this is typically the case for SMA wires 
or strips, which usually undergo this transformation at relatively low strains, in cases of SMA 
springs or highly strained SMA wires which have a much longer transition phase, the initial 
pre-stretch applied to the SMA component may not be sufficient to reach the complete 
detwinning. An example of a force-displacement plot of such a system is shown in Figure 3b.

Force

Displacement
di

(dEQ,C2,FEQ,C2)

(dEQ,H,FEQ,H)

(dEQ,C1,FEQ,C1)

FDM

Force

Displacement
di

(dEQ,C2,FEQ,C2)

(dEQ,H,FEQ,H)

(dEQ,C1,FEQ,C1)

a) b)

Figure 3: Force-displacement plots of a) a system which is pre-stretched up to the fully detwinned 
martensite region and has an initial equilibration force, FEQ,C1, which is lower than FDM and b) a system 
which is pre-stretched up to the transition phase only, i.e. di < dDM. As in Figure 2, the red line represents 
the austenitic plot, the blue line the martensitic plot and the green the linear elastic counterbalance.

While the system has not reached the completed detwinned martensite phase, once the system 
is released from its initial pre-stretch, it still follows the slope of the detwinned martensite. 
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Therefore, in order to find the initial cold equilibrium point, (dEQ,C1, FEQ,C1) for this scenario, 
the equation of the ‘release’ slope (see Figure 3b, the dotted blue line) which has the same 
gradient as the detwinned martensite slope, can be written as follows, instead of Eq. 3:

DM T T i DM i T TF k d d k d k d k F     Eq. 19

and the equilibrium point parameters may be found by solving Eq. 19 and Eq. 5:

 
, 1

CB i T T T T
EQ C

CB DM

k d k F d k
F

k k
 




Eq. 20

, 1
T T i DM i T i CB T

EQ C
CB DM

d k d k d k d k Fd
k k

   



Eq. 21

The terms for FEQ,H, dEQ,H, FEQ,C2 and dEQ,C2 remain unchanged for this case and thus the 
actuation and recovery stroke and force may be calculated using Eq. 10, 11, 16 and 17 as in 
the previous case.  A comprehensive analysis of the analytical expressions and all the individual 
cases described by Eq. 1-21 is presented in the Supplementary Information. In addition, the 
micromechanical properties of the actuator at various equilibrium points are also presented 
here.

3. Finite Element Methodology

In order to validate the theoretical approach presented in the previous section, a series of Finite 
Element simulations were conducted on a range of SMA actuators using the ANSYS16 
Multiphysics software. These actuators were designed in the form of an SMA wire/strip and 
matrix composite similar to those proposed by [29]. This means that the SMA component is 
confined between two layers of matrix which act as the linear elastic counterbalance of the 
system. In order to achieve maximal computational efficiency and to allow for comparison 
with the 1D analytical model, the systems were modelled as 2D ‘half-systems’ with mirror 
boundary conditions as shown in Figure 4. The thermo-structural PLANE273 element was 
used to mesh the SMA component of the composite system while the PLANE183 element was 
employed for the matrix. The two components were glued to each other in order to simulate 
perfect adhesion and were assigned with the same Poisson’s ratio in order to eliminate any 
stiffening effects between the two components. A quadratic, 8-noded element mesh with a 
sizing of hSMA/4 was chosen for both components of the composite, following convergence 
tests, and the simulations were conducted under plane-stress conditions. 



  

9

Matrix

SMA

Loadstep 1
Application of Pre-Stress

Matrix

SMA

Loadstep 2
Formation of Matrix and 

Release of Pre-Stress

SMA Temperature = T0
Matrix Element OFF

SMA Temperature = T0
Matrix Element ON

di

Matrix

SMA

Loadstep 3
Heating of SMA

SMA Temperature = Tf
Matrix Element ON

dEQ,C1

Matrix

SMA

Loadstep 4
Cooling of SMA

SMA Temperature = T0
Matrix Element ON

dEQ,H

hmatrix

hSMA

l0

y

x

Figure 4: Diagram showing a schematic of the four-step FE simulation methodology used to model the 
SMA-matrix actuators. Note that each diagram depicts the initial state of the system before the loadstep 
begins. The rollers depict fixes of the node displacements in the x- and y-directions, while the green and 
blue crosses denote nodes with coupled displacements constraining them to remain aligned with the x- and 
y-axes respectively. The red line and arrow in Loadstep 1 indicate nodes which have been subjected to 
force-loading in the x-direction.

As shown in Figure 4, the initial geometry of the actuator composite was defined by the 
following parameters, l0, the length of the actuator, hSMA, the height of the SMA component 
and hmatrix, the height of the matrix. Since the matrix was assumed to possess linear elastic 
behaviour, the material properties of the matrix were defined through the linear Young’s 
modulus, Ematrix, and the Poisson’s ratio, νmatrix. In the case of the SMA component, the material 
properties were simulated using the Souza-Auricchio Shape Memory model [34][35]. The 
material properties were defined by the following parameters: the Poisson’s ratio, νSMA, the 
austenitic Young’s modulus, EA, the detwinned martensitic Young’s modulus, EDM, the 
hardening parameter, H, the elastic limit, R, the maximum transformation strain, eL, the 
reference conversion temperature, T0, and the temperature scaling parameter, β [36].

The simulations were conducted in four sequential steps as shown in Figure 4. In the first 
loadstep, after the system is constructed, the matrix elements are switched off using the 
Element Death option. This means that these elements may deform without undergoing stress 
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and thus upon applying a force load, Fi, on the edge nodes of the SMA wire (see Figure 4 – 
Loadstep 1), the entire stress of force loading is absorbed by the SMA. This means that in the 
first loadstep, essentially only the SMA component is loaded. In order to ensure that the entire 
system retains its rectangular shape, roller displacement fixes are applied on the bottom and 
left nodes of the composite and the nodes on the right edge are coupled and forced to remain 
aligned with the y-axis. The upper nodes of the SMA component are also coupled and 
constrained to remain aligned with the x-axis at all times during this loadstep, while the upper 
nodes of the matrix are constrained through roller displacements to remain fixed at their initial 
y-position of hmatrix+hSMA. The latter constraint is necessary in order to ensure that the matrix 
retains more or less its original geometry during the first loadstep.  These boundary conditions 
allow us to simulate the application of a uniaxial pre-stretch to the SMA component of the 
system before the introduction of the counterbalance component (see Figure 1), which in this 
case is the matrix. 

In the second loadstep, the matrix element is switched on using the Element Birth option and 
the force load is set to zero. This simulates the formation of the matrix around the pre-stretched 
SMA component, as if a liquid matrix was poured on an SMA component in a mold. The 
constraints on the upper surface nodes of the SMA wire were removed and the roller fixes on 
the upper nodes of the matrix were replaced by coupling boundary conditions as shown in 
Figure 4. In the third loadstep, the SMA wire is heated to a higher temperature Tf, which is 
sufficient to ensure a complete austenitic transformation. Finally, in the fourth and final 
loadstep, the SMA component is re-cooled back to its initial temperature, T0. For the last two 
steps, the heat distribution throughout the SMA component was uniform throughout, thus 
simulating the process of heating the SMA through the application of an electric current.

The following material properties were used to simulate the SMA: νSMA = 0.33, EA = 70 GPa, 
H = 0.5 GPa, EDM = 70 GPa, R = 45 MPa, eL = 0.03, T0 = 253.15 K and β = 7.5 MPa K-1. These 
material properties were taken from [35] and represent the material properties of a Nitinol SMA 
wire tested by [37]. The geometric parameters of the composite actuator and Poisson’s ratio of 
the matrix were also kept constant with νmatrix = 0.33, l0 = 10 mm, hmatrix = 1.5 mm and hSMA = 
0.150 mm. In order to vary the stiffness of the matrix, a range of Young’s moduli, Ematrix, were 
used: 107 MPa, 214 MPa, 428 MPa, 856 MPa, 1,712 MPa, 3,424 MPa and 6,848 MPa, while 
various degrees of pre-stretch equivalent to a pre-strain, εi, of 2%, 3%, 4%, 5% and 6% were 
applied to SMA wire in Loadstep 1. Finally, in order to further test the robustness of the model, 
following these simulations a number of additional hypothetical cases where the SMA material 
parameter EDM was greater or less than EA were also simulated.

4. Results and Discussion

Before comparing the theoretical approach with the Finite Element model, the terms used in 
Eq. 1-21 must be reparametrized in terms of the stress-strain behaviour of the SMA as predicted 
by the Souza-Auricchio model, the mechanical properties of the matrix and geometric 
parameters of the actuator composite. Figure 5 shows the stress-strain plots which may be 
obtained for the material parameters listed in the previous section for the SMA at low 
martensite temperature, T = 253.15 K, and high austenite temperature, T = 303.15 K. 
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Figure 5: Plot showing the stress-strain curves obtained from the Souza-Auricchio model for loading 
followed by unloading of an SMA wire with the material parameters used here. The blue line is the 
martensitic SMA, while the red line is the austenitic SMA. Note that while austenitic SMA shows 
superelastic behaviour by recovering all its strain upon unloading and returning back to its original size, 
the martensitic SMA does not and on unloading returns to a strain value of ca. 0.025. 

As shown in Figure 5, one may obtain the first and second step transformation points (εT, σT) 
and (εDM, σDM) respectively from this plot. These parameters may be used to define the 
parameters dT, FT, dDM and FDM as follows:

0T Td l Eq. 22

0DM DMd l Eq. 23

T T SMAF h Eq. 24

DM DM SMAF h Eq. 25

Since unit thickness is assumed for the FE simulation, the cross-sectional area of the SMA 
component is equal to hSMA. The same holds true for the matrix, where the cross-sectional area 
is equal to hmatrix. The stiffnesses of the various martensitic phases, the austenitic phase and the 
matrix may also be rewritten in terms of the geometric parameters of the system (hSMA, hmatrix, 
l0), Young’s moduli (EM, ET, EDM, EA) and applied pre-strain (εi) as:

0

M SMA
M

E hk
l


Eq. 26

0

T SMA
T

E hk
l


Eq. 27

0

DM SMA
DM

E hk
l


Eq. 28
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0

A SMA
A

E hk
l


Eq. 29

 0 1
matrix matrix

CB
i

E hk
l 




Eq. 30

Note that the initial length of the matrix is dependent on the pre-strain applied to the SMA wire 
since it is formed around the pre-stretched SMA. By substituting these terms into Eq. 1-21, 
one may obtain the actuation and recovery displacements and forces of the simulated system 
through the analytical model. The extracted parameters from the plots shown in Figure 5 were 
εT = 0.000786, σT = 55.0000 MPa, εDM = 0.025874, σDM = 71.5078 MPa and ET = 665 MPa. EA 
and EDM were defined directly by the model parameters and since the Souza-Auricchio model 
allows for only one Young’s modulus to represent the first linear phase of the stress-strain 
graph, EM is equal to EA.

Figure 6 shows the percentage actuation and recovery strokes obtained from the analytical 
model and the Finite Element simulations using these parameters. Percentage actuation stroke 
is defined as the percentage of actuation stroke or displacement relative to the initial length of 
the actuator as shown in Eq. 31 while percentage recovery is defined as the percentage of 
recovery stroke relative to actuation stroke as shown in Eq. 32.  

0

%Actuation Stroke 100Ad
l


Eq. 31

%Recovery Stroke 100R

A

d
d


Eq. 32
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Figure 6: Plots showing the predicted percentage actuation stroke and recovery obtained from the 
analytical model (solid lines) and FE simulations (circles) against pre-strain, εi, and matrix Young’s 
modulus, Ematrix.

As one may observe from Figure 6, the analytical and finite element results show very good 
agreement with each other indicating that the analytical expression can be used to obtain an 
accurate prediction of the actuation properties of an SMA composite actuator.  The plots also 
highlight a number of distinct trends. For example, as shown in Figure 6a, the lower the matrix 
Young’s modulus, and by extension the matrix stiffness, the greater the actuation percentage 
obtained. However, this increased actuation appears to come at the cost of recovery in some 
cases since as shown in Figure 6b, the actuator systems with the lowest counterbalance 
stiffness actually possess the lowest recovery percentages, with the most extreme cases 
showing a value of zero. The plot of percentage actuation stroke against pre-strain (see Figure 
6a) also appears to be divided into two distinct regions. In the region where εi is below 0.0258, 
i.e. εDM, the extent of actuation is dependent on the amount of pre-strain applied to the SMA 
component. However, upon reaching this point the actuation stroke stops increasing with 
increasing pre-strain and stabilizes at a threshold value depending on the stiffness of the 
counterbalance component (see Figure 6a,c). The latter behaviour arises due to the fact that 
since EA and EDM are equal in this case, then by extension, kA and kDM are also identical and 
since Eq. 3 and Eq. 4 are expressed independently of di, the distance between dEQ,C1 and dEQ,H 
remains constant irrespective of the pre-strain value. However, at pre-strain values below εDM, 
Eq. 3 is exchanged with Eq. 18, which includes the variable di, due to the system still being in 
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the transition phase upon forming the matrix and, hence, the actuation stroke of the system is 
dependent on the level of applied pre-strain. 

A similar effect is observed for the plots of the percentage recovery. As one may observe from 
Figure 6b, these plots are divided into three distinct regions. The first non-linear region ends 
at a pre-strain value of εDM and is observed for similar reasons mention for the calculation of 
the percentage actuation. The second, linear part indicates the region where the system is pre-
strained to higher values than εDM but εEQ,C1, the initial equilibrium strain of the system, is lower 
than εDM. This results in a case similar to the scenario shown in Figure 3a, where Eq. 15 is 
required to calculate the cooling equilibration point due to the fact that the system recovers in 
the transition region of the SMA force-displacement plot. This is the case for all systems which 
show a recovery percentage value between 0% and 100%, including the systems which have a 
pre-strain value less than εDM. On the other hand, systems which possess a recovery percentage 
of zero possess an εEQ,C2, i.e. cooling equilibration point strain, value lower than εT, which, 
since EA is equal to EM, results in dEQ,C2 as calculated from Eq. 13 being equal to dEQ,H, which 
results in a recovery stroke of zero. Finally if, εEQ,C1 is greater than εDM, then as indicated 
previously in the theoretical approach section, εEQ,C1 = εEQ,C2 and thus a full recovery is 
obtained. As shown in Figure 6b,d, the latter cases are more prevalent when the matrix has a 
high stiffness value.

In all the cases shown in Figure 6, only the matrix stiffness and amount of pre-stress were 
altered with the material properties of the SMA wire remaining unchanged. However, although 
in the case study discussed above, the detwinned martensite and austenite Young’s moduli, 
EDM and EA, were set to an equal value of 70 GPa, a number of experimental stress-strain plots 
of SMA wires found in literature indicate that this is not always the case. In view of this, in 
order to further validate the analytical model and analyse the effect of changing this parameter 
on the actuation properties of the entire composite system, an additional set of results where all 
the SMA and matrix material properties (including Ematrix, which was set to 856 MPa) and 
geometric parameters of the systems save for EDM remained unchanged, were run. The results 
of these simulations are shown in Figure 7a.   
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Figure 7: a) Plots showing the trends obtained through Finite Element modelling (circles) and the analytical 
model (lines) of %Actuation and %Recovery vs pre-strain, εi, for different EDM values (EA was constant at 
70 GPa throughout). b) Qualitative force-displacement graphs explaining how the obtained actuation (dA) 
changes with respect to the relative values of EA and EDM. Note that while in each case di_1 < di_2 < di_3, in 
case i) when EA > EDM, dA_1 < dA_2 < dA_3, in case ii) where EA = EDM, dA_1 = dA_2 = dA_3, and finally in case iii) 
where  EA < EDM, dA_1 > dA_2 > dA_3.

Again, the finite element and analytical model results show excellent agreement. As one may 
observe from the plots in Figure 7a, once EA ≠ EDM, the level of pre-strain applied to the SMA 
component plays a vital role in determining the degree of actuation stroke, even if εi is greater 
than εDM, which was not the case in the previous set of results. On the other hand, the trends 
for the recovery are relatively unaffected. If EA < EDM, the extent of actuation stroke decreases 
with increasing strain while the contrary occurs if EA > EDM. These opposing trends occur due 
to the differences in kA and kDM values and are illustrated very clearly in the qualitative force-
displacement plots shown in Figure 7b. The latter case is especially of interest since it indicates 
that by combining the SMA component with a counterbalance component one may actually 
obtain an enhanced resultant actuation stroke from the two-component composite actuator in 
comparison to the SMA component on its own. Intriguingly enough, a number of experimental 
tests on SMAs found in literature [38–40] indicate that while cases where EA < EDM are 
relatively rare, SMAs which possess an EA value greater or equal to EDM are much more 
commonly found. This opens up a number of exciting possibilities for the design of SMA-
based actuators since it indicates that the extent of actuation stroke may be controlled by the 
amount of pre-stretch applied to the SMA component, thus allowing a great deal of flexibility 
for designing a system with a desired actuation effect. However, here it is imperative to note 
that although one may use the analytical model presented to obtain a tailored actuation stroke 
and force, these two parameters are interdependent on each other and thus if one wishes to 
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design an actuator with a desired stroke, then the magnitude of the actuation output force of 
the system is imposed by this parameter and vice-versa.

At this point, it is important to mention once again the fact that the analytical model presented 
here is based on the premise that a complete transformation from transition phase or detwinned 
martensite to austenite occurs upon heating. It is well known [41][42] that the transformation 
temperature, TTrans, increases from the reference temperature, T0, upon increasing stress within 
the SMA component and thus the greater the applied equilibrium point stress and strain (εEQ,C1, 
σEQ,C1,), the greater the temperature increase required to achieve complete austenitic 
transformation. In fact, Figure 8 shows how TTrans increased upon increasing εEQ,C1 for the 
various FE simulations shown in Figure 6. This should not be considered to be a very 
problematic issue when using many commercially available SMAs since when heating them 
through the application of an electric current [6,43] or any other quick-heating method, the 
change in temperature typically exceeds by far the temperature rise required to achieve 
complete austenitic transformation. However, it could be problem when very large pre-stretch 
values are applied to the SMA component, especially if the material properties of the SMA 
dictate that the transition temperature changes greatly with stress, and thus its effect should not 
be completely discounted in these cases. In addition, it must be mentioned that the model covers 
only the application of a uniaxial tensile pre-stretch of the SMA component and does not 
consider off-axis or multiaxial stretching, which is expected to result in a different force-
displacement profile for the SMA component. While these conditions are not applicable to the 
most commonly used SMA geometries in actuators, i.e. wires and springs, they could be 
significant in certain niche applications involving, for example, SMA strips and thus it would 
be of interest to consider these effects in future studies.

Another key assumption of this model is that the effect of the application of pre-stretch on the 
SMA component is completely reversible, i.e. the SMA does not undergo failure or any other 
unrecoverable effects as a result of the applied initial loading which could affect its deformation 
behaviour. This condition depends strongly on the fatigue behaviour of the SMAs [44,45]. This 
means that the model also cannot be used to predict the effect of texture changes and other 
history-dependent changes [46,47] on the force-displacement profile of the SMA component.  
Finally, it is important to note that while both the Souza-Auricchio model and the analytical 
model presented here approximate the stress-strain behaviour of the SMA component in the 
form of linear plots, in reality experimental force-displacement plots are never strictly linear 
and thus the accuracy of the actuation and recovery predictions of both these approaches are 
entirely dependent on the goodness of the fit. Here it is also apt to mention that the 
approximation of the SMA force-displacement behaviour in the form of three linear plots 
presented here holds true primarily in the case of geometries such as wires, strips and springs 
which have a linear geometric stress-strain profile as is the case for the majority of SMA-based 
composite actuators. In the case of complex geometries or designs which possess non-linear 
force-displacement behaviour, the stress-strain approximation of the SMA component must be 
adjusted accordingly. In every case the design of the actuators is based on the complete 
knowledge of the force displacement plot of the SMA element both in fully martensitic and 
fully austenitic regime, which can be easily obtained experimentally.
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Figure 8: Plot showing how TTrans changes from the original reference temperature, T0 = 253.15 K, upon 
increasing the first equilibrium point strain for the FE simulations presented in Figure 6.

Despite these limitations, the analytical model presented here provides a simple, yet effective 
method through which one may design a SMA composite actuator with a tailored actuation and 
recovery stroke based off the individual force-displacement or stress-strain behaviour of the 
two components. The model may be used for a quite straightforward design of a desired 
actuator through the correct definition of two main design parameters which may be easily 
varied according to necessity, i.e. the initial applied prestrain, di, and the stiffness of the 
counterbalance component, kCB. The model has been shown to be extremely robust and was 
validated using FE simulations based on the well-established Souza-Auricchio shape memory 
numerical model. In the SMA wire/matrix composite example presented in this work, the 
matrix, which acts as the counterbalance component of the actuator, was assumed to possess a 
linear elastic behaviour for the sake of simplicity. However, the same principles applied to 
derive this analytical model could also be used to predict the behaviour of a counterbalance 
component which possess hyperelastic behaviour or any other nonlinear behaviour as well. In 
this case one may replace Eq. 5 with the nonlinear counterbalance equation and reparametrize 
the model accordingly. However, in its current state, the model does not cater for cases 
involving an SMA geometry which possesses a non-uniform stress gradient during deformation 
where the three distinct stages of martensite stress-strain behaviour become intertwined. 
Further improvements and modifications to the model, which could be covered in future 
studies, must be conducted before this may be achieved. In addition, while in the FE 
simulations the stiffness of the matrix was altered by changing the Young’s modulus of the 
matrix (which was done for the sake of computational efficiency), the model shows how the 
same effect could also be obtained by changing the cross-sectional area of the matrix, which is 
more easily achieved for practical applications. Moreover, despite the fact that the SMA 
component used for the numerical validation had a very low actuation stroke (the initial linear 
martensite region extends only up to ca. 0.0008 strain, εT, and εDM is equal to 0.0258), a number 
of high strain SMA wires and springs have been shown to possess much higher actuation 
strokes, which means that by changing the geometric parameters of the system one may be able 
to have a greater degree of flexibility in obtaining a tailored stroke output. 

5. Conclusion
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In this work we have presented an analytical model which may be used to predict the actuation 
stroke and recovery of an SMA composite actuator. This model is expected to be of significant 
aid in the development of these actuators, particularly at the pre-design stage where the model 
could be used to elucidate the desired stiffness of the counterbalance element, through material 
properties and geometric parameters, and to find the ideal pre-stretch value for the SMA 
component. This method was validated using FE simulations where an SMA composite 
actuator system was modelled in the form of a 2D SMA strip/wire embedded within an elastic 
matrix. The results obtained from the FE simulations and the analytical predictions of the 
derived model showed extremely good agreement and allowed for a thorough investigation of 
the various trends which may be obtained by changing a number of material and geometric 
parameters such as level of pre-stretch, matrix stiffness and relative Young’s moduli of the 
different phases of the SMA component. It is envisaged that the work presented here will prove 
to be of considerable help for the design of SMA-based actuators in the future and it is hoped 
that our findings will advance and stimulate further interest in this exciting field of study.    
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