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Abstract

Systems that exhibit complex behaviours are often found in a particular dynamical

condition, poised between order and disorder. This observation is at the core of the so-

called criticality hypothesis, which states that systems in a dynamical regime between order

and disorder attain the highest level of computational capabilities and achieve an optimal

trade-off between robustness and flexibility. Recent results in cellular and evolutionary

biology, neuroscience and computer science have revitalised the interest in the criticality

hypothesis, emphasising its role as a viable candidate general law in adaptive complex

systems.

In this paper we provide an overview of the works on dynamical criticality that are—

to the best of our knowledge—particularly relevant for the criticality hypothesis. We

review the main contributions concerning dynamics and information processing at the

edge of chaos, and we illustrate the main achievements in the study of critical dynamics

in biological systems. Finally, we discuss open questions and propose an agenda for future

work.
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1 Introduction

The peculiar properties of critical systems are at the roots of a conjecture stating that systems

in a dynamical regime between order and disorder optimally balance robustness and adap-

tiveness, and reliably respond to inputs while being capable to react with a wide repertoire of
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possible actions. This conjecture was proposed by Kauffman [40, 41] with main focus on living

systems and by Packard, Langton and Crutchfield [65, 49, 20] who introduced the expression

“computation at the edge of chaos”. In the last ten years, results have been presented pro-

viding evidence to support this conjecture in cellular biology and neuroscience. These results

are not only encouraging, but they also suggest that the criticality hypothesis may play the

role of a general law in adaptive complex systems dynamics. Nevertheless, recent works also

enlighten some issues that have to be tackled so as to provide a solid formulation of the con-

jecture and fruitfully exploit it in both modelling biological systems and designing artificial

ones.

In this work, we provide a literature overview of this conjecture, selecting those works

that are, to the best of our knowledge, particularly significant and we illustrate the main

scientific questions addressed, along with open perspectives. It is important to observe that

the term critical is used with slightly different meanings; in this review we will focus mainly

on dynamical criticality, sometimes called “the edge of chaos”. This paper is organized as

follows. In Section 2 we summarize preliminary notions on phase transitions and critical

phenomena. Section 3 illustrates the main works concerning dynamics and computation at

the edge of chaos. The criticality hypothesis is discussed in Section 4 and in Section 5 we

discuss the state of the art and open questions. Section 6 concludes the work and outlook

future work.

2 Criticality and phase transitions

Critical states have been first introduced in the theory of phase transitions, that describes

phenomena in which a system undergoes a sharp change in some of its macroscopic proper-

ties if a suitable control parameter is changed [12, 81]. The macroscopic properties of the

system are usually defined in terms of an order parameter. For example, let us consider the

familiar transition of H2O from water to gas: at constant pressure, the control parameter is

the temperature T and the order parameter Φ is the difference between the density of the

substance and the density of gas. When T < Tc = 100 oC, Φ is strictly positive, while for
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T ≥ Tc the parameter Φ is 0. Therefore, at T = Tc the order parameter abruptly goes to

zero. The point at which the transition occurs is said to be the critical point [80]. The phase

change requires some energy, called latent heat, which characterizes all the phase transitions

of this kind, which are sometimes called first-order phase transitions because it is the first

derivative of the thermodynamic free energy (i.e. the order parameter) that is discontinuous

at the transition point. There are also extremely relevant cases, where the order parameter

changes continuously but some of its first-order derivatives change abruptly: these phase tran-

sitions are named second-order phase transitions because the discontinuity affects the second

derivatives of the free energy. However, it has been found that this distinction, which dates

back to Paul Ehrenfest, has some limitations and it is often overlooked. A typical example

of second-order phase transition is that of iron changing from paramagnetic to ferromagnetic

state. When the temperature T is greater than the so-called Curie temperature Tc = 1043 K,

iron is paramagnetic. If an external magnetic field is imposed, then the overall magnetization

M of the material is proportional to the intensity of the external field. Conversely, for T < Tc

the material is magnetized even in the absence of an external field, to which it will tend to

align if it is applied. In this case, heating iron from low to high temperature the magnetiza-

tion simply goes to zero, without any sharp change. However, what changes discontinuously

is the magnetization rate, which changes discontinuously at T = Tc.

The importance of phase transitions, especially the second-order ones, is due to some

notable properties of the critical point.

The first property is universality. It has been observed that order parameters can be

described with power laws at the critical point. For example, in the proximity of the critical

temperature Tc, the magnetization M can be expressed as M ∼ (T − Tc)
−β , where β > 0

is called the critical exponent. Surprisingly, the values of the critical exponents are indiffer-

ent to the details of the system and they have the same value for wide classes of systems,

characterized by common topological and dimensional properties. Therefore, it is possible to

classify systems subject to phase transitions in terms of universality classes, defined on the

basis of the values of the critical exponents.
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A second important property is that the influence between distant portions of the system

is maximal at the critical point. More precisely, the average correlation length Γ, which

measures the statistical correlation between any pair of elements in the system, follows a

power law: Γ ∼ (T −Tc)
−ξ, with ξ > 0. As a result, for finite systems the correlation between

any pair of elements is maximal at the critical point.

Power laws assume a prominent role because they characterize the relevant quantities of

the system at the critical point. For example, in a ferromagnetic model composed of atoms

that can assume one out of two spins (−1,+1), the distribution of clusters of homogeneous

spins at the phase transition is described by a power law. This property does not hold if

the system is away from the critical point. Moreover, it has been observed that the power

spectrum of some key quantities decays as a power of the frequency, instead of showing the

familiar exponential behaviour (the effect is sometimes called 1/f noise, although different

powers of frequency may be involved).

Finally, the response of a system to external perturbations scales as a power law at the

critical point; as a consequence, there is no characteristic scale of response to perturbations.

Conversely, when the system is far from the critical point, the effect of perturbations can be

expressed in terms of distributions with a characteristic scale. It is also worth to mention the

phenomenon of critical slowing down [91], which consists in an asymptotically long time for

a critical system to absorb the perturbation.

Phase transitions are usually studied by means of mean-field theory and renormalisa-

tion group theory [12]. Recently, also techniques from information theory and information

geometry have been successfully applied, as well as approaches that use Fisher informa-

tion [34, 93, 68, 67].

Phase transitions occur at precise values of the control parameters. Therefore, it is natural

to ask the question as to why so many natural systems seem to settle exactly around the critical

point, without a careful tuning of such parameters. One of the most successful attempts to

answer this question comes from the models of self-organized criticality, SOC [6, 4, 35]. SOC

systems tend spontaneously to “self-organized critical states”, like in the case of the well-
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known sandpile model by Bak and co-workers. These states are called critical because they

exhibit some of the characteristics observed at critical points, the most important one being

a power-law behaviour of the fluctuations. The relations between SOC and the theory of

phase transitions and criticality has been also investigated [83, 24, 2, 56]. SOC is certainly

relevant for the study of complex systems, but in this review we are mainly concerned with the

phenomenon of dynamical criticality: in this case, there are qualitatively different dynamical

behaviours corresponding to different parameter values, and the critical points (or surfaces)

separate regions in parameter space that correspond to different behaviours. This notion of

criticality thus represents a straightforward generalization of the one that is used in describing

phase transitions. The most interesting case is the one where there are regions of chaotic

behaviours and regions of ordered (constant in time or regularly oscillating) behaviours. This

case has also been called for quite obvious regions “the edge of chaos” and it will be the

subject of the following sections.

It is important here to recall here the notion of ordered and disordered dynamical regimes

of a system. A dynamical system in an ordered regime is characterized by stationary states

that do not change in time, or that oscillate regularly. Moreover, when a system in the or-

dered regime is perturbed, the effect of such perturbation dies out. In a sense, systems in

the ordered regime are robust and resilient against perturbations. Conversely, in a system

in a disordered regime the effect of even a small perturbation spreads across the whole sys-

tem. The steady states of a disordered system have no regular patterns and may appear as

completely random. However, also deterministic systems can show disordered regimes, as in

the case of chaotic dynamical systems, which have strange attractors [85]. The hallmark of

chaotic dynamics is an extreme sensitivity to initial conditions: slightly different initial con-

ditions lead to exponentially fast divergent trajectories (even if both belonging to the same

strange attractor). In the following, with a slight abuse of terminology, we will use the terms

disordered and chaotic interchangeably. Critical systems are intermediate between these two

cases and their steady states are characterized by a mixture of properties from ordered and

disordered systems. In addition, when subject to external stimuli, the size of the perturba-

tion remains constant on average for long time. The change between order and chaos is also
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related to symmetry breaking and self-organization [30, 61, 62, 66].

3 Computation at the edge of chaos

The peculiar properties of critical systems enlightened in thermodynamics and statistical

physics are at the roots of a conjecture stating that systems at the phase transition achieve

the highest level of computational capability. The rationale behind this hypothesis is that

ordered regimes are too rigid to be able to compute complex tasks, as changes are rapidly

erased and the flow of information among the units of the system is rather low. Conversely,

disordered regimes are too erratic to provide a reliable response to inputs, as perturbations

and noise spread unboundedly, preventing effective information transmission and storage.

Critical regimes may indeed provide the optimal trade-off between reliability and flexibility,

i.e. they make the system able to react consistently with the inputs and, at the same time,

capable to provide a sufficiently large number of possible outcomes.

This conjecture has been first proposed by Packard [65], Langton [49] and Crutchfield [20]

who introduced the expression “computation at the edge of chaos”. Langton studied the

dynamical properties of cellular automata (CA). CA are systems composed of finite state

automata, a.k.a. cells, arranged in a D-dimensional lattice. Each cell takes as inputs the

states of the cells in a given neighbourhood. The transition function is supposed to be the

same for all the cells. The simplest case is that of deterministic binary 1-dimensional CA, with

neighbourhood composed of adjacent cells that update their state synchronously. Despite

their apparent simplicity, these CA were shown to exhibit nontrivial behaviours, classified

by Wolfram [92] into four classes: the first two classes are characterized by “ordered” CA,

which evolve in time reaching a homogeneous state (Class 1) or a set of stable or periodic

structures (Class 2). Class 3 is composed of CA showing a chaotic behaviour, i.e. sensitive to

perturbations in the initial conditions. Finally, class 4 shows complex behaviours, exhibiting

complex patterns in its time evolution. Langton defined a parameter, λ, that quantifies the

equidistribution of states in the transition function: for λ = 0, all transitions lead to one given

6



state, whilst for λ ≈ 1 all the possible transitions are equally represented in the transition

function. Langton showed that λ can play the role of a control parameter for CA and that

the behaviour of CA moves from ordered to disordered as λ increases approaching 1. The

transition from order to disorder takes place for λ ≈ 0.5 and is associated to properties of a

second-order phase transition: critical slowing down, transients can be described with a power

law and the average mutual information between cells is maximal. Remarkably, the critical

value of λ corresponds to transition functions belonging to class 4 according to Wolfram. It

has also been shown that some CA in Wolfram class 4 are capable of universal computation,

i.e. they are computationally equivalent to universal Turing machines (see, e.g. [18]). As a

consequence, Langton conjectured that complex computational capabilities are attained at

the phase transition.

Langton’s conjecture finds a first principled theoretical support in the work by Crutch-

filed (see, e.g. [20]) in which the intrinsic computational properties of a system are estimated

on the basis of stochastic automata. Given the system under observation, a data stream of

its time evolution is used to build an ǫ-machine, which is a minimal stochastic automaton

describing the data stream. Therefore, no information on the system is required, except for

the possibility of measuring the values of its relevant variables for a sufficiently long time

interval. Crutchfield showed that the size of the ǫ-machine diverges for systems at the phase

transition, such as logistic maps at the onset of chaos [85].

The relation between evolution and criticality in CA has been first investigated by Packard [65]

and subsequently inside the EvCA Project [59, 33]. An interesting finding of those studies is

that the evolution of CA does not necessarily lead to the edge of chaos, as it might depend

upon the evolutionary algorithm and the fitness function. This subject will be extensively

discussed in Section 5.

The conjecture that critical systems achieve the highest level of information processing is

supported by observing that in systems that undergo a phase transition information measures

that are relevant for computation are maximized at the critical point. For example, Sol and

Miramontes show that in an agent-based model in which agents move over a grid there exists
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a critical boundary in parameter space where maximum information transfer occurs [82]. The

study suggests that also natural systems composed of many interacting units—such as ant

colonies—which have to coordinate so as to attain nontrivial goals, may have evolved towards

critical dynamical regimes.

Subsequently, information-theoretic measures [19] have been thoroughly applied with the

aim of providing evidence for this hypothesis. The application of these methods makes it

possible to quantitatively study information processing in complex systems and characterize

the peculiarities of the dynamical regimes. Some of these results concern Boolean networks

(BNs), which will be often mentioned in this contribution for their relevance in this con-

text. BNs were introduced by Kauffman [38, 40] as a genetic regulatory network model and

they have been shown to reproduce significant properties of complex systems. Some notable

properties of BNs as models of genetic regulation will be surveyed in the following sections.

Here, we briefly introduce them so as to summarise the basic notions for assessing the re-

sults on BNs computational properties that will be reviewed. BNs are networks of binary

automata, ruled by Boolean transition functions, which in general may be different for each

automaton. Usually, an automaton in the network is called node. For a BN with N nodes

x1, x2, . . . , xN , the N -ple of node values [x1(t), x2(t), . . . , xN (t)] at time t represents the state

of the network at time t. Nodes are supposed to update their state at discrete time steps. In

the case of synchronous deterministic dynamics, there is only one successor for each network

state, therefore the network starts from an initial state and evolves in time until it encounters

a state already visited1 and then it repeats the same sequence of states. This sequence is

called cycle or attractor and the cardinality of the states that compose it is the cycle length

(or period). A special case is represented by cycles of length 1, usually called fixed points.

The portion of the BN trajectory before the cycle (which can be empty) is called transient.

The set of initial states that lead to a given attractor A is called the basin of attraction of

A. The most prominent class of BNs is that of Random BNs (RBNs), in which functions

and connections are chosen according to pre-defined distributions. A special case is the one

in which nodes receive exactly K distinct inputs chosen at random among the other nodes

1Under the hypothesis that N < ∞
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and each transition function is defined by composing the truth table assigning a 1 to each

of the 2K entries with probability p (called bias). Nodes update their value in parallel and

synchronously. RBNs show a phase transition between order and chaos depending on the

values of K and p [22, 78]. For 2p(1− p)K < 1 RBNs have on average an ordered behaviour,

whilst for 2p(1 − p)K > 1 the networks show extreme sensitivity to initial conditions and

very long cyclic attractors, which denote a chaotic behaviour. For this BN model, the critical

regime is achieved for 2p(1− p)K = 1, which describes a curve in the (K, p)-plane, called the

critical line. In addition, there exist also other ways to let BNs attain a critical regime, such

as the choice of boolean functions with specific characteristics.

The transition between order and chaos in RBNs has been extensively studied by means

of information-theoretic measures. Rämö et al. [70] propose to use the Shannon entropy of

the perturbation size distribution in RBNs as a measure for information propagation: this

measure is maximized at the phase transition. Intuitively, this results supports the hypothesis

that critical systems (critical RBNs in this case) have the largest repertoire of information

propagation actions, without incurring in chaotic behaviours. Ribeiro et al. [72] compute the

average pairwise mutual information between nodes at subsequent time steps. The mutual

information between two random variables measures the amount of information that the

knowledge on one variable carries about the other. As a consequence, the mutual information

between two nodes at subsequent time steps estimates the information transfer between nodes.

Ribeiro et al. show that this measure is maximized along the critical line. Therefore, critical

RBNs seem to attain a more efficient information transfer mechanism than that of ordered and

chaotic RBNs. Krawitz and Shmulevich [47] study the distribution of basins of attraction size

in RBNs and find that the Shannon entropy of this distribution scales with system size only

along the critical line, suggesting that the informationally optimal partition of the state space

is indeed attained when the system is operating between order and chaos. As a consequence,

only in critical RBNs size can scale with the capability of performing increasingly diverse and

coordinated behaviour. Further evidence for the computational capabilities of critical RBNs

is provided in [28, 58], where set-based complexity is considered; this quantity measures
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the amount of significant information embedded in a set of elements. For example, let us

take binary sequences of length N. A set of identical sequences carries negligible information

(as redundancy is maximal) and the same holds for a set of completely random sequences,

which carry no structure whatsoever. Galas et al. [28] compute the set-based complexity

of trajectories of RBNs in ordered, chaotic and critical regimes. They show that set-based

complexity is maximized for critical RBNs.

A principled approach for studying the computational capabilities in dynamical systems

is provided by Lizier in his Ph.D. thesis [54]. The work by Lizier is particularly important

because it makes it possible to quantitatively address some conjectures on the computational

capabilities of complex systems. He studies information processing in terms of information

storage, modification and transfer by using information-theoretic measures. A notable result

concerns RBNs, for which information storage and transfer are studied across the dynamical

regimes. Lizier and collaborators find that the dynamics of ordered RBNs is dominated by

information storage, which increases moving towards the edge of chaos and then it decreases

after the critical line. Information transfer also increases from order to disorder and peaks

just inside the chaotic regime, thus disrupting the information storage capability. RBNs in

the critical regime attain the optimal balance between these two capabilities [55]. As genetic

regulatory mechanisms are often modelled by means of RBNs, these findings suggest that

biological cells indeed evolved towards criticality so as to maximize coherent yet expressive

computation.

To conclude this succinct survey on information processing in critical RBNs, we mention

the fact that critical RBNs maximize Fisher information, which is known to be maximal in

order parameters for systems at the phase transition [93].

The relation between critical regimes and computational capabilities has been studied also

in systems other than CA and BNs. Kinouchi and Copelli [46] propose a model of interacting

neurons with random topology. A neuron can be in one out of three states: active, inactive

and refractory. Each neuron can be activated either owing to an external stimulus or via the

action of a neighbouring neuron active at the previous step, with probability pij. Neurons are
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connected randomly (forming an Erdös-Rény graph) and connection weights pij are random

variables with uniform distribution, with pij = pji.
2 The overall activity of the system is

measured as density of active nodes, i.e. the fraction of active neurons. Kinouchi and Copelli

show that this model has a phase transition in the density of active nodes as a function of

the average branching, which averages the weights of the network. For low average branching

ratios, the extinction times of perturbations are low, whilst for high values of branching ratio

the network indefinitely self-sustains the perturbation. Notably, critical networks have the

largest variance in the distribution of extinction times and present a power law behaviour

in the distribution of avalanche sizes. Bertschinger and Natschläger [11] study networks of

randomly connected threshold gates and show that they exhibit a transition between ordered

and disordered dynamics depending on the connectivity of the network. The networks found

at the edge of chaos are those able to perform complex computations on time series. A similar

result is presented in [50], where networks of spiking neurons are studied.

The findings previously surveyed support the hypothesis that reliable and flexible compu-

tational capabilities are a general property of critical dynamical systems. Further evidence

comes from the field of optimization, where some results suggest that also the best problem

solving capabilities are attained at a phase transition, at the edge of chaos. In particular,

it has been shown that the performance of local search algorithms is maximized when a pa-

rameter controlling the parallelism of local moves is properly tuned [57, 44, 73]. Macready et

al. [57] have shown that this value is indeed critical and corresponds to a phase transition in

the entropy of the system.

4 Critical living systems

It has been conjectured that systems in critical regime have advantages over systems to-

tally ordered or disordered and that this condition is achieved during evolution. Inspiring

discussions on this subject can be found in works by Kauffman [40, 41], where this tanta-

lizing hypothesis is proposed and discussed, along with preliminary yet significant results.

According to Kauffman, systems at the edge of chaos attain the best balance between ro-

2The symmetric coupling is chosen with the purpose of modelling electric gap junctions.
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bustness and adaptiveness; furthermore, they are able to “coordinate past discriminations

with reliable future actions” (quoted from [42]), i.e. they reliably and robustly respond to

inputs while being able to react with a wide repertoire of possible actions. In the last ten

years, compelling results have attracted much interest and revitalized research on the sub-

ject. Some researchers have addressed the question as to whether cells are critical, achieving

notable results [69, 77, 76, 79, 71, 63, 7, 16] by comparing statistical properties of ensembles

of genetic regulatory network models with statistical properties of real cells. The rationale of

these approaches relies in the comparison of statistical properties of ensembles of biological

genetic networks and RBNs or similar models: the best fit is attained when the models are

drawn from a distribution in which the parameters assume the critical value, i.e. the one that

separates the ordered from the disordered phase. This is indeed the method used to identify

dynamical criticality: a model of the system is built and its dynamical regimes are studied

as a function of one or more control parameters. Data from ordered and disordered regimes

are collected, as well as data at the border between the two regimes. The data produced by

the model are then compared: if the best match is achieved when model parameters have

the critical value, then evidence for the criticality of the real system is found. In particular,

the work by Serra and collaborators [69, 77] deals with avalanches in the expression of genes

produced by gene knock-out. They show that critical RBNs are the ones achieving the best fit

with real data from microarray experiments on the S. Cerevisiae. A crucial role in that work

is played by the so-called Derrida parameter ζ, which is an index of the dynamical regime of

discrete systems like BNs [41]. For ζ < 1 a single node perturbation affects in one step less

than one other node on average (ordered regime), whilst for ζ > 1 the perturbation reaches

more than one other node in one step (disordered regime); the condition ζ = 1 identifies the

critical regime. In [77, 23] it is shown that the distribution of avalanches depends only on

the Derrida parameter and that the best match between data from S. Cerevisiae and RBNs

is achieved for a value of ζ slightly less than 1; other values of ζ would lead to quite different

avalanches distributions. This result is in agreement with the ones attained by Shmulevich et

al. [79] who compare the Lempel-Ziv complexity [51] of data stream generated by a genetic

regulatory network model of the HeLa cells with that of RBNs in different regimes. They
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find that critical or slightly sub-critical RBNs are those with the best correspondence with

biological data. A similar approach has been followed by Nykter et al. [63], who compared

time series of macrophages and of RBNs by means of the normalized compression distance [52]

and show that the best fit is attained with critical RBNs.

Balleza et al. [7] show that genetic regulatory network models of several organisms are

critical, to the extent that, when perturbed, their behaviour is the same of critical RBNs.

Chowdhury and collaborators [16] infer a BN model describing the S. Cerevisiae and find that

the resulting BN has some characteristics of critical networks. Analogous results are shown by

Darabos et al. [21], while Hanel et al. [31] show that even a simple genetic regulatory model

containing a minimal nonlinear contribution can be tuned at the edge of chaos, suggesting

that many models can indeed enjoy the same property. Finally, indications about the presence

of critical values in natural cells are also provided in [37].

These results are not conclusive, but they anyway support the hypothesis that biological

cells are in a dynamical regime between order and chaos.

Besides cells, also other biological systems have been studied and the results suggest

that they may enjoy the same property. A striking example is that of neural dynamics:

notable results and models have been proposed in neuroscience, such as the ones discussed

in [8, 15, 27, 86]. These results bring evidence to the hypothesis that brain dynamics is critical,

as they show power law in the distribution of avalanches only when neurons are at the normal

activity condition, whilst they behave differently when they are kept over or under activated.

As stressed in [9], these findings suggest that the brain is indeed dynamically critical, i.e. it

is poised between an ordered and a disorder regime.

Critical dynamics has also been found in models of flocks of birds [60] and in morpho-

genetic processes [48].

It is worth to mention that the notion of “extended critical situations” has been proposed

to describe the case of living systems [3]. The intuition of this proposal is that biological

entities permanently keep themselves in a region of criticality, rather than a point.
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Experiments on real biological systems and results on models provide strong evidence

to support the “criticality hypothesis”. Yet, the reasons why biological systems seem to be

poised between order and disorder are still unclear and somehow elusive. Indeed, there are

two main noncontradictory views of this conjecture:

(i) The first one can be stated saying that critical systems are more evolvable than systems

in other dynamical conditions because they optimally balance mutational robustness (i.e.

mutations just slightly change the phenotype, without introducing dramatic changes) and

phenotypic innovation (i.e. mutations can introduce significant novelty in the phenotypes).

(ii) The second version of this conjecture refers, instead, to the possible fitness advantages

of critical systems over ordered or disordered ones, which seem to be the ability of attaining the

most effective balance among information storage, modification and transfer, and of achieving

the best trade-off between the repertoire of their possible behaviours and reliability of their

actions.

Several attempts have been made for providing support to the conjecture, in either version.

All these works share a similar approach, which consists in studying the artificial evolution

of some model, such as Boolean networks. We remark that in this survey we are interested in

those works directly addressing the criticality hypothesis, rather than the evolution of notable

properties such as robustness, adaptivity, modularity or specific topological features.

Aldana et al. [1] address the problem of the relation between robustness and evolvability

and provide evidence to support that critical BNs achieve an optimal balance between these

two properties. The work by Torres-Sosa et al. [87] strengthens this result by analysing the

outcome of an artificial evolutionary process. In their work, RBNs are subject to artificial

Darwinian evolution operating by means of mutation and gene duplication. Selection favours

networks that are able to both (a) maintain the current “phenotypes” (i.e. attractors) and (b)

generate new ones. The authors show that this evolutionary process drives RBNs towards the

edge of chaos. Further evidence to the evolvability of critical RBNs is provided in [64] where

RBNs at the edge of chaos are shown to be maximally diversified in their structure. Similar
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results concerning the diversity among attractors in critical RBNs have been presented in [75].

A key factor in the relation between robustness and evolvability is the fitness landscape

on which the evolutionary process acts. In a seminal work, Kauffman and Smith [45] investi-

gated the relation between the parameters of RBNs (connectivity and bias) and the properties

of the evolution landscape. This link has been investigated explicitly w.r.t. the criticality

hypothesis in [10], where it has been shown that not all the tasks for which a BN is trained

necessarily lead to a critical regime. In fact, on the one hand the dynamics of a RBN influ-

ences its mutational robustness and its phenotypic plasticity, but on the other hand it may

happen that the properties of the fitness landscape are dominated by the kind of task for

which networks are selected. This is indeed a crucial point in the criticality hypothesis, which

has not yet sufficiently investigated and that will be discussed in Section 5. The interplay

between selective pressure and dynamical regime of RBNs has also been investigated in a

co-evolutionary settings in [39], where BNs are evolved to play the mismatch game, i.e. a

two-players game in which networks should compare some preselected nodes and try to match

the negated values of the opponent. It was shown that evolution produces BNs that are crit-

ical. In [43] an abstract model of species co-evolution is studied, in which the landscape of

one species changes the landscape of the other during the evolutionary process. In particular,

the NK-model is used [41]. Results suggest that evolution leads to an equilibrium in which

evolutionary avalanches appear to propagate on all length scales in a power law distribution.

Christensen et al. [17] study the evolution of random networks of interacting elements (a

model similar to the NK-model) under extremal dynamics [5] and find that the evolutionary

process lead to networks with critical connectivity. Analogous results are presented in [13]

and [53] for threshold networks and co-evolving RBNs, respectively.

The second stream of studies concerns the investigation of the evolutionary advantages

of critical systems owing to their enhanced computational capabilities. In Section 3 we have

provided an overview of the results suggesting that optimal computational capabilities are

attained at the edge of chaos. Nevertheless, it is also important to test these hypotheses in

evolutionary contexts. Goudarzi et al. [29] observe that RBNs evolved to be able to solve
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combinatorial tasks of varying hardness (e.g. binary addition and even-odd classification)

converge to populations of critical networks. Indeed, such BNs exhibit a damage spreading

behaviour typical of critical RBNs. Interestingly, the authors find that for all the three tasks

considered in their work, evolution leads to criticality. The discrepancy between that work

and [10] suggests that the choice of the fitness function may play a major role in the outcome

of the experiments and provides indications for further investigations. Hidalgo et al. [32] study

the evolution of agents whose behaviour is modelled by means of probability distributions over

their possible actions. The fittest agents are those which best react to the external stimuli. For

simplicity, it is supposed that both environmental stimuli and agent actions are represented as

binary strings: the best action for an agent is a string completely matching the environmental

string. Agents have internal parameters controlling their actions distribution, which should

match the stimuli distribution of the environment (of course, it is supposed that a perfect

match is not possible, as e.g. the number of agent internal parameters is lower than that of

environmental parameters). Three scenarios are studied: (1) agents face a static environment;

(2) agents face a variable environment, composed of many different stimuli sources; (3) agents

interacts among themselves, so the environment for an agent is composed of the other agents.

The evolutionary process acts on the parameters of the agent action probability distribution.

Results suggest that the critical regime is a stable evolutionary solution when agents try to

optimize their interaction with a changing environment or among themselves, whilst for low

complexity environments the systems tend to remain non-critical. This result reinforces the

hypothesis that criticality is an evolutionary advantage only under some conditions, which

may involve variability, dynamicity and complexity.

5 Discussion

Despite the promising results achieved so far on the criticality hypothesis, some important

issues and open questions have still to be addressed.

First of all, different definitions of critical system have been used in the literature. For
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example, most definitions of criticality rely on the properties of the effect of perturbations

on the systems, but the condition of the systems when perturbed and how to measure the

effects of perturbations are often implicit [14, 88]. This makes the ground of the discussions

slippery and might induce unsound conclusions. In order to test the criticality hypothesis, it

is necessary to state it in more precise terms. In general, criticality is related to the average

behaviour of a small perturbation of a system state. In the ordered case, two systems with

the same parameters but slightly different initial conditions will, on average, tend to the same

state, so that their differences will die out, while in the disordered (chaotic) case the distance

between the two systems will initially tend to grow. Critical systems are intermediate between

these two cases, so the size of the perturbation remains initially constant on average. Note

however that when we consider the “average” behaviour of a perturbation we may actually

refer to different types of ensembles over which the averages are taken. Failing to appreciate

these differences may lead to misunderstandings and erroneous conclusions, as it has been

demonstrated [14, 88]. Averages can be taken for example on a particular instance of the

system under examination (i.e. keeping fixed the form of equations and the values of the

parameters); in this case the average can be taken either over all the possible initial condi-

tions or over the different initial conditions that lead to the same attractor (i.e. a state or a

set of states that are reached from some initial condition after the transients have died out).

However, it has been shown that averages taken over completely arbitrary initial states can be

misleading, as some of these states might be impossible to reach under any conditions. It is

therefore interesting also to consider a restricted set of initial conditions, for example limiting

to those that can be the successor of another (arbitrary) state. Moreover, it is also interesting

to consider averages taken only over the states that belong to a specific attractor, or over

the states that belong to an attractor (whichever it is). Last but not least, it is important to

consider also ensembles of systems with different parameter values. We will refer to this kind

of averages as to the structure ensemble averages, that can be taken according to the same

different alternatives that have been described above for the case of a single instance of the

system. As it has been observed, criticality is related to the average behaviour of a small per-

turbation, and the different ensembles induce different (but related) definitions of criticality.
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This notion has been quantified in that of sensitivity for discrete dynamical systems and BNs

in particular [78]. The sensitivity of a Boolean function measures how sensitive the output is

with respect to changes in the inputs. Sensitivities can be computed on the various ensembles

mentioned above, and the size of the ensembles over which averages are taken naturally leads

to a hierarchy of sensitivities.

The identification of the conditions under which evolutionary dynamics favours critical

systems is still a fundamental open question. As previously mentioned, recent works have

addressed this point [10, 32], but this issue still requires a thorough and principled investiga-

tion. In particular, this requires the definition of a function that measures the effectiveness

with which a system accomplishes a given task, i.e. a fitness function. Generally speaking, in

the case where dynamics is dominated by attractors, the different attractors will define, for

a given system and set of parameter values, its dynamic repertoire, i.e. the different states

that it can reach starting from various conditions. Therefore the fitness function will often

be related to the attractor landscape. We expect, on the basis of reasonable guesses and of

previous studies, that critical systems will not always be preferred, since the outcome depends

upon tasks features (see [10]). Therefore the goal is indeed quite complicated, as it amounts

to finding out for which kind of tasks critical systems are better. Our guess is that this is

more likely to happen in time-varying complicated tasks. The different types of tasks should

therefore be categorized in a proper way, in particular by the value of some parameters that

describe the main characteristics of the fitness landscape (e.g. correlation lengths) and of its

own dynamics (e.g. the rate of change and its amount).

The last observation is tightly related to the connection that the system has with its envi-

ronment and the way by which it interacts with it. Indeed, the importance of the environment

on system criticality and of the openness of the systems are often overlooked. In addition,

the relation among evolution, adaptation and learning is often just informally addressed. All

these issues are in fact relevant for the identification of the conditions under which systems

evolve towards critical regimes and to understand the reasons of this phenomenon.
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A further issue that has not yet been discussed above concerns artificial systems: if crit-

ical dynamical systems have evolutionary advantages in nature, then this property may also

hold for artificial systems, such as learning ones. Therefore, enforcing dynamical criticality

or correlated properties may provide a general criterion for the automatic design of such

systems. This would complement the usual approach consisting in defining ad-hoc and task

dependent fitness functions in evolutionary techniques. Some preliminary work has been

done aimed at investigating the relation between fitness and some information-theoretic mea-

sures [84, 25, 36, 74], but without explicitly considering dynamical criticality. On the one

hand, the exploration of this idea may pave the way for devising advanced methods both for

learning techniques and system design, pushing the envelope on the design of autonomous

open systems. On the other hand, it would contribute to deepen our knowledge on the criti-

cality hypothesis itself.

Last but not least, it is important to observe that the question as to whether critical sys-

tems share some common properties in their internal organization has not yet been addressed.

It has been shown that information-theoretic measures make it possible to detect dynamical

structures in complex systems [90, 26, 89]. The method is based on a measure called the

dynamical cluster index and can detect subsets of variables that are tightly integrated among

themselves and loosely interacting with the rest of the systems. Therefore, this method may

provide an effective tool for identifying common characteristics in the organization of critical

dynamical systems, in which the structure and hierarchy of relevant subsets are expected to

be different from those in ordered and disordered regimes.

6 Conclusion

In this paper we have provided an overview of dynamical criticality, as it is discussed in the

natural sciences and computer science. Evidence of a dynamics between order and disorder has

been found for systems such as biological cells and the brain; moreover, notable results support

the conjecture also computational systems across the critical regime are capable of attaining
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an optimal trade-off between reliability and flexibility. We have also briefly outlined some

open questions on dynamical criticality that have still to be addresses, concerning foundational

aspects and possible applications in artificial systems design.
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