
22/12/2024 11:39

A RANS knock model to predict the statistical occurrence of engine knock / D'Adamo, Alessandro; Breda,
Sebastiano; Fontanesi, Stefano; Irimescu, Adrian; Merola, Simona Silvia; Tornatore, Cinzia. - In: APPLIED
ENERGY. - ISSN 0306-2619. - 191:(2017), pp. 251-263. [10.1016/j.apenergy.2017.01.101]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



1 

 

A RANS Knock Model to Predict the Statistical Occurrence of Engine 1 

Knock 2 

Alessandro d’Adamoa, Sebastiano Bredaa, Stefano Fontanesia 3 

 4 

Adrian Irimescub, Simona Silvia Merolab, Cinzia Tornatoreb,  5 

 6 
a University of Modena and Reggio Emilia 7 
Department of Engineering “Enzo Ferrari”, Via Vivarelli 10, 41125 Modena, Italy 8 
 9 
b Istituto Motori-CNR, Via Marconi 4, 80125 Napoli, Italy 10 
 11 
 12 
Corresponding author: Alessandro d’Adamo, tel.+39 059 2056115 – fax +39 059 2056126 – email  13 
alessandro.dadamo@unimore.it 14 

 15 

Abstract 16 

In the recent past engine knock emerged as one of the main limiting aspects for the achievement of higher 17 

efficiency targets in modern spark-ignition (SI) engines. To attain these requirements, engine operating 18 

points must be moved as close as possible to the onset of abnormal combustions, although the turbulent 19 

nature of flow field and SI combustion leads to possibly ample fluctuations between consecutive engine 20 

cycles. This forces engine designers to distance the target condition from its theoretical optimum in order to 21 

prevent abnormal combustion, which can potentially damage engine components because of few individual 22 

heavy-knocking cycles. 23 

A statistically based RANS knock model is presented in this study, whose aim is the prediction not only of 24 

the ensemble average knock occurrence, poorly meaningful in such a stochastic event, but also of a knock 25 

probability. The model is based on look-up tables of autoignition times from detailed chemistry, coupled 26 

with transport equations for the variance of mixture fraction and enthalpy. The transported perturbations 27 

around the ensemble average value are based on variable gradients and on a local turbulent time scale. A 28 

multi-variate cell-based Gaussian-PDF model is proposed for the unburnt mixture, resulting in a statistical 29 

distribution for the in-cell reaction rate. An average knock precursor and its variance are independently 30 

calculated and transported; this results in the prediction of an earliest knock probability preceding the 31 

ensemble average knock onset, as confirmed by the experimental evidence. The proposed model estimates 32 

not only the regions where the average knock is promoted, but also where and when the first knock is more 33 

likely to be encountered. 34 

The application of the model to a RANS simulation of a modern turbocharged direct injection (DI) SI engine 35 

with optical access is presented and the analysis of the knock statistical occurrence obtained by the proposed 36 

model adds an innovative contribution to overcome the limitation of consolidated “average knock” analyses 37 

typical of a RANS approach. 38 

 39 

Introduction 40 

In the last decades several approaches were proposed to numerically predict and simulate the average engine 41 

knock in the framework of RANS simulations. Their development was driven to meet the increasing 42 

efficiency targets requested by legislation. Thermal efficiency and specific output power are raised to 43 

unprecedented levels, in order both to reduce fuel consumption and pollutant emissions and to 44 

simultaneously preserve the desired target performance levels. 45 
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Under high thermal loads abnormal combustion events are promoted, the most harmful of which is engine 46 

knock. Knock is the consequence of the self-ignition of a portion of unburnt mixture ahead of the main 47 

propagating flame front, and its occurrence is enhanced by the mentioned strategies, as outlined in [1]. Given 48 

the need to operate as close as possible to the theoretical optimum of the regular combustion range [2] and 49 

the simultaneous random nature of the turbulent combustion typical of internal combustion engines, the 50 

occurrence of engine knock is a possibility that is always to be accounted for when the operating condition is 51 

experimentally calibrated. To this aim, in-cylinder pressure is monitored in order to observe the random 52 

presence of knocking events. This is assessed by the definition of knock indices, such as the commonly 53 

adopted MAPO (Maximum Amplitude of Pressure Oscillations) or IMPO (Integral Modulus of Pressure 54 

Oscillations) as widely surveyed by [3, 4, 5], as well as other indicators like the DKI (Dimensionless Knock 55 

Indicator) [6] or the time-derivative of the in-cylinder pressure trace. Irrespectively of the chosen indicator, 56 

an arbitrary threshold value is always present to discern between a soft and acceptable knock intensity and a 57 

heavy and damaging knock level. Threshold values are part of engine manufacturer know-how and 58 

standardized limits are not defined. 59 

All the mentioned aspects motivate why a significant research effort was paid to knock prediction in the 60 

recent years. Quasi-dimensional and three-dimensional CFD models for average knock prediction were 61 

developed and validated against experiments by several research groups. Vancoillie and co-authors used a 62 

fuel-specific Arrhenius formulation for the reaction rate of methanol and ethanol fuels in [7], and the average 63 

ignition delay was used to integrate a knock precursor species. A similar modelling approach was used by 64 

Forte et al. [8] and Corti et al. in [9] for gasoline fuels.  65 

However, the ensemble average approach to knock modelling through the use of RANS simulations suffers 66 

of the inability to reproduce the intrinsically stochastic nature of knock; this is a strong limitation for this 67 

type of models. The dramatic impact of cycle-to-cycle variability (CCV) on all the in-cylinder physical 68 

processes, such as fuel-air mixing, combustion initiation and turbulent burn rate, motivates the adoption of 69 

more refined approaches. In fact, since engine knock depends on all the preceding processes, it is itself a 70 

typically stochastic and cycle-dependent phenomenon whose accurate prediction is therefore extremely 71 

complex. A rigorous analysis of CCV can only be carried out through the use of Large-Eddy Simulation 72 

(LES), where the largest flow structures are resolved allowing the simulation of flow unsteadiness deriving 73 

from large-scale turbulence. Despite the still demanding cost of this type of analyses, several promising 74 

studies of this kind were presented in the recent years, such as the works by Robert et al. [10, 11]. They 75 

showed that the simulated combustion CCV was able to replicate the degree on instability measured at the 76 

test-bench for a premixed isooctane-air engine at several spark timings. Large-Eddy Simulation was used to 77 

predict knock occurrence in a turbocharged GDI unit by the authors in previous studies [12, 13, 14], and the 78 

cycle-dependent knock-signature well correlated with the outcomes from the experimental test-bench for 79 

both Knock-Limited Spark Advance (KLSA) and for a knocking regime with an advanced spark-timing. 80 

These examples showed the investigation insight made possible by LES and the possibility to explain 81 

individual misfiring cycles or cycle-specific knocking events, thus allowing a direct comparison between 82 

simulation results and engine test-bench output. However, the application of LES on production engines still 83 

suffers from the severe computational cost, preventing a full application in the design process of current 84 

units. 85 

In this context the definition of a new approach for knock modelling emerges as a necessary bridge between 86 

the poorly representative RANS mean knock prediction and the relevant CPU effort of a multiple cycle LES 87 

study. This is based on the RANS formalism for average quantities, combined with the use of transport 88 

equations for variances of physical conditions, allowing to estimate a knock probability or a fraction of 89 

knocking cycles. The statistical RANS knock model proposed in this paper relies on transport equations for 90 

mixture fraction and enthalpy variances; detailed chemistry is used to calculate an accurate ignition delay of 91 

a gasoline surrogate model for the unburnt mixture. The variances of the variable are used as a basis of a 92 

multi-variate Gaussian model of the unburnt fluid cell, from which information on both the average reaction 93 

rate and its deviation are used to infer a presumed distribution of knocking events around the mean knock 94 

onset. An innovative definition for a probability of knocking cycles is proposed based on the same statistical 95 

basis deriving from the model equations, differently from what previously proposed by Linse et al. [15]. An 96 
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initial application of the PDF-knock model was presented by the authors in [16], and the application on a 97 

knock-limited turbocharged GDI engine successfully predicted 6% of knocking cycles while the ensemble 98 

average realization was knock-safe. If a traditional RANS knock model was used, a knock-safe condition 99 

would have emerged, with no further information available on knock probability and lack of correlation with 100 

the experimental acquisitions. Conversely, the use of the presented PDF-knock model gave a quantitative 101 

information regarding the presumed fraction of knocking cycles affecting the mean simulation for a given 102 

operating condition, thus enhancing the meaning of a RANS simulation of knock with a typical test-bench 103 

acquisition dataset. This initial application motivated the development of the statistical knock model and the 104 

application on a research single-cylinder engine presented in this paper. 105 

In the next section the details of the knock model are presented, which is based on detailed chemistry 106 

tabulation to accurately reproduce the local reaction rate. A statistically-based treatment accounting for 107 

presumed turbulence-chemistry interaction is presented and transport equations for the local perturbation of 108 

the thermal and mixing state are introduced. Finally, the derivation of the mean knock precursor and of its 109 

variance are presented. The model is applied to an optically accessible GDI engine, and the knock prediction 110 

given by the presented model is compared to the experimental outcomes in terms of frequency of knocking 111 

cycles. A criterion is also proposed to correlate the results from the Probability Density Function (PDF) 112 

based knock model with the number of knocking cycles, and the potentiality and the limitations of the 113 

presented model are critically presented and discussed. 114 

 115 

Presumed-PDF Knock Model 116 

Cell-Average Reaction Rate 117 

The first step of the presented model is based on the calculation of a cell-wise average reaction rate. A 118 

procedure for the calculation of the autoignition (AI) delay is presented in [17, 18] and it is deputed to the 119 

interpolation of a cell-specific delay time from a pre-calculated database of calculated delay times 𝜏̃. Multi-120 

dimensional interpolation is carried out considering the local Favre-averaged physical conditions, i.e. the 121 

input vector 𝜑 for the delay time interpolation considers the density-average values for each of absolute 122 

pressure, unburnt temperature, equivalence ratio and residuals mass fraction (Eq. 1). 123 

𝜑 = 𝜑(𝑝̃, 𝑇̃𝑢, Φ̃, 𝑌̃𝐸𝐺𝑅)                                                                                                                                      (1) 124 

The 𝜑 vector lists the independent variables that govern a multiple interpolation technique whose result is the 125 

AI delay time 𝜏̃. In this study the Andrae et al. [19] Toluene Reference Fuel (TRF) mechanism is adopted to 126 

generate a detailed look-up table of AI delays reproducing the autoignition behavior of a commercial RON95 127 

European gasoline, corresponding to the fuel quality used in the experiments. Once the local 𝜏̃ is known, it 128 

can be time-integrated in the Livengood and Wu [20] or in the Lafossas et al. [21] models. 129 

The limitation of the crude use of the cell-wise average 𝜏̃ value to represent the local reaction rate is the 130 

concept that a perfectly uniform value of pressure, unburnt temperature, equivalence ratio and residuals mass 131 

fraction is assumed in the cell. As a consequence, every fluid cell is considered as a laminar well-stirred 132 

reactor. Even in a RANS framework, ensemble average turbulence may affect the local thermal and mixing 133 

states around the mean value which could, in turn, induce variations in the reactivity of the unburnt charge. 134 

Such an effect would be completely neglected by using a unique 𝜏̃ value. Therefore the model is extended to 135 

provide information regarding not only the average knock onset but also its dispersion around the mean 136 

value; details are presented in the next sections. 137 

PDF-Knock Model Equations 138 

Two additional transport equations are introduced to account for the statistical reconstruction of the physical 139 

states which may simultaneously be present in each fluid cell. Their dispersion around the mean value is 140 
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originated by the local turbulence intensity, ultimately leading to two independent knock precursors and to a 141 

statistically-based knock prediction. Dedicated transport equations are solved to account for local values of 142 

unburnt enthalpy and mixture fraction variance, ℎ"𝑢
2̃  and 𝑍"2̃ respectively. They are reported in Eq. 2 and 3. 143 

𝜕𝜌̅ℎ"𝑢
2̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
[𝜌̅𝑣̃𝑗ℎ"𝑢

2̃ − (𝜌̅𝐷
ℎ"𝑢

2̃ +
𝜇𝑡

𝜎𝑡
)

𝜕ℎ"𝑢
2̃

𝜕𝑥𝑗
] = 2

𝜇𝑡

𝜎𝑡
(

𝜕ℎ𝑢̃

𝜕𝑥𝑗
)

2

−
𝜌̅

𝜏𝑍(𝑅𝑒𝑡)
ℎ"𝑢

2̃                                                           (2) 144 

𝜕𝜌̅𝑍"2̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
[𝜌̅𝑣̃𝑗𝑍"2̃ − (𝜌̅𝐷𝑍"2̃ +

𝜇𝑡

𝜎𝑡
)

𝜕𝑍"2̃

𝜕𝑥𝑗
] = 2

𝜇𝑡

𝜎𝑡
(

𝜕𝑍̃

𝜕𝑥𝑗
)

2

−
𝜌̅

𝜏𝑍(𝑅𝑒𝑡)
𝑍"2̃                                                            (3) 145 

The difference from the standard transport equations used for Favre-average unburnt enthalpy ℎ𝑢̃ and 146 

mixture fraction 𝑍̃ is condensed in the dissipation terms, −
𝜌̅

𝜏𝑍(𝑅𝑒𝑡)
ℎ"𝑢

2̃  and −
𝜌̅

𝜏𝑍(𝑅𝑒𝑡)
𝑍"2̃ respectively. They 147 

are a function of the turbulent Reynolds number 𝑅𝑒𝑡, from which a turbulent relaxation time-scale 𝜏𝑍(𝑅𝑒𝑡) is 148 

expressed from local values using the approach proposed by Fox [22] and reprised by Subramanian et al. 149 

[23]. The relaxation time-scale 𝜏𝑍(𝑅𝑒𝑡) is calculated based on the two equation k-ε turbulence model and on 150 

a 𝐶𝑍 parameter, and it is calculated as in Eq. 4: 151 

𝜏𝑍(𝑅𝑒𝑡) = 𝐶𝑍(𝑅𝑒𝑡)−1 𝑘

𝜀
                                                                                                                                    (4) 152 

The 𝐶𝑍 variable links the local flow turbulence to the variance dissipation rate. To this aim, it is expressed as 153 

a function of the local turbulent Reynolds number 𝑅𝑒𝑡 as proposed in [23] and illustrated in Figure 1. A 154 

moderate dependence on the local 𝑅𝑒𝑡 is visible in Figure 1, and a first order approximation of this 155 

formulation would be to consider 𝐶𝑍 = 2.2. 156 

 157 

Figure 1.Variance dissipation rate 𝐶𝑍 parameter as a function of the local turbulent Reynolds number 𝑅𝑒𝑡. 158 

For low turbulent conditions (i.e. low 𝑅𝑒𝑡), a small value of the 𝐶𝑍(𝑅𝑒𝑡) parameter is calculated, resulting in 159 

a long turbulent relaxation time-scale 𝜏𝑍(𝑅𝑒𝑡) from Eq. 4. As a consequence, the variance destruction 160 

operated by turbulence-operated mixing in Eq. 2 and 3 is slow and a high probability to find in-cell far from 161 

average states is accounted for. The opposite is verified for highly turbulent conditions. The perturbation of 162 

the local fluid state is not arbitrarily imposed, but it is derived from transport equations originating from 163 

turbulence intensity itself, hence no artificial or user-imposed variation of flow variables is introduced. 164 

Equations 2 and 3 constitute the fundaments of the statistical treatment of the presented knock model and 165 

their application will be described in the next sections. 166 

Finally, despite the absence of explicit spray-related terms in Eq. 2 and 3, the fuel spray affects variance 167 

fields by promoting gradients in the mean field of both 𝑍̃ and ℎ𝑢̃ due to fuel evaporation and evaporative 168 

cooling, respectively. This leads to variance production, as accounted for by the first term on the RHS of Eq. 169 
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2 and 3. Also, the spray-induced turbulence acts as a local thermo-mechanical mixer, which is considered by 170 

the dissipation terms on the RHS of Eq. 2 and 3. 171 

Statistical Description of In-Cell Reaction Rate 172 

Both mean values and their variances are considered for enthalpy ℎ and mixture fraction 𝑍. As for cell-173 

averaged values, these are calculated from standard Favre-averaged Navier-Stokes transport equations, 174 

whereas local variance values are derived from the presented two additional transport equations (Eq. 2 and 175 

3). 176 

As a first step, the mixture fraction 𝑍 is examined. Given the mean 𝑍̃ and the variance 𝑍"2̃, a normal 177 

Gaussian distribution around the mean value in the mixture fraction space is assumed, whose spreading is 178 

represented by 𝑍"2̃. The probability 𝑃(𝑍) to find the generic 𝑍 mixture quality in the cell volume is 179 

represented by Eq. 5. 180 

𝑃(𝑍) =
1

√𝑍"2̃√2𝜋
∙ 𝑒𝑥𝑝 [−

(𝑍−𝑍̃)2

2∙𝑍"2̃
]                                                                                                                      (5) 181 

If a single variable fluctuation was of interest, an analogous treatment could be carried out for enthalpy ℎ. 182 

However, in this model both mixture fraction 𝑍 and unburnt enthalpy ℎ𝑢 are affected by turbulence, as 183 

expressed by the variance values ℎ"𝑢
2̃  and 𝑍"2̃. Their joint effect has to be accounted for in each single cell 184 

and it is evaluated using a multi-variate Gaussian distribution, reported in its general form in Eq. 6 and 185 

considering a correlation coefficient 𝜌𝑍ℎ whose meaning will be described later. 186 

𝑃(𝑍, ℎ𝑢) =
1

2𝜋∙√𝑍"2̃√ℎ"𝑢
2̃ ∙√1−𝜌𝑍ℎ

2

∙ 𝑒𝑥𝑝 {−
1

2(1−𝜌𝑍ℎ
2)

∙ [
(𝑍̃−〈𝑍̃〉)2

𝑍"2̃
+

(ℎ̃−〈ℎ̃〉)2

ℎ"𝑢
2̃

−
2𝜌𝑍ℎ(𝑍̃−〈𝑍̃〉)(ℎ̃−〈ℎ̃〉)

√𝑍"2̃∙√ℎ"𝑢
2̃

]}                   (6) 187 

A simplification of Eq. 6 could be introduced by assuming mixture fraction Z and unburnt enthalpy ℎ𝑢 as 188 

uncorrelated variables, implying 𝜌𝑍ℎ = 0 and leading to the simplified form in Eq. 7. This approximation is 189 

only used at this initial stage to describe the multi-variate model for the cell as a function of the local 190 

turbulence level. 191 

𝑃(𝑍, ℎ𝑢) =
1

2𝜋∙√𝑍"2̃√ℎ"𝑢
2̃

∙ 𝑒𝑥𝑝 {−
1

2
∙ [

(𝑍̃−〈𝑍̃〉)2

𝑍"2̃
+

(ℎ̃−〈ℎ̃〉)2

ℎ"𝑢
2̃

]}                                                                                (7) 192 

As a final step, the mixture fraction space is converted into an equivalence ratio one and the unburnt 193 

temperature 𝑇𝑢 is substituted to enthalpy through Eq. 8 and 9. 194 

𝑇"𝑢
2̃ =

ℎ"𝑢
2̃

𝑐𝑝
                                                                                                                                                          (8) 195 

Φ"2̃ = 𝛼𝑠𝑡 ∙
𝑍"2̃

𝑌̃𝑂2+𝑌̃𝑁2

                                                                                                                                         (9) 196 

In Eq. 8 𝑐𝑝 is the isobaric mixture specific heat, while in Eq. 9 𝛼𝑠𝑡 is the stoichiometric air-to-fuel ratio of 197 

the fuel-air mixture and 𝑌̃𝑂2
 and 𝑌̃𝑁2

 are the mass fractions of oxygen and nitrogen respectively. From a 198 

mathematical point of view, this treatment stands as a presumed statistical reconstruction of all the possible 199 

combinations of (Φ, 𝑇𝑢) which may exist in the cell and whose dispersion around the mean value is given by 200 

the local turbulent time scale. The expression reported in Eq. 7 represents the probability of a given (Φ, 𝑇𝑢) 201 

state to be present in the cell volume. The probability is maximum for the mean value pair (Φ̃, 𝑇̃𝑢), while it is 202 

progressively reduced for far-from-average states, although it is not null for these; this anticipates the 203 

limitation of a single AI delay to describe the whole cell reactor. The statistical two-dimensional model for 204 
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the fluid cell is graphically resumed in Figure 2 for different levels of turbulence, which is reflected by the 205 

amplitude of the multi-variate Gaussian model. The use of normal distribution for mixture fraction is 206 

motivated to keep the model assumptions to a minimum and to allow the use of a well-established multi-207 

variate Gaussian distribution on 𝑍 and ℎ𝑢. However, beta-distribution is another candidate choice for mixture 208 

fraction statistical representation, although it relevantly complicates the definition of a bi-variate distribution 209 

function such as the one in Eq. 6. 210 

   211 

Figure 2. Multi-variate Gaussian-PDF distribution of physical states for the fluid cell in the presumed-PDF knock model. For the same 212 

most probable condition (Φ̃, T̃u), increasing turbulence intensity levels (from left to right) lead to a more effective mixing and to a 213 

probability reduction for far from average states to exist. 214 

For the sake of numerical implementation, the multi-variate Gaussian distribution of physical conditions 215 

(Φ, 𝑇𝑢) is discretized in an arbitrary number of physical states. In the present study, a cell-wise discretization 216 

step of half a standard deviation is adopted for both equivalence ratio and temperature, i.e. it is based on the 217 

local values of √𝑇"𝑢
2̃ 2⁄  and √Φ"2̃ 2⁄ . Finally, a clipping distance from the mean value must be chosen in 218 

order to bound a finite in-cell physical space: in the present analysis a clipping is adopted at two standard 219 

deviations of each variable, i.e. ±2 ∙ √𝑇"𝑢
2̃  and ±2 ∙ √Φ"2̃. A consequence of this is that approx. 95% of the 220 

overall probability of mixture states is accounted for. Each of the two independent variables is therefore 221 

divided into 9 discrete values and the distribution of the in-cell states counts 92 conditions. Sensitivity 222 

analyses showed that this is a balanced compromise between the resolution of the discretized distribution and 223 

the amplitude of the simulated states. The result of the outlined procedure is a discrete clipped multi-variate 224 

Gaussian distribution. Due to the discretization operation and the boundary truncation, a final re-225 

normalization is carried out to re-normalize the sum of all the represented discrete states to unity. 226 

The presence of the correlation coefficient 𝜌𝑍ℎ in Eq. 6 is used here to account the degree of relationship 227 

between unburnt temperature variation and mixture fraction. This is needed since this is a likely scenario in a 228 

modern GDI unit, where intense fuel stratification is observed. Charge non-homogeneity may persist until 229 

the end of the compression stroke, and it causes temperature inhomogeneity due to the dependency of the 230 

specific heat on mixture quality. The correlation coefficient 𝜌𝑍ℎ is calculated in the model at each iteration 231 

through the analysis of the in-cylinder instantaneous 𝑍̃ and ℎ𝑢̃ fields and it is modelled using a Pearson-like 232 

formulation as in Eq. 10: 233 

𝜌𝑍ℎ =
𝜎𝑍ℎ

𝜎𝑍̃∙𝜎ℎ̃

=
∑ [(𝑍̃𝑖−〈𝑍̃〉)∙(ℎ̃𝑢,𝑖−〈ℎ𝑢̃〉)]𝑖

√∑ (𝑍̃𝑖−〈𝑍̃〉)2
𝑖 ∙√∑ (ℎ̃𝑢,𝑖−〈ℎ𝑢̃〉)

2
𝑖

                                                                                                       (10) 234 

In Eq. 10, the 𝜎𝑍̃ and 𝜎ℎ̃ terms are the standard deviations of the mean Favre-average in-cylinder 𝑍̃ and ℎ𝑢̃ 235 

fields. Therefore, the 𝜌𝑍𝑇 coefficient is dynamically calculated at each iteration based on the instantaneous 236 

modeled mean 𝑍̃ and ℎ𝑢̃ fields, from which the spatial average 〈𝑍̃〉 and 〈ℎ𝑢̃〉 values are calculated. The 𝜌𝑍ℎ 237 

term is found to be always negative: high 𝑍̃ cell-values (i.e. rich-in-fuel regions) are more likely associated to 238 

low ℎ𝑢̃. This is a consequence of the relationship between 𝑍̃ and ℎ𝑢̃ deriving from the mixture isobaric 239 

specific heat. The instantaneous local 𝜌𝑍ℎ correlation coefficient modifies the bi-variate Gaussian model for 240 



7 

 

the in-cell conditions as illustrated in Figure 2 for several 𝜌𝑍ℎ parameter values. In Figure 3 the equivalence 241 

ratio is used instead of 𝑍̃ to represent fuel concentration. Hotter states are associated with leaner mixtures 242 

(bottom-right side in Figure 3) and the same is for cooler and richer conditions (upper-left side in Figure 3), 243 

while hot and rich (upper-right) or cool and lean (lower-left) combinations are less probable. 244 

 245 

Figure 3. Bi-variate Gaussian distribution for the in-cell statistical states as a function of the 𝜌𝑍𝑇 correlation coefficient: 𝜌𝑍ℎ = 0 246 

(left, uncorrelated equivalence ratio and ℎ𝑢̃), 𝜌𝑍ℎ = −0.5 and 𝜌𝑍ℎ = −0.75 (middle and right, negatively correlated equivalence ratio 247 

and ℎ𝑢̃). 248 

 249 

Knock Precursor Variance 250 

From a general point of view, once a global reaction rate 𝜔̃ = 𝜏̃−1 is known a knock precursor growth rate 251 

can be calculated in the same way as the Livengood and Wu knock integral function 𝐼. This can be 252 

transported as a generic scalar with an equation as Eq. 11. 253 

𝜕𝜌̅𝐼

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
[𝜌̅𝑣̃𝑗𝐼 − (𝜌̅𝐷𝐼 +

𝜇𝑡

𝜎𝑡
)

𝜕𝐼

𝜕𝑥𝑗
] = 𝜌̅𝜔̃                                                                                                      (11) 254 

The difference introduced by the presumed-PDF treatment lies in the definition of the 𝜔̃ term. Since a variety 255 

of physical states is statistically possible in the single fluid cell, a distribution of reaction rates is also to be 256 

considered in the cell volume. The theoretical global reaction rate follows a more complex definition and it is 257 

expressed as in Eq. 12. 258 

𝜔̃ = ∫ 𝑃(Φ, 𝑇) ∙ 𝜔(Φ, 𝑇)𝑑𝑉
𝑉

= ∫ 𝑃(Φ, 𝑇) ∙
1

𝜏(Φ,𝑇)
𝑑𝑉

𝑉
                                                                               (12) 259 

The calculation of the integral can be numerically challenging since an analytical function of 𝜔̃(Φ, 𝑇) is not 260 

known a priori, hence an assumption is made considering the dispersion of the in-cell reaction rates as the 261 

sum of a mean term and a contribution due to fluctuations. This last can be either positive or negative, i.e. it 262 

can accelerate or slow down the global reaction rate depending on the considered local physical state. Since 263 

the focus of this study is on the earliest probability that a portion of a fluid cell experiences autoignition, just 264 

the faster than average part of the reaction rate distribution is of interest. 265 

These arguments lead to the representation of the knock inceptor reaction rate 𝜔𝑃𝐷𝐹,𝑝𝑒𝑎𝑘 by means of an 266 

average value 𝜔𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 and an accelerating contribution given by its root mean square (rms) 𝜔𝑟𝑚𝑠 value 267 

(Eq. 13).  268 

𝜔𝑃𝐷𝐹,𝑝𝑒𝑎𝑘 = 𝜔𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 + 𝜔𝑟𝑚𝑠                                                                                                                     (13) 269 
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The first term on the right side is obtained by a PDF-weighted averaging operation of the population of 270 

reaction rates calculated based on the discrete multi-variate PDF space, hence the 𝜔𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 name (Eq. 14).  271 

𝜔𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 = ∑ ∑ 𝑃(Φ𝑖, 𝑇𝑗) ∙
1

𝜏(Φ𝑖,𝑇𝑗)

𝑇𝑡𝑜𝑡
𝑗=1

Φ𝑡𝑜𝑡
𝑖=1 𝑑Φ𝑑𝑇                                                                                        (14) 272 

The second term is calculated as the difference between the 𝜔𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 term and the faster than average 273 

reacting state considered in the discrete cell representation. It represents the root mean square of the faster 274 

than average reaction rates within the fluid cell. Following an analogous ±2 ∙ √𝜏"2̃ clipping for AI delays, 275 

this reads as Eq. 15 and corresponds to the reaction rate of the 2.5% of the fastest-reacting portion. 276 

𝜔+2𝜎 =
1

𝜏
|

−2𝜎
                                                                                                                                                 (15) 277 

Finally, the 𝜔𝑟𝑚𝑠 term is calculated as in Eq. 16 and it represents the net increase in reaction rate due to the 278 

accelerating contribution of the statistically present faster than average states. 279 

 𝜔𝑟𝑚𝑠 =
𝜏|𝑃𝐷𝐹,𝑎𝑣𝑒𝑟−𝜏|−2𝜎

𝜏|𝑃𝐷𝐹,𝑎𝑣𝑒𝑟∙𝜏|−2𝜎
                                                                                                                                  (16) 280 

Once all the needed terms are available, the time integration of a knock integral function can be calculated 281 

considering Eq. 13, and it is manipulated as in Eq. 17 to split the integration of the mean reaction rate and its 282 

statistically faster reacting portion:  283 

𝐼 = ∫ 𝜔̃
𝑡

𝑡0
𝑑𝑡 = ∫ 𝜔𝑃𝐷𝐹,𝑎𝑣𝑒𝑟

𝑡

𝑡0
𝑑𝑡 + ∫ 𝜔𝑟𝑚𝑠

𝑡

𝑡0
𝑑𝑡                                                                                              (17) 284 

The decomposition in Eq. 17 immediately leads to the independent calculation of two knock precursors, 285 

𝐼𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 and 𝐼𝑟𝑚𝑠 respectively (Eq. 18). The former expresses the average chemical reaction rate towards 286 

autoignition, while the latter is the precursor variance contribution given by the turbulence intensity. 287 

𝐼𝑃𝐷𝐹,𝑝𝑒𝑎𝑘 = 𝐼𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 + 𝐼𝑟𝑚𝑠                                                                                                                         (18) 288 

The average knock precursor and its variance are modelled through dedicated transport equations, Eq. 19 and 289 

20 respectively. 290 

𝜕𝜌̅𝐼𝑃𝐷𝐹,𝑎𝑣𝑒𝑟

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
[𝜌̅𝑣̃𝑗𝐼𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 − (𝜌̅𝐷𝐼𝑃𝐷𝐹,𝑎𝑣𝑒𝑟

+
𝜇𝑡

𝜎𝑡
)

𝜕𝐼𝑃𝐷𝐹,𝑎𝑣𝑒𝑟

𝜕𝑥𝑗
] = 𝜌̅𝜔𝑃𝐷𝐹,𝑎𝑣𝑒𝑟                                             (19) 291 

𝜕𝜌̅𝐼𝑟𝑚𝑠

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
[𝜌̅𝑣̃𝑗𝐼𝑟𝑚𝑠 − (𝜌̅𝐷𝐼𝑟𝑚𝑠

+
𝜇𝑡

𝜎𝑡
)

𝜕𝐼𝑟𝑚𝑠

𝜕𝑥𝑗
] = 𝜌̅𝜔𝑟𝑚𝑠                                                                                (20) 292 

Since the model aim is to track an autoignition probability for the fluid cell, the heat release due to potential 293 

knock is purposely not simulated. If autoignition heat was simulated, when AI is met for a portion of the cell 294 

due to faster than average states it would affect all the other realizations (e.g. the average knock onset) by 295 

varying the local thermo-physical conditions, while it is more interesting to transport both average and 296 

maximum probability states within the Gaussian-based model and independently track their time-history. 297 

 298 

Experimental Apparatus and Engine Knock Characterization 299 

Measurements were performed on a single-cylinder optically accessible DISI engine; whose main 300 

specifications are carefully detailed in [24] and here briefly resumed for the sake of completeness in Table 1 301 
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along with the operating conditions. The crank angle reference is made to the TDC at the end of 302 

compression.  303 

Displacement ≈ 399 cm3 

Bore 79.0 mm 

Stroke 81.3 mm 

Connecting Rod 143 mm 

Compression Ratio 10:1 

Injection pressure  100 bar 

Engine Speed ≈ 2000 rpm 

Boost pressure 0.5 bar 

Spark Advance 15 CA bTDC 

Table 1. Single cylinder optically accessible SI engine characteristics. 304 

The engine is equipped with the cylinder head of a 1.4 litre currently made SI turbocharged power unit. The 305 

wall-guided fuel injection system features a side-mounted injector with a six-hole configuration and the 306 

spark plug is centrally located, as reported in Figure 4. Optical access is ensured through an 18 mm-thick 307 

fused silica window fixed on the piston crown featuring a Bowditch design [25] with a 45 degree UV-308 

enhanced mirror. Self-lubricating piston rings ensured oil-free operation, thus avoiding contamination of the 309 

visible field of view. More details into the application of optical techniques on this engine and other specific 310 

challenges are available in [26, 27]. Coolant and lubricant temperature were monitored and maintained at 311 

330 K using a thermal conditioning unit. Engine speed was set at 2000 rpm, while start of injection was 312 

triggered at 300 CA bTDC with a single-pulse strategy at a pressure equal to 100 bar. The overall air-to-fuel 313 

ratio was set close to stoichiometry (λ≈1.05) and monitored using an oxygen sensor on the exhaust line, with 314 

an accuracy of ±1%. 315 

 316 

    317 

Figure 4. Experimental apparatus for the optically accessible SI engine.  318 

A turbocharged operating condition was examined in this study, with 0.5 bar boost pressure and intake 319 

manifold temperature around 315 K. Spark timing was set at 15 CA bTDC, and this also constituted the 320 

trigger for recording the optical measurements. The adoption of an instrumented GDI turbocharged unit 321 

represents an optimal testing for the presented knock model, allowing to include in the analysis the effects of 322 

stratified mixture distribution and high end-gas thermal loading common to most of the modern SI 323 

production units. A dataset of in-cylinder pressure measured (with a resolution of 0.2 CA) during 173 324 

consecutive firing cycles were recorded through a piezo-electric transducer (that featured an accuracy of 325 

±1%) flush-mounted on one side of the combustion chamber between an intake and an exhaust valve. The 326 

experiments were carried out using a commercial RON95 gasoline, and a knock-affected condition is 327 
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observed from the cycle-resolved in-cylinder pressure derivative reported in Figure 5 (left). An arbitrary 328 

limit of pressure derivative was chosen equal to 5 bar/CA to discern between knocking and non-knocking 329 

cycles. The result of this filtering is that 109 out of 173 cycles exceed this criterion, depicting a 63% fraction 330 

of experimentally knocking cycles for this operation. The CA of knock onset for this subset of cycles is 331 

reported in Figure 5 (right), and the mean CA for knock onset for this portion of cycles is +11.9 CA aTDC, 332 

with a standard deviation equal to 3.2 CA. This illustrates the ‘run-away’ behavior of knock, with the 333 

specific pressure oscillations being more evident for cycles at the end of the recorded dataset. 334 

     335 

Figure 5. Cycle-resolved in-cylinder pressure derivative (left) and CA of knock onset for the subset of knocking cycles (right). 336 

Cycle resolved visualization was performed for 100 consecutive cycles out of the 173 via a CMOS camera 337 

(Optronis CamRecord 5000 – 512 x 512 pixel, 8-bit pixel digitization and 5000 frame per second at full chip) 338 

equipped with a 50 mm focal Nikon lens. The exposure time was fixed at 166.7 μs and the dwell time 339 

between two consecutives images was 200 μs (2.4 CAD at 2000 rev/min). A custom designed image 340 

processing using Vision Assistant of National Instruments allowed to retrieve quantitative information from 341 

the combustion visualizations even for images with low signal to noise ratio. As sketched in Fig. 6 (a-e), 342 

after the application of an appropriate circular mask (a->b) to cut the spurious light from reflections at the 343 

boundaries of the optical window of the piston crown, a look-up table (LUT) transformation [28] was used to 344 

adjust the brightness at 174, contrast at 73 and the gamma value at 0.76 (b->c). Then, thresholding was 345 

performed by fixing the minimum image intensity at 21 on 256 grey-scales (Fig. c->d). Thus, images were 346 

segmented into two regions, foreground and background respectively, obtaining a binarized image [29]. 347 

Finally, the contours of flames were defined (d->e) and the related coordinates in pixels were stored. In order 348 

to perform a frequency map of autoignition events, only the border coordinates of the flames in the end-gas 349 

detected at fixed delay from the spark timing were considered. It should be noted that the difference between 350 

the optical window and the engine bore determined a 5.25 mm thick blind circular crown; therefore, only 351 

autoignition flames sufficiently large to cover the distance between the wall and the optical crown limit can 352 

be considered for the evaluation of autoignition maps. 353 

 354 

Figure 6. Sketch of the image processing steps. 355 

The experimentally measured knock probability is reported in Figure 7 through a spatial map of the 356 

normalized autoignition occurrence. The probability for the end-gases to undergo autoignition is assessed by 357 

means of the optical analysis carried out through the transparent piston window which allowed to identify the 358 
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distribution of the end-gas regions subjected to knock; the peak probability was found on the exhaust side 359 

(top part in the picture), although knock is also probable on the intake side (low side in the picture). 360 

 361 

Figure 7. Map of normalized autoignition location (left) and CA of knock onset for the subset of knocking cycles (right). 362 

3D CFD simulations 363 

The 3D CFD analyses presented in this paper are carried out by means of a customized version of STAR-CD 364 

v4.22. Time varying pressure boundary conditions derive from the experiments and they are used to validate 365 

a 1D model of the engine, from which the corresponding temperature trace is extracted. Turbulence is 366 

modelled though the k-ε RNG turbulence model for compressible flows. The grid adopted for the simulations 367 

is reported in Figure 8 and it reproduces the whole combustion chamber and both the intake and exhaust 368 

ports. A close-up of the spark plug geometry and of the injector region are presented in Figure 8 as well. The 369 

total number of cells is approx. 1.48 M and 430000 at BDC and TDC respectively, while the average cell-370 

size is about 0.55 mm throughout the simulation. 371 

    372 

Figure 8. Computational grid (top) and spark plug and injector region detail (bottom). 373 

Combustion is modelled with the Flame Surface Density (FSD) ECFM-3Z model [30], coupled with a 374 

relatively simple algebraic ignition model based on a flame profile deposition to account for flame kernel 375 

formation [31]. The fuel injector is a 6-hole full-cone GDI one whose nominal data are reported in Table 2 376 

and whose nozzle orientation is sketched in Figure 9. The multi-hole liquid spray is modelled using a 377 

Lagrangian approach, where the fuel atomization is replaced by a Rosin-Rammler droplet distribution 378 

function. Nozzle-specific mass flow rate is prescribed as to reproduce experimental flow unbalance between 379 

the nozzles. The effective nozzle diameter is evaluated using the Kuensberg 1D model [32]. The secondary 380 

break-up is modelled by the Reitz and Diwakar approach [33]. Finally, spray is validated against experiments 381 

carried out in a spray bomb at an injection pressure of 100 bar; the spray morphology and the penetration 382 

curve are reported in Figure 10 at two instants after Start Of Injection (SOI), 400 ms and 800 ms 383 

respectively. In Figure 10 the penetration curve of the simulated spray is also reported and it confirms the 384 

satisfactory agreement with the experiments. 385 
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Finally, knock is modelled by means of the presented presumed-PDF knock model, which is coupled with 386 

the STAR-CD solver through in-house developed user-coding. 387 

Nominal nozzle diameter 

[mm] 

0.14 mm 

Nominal nozzle length 

[mm] 

0.196 mm 

Number of nozzles 6 

 Table 2. Nominal injector data. 388 

 389 

Figure 9. Sketch of the nozzle holes position and orientation. 390 

    391 

Figure 10. Simulated spray shape against experiments (left side) at 400 ms (top row) and 800 ms (bottom row) after SOI; comparison 392 

between experimental and simulated penetration curve (right side). 393 

 394 

Results 395 

The set of pressure traces from each individual cycle, measured with 1% accuracy and 0.2 CA resolution, is 396 

reported in Figure 11, alongside with the calculated ensemble average trace and the extreme measured 397 

cycles. The combustion pressure trace from simulation is also reported in Figure 11 and the agreement 398 

between the CFD result and the ensemble average pressure trace assesses the validity of the simulation to 399 

represent the mean flame development behaviour. This is further confirmed by the agreement of the 400 

combustion indicators for 10%, 50% and 90% of fuel burnt. 401 
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    402 

 403 

Figure 11. Left: CFD pressure trace (black solid line) compared with the experimental extreme cycles (red dashed lines) and 404 

ensemble average pressure traces (red solid line). Right: comparison of the main combustion phasing indicators for CFD and 405 

ensemble average of experimental cycles. 406 

The mean propagating flame front is depicted in Figure 12 by the isosurface of the Favre-averaged 407 

combustion progress variable 𝑐̃ at 𝑐̃ = 0.5 value. Flame initiation is compared to the experimental imaging to 408 

analyze the simulation accuracy in representing the flame kernel evolution. Figure 13 shows that a flame 409 

kernel development towards the exhaust side of the combustion chamber (top side) is recurrently observed 410 

for three selected cycles at +9 CA aSOC, representative of a slow, an average and a fast burning cycles 411 

(cycle no. 31, no.75 and no.109, respectively). Despite the relatively simple flame deposition model for spark 412 

ignition, numerical simulation confirms this tendency by means of combustion progress variable c̃ field and 413 

explains this behavior as due to mean flow convection of the reaction zone given by the residual tumble 414 

motion. 415 

       416 

Figure 12. Isosurface of the Favre-averaged combustion progress variable 𝐜 = 𝟎. 𝟓 at -10 CA aTDC (left), TDC (middle) and +10 417 

CA aTDC (right). 418 

 419 
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Figure 13. Flame contour for three selected cycles (cycle no. 31, no.75 and no.109, from left to right) at +9 CA aSOC (left side); 420 

combustion progress variable 𝐜 field (rightmost figure). 421 

 422 

Knock Prediction Simulation 423 

The presented knock model is applied to the simulated mean realization of combustion. In Figure 14 the 424 

unburnt temperature and the equivalence ratio field are represented at +10 CA aTDC. A detailed analysis of 425 

the end-gas condition is carried out for this CA. End-gases are identified through a conditioning on the 426 

Favre-average reaction progress variable 𝑐̃, by filtering cells whose 𝑐̃ value is below 0.8. Figure 15 shows a 427 

scatter plot of the mixture composition against unburnt temperature, highlighting the promoted heating of the 428 

lean portion of peripheral mixture visible in Figure 14. 429 

    430 

Figure 14. Unburnt temperature (left side) and equivalence ratio field (right side) at +10 CA aTDC. 431 

 432 

Figure 15. Scatter plot of equivalence ratio against unburnt temperature for the end-gas region at +10 CA aTDC. 433 

The field of average AI delay times and of its root mean square are reported in Figure 16. While the former 434 

field (left side), related to the gas phase average reaction rate (expressed as the inverse of the local AI delay 435 

time), shows local minima at the periphery of the intake valve and around the injector cavity, the latter (right 436 

side) visually suggests that local turbulence induces a more relevant degree of reactivity fluctuation on the 437 

exhaust side of the combustion chamber. 438 

    439 

Figure 16. Average AI delay time field (left side) and delay root mean square field (right side) at +10 CA aTDC. 440 

The peak reaction rate and its average counterpart are illustrated in the scatter plots in Figure 17 for the end-441 

gas region at TDC,  +10 CA aTDC and +20 CA aTDC. It is interesting to observe that the promotion of 442 

autoignition tendency given by the faster than average reacting states is present at all combustion stages, as 443 
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stated by the population of fluid cells cleary lying above the 45-degree line. This is verified for relatively low 444 

reaction rates (e.g. at TDC) as well as for highly reacting conditions (e.g. +10 CA aTDC). 445 

 446 

Figure 17. Scatter plots of average reaction rate 𝛚𝐏𝐃𝐅,𝐚𝐯𝐞𝐫 (Eq. 14) against peak reaction rate 𝛚𝐏𝐃𝐅,𝐩𝐞𝐚𝐤 (Eq. 13). for the end-gas 447 

region: TDC (left), +10 CA aTDC (middle), +20 CA aTDC (right). 448 

The field of the average knock precursor 𝐼𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 and of its root mean square 𝐼𝑟𝑚𝑠, as calculated by Eq. 19 449 

and 20, are represented in Figure 18. The average knock precursor field shows an evenly distributed 450 

population at both the exhaust and the intake sides, although the exhaust side of the combustion chamber 451 

(left side in figures) appears slightly more prone to knock. This is confirmed by the experiments, where 452 

knock onset locations were measured on both sides of the optical access. Furthermore, a 𝐼𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 value 453 

below unity allows to consider the whole chamber as knock safe from an average point of view at such crank 454 

angle. Nonetheless, the magnitude of the precursor 𝐼𝑟𝑚𝑠 field is relevant compared to the mean value. In 455 

particular, its additional contribution on the exhaust side points out that turbulence-induced perturbations of 456 

the reaction rate lead to more probable knock in that region of the combustion chamber, despite the average 457 

realization is not knocking at +10 CA aTDC. 458 

    459 

Figure 18. Average knock precursor 𝐈̃𝐏𝐃𝐅−𝐚𝐯𝐞𝐫 field (left side) and precursor root mean square field 𝐈̃𝐫𝐦𝐬 (right side) at +10 CA 460 

aTDC. 461 

The degree of statistical knock tendency of the end-gases is further analyzed through the ratio of peak over 462 

average reaction rates as a function of the Favre-averaged fields of unburnt temperature and of the 463 

equivalence ratio, illustrated in Figure 19. Such analysis clearly shows that the leanest and hottest portion of 464 

the end gases, located on the exhaust side of the cylinder, are also those more subject to turbulence-induced 465 

reaction rate increase. This is accounted for by the 𝜌𝑍ℎ correlation coefficient calculated as in Eq. 10. This 466 

confirms the experimental evidence indicating the exhaust-side region as a knock critical area. 467 

       468 
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Figure 19. Scatter plot of the ratio of peak over average reaction rate for the unburnt mixture at +10 CA aTDC as a function of the 469 

unburnt temperature (left) and of the equivalence ratio (right). 470 

Finally, the volume of the end-gas region where the autoignition criterion is met for both the average knock 471 

precursor 𝐼𝑃𝐷𝐹,𝑎𝑣𝑒𝑟 and the peak precursor 𝐼𝑃𝐷𝐹,𝑝𝑒𝑎𝑘 is illustrated in Figure 10 together with the simulated 472 

mass fraction burnt (MFB) curve. 473 

 474 

Figure 20. Autoignition volume as predicted by the average 𝐈̃𝐏𝐃𝐅,𝐚𝐯𝐞𝐫 and the peak 𝐈̃𝐏𝐃𝐅,𝐩𝐞𝐚𝐤 knock precursors (black lines), together 475 

with the ensemble average MFB curve (red line). 476 

 477 

Definition of Knock Probability in RANS 478 

The knock prediction given by the presented model is analysed to reconstruct a fraction of knocking cycles 479 

to be compared with the experimental evidence. Knock occurrence is observed through the mass fraction of 480 

fuel which is burnt at knock onset (hereafter 𝑀𝐹𝐵𝐾𝑂). If the cell-average 𝜏̃ value alone was used, the only 481 

information available from the analysed engine would be that the ensemble average cycle is knocking after 482 

+15CA aTDC, but no conclusions could be inferred regarding the dispersion around this value. 483 

The additional information given by the presented presumed-PDF model is the estimation of a probability 484 

function around the mean value, which is obtained from the knock occurrence of the peak knock precursor 485 

𝐼𝑃𝐷𝐹,𝑝𝑒𝑎𝑘. This is used to define a second knock phasing indicator, i.e. 𝑀𝐹𝐵𝐾𝑂,𝑝𝑒𝑎𝑘. Given the stochastic 486 

occurrence of knock, it is reasonable to assume a normal Gaussian distribution for knock occurrence, which 487 

is centred in 𝑀𝐹𝐵𝐾𝑂,𝑚𝑒𝑎𝑛 with a standard deviation 𝜎𝑀𝐹𝐵𝐾𝑂
 derived from 𝑀𝐹𝐵𝐾𝑂,𝑝𝑒𝑎𝑘. In the considered 488 

case, 𝑀𝐹𝐵𝐾𝑂,𝑚𝑒𝑎𝑛 is equal to 83.8% while 𝜎𝑀𝐹𝐵𝐾𝑂
 is 39.8%. These values are based on a minimum non-null 489 

value of autoigniting volumes in the end-gas imposed as 1 mm3 needed to avoid the spurious autoignition of 490 

individual cells to be considered. Based on these indicators a probability function of 𝑀𝐹𝐵𝐾𝑂 is reconstructed 491 

following Eq. 21 and it is illustrated in Figure 21. 492 

𝑃(𝑀𝐹𝐵𝐾𝑂) =
1

𝜎𝑀𝐹𝐵𝐾𝑂√2𝜋
∙ 𝑒𝑥𝑝 [−

(𝑀𝐹𝐵𝐾𝑂−𝑀𝐹𝐵𝐾𝑂,𝑚𝑒𝑎𝑛)2

2∙𝜎𝑀𝐹𝐵𝐾𝑂
2 ]                                                                             (21) 493 
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 494 

Figure 21. Assumed Gaussian-PDF of the percentage of burnt fuel at knock onset 𝑴𝑭𝑩𝑲𝑶. 495 

Given the above reconstruction for knock occurrence distribution, it is possible to calculate the cumulative 496 

probability of cycles exhibiting knock before the completion of regular combustion, i.e. 100% of burnt fuel. 497 

This is calculated as the Cumulative Distribution Function (CDF) of the above distribution, which is reported 498 

calculated in Eq. 22 and illustrated in Figure 22. 499 

𝐶𝐷𝐹(𝑀𝐹𝐵𝐾𝑂) =
1

2
∙ [1 + 𝑒𝑟𝑓 (

𝑀𝐹𝐵𝐾𝑂−𝑀𝐹𝐵𝐾𝑂,𝑚𝑒𝑎𝑛

√2∙𝜎𝑀𝐹𝐵𝐾𝑂

)]                                                                                    (22) 500 

  501 

 502 

Figure 22. Cumulative Distribution Function of the percentage of burnt fuel at knock onset 𝑀𝐹𝐵𝐾𝑂. 503 

Since the region of interest is limited to the probability to have a knocking cycle before the regular 504 

combustion finalization, the cumulative probability to verify this condition is given by Eq. 22 calculated at 505 

the limit value, i.e. 𝐶𝐷𝐹(𝑀𝐹𝐵𝐾𝑂)|𝑀𝐹𝐵𝐾𝑂=100%. In this case the knock frequency value is 65.8%, stating that 506 

approximately 66% of the possible realizations reach the conditions for autoignition in a portion of their 507 

volume, while the remaining 34% is knock-safe. This result is in very good agreement with the experimental 508 

evidence showing that a fraction of 63% of the measured cycles is knocking. This information is inferred 509 

from a single RANS simulation, while the average knock prediction alone would be unable to estimate any 510 

knock dispersion around the mean value. 511 

It is important to underline that the aim of the presented model is neither to substitute a multiple cycle LES 512 

simulation, which remains the only way to properly simulate most of the CCV-promoting processes, nor to 513 

identify the exact fraction of knocking cycles measured during the experiments. The presented presumed-514 

PDF model is a numerical tool to identify the regions of the combustion chamber which are statistically more 515 

prone to autoignition, and this information is inferred by a combination of an average knock precursor and a 516 

statistical description of the reaction rate deviation produced by local gradients and dissipated by local 517 

turbulent intensity. Since RANS simulations are the most appropriate tool to investigate the mean behaviour 518 
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of a fluid system (e.g. a new engine concept), the indications from the presumed-PDF model may provide 519 

useful statistical information on the probability to trigger potentially damaging knocking events. 520 

Conclusions 521 

In this paper a statistics-based knock model is presented in the context of RANS combustion simulation, 522 

which couples RANS traditional equations with the transport of variances for the physical conditions 523 

affecting local reaction rate. The model is based on separate transport equations for both the mixing and the 524 

thermal variance originated by local mean gradients and turbulent scales. They are combined to reconstruct a 525 

statistical model for the in-cell reaction rate, which is represented though a clipped multi-variate Gaussian 526 

distribution of probability. Two independent knock precursors are transported, in order to account for both 527 

the ensemble average knock proximity and its variance around the mean value. The combined use of the 528 

precursors is able to outline a statistically-based description of the in-cell reaction rate distribution. 529 

When applied to a laboratory GDI engine with optical access, the results from the presumed-PDF knock 530 

model assesses knock onset on the exhaust side of the combustion chamber. This is the area where flame 531 

visualization indicated the highest knock probability, and numerical simulations showed that this region 532 

suffers of lean and hot end-gases, promoting knock onset. Moreover, turbulence-induced dispersion 533 

promoted reaction rate increase of the unburnt mixture in this region, making it also the highest probability 534 

knock location. An overall fraction of 66% of knocking cycles is calculated, which is in close agreement 535 

with the experimental 63%. 536 

The use of a PDF-based model allows to give a quantitative estimation of the knock probability events 537 

associated with an average knock occurrence condition. The statistical model is based on transport equations 538 

for the variance of physical conditions (enthalpy and mixture fraction) and tracks their variability in terms of 539 

knock onset variance. The presented PDF-based knock model combines both the accuracy of a detailed 540 

chemical mechanism used to calculate the autoignition delay times and the applicability of a RANS-based 541 

model. The presented model aims at filling the existing gap between the scarcely representative average 542 

knock prediction given by traditional RANS models and the cycle-resolved knock simulation possible with 543 

CPU-intensive multi-cycle LES simulations. The combination of RANS models with variance transport 544 

equations allows to quantify the probability of knocking events given by turbulence-originated fluctuation of 545 

end-gas pockets, and it allows RANS simulations to be directly correlated with engine test-bench acquisition. 546 

 547 
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 617 

Abbreviations 618 

AI Autoignition 

aSOC After Start of Combustion 

aTDC After Top Dead Centre 

BDC Bottom Dead Centre 

bTDC Before Top Dead Centre 

CA Crank Angle 
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CCV Cycle-to-Cycle Variability 

CDF Cumulative Distribution 

Function 

DI Direct Injection 

DKI Dimensionless Knock Indicator 

FSD Flame Surface Density 

GDI Gasoline Direct Injection 

IMPO Integral Modulus of Pressure 

Oscillations 

KLSA Knock Limited Spark Advance 

KO Knock Onset 

LES Large-Eddy Simulation 

MAPO Maximum Amplitude of 

Pressure Oscillations 

MFB Mass Fraction Burnt 

PDF Probability Density Function 

RANS Reynolds-Averaged Navier-

Stokes 

RMS Root Mean Square 

SA Spark Advance 

SI Spark Ignition 

SOI Start of Injection 

TDC Top Dead Centre 

TRF Toluene Reference Fuel 
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