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Abstract

Investment decisions may be evaluated via several different metrics/criteria, which are func-

tions of a vector of value drivers. The economic significance and the reliability of a metric depend

on its compatibility with the Net Present Value (NPV). Traditionally, a metric is said to be

NPV-consistent if it is coherent with NPV in signalling value creation. This paper makes use

of Sensitivity Analysis (SA) for measuring coherence between rates of return and NPV. In par-

ticular, it introduces a new, stronger definition of NPV-consistency that takes into account the

influence of value drivers on the metric output. A metric is strongly NPV-consistent if it signals

value creation and the ranking of the value drivers in terms of impact on the output is the same

as that provided by the NPV. The degree of (in)coherence is calculated with Spearman’s (1904)

correlation coefficient and Iman and Conover’s (1987) top-down coefficient. We focus on the class

of AIRRs (Magni 2010, 2013) and show that the average Return On Investment (ROI) enjoys

strong NPV-consistency under several (possibly all) methods of Sensitivity Analysis.
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1 Introduction

In capital budgeting many different criteria are used for evaluating a project, measuring

economic efficiency, and making decisions. Net Present Value (NPV) is considered the

most theoretically reliable tool, since it correctly measures shareholder value creation

(Brealey and Myers 2000, Ross, Westerfield and Jordan 2011). However, in practice, many

other metrics are used; in particular, relative measures of worth such as internal rate of

return (IRR), profitability index (PI), modified internal rate of return (MIRR), Return

On Investment (ROI), etc. Recently, a more general notion of rate of return, labeled

AIRR (Average Internal Rate of Return) has been developed by Magni (2010, 2013),

based on a capital-weighted mean of holding period rates. The AIRR approach consists

in associating the capital amounts invested in each period with the corresponding period

returns by means of a weighted arithmetic mean. Magni (2010, 2013) showed that any

AIRR is NPV-consistent: decisions made by an investor who adopts NPV are the same as

those made by an investor who adopts AIRR. Magni (2013) showed that many traditional

metrics can be viewed as belonging to the class of AIRRs, including IRR, PI, MIRR. As a

special case, this approach makes use of the Return On Investment (ROI) to get an average

ROI, which is the ratio of the total project return to the total invested capital. Whatever

the depreciation pattern, the average ROI exists and is unique, it has the unambiguous

nature of investment rate, independent of the value drivers, and decomposes the economic

value created into economic efficiency (the difference between average ROI and cost of

capital) and investment scale (the sum of the committed amounts).

However, while traditional NPV-consistency is important, under uncertainty, an NPV

or a rate of return are not the only factors that drive a decision. The investigation of the

risk factors that mainly influence the value of the objective function is no less important.

Sensitivity analysis (SA) investigates the variation of an objective function under

changes in the key inputs of a model, so aiming at identifying the most important risk

factors affecting the output (and, therefore, the decision) and ranking them. There are

many different SA techniques (see Pianosi et al. 2016, Borgonovo and Plischke 2016) and,

given a technique, different objective functions may or may not lead to different results.

This paper positions itself in the interfaces of operational research (OR) and finance.

The strict connections between operations management and finance were recognized long

since (e.g., Small 1956, Weingartner 1963, Adelson 1965, Hespos and Strassman 1965,

Teichroew et al. 1965a,b, Rivett 1974, Ignizio 1976) and scholarly contributions in the

field have grown dramatically in the last decades (e.g., Rosenblatt and Sinuany-Stern

1989, Grubbström and Ashcroft 1991, Murthi et al. 1997, Meier et al. 2001, Gondzio and

Kouwenberg 2001, Baesens et al. 2003, Steuer and Na 2003, Xu and Birge 2008, Koç et

al. 2009, Fabozzi et al. 2010, Thomas 2010, Seifert et al. 2013).

The relation between OR and finance is bidirectional. On one side, finance provides

a rich toolkit of theories, criteria, and methodologies which enable operational managers

to better understand the impact of their decisions so as to maximize the shareholders’

wealth: “In order to make decisions managers need criteria of goodness, decision tools,

and an understanding of the environment in which they operate . . . The main elements of
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this are that the right criterion of goodness is the maximisation of shareholder wealth and

that firms operate in something close to a perfect capital market.” (Ashford et al˙ 1988,

p. 144). On the other side, operational research sets the aims and scope of financial

modeling for managerial purposes: As opposed to finance theory which uses financial

modeling for describing the behavior of the “average” investor and deriving the pricing

process of financial assets, operational managers use financial modeling from the point

of view of an individual decision maker with specific needs, constraints and preferences

(Spronk and Hallerbach 1997). Further, operations research itself provides techniques and

tools that may be applied to several finance problems (Board et al. 2003).

This paper is in line with the bidirectional relation between operations and finance.

Specifically, it recognizes the fundamental roles of economic and financial measures of

worth such as the NPV and the ROI for decision-making and, at the same time, applies an

OR technique (SA) to such financial measures in order to investigate their compatibility.

As such, it falls within that strand of the OR literature which makes use of various

economic efficiency measures for managerial purposes, including the NPV (e.g., Yang

et al. 1993, Baroum and Patterson 1996, Herroelen et al. 1997, Cigola and Peccati

2005, Borgonovo and Peccati 2006a, Wiesemann et al. 2010, Leyman and Vanhoucke

2017), the IRR (Rapp 1980, Nauss 1988, Hazen 2003, 2009, Hartman and Shafrick 2004,

Dhavale and Sarkis 2018), the ROI (e.g., Danaher and Rust 1996, Myung et al. 1997,

Brimberg and ReVelle 2000, Brimberg et al. 2008, Li et al. 2008, Menezes et al. 2015,

Magni 2016) and the return to outlay (Kumbhakar 2011). This work is strictly linked

with some recent methodological papers within this field which evaluate rationality and

robustness of various efficiency measures and/or their sensitivity to changes in the key

parameters. Specifically, Magni (2015) showed that the average ROI (labeled average

ROA) is reliable for measuring economic efficiency in industrial applications; Mørch et al.

(2017) used the average ROI as the objective function in a problem of renewal of shippings,

and compared the results with those obtained from the traditional NPV maximization.

Borgonovo and Peccati (2004, 2006b) studied the impact of the key drivers of an industrial

project on NPV, IRR, and value at any time. Borgonovo et al. (2010) applied SA in a

project financing transaction to assess the degree of coherence between NPV and debt

service coverage ratio. Talavera et al. (2010) applied SA to the IRR of photovoltaic

grid-connected systems. Percoco and Borgonovo (2012) applied SA to IRR and NPV and

studied the coherence between the two metrics in terms of importance of key drivers.

We investigate the coherence of average ROI and NPV and give a new, more stringent,

definition of NPV-consistency (strong coherence), according to which a metric is strongly

NPV-consistent under a given SA technique if it is NPV-consistent in the traditional sense

and, in addition, the ranking of the project’s value drivers (in terms of influence on the

output) is the same. If a metric is not NPV-consistent, the degree of inconsistency may be

measured by two alternative indices: Spearman’s (1904) coefficient or Iman and Conover’s

(1987) top-down coefficient.

We find that the average ROI is strongly NPV-consistent under many techniques,

even in a strict sense (the relevances of the parameters are the same). As a result, the

average ROI is a reliable measure of worth which can coherently be associated with NPV
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in investment evaluation, assessment of economic efficiency, and decision-making.

The remaining part of the paper is structured as follows. Section 2 presents the average

ROI and the notion of NPV-consistency. Section 3 briefly describes some known SA

methods and Section 4 introduces the notion of pairwise coherence according to which any

two functions are strongly coherent if the ranking of the model parameters coincides. This

section shows that, under many SA techniques, a function f and an affine transformation

of it share the same (ranking and) relevances of parameters, so they are strongly coherent

in a strict sense. Section 5 shows that the average ROI is strongly NPV-consistent in

a strict sense under many SA techniques. Some numerical examples are illustrated in

section 6. Some concluding remarks end the paper. (An Appendix is devoted to some

other AIRRs, including non-strongly consistent ones such as IRR, MIRR and EAIRR.)

2 AIRR, average ROI, and NPV consistency

Let P be a project and let F = (F0, F1, . . . , Fp) 6= 0 its estimated stream of free cash

flows (FCFs), where F0 < 0 is the investment cost and p is the lifetime of the project.

Let τ be the tax rate, Rt be the revenues, Ot be the operating costs, and let Dept denote

depreciation, t = 1, 2, . . . , p. Then,

Ft =

operating profit
︷ ︸︸ ︷

(Rt −Ot −Dept)(1− τ)+Dept

= (Rt −Ot)(1− τ) + τ ·Dept.

(1)

Revenues and costs are often estimated in terms of some key inputs such as prices, quantity

produced and sold, unit costs, growth rates, etc. There may be several types of costs,

such as energy, material, labor, selling, general, and administrative expenses, etc. For

example,

Ft =
(

q · p0(1 + gp)
t −

s∑

j=1

Oj
0(1 + gOj )t

)

(1− τ) + τ ·Dept (2)

where p0 denotes the initial price, q denotes the annual quantity sold, Oj
0 denotes the

initial amount of the j-th item of cost, gp and gOj are the growth rates, and s is the

number of cost items involved in the project under consideration. Let k be the (assumed

constant) cost of capital (COC). We assume that the COC is exogenously fixed by the

decision-maker/analyst. It is well-known that net present value (NPV) measures the

economic value created: NPV =
∑p

t=0 Ft(1+ k)−t. Therefore, the NPV decision criterion

may be stated as follows:

Definition 1. (NPV criterion) A project creates value (i.e., it is worth undertaking) if

and only if the project NPV, computed at the discount rate k, is positive: NPV(k) > 0.

Let C = (C0, C1, . . . , Cn) be any vector representing some notion of capital, such that

C0 = −F0 and Cn = 0 and let It = Ft + Ct − Ct−1 be the associated return. An AIRR,

denoted as ı̄, is defined as the ratio of the overall return I =
∑p

t=1 It(1 + k)−(t−1) earned
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by the investor to the overall capital committed C =
∑p

t=1Ct−1(1 + k)−(t−1):

ı̄ =
I

C
(3)

or, equivalently, as the weighted mean of period rates associated with the capital stream

C:

ı̄ =

∑p
t=1 itCt−1dt−1

∑p
t=1Ct−1dt−1

where dt = (1+k)−t is the discounting factor and it = It/Ct−1 is the period rate of return,

t = 1, 2, . . . , p (see Magni 2010, 2013).

Magni (2010, 2013) defined a project a net investment if C > 0 and a net financing

if C < 0. In such a way, the financial nature of any project (and its associated rate of

return) can be identified as an investment project or a financing project (respectively, an

investment rate or a financing rate).

Traditionally, it is widely accepted that a metric/criterion ϕ is said to be NPV-

consistent if and only if a decision maker adopting ϕ makes the same decision suggested

by the NPV criterion. We can formalize this standard notion as follows.

Definition 2. (NPV-consistency) A metric/criterion ϕ is NPV-consistent if, given a

cutoff rate k, the following statements are true:

(i) an investment project creates value if and only if ϕ > k

(ii) a financing project creates value if and only if ϕ < k.

Magni (2010, 2013) showed that, given a cash-flow stream F, if ϕ = ı̄, then the metric

is NPV-consistent, since, for any vector C, the following product structure holds:

NPV(1 + k) = C (̄ı− k). (4)

The above definition and eq. (4) are particularly interesting because they show that

the AIRR approach enables reframing the NPV in terms of product of a capital base C

and an excess return ı̄− k. This means that the economic value created is determined by

two factors: The project scale (C) and the project’s economic efficiency, ı̄− k. The same

NPV can be created either by investing a large capital amount at a small rate or investing

a small capital at a high rate. Furthermore, the general definition stated above enables

the analyst to understand whether value is created because capital is invested at a rate of

return which is higher than the COC or because capital is borrowed at a financing rate

which is smaller than the COC (see also Magni 2015).

We now consider the special case of AIRR where Ct = Bt is the capital which remains

invested in the project at time t: Bt = Bt−1 − Dept and B0 = −F0, so that It is the

operating profit: It = Ft + Bt − Bt−1 = Ft − Dept = (Rt − Ot − Dept)(1 − τ). The

associated period return rate is the Return on Investment (ROI):

ROIt =
Operating profit

Invested capital
=

(Rt −Ot −Dept)(1− τ)

Bt−1
. (5)
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Thus, the AIRR becomes

ı̄(B) =
Total Return

Total Invested Capital
=

I

B
(6)

where I =
∑p

t=1

(
(Rt −Ot −Dept)(1− τ)

)
· dt−1 is the overall operating profit generated

by the project and B =
∑p

t=1Bt−1dt−1 is the overall invested capital, expressing the size

of the investment. As seen above, ı̄(B) may be viewed as a weighted average of ROIs:

ı̄(B) = α1ROI1 + α2ROI2 + . . .+ αpROIp (7)

where αt = Bt−1dt−1/B. We call ı̄(B) average ROI.1 As (4) holds for any C (and, there-

fore, for B = (B0, B1, . . . , Bn) as well), NPV(1+k) = B · (̄ı(B)−k) so the average ROI is

NPV-consistent (see also Magni 2015). It is also worth noting that the average ROI has

the compelling property of existence and uniqueness for any project. Also, its financial

nature does not depend on the value drivers nor the cost of capital: It is unambiguously

determined as an investment rate, since B0 = −F0 > 0 and Dept > 0, which implies

B > 0. This makes it a good candidate as a reliable measure of worth.

Owing to (1) and (2), the NPV is a function of several variables (the prospective

revenues and costs). Practically, the analyst selects depreciation for every period, Dep1,

Dep2, . . . , Depp, then estimates the amount of sales, the initial price(s), the costs for

labor, material, maintenance, energy, the growth rates, the tax rate, etc. These variables

are risk factors, also known as value drivers, for they affect the FCFs. Hence, given the

project COC, the project NPV is computed. For example, using (2),

NPV = F0 +

p
∑

t=1

(
q · p0(1 + gp)

t −
∑s

j=1O
j
0(1 + gOj )t

)
(1− τ) + τ ·Dept

(1 + k)t
. (8)

It is evident that the average ROI depends on these same value drivers, given that ROIt

depends on them. From (5),

ROIt =

(
q · p0(1 + gp)

t −
∑s

j=1O
j
0(1 + gOj )t −Dept

)
(1− τ)

Bt−1
.

Exploiting (4), one can describe the AIRR as a function of the overall capital C:

ı̄ = ı̄(C) = k +
NPV

C
(1 + k). (9)

Figure 1 graphically describes the AIRR function ı̄(C) for a value-creating project; each

pair (C, ı̄(C)) represents an NPV-consistent rate of return; among the infinitely many

AIRRs, we highlight the average ROI, which is the AIRR associated with the capital

stream B.

The project’s aim is to check whether the coherence of average ROI and NPV, which is

guaranteed in a traditional sense, remains valid if changes in value drivers are considered.

The analysis of change in a model’s inputs and the impact on the model output is the

1Magni (2015) used the expression average ROA for this measure.
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Figure 1: Graph of the AIRR function for a positive-NPV project

purpose of Sensitivity Analysis (SA).2

3 Sensitivity analysis

In the definition of Saltelli et al. (2004, p. 45), sensitivity analysis (SA) is the “study of

how the uncertainty in the output of a model (numerical or otherwise) can be apportioned

to different sources of uncertainty in the model input.”

Given a model and a set of inputs (parameters), the SA investigates the relevance of

parameters in terms of variability of the model output. In the literature there exist many

SA techniques (see Borgonovo and Plischke 2016, Pianosi et al. 2016, for review of SA

methods). A model can be described as consisting of an objective function f defined on

the parameter space A, which maps vector of inputs onto a model output y:

f : A ⊂ R
n → R, y = f(α), α = (α1, α2, . . . , αn) . (10)

The vector α = (α1, α2, . . . , αn) ∈ A ⊂ R
n is the vector of inputs or parameters or key

drivers and y(α) is the output of the model. Let α0 =
(
α0
1, α

0
2, . . . , α

0
n

)
∈ A be the base-

case, a representative value (e.g., mean value, most probable value, etc.). The relevance

of a parameter αi (also known as importance measure) quantifies the impact of αi on the

output variation. Let Rf =
(

Rf
1 , R

f
2 , . . . , R

f
n

)

be the vector of the relevances. The latter

determines the ranking of the parameters in the following way. Input αi is defined to be

2Ekern (1981) and Foster and Mitra (2003) provide conditions under which a project’s NPV is greater than
a second project’s NPV irrespective of the COC. Assuming that the second project is the null alternative, those
conditions identify those projects which are robust under changes in the COC. Those conditions hold for any
AIRR as well, given that any AIRR is NPV-consistent in the traditional sense. In this paper, we measure the
robustness of the project with respect to the estimates of revenues and costs and focus on their impact on NPV
and rate of return.
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more relevant than αj if and only if |Rf
i | > |Rf

j |. The parameters are equally relevant

for f if |Rf
i | = |Rf

j |. The rank of αi, denoted as rfi , depends on the importance measure:

αi has a higher rank (it has a greater impact on the output) than αj if it has greater

relevance. Let rf =
(

rf1 , r
f
2 , . . . , r

f
n

)

be the vector of ranks.

The average rank is rfM =
∑n

i=1 i

n
=

n·(n+1)
2
n

= n+1
2 . The high parameters (or top

parameters) are those whose rank is higher than the average rank rfM ; the low parameters

are those parameters whose rank is smaller than rfM .

Following we briefly describe some well-known (global and local) SA techniques.

(i) Standardized regression coefficient (global SA)

Let V denote variance and σ denote standard deviation. Consider the linear regression

with dependent variable f and explanatory variables αi, ∀i = 1, . . . , n, estimated with

OLS method: f = βf
0 +

∑n
i=1 β

f
i · αi + u. The standardized regression coefficient SRCf

i

measures the importance of αi (Saltelli and Marivoet 1990, Bring 1994, Saltelli et al.

2008):

SRCf
i =

βf
i · σ(αi)

σ(f)
. (11)

(ii) Sensitivity indices in variance-based decomposition methods (global SA)

In variance-based methods, the importance of a parameter is generally represented

through the First Order Sensitivity Index (FOSI) and the Total Order Sensitivity Index

(TOSI) (Saltelli et al. 2008). The FOSI, here denoted as SI1,fi , measures the individual

effect of the parameter on the output variance:

SI1,fi =
V (E(f |αi))

V (f)
, (12)

where V (E(f |αi)) is the variance of the expectation of f upon a fixed value of αi.
3

The TOSI, here denoted as SIT,fi , measures the total contribution of αi to the output

variability, i.e., it is inclusive of the interaction effects with other parameters or groups of

parameters. SIT,fi can be calculated as (Saltelli et al. 2008)

SIT,fi =
E(V (f |α−i))

V (f)
, (13)

where f |α−i = f |α1, α2, . . . , αi−1, αi+1, . . . , αn (see also Sobol’ 1993, Sobol’ 2001, Saltelli

et al. 2008).

(iii) Finite Change Sensitivity Indices (global SA)

The Finite Change Sensitivity Indices (FCSIs), introduced in Borgonovo (2010a, 2010b),

focus on the output change due to a finite input change; there exist two versions of FCSIs:

First Order FCSI and Total Order FCSI.

The First Order FCSI of a parameter measures the individual effect of the parameter’s

variation on f ; the Total Order FCSI considers the total effect of a parameter’s variation

on f , including both the individual contribution and the interactions between a parameter

and the other parameters.

3It can be shown that V (E(f |αi)) = V (f)− E[V (f |αi)] (see Satelli et al. 2008).
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Consider a change of parameters from α0 to α1 =
(
α1
1, α

1
2, . . . , α

1
n

)
∈ A. The output

variation is ∆f = f(α1) − f(α0). Let (α1
i , α

0
(−i)) = (α0

1, α
0
2, . . . , α

0
i−1, α

1
i , α

0
i+1, . . . , α

0
n)

be obtained by varying the parameter αi to the new value α1
i , while the remaining n− 1

parameters are fixed at α0. The individual effect of αi on ∆f is ∆if = f(α1
i , α

0
(−i))−f(α0)

and the First Order FCSI of αi, denoted as Φ1,f
i , is (Borgonovo 2010a):

Φ1,f
i =

∆if

∆f
. (14)

∆f is equal to the sum of individual effects and interactions between parameters and

groups of parameters. The total effect of the parameter αi, denoted as ∆T
i f , is the sum

of the individual effect of αi and of the interactions that involve αi. Borgonovo (2010a,

Proposition 1) showed that ∆T
i f can be obtained as ∆T

i f = f(α1) − f(α0
i , α

1
(−i)) for all

i = 1, 2, . . . , n, where (α0
i , α

1
(−i)) is the point with all the parameters equal to the new

value α1, except the parameter αi, which is equal to α0
i . The Total Order FCSI of the

parameter αi, denoted as ΦT,f
i , is (Borgonovo 2010a):

ΦT,f
i =

∆T
i f

∆f
=

f(α1)− f(α0
i , α

1
(−i))

∆f
. (15)

(iv) Helton’s index (local SA)

Helton (1993) proposed a variance decomposition of f based on Taylor approximation.

He assumed parameters are not correlated, so the variance of f can be approximated by

V̂ (f) =

n∑

i=1

[
f ′

αi
(α0)

]2
· V (αi). (16)

The impact of input αi on V (f) can be measured by

Hf
i (α

0) =

[
f ′

αi
(α0)

]2
· V (αi)

V̂ (f)
. (17)

(v) Normalized Partial Derivatives (local SA)

Helton (1993) also proposed the adoption of normalized partial derivatives as sensitiv-

ity measures. He defined two versions of normalized partial derivatives (NPDs):

NPD1fi (α
0) = f ′

αi
(α0) ·

α0
i

f(α0)
, (18)

NPD2fi (α
0) = f ′

αi
(α0) ·

σ(αi)

σ̂(f)
, (19)

where σ̂(f) is the square root of V̂ (f) defined in (16). NPD1fi (α
0) measures the elasticity

of f with respect to αi in α0 assuming that the relative change in αi is fixed for i =

1, 2, . . . , n (Helton 1993, p. 329).
∣
∣NPD2fi (α

0)
∣
∣ is the square root of (17).

(vi) Differential Importance Measure (local SA)

The total variation f(α0+dα)−f(α0) of a differentiable function f due to a local change

dα can be approximated by the total differential df =
∑n

i=1 f
′

αi
(α0) ·dαi. The Differential
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Importance Measure (DIM) of parameter αi is the ratio of the partial differential of f with

respect to αi to the total differential of f (Borgonovo and Apostolakis 2001, Borgonovo

and Peccati 2004):

DIMf
i (α

0, dα) =
dfai
df

=
f ′

αi
(α0) · dαi

∑n
j=1 f

′

αj
(α0) · dαj

. (20)

The DIM of a parameter represents the percentage of the function’s variation due to the

variation of that parameter (Borgonovo and Apostolakis 2001, Borgonovo and Peccati

2004).

4 Coherence between objective functions

Risk management problems are often characterized by the definition of more than one

objective function (Borgonovo and Peccati 2006b, Borgonovo, Gatti and Peccati 2010).

For a given technique, the analysis can be applied using different objective functions. A

relevant aspect is the evaluation of the coherence (or compatibility) between the results

of the sensitivity analysis for different functions.

We consider the objective functions f, g : A → R. The vector of importance measures

are respectively Rf = (Rf
1 , R

f
2 , . . . , R

f
n) and Rg = (Rg

1, R
g
2, . . . , R

g
n); the ranking vectors

are rf = (rf1 , r
f
2 , . . . , r

f
n) and rg = (rg1, r

g
2, . . . , r

g
n).

Definition 3. (Coherence) Given a technique of SA and two objective functions f and g,

they are coherent if the ranking vectors coincide: rf = rg. If, in addition, the vectors of

the relevances coincide, Rf = Rg, they are strictly coherent.

If two functions f and g are not coherent, the degree of incoherence can be alternatively

measured through Spearman’s rank correlation coefficient (Spearman 1904) or top-down

correlation coefficient (Iman and Conover 1987).

Spearman’s rank correlation coefficient (henceforth, Spearman’s coefficient) between

two stochastic variables is the correlation coefficient between the ranks of the stochastic

variables (Spearman 1904). In SA, Spearman’s coefficient between two objective functions

f and g, denoted as ρf,g, is the correlation coefficient of the ranking vectors rf and rg:

ρf,g =
Cov(rf , rg)

σ(rf ) · σ(rg)
=

∑n
i=1(r

f
i − rfM ) · (rgi − rgM )

√
∑n

i=1

(
rfi − rfM

)2
·
√

∑n
i=1

(
rgi − rgM

)2
, (21)

where, as seen, rfM = rgM = n+1
2 . The coefficient ρf,g attributes the same weight to top

and low parameters and lies in the interval [−1, 1]. The coefficient ρf,g is equal to 1 if and

only if f and g are coherent according to Definition 3. Therefore, a value of ρf,g smaller

than 1 signals incoherence between f and g: The smaller the value of ρf,g, the higher the

degree of incoherence. The difference 1−ρf,g can be taken as representative of the degree

of incoherence.

Iman and Conover (1987) introduced the top-down correlation coefficient, a compati-

bility measure that attributes a higher weight to top parameters than to low parameters.
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This measure is based on Savage Score (Savage 1956). The Savage score of parameter αi

is Sf
i =

∑n

h=r
f
i

1
h
. The vector of Savage scores is Sf =

(

Sf
1 , S

f
2 , . . . , S

f
n

)

.4 The average

Savage score is Sf
M =

∑n
i=1 S

f
i

n
= 1.

The top-down correlation coefficient between the objective functions f and g, denoted

as ρSf ,Sg , is the correlation coefficient between the Savage scores’ vectors Sf and Sg (Iman

and Conover 1987):

ρSf ,Sg =
Cov(Sf , Sg)

σ(Sf ) · σ(Sg)
=

∑n
i=1(S

f
i − Sf

M ) · (Sg
i − Sg

M )
√
∑n

i=1

(
Sf
i − Sf

M

)2
·
√
∑n

i=1

(
Sg
i − Sg

M

)2
, (22)

where Sf
M = Sg

M = 1. The coefficient ρSf ,Sg measures the compatibility between the

parameters’ ranking of f and g: The accordance between top parameters has a remarkable

influence on ρSf ,Sg , while the discordance between low parameters has a weak influence

on ρSf ,Sg (Iman and Conover 1987).

If the aim of the analysis is factor prioritization (i.e., identification of the most relevant

parameters), the top-down coefficient should be preferred to Spearman’s coefficient.

The maximum value of ρSf ,Sg is equal to 1. In case f and g have no ties (i.e., no

relevance is equal), the minimum value is −1 for n = 2, it increases as n increases, and it

tends to −0.645 as n tends to infinity (Iman and Conover 1987).

ρSf ,Sg is equal to 1 if and only if f and g are coherent. Therefore, a value of ρSf ,Sg

smaller than 1 signals incompatibility between f and g. The smaller the value of ρSf ,Sg ,

the higher the incoherence level. The degree of incoherence of f and g can then be

measured by 1− ρSf ,Sg .

Borgonovo et al. (2014) showed that an objective function f and a monotonic trans-

formation g of it generate the same ranking of the parameters under several techniques.

This means that they are coherent according to Definition 3.

We now show that, if g is an affine transformation of f , that is, g(α) = l · f(α)+ q for

all α ∈ A, then f and g are strictly coherent under several techniques.

Proposition 1. A function and an affine transformation of it are strictly coherent under

the following techniques:

(i) Standardized regression coefficient

(ii) Sensitivity Indices in variance-based decomposition methods

(iii) Finite Change Sensitivity Indices

(iv) Helton’s index

(v) Normalized Partial Derivative (NPD2fi )

(vi) Differential Importance Measure.

Proof. By hypothesis, g(α) = l · f(α) + q. Therefore,

4For example, if n = 5 and rf = (1, 2, 3, 4, 5), then Sf = (2.283̄, 1.283̄, 0.783̄, 0.45, 0.2).
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(i) g = l · (βf
0 +

∑n
i=1 β

f
i · αi + u) + q = (l · βf

0 + q) +
∑n

i=1(l · β
f
i ) · αi + l · u, whence

βg
0 = l · βf

0 + q,

βg
i = l · βf

i

so that

SRCg
i =

βg
i · σ(αi)

σ(g)
=

l · βf
i · σ(αi)

l · σ(f)
= SRCf

i .

(ii) Denoting as f |αi (and g|αi) the function f (and g) conditional to a specific value of

αi, g|αi = (l · f + q)|αi = (l · f)|αi + q = l · f |αi + q. Therefore,

SI1,gi =
V (E(g|αi))

V (g)
=

V (E(l · f |αi + q))

V (l · f + q)
=

l2 · V (E(f |αi))

l2 · V (f)
= SI1,fi .

Analogously, g|α−i = (l · f + q)|α−i = l · f |α−i + q. Hence,

SIT,gi =
E(V (g|α−i))

V (g)
=

E(V (l · f |α−i + q))

V (l · f + q)
=

l2 · E(V (f |α−i))

l2 · V (f)
= SIT,fi .

(iii) Since ∆g = g(α1)− g(α0) = l · f(α1)+ q− l · f(α0)− q = l ·
(
f(α1)− f(α0)

)
= l ·∆f,

and

∆ig = g(α1
i , α

0
(−i))− g(α0) = l · f(α1

i , α
0
(−i)) + q − l · f(α0)− q

= l ·
(
f(α1

i , α
0
(−i))− f(α0)

)
= l ·∆if,

then

Φ1,g
i =

∆ig

∆g
=

l ·∆if

l ·∆f
=

∆if

∆f
= Φ1,f

i .

As for the Total Indices,

∆T
i g = g(α1)− g(α0

i , α
1
(−i)) = l · f(α1) + q − l · f(α0

i , α
1
(−i))− q

= l ·
(
f(α1)− f(α0

i , α
1
(−i))

)
= l ·∆T

i f

so that

ΦT,g
i =

∆T
i g

∆g
=

l ·∆T
i f

l ·∆f
=

∆T
i f

∆f
= ΦT,f

i .

(iv) From (16),

V̂ (g) =
n∑

i=1

[g′αi
(α0)]2 · V (αi)

=
n∑

i=1

[l · f ′

αi
(α0)]2 · V (αi) = l2 ·

n∑

i=1

[f ′

αi
(α0)]2 · V (αi) = l2 · V̂ (f).

Hence,

Hg
i (α

0) =
[g′αi

(α0)]2 · V (αi)

V̂ (g)
=

l2 · [f ′

αi
(α0)]2 · V (αi)

l2 · V̂ (f)
= Hf

i (α
0).
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(v) Straightforward, since
∣
∣NPD2fi

∣
∣ is the square root of Hf

i (α
0).5

(vi) From (20),

DIMg
i (α

0, dα) =
g′αi

(α0) · dαi
∑n

j=1 g
′

αj
(α0) · dαj

=
l · f ′

αi
(α0) · dαi

∑n
j=1 l · f

′

αj
(α0) · dαj

=
f ′

αi
(α0) · dαi

∑n
j=1 f

′

αj
(α0) · dαj

= DIMf
i (α

0, dα).

(This result is independent of the structure of dα.)

Remark 1. While we have proved that, for several SA techniques, a function and its

affine transformation are coherent (even in a strict sense), it is intuitive to inductively

believe that a function and its affine transformation share an absolute coherence, in that

they are coherent for every existing SA technique. We leave the proof of this more general

statement for future research.

5 Coherence between return rates and NPV

The investment risk can be defined as “the potential variability of financial outcomes”

(White et al. 1997). The future outcomes of an investment are stochastic and the investor

has limited information. Referring to NPV and IRR, Joy and Bradley (1973, p. 1255)

wrote: “It has often been suggested that capital budgeting theory has over-emphasized

the development of such techniques with little regard for the typically poor data used in

project evaluation and the effect that errors in capital budgeting inputs have on project

profitability.” The practice of valuation criteria should be corroborated by a careful

investment risk analysis.

Given an investment model based on a set of value drivers, SA allows the evaluator

to identify the most relevant parameters in terms of variation of the value. The most

relevant parameters are the risk factors that mainly influence the investment. After SA

has been performed, the investment risk can be reduced through information insights on

the main risk factors identified by the analysis; the collection of extra information on

these parameters allows more precise estimates and a remarkable uncertainty reduction

(Borgonovo and Peccati 2006b). Furthermore, the potential investor is able to appreciate

the convenience of possible hedging strategies.

As the NPV is the main decision criterion in capital budgeting theory, the analysis

of the parameters’ relevance on NPV variability is fundamental. Any relative measure of

worth should be consistent with NPV not only in terms of classical consistency but also

in terms of output variability with respect to changes in the inputs.

5It is worth noting that f and g are coherent but not strictly coherent under NPD1fi technique:

NPD1gi (α
0) = g′αi

(α0) ·
α0

i

g(α0)
= l · f ′

αi
(α0) ·

α0

i

g(α0)
·
f(α0)

f(α0)
= l ·

f(α0)

g(α0)
·NPD1fi (α

0)

so that |NPD1fi | > |NPD1fj | implies |NPD1gi | > |NPD1gj |. Therefore, the parameters’ ranking in f and g is

equal: rf = rg.
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Definition 4. (Strong NPV-consistency) Given an analysis technique T , a metric ϕ (and

its associated decision criterion) is strongly NPV-consistent (or coherent with NPV) under

T if it fulfills Definition 2 and NPV and ϕ are coherent functions. The metric ϕ is strictly

NPV-consistent if the coherence is strict.

If a metric/criterion possesses strong NPV-consistency, the investor can equivalently adopt

NPV or such criterion for measuring value creation under uncertainty. In case a metric

is not strongly NPV-consistent, the degree of incompatibility can be measured through

Spearman’s coefficient or through top-down coefficient, as seen in section 4.

We now show that the average ROI possesses strong NPV-consistency. To this end,

we maintain the symbol α = (α1, . . . , αn) as the vector of the project’s value drivers and

α0 is the base value. We assume that the initial invested capital (or borrowed amount) is

exogenously given, as well as the COC (and p). The economic profitability of P depends on

the realization of the value drivers, which affect the FCFs, as seen in section 2: Ft = Ft(α),

t = 1, 2, . . . p. We now let f(α) = NPV(α) = −B0+
∑p

t=1 Ft(α)(1+k)−t and g(α) denotes

the average ROI.

Proposition 2. For any fixed k, p and Dep = (Dep1, . . . ,Depp),
6 average ROI and NPV

are strongly consistent in a strict sense under the following techniques:

(i) Standardized regression coefficient

(ii) Sensitivity Indices in variance-based decomposition methods

(iii) Finite Change Sensitivity Indices

(iv) Helton’s index

(v) Normalized Partial Derivative (NPD2fi )

(vi) Differential Importance Measure.

Proof. The depreciation charge, Dept, does not depend on the value drivers; therefore, B

does not depend on α and, using (9), one can write g(α) = q + l · NPV(α) where q = k

and l = (1 + k)/B. The thesis follows from Proposition 1.7

The above proposition guarantees that the value drivers’ effect on the variability of ı̄(B)

and NPV is the same, not only in terms of ranks (rnpv = rı̄(B)) but also in terms of

relevances (Rnpv = Rı̄(B)). Therefore, ρı̄(B),npv = ρS ı̄(B),Snpv = 1. This means that an

investor can equivalently employ average ROI or NPV to analyze an investment under

uncertainty.

6 Worked examples

In the previous sections we have shown that, given a depreciation plan, the average ROI is

strongly consistent with NPV. The aim of this section is to discuss two models. The first

analyzes an example with straight-line depreciation. The second one is a real-life applica-

tion, illustrated in Hartman (2007, p. 344) and is based on declining balance depreciation.

We will accomplish a SA by focusing on two techniques: FCSI and DIM.

6Obviously, to fix Dep is equivalent to fixing B.
7Evidently, ı̄(B) is strongly NPV-consistent under NPD1fi as well but not in a strict sense.
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6.1 Straight-line depreciation

We discuss a simple model, consisting of a firm facing the opportunity of investing in

a 4-period project whose estimated revenues and operating costs are Rt and Ot. We

assume that the tax rate is zero, τ = 0 (it is not a risk factor). This implies, from (1),

Ft = Rt−Ot. The project’s value drivers are then αi = Ri for i = 1, 2, 3, 4 and αi = Oi−4

for i = 5, 6, 7, 8. Hence, the value driver’s vector is α = {R1, R2, R3, R4, O1, O2, O3, O4}.

NPV is computed as:

NPV(α) = −B0 +
R1 −O1

1 + k
+

R2 −O2

(1 + k)2
+

R3 −O3

(1 + k)3
+

R4 −O4

(1 + k)4
.

We assume that straight-line (SL) depreciation is employed, which implies that the in-

vested capital depreciates linearly with time: Dept = γB0 where γ = 1/p. This means

Bt = B0(1 − γt) and, in turn, B = B0 ·
∑p

t=1

(
1 − t−1

p

)
(1 + k)−(t−1). This implies

ROIt = (Rt − Ot − γB0)/(B0(1 − γ(t − 1))). The average ROI can be computed as a

weighted average of the ROIs or as the ratio of overall profit to overall capital, B. Equiv-

alently, using NPV, one can compute it as the value obtained by the AIRR function at

C = B. Specifically, ı̄(B) = k +NPV(1 + k)/B.

Example 1. Assume B0 = 750 and k = 10%. Table 1 describes the base value

α0 = (R0
1, R

0
2, R

0
3, R

0
4, O

0
1, O

0
2, O

0
3, O

0
4)

and reports the corresponding Free Cash Flows and valuation metrics. The NPV is

157.37 = −750+380/1.1+270/(1.1)2+360/(1.1)3+100/(1.1)4. Considering that deprecia-

tion charge is 750/4 = 187.5, the vector of capitals associated with the average ROI is B =

(750, 562.5, 375, 187.5, 0) and B = 1712.15 = 750 + 562.5/1.1 + 375/(1.1)2 + 187.5/(1.1)3.

Therefore, the average ROI is equal to ı̄(B) = 10% + 157.37/1712.15 · 1.1 = 20.11%.

Table 1: Investment evaluated in α0

0 1 2 3 4

R0
t 580 570 560 400

O0
t 200 300 200 300

Ft −750 380 270 360 100

Valuation

NPV 157.37
ı̄(B) 20.11%

Let α1 be the vector of new values of revenues and costs (see Table 2), with the

corresponding new values of Ft, NPV, and ı̄(B). In α1, NPV is 442.92, ı̄(B) is 38.46%.

The observed variations are: ∆NPV = 285.55 = 442.92 − 157.37; ∆ı̄(B) = 18.35% =

38.46% − 20.11%. Table 3 shows the First Order FCSIs (Φ1,f
i ), the ranks (rfi ), and the

Savage scores of parameters (Sf
i ) for NPV and ı̄(B). The First Order FCSIs are equal:

Φ1,npv
i = Φ

1,̄ı(B)
i . Hence, ı̄(B) and NPV are strongly coherent in a strict sense and the

degree of coherence is maximum: ρı̄(B),npv = ρS ı̄(B),Snpv = 1. (Note that, in this case, Total

Order FCSIs and First Order FCSIs coincide, because the value drivers do not interact

one another.)
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Table 2: Investment evaluated in α1

0 1 2 3 4

R1
t 800 810 780 630

O1
t 350 250 380 600

Ft −750 450 560 400 30

Valuation

NPV 442.92
ı̄(B) 38.46%

Table 3: Finite Change Sensitivity Indices

NPV Average ROI

Parameter ΦT,npv
i = Φ1,npv

i r
npv
i S

npv
i Φ

T,̄ı(B)
i = Φ

1,̄ı(B)
i r

ı̄(B)
i S

ı̄(B)
i

R1 70.04% 2 1.718 70.04% 2 1.718
R2 69.46% 3 1.218 69.46% 3 1.218
R3 57.89% 4 0.885 57.89% 4 0.885
R4 55.01% 5 0.635 55.01% 5 0.635
O1 −47.76% 6 0.435 −47.76% 6 0.435
O2 14.47% 8 0.125 14.47% 8 0.125
O3 −47.36% 7 0.268 −47.36% 7 0.268
O4 −71.76% 1 2.718 −71.76% 1 2.718

Correlations

ρı̄(B),npv 1
ρS ı̄(B),Snpv 1

We now illustrate one numerical example where the DIM technique is used. It is a

local SA technique, so it measures the value drivers’ impact on the objective function in a

neighbourhood of α0. We assume that changes in the inputs are proportional to the base

value (dαi = ξ · α0
i for some ξ 6= 0) so the resulting DIM is

DIMf
i (α

0) =
f ′

αi
(α0) · ξ · α0

i
∑n

j=1 f
′

αj
(α0) · ξ · α0

j

=
f ′

αi
(α0) · α0

i
∑n

j=1 f
′

αj
(α0) · α0

j

(23)

(Borgonovo and Apostolakis 2001, Borgonovo and Peccati 2004). In particular, the first

partial derivatives of NPV(α), evaluated in α0, are

NPV′

αi
(α0) =

{

(1 + k)−i, i = 1, 2, 3, 4;

−(1 + k)−(i−4), i = 5, 6, 7, 8.
(24)

The first partial derivatives of ı̄(B), evaluated in α0, are

ı̄(B) ′αi
(α0) = NPV′

αi
(α0) ·

1 + k

B
. (25)

Example 2. Consider a four-period investment P , with B0 = 900 and k = 8%. Hence,

Dept=225 which implies B = 2089.41. The base value is

α0 = (900, 1000, 1100, 1200, 600, 700, 800, 900).

The corresponding cash-flow vector is F = (−900, 300, 300, 300, 300) and NPV = 93.64,
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ı̄(B) = 12.84%. Table 4 shows the DIMs, the ranks, and the Savage scores. As expected,

the two metrics share the same rank and even the same DIMs. Therefore, they are strictly

coherent.

Table 4: Coherence under DIM technique

NPV Average ROI

Parameter α0 DIM
npv
i (α0) r

npv
i S

npv
i DIM

ı̄(B)
i (α0) r

ı̄(B)
i S

ı̄(B)
i

R1 900 83.87% 4 0.885 83.87% 4 0.885
R2 1000 86.28% 3 1.218 86.28% 3 1.218
R3 1100 87.88% 2 1.718 87.88% 2 1.718
R4 1200 88.77% 1 2.718 88.77% 1 2.718
O1 600 −55.91% 8 0.125 −55.91% 8 0.125
O2 700 −60.40% 7 0.268 −60.40% 7 0.268
O3 800 −63.91% 6 0.435 −63.91% 6 0.435
O4 900 −66.58% 5 0.635 −66.58% 5 0.635

Correlations

ρı̄(B),npv 1
ρS ı̄(B),Snpv 1

6.2 Declining-balance depreciation

We discuss a model based on (2). In particular, we borrow from Hartman (2007, p. 344)

a real-life application. In 2003, Sunoco Inc. agreed to build a coke-making plant with an

annual capacity of 550,000 tons per year in order to supply plants of International Steel

Group (ISG) Inc. The cost of the plant was $140 million and ISG agreed to purchase the

coke (needed for producing steel) for the next 15 years.

Table 5 collects the (stochastic and non-stochastic) relevant data affecting the project’s

economic profitability. The 11 stochastic parameters are evaluated in the base case α0.

We assume that the facility is depreciated in 15 years with a double-declining balance

switching to SL depreciation (DDB-SL), that is, Dept = max
(
2/p ·Ct−1;Ct−1/(p− t+1)

)
.

This implies that the depreciation schedule is

Dep = (18.67, 16.18, 14.02, 12.15, 10.53, 9.13, 7.91, 6.86, 6.37, 6.37, 6.37, 6.37, 6.37, 6.37, 6.37).

From (2) the after-tax operating profit is obtained as

It =
(
q · p0(1 + gp)

t −M(1 + gm)t − L(1 + gl)
t − E(1 + ge)

t −Ov −Dept
)
(1− τ).

Table 6 describes the value drivers at α0 and α1 and the resulting value of NPV and

average ROI. The individual and total contribution of the value drivers, as well as the

ranking, are measured via the First Order FCSI and the Total Order FCSI respectively

(Tables 7 and 8). Unlike the previous example, the two FCSIs are not equal, owing to

nonzero interactions among the value drivers. As expected, the effect of each parameter

on average ROI is the same as its effect on NPV, in terms of both magnitude and direction,

which means that the average ROI and the NPV are strictly coherent.8

8It is interesting to note that, while the change in both NPV and average ROI is not so large, the effect of
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Table 5: Sunoco project: Input data

Stochastic (value drivers)

Annual production q 0.55 million tons
Price p0 $350 per ton
Price growth rate gp 2%
Materials M $27.5 million
Materials growth rate gm 2%
Labor L $75 million
Labor growth rate gl 5%
Energy E $20 million
Energy growth rate ge 3%
Overhead Ov $7 million
Tax rate τ 35%

Non-stochastic

Investment $140 million
Salvage Value $0 million
COC 12%
Periods 15 years
Dep Method DDB-SL

Table 6: Sunoco project evaluated in α0 and α1

Parameter α0 α1

q 0.55 0.57
p0 $350 $340
gp 2.0% 2.5%
M $27.5 $35.0
gm 2.0% 3.6%
L $75 $68
gl 5.0% 4.0%
E $20 $25
ge 3.0% 2.0%
O $7 $10
τ 35.0% 38.0%

Valuation α0 α1

NPV $120.61 $128.53
ı̄(B) 34.60% 36.08%
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Table 7: Sunoco project: First Order FCSI

NPV Average ROI

Parameter Φ1,npv
i r

npv
i S

npv
i Φ

1,̄ı(B)
i r

ı̄(B)
i S

ı̄(B)
i

q 442.23% 3 1.520 442.23% 3 1.520
p0 −347.47% 6 0.737 −347.47% 6 0.737
gp 383.60% 4 1.187 383.60% 4 1.187
M −473.82% 2 2.020 −473.82% 2 2.020
gm −183.24% 8 0.427 −183.24% 8 0.427
L 534.84% 1 3.020 534.84% 1 3.020
gl 357.37% 5 0.937 357.37% 5 0.937
E −336.21% 7 0.570 −336.21% 7 0.570
ge 81.31% 11 0.091 81.31% 11 0.091
O −167.82% 9 0.302 −167.82% 9 0.302
τ −107.70% 10 0.191 −107.70% 10 0.191

Correlations

ρı̄(B),npv 1
ρS ı̄(B),Snpv 1

Table 8: Sunoco project: Total Order FCSI

NPV Average ROI

Parameter ΦT,npv
i r

npv
i S

npv
i Φ

T,̄ı(B)
i r

ı̄(B)
i S

ı̄(B)
i

q 422.70% 3 1.520 422.70% 3 1.520
p0 −354.32% 5 0.937 −354.32% 5 0.937
gp 368.36% 4 1.187 368.36% 4 1.187
M −499.62% 1 3.020 −499.62% 1 3.020
gm −222.45% 8 0.427 −222.45% 8 0.427
L 478.34% 2 2.020 478.34% 2 2.020
gl 309.06% 6 0.737 309.06% 6 0.737
E −301.30% 7 0.570 −301.30% 7 0.570
ge 96.95% 11 0.091 96.95% 11 0.091
O −160.07% 9 0.302 −160.07% 9 0.302
τ −117.75% 10 0.191 −117.75% 10 0.191

Correlations

ρı̄(B),npv 1
ρS ı̄(B),Snpv 1
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We now use Sunoco’s example to show the behavior of the two metrics with the DIM

technique. The computation of DIMs is easy, given that the calculation of the partial

derivatives of NPV with respect to each parameter is straightforward (see Appendix B

for the list of derivatives) and the derivatives of the average ROI is obtained from (25).

The strict coherence obviously holds. It is interesting to note that, in this case, there

are ties: The first rank is shared by two key drivers, the current price, p0, and the quantity

sold, q. An equal relative change of either parameter affects the average ROI (and the

NPV) in the same way. The operating costs related to labor are top drivers (labor cost

has rank 3 and its growth rate has rank 4). Much less impact have the growth rates in

energy and materials (rank 10 and 11, respectively).

Table 9: Sunoco project: DIM technique

NPV Average ROI

Parameter α0 DIM
npv
i (α0) r

npv
i S

npv
i DIM

ı̄(B)
i (α0) r

ı̄(B)
i S

ı̄(B)
i

q 0.55 93.27% 1.5 2.520 93.27% 1.5 2.520
p0 350 93.27% 1.5 2.520 93.27% 1.5 2.520
gp 2% 11.54% 6 0.737 11.54% 6 0.737
M 27.5 −13.32% 5 0.937 −13.32% 5 0.937
gm 2% −1.65% 11 0.091 −1.65% 11 0.091
L 75 −43.95% 3 1.520 −43.95% 3 1.520
gl 5% −14.26% 4 1.187 −14.26% 4 1.187
E 20 −10.31% 7 0.570 −10.31% 7 0.570
ge 3% −1.95% 10 0.191 −1.95% 10 0.191
O 7 −3.00% 9 0.302 −3.00% 9 0.302
τ 35% −9.64% 8 0.427 −9.64% 8 0.427

Correlations

ρı̄(B),npv 1
ρS ı̄(B),Snpv 1

7 Concluding remarks

Many different investment criteria are available to managers, professionals and practition-

ers. NPV is considered a theoretically reliable measure of economic profitability. Indus-

trial and financial investments are often evaluated through relative measures of worth as

well. Recently, it has been introduced a new class of return rates named AIRR (Magni

2010, Magni 2013). This class includes the average ROI, which plays an important role

in the appraisal of industrial investments (Magni 2015, Mørch et al. 2017). The average

ROI exists and is unique, and is coherent with NPV in the sense that it correctly signals

value creation or value destruction, just like the NPV (and, therefore, the decision made

using either metric is the same).

This work provides a new definition of NPV-consistency making use of sensitivity anal-

ysis (SA). Given an SA technique, a metric is strongly consistent or coherent with NPV if

it fulfills the classical definition of NPV-consistency and generates the same ranking of the

each parameter on the two metrics is extremely high. In this model, the NPV and the average ROI are highly
sensitive to the contributions of each driver but, overall, the parameters’ effects reciprocally compensate, in
such a way that the resulting change is “smoothed”.
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value drivers as that generated by the NPV. If, in addition, the parameters’ relevances are

equal to the ones associated with NPV, then the metric and NPV are strongly consistent

in a strict form.

We assume that the COC is exogenously fixed by the decision maker, as well as the

initial investment and the lifetime of the project. After proving that an affine transfor-

mation of a function preserves the ranking, we show that the average ROI, being an affine

transformation of NPV, is strongly NPV-consistent under several (possibly, all) different

techniques of SA.

We have illustrated some simple numerical examples using FCSI (Borgonovo 2010a)

and DIM (Borgonovo and Apostolakis 2001, Borgonovo and Peccati 2004), based on differ-

ent depreciation plans (straight-line depreciation and accelerated depreciation). We have

measured the degree of NPV-consistency via Spearman’s (1904) coefficient and Iman and

Conover’s (1987) top-down coefficient. We have found that average ROI and NPV show

perfect correlation and even strict consistency. However, we stress that not all AIRRs

enjoy strong NPV-consistency, including the economic AIRR and the IRR, both showing

degrees of incoherence that may be nonnegligible (see Appendix A).

The findings allow us to claim that the average ROI can be reliably associated with

NPV, providing consistent pieces of information. Also, the average ROI is a good can-

didate for absolute NPV-consistency, to be intended as a strong coherence under any

possible technique of SA (this should hold, given the affine relation between the average

ROI and NPV). Future researches may be devoted to finding other relative measures of

worth that enjoy strong NPV-consistency.
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Koç, A., Morton, D.P., Popova, E. Hess, S.M., Kee, E., Richards, D. (2009) Prioritizing

project selection. The Engineering Economist, 54(4), 267-297.

Kumbhakar, S.C. (2011) Estimation of production technology when the objective is to

maximize return to the outlay. European Journal of Operational Research, 208(2) (Jan-

uary), 170-176.

Leyman, P., Vanhoucke, M. (2017) Capital- and resource-constrained project scheduling

with net present value optimization. European Journal of Operational Research, 256(3)

(February), 757-776.

Li, J., Min, K.J., Otake, T., Van Voorhis, T. (2008) Inventory and investment in setup

and quality operations under Return On Investment maximization. European Journal of

Operational Research, 185(2) (March), 593-605.

Lima e Silva, J., Sobreiro, V.A., Kimura, H. (2017) Pre-Purchasing financing pool: Reveal-

24



ing the IRR problem. The Engineering Economist, DOI: 10.1080/0013791X.2017.1333662.

Magni, C.A. (2010) Average Internal Rate of Return and investment decisions: A new

perspective. The Engineering Economist, 55(2), 150-180.

Magni, C.A. (2013) The Internal Rate of Return approach and the AIRR Paradigm: A

refutation and a corroboration. The Engineering Economist: A Journal Devoted to the

Problems of Capital Investment, 58(2), 73-111.

Magni, C.A. (2014) Mathematical analysis of average rates of return and investment

decisions: The missing link. The Engineering Economist, 59(3), 175-206.

Magni, C.A. (2015) Investment, financing and the role of ROA and WACC in value

creation. European Journal of Operational Research, 244, 855-866.

Magni, C.A. (2016) Capital depreciation and the underdetermination of rate of return: A

unifying perspective. Journal of Mathematical Economics, 67 (December), 54-79.

Menezes, M.B.C., Kim, S., Huang, R. (2015) Return-on-investment (ROI) criteria for

network design. European Journal of Operational Research, 245(1) (August), 100-108.

Meier, H., Christofides, N., Salkin, G. (2001) Capital Budgeting Under UncertaintyAn In-

tegrated Approach Using Contingent Claims Analysis and Integer Programming. Operations

Research, 49(2) (March-April), 196-206.

Mørch, O., Fagerholta, K., Pantuso, G., Rakkec, J. (2017) Maximizing the rate of return

on the capital employed in shipping capacity renewal. Omega, 67 (March), 42-53.

Murthi, B.P.S., Choi, Y.K., Desai, P. (1997) Efficiency of mutual funds and portfolio

performance measurement: A non-parametric approach. European Journal of Operational

Research, 98(2) (April), 408-418.

Myung, Y.-S., Kim, H., Tcha, D. (1997) A bi-objective uncapacitated facility location

problem. European Journal of Operational Research, 100(3), 608-616.

Nauss, R.M. (1988) On the use of internal rate of return in linear and integer programming.

Operations Research Letters, 7(6) (December), 285-289.

Pasqual, J., Padilla, E., Jadotte, E. (2013) Technical note: Equivalence of different prof-

itability criteria with the net present value. International Journal of Production Eco-

nomics, 142(1) (March), 205-210.

Percoco, M., Borgonovo, E. (2012) A note on the sensitivity analysis of the internal rate

of return. International Journal of Production Economics, 135, 526-529.

25



Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., Wagener, T.

(2016) Sensitivity analysis of environmental models: A systematic review with practical

workflow. Environmental Modelling & Software, 79, 214-232.

Rapp, B. (1980) The Internal Rate of Return method − A critical study. Engineering

Costs and Production Economics, 5(1) (June), 43-52.

Rivett, P. (1974) Perspective for Operational Research. Omega, 2(2), 225-233.

Rosenblatt, M.J., Sinuany-Stern, Z. (1989) Generating the discrete efficient frontier to the

capital budgeting problem. Operations Research, 37(3), 384-394.

Ross, S.A., Westerfield, R.W., Jordan, B.D. (2011) Essentials of corporate finance, 7th

ed. McGraw-Hill/Irwin, New York.

Saltelli, A., Marivoet, J. (1990) Non-parametric statistics in sensitivity analysis for model

output: A comparison of selected techniques. Reliability Engineering and System Safety,

28, 229-253.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana,

M., Tarantola, S. (2008) Global Sensitivity Analysis. The Primer. John Wiley & Sons,

Chichester.

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M. (2004) Sensitivity analysis in prac-

tice. A guide to assessing scientific models. John Wiley & Sons, Chichester.

Savage, I.R. (1956) Contributions to the theory of rank order statistics − The two-sample

case. The Annals of Mathematical Statistics, 27(3), 590-615.

Seifert, D., Seifert, R.W., Protopappa-Siekec, M. (2013) A review of trade credit litera-

ture: Opportunities for research in operations. European Journal of Operational Research,

231(2) (December), 245-256.

Small, P.H. (1956) Operations Research from a financial viewpoint. Operations Research,

4, 581-587.

Sobol’, I.M. (1993) Sensitivity estimates for nonlinear mathematical models. Mathemati-

cal Modeling and Computational Experiments, 1(4), 407-414.

Sobol’, I.M. (2001) Global sensitivity indices for nonlinear mathematical models and their

Monte Carlo estimates. Mathematics and Computers in Simulation, 55, 271-280.

Soper, C.S. (1959) The marginal efficiency of capital: A further note. The Economic

Journal, 69 (March), 174-177.

26



Spearman, C. (1904) The proof and measurement of association between two things. The

American Journal of Psychology, 15(1), 72-101.

Spronk, J, Hallerbach, W. (1997) Financial modelling: Where to go? With an illustration

for portfolio management. European Journal of Operational Research, 99(1) (May), 113-

125.

Steuer, R.E., Na, P. (2003) Multiple criteria decision making combined with finance:

A categorized bibliographic study. European Journal of Operational Research, 150(3)

(November), 496-515.

Talavera, D.L., Nofuentes, G., Aguilera, J. (2010) The internal rate of return of photo-

voltaic grid-connected systems: A comprehensive sensitivity analysis. Renewable Energy,

35(1) (January), 101-111.

Teichroew, D., Robichek, A., Montalbano, M. (1965a) Mathematical analysis of rates of

return under certainty. Management Science, 11, 395-403.

Teichroew, D., Robichek, A., Montalbano, M. (1965b) An analysis of criteria for invest-

ment and financing decisions under certainty. Management Science, 12, 151-179.

Thomas L.C. (2010) Consumer finance: challenges for operational research. Journal of

the Operational Research Society, 61(1) (January), 41-52.

Weingartner, H.M. (1963) Mathematical Programming and the Analysis of Capital Bud-

geting Problems, Prentice-Hall, Englewood Cliffs, NJ.

White, G.I., Sondhi, A.C., Fried, D. (1997) The Analysis and Use of Financial Statements.

Second edition. Wiley, New York, USA.

Wiesemann, W., Kuhn, D., Rustem, B. (2010) Maximizing the net present value of a

project under uncertainty. European Journal of Operational Research, 202(2) (April),

356-367.

Xu, X., Birge, J.R (2008) Operational decisions, capital structure, and managerial com-

pensation: A news vendor perspective. The Enginering Economist, 53(3), 173-196.

Yang, K.K., Talbot, F.B., Patterson, J.H. (1993) Scheduling a project to maximize its

net present value: An integer programming approach. European Journal of Operational

Research, 64(2) (January), 188-198.

Appendix A. (Non)strong consistency of other AIRRs

In principle, the class of AIRRs consists of infinitely many rates of return (albeit most of

them non-economically significant), so it is no wonder that many of them are not strongly-
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consistent. In this appendix we briefly focus on four special cases of AIRR, three of which

are not strongly consistent with NPV.

Internal rate of return (IRR). Magni (2010, 2013) shows that the internal rate

of return (IRR) is a special case of AIRR. Specifically, the IRR is a weighted mean

of generally time-varying period rates, generated by any vector C fulfilling the following

condition: C =
∑p

t=1

∑p
k=t Fk(1+x)−(p−t+1)·(1+k)−(t−1).9 While the IRR is traditionally

NPV-consistent (Hazen 2003), it suffers from some difficulties that have been extensively

investigated in the literature. A part of it has been concerned with the necessary and

sufficient condition for existence and uniqueness (e.g., Soper 1959, De Faro 1978, Bernhard

1980. See also Magni 2010 and references therein) or with project ranking (see Ekern 1981,

Foster and Mitra 2003 for ranking of risk-free projects. See Ben-Horin and Kroll 2017 for

ranking of nonequivalent-risk projects). In particular, Ekern (1981) and Foster and Mitra

(2003) can be interpreted as supplying conditions of (non)existence of IRR in the interval

(0,+∞), assuming that a project is ranked against the null alternative. Therefore, they

provide a tool to measure the robustness of a value-creating project under changes in

the COC and, at the same time, the conditions where IRR does not exist and cannot

then be employed for ranking value drivers.10 Percoco and Borgonovo (2012) show that,

if the IRR exists and is unique, the ranking of value drivers provided by IRR is not

equal to the ranking provided by the NPV, which means that the IRR is not strongly

NPV-consistent. It is easy to see that its degree of NPV-inconsistency, as measured by

Spearman’s correlation coefficient or Iman and Conover’s top-down coefficient, may be

not negligible.11 Also, the financial nature of the IRR is not unambiguously determined:

An investment project may well turn to a financing project if value drivers change, which

makes SA meaningless.

Economic AIRR (EAIRR). Another relevant AIRR is the economic AIRR, based

on market values (Magni 2013, 2014, Barry and Robison 2014, Bosch-Badia et al. 2014).

It is generated by picking Ct =
∑p

k=t+1 Fk(1 + k)t−k for all t = 1, . . . , p − 1 (while

C0 = −F0), which represents the economic value of the project at time t. The EAIRR is

NPV-consistent in a traditional sense and, unlike the IRR, this AIRR always exists and

is unique. However, just like the IRR, its financial nature may change under changes in

the value drivers.

Strong consistency with NPV is not guaranteed because Ct (and, therefore, C) depends

on F which, in turn, depends on the value drivers. Hence, it is not an affine transformation

of NPV. The degree of inconsistency may be rather high.12

9This implies that the assumption it = x for all t is sufficient but not necessary to generate a rate of return
equal to IRR.

10It is usually believed that the case of no-IRR is very rare. However, in some engineering projects it is
not infrequent that disposal and remedial costs occur at the terminal date, which is a necessary condition for
inexistence of IRR. Most recently, Lima e Silva et al. (2017) focus on a very common transaction where the
case of (multiple IRRs and) no IRR is the rule rather than the exception.

11For instance, in Example 1, the ranking generated by IRR with Total Order FCSIs is (1, 2, 4, 6, 3, 8, 7, 5) and
the top-down coefficient is ρSnpv,Sirr = 0.409. In Example 2, where the DIM technique is used, the parameters
ranking supplied by IRR is (1, 2, 3, 4, 8, 7, 5, 6) and the top-down coefficient is ρSnpv,Sirr = 0.309.

12In Example 1, the Total Order FCSIs for EAIRR generate the parameters’ ranking (1, 2, 4, 6, 3, 8, 5, 7) and
ρSnpv,Seairr = 0.239. In Example 2 the ranking is (1, 2, 3, 4, 8, 7, 5, 6) (equal to the ranking of IRR) and, therefore,
the top-down coefficient is equal as well: ρSnpv,Seairr = 0.309.

28



Modified internal rate of return (MIRR). The MIRR approach, also known

as the external-rate-of-return approach, consists of modifying project P by discounting

and/or compounding some or all of its cash flows at an external rate so as to generate a

modified project P
′

(with a modified cash-flow stream F
′

) bearing the same NPV as P

but such that F
′

has only one change in sign for the cash-flow stream. This guarantees

that the IRR of P
′

(i.e., the MIRR of P ) exists and is unique. The MIRR suffers from

some ambiguities of definition: (i) it is not clear what the external rate should be, (ii)

there are many ways to modify the project (resulting in different MIRRs), none of which

seems to deserve a privileged status, and (iii) it does not actually measure P ’s rate of

return (see Brealey and Myers 2000, Ross et al. 2011, Magni 2015).

Being an IRR of P
′

, the MIRR is an AIRR of P
′

and is not strongly consistent.

Further, the external rate from which it depends adds a source of uncertainty in the

valuation process (it may be equal or different from the COC). This implies that the

MIRR may not be NPV-consistent, not even in the traditional sense (see Magni 2015,

Appendix).

Profitability Index (PI). PI is defined as PI = NPV/B0. It is a well-known and

widespread metric that measures the NPV per unit of initial investment. It is strongly

consistent with NPV in a strict sense, as it is an affine transformation of NPV. It is also

easily seen that the PI is strictly linked with AIRR; namely, if cash-flow accounting is used,

that is, assets are expensed immediately (whence Bt = 0 for t > 0), then B = B0 and,

from (9), ı̄(B0) = k +NPV(1 + k)/B0 whence PI = (̄ı(B0)− k)/(1 + k). Therefore, PI is

an affine transformation of the average ROI that is associated with a cash-flow-accounting

depreciation system.
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Appendix B. Partial derivatives

NPV′

q(α
0) = p0 · (1− τ) ·

15∑

t=1

(
1 + gp
1 + k

)t

,

NPV′

p0
(α0) = q · (1− τ) ·

15∑

t=1

(
1 + gp
1 + k

)t

,

NPV′

gp
(α0) = p0 · q · (1− τ) ·

15∑

t=1

t · (1 + gp)
t−1

(1 + k)t
,

NPV′

M (α0) = −(1− τ) ·
15∑

t=1

(
1 + gm
1 + k

)t

,

NPV′

gm
(α0) = −M · (1− τ) ·

15∑

t=1

t · (1 + gm)t−1

(1 + k)t
,

NPV′

L(α
0) = −(1− τ) ·

15∑

t=1

(
1 + gl
1 + k

)t

,

NPV′

gl
(α0) = −L · (1− τ) ·

15∑

t=1

t · (1 + gl)
t−1

(1 + k)t
,

NPV′

E(α
0) = −(1− τ) ·

15∑

t=1

(
1 + ge
1 + k

)t

,

NPV′

ge
(α0) = −E · (1− τ) ·

15∑

t=1

t · (1 + ge)
t−1

(1 + k)t
,

NPV′

O(α
0) = −(1− τ) ·

15∑

t=1

1

(1 + k)t
,

NPV′

τ (α
0) = −

15∑

t=1

It
(1− τ) · (1 + k)t

.
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