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In the context of smart factories, where intelligent machines share data and 

support enhanced functionalities at a factory level, workers are still seen as 

spectators rather than active players (Hermann et al., 2017). Instead, Industry 4.0 

represents a great opportunity for workers to become part of the intelligent 

system; on one hand, operators can generate data to program machines and 

optimize the process flows, on the other hand they can receive useful information 

to support their work and cooperate with smart systems (Romero et al., 2016). 

Diversely from machines, humans are naturally smart, flexible and intelligent, so 

putting the operators in the digital loop can bring more powerful and efficient 

factories. The paper proposes the adoption of a human-centred design approach 

inspired by the Operator 4.0 concept and aims at demonstrating its feasibility for 

the integration of human factors in 4.0 computerized industrial frameworks. The 

approach is based on data collection about the workers’ performance, actions and 

reactions, with the final objective to improve the overall factory performance and 

organization. Data are used to assess the workers’ ergonomics performance and 

perceived comfort and to build a proper knowledge about the human asset of the 

factory, to be integrated with the knowledge derived from machine data 

collection. The proposed monitoring system consists of an eye tracking and a 

wearable biosensor, combined to a proper protocol analysis to interpret data and 

create a solid knowledge. Virtual prototypes are used to make the workers 

interact with the digital factory to conveniently simulate the human-machine 

interaction (HMI) in order to avoid bottlenecks at the shop floor, to optimize the 

workflows, and to improve the workstations’ design and layout. The study 

represents a step toward the design of human-centred industrial systems, 

including human factors in the digital twin. The research approach has been 

successfully tested on an industrial case study, developed in collaboration with 

CNH Industrial, for the re-design of assembly workstations.  

Keywords: Human Factors, Operator 4.0, Digitization, Industry 4.0, Mixed 

Reality.  

1. Introduction 

1.1 Context 

The Fourth Industrial Revolution is starting to transform the modern companies, but also the 

way people interact with products, machines, processes and workplaces due to the change in 



  

product smartness, machine interface, and work environment complexity, through 2025 and 

beyond (Lorenz et al., 2015). There are several trends that increase the need for research within 

human-machine interaction. Two examples are the Industrial 4.0 revolution and the most recent 

Industry 5.0 concept. Both trends push the adoption of advanced digital technologies to help 

people to interact with products and machines, to work better and more efficiently, and return to 

or be incorporated into the modern workforce. Thanks to the connectivity among different 

production resources (machines, work stations, etc.) proposed by Industry 4.0 approach, 

information can be generated and shared to create self-smart system adaptation and predictive 

and automated decision making process. Furthermore, production systems can be potentially 

able to self-reconfigure themselves on the basis of the collected data (Cohen et al., 2017). As a 

consequence, Industry 4.0 could strongly impact on the actual assembly paradigms, even in the 

cases in which the human factor is prevailing. 

Moreover, Industry 5.0 is focusing on the importance of human-machine collaboration and 

directly promoting a closer cooperation between people and machines, encouraging the 

efficiently use of workforce from both machines and people in a cooperative environment, using 

virtual and real representations (Rada, 2015). In this context, the human workforce assumes a 

crucial role within the smart factories, especially when high precision tasks are required and the 

overall product volumes are low due to frequent market changes or customized production 

(Hadorn et al., 2015). Nowadays numerous processes are still managed manually, and many of 

them could be collaboratively executed by humans and robots cooperating, thanks to the recent 

technological advances in robotics and human-machine interface (HMI).  

1.2 Scope 

The research focuses on the analysis of human behaviours and actions within the smart factory 

and the digitization of such information in order to optimize the overall process and improve the 

human-machine interaction. The study is relevant since it merges smart industrial systems with 

human factors (people competences, skills and needs), which represent the strategic assets of the 

modern industry, instead of focusing on technologies and automation like the majority of 



  

research works about Industry 4.0. In this sense, it investigates a poorly explored area that can 

highly benefit the overall system performance if properly optimized.  

Up to now, researches about Industry 4.focused attention mainly on machines, and did not 

consider the role of human beings in the design of the smart factory (Parrott and Warshaw, 

2017). However, factories are not only made up of machines but also of human beings (i.e., 

operators / workers), which cooperate with the machines and collaborate each other in various 

ways (e.g., executing tasks, controlling the process, loading or unloading the machines, 

interacting the machine interfaces). Although the increasing level of automation of production 

lines, humans still continue to have a central role in controlling the production processes and in 

executing delicate and strategic tasks. As a consequence, they still are the main responsible for 

elevated factory productivity and high product quality (Neumann et al., 2016).  

The research proposes to merge physical data and virtual items, digitalized by IoT (i.e., the 

digital twin), not only for machines but also for people. The factory digital twin is build up 

through sensor data and allows information be contextualized to create self-adapting systems 

able to intelligently adjust the production patterns for difference scopes (Davies et al., 2012). 

The paper aims at including also human data into the creation of the factory digital twin. 

The main paper contribution is the definition of a structured procedure to carry out pragmatic 

assessment of the relation between physical and cognitive measureable human factors and 

workplace design and its application to industrial cases. The research novelty is the inclusion of 

human factors analysis, which has recently interested a growing number of companies to pursue 

higher life quality for their workers (Smith and Ball, 2012), within the Industry 4.0 scenario. In 

fact, sustainable industrial systems must no longer satisfy exclusively performance objectives 

(e.g., cost, quality, speed, productivity, flexibility, adaptability) but also human-related 

objectives (e.g., ergonomics, mental workload, intuitiveness of actions, usability of tools, 

satisfaction) (Peruzzini and Pellicciari, 2017b). As a consequence, the novel connectivity and 

interoperability features of systems and machines can be coupled with human monitoring 

technologies to integrate human-related data at the smart factory level and promote more 

socially sustainable, intelligent and flexible manufacturing process design. 



  

The research questions are: Q1. Can the monitoring of workers improve the human-machine 

interaction? Q2. How to? and Q3. How to integrate the collected information with the so-called 

digital twin?  

The answer to Q1 is yes. The study demonstrated that monitoring the workers’ performances 

could provide useful data to improve process and product design in order to improve the human-

machine interaction. In this direction, the present research aims at presenting that the smart 

factory can be enhanced by human physiological response monitoring systems and the use of 

VR set-ups. 

The answer to Q2 consists of the proposed technological set-up and the assessment 

methodology. In this direction, the present research aims at describing how the smart factory 

can be enhanced by human physiological data monitoring thanks to a proper technological set-

up to analyse the perceived comfort of workers and include the assessment of the human-related 

aspects in the design of manufacturing systems. 

The answer to Q3 is found in the proposed approach, that uses motion capture technologies to 

collect data about real workers actions and to digitalize them to integrated in the digital twin of 

the factory to design and program the factory itself in a dynamic way.  

1.3 Approach 

The research approach is based on three stages: 1) creation of the digital twin of the real factory, 

2) monitoring of human physiological response of workers, and 3) human factors assessment.  

The digital twin refers to a digital representation of physical assets, processes and systems able 

to replicate the behaviour of the real system, which can be used for various purposes. It 

integrates artificial intelligence, machine learning and software analytics with collected data and 

company knowledge to create living digital simulation models that update and change as their 

physical counterparts change (Grieves, 2014). A digital twin continuously learns and updates 

itself from multiple sources to represent its near real-time status, working condition or position. 

The human physiological response analysis is based on the, monitoring of the workers’ 

performance, actions, reactions and wellbeing. Finally, the human factors assessment allows 



  

understanding how people are effectively working, how they are moving into the workspace, 

how they are using tools and resources, and whether they are living stressful conditions, with 

the final aim to better design the workspaces. For the detection of the critical conditions, the 

research proposes: 1) a protocol analysis to analyse the workers’ perceived experience during 

job execution, based on a reference model for the analysis of physical and cognitive 

ergonomics, and 2) a technological set-up for human monitoring, suitable for industrial scopes. 

The target audience is represented by designers and engineers of Industry 4.0 systems.. 

In particular, the proposed technological set-up has been defined to achieve three main goals: 1) 

to monitor the operators’ safety and physical and mental workload into an industrial 

environment, considering both the real factory and its digital twin; 2) to improve process 

performance and the overall process quality, taking into account the workers’ actions, reactions, 

needs and demands; and 3) to avoid bottlenecks due to human errors or late responses causing 

process delay or machine downtime. 

The research application particularly focuses on manufacturing processes, more specifically on 

assembly operations. Assembly tasks are still frequently managed by human operators, mainly 

because complex assembly operations are hard to automate or their automation would be very 

expensive and not convenient for low volumes. In this context, the workstation features and 

layout have a significant impact on process efficiency, overall product quality, and workers’ 

wellbeing. Moreover, the different expertise of operators has a great influence on the results in 

terms of process time and product quality. In this context, designing intuitive and ergonomic 

workstations will help also novice workers to easily achieve the performances of expert workers 

by an increased usability and ad-hoc supporting system features. Actually, novices tend to lack 

awareness of errors and omissions and they need to continually check solutions and 

assumptions; while experts mainly use strong self-monitoring skills (Gredler, 1997). Since the 

cognitive requirements for expert and novice workers are different, the proposed monitoring 

system allows to understand the current conditions of the specific worker, expert or novice, and 

to re-configure the working environment according to its specific needs. 



  

The monitoring system consists of an eye tracker, to investigate the visual interaction with the 

working environment, tools and interfaces, and a biosensor that monitors the multiple vital 

parameters providing a synthetic overview of the health status (i.e., heart rate, heart rate 

variance, temperature, breathing rate) and physical stress conditions (i.e., activity type, trunk 

flexion angles +/-180°, body acceleration on the 3 axes). The set-up can be also merged with 

digitization trends and hardware/software-in-the-loop approaches, according to which industrial 

system features can be easily simulated, tested and optimized virtually, before the real system 

creation (Harrison et al., 2012). In the smart factory context, the proposed approach can be used 

for real-time monitor the workers actions and to intelligently reconfigure the machine 

behaviours (e.g., process regulation, alarms, physical interaction effectors) or information 

provided to the workers themselves (e.g., interface information, additional task demand) to 

optimize the human-system cooperation and to generate more efficient processes. The digital 

twin is useful not only for system design and optimization, but also for continuously simulating 

the systems and providing real-time feedback during real manufacturing process. The proposed 

approach is presented in details in section 3.1. 

2. Related works 

2.1. The Industry 4.0 background 

Collaboration between humans and machines tends to include workers, robots, and other 

intelligent entities to originate a sort of holistic integration, along different levels of abstraction 

and coordination (Hadorn et al., 2015). Several recent works focused on the definition of 

symbiotic industrial frameworks, in which human workers and artificial systems dynamically 

adapt to each other and cooperate to achieve common goals (Romero et al., 2016). According to 

this view, machines and algorithms become the means for workers to continue to work instead 

of being replaced (Ferreira et al., 2014), to accommodate issues related to ageing (Peruzzini and 

Pellicciari, 2017a), disabilities or inexperience (Romero et al., 2015), and to increase skill 

match, comfort and wellbeing (Fiasche et al., 2016). In this context, the analysis of how humans 

interact with machines and which is the quality of their work from a physical and mental 



  

viewpoint is crucial to define new working modalities, to optimize the factory flows, and to 

design the human-centred workplace tailored on the workers’ needs and process requirements 

(Romero et al., 2016). The final goal is to improve process reliability and efficiency, and 

company productivity. Several works recently analysed the need of a human-centred approach 

for the future industry (Stock and Seliger, 2016). Moreover, current jobs in manufacturing are 

facing high risk for being automated to a large extent; the number of workers is decreasing and 

the remaining manufacturing jobs are containing more knowledge-based and cognitive work as 

well as more short-term and hard-to-plan tasks. The workers increasingly have to monitor 

automated equipment, being integrated in decentralized decision-making, and participating in 

engineering activities as part of the end-to-end engineering. In this context, Industry 4.0 holds a 

great opportunity for realizing a sustainable industrial value creation on all three sustainability 

dimensions: economic, environmental, and social, including people (Stock and Seliger, 2016). 

Furthermore, numerous researches focused on the description of the technological solutions 

enabling interoperability and data sharing (i.e., smart products and connectivity issues, smart 

machines, Internet of Things (IoT) applications for industry (Whitmore et al., 2015), cyber-

physical systems (CPS) (Brinzer et al., 2017), embedded technologies to enable product-related 

services and methods of data acquisition and elaboration (Toro et al., 2015). They demonstrated 

how advanced digital technologies could validly help people to interact with products and 

machines, to work better and more efficiently, and return to or be incorporated into the modern 

manufacturing workforce. Meanwhile, technical developments and interaction technologies 

among components, machines and people will make the production systems more lean, 

integrated, agile, traceable, and adaptable (Romero et al., 2015).  

In the modern industrial scenario, manufacturing enterprises, and in particular the smart 

factories, should pay a greater attention to socio-technical aspects through interconnections at 

different levels (Jantsch, 1972), including the assessment of the human-machine interaction ( 

Wittenberg, 2016) and dynamic organization of work roles through adaptive and proactive 

behaviours (Griffin et al., 2007) However, there is a lack of structured methodologies and 

guidelines to transform ideas into practice and concretely apply human factors to the design of 



  

industrial workspaces (Peruzzini and Pellicciari, 2017b). Therefore, the socio-technical 

transformation towards the smart factory will need new design reference models according to 

this new human-centric perspective focused on the assessment of the workers’ actions, 

behaviours, perceived comfort, and quality of work from a physical and cognitive point of view 

(Chen et al., 2015).  

 

2.2. Analysis of human factors for sustainable industrial system design  

Human factors are fundamental in industrial engineering, especially when human-system 

interaction occurs. However, traditional human-centred approaches are based on the late 

assessment of ergonomic performances, rather than on a proactive analysis able to effectively 

support engineers during system design and workers’ decision-making during operations.  

Conventional human-centred design (HCD) approach emphasizes on the inclusion of human 

factors in machine and system design in order to respond to physical, psychological, social and 

cultural needs of human beings (ISO 9241-210, 2009). HCD concept is based on a framework 

that puts the user at the centre of the design process and aims at developing creative solutions to 

problems by involving the human perspective in all steps of the problem-solving process. 

Human involvement typically takes place in observing the problem within context, 

brainstorming, conceptualizing, developing, and implementing the solution, so that HCD refers 

to research about how human psychological, social, physical, and biological characteristics, 

influence the interaction between the users, specifically the workers, and the surrounding 

environment, represented by tools, machines, systems, tasks, jobs, and workspaces. The final 

scope is to design them for a safe, comfortable, and effective human use.  

In this context, adopting a HCD approach means analysing human factors to understand human 

behaviours and performances while interacting with socio-technical systems, and the application 

of the understanding to the design of interactions (Wilson, 2000). More specifically, the design 

of human-machine interface (HMI), defines several parameters to evaluate in order to guarantee 

workers’ safety and wellbeing and to avoid health problems as suggested by the ISO 11228 



  

standards (ISO 11228-1, 2003; ISO 11228-2, 2007; ISO 11228-3, 2007). ISO 11228 standards 

give a good reference on ergonomics and comfort evaluation and its parameters can be 

synthesized in a postural load index that represents the ergonomics level of each examined 

posture. In this context, workplace wellbeing relates to all aspects of working life, from the 

quality and safety of the physical environment, to how workers feel about their work, their 

working environment, the climate at work and work organization (ILO, 2016). The aim of 

assessing the workplace wellbeing is to make sure workers are safe, healthy, satisfied and 

engaged at work. Indeed, workers wellbeing is a key factor in determining an organisations’ 

long-term effectiveness and assuring high productivity levels.  

Enterprises and organizations are increasingly recognising the need to take the wellbeing of 

their workers seriously. A lack of recognition on the need to promote workers wellbeing may 

give raise to workplace problems, such as stress, bullying, conflict, alcohol and drug abuse and 

mental health disorders (ILO, 2016). The literary review suggests different methods to 

investigate human-machine interaction. Ergonomic analyses are traditionally founded on 

objective or subjective evaluation methods. Objective methods are based on direct observation 

of users and task analysis, through which experts evaluate the assumed postures step by step and 

provide an objective assessment of physical exposures. The well-known adopted methods are: 

NIOSH lifting equation (Dempsey, 2002), Ovako Working posture Analysis System (OWAS) 

(Karhu et al., 1981), OCRA (Occhipinti, 1998), Rapid Upper Limb Assessment (RULA) 

(McAtamney and Corlett, 1993), Rapid Entire Body Assessment (REBA) (Hignett and 

McAtamney, 2000), Loading of the Upper Body Assessment (LUBA) (Kee and Karwowski, 

2001) or the most recent Workplace Ergonomic Risk Assessment (WERA) (Rahman et al., 

2011). Subjective methods focus on the analysis of the physical response of workers’ involved 

in the tasks by the subjective evaluation of efforts and discomfort during task execution. The 

most common adopted methods are: the Rated Perceived Exertion (RPE) method, based on the 

Borg’s scale (Kim et al., 2004), and the Body Part Discomfort (BPD) (Lin et al., 2010). 

However, these methods do not provide any information about the wellbeing perceived by 

workers and the related stress caused. 



  

In this direction, the concept of perceived comfort can be defined as the measure of the “level of 

wellbeing perceived by humans when interacting with a working environment” (Kuijt-Evers et 

al., 2004). This is a combination of postural comfort, physical stress, and cognitive workload. 

The mixture of outputs is usually hard to detect and measure because of the reciprocal effect of 

each item and the influence of multiple factors: the characteristics of the surrounding working 

environment, the task complexity, the individual capabilities, and the subjective impression and 

judgments. Over the past 15 years, a lot of papers dealt with comfort and discomfort of 

industrial workstations, as presented in a recent review (Manivel Muralidaran et al., 2017). On 

one hand, it has been demonstrated the relationship between subjective perception of comfort or 

discomfort feeling and the external factors (Galinsky et al., 2000); on the other hand, some 

works tried to quantify the relation between the environmental and physiological factors and the 

perceived comfort (Hamberg-van Reenen et al., 2008). Quantification of this relation is usually 

due to the combination of behavioural and cognitive responses in the perceived comfort. 

According to the human-machine interaction theories, information and meanings flow from the 

machine / system to the users in different ways (Norman, 1998). Recently, Vink and Hallbeck 

(2012) proposed an interesting schematization of the mechanism of comfort / discomfort 

perception that comes from the Moes’ model (Moes, 2005). The model considers the sensory 

input, the type of activities (tasks), the effect on different bodily regions, the effect of the system 

environment on comfort, and the physical loading. According to this model, human-machine 

interaction can be seen as the result of the “contact” (also a non-physical contact, like a signal or 

a procedure) between the worker, the system and the task. As a consequence, the perceived 

wellbeing can be defined only by directly monitoring human actions and feelings, and relating 

them with task execution, environmental features, and their change over the time. To sum up, 

comfort is a subjective output, but it strongly depends on external conditions and interaction 

with interfaces, tasks and workstation features. In this context, monitoring and objectifying the 

interaction environment and the human behaviours allow to match objective data with the 

subjective comfort impressions, expressed by users, in order to find a correlation with the 



  

workstation features and to define the design guidelines for improving the workers’ comfort 

level.  

Several experimental set-ups based on motion capture have been defined for real-time 

monitoring of workers’ ergonomic performances (Vignais et al., 2013; Battini et al., 2014). 

Nevertheless, usually data are captured and workers’ postures analysed when design has been 

completed on physical prototypes or final workstation in order to verify the achievement of the 

expected performance. If targets are not achieved, long and iterative optimization loops are 

usually generated in order to converge to an optimal solution, according to the traditional design 

cycle (Abras et al, 2004). As a consequence, they usually require a great deal of effort and an 

expensive physical mock-up, since at that stage modifications are time-consuming and 

expensive. A valid method to anticipate the analysis of human factors to the design stages is 

based on the use of virtual prototypes by the so-called digital human models (DHMs). DHMs 

are 3D anthropometric manikins consisting of an interior model of the human skeleton and an 

exterior model of the human body shape, which are usually integrated into 3D software toolkits 

for ergonomic analysis. They usually adopt forward and inverse kinematics algorithms for 

simulating postures and movements according to the given position of the manikin in the space. 

Quite similar human models for structure and functioning included into different software tools 

are available on the market, for general or specific purposes. The most common tools for 

industrial applications are Dassault Systemes’ SAFEWORK model, included in CATIA and 

DELMIA products (Chang and Wang, 2007; DELMIA ERGONOMICS, 2017), and JACK 

model available on Siemens / Technomatix products (Badler, 1997; JACK, 2017). They allow 

biomechanical analyses and include some of the objective ergonomic methodologies for 

postural analysis (e.g., RULA, OWAS, etc.). RAMSIS model is specifically oriented to 

automotive product ergonomics (RAMSIS, 2017), while MADYMO (MAthematical DYnamic 

Models) to automotive crash simulations (MADYMO, 2017) and SANTOS model to military 

purposes (SANTOS, 2017). Other tools like 3DSSPP (3D Static Strength Prediction Program) 

(3DSSPP, 2017) and Anybody Modeling System (ANYBODY, 2017) specifically address 

biomechanical data for manual material handling. These tools allow simulating the realistic 



  

sequence of tasks on virtual prototypes even before the facilities are physically in place, and 

promoting a preventive ergonomic assessment. However, a lot of effort is required for preparing 

reliable simulations, since software handling is complicated and time-consuming and the 

accuracy of results highly depends on the position assumed by the virtual manikins and the 

simulated interaction with the virtual world (Chaffin, 2007).  

More recently, virtual reality (VR) technologies can provide immersive simulating environment, 

reproducing the real factory, where users can also interact with digital objects by peripheral 

devices such as motion tracking systems and haptic interfaces. VR technologies to easily 

support reachability and visibility analysis, as well as visual inspection by using virtual models 

in immersive modality to make users directly simulate task execution. Several VR set-ups have 

been created to simulate and assess different aspects of manual operations in manufacturing 

workplaces (Jayaram et al., 2006; Wang et al., 2007). Honglun et al. (2007) used a virtual 

human model to reproduce the real human characteristics in virtual environments for product 

ergonomics analysis and demonstrated that digital simulations allow to detect design problems 

in advance, with the reduction of time and cost in prototype making; Hu et al., (2011) 

demonstrated the effectiveness of VR simulations for industrial workplace simulation; Abidi et 

al. (2013) performed ergonomics analyses of a sport utility vehicle in a semi-immersive virtual 

environment to make users aware about their own feeling inside the real car; Aromaa and 

Väänänen (2016) proved the importance of using virtual prototypes in human-centred design 

supported by virtual reality environment to assess visibility, climbing, postures, space, reach 

and use of tools. From the various studies, it can be proved that VR offers flexibility to designer 

to test the different design alternatives, without the building of physical prototype, saving time 

and cost of product design. VR is demonstrated to be useful to replicate the interaction 

environment when data about tasks execution and users’ behaviours can be collected easier than 

on real workstations and on virtual prototypes. Although VR supports qualitative evaluations 

based on direct observation of workers and interviews and represents a valid method to 

anticipate the analysis of human factors from the design stages, it lacks of structured evaluation 



  

methodologies and procedures to measure and assess the perceived comfort in the users 

involved.  

 

2.3. Human physiological response monitoring  

The research focuses on monitoring the human physiological response of workers in order to 

objectify the so-called user experience (UX). Indeed, UX is generated by subjective impressions 

by definition. ISO standards defined the UX as “a person's perceptions and responses that result 

from the use or anticipated use of a product, system or service”, including users’ emotions, 

beliefs, preferences, perceptions, physical and psychological responses, behaviours and 

accomplishments that occur before, during and after use (ISO 9241-210, 2009). The ISO 

standard also lists three factors that influence UX: system features, user’s characteristics, and 

the context of use. The research proposes to monitor workers during task execution and 

interaction with systems and machines in order to correlate the perceived UX with objective 

parameters, in order to find out some relations and to detect and prevent possible discomfort and 

stressful conditions for the workers. Measuring workers’ physiological response allows to create 

a solid knowledge about how using objective data to orchestrate a human-centred smart factory 

according to the Operator 4.0 paradigm. 

For these purposes, a structured procedure for workers’ monitoring in the context on Industry 

4.0 has been defined. It considers a set of physiological parameters that can be used for 

objectifying the UX, relying on the scientific literature: heart rate (HR) and heart rate variability 

(HRV), breathing rate (BR), pupil dilatation, eye gaze and eye blinks. 

Heart monitoring is one of the most common methods used in medical and fitness contexts. 

Nowadays, it is quite simple and cheap thanks to the simplicity of measurement and low cost 

sensors. In particular, the measurement regards heart rate (HR) and heart rate variability (HRV). 

Previous researches showed the correlation between HR and HRV with the physical and mental 

workload (Mulder et al., 2004).  



  

Also the breathing rate (BR) has been found as a good indicator for stress detection in 

conjunction with other physiological measures (Labbé et al., 2007). 

About eye tracking, pupillometry and electrooculography are nowadays widely diffused, due to 

the increased performance of eye-trackers, the more ergonomic devices (i.e., glasses) and 

gradually cost reduction. The most frequently parameters used are Eye Gaze (EG) and pupil 

dilatation (D), which provide information on an individual’s attention source and stress (Sharma 

and Gedeon, 2012). Several studies focused on eye tracking application for human workload 

analysis and the correlation between eye-based signals and human factors. Martin et al. (2011) 

applied eye tracking to analyse mental workload characteristics in air traffic controllers’ 

activity; Sharma e Gedeon (2012) found out that eye gaze and pupil dilatation provide useful 

information on the individual’s attention source and stress; also Marquart et al. (2015) found 

that the human workload increases with the increase of the blink latency and, on the contrary, 

decreases with the increase of blink duration and gaze variability. Results confirmed that eye 

tracking technique is a powerful approach to study mental workload during a complex activity.  

Looking at the literature, other indicators could be included, but they were not considered in the 

present study due to intrusiveness of the monitoring devices and the lack of robust solutions to 

be used in industrial application. Among them: analysis of the electro-dermal activity (EDA), 

also called galvanic skin response (GSR), consisting of the measurement of electricity flow 

through the skin of an individual that causes continuous variation in the conductance of the skin; 

electro-encephalography (EEG) based on brain activity measurement; and electro-myography 

(EMG) that shows electrical activity produced by active muscles, and respiration measurements.  

In addition, thanks to sensors’ miniaturization and affordability, body worn activity recognition 

has gained popularity, especially using inertial measurement units (IMUs) and, in particular, 

accelerometers. These sensors demonstrated good potentiality in the recognition of the activities 

typology. However, the number of sensors to be worn has to be minimized to limit the 

intrusiveness and not to interfere with activity performance. Existing devices already include 

accelerometers and gyroscopes, like smart watches and smartphones (Moschetti et al., 2016). A 



  

review of different classification techniques used to recognize human activities from wearable 

inertial sensor data was presented by Attal et al. (2015). 

However, due to its complex nature, it has been found that the subjective stress can be 

investigated more precisely by the combined measurement of multiple parameters, to achieve a 

reliable evaluation of both physical and mental stress in an objective way (Popovic et al., 2013).  

For instance, a workload assessment tool (i.e., PHYSIOPRINT) based on the combination of 

EEG and ECG has been introduced to distinguish between different workload types relevant for 

driving by incorporating complementary sensor modalities recorded in real-time on a realistic 

driving simulator. In this direction, also Zongmin et al. (2014) developed an ergonomic 

evaluation model applied for mental task design of aircraft cockpit display interface, which 

seems able to effectively discriminate and predict the levels of mental workload, preserve the 

selected indexes by avoiding information loss, and obtain a stable discrimination result. Ohtsuka 

et al. (2015) suggested a method for mental workload estimation during motorcycle driving, 

based on eye tracking and, specifically, the monitoring of saccades (duration and amplitude) and 

fixation. Finally, Paletta et al. (2015) used eye tracking for the analysis of the navigation paths 

in retails during shopping activity, finding that the specific context and the cause of arousal lead 

to different reactions of human psychophysiological system as well as in eye movements.  

On the other hand, information about the users’ behaviours and physical reactions should be 

coupled with the individual cognitive workload and situation awareness (Endsley, 1995). For 

this purpose, behavioural and cognitive methods can be usefully considered to understand how 

to aggregate the information collected about users’ actions and relate to their perceptions and 

hidden cognitive processes. One of the most common methods is the NASA task load index 

(NASA-TLX) (Hart and Staveland, 1988). It is a subjective workload assessment tool to 

perform subjective workload assessments on operators working with human-machine interface 

systems. It incorporates a multi-dimensional rating procedure to derive an overall workload 

score based on a weighted average of ratings on six subscales (i.e., mental demand, physical 

demand, temporal demand, performance, effort, frustration) (Hart and Staveland, 1988). In the 

present research it is used at the beginning of the study, to “calibrate” the system to take into 



  

account the specific personal attitudes of each user and to set the system in order to find out a 

correlation among the monitored vital parameters and the subjective workers’ experience. 

As a conclusion, human physiological response monitoring has the potential to be integrated 

into the evolved smart factory architecture, to effectively receive data about the production 

plants. Data can be collected from machines, but similarly also from human beings and be 

merged with system data. The consolidated amount of data can create unique factory knowledge 

able to drive process configuration and smart adaptation of manufacturing systems, according to 

the humans’ behaviours and stress conditions (Peruzzini et al., 2016). Furthermore, quantitative 

analysis methods can be adopted both in real and into virtual environments, representing the 

factory digital twin, with the purpose of real-time and continuous ergonomic evaluations. 

Further developments of VR tried to overcome the lack of perception of weight or collisions, 

providing users with a multisensory feedback, that has been proved as essential for simulating 

certain manufacturing tasks (Lawson et al., 2016).  

As far as industrial applications, technologies require to be relatively cheap, un-

intrusive, and robust enough to be wired into an industrial environment (Sharma and Gedeon, 

2012). The number of parameters has to be optimized according to the specific measurement 

objectives. Specific industrial survey and technological benchmarking have to be carried out to 

define the suitable set of parameters to be monitored.  

3. Research approach  

3.1. The Operator 4.0 general approach  

The present study focuses on monitoring the physical and cognitive workload of workers by 

objective and subjective measures. For this purpose, the proposed set-up includes a biosensor 

for physiological parameters monitoring, an eye-tracker for visual interaction analysis, a motion 

capture system for physical movement analysis, and subjective questionnaires. Stress analysis is 

not included in this study for the complexity of the integration of stress-related measuring tools 

in an industrial context (e.g., EEG, EDA-GSR). For instance, EDA can be suitable in industry, 

however this is more connected to ethical concerns more then that it is complex to assess. 



  

Figure 1 shows the overall framework of the proposed Operator 4.0 approach. 

 

Figure 1. The overall framework of the Operator 4.0 approach 

 

 

In the operator 4.0 framework workers and operators can interact with real and digital systems. 

During this process, operators’ physical and mental workloads are affected by system and 

process features as well as by external factors (e.g., task typology, frequency and duration; type 

of information or data to be processed or generated; type of supporting devices and tools). 

Workers produce a subjective experience depending on surrounding environment, individual 

skills and characteristics, task features, etc. Human beings generate a 3-layer response 

(behavioural, cognitive, and affective / emotional) according to the Norman’s (1998) model of 

interaction. Interaction responses are hard to detect and analysed, but they could be investigated 

and objectified by human physiological response monitoring by available technologies. In this 

context, the use of virtual objects is particularly useful when new workspace features, already 

not existing, have to be tested. The users’ feedback generated during the interaction with the 

virtual world is used to define the most suitable workspace design, to validate different 

alternatives and to generate a socially sustainable workspace. Subsequently, the monitoring 

technologies are used also to monitor human interaction with real objects as a part of the 

industrial IoT. In this context, the human physiological response monitoring allows to 

understand the users’ workload to leverage interoperability and cooperation with smart systems 

and to intelligently optimize process programming. For instance, it could help to define which, 

when and how information has to be provided, or to optimize task sequence or workspace 

features (i.e., geometrical layout, tool availability, lighting or thermal conditions) according to 

the human feedback (Cenni, 2003; ISO 10075-3, 2004). This architecture includes the workers 

as an active part of the Industry 4.0 scenario to promote process flexibility and realize real-time 

smart system configuration considering social sustainability. 



  

According to the Norman’s model of interaction (Norman, 1998), any human response is 

automatically generated in unconscious way during task execution, during information 

interpretation, or during physical activities, independently from activity type and nature. The 

human response depends on objective factors (e.g., environment layout, task features, available 

time) and subjective factors (e.g., human characteristics, skills, expertise, stress condition). 

Anytime a human being performs an action, his/her body and his/her brain generate behaviours, 

cognitive, and emotional feedback, as a combination of physical postures, actions, mental 

workload, impressions and usability, which affects his/her physical and cognitive workload 

contributing to the task performance as well as the mental stress (Wilson, 2000). The 

behavioural response generates the physical workload, which can be assessed by the analysis of 

the postural comfort, the physical stress and the muscular fatigue as proposed by Ma et al. 

(2010). The cognitive response generates the cognitive workload, which can be assessed by the 

analysis of the mental stress that comes from numerous causes (e.g., environmental stressors, 

psychological stressors, life stress, fatigue and sleep disruption, work overload and pressure) 

according to Wickens et al. (2004). The correlation between subjective feelings and objective 

data monitoring can be made by the NASA-TXL method (Hart and Staveland, 1988). As a 

consequence, the inclusion of human factors in production system design helps to understand 

human behaviours and performance interacting with socio-technical systems, and the 

application of that understanding to design of interactions. In a nutshell, the proposed approach 

is based on three main entities: 

1. the creation of the digital twin of the real factory in order to anticipate system validation 

(e.g., machine design, functioning and performance; software development and control 

system management; machine and layout design; social aspects based on physical and 

cognitive ergonomics assessment and analysis of human-machine and human-human 

interaction); 

2. the definition of a proper set-up for human physiological response monitoring to analyse the 

human behaviours, actions and reactions, and objectify the workers’ experience. This set-up 



  

can be used both within real factory for real-time monitoring, and immersive virtual 

environments for preventive assessment of new design solutions; 

3. the definition of a structured protocol analysis to assess human factors based on the 

correlation of the monitored human physiological parameters and the operators’ behavioural 

and cognitive response and well as health conditions. This protocol includes: a set of 

metrics able to objectify human performances, a set of tools to be used for collecting data 

(e.g., vital sensors, eye-tracking, motion capture and localization devices), and a set of data 

analysis techniques (e.g., simulations on DHM, heuristic evaluation, video analysis). 

The integration of human monitoring devices within the industrial IoT framework enables a 

wider data sharing among machines, control systems and workers, to enhance interoperability 

and cooperation. According to this approach, the generated cyber-physical factory model (i.e, 

the “new” digital twin) will include both machine and human data to better couple the real 

production system with its digital representation as a base for programming and optimization 

(Uhlemann et al., 2017). The model could be validly used to represent real processes and 

optimize their features. 

 

3.2. The human physiological response set-up  

The research considers a set of parameters related to the selected available technologies, chosen 

on the basis of integration features with typical smart factory architecture.  

The following vital parameters to be monitored have been chosen: 

 Heart activity by heart rate (HR) and heart rate variability (HRV), to investigate 

physical and mental stress conditions; 

 Respiration activity by breathing rate (BR) to detect physical stress and fatigue; 

 Skin temperature (ST) to analyse the general physical comfort; 

 Eye Gaze (EG) and pupil Dilation (D) to investigate the operators’ visual interaction 

processes with devices, interfaces, machines or people; 

 Postural acceleration devices (P) to monitor the body movements. 



  

The study did not consider EMG and ECG due to the highly intrusive modalities of application 

(based on wearable sensors in numerous body areas) and the high probability of interference 

into an industrial environments. Also EDA - GSR have not been considered since their measure 

is highly affected by environmental variables and changing conditions and reliable results can 

be obtained only in controlled environments such as labs (Bousein, 2005), not suitable for 

industrial applications.  

The technological set-up is composed by the following devices:  

 a high-quality eye tracking system (i.e., Glasses 2 by Tobii); 

 a multi-parametric wearable sensor for real-time vital parameters monitoring (i.e., 

BioHarness 3.0 by Zephyr); 

 a video camera for video recording of operators’ actions in the surrounding 

environment (i.e., GoPro Hero3); 

 a digital human modelling software (i.e., Tecnomatix Jack) for modelling the virtual 

environment and create the digital twin of the monitored operators; 

 an optical motion capture systems (i.e., VICON Bonita cameras) and related software 

tools (i.e., VICON Tracker) supported the full body tracking of the operators’ position 

and the digitalization of the tracked movements to be processed by software tools. 

Table 1 shows the selected parameters and technologies for workers’ monitoring. 

Table 1. Selected tools for workers’ monitoring in industry 4.0  

Monitored parameters Tool typology Selected tool Collected data 

Eye Gaze (EG)  

Pupil Dilatation (D) 

Eye Tracker Tobii Glasses 2 

 

Gaze plot, Heat maps, 

Pupil diameter 

 

Heart Rate (HR) 

Heart Rate Var. (HRV) 

Breathing Rate (BPM) 

Skin temperature (ST) 

Activity (VMU) 

Multi-parametric 

wearable sensor 

Zephyr BioHarness 3.0 HR diagram 

HRV diagram 

HR max 

BR diagram 

Activity diagram  



  

Posture angle (°) 

 

Stooping on x-y-z axes 

- Video camera  GoPro Hero3 Videos and images 

 

RULA score  

OCRA index 

 

Digital human 

modelling and 

simulation 

Technomatix Jack  Digital human movements 

 

Human positions, postures 

and movements 

Motion capture 

system 

VICON Bonita cameras 

(no. 10) and VICON 

Tracker  

 

Sequence of movements 

on a virtual manikins 

 

 

Concerning eye tracking, obtained data are considered extremely useful to monitor the human-

system interaction and to correlate the eye-related data with human stress, mental workload and 

emotions. Furthermore, eye tracking technology has several advantages: the camera records the 

user point of view, it can be used on both real and virtual environments, and collected data can 

be integrated with EEG data to have a more compressive cognitive workload analysis. 

Obviously, the quality of the obtained results depends on the users’ head movements and mental 

load have to be interpreted according to the specific field of application. 



  

The multi-parametric wearable sensor allows to directly record human behaviours and 

physiological data, it is cheap and poorly intrusive for the user. In particular, it measures a set of 

useful parameters (i.e., HR and HRV), which were found to be the most important markers to 

identify human stress in various conditions (i.e., mental task, high physical workload, stressful 

driving) and other common daily activities (Marquart et al., 2015). Furthermore, it also 

measures breathing activity by breaths per minute (BPM), body skin temperature (ST) to 

provide a more complete analysis of the health workers’ conditions, and body activity level by 

means of the vector magnitude units (VMU) and the postural angular inclination (°) measured 

by means of accelerometers and gyroscopes. The VMU is the vectorial sum of activity counts in 

three orthogonal directions, while the postural angular inclination helps to define the physical 

comfort of the posture assumed by the worker.  

Finally, the workers’ video recording adds useful information about the executed actions and 

the surrounding environment. An external camera is used and recorded video is synchronized 

with the head view obtained by the eye tracker camera. Motion capture can be easily carried out 

into a virtual or a mixed environment, where simulation are carried out, while its adoption at the 

real shop floor is more difficult due to optical interfaces and the calibration issues into an 

industrial environment. Video analysis is also used to create a set of virtual images to be 

converted into a 3D human model by a DHM system.  

3.3 The protocol analysis for human factor assessment in industry 

On the basis of the research background as presented in the previous paragraphs, a structured 

protocol analysis has been defined. It describes in a structured manner the types of analysis 

considered, the evaluation metrics, the collecting data methodologies, and the adopted 

technologies and tools for human physiological response monitoring.  

Three main analyses have been defined: 

1. Postural analysis: it measures the physical interaction and physical workload during task 

execution; 



  

2. Visibility and Occlusion analysis: it measures visibility and accessibility conditions, 

considering both physical objects and delivered information on devices; 

3. Mental Workload analysis: it measures the ease of use, cognitive workload, and simplicity 

of the tasks. 

In order to carry out the above-mentioned analyses, a set of metrics have been selected: 

1. Postural ergonomic measures carried out by RULA, REBA and OWAS techniques 

(properly selected according to the specific context of use and task typology); 

2. Eye movement measures by heat maps and gaze plot; 

3. Biometrics measures, such as Heart Rate (HR), Heart Rate Variability (HRV), Postural 

comfort (as angle of body inclination °), Breathing Rate (BPM), and the Activity level 

(expressed by VMU); 

4. Perceived comfort level, expressed by a subjective questionnaire according to a 1-7 

point scale.   

As far as the postural measures are concerned, OWAS (Ovako working posture analysis system) 

is a time-driven field measure that provides a general assessment of the complexity of the task 

and its impact on the human posture. It considers the position of the main sections of the body 

(i.e., legs, arms, back) and the weight involved in the task. It provides a synthetic score 

identified with a colour according to the level of risk of the specific task, in four levels: 

acceptable risk (green colour), low risk (yellow colour), medium risk (orange colour) and high 

risk (red colour). In case of low risk you can improve the task to reduce the postural load; in 

case of medium risk some changes are required; in case of high risk, corrective actions are 

recommended urgently. REBA (Rapid Entire Body Assessment) provides a more detailed risk 

assessment with respect to OWAS, and is particularly suitable for standing working positions. It 

considers the position of legs, arms (upper and lower), trunk, wrists, and in addition the load or 

force involved, how manipulated are hold and the position stability. Also in this case, we obtain 

a score from 1 to 15, connected to an increasing risk level.  From 1 to 3 the risk is very low, 

from 4 to 7 the risk is medium, from 8 to 10 the risk is high, from 11 to 15 the risk is very high 

and urgent actions are required. Finally, RULA (Rapid Upper Limb Assessment) is a posture-



  

targeting method that allows easily calculating the musculoskeletal loads on the upper limbs. It 

measures the position of legs, arms (upper and lower, right and left independently), trunk, 

wrists, and neck. The RULA score ranges from 1 to 7 and, similarly to REBA, indicates the 

postural risk and need for corrective actions. RULA is more specific for the analysis of the 

upper part of the body with respect to REBA. The combination of the three measures was 

proved to effectively assess the quality of postural stress for workers involved in manufacturing 

industry.  

Visibility and occlusion issues are jointly addressed by eye tracking and digital simulations. 

Heat maps and gaze plots are generated by a proper software toolkit. They are data 

visualizations able to communicate important aspects of visual behaviours of the users. Gaze 

plots show the location, order, and time spent looking at specific locations on the stimulus, 

whether physical or digital interfaces, printed documents, or videos. So the primary function of 

the gaze plot is to reveal the time sequence of looking or where we look and when we look 

there. Time spent looking, most commonly expressed as fixation duration, is shown by the 

diameter of the fixation circles. Heat maps show how looking is distributed over the stimulus. In 

contrast to the gaze plot, there is no information about the order of looking in a static heat map. 

Neither is the focus on individual fixations. Rather, heat maps are a visualization that can 

effectively reveal the focus of visual attention for dozens or even hundreds of participants at a 

time. Contemporarily, digital simulations allow visualizing view cones by proper tool functions. 

Results from both eye tracking and simulation are evaluated according to SAE accessibility 

guidelines, according to the specific context of application. SAE standards provide guidelines 

for accessibility evaluation in different fields; they were defined for vehicle industry but can be 

transferred also to other sectors. For instance, SAE J817 (1991) refers to serviceability and 

maintenance guidelines and well suited maintenance task analysis also for manufacturing 

products and systems; SAE J2364 refers to recommended practice navigation and guidance 

function accessibility while driving, and can be used for any driving activity, not only on on-

road vehicles; SAE J287 refers to driver hand control reachability; SAE J1050 refers to field of 

view analysis. Each of them suggests which aspects have to be monitored and which scores 



  

have to be assigned. A matrix can be created where all scores for all aspects are summed up in 

order to highlight the most critical tasks.  

Biometric measures are recorded and elaborated by a proper software toolkits, made available 

by Zephyr (https://www.zephyranywhere.com/resources/developer-user-tools). They allow to 

visualize data by charts or diagrams as needed and to synchronize the different feedback. 

Finally, the subjective measure of the perceived comfort is defined by the NASA-TLX 

questionnaire. Users are asked to rate the six NASA-TXL categories for each executed task 

within a 7-points scale. These ratings are then combined to the task load index. The 

questionnaires is structured in six questions: 

 How mentally demanding is the task?  

 How physically demanding is the task?  

 How hurried or rushed is the pace of the task?  

 How successful are you in accomplishing what you are asked to do?  

 How hard do you have to work to accomplish your level of performance?  

 How insecure, discouraged, irritated, stressed, and annoyed are you?  

The proposed metrics can be measured by different technologies and techniques, specifically: 

1. Digital human modelling software; 

2. Eye tracking; 

3. Multi-parametric biosensor; 

4. Video analysis; 

5. Heuristic evaluation by experts; 

6. Questionnaire / direct interview. 

Table 2 describes how the proposed protocol is structured: for each analysis, the collecting data 

methodologies, the evaluation metrics, and the adopted tools for data generation are indicated. 

About data collection, postural analysis is based on biomechanical and anthropometric data 

which are inferred by combining different techniques: video recording and motion capture 

(when possible) in the real factory, software simulation by Tecnomatix Jack and motion capture 

https://www.zephyranywhere.com/resources/developer-user-tools


  

in the virtual or mixed environment. Visibility and occlusion data are collected by video 

recording, motion capture, and software simulation as well, but also eye tracking can be added 

to have more specific data about visualization maps and interface / object navigation modalities 

(when exactly operators look at during their work). The combination between eye tracking and 

biometrical data monitoring from the biosensor supports mental workload analysis, while data 

from the biosensor are also useful to detect specific emotional states of the workers in 

combination with the NASA-TXL questionnaire results (e.g., anxiety, physical stress, 

comfortable conditions).  

Table 2. Protocol analysis for human physiological response assessment  

Analysis Evaluation metrics 
Tools for data 
generation 

Elaboration data 
technique 

Posture Biometrics measures (VMU) 

RULA, OWAS, REBA 

Video recording 

Motion capture 

Tecnomatix Jack  

- Video task analysis 

- Heuristic evaluation 

- NASA-TXL questionnaire 

(1-7 score) 

Visibility & 

Occlusion  

- Heat Map, Gaze Plot 

 - Accessibility SAE 

assessment 

 - View Cones, Head 

Forward View 

Tobii eye tracking 

Motion capture 

Video recording 

Tecnomatix Jack 

- Video task analysis 

- Eye Tracking 

- Heuristic evaluation  

- NASA-TXL questionnaire 

(1-7 judge) 

Mental 

Workload 

- Biometrics measures (HR. 
HRV, BPM, ST) 

- Perceived comfort (ease of 
use, mental workload) 

- Heat Map, Gaze Plot, D 

Zephyr Biosensor 

Tobii eye tracking 

 

- Vital parameters real-time 

monitoring 

- Heuristic evaluation 

- NASA-TXL questionnaire  

(1-7 judge) 

 

Once data are collected, workers’ behaviours and reactions are investigated by the most 

common investigation techniques used in HCD: heuristic evaluation based on users’ observation 

and experts’ assessment (Nielsen, 1994), direct interview and/or questionnaire, video task 

analysis by experts (Jordan and Henderson, 1995). Heat maps and gaze plots about eye tracking 

and biometric measures are also added. The combination of objective data with subjective data 

from NASA-TLX allows to calibrate the system and to find a correlation between objective 

facts and subjective impressions. For a specific workers’ population, this correlation can be 



  

found at the beginning of the study as a sort of system calibration and can be avoided in the 

following analysis. 

The combination of different techniques allows objectifying the workers’ observation by 

capturing moment-to-moment interactions and supports experts in the analysis of human 

interactions. Not all techniques have to be necessarily used at the same time; for the specific 

context of use, only some of them can be used. Experts in ergonomics and human factors are 

involved in techniques and tools selected, case by case, in user observation and data 

interpretation on the basis of the protocol metrics. 

3.4. The virtual simulation set-up for socially sustainable workplace design 

In order to assess human physiological response before the creation of the real factory or to 

optimize an existing factory according to social sustainability principles, a high-fidelity virtual 

prototype of the workspace under investigation has to be created, simulating the entire 

production line or a specific workstation to be analysed. First of all, a 3D digital model is 

necessary. At the same time, human actions and task sequences have to be analysed. Analysis 

can be based on real users’ observation at the shop floor or on virtual simulation within an 

immersive virtual or mixed environment. A mixed environment offers the advantage to combine 

real objects and virtual data in order to test design changes to existing systems, workstations or 

products. Virtual environments are used when the activity focuses on a completely new design. 

For the specific research, the Tecnomatix Jack software has been used for creating the virtual 

factory prototype merging the workspace digital mock-ups and virtual manikins replicating the 

operators’ actions. A Vicon optical tracking system with 10 Bonita cameras has been used to 

track the users’ movements both at the shop floor and in the University laboratories, and to 

virtually reproduce the users’ movements. Tasks have been reproduced and simulated by virtual 

manikins of real workers monitored by motion capture. In the first case, generic manikins 

representing the target population based on the software libraries and considering different 

percentiles of the analysed population (i.e., 5p, 50p and 95p) are used. In the second case, 

personalized virtual manikin replicating the real user’s features and actions. The DHM software 



  

was used in both desktop-based modality and VR-based immersive modality, where the virtual 

scene can be projected with active stereoscopic view and users can navigate into the virtual 

scene by having a more impressive simulation of the task execution. Video analysis was useful 

for task analysis and simulation, to support understanding the interaction modalities. 

The virtual set-up used for simulation has been equipped with a Stewart large screen for rear 

projection (6x2 meters), two high-performance Barco Galaxy NW-7 projectors, active stereo 

glasses with active Volfoni Edge RF, two Nintendo Wiimote devices for interactive navigation, 

a Denon AVR sound system with Dolby surround. The system is managed by two powerful 

workstations with advanced Nvidia graphics cards and different software toolkits. The created 

virtual simulation set-up is shown in Figure 2, arranged at the Virtual Prototyping Lab of the 

Modena Technopole, in Modena. 

 

 
Figure 2. The virtual simulation set-up for socially sustainable workplace design 

 

 

The combination of advanced simulation tools with high-quality immersive stereoscopic 

viewing and interaction devices allows reproducing virtual objects into a 1:1 scale, creating 

highly realistic simulations, and validating static and dynamic behaviours of systems from the 

preliminary design. Two or more users can be tracked in the virtual space to simulate also 

human-human interaction. In the meanwhile, users interacting with the virtual mock-up can be 

monitored by the human data monitoring systems and collected data (according to the proposed 

protocol) are used to observe the human behaviours, feelings and performances. The collected 

data about human behaviour can be used to in a twofold manner:  

1. to improve the workspace design (e.g., layout reconfiguration, task sequence 

modification, different location of specific objects or parts to be assembled, different 

product configuration to support the design for assembly); 

2. to compare data collected on real factory to validate the impact of corrective actions. 



  

In the present research, the use of a virtual large-screen immersive set-up allows having a 

collaborative workspace involving multiple users and combining the analysis of physical and 

cognitive aspects by analysing virtual and real users’ behaviours, and measuring data according 

to the proposed protocol. The same application could be also visualized by an Head Mounted 

Display (HMD).  

4. The industrial case study 

4.1. Case study description  

The case study has been developed in collaboration with CNH Industrial, a global manufacturer 

of agriculture and industrial vehicles, with more than 64 manufacturing plants and 50 research 

and development centres in 180 countries. It designs and produces tractors, trucks, buses, on-

road and off-road powertrain solutions, and marine vehicles. The use case focused on the 

application of the proposed approach to assembly workspace, in order to optimize the operators’ 

sequence of tasks and workload, with the final scope to realize a socially sustainable working 

environment. The agricultural market was selected for the research, since it was considered one 

of the most promising business areas of CNH Industrial for the near future. A specific product 

and a specific workstation were selected for the study. In particular, one of the most widespread 

tractors produced by the company has been chosen, and a set of assembly workstations were 

selected on the basis of three main indicators: time of execution, frequency of bottlenecks and 

criticalities, and variability in task execution. We choose the longest tasks, during which the 

highest number of problems is statistically registered, and where operators can follow different 

task sequence. In particular, the paper presents the results achieved on one specific task, related 

to the assembly of the air cabin filters: it requires a ladder, the operators’ movements are 

complex and affected by the uncomfortable position, a huge quantity of components are 

involved, and it take a long time. Figure 3 shows the components involved in the case study 

related to the air cabin filters’ assembly. 

 

 



  

Figure 3. The case study – assembly of the air cabin filters (A. components involved, B. position 

of the operator) 

 

4.2. The experimental procedure 

Experimentation was based on the adoption of the procedure described in section 3 to the 

above-mentioned case study. In particular, the workspace virtualization, the implementation of 

the proposed human monitoring data set-up (described in section 3.2), and the adoption of 

proposed protocol analysis (described in section 3.3). The experimental procedure can be 

synthetized in the following steps: 

Step 1. Creation of the digital twin of the real workstation: the digital model was realized on the 

basis of the analysis of the real tasks on the real factory; 

Step 2. Task analysis by observing real users, with the aim to find out the human-system 

interaction flow and the interaction modalities; 

Step 3. Task virtualization and virtual simulation on digital mock-ups, by involving real users 

interaction with the virtual mock-up and virtual manikins reproducing the users’ actions into 

the virtual world; 

Step 4. Human physiological response monitoring by the proposed set-up within both the real 

environment and the virtual environment, where operators were monitored during task 

execution. The operators’ physical and mental workload is inferred by vital parameters’ 

monitoring in order to understand how comfortable they are working and how stressful the 

interaction is; 

Step 5. Application of the proposed protocol to assess the social performance quality according 

to the protocol metrics, referring to four areas of investigation: posture, visibility and 

occlusion, mental workload, and emotional analysis; 

Step 6. Simulation of design alternatives on the digital mock-up: a variety of design alternative 

are validated in a quick and easy way in order to define the more sustainable design.  

 

Figure 4. Experimental testing for the case study (step 1 - step 4)  

 



  

According to posture analysis, all three proposed assessment techniques (i.e., RULA, 

REBA and OWAS) were used. They were calculated on both real users and virtual manikins, 

reproduced by the motion capture. Visibility and occlusion assessment has been carried about 

by SAE J817 standards (1991), even though the tasks referred to assembly tasks. The SAE J817 

standard refer to serviceability and maintenance task assessment, but it well fits also assembly 

tasks and can be successfully used, with minor adjustments, also by manufacturing companies 

which assembly their machinery or other manufacturing tasks of various engineered products. 

According to SAE J817, systems are assessed in terms of location, access, operation and other 

miscellaneous considerations. The operation category has several subcategories (e.g., 

component checking, lubricating and cleaning) and each operation needed is given different 

scores (the easier the maintenance operation the better score it will get). The SAE regulation 

indicates the maximum points for each category. To obtain the maintainability score, all the 

scores from performing the maintenance operations must be multiplied by a quantity multiplier 

and a frequency multiplier according to the maintenance interval (e.g., 10 hours - daily, 50 

hours - weekly, 100 hours – semi-monthly, 250 hours – monthly, 500 hours – quarterly or as 

required, 1000 hours – annually). Finally, the human interaction is assessed according to four 

factors: location reachability, object accessibility, operation type, and use of supporting devices. 

Four experts carried out the assessment based on the proposed protocol: visibility and 

accessibility assessment was based on both virtual manikins and real users’ video observation, 

and results were merged with the direct interview during task execution. On the basis of the 

experimental results, different product configurations and activity workflows were tested to 

define the best one in relation to the execution time.  

4.3. Results and discussion 

Data analysis was structured according to the proposed protocol in four categories (posture, 

visibility and accessibility, and mental workload). A preliminary task analysis divided the entire 

task into 10 single postures (P) like “frames” of the entire task sequence. Postural analysis was 

carried out from real users observation at the shop floor (Figure 5) and the digitalized 



  

environment (Figure 6). Personalized digital manikins were created from motion capture, but 

analyses were replicated using the same software libraries for European population for three 

percentiles (i.e., 5p, 50p and 95p). 

 

Figure 5. Results about posture analysis on real user observation at the shop floor (on 10 

postures) 
 

 

Figure 6. Results about posture analysis on digital mock-ups by motion capture (on 10 postures 
for 5p, 50p and 95p) 

 

 

Similarly, the virtual mock-ups were used on the 10 postures for visibility and accessibility 

analysis. Main results are shown in Figure 7. Finally, mental worload analysis and emotional 

analysis were based on the combination of eye tracking data and vital parameters monitoring. 

Figure 8 synthetized the main results collected along all the task duration.  

 

Figure 7. Results about visibility and occlusion analysis on digital mock-ups and by eye 

tracking (on 10 postures) 

 

Figure 8. Human physiological data collection for physical and mental workload during 

experimental study 

 
 

At the beginning, NASA-TXL allowed to determine how to interpret the information collected 

by the human monitoring system, as a sort of calibration, on a sample of target users. After that, 

specific users involved on the analysis were study with the defined protocol. Finally, subjective 

questionnaires were adopted at the end of the experimentation and involved users were asked to 

express their subjective impressions about perceived comfort. The questionnaire was prepared 

in Italian and four questions related to the different aspect of the protocol, which users are asked 

to judge according to a 1-7 Likert scale  (1 = not at all / extremely negative, 7 = extremely 

positive). The questions are as follows:  

Q1. Visibility (i.e., Are you able to clearly see all you need during task execution?),  



  

Q2. Accessibility (i.e., Are you able to reach all you need during task execution?),  

Q3. Mental Workload (i.e., Are you feeling an high concentration or pressure during task 

execution?). 

Four experts in ergonomics and human factors were involved, two of them from Academia and 

two of them from Industry. Eight users were involved during experimental testing: four of them 

belonged to the company and four from them were researchers from the University, not 

participating into the present project. Data collected from software simulation were merged with 

human data monitoring, eye tracking results as well as heuristic evaluation and questionnaire 

judgements to investigate behavioural and cognitive metrics.  

The task was defined critical mainly due to: 1) the position assumed by the operators, since they 

need to stand up in a ladder to reach the working area, and 2) the distance between the working 

area and the workers’ body. These facts caused a discrete pressure on operators, due to 

uncomfortable positions assumed and sense of risk they perceived staying of the ladder (for 

short operators, with one feet only with a stable anchoring).  

Some design changes were proposed and tested, related to the following aspects: 

 change of the assembly sequence in order to assembly the cabin air filter on the ground, and 

mount all the group later on (however, this modification implies to assembly a more 

complex part later on); 

 creation of a special ladder with a specific shape to make the operator closer to the working 

area, to be reused also for other assembly tasks; 

 variation of the accessibility path and to access the filter in a different way, preferable from 

the wheel before its assembly. 

On the basis of the experimental results and design guidelines, a new design solution has been 

defined and tested in both virtual simulation set-up and mixed-reality environment in order to 

find out the optimal solution. Figure 9 shows the comparison between the current design 

solution (existing one) and the new design solution (defined on virtual prototypes) according to 

some of the protocol metrics. In particular, Figure 9-A shows the virtual model of the new 

solution, based on a special ladder and a new assembly procedure. Figure 9-B shows the 



  

comparison between the two assembly sequences for both designs, according to the OWAS 

technique, VMU and postural inclination collected by the biosensor for postural analysis, and 

the HR and HRV for the stress analysis. In the graphs, the orange line refers to the existing 

solution and the green line to the new solutions. It can be stated that the new procedure helps the 

workers and reduce the efforts from a physical and mental viewpoint.   

 

Figure 9. Results for the new design solution based on a new ergonomic supporting ladder and 

a new assembly procedure 
 

 

In conclusion, the researches highlighted that: 

1. the 3D immersive virtual set-up supported operators (both researchers and real workers) to 

evaluate the virtual workstation on 1:1 scale, to be immersed in the virtual scene, to assume 

the same point of view of the virtual manikin, and to reproduce the simulated actions in a 

realistic way; 

2. the human monitoring system added useful information to the postural assessment and 

allowed to detect particularly critical conditions that have never been analysed in the past; 

3. the adoption of human monitoring tools also at the shop floor was found not too invasive 

and operators accepted them in a positive way because they felt more secure and controlled; 

4. motion tracking by optical cameras was not possible at the shop floor due to light 

interference and calibration issues. It was used only during experimental test inside the 

University laboratories. For users’ tracking at the shop floor, video recording from multiple 

cameras was used; 

5. data about human interaction could be validly managed by an IoT architecture to include 

vital parameters monitoring in the Industry 4.0 framework. 

Figure 10 shows the comparison between results obtained in the three tested set-ups. In 

particular, Figure 10-A reports the results of OWAS postural analysis and highlights that both 

assessment on virtual simulations and mixed-reality environment are reliable of compared to the 

traditional methods, based on users’ observation. Figure 10-B synthetize the comparison by 



  

analysing the adoption of the different set-ups in terms of costs, time and efforts for analysis, 

accuracy of collected data, possibility of scaling human-related data, re-use of virtual models 

and assessment of mental workload. The case study demonstrated that virtual simulation is a 

good compromise between time, cost and efforts for postural analysis but it lacks of mental 

workload assessment; while the MR set-up requires a greater effort for initial investment and 

environment preparation, but it provides a more complete analysis. 

  

Figure 10. Comparison among the different experimental set-ups: traditional set-up based on 

users’ observation, virtual simulation set-up and mixed-reality set-up 
 

The main limitations of the current experimental study refer to three main points: 

1. the lack of assessment of the emotional response based on human psychophysical 

response monitoring: in particular, a more robust interpretation protocol is required to 

relate eye tracking data (i.e., heat maps and gaze plots) and heart rate data (HR and 

HRV) with individual stress and emotions, since the initial calibration by NASA-TXL 

is not enough, and a more complex monitoring set-up is required with the integration of 

other monitoring devices. The research is going on with the definition of a more 

detailed protocol to determine the users’ stress level and emotions, and to find out the 

conditions under which they are harmful or beneficial to the operator in a factory 

context; 

2. the applicability of the proposed set-up: the present study investigated the adoption of 

the proposed tools for monitoring the human psychophysical response for industrial 

purposes and the results were promising. However, the current technologies are not 

ready for an immediate application at the shop floor and further developments are 

needed. Up to now, the protocol is effectively applicable into a laboratorial or 

prototyping context. To move into a real industrial environment, improvements are 

necessary about eye tracking technologies (they should be introduced in a less intrusive 

way (e.g., not wearing a pair of ad-hoc glasses, but integrated eye-tracking devices 

within protection glasses that operators already use)), vital parameters monitoring (they 



  

could be carried out by alternative devices (e.g., wearable bracelets or rings)), and 

motion capture of real workers (it could be realized with alterative systems, avoiding 

the reflection and occlusion problems that characterize optical tracking systems); 

3. the lack of extensive empirical data: tests should be repeated involving a significant 

number of users in order to carry out a robust statistical analysis to validate the 

approach. Up to now, the research presented promising results that could be validated 

later on, with more users and a higher number of case studies. 

Despite those limits, the research is valuable since it demonstrated the feasibility of the 

approach and collected positive feedback from the industrial partners. Promising results push to 

continue with the research and to overcome the current limitations. 

 

5. Conclusions 

The present research proposed the application of a human-centred design approach inspired to 

the Operator 4.0 concept and gave suggestions to how a structured protocol analysis considering 

human factors can be used into Industry 4.0 framework.  

The proposed approach is based on human physiological response monitoring in order to 

objectify the workers’ experience and assess the perceived comfort and ergonomics 

performance by structured protocol analysis. The final aim of the research is to demonstrate the 

feasibility of the proposed approach for an industrial context, where human physiological 

response monitoring can be validly used to improve the social sustainability of industrial 

workplaces and the operators’ wellbeing and quality of life within the factories. The most 

important contribution of the paper is the definition of a procedure to carry out pragmatic 

assessment of the relation between physical and cognitive measureable human factors and 

workplace design. The experimental study demonstrated the effectiveness of the proposed 

approach and the usefulness of the human physiological response monitoring in defining 

socially sustainable workplaces, by using virtual and mixed reality set-ups that help designers 

and engineers to define and validate in real time the proposed design solutions. 



  

More specifically, the adopted monitoring system consisted of an eye tracking system and a 

wearable human physiological data monitoring technology collecting a set of vital parameters. 

The proposed set-up is combined with virtual prototyping in order to create the factory digital 

twin, where workspaces can be simulated to be tested and optimized before their creation, and 

then improved continuously and properly controlled during real processes, acting as a digital 

emulation of the real world in the context on Industry 4.0. The depicted framework was proved 

to conveniently simulate human-machine interaction, improve the perceived comfort, and avoid 

ergonomic problems at the shop floor. The research approach was tested on an assembly 

workstation in the industrial vehicle sector, in collaboration with CNH Industrial. The case 

study demonstrated how the approach could effectively support the simulation of the human-

machine interaction in order to identify the critical conditions, improve the workers’ perceived 

comfort, and avoid ergonomic problems at the shop floor. Future works will focus on further 

developments in two main areas: definition of a more detailed protocol for mental / cognitive 

workload and emotion assessment, and industrialization of the proposed set-up for a real 

monitoring at the shop floor, considering also certified devices for industrial use. 
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Figure 1. The overall framework of the Operator 4.0 approach 
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Figure 2. The virtual simulation set-up for socially sustainable workplace design 
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Figure 3. The case study – assembly of the air cabin filters (A. components involved, B. position of the 
operator) 
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Figure 4. Experimental testing for the case study (step 1 - step 4) 
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Figure 5. Results about posture analysis on real user observation at the shop floor (on 10 postures) 
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Figure 6. Results about posture analysis on digital mock-ups by motion capture (on 10 postures for 5p, 50p 
and 95p) 
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Figure 7. Results about visibility and occlusion analysis on digital mock-ups and by eye tracking (on 10 

postures) 
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Figure 8. Human physiological data collection for physical and mental workload during experimental study 
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Figure 9. Results for the new design solution based on a new ergonomic supporting ladder and a new 
assembly procedure 
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Figure 10. Comparison among the different experimental set-ups: traditional set-up based on users’ 
observation, virtual simulation set-up and mixed-reality set-up 

 

 

 

 

 

 

 

 

A)#

B)#



  

 

Highlights 

 Human factors analysis to drive the design of socially sustainable workplaces 

 Human-centred approach based on vital parameters’ monitoring to support the design 

and assessment of manufacturing workstations 

 Structured protocol to objectify human working conditions and validate design 

alternatives 

 Virtualization of manufacturing workstations and test within a mixed reality 

environment 

 Industrial case study focused on the analysis of social sustainability on assembly 

workstations and the definition of re-design actions 

 

 


