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Chapter 1

Introduction

Videos represent the most spread information medium nowadays, mainly con-
verging to social networks and streaming services. This is not surprising, given
their ability to gather different messages in a single container (spatial composition
of the scene, temporal sequence of events, audio information). Video automatic
understanding would be of extreme importance in many fields, ranging from
surveillance in security scenarios, to indexing and retrieval for broadcast service
providers, and to healthcare monitoring applications. This broad spectrum of
possibilities pushed the video analysis research community to propose a number
of video recognition tasks, based on the specific field of application.

With the successful spread of deep learning, data has recently become the
foundation for developing impressive models, in terms of their ability to solve
a task. Data has a major impact on the task itself, on the size of the model,
and on its performance. However, close attention should be paid when handling
large datasets, and even more when this data could potentially contain sensitive
information: video datasets often exhibit both of these features.

This thesis focuses on the research line of human actions in the context of video
understanding, with deep learning as a foundation. It is the result of a doctorate
granted by Metaliquid S.R.L. and it follows several research lines dictated by the
company’s needs. Not only common video-related tasks are addressed, but also
computation-specific aspects are tackled, given the limitations and constraints
experienced when handling video datasets. Moreover, a specific analysis regarding
privacy issues is carried out. All the presented solutions have been developed
taking into account two major goals: to follow the needs of the research community,
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CHAPTER 1. INTRODUCTION

requiring novel architectures breaking the state of the art on publicly available
data, and to develop production-oriented applications necessary for the multimedia
industry, given the continuous collaboration with Metaliquid.

1.1 Organization and summary

After providing in Chapter 2 an overview of the main existing solutions in different
fields of video recognition, in Chapter 3 we tackle the spatio-temporal action
detection task, aiming to detect people in the scene and to classify their actions. It
requires a fine-grained representation of the video, resulting in a variety of possible
applications, like video categorization, retrieval, and sensitive content detection.
In our formulation, we heavily rely on the role of context, exploiting the standard
approach in literature of separating the detection task from that of classification: if
we are able to obtain representative features for actors and objects in a scene, we
can build a graph between these entities and learn their relationships. In addition,
the relation optimization can be performed independently of the feature extraction
process, resulting in a stand-alone and high-level module.

In Chapter 4, we explore a more production-oriented application of video
activity understanding, still without disregarding the research needs. Specifically,
we tackle the soccer event spotting task, representing the first step towards auto-
matic highlight generation from broadcast soccer games. Event spotting requires
localizing the exact timestamp in which an interesting action occurs, and to classify
it. Differently from spatio-temporal action detection, spotting events in a soccer
match can be achieved by a coarse-grained representation of the video: interesting
events are quite scattered throughout the video, and high-level visual cues are
usually enough to suggest the presence of a highlight. Inspired by other works in
the field, we propose a lightweight convolutional network focusing on the frames
after the event itself, since they usually contain the majority of visual cues (for
instance, celebrations or replays are common after a goal). Moreover, the resulting
model placed third in a CVPR 2021 ActivityNet challenge.

After starting to work with videos, we soon noticed two inherent and common
challenges of video handling, namely privacy and computation. Publicly available
action recognition datasets usually ignore the sensitive information contained in
their videos (like actors’ faces). This has limited consequences in research, when
working on public data collected on purpose. In a production environment, where
the action recognition service is usually run by a third-party service provider,
the user might want to not transmit the original video, which could potentially
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CHAPTER 1. INTRODUCTION

compromise his privacy. In Chapter 5, we propose a general teacher-student
architecture that exploits sensitive information only during training, while working
on privacy-preserving videos (e.g. with blurred faces) during inference, with
negligible loss in accuracy.

As a second drawback, video understanding pipelines usually require huge
resources for both training and inference, limiting access to this research area
and increasing the costs in production environments. We propose an iterative
algorithm able to reduce the size (in terms of both parameters and floating-point
operations) of existing state-of-the-art video understanding models, as detailed
in Chapter 6. The core idea relies on the shrinkage of one dimension at a time,
where each dimension partially determines the size of the model. The shrinkage
iterations are performed by maximizing the accuracy of the reduced model, which
should always mimic the behavior of the original bigger one.

Sintesi in lingua italiana

I video rappresentano oggi il mezzo piu diffuso di condivisione dell’informazione,
trovando nei social network e nei servizi di streaming le principali vie di trasmis-
sione. La diffusione dei video € dovuta principalmente alla loro capacita di mettere
insieme messaggi di tipo diverso (la vicinanza spaziale tra le entita rappresentate,
la sequenza temporale degli eventi, le informazioni audio). La comprensione
automatica dei video ¢ quindi un obiettivo di vitale importanza in diverse aree
applicative, dalla sorveglianza in scenari di sicurezza, all’indicizzazione per i
fornitori di servizi broadcast, alle applicazioni di monitoraggio. Questo ampio
spettro di possibilita ha spinto la comunita scientifica a concentrarsi su diverse
attivita di riconoscimento attraverso la collezione di diversi dataset e lo sviluppo
di modelli predittivi. In alcuni casi & richiesto un riconoscimento dettagliato degli
attori e degli oggetti nella scena, mentre in altre circostanze ¢ sufficiente una
rappresentazione ad alto livello del video stesso.

Questa tesi propone algoritmi e metodi per 1’analisi automatica delle azioni
umane nei video, attraverso I'uso di tecniche di deep learning e visione arti-
ficiale. Non solo vengono affrontati alcuni dei principali problemi relativi al
riconoscimento di azioni, ma vengono anche analizzati e discussi i loro aspetti
computazionali. Vengono inoltre sviluppati temi in materia di privacy, argomento
ancora poco considerato dalla comunita scientifica. Tutte le soluzioni presentate
sono state sviluppate tenendo in considerazione due obiettivi principali: far fronte
alle esigenze della ricerca, che richiede nuove architetture in grado di ottenere
performance sempre migliori su dati pubblicamente disponibili, e sviluppare ap-
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CHAPTER 1. INTRODUCTION

plicazioni orientate alla produzione e necessarie all’industria multimediale, dato il
ruolo e la collaborazione con Metaliquid SRL nel corso del mio dottorato.

Dopo una sintesi delle principali soluzioni presenti in letteratura (Capitolo 2),
nel Capitolo 3 viene affrontato il problema della localizzazione spazio-temporale
delle azioni, con I’obiettivo di localizzare ogni attore nella scena e di classificare
le sue azioni. Sfruttando il ruolo del contesto e la separazione tra la parte di
detection e quella di classification, viene proposta una rappresentazione degli
attori e degli oggetti nella scena basata su un grafo e una tecnica attentiva di
apprendimento delle loro relazioni. Inoltre, I’apprendimento di queste relazioni
puo essere eseguito indipendentemente dal processo di estrazione delle feature
spazio-temporali: questa osservazione ci ha permesso di ottenere un modello che
puo essere inserito in coda a qualsiasi rete convoluzionale. Il modulo proposto
permette di arricchire le rappresentazioni delle entita sulla base di quelle circostanti,
risultando in un incremento delle prestazioni per diverse reti e su diversi dataset.

Nel Capitolo 4 viene esplorata un’applicazione del riconoscimento video piu
orientata alla produzione, pur senza trascurare le esigenze della ricerca. Nello
specifico, viene affrontata I’individuazione automatica di eventi salienti nelle
partite di calcio, che rappresenta un primo passo verso la generazione automatica
di highlights. L’individuazione di questi eventi richiede di localizzare il momento
esatto in cui si verifica un’azione interessante e di classificarla. Ispirati da altri
lavori presenti in letteratura, viene proposta una rete convolutiva addestrata a
focalizzarsi sui frame che seguono I’evento stesso, e che contengono la maggior
parte degli indizi visivi (ad esempio esultanze o replay sono comuni dopo un goal).
Inoltre, il modello risultante & stato sottomesso nella challenge SoccerNet-v2 del
ActivityNet Workshop di CVPR 2021, classificandosi terzo.

Nel Capitolo 5 viene sottolineato come i dataset pubblicamente disponibili
solitamente ignorano le informazioni sensibili contenute nei loro video (come i
volti degli attori). La ricerca risente in modo limitato di questo problema, dal
momento che i dati vengono raccolti di proposito e con lo scopo di spingere la
comunita scientifica a risolvere un determinato problema. In ambiente produttivo,
in cui il servizio di riconoscimento delle azioni & solitamente gestito da un fornitore
terzo, I'utente potrebbe non voler trasmettere il video originale, in modo da
non compromettere la propria privacy. Viene quindi proposta un’architettura
basata su due reti convoluzionali identiche, un teacher ed uno student, che sfrutta
le informazioni sensibili solo durante 1’apprendimento, mentre lavora su video
anonimi (ad esempio con volti sfocati) durante la fase di inferenza, con una
diminuzione trascurabile delle performance. Vengono analizzate due modalita di
anonimizzazione delle informazioni personali, attraverso il mascheramento del
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volto o dell’intero corpo degli attori coinvolti.

Come attivita aggiuntiva nell’ambito di questa tesi viene studiata la complessita
computazionale delle architetture di riconoscimento delle azioni (e dei modelli di
analisi video in generale). Questi di solito richiedono enormi risorse, sia in fase
di apprendimento che di inferenza, limitando 1’accesso a quest’area di ricerca e
aumentando i costi negli ambienti di produzione. Nel Capitolo 6 viene proposto
un algoritmo iterativo in grado di ridurre la dimensione (in termini di numero
di parametri e di operazioni in virgola mobile) dei modelli di comprensione
video esistenti. L’idea di base consiste nella riduzione di una dimensione alla
volta, dove ogni dimensione rappresenta un iper-parametro della rete ed ha un
ruolo nella complessita del modello. Le iterazioni di riduzione vengono eseguite
massimizzando I’accuratezza di ciascuno dei modelli ridotti, tramite un processo
che permette di imitare il comportamento del modello originale, limitando gli
effetti sulle performance.

Activities carried out during the Ph.D.

Besides the research activities described in this thesis, and those briefly summar-
ized in Appendix A, I took part in several conferences and journals as a reviewer
and as a presenter. A list of the main additional activities is reported below, while
the complete list of my publications is reported in Appendix B.

Collaborations with companies and participation to programs

* Continuous collaboration with Metaliquid S.R.L. to meet the needs of both
company and research

* Collaboration with Maticad S.R.L. for the development of state-of-the-art
semantic segmentation models

* Participation in the NVIDIA Al Technology Center program

* Direct interaction with CINECA for the adoption of HPC systems

Conferences and journals reviewing

* ACM Transactions on Multimedia Computing, Communications, and Ap-
plications

¢ ACM International Conference on Multimedia
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* International Conference on Pattern Recognition

» European Conference on Computer Vision Workshops

Conferences and schools attended

* IEEE Conference on Computer Vision and Pattern Recognition Workshop
on Fair, Data Efficient and Trusted Computer Vision (Virtual), 2021

* NVIDIA GPU Technology Conference (Virtual), 2021
¢ 25TH International Conference on Pattern Recognition (Virtual), 2021

* 3rd Advanced Course on Data Science & Machine Learning (Siena, Italy),
2020

 20th International Conference on Image Analysis and Processing (Trento,
Italy), 2019

* International Computer Vision Summer School (Sicily, Italy), 2019

¢ International Workshop on Computer Vision (Modena, Italy), 2018

Master Thesis co-advising

¢ Davide Morelli, “Attentive Networks for video-level feature extraction and
action recognition”, 2020

* Lorenzo Silvio Del Rossi “Rep-Transformer: Attentive Networks for Repe-
tition Counting and Boundary Detection in Videos”, 2021

Awards and other academic services

* Third place in the SoccerNet-v2 challenge on the action spotting task, CVPR
Workshops (Virtual), 2021

¢ Invited Presentation “RMS-Net: Regression and Masking for Soccer Event
Spotting” for the SoccerNet-v2 challenge, in conjunction with the Activ-
ityNet challenge, CVPR Workshops (Virtual), 2021
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Seminars attended

» “Research in videogames: use of deep learning for saliency estimation and
cheating prevention” - Dr. Iuri Frosio (NVIDIA) - June 30, 2021

e “About Time” - Prof. Arnold Smeulders (University of Amsterdam) -
September 30, 2020

* “Brain-Inspired Computing: From Neuroscience to Artificial Intelligence” -
October 11, 2019

* “Computational Aspects of Deep Reinforcement Learning” - Dr. Turi Frosio
(NVIDIA) - July 15,2019

* “ICT Technology Commercialization and Business Development for Engin-
eers” - Steven A. Gedeon - May 22-June 5, 2019

* “Deep Learning-based Automatic Speech Recognition” - Dr. Leonardo
Badino - March 14, 2019

* “Computer Graphics for Cultural Heritage Applications” - Dr. Roberto
Scopigno (CNR) - March 13, 2019

* “Academic English Workshop I” — Dott. Silvia Cavalieri — February 18-
March 1, 2019

* “Academic English Workshop I’ — Dott. Silvia Cavalieri — February 4-12,
2019
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Chapter 2

Literature Survey

In this chapter, we provide an overview of the literature from which our research
has been inspired. We first review the most important works related to deep
learning-based spatio-temporal feature extraction (Sec. 2.1) and we present gen-
eral alternatives devised for modeling the additional temporal information, together
with related works tackling the problem of privacy in video modeling. We then
discuss the specific task of action detection in video clips in Sec. 2.2 and the
domain of sports and soccer (Sec. 2.3) together with proposed solutions for ac-
tion spotting, representing a production application useful for broadcast service
providers. Finally, we describe different ways to address the high computational
demand of video models in Sec. 2.4.

2.1 Deep automatic video understanding

In this section, we provide an overview of the most successful deep models and al-
gorithms devised for automatic video understanding. Specifically, we first describe
general approaches for extracting spatio-temporal features, which is essential for
solving video-related tasks. We analyze convolutional approaches, two-stream
networks, and attentive alternatives. We discuss knowledge distillation for video
modeling, as it inspired much of our research, and privacy-related problems that
arise when handling videos containing sensitive information. We refer the reader
to the survey from Zhu et al. [172], which provides a comprehensive timeline and
a detailed description of the last efforts in action recognition.
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CHAPTER 2. LITERATURE SURVEY

Deep spatio-temporal backbones

Video understanding is one of the most challenging and broad areas of computer
vision, and many research efforts have been dedicated to this field in the last few
years. Convolutional neural networks are currently the state-of-the-art approach to
extract spatio-temporal features for video processing and understanding. Video
clips can be viewed as ordered sequences of images, which should be treated
as a whole to extract temporal patterns. The most straightforward solution to
adapt convolutions to videos consists in expanding 2D kernels to 3D ones in
order to handle both time and appearance simultaneously, as proposed by Tran et
al. [131] and Varol et al. [138]. However, such a solution suffers from the large
number of parameters and floating point operations. To limit this drawback, other
works [37, 110, 133] proposed to decompose 3D kernels in 2D spatial filters
capturing frame appearance, followed by 1D temporal ones capturing motion.

Another strategy for separately modeling spatio-temporal features consists
in the adoption of two different networks, one focusing on space and the other
looking at the temporal evolution. Simonyan et al. [121] first proposed to give a
single frame as input to the first network and the clip optical flow as input to the
second one. Other works followed in order to increase the overall performance
or efficiency [38, 145]. The clip’s optical flow is usually adopted as input for
the second stream, but it requires not negligible time resources to be computed.
Among the most successful two-stream solutions, the one proposed by Carreira et
al. [18] expands filters and pooling kernels of deep image classification CNNs
into 3D, leveraging both successful ImageNet [28] architecture designs and their
pre-trained parameters. Feichtenhofer et al. [36] introduced SlowFast networks,
consisting of two pathways, a Slow path operating at low frame-rate which focuses
on appearance, and a Fast one operating at higher frame-rate and employing fewer
channels in convolutional layers, hence focusing on temporal modeling. The final
predictions from the two independently trained networks are usually averaged
at test time, but lateral connections can also be employed to fuse intermediate
features during both training and inference.

Alternatives for time modeling

Besides adopting convolutional operators, other approaches devised more sophist-
icated techniques to equip a deep neural network with temporal reasoning. The
temporal shift module [84], for instance, shifts a portion of the channels in a
spatio-temporal volume along the temporal dimension, for exchanging informa-

10
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tion between neighboring frames without the need for expensive 3D convolutions.
Xie et al. [157] explored the best trade-off between 2D and 3D convolutions for
high performance and efficiency, finding that temporal modeling is more useful at
the bottom of a deep network. Hussein et al. [62] developed a multi-scale temporal
convolution approach which uses different kernel sizes and dilation rates to better
capture temporal dependencies, while Li et al. [80] employed 2D convolutional
kernels sliding over the three 2D projections of a spatio-temporal volume. Re-
cently, 4D kernels were introduced [168] by splitting a video clip containing a
complete action instance into sections, each of which representing an action unit,
and treating them as an additional axis on which convolution can be performed.
This helps capturing inter-unit interactions, i.e. temporal interactions.

Attention-based networks

Recently, in order to overcome the limited receptive field issue of the convolution
operator, new alternatives to fully convolutional networks arose, mainly based
on attention operations. Non-local neural networks [147] introduced an attentive
operator to update each pixel with information coming from all the other pixels
of the input spatio-temporal volume. With the introduction of the Transformer
architectures for both natural language processing [140] and vision [31], new
architectures based on self-attention applied to input tokens have been proposed
even for action recognition. These tokens usually correspond to square patches
in vision tasks. However, the number of tokens in videos becomes prohibitive
to handle from memory and computation perspectives, making the simple ap-
plication of a Transformer-style encoder unfeasible. Several efficient alternatives
have been proposed, by encoding frames separately before temporal feature ex-
traction [6, 165], or using self-supervised pre-training [153]. Bertasius et al. [7]
devised a convolution-free architecture, named TimeSformer, demonstrating the
performance of separating spatial and temporal attention between 2D patches in
a 3D input. Arnab et al. [3] proposed different ways of factorizing spatial and
temporal dimensions of the input, exploring efficient solutions to handle the long
sequences of tokens encountered in videos. Sharir ef al. [118] exploited temporal
attention to reduce the number of frames required for inference. A standard 2D
convolutional backbone for extracting spatial information has been adopted by
Neimark et al. [103], while aggregating temporal information with an attention-
based encoder working on frame-level spatial features and attending to the entire
video sequence.

Deep video understanding for human actions, multimedia and computing 11
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Knowledge Distillation for video modeling

Knowledge Distillation (KD) has been first proposed in [56], and many alternatives
followed [146]. The idea is to train a small network, the student, using the
knowledge from a pre-trained bigger model, the teacher. While many approaches
have been proposed for applying KD in image-related tasks [53, 71, 101, 162,
163], by transferring logits or intermediate features, the same does not hold for
video-related tasks, where only a few methods have been introduced. A student
looking only at a small fraction of the input frames has been proposed in [8].
Other works have exploited KD for multimodal action recognition [40, 41, 129],
transferring knowledge between networks trained on different modalities. Other
approaches have proposed to transfer knowledge indirectly, employing mutual
relations between sample representations [39, 106, 130], in place of or together
with the representations themselves. In this thesis, we propose two different
strategies exploiting knowledge distillation for solving sensible data preservation
and computational requirements reduction in video networks.

Privacy-preserving action recognition

In this thesis we also address the problem of privacy issues related to the adoption
of videos disclosing people identities. Privacy issues are often ignored when
building video pipelines. Most visual understanding models are trained to work
on unaltered images and videos which could contain private information, such
as people faces from which identities can be revealed. Although the preserva-
tion of sensible data is still not being tackled enough by the community, some
approaches have been proposed in this direction. Yang et al. [159] studied the
effect of image obfuscation on ImageNet [28], observing that the impact of pri-
vacy problems is quite limited in the case of image classification datasets. Scene
understanding usually determines more severe privacy issues: efforts in removing
pedestrians from street-view imagery [135] have been made, and action videos
with anonymized faces have been collected [108]. Some technical approaches
have been proposed for privacy-preserving action recognition. Wang et al. [149]
adopted motion features between pairs of frames for masking identities, while
Dai er al. [25] investigated the possibility of reducing camera resolution (thus
making the actors unrecognizable) while keeping accuracy. An adversarial ap-
proach has been proposed in [113], consisting of a generator aiming to modify
faces in videos and a discriminator trained to recognize modified faces, while
action detection task is solved on anonymized faces.

12
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2.2 Action detection

Solutions described so far have been mainly applied to general action recognition,
with the goal of extracting meaningful spatio-temporal features to correctly classify
a video clip with the label of the action performed in the clip itself. More specific
tasks aim not only to classify the correct action, but also to localize it, both in
space and time. Towards this goal, two problems have been analyzed in the
last few years: temporal action detection and spatio-temporal action detection.
The former task aims to segment the temporal interval in which the action takes
place [14, 119]. Xu et al. [158] proposed a 3D CNN followed by a temporal
proposal subnet for generating candidate activities of variable length, which are
then filtered. Activity labels and refined segment boundaries are finally predicted.
The boundary sensitive network [86] and the boundary matching network [85]
predict starting and ending probabilities for each input frame, and build proposals
between two starting and ending peaks, with different solutions to determine the
proposal’s confidence scores.

The second task is intended to detect people in space and time and to classify
their actions [48, 65, 123, 124]. The role of context and interactions between en-
tities becomes vital for the classification of actions performed by each actor in the
scene. Seminal works in action detection and recognition have already investigated
the role of context and that of modelling object interactions [33, 49, 50, 98, 109] to
improve recognition. Recent approaches have tackled the spatio-temporal action
detection task by exploiting human proposals coming from pre-trained image
detectors [36, 151] and replicating boxes in time to build straight spatio-temporal
tubes. Others have extended image detection architectures to infer more precise
spatio-temporal tubelets. The approach from Gkioxari et al. [47] starts from image
region proposals and selects those that are motion salient based on the magnitude
of the optical flow, while Kalogeiton et al. [69] adopts an SSD detector [91]
and proposes an algorithm for linking tubelets in time. Saha ef al. [116] pro-
posed an end-to-end 3D CNN to predict ‘micro-tubes’ spanning two successive
frames, which are linked up into complete action tubes, and Hou et al. [57] devised
Tube-of-Interest pooling for obtaining fixed 3D output size. Weakly-supervised
approaches have also been explored [32, 99, 100]. Gu et al. [48] presented the new
large scale AVA dataset and a baseline exploiting an 13D network encoding RGB
and flow data separately, along with a Faster R-CNN [111] to jointly learn action
proposals and labels. Ulutan et al. [136] suggested combining actor features with
every spatio-temporal region in the scene to produce attention maps between the
actor and the context. Girdhar et al. [46], instead, proposed a Transformer-style
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architecture [140] to weight actors with features from the context around him.
The ACAR-Net [104] computes second-order relations between every two actors
based on their interaction with the context, i.e. based on first-order actor-context
relations. Finally, graph-based representations have been used in action recogni-
tion [13, 64, 148, 169] to model spatio-temporal relationships, although the use
of graph learning and graph convolutional neural networks [26, 73, 142] in video
action detection is still under-investigated. Wang et al. [148] proposed to model
a video clip as a combination of the whole clip features and weighted proposal
features, computed by a graph convolutional network based on similarities in the
feature space and spatio-temporal distances between detections. Zhang et al. [169],
instead, defined the strength of a relation between two nodes in the graph as the
inverse of the Euclidean distance between entities in the video.

2.3 Soccer action spotting

This thesis retraces a continuous collaboration with a company (i.e. Metaliquid
S.R.L.), leading to solutions useful in production scenarios, and following the
needs of both research and industry. Sports, and soccer in particular, represent a
production-oriented domain in which all the previously described techniques could
ideally find application. Soccer videos are used by professionals for statistics
generation, for analyzing and developing strategies and for understanding failures.
Broadcast video providers, on the other hand, often need to automatically generate
summaries and highlights of soccer matches, currently still achieved via manual
annotation in many cases. In this sections, we present some large-scale soccer
datasets available in literature, and the recently defined soccer event spotting task.
We also describe solutions tackling this task, and how they can contribute to the
development of real multimedia applications.

Large-scale Soccer datasets

Gathering a large number of realistic soccer videos is not easy, because of the
limited public availability of broadcast content. Nevertheless, a number of datasets
for soccer analysis have been recently proposed. Yu et al. [161] collected 222
soccer matches with shot transitions, event boundaries, and players bounding box
annotations. SoccerDB [144] includes 346 soccer games with event segments and
players, ball, goalposts bounding box annotations. Pappalardo et al. [105] released
an open collection of soccer-logs containing information about position, time,
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outcome, player and other features, however without releasing any video. Recently
Giancola et al. defined the action spotting task and released SoccerNet [44], a
collection of 500 broadcast soccer games coming from the Big Five European
leagues (EPL, La Liga, Ligue 1, Bundesliga and Serie A) with one second resolu-
tion event annotations. Three event classes are annotated in SoccerNet, namely
Goal, Yellow/Red Card, and Substitution. SoccerNet-v2 [27] further extends the
pool of available annotations, with 17 event classes, and defines two new tasks,
namely camera shot segmentation and replay grounding.

Action spotting methods

The action spotting task has been proposed for soccer videos along with the
SoccerNet dataset in [44], with the aim of finding the exact anchor time (or spot)
of an event and to recognize it. The final objective of action spotting approaches
is primarily automatic highlights identification and generation. With this purpose,
Bag-of-Words and SIFT features have been adopted by [5], together with an
LSTM for soccer video classification, while deep convolutional features have been
used in [66]. Tsagkatakis et al. [134] adopted an optical flow and appearance
feature fusion strategy for goal and no goal event detection. Giancola et al. [44]
defined a first baseline based on a watershed method to compute segment proposals
using the center time within the segment to define the spotting candidate. Several
approaches tackling the action spotting task followed: audio stream integration has
been explored in [137], showing promising spotting results. Rongved et al. [114]
applied a 3D ResNet [52] directly to the video frames in a 5-seconds sliding
window fashion. Vats et al. [141] introduced a multi-tower temporal convolutional
network that accounts for the uncertainty of the action locations, while a context-
aware loss function has been defined in [22], observing that frames just after an
event contain most of the visual cues for event recognition.

2.4 Efficient video modeling

Recently, there has been a growing interest in efficient video processing [74].
Speed-accuracy trade-off was analyzed by Xie ef al. [157], where early 3D con-
volutions were replaced by 2D ones in the network design. A policy network
to decide per-frame input resolution has been proposed by Meng et al. [97], im-
proving efficiency when handling less informative frames. Channel-separated
convolutions for video classification have been explored by Tran et al. [132],

Deep video understanding for human actions, multimedia and computing 15



CHAPTER 2. LITERATURE SURVEY

which limited the number of network parameters. Luo ef al. [94] decomposes
the feature channels into two separate groups handled in parallel, one for spatial
modeling and the other for temporal modeling, which are then concatenated to-
gether. To capture temporal evolution without convolutions along the time axis,
Temporal shift module [84] shifts channels along the temporal dimension and
can be inserted into 2D CNN for temporal modeling without extra computation.
X3D networks [35] progressively expand a 2D CNN through a form of coordinate
descent in the space defined by some expansion axes, achieving impressive com-
putation/accuracy trade-offs. Specifically, starting from a simple 2D CNN, the
model size or the input size is expanded at each iteration, and the operation that
gives the highest improvement in accuracy is kept. Bilen et al. [10] have learned
a representation of video clips in the form of an image which summarizes the
video dynamics in addition to appearance. A Multi-Fiber architecture that slices
a complex neural network into an ensemble of lightweight networks have been
proposed in [21], reducing the computational cost of 3D networks by an order of
magnitude while increasing recognition performance. Wu et al. [154] observed
that superfluous information can be reduced by up to two orders of magnitude
by training a network directly on the compressed video. Wu et al. [152] varied
mini-batch shapes and spatial-temporal resolutions according to a schedule, accel-
erating training by scaling up the mini-batch size and learning rate when shrinking
the other dimensions. The importance of efficiency in video-related tasks is also
highlighted by many other huge efforts in this direction [17, 30, 173].

16
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Chapter 3

Spatio-temporal action
detection

Understanding people actions in video clips is an open problem in computer
vision, which has been addressed for more than twenty years [11, 54], given the
wide range of its possible applications. In the past, this task was tackled through
handcrafted features designed for specific actions [77, 143]. Recently, the video
action detection task [126, 136, 160] (also referred to as spatio-temporal action
localization) has been introduced, aiming to not only predict correct action labels
from an input video, but also to detect each individual actor in subsequent frames
and to recognize their (possibly multiple) actions. In this scenario, deep architec-
tures able to extract fine-grained and discriminative spatio-temporal features are
necessary, in order to represent video chunks in a compact and manageable form.
This has motivated recent efforts to design novel backbones for video feature
extraction [36, 133, 151]. On the other hand, higher-level reasoning is vital for
detecting and understanding human actions.

Interestingly, the performances of video action detection networks that take
inspiration from object detection architectures are still far from being satisfactory,
especially when they only focus on the context included in the boxes around
the actors themselves. For example, it would be difficult to recognize whether
a person is watching something just by looking at a bounding box around him,

This chapter is related to publication “M. Tomei et al, Video action detection by learning graph-
based spatio-temporal interactions, CVIU 2021”. See Appendix B for details.
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Figure 3.1: We propose a graph-based module for video action detection which
encodes relationships between actors and objects in a spatio-temporal neighbor-
hood. Multiple layers of the module generate indirect edges between temporally
distant entities, increasing the temporal receptive field.

without considering a wider context. This can be partly explained by the lack of
proper context understanding of the previous works, as they cannot model the
relationships between actors and surrounding elements [136]. Indeed, the presence
of objects and other people in the scene, together with their behaviors, influences
the understanding of the actor at hand. High-level reasoning is necessary not only
at the spatial level, to model relations between close entities, but also in time: most
of the existing backbones can handle small temporal variations, without modeling
long-term temporal relationships.

Following these premises, in this chapter we propose a high-level module for
video action detection which considers interactions between different people in the
scene and interactions between actors and objects, represented by a graph structure.
Further, it can take into account temporal dependencies by connecting consecutive
clips during learning and inference. The same module can be stacked multiple
times to form a multi-layer structure (Fig. 3.1). In this way, the overall temporal
receptive field can be arbitrarily increased to model long-range dependencies.

18
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Since our method works at the feature level, it can expand its temporal receptive
field without dramatically increasing computation. The proposed solution can
exploit existing backbones for feature extraction and can achieve state-of-the-art
results without an end-to-end finetuning of the backbone.

Contributions. Previous works in action analysis have already tried to exploit
graph-based representations [148, 169], to model relationships with the context [46,
136] and to exploit long-term temporal relations [151]: in this chapter, we propose
to merge all these insights in a single module, which is independent of the feature
extraction layers and works on pre-computed representations. To the best of our
knowledge, our model is among the first to employ a learning-based approach
also on graph edges. The main novelty of this work consists in the design of a
single graph spanning both space and time, where connections between nodes are
both learned and affected by entities’ proximity. We experimentally validate our
approach on different publicly available benchmark datasets, namely the Atomic
Visual Actions (AVA) dataset [48], which represents a challenging test-bed for
recognizing human actions and exploiting the role of context, J-HMDB-21 [65] and
UCF101-24 [124]. We demonstrate that our approach increases the performance
of three different video backbones, reaching state-of-the-art results.

The rest of the chapter is organized as follows: in Sec. 3.1 we introduce the
details and the architecture of the proposed action detection model. Adopted
datasets, metrics and backbones’ setup together with implementation and training
details are presented in Sec. 3.2. Finally experiments, quantitative results, and
qualitative evaluation are reported in Sec. 3.3. Our code is publicly available at
https://github.com/aimagelab/STAGE_action_detection.

3.1 Graph-based interaction learning

Given a video clip, the goal of our approach is to localize each actor and classify
his actions. As actions performed in a clip depend on actor and object relationships
through both space and time, we define a graph representation in which actor and
object detections are treated as nodes, and edges hold relationships between them.
Further, we link graphs from subsequent clips in time, to encode relations between
clips belonging to the same longer video. We name our approach STAGE, as an
acronym of Spatio-Temporal Attention on Graph Entities.

In this section, we first outline our graph-based representation for a single clip,
describing the graph attention layer and our adjacency matrix. In the remainder of
the section, we will then extend this approach to handle sequences of clips.

Deep video understanding for human actions, multimedia and computing 19
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3.1.1 Graph-based clip representation

We propose a graph-based representation of each clip, where nodes consist of
actor and object features predicted by pre-trained detectors, as shown in the left
side of Fig. 3.2. Denoting the number of actors and objects belonging to clip ¢
(i.e. the clip centered in frame t) as A; and O, respectively, the total number of
graph entities is Ny = A; + O;. Under this configuration, a clip can be represented
as an NV, x d¢ matrix, where d is the node feature size.

Since actors can have meaningful relations both between them and with objects
in the scene, we employ a fully-connected graph representation, in which all nodes
are connected to the others, as the input of our network. Following the assumption
that the closer two entities are, the more they influence each other, a link between
two entities in the graph is made stronger if they are spatially close. The graph
configuration is therefore given by a dense NV; x Ny adjacency matrix A, in which
A;; is defined as the proximity between entities 7 and j, computed as follows:

A= e—\/(%‘ci—ﬂb‘cj)z-i-(yci—ycj)27 (3.1)

where x.; and y.; are the center coordinates of entity i.

In Sec. 3.1.3, this single-clip adjacency matrix representation will be extended
to a multi-clip adjacency matrix, allowing us to easily link graphs coming from
subsequent clips of the same video.

3.1.2 Spatial-aware graph attention

Besides the introduced adjacency matrix, we adopt a graph attention module,
inspired by [142]. The input of the model consists of N; node features which
represent actors and objects, { f1, f2, ..., fn, } with f; € R4r . First, the module
applies a linear transformation to these features, in order to obtain a new represent-
ation of each entity {h1, ha, ..., hy, }, h; € R, Then a self-attention operator S
is applied to the nodes. In particular, the operator is defined as S : R% xR — R,
as follows:

E;; = S(h;, h;j) (3.2)

with the scalar E;; representing the importance of entity j with respect to entity ¢.
Since we propose to represent a clip as a fully-connected graph, E;; is computed
for each pair of entities belonging to the same clip, avoiding the need for masking
disconnected couples. Based on the original graph attention implementation [142],
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S is implemented with a feedforward layer with 2 x dj, parameters, followed by a
LeakyReLU nonlinearity:

where || indicates concatenation on the channel axis and FC is a linear layer. The
resulting matrix, F, will be a squared matrix with the same shape as the adjacency
matrix. Separating it into its components, it can be rewritten as:

E E
E = aa a0 34
EO(L EOO
where F,, is the matrix of attentive weights between actors and actors, E,, is the

matrix of objects weights to actors, E,, is the matrix of actors weights to objects
and E,, is the matrix of objects weights to objects.

Introducing spatial proximity. The proposed self-attention module, when ap-
plied to a clip graph, computes the mutual influence of two entities in feature
space, i.e. the influence of an entity on another based on their features. However,
it does not consider mutual distances between entities.

To introduce the prior given by the spatial proximity inside the clip, we
condition the self-attention matrix E with the adjacency matrix A, which contains
the proximity between detections, by taking their Hadamard product, i.e.:

D=A0E. 3.5)

This operation allows us to strengthen the importance of the features of an
entity with respect to its neighbors and to weaken relations between entities that
lie spatially far from each other. A row-wise softmax normalization is then applied
to obtain an importance distribution over entities:

exp(Dij)

Skt exp(Dir)
The updated features computed by the module are a linear combination of the
starting features {h1, ho, ..., hy, } using {W'}, ; as coefficients. In particular, the
self-attention module updates the initial features as follows:

Wi, (3.6)

Ny
hy=o|> Wiyh;|, (3.7)
j=1

where o is an ELU nonlinearity [23].
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3.1.3 Temporal graph attention

In this section, we extend the proposed attention-based approach to jointly encode
a batch of consecutive clips. Since different clips can have a different number of
actors and objects, we devise a single adjacency matrix with as many rows and
columns as the total number of entities in all clips of the batch. Besides allowing us
to manage clips with a variable number of entities, this solution is suitable to link
more graphs together and avoids padding. When encoding a batch of consecutive
clips, the size of the adjacency matrix will be Zle Ny x Zle Ny, being b the
size of the batch of clips.

An example is shown in Fig. 3.3, for a three clips setting and a temporal recept-

ive field of three consecutive clips. Here, dark red elements contain the proximity
between actors of the same clip, dark blue elements contain the proximity between
objects of the same clip, and dark violet elements contain the proximity between
actors and objects of the same clip. Entities belonging to subsequent clips can
be linked by computing their boxes proximity (as in Eq. 3.1), assuming that the
temporal distance between clips is small enough to ensure the consistency of the
scene. The light-colored elements of the adjacency matrix in Fig. 3.3 contain the
proximity between actors (light red), objects (light blue), and actors/objects (light
violet) belonging to two consecutive clips. The temporal receptive field of a single
attentive layer can be potentially increased by adding the proximity of temporally
distant entities in the adjacency matrix.
Self-attention over time. We extend the self-attentive operations to compute the
importance of an entity with respect to all the other entities in the batch. In our
implementation, the self-attention module computes attention weights for each
pair of entity features, without any masking. For a three clips per batch setting,
the complete attention weights matrix E looks like the following:

(hto,to fto,t1 [to,to [rto,to [to,t [to,to
E(l(l E(l(l E(I(I E(I.O E(Jl() ‘l?ao
t1,to t1,t1 t1,ta t1,to ty,t1 t1,ta
Eaa Eaa, EACLCL7 EU,O EAU,O7 EA'O/O7
Et2sto Elasti Eiaste Et2:to  Elasti Fiiate
aa aa aa ao ao ao
[to.to  Ftosti [to,to [to,to  Jto,ti [to,to
EOQ’ EOU‘, E:oaj EOD’ EA'OO, EOO’
t1,to t1,t1 t1,t2 t1,to t1,t1 t1,t2
EOGJ EO&’ EOU" EOO’ EOO’ EOO
Et2to  Et2ti pit2te Et2to  Et2ti Eit2te
oa oa oa 0o 00 00

=
I

(3.8)

where EA;;/ is the weights matrix of actors belonging to clip ¢ to actors belonging
to clip ¢/, EL! is the weights matrix of actors belonging to clip ¢ to objects
belonging to clip ', and so on.

Deep video understanding for human actions, multimedia and computing 23



CHAPTER 3. SPATIO-TEMPORAL ACTION DETECTION
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Figure 3.3: Adjacency matrix in a three clips per batch configuration, containing
the spatial proximity between entities belonging to the same clip (dark-colored sub-
matrices) and to consecutive clips (light-colored sub-matrices). White elements
are zeros. Bounding box centers are indicated as x. and y..

Given the new adjacency matrix, A, the Hadamard product:
D=A0F (3.9)

is in charge of strengthening or weakening (based on the spatial distance) weights
between entities belonging to the same timestamp or sufficiently close in time, and
to zero weights between temporally distant entities. Finally, the linear combination
of Eq. 3.7 replaces features of an entity with a weighted sum of features directly
connected to it in the graph: these features come now from entities belonging to
the same clip and to temporally close clips. As our approach works at the feature
level, increasing the temporal receptive field of the module does not dramatically
increase the demand of computational resources.

Multi-head multi-layer approach

A single graph-attention head (the box with yellow background of Fig. 3.2) per-
forms the aforementioned operations in our model. A graph-attention layer (red-
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background box of Fig. 3.2) concatenates the output of different heads and applies
a linear layer, a residual connection, and a layer normalization [4]. As it will
be analyzed in Sec. 3.3.2, a grid search on the number of parallel heads and
subsequent layers allows us to obtain the best performance.

It is worth noting that the overall temporal receptive field of the model is also
affected by the number of adopted graph attention layers. Considering a receptive
field of three (corresponding to a graph where entities are directly connected only
with other entities of the same clip and to entities from the previous and following
clips), each layer after the first one increases the overall temporal receptive field
by two. In a two layers setting, for instance, the second graph attention layer will
compute the features of a clip as a weighted sum of its two temporal neighbors,
but features from those have already been affected by features of other clips in the
first graph attention layer.

3.2 Datasets, metrics and implementation details

In this section, we introduce the datasets and the evaluation metrics for the spatio-
temporal action localization task. Moreover, we detail the implementation of the
feature extraction backbones and the optimization parameters.

3.2.1 Datasets and metrics

We evaluate our model on versions 2.1 and 2.2 of the challenging AVA dataset [48],
which contains annotations to localize people both in space and time and to predict
their actions. It consists of 235 training and 64 validation videos, each 15 minutes
long. The temporal granularity of annotations is 1 second, leading to 211k training
and 57k validation clips centered in the annotated keyframes. Each actor is
involved in one or more of 80 atomic action classes. One of the main challenges
of AVA concerns its long-tail property: tens of thousands of samples are available
for some classes while only a few dozen for others.

The performance of a model on AVA is measured by the keyframe-level mean
Average Precision (mAP) with a 50% IoU threshold. Following the protocol sug-
gested by the dataset authors and adopted in prior works, we train our architecture
on all the 80 classes and evaluate its performance only on the 60 classes containing
at least 25 validation examples.

We also report performances in terms of frame-mAP with the same 50% IoU
threshold on two additional benchmarks, namely J-HMDB-21 [65] and UCF101-
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24 [124]. These two datasets are relatively smaller than AVA, and provide a single
label per video. On average, they also come with less complex scenes and fewer
interactions between entities.

3.2.2 Network details

People and object detectors. When experimenting on AVA, we use a Faster
R-CNN [111] with a ResNeXt-101-FPN [52, 87, 156] as people detector, applied
on keyframes. The detection network is pre-trained on COCO [88] and fine-tuned
on AVA [48] people boxes. The detector is the same used by [36] and [151], and
reaches 93.9 AP@50 on the AVA validation set. Following previous works [36, 48],
actor features are then obtained from a 3D CNN backbone (which is discussed in
the next paragraph) by replicating boxes in time to obtain a 3D region of interest
and applying RolAlign [51]. During training, we employ ground-truth people
regions. Objects features, instead, are extracted from a Faster R-CNN detector
pre-trained on Visual Genome [75], and have a dimensionality of 2048.

Video Backbones. In all the experiments, we employ a pre-trained actor backbone
which is kept fixed during training. Freezing the backbone allows us to increase
the batch size and to explore longer temporal relations between consecutive clips.
The pre-trained backbones take raw clips as input and output features for each
actor. When considering the AVA dataset, all video-level backbones are trained on
the Kinetics dataset [70] and fine-tuned on the AVA dataset [48] before applying
our module.

On AVA, we consider three backbones for extracting actor features, namely
13D [18], R101-I3D-NL [151] and SlowFast-NL [36]. The I3D [18] backbone is
pre-trained on ImageNet [28] before being “inflated”, and then trained on Kinetics-
400. RolAlign is applied after the Mixed 4f layer and we fine-tune only the last
layers (from the Mixed_5a layer to the final linear classifier) on AVA for 10 epochs.
The R101-13D-NL [151] and the SlowFast-NL [36] backbones are pre-trained on
Kinetics-400 or Kinetics-600 (R101-I3D-NL on ImageNet, too), and fine-tuned
end-to-end on the AVA dataset. For these backbones, we employ the original
pre-trained weights released by the authors in their official repositories!-2.

For the I3D backbone, we use ground-truth boxes and predicted boxes with
any score during feature extraction, assigning labels of a ground-truth box to a
predicted box if their IoU is 0.5 or more. We use predicted boxes with score

Thttps://github.com/facebookresearch/video-long-term-feature-banks
2https://github.com/facebookresearch/SlowFast
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at least 0.7 for the evaluation. Following the authors implementation [36, 151],
for the R101-I3D-NL and SlowFast-NL backbones we use ground-truth boxes
and predicted boxes with score at least 0.9 during feature extraction, assigning
labels of a ground-truth box to a predicted box if their IoU is 0.9 or more. We use
predicted boxes with score at least 0.8 for the evaluation.

Features are always extracted from the last layer of the backbone before
classification, after averaging in space and time dimensions: feature size, therefore,
is 1024, 2048, and 2304 for I3D, R101-I3D-NL, and SlowFast-NL respectively.
As additional features, we also add bounding boxes height, width and center
coordinates to actors and objects, as we found it to be beneficial in preliminary
experiments. A linear layer is employed to transform actor or object features
to a common dimensionality d¢, making their concatenation feasible. In all
experiments, when concatenating actor and object features we apply the linear layer
to the feature vector with the largest dimensionality, leaving the other unchanged.

Implementation and training details

Each graph attention head consists of two fully-connected layers. The first one
reduces the feature size depending on the number of heads used in that layer:
with 7, heads, the output feature size is set to |dy/ny, . The second linear layer,
instead, computes attention weights (Eq. 3.3). The outputs of different attention
heads are then concatenated, and a fully connected layer followed by a residual
block and a layer normalization block is applied (Fig. 3.2). Each graph attention
head is followed by a dropout with keep probability 0.5, and the alpha parameter of
the LeakyReLU in Eq. 3.3 is set to 0.2. After a sequence of layers of the proposed
module, one last linear layer is employed to compute per-class probabilities, and a
sigmoid cross-entropy loss (for AVA) or a softmax cross-entropy loss (for the other
benchmarks) is applied. In our experiments, we adopt a temporal receptive field of
three, connecting entities of a clip with those belonging to the same, the previous
and the following clip. Table 3.1 lists the learnable blocks of our architecture in a
4-heads/1-layer setting. It is worthwhile to mention that our graph-attention block
is trained without any data augmentation, while end-to-end approaches typically
require random flipping, scaling, and cropping.

During training, we use a batch size of 6. Adam optimizer [72] is adopted
in all our experiments, with a learning rate of 6.25 x 10~° when using 13D
features and 10~° for R101-I3D-NL and SlowFast-NL features. The learning rate
is decreased by a factor of 10 when the validation mAP does not increase for ten
consecutive epochs. Early-stopping is also applied when the validation mAP does
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Stage Module Input size Output size
Input Nt x 1024
GALl FC11 [Nt X 1024] X 4 [Nt X 256] X 4
FCi2 [N¢ x N x 512] x 4 [Nt X N¢| x 4
FC13 Nt x 1024 Nt x 1024
LNorm N x 1024 N¢ x 1024
FCs A x 1024 A; X classes

Table 3.1: Learnable blocks of STAGE, in a 4-heads/1-layer configuration, when
using I3D features. G AL; indicates the i-th graph-attention-layer, which consists
of 4 attention heads (each with 2 fully-connected layers), a linear layer, and a
LayerNorm. N, is the number of entities (actors and objects), A; is the number of
actors.

not increase for five consecutive epochs. All the experiments are performed on a
single NVIDIA V100 GPU; on average, a single experiment takes less than a day
to converge.

3.3 Experimental results

In the following experiments, we show that our proposed module can improve
video action detection performance by a significant margin, reaching state-of-the-
art results. If not specified otherwise, we employ a 2-layers 4-heads setting when
using the I3D backbone and when testing on J-HMDB-21 and UCF101-24, and
a 2-layers 2-heads setting when using the R101-I3D-NL and the SlowFast-NL
backbones.

3.3.1 Main results

Here we report the results obtained on three different benchmarks, namely AVA
(for both versions 2.1 and 2.2), J-HMDB-21, and UCF101-24. The first one
represents the most challenging dataset, with complex scenes from broadcast
videos and with the highest number of classes. For this reason, we also conduct a
per-class analysis over the AVA dataset.
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Model Pretraining mAP@50
AVA [48] Kinetics-400 15.6
ACRN [126] Kinetics-400 17.4
STEP [160] Kinetics-400 18.6
Better baseline [45] Kinetics-600 21.9
SMAD [169] Kinetics-400 222
RTPR [82] - 22.3
ACAM [136] Kinetics-400 24.4
VATX [46] Kinetics-400 24.9
SlowFast [36] Kinetics-400 26.3
LFB (R101-I3D-NL) [151] Kinetics-400 26.8
13D [18] Kinetics-400 19.7
STAGE (I3D) Kinetics-400 23.0
R101-13D-NL [151] Kinetics-400 23.9
STAGE (R101-I3D-NL) Kinetics-400 26.3
SlowFast-NL,8x8 [36] Kinetics-600 28.2

STAGE (SlowFast-NL,8x8)  Kinetics-600 29.8

Table 3.2: Comparison with previous approaches on AVA 2.1 validation set, in
terms of mean Average Precision.

Results on AVA 2.1

Table 3.2 shows the mean Average Precision with 50% IoU threshold on AVA 2.1
for our method, considering the three backbones, and for a number of competitors.
All the experiments refer to a single-crop validation accuracy (no multi-scale and
horizontal flipping are adopted for testing) and for a single model (i.e., without
using ensemble methods).

When applying our approach, we observe a relative improvement of more than
16% on the 13D backbone (19.7 — 23.0), of about 10% for the R101-I3D-NL
backbone (23.9 — 26.3) and of almost 6% for the SlowFast-NL backbone (28.2
— 29.8). Noticeably, the presence of non-local operations [147] in these last two
backbones does not prevent our model from improving performance, underlying
that these two techniques are complementary. Also, the results obtained using the
I3D backbone are superior to many approaches that employ the same backbone
and train end-to-end. The adoption of a long-term feature bank in [151] brings
slightly better performance (26.8) compared to our solution (26.3) using the same
R101-I3D-NL backbone. It is worth noting, although, that [151] uses two instances
of the backbone, one to compute long-term features and another to compute short-
term features, both fine-tuned end-to-end. Our model, instead, uses only one
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- val test
Model Pretraining mAP  mAP
SlowFast-NL,8 x8 [36]* Kinetics-600  29.1 -
STAGE (SlowFast-NL,8 x8) Kinetics-600  30.0 29.6
SlowFast-NL,16x 8 [36]* Kinetics-600  29.4 -
STAGE (SlowFast-NL,16 x8) Kinetics-600  30.3 29.9

STAGE (SlowFast-NL,16x8,8x8)  Kinetics-600 31.8  31.6

Table 3.3: Comparison with previous approaches on AVA 2.2 validation and test
sets, using different backbones. Numbers marked with “*” are obtained from
models released in the official SlowFast [36] repository. In [36], the reported
performances are 29.0 and 29.8 for SlowFast-NL,8x8 and SlowFast-NL,16x8
respectively.

Model Pose  Person-Person  Person-Object
13D [18] 37.4 20.4 12.2
STAGE (I13D) 40.4 23.5 15.7
R101-I3D-NL [151] 414 26.5 15.5
STAGE (R101-I3D-NL) 434 29.0 18.1
SlowFast-NL [36] 483 28.8 19.8
STAGE (SlowFast-NL)  50.3 314 20.8

Table 3.4: Mean Average Precision on different AVA 2.1 class groups (actions
involving person-pose, person-person and person-object interactions), when using
the I3D backbone.

backbone instance, which is also kept fixed during training. Single-crop validation
mAP obtained with the SlowFast-NL backbone (29.8 mAP) represents a new state
of the art for the AVA v2.1 dataset.

Results on AVA 2.2

Table 3.3 reports the performance of our approach on the more recent AVA v2.2.
Here, the test mAP has been computed using the official AVA evaluation server,
after training on both train and val splits, following the common practice in
literature. As it can be observed, adopting STAGE on top of SlowFast-NL,8x8
is better than doubling the number of input frames to the backbone (i.e., using
SlowFast-NL,16x8). This underlines that modelling high-level entities is at least
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0.5

3D +STAGE mI3D . WI3D+STAGE mI3D

0
watch (e.g., play musical ride eat work on a listento  handclap  fight/hit hand wave watch (a
V) instrument computer person)

Figure 3.4: Per-class Average Precision of an I3D backbone with and without our
module. We report the five classes with the highest absolute gain among person-
object interaction classes (top) and person-person interaction classes (bottom).

as important as extracting better spatio-temporal features.

Finally, leveraging the fact that STAGE is backbone independent, we train it
using both SlowFast-NL,8x8 and SlowFast-NL,16x8 features, which are averaged
before being forwarded through STAGE. This model achieves single-crop 31.8
mAP, a new state of the art for AVA v2.2.

Per-class analysis. In Table 3.4, we show the performances of our approach
on different AVA class groups, i.e. actions involving person-pose (13 classes),
person-person interactions (15 classes) and person-object interactions (32 classes).
As it can be seen, our model shows a higher improvement for actions that involve
an interaction between entities (which are also the majority in AVA). We also
note that the recognition of pose classes (like dance or martial art) benefits from
interactions and elements from the context. Finally, in Fig. 3.4, we show the five
person-object interaction classes (left) and five person-person interaction classes
(right) with the top AP gain, when considering the I3D backbone. Classes with the
highest absolute gain are watch (e.g., TV) (+14.0 AP), listen to (a person) (+10.7
AP), play musical instrument (+ 10.7 AP), all involving interactions with other
objects or actors.

Results on J-HMDB-21 and UCF101-24

We also experimented the capabilities of STAGE on two additional benchmarks,
namely J-HMDB-21 [65] and UCF101-24 [124], in comparison with the models
presented in [47] and in [116]. For fairness of evaluation, we adopt STAGE on top
of the actor detection backbones presented in [47] and in [116]. Hence, only actor
boxes with no objects are considered. J-HMDB-21 mAP is averaged over the three
splits, while UCF101-24 mAP refers to the first split of the dataset, following the
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Model| Dataset— J-HMDB-21 UCF101-24
Action tubes [47] 27.0

Action tubes* [47] 28.6

STAGE (Action tubes*) 29.6

AMThnet [116] 45.0 -
AMTnet* [116] 47.0 67.7
STAGE (AMTnet*) 48.1 69.1

Table 3.5: Experimental results on J-HMDB-21 and UCF101-24, using the detec-
tion backbones presented in [47] and [116]. For both backbones, the three rows
report the mAP presented in the original paper, the mAP we obtained training a
linear classifier on top of pre-extracted features (marked by *) and the mAP of
STAGE on the same features, respectively.

standard practice in literature. Results are reported in Table 3.5, where, for each
dataset, we also report the frame-mAP obtained training a linear classifier on top
of pre-extracted features (marked with *), and the frame-mAP obtained through
STAGE applied on the same features. Only RGB features are considered, without
exploiting optical flow. As it can be seen, in both settings applying STAGE leads
to a performance improvement of around 1 mAP point.

3.3.2 Ablation study

To validate the importance of the design choices made in our graph-attention
module, we run several ablation experiments. We explore different combinations
of heads and layers, we remove key components in the architecture, and we modify
the graph structure to use existing techniques in place of our choices. In all the
following experiments we employ AVA v2.1.

Varying the number of heads and layers. Table 3.6 shows the effect of varying
the number of graph-attention heads and layers when using STAGE with features
from the three adopted backbones. As it can be noticed, stacking multiple layers
together brings better performance: each layer after the first increases the temporal
receptive field, generating indirect edges between temporally distant nodes. The
best configuration is obtained when using a 4-heads/2-layers setting for I3D
features and a 2-heads/2-layers setting for R101-I3D-NL and SlowFast-NL. These
configurations are also used in the following ablation experiments.

Comparison with the STO baseline. In Table 3.7 we compare the STAGE and
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Layers— 1 2 3
Heads— 2 4 8 2 4 8 2 4 8
STAGE (I3D) 212 217 220 21.7 23.0 2238 217 227 219
STAGE (R101-I3D-NL) 262 26.1 26.3 26.3 26.1 258 26.3 260 256

STAGE (SlowFast-NL)

29.7 292 29.6

29.8 293 29.6

296 293 295

Table 3.6: Validation mAP obtained considering different combinations of graph-
attention heads and layers.

Head] Backbone—  I3D  RI101-I3D-NL  SlowFast-NL
1L STO 20.2 24.7 28.5
2L STO 204 25.0 28.7
STO (STAGE) 20.5 25.5 29.5
STAGE 23.0 26.3 29.8

Table 3.7: Comparison with the STO baseline.

the STO modules [151], applied on top of the considered backbones. The STO
baseline consists of a short-term operator that updates actor features on the basis of
other actors from the same clip, using non-local blocks [147]. STO lacks the graph
structure, the objects, and the temporal interactions, leading to worse performances
compared to STAGE (Table 3.7 first two rows, corresponding to one-layer and
two-layers STO, respectively). In the third row of Table 3.7, instead, we report the
performance of STAGE when replacing Eq. 3.3 with the non-local-based attention,
and removing temporal interactions. The original STAGE design demonstrates
higher mAP in this case, too.

Removing key components. In Table 3.8 we report the validation mAP obtained
when removing key components. Performances drop when removing the spatial
prior between detections. Moreover, when the temporal links between consecutive
clips are removed and only edges between nodes of the same clip are kept, we
observe a reduction in mAP. To evaluate the design of the graph structure, we
first remove actor-actor interactions to quantify the role of objects: in this setting,
actor features are updated with a weighted sum of object features, leading to
better performances compared to those of graph-free backbones. One can question
if object-object interactions are useful: when removing them from the graph,
performances drop for both I3D and R101-I3D-NL backbones. Our insight is that
some recurring combinations of objects can be useful for prediction: a closed door
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Model| Backbone— I3D  R101-I3D-NL  SlowFast-NL
Original Backbone 19.7 239 28.2
STAGE 23.0 26.3 29.8
STAGE w/o boxes proximity 21.5 25.8 29.6
STAGE w/o temporal connections 22.1 25.7 294
STAGE w/o actors-actors interactions ~ 22.1 26.1 28.9
STAGE w/o object-object interactions ~ 22.3 25.6 29.8
STAGE w/ Transformer attention 21.6 25.6 29.6
STAGE w/ nodes Euclidean distance 21.4 26.3 29.5

Table 3.8: Validation mAP obtained removing some key components in our model
or replacing them with other existing techniques.

in clip ¢, for instance, related to the same open door in clip ¢ 4+ 1 could help to
recognize the open action.

Attention and adjacency alternatives. In the last two rows of Table 3.8 we show
results obtained by replacing our attention mechanism and our adjacency matrix
design with other proposals. We investigate the use of dot-product attention, by
replacing the weights of Eq. 3.3 with weights computed through a Transformer-like
self-attention [140], as follows:

_ QK"
NG
where @, K and V' come from three linear projections of the input features. In this
setting, as it can be noticed, we again observe a significant drop in performance.
This could be attributed to the limited number of tokens, since the performance of
transformer-based models usually increase with the number of tokens [115], and to
the additional adjacency matrix, which may not benefit dot-product self-attention.
Taking inspiration from [169], we also replace the Euclidean distance between
bounding box coordinates with the Euclidean distance between bounding box
features in the adjacency matrix. We found this choice to lower the performance
on both I3D and SlowFast-NL backbones. In this setting, Eq. 3.1 is replaced by:

E

V, (3.10)

1

A=
T by — Ryl

@3.11)

It shall be noted that all the aforementioned ablations do not change the number
of parameters in the model (except for the Transformer attention experiment, where
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Model #GPUs Clips/GPU Epochs Training time
ACRN [126] 11 1 63

Better baseline [45] 11 3 78

SMAD [169] 8 2 11 -
VATX [46] 10 3 71 ~ 7 days
SlowFast [36] 128 - 68 -

LFB [151] 8 x2 2 10 x 2 ~ 2 x 2days
STAGE 1 6 20 < 1 day

Table 3.9: Training times and computational requirements of STAGE and existing
approaches involving an end-to-end finetuning of the 3D backbone. The LFB
model uses two instances of the backbone, thus has twice the complexity of its
base model.

each attention head uses three linear layers instead of two), thus confirming the
effectiveness of our approach. We finally note that STAGE with SlowFast-NL,8x 8
backbone reaches 36.5 validation mAP on AVA 2.1 when tested with ground-truth
actor boxes, suggesting that a stronger person detector could boost performances.

3.3.3 Computational analysis

Our module can reach state-of-the-art results without requiring end-to-end training
of the backbone. This has an impact on the computational requirements of STAGE
at training time, since the convolutional backbone incorporates most of the model
complexity. Table 3.9 shows a comparison with different approaches employing
end-to-end training in terms of training time and resource requirements. For each
approach, we report the number of GPUs used during training, the batch size per
GPU, the number of epochs, and the overall training time. The comparison is
based on the implementation details reported in the original papers and refers to a
training on the AVA [48] dataset. Our module requires a single GPU for training
when pre-extracting backbone features, and less than a day to converge.

Finally, in Table 3.10, we report the additional FLOPs and trained parameters
introduced by STAGE during inference. Please note that both the number of
floating-point operations and the number of trained parameters depend on the
dimensionality of the features produced by each backbone. As the amount of
FLOPs also depends on the number of detections predicted on each clip, we
consider a clip with a number of actor and object detections equal to the average
number of actors and objects in all AVA training clips, i.e. 4 actors and 25 objects.
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Model GFLOPs Parameters
13D [18] 108 12M
+STAGE +0.11 +6.4M
R101-I3D-NL [151] 359 54.3M
+STAGE +0.24 +17M
SlowFast-NL,16x 8 [36] 234 59.9M
+STAGE +0.26 +21.8M

Table 3.10: Computational complexity analysis for inference.

3.3.4 Qualitative analysis

We present some qualitative results obtained on clips of the AVA validation set
in Fig. 3.5. Here, we only show the central keyframe of the clip; red and blue
boxes represent predicted actors and objects respectively. For simplicity, we
highlight only the actor involved in the action (despite other actors could be
found in the scene), except for the Kiss class, where two actors perform the same
action. Only predicted objects with score greater than 0.8 are shown, even if
all detections are used during training. Fig. 3.6 shows sample failure cases. On
average, we qualitatively observe that our spatio-temporal graph-based module is
able to improve the recognition of human actions, especially for actions involving
relationships with objects and other people.
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Answer phone Ride (e.g., a bike, a horse) Take a photo

Figure 3.5: Qualitative results showing the keyframes of the evaluated clips, with
red boxes denoting actors performing actions, and blue boxes denoting objects.

Drive (e.g., a car, a truck) Sail boat
= \

Figure 3.6: Sample failure cases. Actions are sometimes assigned to an actor
very close to the one actually performing the action, and some object-interaction
classes are wrongly assigned to people very close to the objects.






Chapter 4

Soccer action spotting

As already mentioned, all the work presented in this thesis has been granted by
and done in collaboration with Metaliquid S.R.L. Since the needs of the research
community and those of a company are not often the same, all the applications
and models developed in this thesis had to meet the requirements of both of them.
We followed the standard practice of tackling well-defined research problems
available in literature, by recasting them to company-specific applications and
needs. The approach presented in Chapter 3 has been developed without focusing
on a specific real-world application, since the fine-grained scene representation
could be suitable in different scenarios.

In this chapter, instead, we tackle a problem raised by a specific company
requirement, by turning it into a well-known research challenge. With the goal of
automatically generate highlights from broadcast soccer matches, we decided to
address the soccer event spotting task [44] as a first step in this direction.

Recently, there has been an increasing effort in developing architectures for
automatic soccer match understanding starting from videos, and in action spot-
ting [22, 44, 141], specifically. The task requires to temporally localize all sig-
nificant events happening inside the match like goals or yellow/red card events.
Differently from the task presented in the previous chapter, we do not need to
recognize actions for each person in the clip, but a single event possibly involving
multiple actors. For this reason, we rely on more coarse-grained features, and
we do not detect individual players. As these events are sparse within a video,

This chapter is related to publication “M. Tomei et al, Rms-net: Regression and masking for
soccer event spotting, ICPR 2020”. See Appendix B for details.
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Figure 4.1: We propose a lightweight and effective network for spotting relevant
events in soccer matches. Our model features a masking strategy which increases
training performance by constraining the network to focus on the most relevant
parts of the video and a data sampling solution which handles class imbalance.

the task couples the need for effective feature extraction with that of properly
handling the data imbalance and event sparsity issues. An effective action spotting
approach needs to provide accurate temporal localization, too, which requires
proper architectural and training strategies.

Contributions. We treat the action spotting as a detection problem and devise
a novel network which takes inspiration from the regression strategies used in
object detection. Specifically, our network takes a short video snippet as input
and predicts the presence of a candidate event together with its class and relative
temporal position inside the input snippet. This choice is innovative compared to
recent works in the field, which usually assign the event to the central frame of the
video chunk, thus preventing the model from learning an accurate localization of
actions. The novelty also consists in dealing with the sparsity and class imbalance
issues: through a sampling approach we ensure a uniform distribution in training
batches in terms of ground-truth classes and action locations.

Further, we develop a strategy to increase the generalization capabilities of
the network, which is inspired by the masking strategies used in self-supervised
pre-training techniques [29]. During training, indeed, we randomly mask and
replace the frames preceding an event and constrain the network to focus on the
most relevant parts of the action.
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We conduct extensive evaluations on the recently released SoccerNet data-
set [44], which features 500 full broadcast soccer matches, annotated with relevant
events. We provide experiments to validate the architectural choices behind the
proposal and the effectiveness of the masking and data sampling strategies. When
compared to the state of the art, our network achieves a gain of 3 Average-mAP
points exploiting the same features used by previous works, while being signi-
ficantly more lightweight. We also conduct experiments with different feature
extraction backbones, and investigate the role of fine-tuning such backbones, de-
vising a combination which further pushes the state of the art of additional 10
Average-mAP points.

The rest of the chapter is organized as follows: in Sec. 4.1 we detail our soccer
event spotting method and the proposed training strategies, in Sec. 4.2 we present
experiments with quantitative results, ablation study and qualitative analysis, and
in Sec. 4.3 we describe our submission to the 2021 SoccerNet-v2 challenge, in
which our solution placed third.

4.1 Proposed Method

In the following, we present our approach for soccer event spotting. Our for-
mulation features a lightweight network that can be integrated with any existing
backbone, jointly predicting classification scores and temporal offsets. This is
combined with a masking strategy that increases the training performance, and
with an effective handling of data imbalance.

4.1.1 Proposed architecture

A soccer match can be represented as a sequence of frames (z1, 3, ..., ), with
x; € REXWXCh ‘extracted with a given frame rate from the original video clip.
The goal of our approach is to spot and classify a set of interesting events inside the
match, i.e. to predict a set of pairs {(t;,e;)}7_;, where ¢; indicates the timestamp
of the action from the beginning of the video, and e; € {0,...,C — 1} indicates
its class label.

Taking inspiration from the regression strategies used in object detection [111],
our model takes as input a short video chunk X = (1,2, ..., z7) with length
T, and predicts the temporal offset of a possible action inside the chunk, plus a
classification score over C' + 1 classes, where the additional class indicates the
background one. At test time, predictions can be obtained by applying the model
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Figure 4.2: Architecture of the proposed spotting network.

on chunks extracted from the input video with a given stride, converting relative
offsets to absolute timestamps, and accumulating predictions over time.

In our network, the T" input frames are independently passed to a 2D backbone
to extract a feature vector for each frame, which is obtained by averaging the
activation map’s spatial dimensions from the last convolutional layer and linearly
projecting the result to a common dimensionality. As depicted in Fig. 4.2, our
model then applies a stack of two 1D convolutions over the temporal dimension
to combine the features of different frames. After the convolutions, a maximum
operation is applied to remove the time axis, and a stack of linear layers is added.
The tail of the model consists of two sibling fully-connected layers, one for action
classification and the other for temporal offset regression.

Given a “foreground” input clip containing an event (¢, e;), the classification
layer outputs per-class probabilities and a cross-entropy loss is applied:

C
['cls - - Z ]lc:e]- log(pc)a (41)
c=0

where C' + 1 is the number of different event labels, including the background
label, 1 .=, is the indicator function, and p. is the model output probability for
event label c. On the other hand, the regression layer predicts a single scalar per
clip, which is projected in the range [0, 1] through a sigmoid function and trained
to predict the normalized relative offset of the event in the video chunk. Formally,
we apply a squared-error loss as follows:

Lyegr = (0(0) —15)?, 4.2)

where o is the output of the regression branch of the network, and the normalized
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relative offset r; is computed as (¢; — s)/T, where s is the starting timestamp of
the video chunk.

The final loss for a foreground chunk is a weighted sum of L5 and L,.cg,:
L= ‘ccls + A‘Cregr; (43)

for “background” video chunks, i.e. chunks which do not contain any event, we
instead apply only the classification loss, using the background class as ground
truth label. As it can be noticed, the proposed method predicts a single event per
clip. It could be easily extended to predict more than one event, e.g. including
for instance a bipartite matching strategy between predictions and ground truth
labels [16]. In practice, we noticed that interesting events are very sparse in a
soccer match. The only rare circumstances in which more than one action occurs
in a few seconds interval correspond to double substitutions or double yellow/red
cards. While the choice of having a single action predictor could slightly affect
spotting performances, it does not affect automatic highlight generation, which is
the final goal of event spotting in soccer videos and allows us to maintain a simple
and lightweight architecture.

4.1.2 Masking strategy

The majority of visual cues that contribute to the recognition of an event occur
Jjust after the event itself [22]. This is particularly evident in the case of soccer
matches, in which reactions to an event are often a good indicator of the presence
of the event itself, like in the case of the celebrations following a goal event.
Taking inspiration from the masking strategies used in self-supervised pre-training
approaches [29], we endow our approach with a masking policy that allows the
network to focus on the most relevant portions of the clips at training time.

In our formulation, a foreground training clip is masked with a given probabil-
ity by replacing the frames before the event with a randomly chosen background
sequence (i.e. which does not contain any event). We also make sure that there
is a sufficient number of frames after the event, by avoiding the application of
masking on clips in which the event comes too late. Background training clips,
instead, are not masked at all.

Formally, we define a masking function M (p, ¢), in which p indicates the
masking probability and ¢ is the maximum normalized relative temporal offset of
the event inside the clip. Given a foreground clip X containing an event (¢;,e;),

Deep video understanding for human actions, multimedia and computing 43



CHAPTER 4. SOCCER ACTION SPOTTING

Figure 4.3: Masking strategy. Frames before the event are masked with probability
p, if the event lies before the offset g.

the masking function M (p, q) is defined as follows:

(2’1,-~-,th—s—1,17tj—s,-~-,IT)
ifr; <qu<p
M(p,q)(X) = 4.4)

(37]_7 eeey xtjfsfla xtjfsa sy 'TT)
otherwise,

where s is the starting timestamp of the video chunk, r; is the normalized relative
offset of the event inside the video chunk, (zz)?: 71571 is a sequence of consecutive
frames randomly selected from a background clip, and w is a random value sampled
from the uniform distribution U [0, 1]. A visualization of the masking strategy is
also reported in Fig. 4.3.

Through this masking approach, we randomly force the model to recognize an
event using just the frames following the event itself, and without relying on the
previous ones. We will experimentally show how this masking strategy, which does
not require any architectural change or additional resources, is robust to different
values of the masking probability p, and how it can increase the recognition and
localization accuracy of the model.

4.1.3 Data Sampling and Balancing

The training set of our architecture is composed of all possible clips with length
T which can be extracted from a set of matches. Since relevant events in a
soccer match are quite sparse, a balancing strategy is needed to make sure that the
network can learn to properly classify relevant events, without losing the capability
of distinguishing background clips. At the same time, we need to make sure that
the distribution of the offsets used to train the regression branch is sufficiently
uniform.
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Given a training soccer match and an anchor event (¢;, e;), we extract all clips
with length 7" containing the event, sliding a window along the time axis with
stride 1. Doing so, we generate many clips for the same event, where each of
them contains the event in a different relative temporal location. Repeating this
procedure for each event in a match, and then for each match in the training set,
we collect a set of interesting events, where the distribution of the relative position
of events inside clips is balanced by construction.

The remaining parts of the matches, which do not contain any event, are sliced
with a window of size T" and stride 7" (thus avoiding overlapping), to build the
set of background video chunks. In each training epoch, we randomly sample n g
foreground clips from the above mentioned set, and ng = ng/C clips (Where C
is the number of classes) from the set of background clips, to balance the number
of samples per class. During inference we extract non-overlapping clips, each
with T frames, in a sliding-window manner, assuming that 7" is small enough to
prevent that more than one action occurs inside a clip.

4.2 Experimental results

4.2.1 Dataset and evaluation protocol

Data. We train and evaluate the proposed method on the SoccerNet dataset [44].
SoccerNet gathers 500 full broadcast soccer matches, spanning 764 hours of
video, which are split into 300 games for training, 100 for validation, and 100 for
testing. Interesting events belong to three categories (goal, card, substitution) and
are manually annotated with a temporal resolution of one second. The average
separation between events is 6.9 minutes, thus leading to a very sparse annotation.

For fairness of comparison with previously published baselines and state-of-
the-art approaches, all experiments are performed with the pre-computed ResNet-
152 [52] features released with the dataset itself, unless otherwise specified. These
have been obtained by Giancola et al. [44] by resizing and cropping videos at a
resolution of 224 x 224 and extracting frames at a frequency of 25 fps. Starting
from this extraction, a feature vector was computed every 0.5 seconds. They also
applied a PCA step to reduce the dimensionality to 512. The feature extraction
backbone was pre-trained on ImageNet [28].

Evaluation metric. The action spotting task requires to correctly predict the
anchor spot that identifies an event. For instance, a ground truth spot for a
card event is defined as the timestamp in which the referee extracts the card.
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Layer Input Channels Output Channels
FC1 512 256
Convy 9 x 256 256
Convy 9 x 256 128
Dropout - -
Max over time - -
FCa 128 64
FC.s 64 C' (number of classes)
FCregr 64 1

Table 4.1: Structure of the proposed architecture.

Following previous literature, we use the Average-mAP defined in [44] as the
evaluation metric, which accounts for multiple temporal tolerances. Given a
temporal tolerance §, we compute the average precision for a class by considering
a prediction as positive if the distance from its closest ground truth spot is less
than 6. The mean average precision is then obtained by averaging the AP of each
class. The final metric is computed as the area under the mAP curve obtained by
varying ¢ in the interval ranging from 5 to 60 seconds.

4.2.2 Implementation details

In all our experiments, the model takes 7" = 41 frames as input, therefore spanning
20 seconds of the match. The weight A of the regression loss (defined in Eq. 4.3)
is set to 10, unless otherwise specified. Table 4.1 reports the architectural details
of the model, including the number of input and output channels. Each 1D
convolutional layer has a kernel size of 9, a stride of 1, and zero-padding to keep
the temporal dimension shape. The drop rate of the dropout layer is set to 0.1.

Training. Following our data sampling strategy, we obtain a total of around
150,000 foreground and 72,000 background video chunks. At each training
epoch, we randomly sample 30,000 foreground sequences and 10,000 background
sequences, being the number of foreground classes C' equal to three in SoccerNet.
During training, we also drop all substitution events occurring at half time, since
no visual cues suggest that a substitution is happening.

The masking probability p is set to 1/3, while the maximum relative temporal
offset ¢ is set to 0.5, unless otherwise specified. We train our model for a maximum
of 50 epochs using an SGD optimizer with momentum 0.9. The batch size is set
to 64 and we apply a learning rate of 0.05, with a linear warm-up during the first

46

Deep video understanding for human actions, multimedia and computing



CHAPTER 4. SOCCER ACTION SPOTTING

Model Clip len (s) Features Val Avg-mAP Test Avg-mAP
SoccerNet baseline [44] 5 ResNet-152 (PCA) - 34.5
SoccerNet baseline [44] 60 ResNet-152 (PCA) - 40.6
SoccerNet baseline [44] 20 ResNet-152 (PCA) - 49.7
Vanderplaetse et al. [137] 20 ResNet-152 (PCA) + Audio - 56.0
Vats et al. [141] 15 ResNet-152 (PCA) - 60.1
Cioppa et al. [22] 120 ResNet-152 (PCA) - 62.5
Ours 20 ResNet-152 (PCA) 67.8 65.5

Table 4.2: Comparison with baselines and state-of-the-art approaches.

epoch and a cosine annealing scheduling from the second epoch. A weight decay
of 10~% is also adopted. Early stopping on the Average-mAP computed over the
validation set is applied. Training is done on a NVIDIA RTX 2080Ti GPU.

Inference. During inference, we slide a window containing 7" frames on the input
video with a stride of T', and the clip class, together with the event relative temporal
offset, is predicted by the two sibling fully connected layers. The predicted relative
offset is then converted to absolute timestamp, to obtain the predicted spot location.
No masking is applied during inference.

4.2.3 Main results and comparison with the state of the art

In the following, we validate the proposed approach for action spotting in soccer
video. We first perform a comparison with baselines and state-of-the-art methods
and then analyze and ablate the key components of the approach. Finally, we
investigate the performance of the proposed architecture when using different 2D
convolutional backbones.

Comparison with baselines and previous methods

In Table 4.2 we report the performance of our model, in comparison with previous
approaches for action spotting. All the reported approaches adopt the ResNet-152
features released with the dataset, and we do the same for fairness of comparison.
The only exception is the approach presented by Vanderplaetse et al. [137], which
enriched the same visual features by encoding the audio stream through a VGG
network [122].

As it can be noticed, our approach outperforms the best SoccerNet baseline
(with T" = 20 seconds) by 15.8 Average-mAP points and the to-date best perform-
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Figure 4.4: Per-class Average Precision, as a function of spotting tolerance.

ing method by 3 Average-mAP points on the test set of SoccerNet. Noticeably, this
result is achieved without any matching strategy between predictions and ground
truth, and without post-processing steps like non-maxima-suppression.

We also conduct a grid search to find the optimal clip duration 7', as done in
Giancola et al. [44] on the SoccerNet baselines (and reported in Table 4.2). Also
with our architecture, the optimal clip duration is 20 seconds.

Per-class performances. In Fig. 4.4 we report the AP computed for each class,
as a function of the spotting tolerance. The best performing events are goals,
with a margin of around 5 AP points compared to the substitution class when
allowing high spotting tolerances. This is in line with previous literature, and can
be attributed to the richness of visual cues which are usually found after a goal
event (e.g. celebration, replays). Card events are, instead, the most difficult to
spot, as the presence of a yellow or red card is the only visual indication that can
distinguish those events from a general foul. Finally, it can be observed that goals
are also the events which can be localized with the greatest temporal precision,
compared to the other classes.

4.2.4 Ablation studies

Removing key components. We investigate the role of the key components of our
approach by conducting an ablation study. First, we assess the role of employing a
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Model Val Avg-mAP  Test Avg-mAP
Ours 67.8 65.5
Ours w/o uniformly distributed offsets 48.7 46.2
Ours w/o offset regression branch 58.5 55.7
Ours w/o masking 66.5 64.0

Table 4.3: Performance of the proposed model when removing key components.

uniformly distributed normalized relative offset in foreground clips. To this aim,
we modify our data sampling strategy by considering only the chunks that contain
an event in the middle of the clip (thus, with a normalized relative offset of 0.5),
and removing the regression output. In this case, we still balance training batches
by ensuring a uniform number of clips for each class, including background. At
prediction time, we assume a normalized relative offset of 0.5. Noticeably, this
evaluation setting is similar to the one adopted in [44] and [141]. As can be seen
from Table 4.3, this leads to a significant performance drop, thus testifying the
need for uniformly distributing relative offsets.

In a second ablation experiment, we instead maintain the original data sampling
strategy and exclude the regression branch, to estimate its contribution to the final
performance. Also in this case, we assume that the relative temporal offset of a
predicted event is always 0.5. This leads to a drop of the test Average-mAP of
almost 10 points, as reported in Table 4.3. Fig. 4.5 also shows a more detailed
comparison for different values of the tolerance threshold § using this regression-
free model (in blue) and our full proposal (in red). We notice that, for high values
of 9, the resulting mAP is similar for both models. When § decreases (and in
particular when ¢ is lower than the clip duration) our model avoids an abrupt
decrease of the mAP, which instead occurs when removing the regression branch.
This confirms that the regression loss can increase the localization accuracy of the
prediction.

Further, we also test the contribution given by the masking strategy. When
removing the masking, we observe a decrease of 1.5 Average-mAP points on the
test set, as reported in Table 4.3. We also underline how masking represents a
cost-free improvement, which does not require any additional resource or model
parameter.

Masking analysis. In Table 4.4 we show how performances vary when changing
the masking probability p and the maximum relative temporal offset ¢ for masking.
We achieve the best configuration with p = 1/3 and ¢ = 0.5, which means that
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p q Val Avg-mAP  Test Avg-mAP
175 05 66.8 64.6
174 05 67.0 64.4
173 05 67.8 65.5
172 05 67.1 64.4
1 0.5 64.7 60.7
173 0.1 65.5 63.4
173 0.25 67.4 64.7
173 05 67.8 65.5
173 0.75 66.5 64.0
173 1 64.7 62.6

Table 4.4: Performance when varying the masking probability p and the maximum
relative temporal offset ¢ for masking.

p q Val Avg-mAP  Test Avg-mAP
175 05 65.2 62.5
1/4 0.5 64.6 62.9
17305 63.8 61.8
12 05 61.4 60.7

1 0.5 54.1 54.1

Table 4.5: Performance when varying p, keeping ¢ = 0.5 fixed and masking
frames after the event.

clips with the event in their first half have a 1/3 probability of being masked during
training. Keeping ¢ = 0.5 fixed and varying p, the Average-mAP always exceeds
the performance of the masking-free model (64.0 Avg-mAP) except for p = 1.
When p = 1, indeed, a clip is always masked if it has the event in the first half.
This creates a big gap between the train and test distributions and performances
drop as expected. Similarly, the model is robust to different values of g, except
when all the clips have probability p = 1/3 to be masked, independently of where
the event lies inside it (i.e. when ¢ = 1). In this case, clips with too little context
after the event can be masked too, resulting in lower Average-mAP.

One can question if the majority of visual cues actually occurs just after the
event, and not before. Table 4.5 shows the results when masking frames just
after the event with different values of p, while always keeping the frames before
the event. Under this setting, masking is not beneficial and lowers the final
performance.
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Figure 4.5: Mean average precision when varying the tolerance ¢ in the interval
between 5 and 60 seconds, for our complete model (red curve) and when removing
the offset regression branch (blue curve). The Average-mAP gain can be quantified
as the area under the red curve and above the blue one.

Additional analysis. Finally, we look for the best value of hyperparameter A,
which controls the relative weight of the regression loss with respect to the classi-
fication loss (see Eq. 4.3). Fig. 4.6 shows the test Average-mAP when varying A
in the interval between 0 and 100. The best value is achieved with A = 10. When
A = 0 there is no temporal offset regression in training, and we fall back in a
setting similar to that of Table 4.3, third row. In this case, however, the relative
temporal offset is still predicted by the network (without any supervision) and not
fixed to the clip center timestamp. The gap between the setting with A = 0 and
A =1 exceeds 10 Average-mAP points. Performances decrease when A > 10.

4.2.5 Changing the convolutional backbone

Further, we present additional results when changing the convolutional backbone
used for feature extraction, and when fine-tuning part of it during the training of the
action spotting model. Here, we employ different variants of ResNet, pre-trained
on ImageNet. For assessing the role of fine-tuning, only the parameters belonging
to the last residual block and our model are trained, while the other parameters of
the backbone are kept fixed, as we did not observe significant improvements when
fine-tuning larger portions of the backbone.
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Test Avg-mAP

Figure 4.6: Performance when varying the regression weight \.

Model Pre-train ~ Val Avg-mAP  Test Avg-mAP
ResNet-18 + Our ImageNet 73.8 70.9
ResNet-50 + Our ~ ImageNet 76.6 74.9
ResNet-152 + Our  ImageNet 71.5 75.1

Table 4.6: Performance analysis when finetuning different variants of ResNet.

Table 4.6 shows the performances obtained when finetuning ResNet-18, ResNet-
50 and ResNet-152. We train these models on two RTX 2080Ti GPUs, with a
batch size of 24 clips and a base learning rate of 0.025. RGB frames are extracted
from the low resolution videos (224 x 398) at a rate of 2 fps, thus keeping the entire
frame instead of center cropping as done in the features released with SoccerNet.
No spatial augmentation is performed, and all the other implementation details are
kept unchanged.

When using ResNet-152 as our backbone, we observe a boost of 9.6 Average-
mAP points on the test set when compared to our best performing model trained
on the pre-computed ResNet-152 features. A similar performance level is obtained
when finetuning ResNet-50, while a more significant performance loss is visible
when using ResNet-18. While pre-computed features are a good starting point for
research and comparison purposes, our findings underline that end-to-end training
still guarantees a significant performance boosting.
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4.2.6 Qualitative analysis

Finally, we qualitatively assess the spotting capabilities of our model. For this
purpose, we extract frames from the raw video with a resolution of 2 fps and create
overlapping clips having a length of 7" frames, with stride 1. For each clip, our
model predicts the event temporal offset and its label, and we count the number
of times a frame is predicted as a spot. As can be seen from Fig. 4.7, the most
voted frame index (the peak of the blue plot) is often very close to the ground truth
spot (highlighted in red), and usually lies in an interval of 10 frames around it,
corresponding to the lowest considered tolerance § in the Average-mAP metric.
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Figure 4.7: Qualitative results. The ground truth action timestamp is shown in red,
while the blue curve shows the number of times a frame index was predicted as a
spot. A goal, a substitution and a card events are shown, from top to bottom.
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4.3 SoccerNet challenge submission

In this section, we present our solution for soccer event spotting used to obtain the
results submitted to the SoccerNet-v2 evaluation server by the “AlmageLab-RMS”
participant team. Our solution placed third in the SoccerNet-v2 challenge of the
CVPR 2021 International Challenge on Activity Recognition Workshop.

SoccerNet-v2 [27] is an extension of the original SoccerNet dataset [44]. It
is composed of the same original 500 full broadcast soccer matches, but with
enriched annotations, for both event spotting and other new tasks. It provides 17
event classes, annotations of camera replays linked to actions, and annotations
of camera changes and camera types for 200 games. The leaderboard of the
challenge is determined by the average-mAP over an undisclosed challenge set,
while authors provide three open sets for training, validation, and test, respectively.

Our code is publicly available at: https://github.com/aimagelab/
RMSNet_Soccer.

Data preparation

Here we describe how we processed the original SoccerNet [27, 44] videos before
training our action spotting network. The original Full HQ videos are all converted
to 25 FPS, before extracting and saving frames at 2 FPS for each match. Only those
frames in [start_time_second, start_time_second + duration_second] are considered,
as specified in the “video.ini” annotation files provided with the SoccerNet-v2
dataset. These operations are carried out using the ffmpeg libraries. Frames are
stored at their original high-quality resolution. About 1 TB of free space is needed
to store frames extracted in this way.

Adopted model

We use the same network presented in Sec. 4.1 as our action spotting model, by
fine-tuning the feature-extraction backbone together with it. Specifically, we adopt
a ResNet152 [52] backbone, which is initialized with ImageNet [28] pre-trained
weights. Each frame in the input clip is independently forwarded through the
backbone, before applying the module presented in Sec 4.1.1. The classification
branch outputs 18 class probabilities, 17 for the SoccerNet-v2 classes and 1 for
the additional “background” class. The network takes 41-frames video clips as
input, at a temporal resolution of 2 FPS, i.e. spanning 20 seconds of the match.
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Before being forwarded through the network, each frame is resized to 300 x 533,
and no spatial crop or other augmentation techniques are applied.

Data loading and balancing

Since SoccerNet-v2 is highly unbalanced, we define a balancing strategy before
starting training. Specifically, following the data sampling approach presented
in Sec. 4.1.3, given a ground truth spot we put all the possible 41-frames clips
containing that spot in our pool of possible training samples, by sliding a 41-frames
window along the time axis with stride 1. Therefore, the size of our training pool
is equal to the number of ground truth spots times 41. At the beginning of each
training epoch, for each class we randomly sample a number of clips equal to
the number of ground truth spots for that class. For those classes with more than
10,000 ground truth spots we divide this number by 5, while for those classes
with less than 100 ground truth spots we multiply this number by 10, for data
augmentation. For the additional “background” class, we sample a number of
clips in each epoch equal to the average number of ground truth spots in the other
17 classes. Background clips are randomly sampled from the remaining portions
of the videos, which do not overlap with clips containing ground truth spots.

Training and inference

The adopted backbone is initialized with ImageNet pre-trained weights, and is fine-
tuned from conv4 to the final classification and regression branches. The original
masking strategy presented in Sec. 4.1.2 is not performed in these experiments
during training. We train our model on all the available SoccerNet-v2 videos
(training, validation, and test sets) for a total of 20 epochs, before computing the
predictions on the challenge set and submitting the results to the evaluation server.
We train our models using an SGD optimizer with a batch size of 32 clips and
a base learning rate of 0.0032, with a linear warm-up during the first epoch and
a cosine annealing scheduler from the second epoch. A momentum of 0.9 and
a weight decay of 10~* are also adopted. Training has been performed on the
CINECA Marconil00 accelerated system, using a total of 32 synchronized nodes,
each consisting of 4 V100 GPUs.

During inference, we predict class labels and regression offsets for each clip
obtained by sliding a 41-frames window along time with a stride of 4 frames. Non-
maxima suppression is applied on the predictions using a 15-seconds (31-frames)
window.
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Results

The public leaderboard is available at: https://eval.ai/web/challenges/
challenge-page/761/leaderboard. Our method placed third in the
challenge, reporting an average-mAP of 60.92 on the private challenge set. The
performance on the test set (which is not considered for the challenge, since
annotations for the test set are publicly available) is 63.49 Average-mAP, after
training on both training and validation splits.
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Chapter 5

Privacy-preserving action
recognition

As the importance and the ubiquity of video understanding systems, ranging from
action recognition to actor localization and moment retrieval [121, 89], become
more and more relevant, the same consideration does not seem to be given to
their drawbacks. Among these, users’ privacy and computation sustainability are
of primary importance in the development of video recognition systems, which
usually depend on data disclosing sensible information and on huge computational
requirements. In this chapter, we investigate privacy-related issues, while we will
address the computational aspects in the next chapter of this thesis.

Most visual understanding models are trained to work on unaltered videos

easily containing private information from which identities can be revealed [159].

If the whole prediction pipeline — ranging from video acquisition and processing
to the execution of the prediction model — can be trusted, this might not be an
issue. When, instead, the prediction model is run by a third-party service provider
which might not be trusted, employing a visual understanding model comes at
the cost of transmitting sensitive information and potentially breaking the users’
privacy.

With the goal of protecting the privacy and creating trusted pipelines, video
understanding models should ideally work on videos with obfuscated private

This chapter is related to publication “M. Tomei et al, Estimating (and fixing) the effect of face
obfuscation in video recognition, CVPRW 2021”. See Appendix B for details.
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Figure 5.1: Recognizing actions in videos comes at the cost of transmitting
sensitive information to service providers. We investigate the development of
privacy-preserving action prediction networks which can work on obfuscated
videos, either when blurring faces or when blurring the full body. The top row
shows sample clips (archery on the left, arm wrestling on the right) when blurring
faces only, while the bottom row reports samples of full body obfuscation.

information. Blurring faces, for instance, is a reasonable first step to protect
the privacy and hide identities. However, as sensitive information can be found
in clothes and fashion accessories as well, this might not be enough in some
contexts, and a more severe protection level could be needed, such as obfuscating
the entire human figure (Figure 5.1). Clearly, this comes at the cost of removing
a significant portion of the information contained in video frames and creates
non-trivial challenges when it comes to extracting spatio-temporal features needed
to perform video understanding tasks.

Contributions. In this chapter, we focus on the development of privacy-preserving
video models, i.e. architectures which can work on anonymized videos while still
guaranteeing high accuracy levels, regardless of the loss of information caused
by anonymization. We investigate the role of face and body anonymization, and
their impact on the effectiveness of existing video networks. Further, we ana-
lyze three training strategies for privacy-preserving video prediction architectures,
which focus on the reduction of the domain gap, on the transfer of privileged
knowledge from non-anonymized data, and on the transfer of mutual relationships
between samples through a relational criterion. A high-level representation of
the approach is presented in Fig. 5.2. Through extensive experiments on the
Kinetics-400 dataset [70], we validate the proposed solutions and demonstrate
that, with proper training strategies, state-of-the-art video backbones can work
with negligible accuracy loss even in presence of full-body obfuscation. In this
chapter, we first assess the role of people’s identities in common action recognition
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Figure 5.2: We propose a training schema that can prevent the performance gap
caused by anonymization in video classification networks. A network is trained to
work on anonymized images by reading knowledge from a network that works on
full images.

datasets (Sec. 5.1). Then we present our training strategies in Sec. 5.2, and finally
evaluate them in Sec. 5.3.

5.1 Sensitive information in action videos

In this section, we first introduce the two privacy preservation levels we employ, in
which we hide the identities of the actors by masking either their faces or their full
bodies. We also conduct analyses on Kinetics-400 [70], one of the largest publicly
available video classification databases, to quantify the presence of sensitive
information in video classification datasets, and we motivate the appropriateness
of building privacy-preserving video networks.

Anonymizing sensitive information in videos

Given a video clip, we independently apply a pre-trained frame-level face de-
tector [83] to detect faces or an instance segmentation model [51] to detect full-
body masks. We detect faces and segment instances for all video frames, obtaining
face and body masks for all the involved actors. We then build an anonymized
version of the initial video, by blurring all faces or bodies with a normalized box
filter. Figure 5.1 reports qualitative results obtained by applying the two anonym-
ization levels. In our initial experiments, we found that applying a frame-level
detection or segmentation strategy on Kinetics-400 [70] is enough to guarantee
complete anonymization of all face and body instances in the vast majority of the
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Figure 5.3: The left plot reports the per-class percentage of videos containing
potentially sensitive information (faces or body). The right plot shows the average
number of per-frame potentially sensitive instances (faces or body). Both of them
are computed for each category of the Kinetics-400 training set.

videos, without sorting to the usage of tracking or temporal coherency techniques,
which could, however, be necessary for more complex scenarios.

Sensitive information in Kinetics-400. Kinetics-400 [70] consists of roughly
240k training videos and almost 20k validation videos. Each video lasts around
10s and belongs to one of 400 different action categories. Since video clips
have been sourced from YouTube, there are no constraints on camera motion,
illumination, and viewpoint.

To assess the extent of sensitive information in the dataset, and hence its
possible influence in training action recognition networks, we measure the number
of faces and bodies found using the aforementioned strategies. The left plot of
Figure 5.3 reports the per-class percentage of training videos containing potentially
sensitive information — i.e. that have at least one frame containing a bounding box
predicted by the face detector model [83] or at least a person mask as predicted
by the instance segmentation model [51]. As it can be seen, for all classes at
least 93% of the videos involve a person instance which might disclose sensitive
information (e.g. clothes, fashion accessories, etc.). This level further increases
over 98% for 227 classes out of 400.

When considering face instances, instead, in the majority of the classes (372 out
of 400), more than 50% of the available videos contain faces. For 146 categories,
instead, more than 90% of videos show at least one face, and there are no classes
with less than 30% of videos containing faces. This highlights the importance
of dealing with a potential domain gap when building privacy-preserving video
networks, as most of the training data contain sensitive information.

Per-class instance count analysis. We further quantify the role of sensitive
information by analyzing the number of sensitive instances found in Kinetics-400
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Figure 5.4: Sample video from Kinetics-400, annotated with face bounding boxes.

videos. In the right plot of Figure 5.3, indeed, we report the average number of
body instances and faces per-frame, for all categories. Out of 400 classes, 228
have more than two body instances, and 103 have more than one face per frame, on
average. The majority of classes have more than one body instance and between
zero and one face per frame, underlining that many videos capture the actor but not
its face (e.g. when the actor is captured from behind or when only a portion of his
body is visible). It must be also noted that for some actions it is common to have
the actor’s face visible for a limited period while being occluded or not visible in
the remaining frames (like in the golf driving sample reported in Figure 5.4).

5.2 Privacy-preserving action recognition

Traditional action recognition approaches require the transmission of sensitive
information to the model, and hence to the service provider. To protect the privacy
of people involved in videos, we investigate the development of privacy-preserving
action recognition pipelines, which can extract spatio-temporal features from input
videos and classify actions even after aggressive privacy preservation strategies
have been applied.

In this regard, we analyze three strategies for training video models that do not
need sensitive information to reach high accuracy levels, i.e. which can recognize
actions even in presence of largely obfuscated areas (cfr. Figure 5.1). In all the
examined strategies, we consider our data as formed by a collection of triplets

{(a"lvxiyl),mv(xnax;;uyn)}v (51)

where each pair (z;,y;) is an anonymized video-label pair, i.e. where sensitive
data has been obfuscated in video clip x;; while ] is the original, non obfuscated,
version of the video that discloses actors’ identities and sensitive information. De-
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Figure 5.5: The three training strategies we consider for developing privacy-
preserving video networks. From left to right: (a) reduction of the domain gap
by training on obfuscated data; (b) Knowledge Distillation with privileged (non-
obfuscated) clips; (c) Relational Knowledge Distillation, which ensures the pre-
servation of pair-wise distances in the representations extracted from obfuscated
samples.

pending on the particular strategy at hand, we will exploit the identity information
in ] during training; however, during inference, only the obfuscated clip z; will
be leveraged in any case to obtain the final predictions.

5.2.1 Reducing the domain gap

Because a traditional action recognition model is trained on non-obfuscated pairs
{(z},yi) }i, it can easily exhibit degraded performances when tested on blurred
video clips because of the gap between the non-obfuscated domain {x}}; and the
obfuscated domain {z; };. This becomes particularly evident when the obfuscation
technique is aggressive — a strategy which nevertheless is appealing to ensure high
protection levels, for instance when obfuscating the full body. In the latter case,
for instance, cues learned on people’s appearance and motion can no more be
employed when forcing the model to work in the obfuscated domain. The same
applies, even though in a less threatening way, when the obfuscation strategy is
less intrusive, e.g. when blurring faces only.

With the objective of reducing the extent of this domain gap, as a first strategy
we consider training the video prediction backbone on obfuscated data, i.e. pairs
{(24,y:)}: (visually depicted in Figure 5.5, left). Intuitively, this will encourage
the network to learn visual, motion, and contextual cues which can be extracted
from blurred clips, rather than concentrating on features that will not be visible
once the clip has been anonymized.
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5.2.2 Exploiting Privileged Information and Knowledge Distil-
lation

Beyond encouraging the network to learn proper features on anonymized data, as
a second strategy we also investigate the exploitation of non-anonymized videos
during the training phase. Since non-anonymized clips {z} }; act as privileged
information in this setting, we employ knowledge distillation to transfer the know-
ledge which can be learned by a non-privacy-preserving model to a completely
anonymized model which is allowed to access x; but not z; (see Figure 5.5,
middle).

In short, the approach is as follows: we first train a teacher network on non-
anonymized pairs (z},y;). Then we train a student network on the (x;, y;) pairs,
using both hard labels y; and soft labels from the teacher, with the latter still being
computed from the original videos z;. The student and the teacher networks
always share the same underlying architecture.

Teacher training with privileged information

First, a video understanding backbone is trained on the original non-anonymized
dataset to obtain a teacher network f;. The teacher, therefore, is trained to solve
the following optimization problem:

1 .
argvémngizzlﬁ(a(ft(xi)),yi), (5.2)

where ¥ is an input video clip with 2} € RT>*HXWx3 ' i5 the number of training
samples and W are the teacher weights. Denoting with A€ the set of c-dimensional
probability vectors, o instead represents the softmax operator o : R¢ — A€:

ek

=167

forall k € {1...c}, where cindicates the number of classes. Finally, £ : A°xXA¢ —
R is the categorical cross-entropy loss function, i.e.

(G,y) == yklog . (5.4)
k=1
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Student training

We then train a student network f using anonymized video clips x;. As our goal
is not that of compressing the resulting network, but rather that of encouraging the
transfer of privileged information, we employ the same architecture for teacher and
student. Under this setting, we enhance the information available to the student
network with the high-level representation of non-anonymized videos x from the
teacher.

In particular, the student network is trained according to the following optim-
ization problem:

n

arg min % S0 f (1)), 9) + MalSi, 53] 5.5)

i=1

which aims to both identify the correct action label employing anonymized clips,
and to distill [56] the teacher knowledge obtained from the privileged access to
the corresponding non-anonymized clip. In the formula above, W indicates the
student weights, ¢4 a knowledge distillation loss, while §; and s; are the soft-
predictions from the student and teacher model, respectively. These are computed
as

$i = o(fs(xi)/T) € A°
si = o(fi(27)/T) € AT, (5.6)

where the temperature parameter 7' > 0 smooths the probability distributions over
classes from both the teacher and the student, and A > 0 weights the strength of the
knowledge transfer with respect to the cross-entropy loss applied on anonymized
data and ground truth labels.

As knowledge distillation loss, we employ the Kullback-Leibler divergence
between the soft-predictions § and s from the student and the teacher, respectively,
which is defined as

a(3,8) = — ; sx log (ZZ) . (5.7)

As it can be observed, under this schema the original non-anonymized videos
{x}}; are only given as input to the teacher network, while the student can leverage
anonymized clips and the high-level representation of the original videos from the
teacher, as a form of privileged information. Although one could question that
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the knowledge transferred from the teacher to the student represents a leakage of
sensitive information, it shall be noted that in our formulation we only consider
a logit-level distillation, and do not transfer activations from intermediate layers.
Under this setting, it is practically unfeasible to retrieve sensible data from features
that lack any spatio-temporal support. Nevertheless, even if some identity-related
information would leak from this high-level representation, only the identities
contained in training data would be affected. During inference, instead, the student
network can classify obfuscated videos without any support from the teacher
network, ensuring complete privacy preservation.

5.2.3 Relational Knowledge Distillation

Adopting a Knowledge Distillation schema allows a privacy-preserving action
recognition model to access privileged information, and to mimic the feature
extraction process of a traditional video model even in presence of severe blurring.
Nevertheless, knowledge transfer only happens between corresponding pairs of
obfuscated and non-obfuscated videos, i.e. between pairs {(z;, x})};, ignoring
contrastive relationships between different samples, which might be informative
and enhance the knowledge transfer process.

To avoid the limit of transferring activations from corresponding samples only,
as a third strategy we enrich the previously defined distillation approach by con-
sidering pairwise relations between samples in a mini-batch (visually depicted in
Figure 5.5, right). Exploiting the correlation between instances during knowledge
transfer has been recently studied [39, 106, 130]. In our case, we adopt a relational
knowledge distillation strategy that takes inspiration from [106] and ensures that
pairwise distances between logits are preserved when transferring knowledge
from the teacher to the student. Intuitively, under this schema, we require that
the representations obtained from a traditional action recognition model match
those produced by the privacy-preserving model in terms of the structure of the
embedding space they create.

In particular, we first obtain the logits for all the videos in a mini-batch, then
we compute the normalized Euclidean distance between each pair of these logits:

1
Yp(pispj) = L Ilpi — pjlly s (5.8)

where p is obtained as the average Euclidean distance between pairs of representa-
tions inside the mini-batch. The pairwise Euclidean distance is computed for both
the teacher and the student mini-batches, separately.
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Finally, we match the distance corresponding to the same pair of samples for
the teacher and the student (with the latter completely anonymized), and compute
the relational knowledge distillation loss as follows:

n n

b = %ZZlé(wD(ﬁiaﬁj)awD(pupj)) (5.9

i=1 j=1

where p; and p; are the logits computed by the student network on the video clips
x; and x;, while p; and p; are the logits computed by the teacher network on the
corresponding x; and a:]* Here, [5 is the Huber loss, which corresponds to the
smooth L4 loss in this case:

La@e—y)? forlz—y <1
ls(z,y) = (7 =) 1 | . vl < (5.10)
|t —y| — 5 otherwise.

As it can be seen, the criterion defined above encourages the distance between
fs(z;) and fo(x;) to be as similar as possible to the distance between f;(z}) and
fi(), without directly considering the representation of the sample. To include
such a requirement in the final formulation as well, we use the relation knowledge
distillation loss in conjunction with the Kullback-Leibler divergence loss (Eq. 5.7).
The optimization problem we solve thus becomes:

argmin > Z (0o (falzo)), 1)+

+Mq (85, 80) + Bl (fs(x4), fe(x7))], (5.11)

where [ determines the weight of the relational knowledge distillation with respect
to the other terms.

5.3 Experimental results

In the following, we describe the experimental setting in which we analyze the
three previously defined strategies for developing privacy-preserving video net-
works. To broaden the value of the analysis, we perform experiments on three
popular video understanding backbones, namely ResNet(2+1)D-18, ResNet3D-
18 [133], and SlowFast-R50 [36]. We also employ both the anonymization
strategies described in Sec. 5.1, i.e. obfuscating faces and whole body masks.
As our reference dataset, we employ Kinetics-400 [70].
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5.3.1 Implementation details

For ResNet(2+1)D and ResNet3D, we follow the implementation and training
recipe of the original paper [133]. Both networks work on 16 frames clips, where
each of them is resized to a fixed size of 128 x 171 before being randomly cropped
to 112 x 112 during training. During each epoch, we randomly sample three clips
from each of the training videos and run the optimization process for a total of 45
epochs. To reduce training time, we employ synchronized SGD in a distributed
training setting on different NVIDIA Tesla V100 GPUs. We employ a batch size
of 1536 and a base learning rate of 0.96, which is linearly warmed-up during the
first 10 epochs and then divided by a factor of 10 every 10 epochs.

For the SlowFast network, we employ ResNet50 [52] as the backbone. The
overall network takes 64 consecutive frames as input, which are then fed with
different temporal granularities to a “slow” and a “fast” pathway. The slow path
takes 4 frames as input (which are sampled from the input clip using a temporal
stride of 16), while the fast path samples 32 frames (sampled from the input clip
using a temporal stride of 2). During training, we resize the shorter side of the
video clip to a random value in the interval [256, 320] and preserving the aspect
ratio. We then randomly crop the result to 224 x 224. As for ResNet(2+1)D and
ResNet3D, we randomly sample three clips from each training video during one
epoch. The training lasts for 45 epochs, using a total batch size of 2048. The base
learning rate is set to 1.6, which is linearly warmed-up in the first five epochs, and
cosine annealed after.

During inference, we uniformly sample 10 clips from the input video and aver-
age their predictions to obtain a video-level output. When using ResNet(2+1)D-18
and ResNet3D-18, we resize each clip to 128 x 171, and then center crop to
112 x 112. For SlowFast-R50, the shorter side of each frame is resized to 256,
maintaining the aspect ratio, and then cropped in the center to a size of 256 x 256.

The values of the hyperparameters A, 3, and T are set to 12.500, 10, and 5,
respectively, in all experiments.

5.3.2 Impact of anonymization in videos

We first assess the capabilities of standard video classification backbones when
tested with anonymized data, to quantify their degradation in performance. To
this end, we consider a standard ResNet(2+1)D-18 [133] trained on the full non-
anonymized Kinetics-400, and measure its accuracy on both original and obfus-
cated videos from the validation set. As shown in Table 5.1, the top-1 accuracy
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Model Anonymization top-1  top-5 Agop-1
Train Test

RQ2+1)D | O none O none 69.2 88.1 -

RQ2+DD | O none | P faces 67.2 86.3 2.9 %
R2+1)D | O none | M fullbody | 56.5 776  -184 %

Table 5.1: Performances of R(2+1)D [133] when tested on anonymized and non-
anonymized videos.

Playing harmonica Playing harmonica
Waxing eyebrows Playing recorder
Whistling Carrying baby
Cracking neck Krumping
Brushing teeth Washing feet
Yawning Opening present

Shaving beard Tasting beer
Tasting food Tying tie
Playing recorder Braiding hair
Tasting beer- Shaving beard

0 20 40 60 80 0 20 40
Top-1 Accuracy Top-1 Accuracy

80

Figure 5.6: Performance degradation of a traditional action recognition model
when obfuscating faces (R(2+1)D model, 69.2 vs 67.2 top-1 accuracy) on the
left, and performance degradation of the same action recognition model when
obfuscating body instances (69.2 vs 56.5 top-1 accuracy) on the right.

of the network on non-anonymized videos is 69.2 (first row). This decreases
to 67.2 when testing on videos with obfuscated faces (second row), underlying
that even this less intrusive anonymization strategy has a relevant impact on the
effectiveness of the predictions. When applying full-body anonymization, the
drop in accuracy becomes even larger: in this case, the model reaches only 56.5
top-1 accuracy, which corresponds to an 18.4% relative drop in accuracy (third
row). The same degradation can be observed when considering a top-5 accuracy
measure: from 88.1, the network degrades to 86.3 when obfuscating faces and to
77.6 when applying a full-body obfuscation.

Per-class analysis. To further investigate the reduction in performance, we con-
duct a class-based analysis. In Figure 5.6 we report the ten classes with the highest
drop in top-1 accuracy when blurring faces or bodies (left and right, respectively).
Here, blue bars indicate the per-class accuracy of the model when tested on non-
anonymized data, while orange bars report the per-class accuracy of the same
model when tested on anonymized data. As expected, when blurring faces, the
actions with the largest accuracy drop involve the actor’s face itself (e.g. whistling
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Model Anonymization KD RKD top-1 top-5
Train Test
R(2+1)D O none O none 69.2 88.1
R2+DHD | O none O none v 70.6 89.1
RQ2+1)D | O none O none v v 70.4 88.8
R2+1)D | 7 faces .4 faces 68.6 87.7
R2+1)D | P faces .4 faces v 70.3 88.8
RQ2+1)D | P faces 4 faces v v 70.4 88.7
R2+1)D | B fullbody | B  full body 65.7 85.5
R2+1)D | B fullbody | W  full body v v 68.5 87.9

Table 5.2: Performances of R(2+1)D [133] when trained using Knowledge Distil-
lation (KD) and the relational KD criterion (RKD).

or yawning) or interactions between objects and the actor’s face (e.g. playing
harmonica or brushing teeth). On the contrary, we did not observe specific com-
mon points among the classes in the right histogram of Figure 5.6 (blurred body):
however, we notice that all these classes are not strongly context-dependent, i.e. it
would be hard to recognize these classes with the only help of the context.

5.3.3 Privacy preserving networks
Reducing the domain gap

As noticed, part of the aforementioned accuracy drop can be attributed to the
domain gap between non-anonymized and anonymized videos, which becomes
particularly evident when blurring whole bodies. For this reason, we experiment
by both training and testing a ResNet(2+1)D-18 on obfuscated videos. Results
are reported in Table 5.2: as it can be observed, this privacy-preserving model
reaches a 68.6 top-1 accuracy when working with obfuscated faces, and 65.7 top-1
accuracy when trained and tested with obfuscated bodies.

Even though the performance gap with the original video prediction model
has been greatly reduced, it shall be noted that it is still not-negligible: when
compared to the non-privacy preserving counterpart, the aforementioned network
still presents a 5,06% relative drop in top-1 accuracy and a 2,95% relative drop in
top-5 accuracy when obfuscating bodies.
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Applying Knowledge Distillation

We now turn to the application of the proposed Knowledge Distillation strategies.
Before assessing their impact on the development of privacy-preserving networks,
we investigate the role of self-distillation, i.e. that of applying the same distillation
technique on the original, non-privacy preserving network. Self-distillation, indeed,
has been demonstrated to be an effective strategy for improving performances in
many vision tasks [102, 164, 166], and we therefore investigate its effect for fair
comparison.

When a non privacy-preserving student ResNet(2+1)D-18 is trained via know-
ledge distillation using the same backbone as the teacher, it reaches a 70.6 top-1
accuracy on the Kinetics-400 validation set (Table 5.2, second row). In this setting,
all sensible information are available to both the teacher and the student, quan-
tifying to 1.4% the absolute top-1 accuracy gain given by KD. This can also be
conceived as an upper bound for the anonymized models when using the same
backbone. We further notice that in this non-anonymized setting, the addition of
the relational KD brings no advantage, leading to a 70.4 top-1 accuracy (Table 5.2,
third row).

Moving to the anonymized setting, i.e. when the student is trained and tested
with obfuscated faces/bodies, we show how the privileged information from the
teacher helps to abruptly reduce the gap with the non-anonymized backbone.
When obfuscating faces, the KL loss alone brings a 70.3 top-1 accuracy on the
anonymized Kinetics-400 validation set, which is further increased to 70.4 when
using the relational KD (fifth and sixth row of Table 5.2). Hence, when only face
information is removed, the gap with the non-anonymized counterpart is almost
completely closed (70.4 vs 70.6).

When blurring whole bodies, instead, the student reaches 68.5 top-1 accuracy
(Table 5.2, last row): as expected, totally removing actor-related features has a
negative impact on performance. However, compared to training and testing on
anonymized bodies without distillation (Table 5.2, penultimate row), privileged
information from the teacher brings a 2.8% absolute improvement (65.7 vs 68.5).

Experimental evaluation on other backbones

To assess the generalization ability of the approach, we apply the same distillation
schema with anonymized student and privileged teacher on other backbones.
Table 5.3 shows the results for a ResNet3D-18 [133] and a SlowFast-R50 [36].
For each backbone, we report the accuracy of the teacher trained with cross-
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Model Anonymization top-1  top-5
Train Test
R3D O none O none 65.3 85.5
R3D 4 faces 4 faces 66.4 86.4
R3D B fullbody | B fullbody | 64.9 85.3
SlowFast | O none O none 73.5 91.3
SlowFast | # faces 4 faces 73.9 91.3
SlowFast | B  fullbody | B fullbody | 72.1 90.3

Table 5.3: Performances of R3D [133] and SlowFast [36] and of their privacy-
preserving counterparts, trained using Knowledge Distillation and the relational
KD criterion.

entropy on the original non-privacy-preserving data (first row), the accuracy of a
student model trained with both KL and relational distillation losses on obfuscated
faces (second row), and that of a student model trained with the same losses on
obfuscated bodies (third row).

As it can be observed, removing face information has a minimal impact on
the performances of ResNet3D-18 and SlowFast-R50, and the accuracy of the
privacy-preserving networks can even exceed that of the teacher. The removal of
body information, instead, is more challenging to handle. In this case, a small
performance drop is observable, even if the performances of the privacy-preserving
models remain close to those of the non-anonymized teachers.

Per-class analysis. Finally, in Figure 5.7 we present a per-class analysis between
R(2+1)D models trained with the KL divergence and the relational distillation
losses of Eq. 5.11. In both histograms, the ten classes with the highest gap are
reported: the blue bars indicate the per-class top-1 accuracy of a student network
trained and tested on non-anonymized videos (70.4 overall top-1 accuracy), while
the orange bars show the per-class accuracy for an anonymized student model.
In the left histogram, the student is trained and tested with obfuscated faces
(70.4 overall top-1 accuracy), while in the right one it is trained and tested with
obfuscated bodies (68.5 overall top-1 accuracy).

When comparing these per-class differences with those of Figure 5.6, we
notice a strong reduction in the average gap. Specifically, when obfuscating faces,
these classes are no longer related to actions involving the actor’s face, and the
accuracy loss in this top-10 analysis goes from a minimum of 8% (applauding) to
a maximum of 16.3 (yoga). When blurring bodies, the maximum and minimum
accuracy loss refer to opening bottle and unboxing, with 16% and 10.2% absolute
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Opening bottle
Shuffling cards
Dancing macarena
Sharpening pencil
Ski jumping
Snowboarding
Juggling balls
Playing cricket
Folding napkins
Unboxing

80 0 20 40 60 80

Top-1 Accuracy

Yoga
Golf chipping
Shuffling cards
Folding napkins
Moving furniture
Robot dancing
Dancing charleston
Trimming trees
Digging
Applauding

40 60
Top-1 Accuracy

Figure 5.7: Performance difference between non privacy-preserving and privacy-
preserving R(2+1)D student when obfuscating faces (70.4 vs 70.4 top-1 accuracy)
on the left and when obfuscating bodies (70.4 vs 68.5 top-1 accuracy) on the right.

drop in accuracy, respectively.
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Chapter 6

Efficiency in action
recognition

As anticipated in the previous chapter, we now tackle the computational drawback
of video processing. The research community has recently focused on developing
more principled convolutional [157, 84, 133] and attentive [147, 153, 3] operators
for handling time, showing great interest in novel and more accurate deep learning
based video understanding solutions. Starting from models that adapt 2D CNNs
to spatio-temporal volumes [131, 121], new architectural choices [36, 35] have
gained considerable advances in terms of effectiveness and accuracy in the last
few years.

However, being videos sequences of frames, the development of video models
requires significant computational efforts, with a non-negligible impact on the cost
of each experiment and, ultimately, on the speed of the research pace. Not only
training video models can be slow and expensive, but also their deployment in pro-
duction environments could be largely affected by the huge amount of parameters
and floating-point operations. While the computational cost of researching novel
architectures is well known and has been properly managed by the research com-
munity, the size and energy requirements of state-of-the-art networks still severely
limit their applicability in production environments. Endowing any content sharing
platform based on real-time video analysis with a state-of-the-art spatio-temporal

This chapter is related to publication “M. Tomei et al, A computational approach for progressive
architecture shrinkage in action recognition, Softw. Pract. Exp. 2021”. See Appendix B for details.
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Figure 6.1: Conceptual overview of our approach. We progressively shrink a video
understanding model by modifying its input and architectural hyperparameters
through a set of reduction operators (in Figure, outlined with ¢, ), minimizing the
loss in accuracy during the overall process — so to obtain a smaller but effective
model.

network, for example, would be almost unsustainable in the majority of cases.

In the attempt to make a step forward in the development of more sustainable
spatio-temporal models, in this chapter we describe a generic strategy for turning
any video model into a more efficient one, limiting the loss in accuracy caused by
the reduction of computational demand.

Contributions. We look at the process of shrinking a spatio-temporal network as
that of applying a sequence of “reduction” operations over the axes affecting its
computational complexity and sustainability (Fig. 6.1). For instance, one could
reduce the computational footprint by halving the number of channels of the
initial architecture, and then reduce the spatial size of the input. In the same
manner, one could gain a similar improvement in efficiency by increasing the
temporal stride between the input frames and then halving the number of channels.
While both these choices would increase the efficiency of the resulting network,
surely they would have a different impact on the final accuracy computed over a
given dataset. Our approach, named Progressive Architecture Shrinkage (PAS),
iteratively shrinks a base network by selecting an optimal sequence of reduction
operators, so to lower the computational complexity while limiting the loss in
accuracy.

To maintain high accuracy levels after the application of each reduction oper-
ator, we employ a Knowledge Distillation paradigm that aims at preserving the
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knowledge learned in the initial network. Further, we transfer knowledge between
each reduction step by applying an adaptive fine-tuning strategy. The resulting ap-
proach is general enough to be applied to any video backbone and, after a sequence
of reduction steps, produces a smaller network with a computational complexity of
choice. Although the overall approach requires a high computational load, since at
each iteration the reduced network needs to be re-trained, PAS achieves impressive
results in finding a good trade-off in computational complexity and accuracy.

To validate the effectiveness of our approach, we perform experiments by
shrinking two implementations of recently proposed backbones, i.e. R(2+1)D [133]
and SlowFast [36], when training on the Kinetics-400 dataset [70]. Further, we
also assess the capabilities of the reduced networks on the UFC101 [124] and
HMDB51 [76] datasets.

6.1 Aniterative approach for reducing computation

We propose a methodology that progressively reduces the computational needs
of a given video architecture by modifying either its input size or architectural
hyper-parameters while minimizing the impact of these modifications on the
resulting accuracy of the network. Starting from an initial network, this is achieved
following an iterative approach, requiring large scale and parallel computing during
training, but providing a smaller model with far fewer resource requirements for
testing in the end.

Given the initial network 1, at each iteration 7 the procedure selects a reduction
operator €, that can alter either the input size or the architectural parameters of the
current network, and which produces a reduced network R, = €, (R,—1). The set
of possible reduction operations is an hyper-parameter of the approach, which is
described in the following section. To ease the choice of the best reduction to keep,
they are devised in order to ensure a fixed computation reduction. The choice
of the sequence of reduction operations is optimized by following a coordinate
descent schema which aims at maximizing the trade-off between computational
demands and accuracy. While the new reduced network is trained on the same
dataset on which B was trained, we both distill the activations of the base model
and apply a sequential fine-tuning strategy to limit the loss of accuracy. This
sequential shrinkage of the network continues until a satisfactory computational
complexity is reached. Experimental results will show that three iterations increase
efficiency by 8 times, with limited loss in accuracy.
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Figure 6.2: Example of a sequence of reduction operations obtained with Pro-
gressive Architecture Shrinkage (PAS). At each iteration, PAS selects a reduction
operator € which is applied over the current network. The latter is trained with a
KD criterion with respect to the base network B and with an adaptive fine-tuning
when possible.

6.1.1 Reduction Operations

The structure of a spatio-temporal convolutional network is defined by both the
shape of its input, in terms of the number of frames and their spatial resolution,
and architectural hyper-parameters, e.g. the number of layers in the network and
their filters. In the following, we define a basic set of reduction operations that
are used to sequentially modify the network’s structure at each iteration. All these
operations have an impact on the input or on the architecture. Since these belong
to integer arithmetic, we omit rounding stages for clarity in the following.

* ¢, reduces the spatial resolution of the input by spatially downsampling
the video clip by a factor ~y;. Given an input clip shape of (T, C,H, W),
where T is the number of frames in the video clip, C the number of RGB
channels for each frame, H the frame’s height, and W the frame’s width,
this operation returns an output shape of (T, C, H/v,, W/v), where the
two spatial axes have been downsampled through a resize operation.

* ¢, reduces the temporal length of the input, by cutting the input sequence up
to a length proportional to ;. Given the same shape of the original clip, this
operation returns an output shape of (T /7, C, H, W), where the new tensor
only contains the first T /+; frames of the original tensor.

* ¢y reduces the frame rate of the clip by increasing its temporal stride. Given
an input clip shape of (T, C, H, W), this operations again returns an output
shape of (T/~,C,H, W), where the new tensor is obtained from the first
one by sampling a frame every ;.
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* €. reduces the number of output channels of all the convolutional layers of
the network by a factor of .. Given a convolutional layer with C filters, the
application of this operation amounts to setting the number of filters of the
same layer to C/~..

* ¢; reduces the number of layers in the network by a factor of ;. As modern
ResNet-like networks are organized as sequences of convolutional blocks,
we implement this operation as a reduction of the number of layers inside
each block — so that the resulting network maintains the original architectural
choices while having fewer layers.

6.1.2 Progressive Architecture Shrinkage

The goal of progressive architecture shrinkage is to find the best sequence of
reduction operations (€7, ..., €), with €] € {¢s, €1, €7, €, € }, to be applied to the
base network B in order to reduce its computational cost and keep its effectiveness
unaltered as much as possible. To jointly take into account these objectives, we
define the quality of a network as the ratio between its accuracy and computational
cost.

Following previous works on video recognition [35, 36, 132, 133, 147], we
measure the efficiency of a network as the number of floating point operations it
requires to process a single sample during the evaluation phase, and evaluate the
effectiveness of the network on a given benchmark through its top-1 classification
accuracy on the validation set.

Taking inspiration from previous works [35, 150] we optimize the shrinkage
objective by applying a form of coordinate descent in the hyper-parameter space
defined by the reduction axes. At each iteration, given the current network R -
(where R corresponds to the base network 5B) we explore a number of hypotheses
equal to the number of reduction axes, each of them obtained by applying a
reduction operator to R.. We then select the hypothesis that maximizes the ratio
between the reduction in computational cost and the reduction in accuracy. This
amounts to selecting the reduction operator € that satisfies the following:

. _ C(B) = C(¢j(Rr-1))
r = argérjaax Acc(B) — Acc(ej(R-—1))’ 6.1)

€ S {Esaetvefaecael}

where C(-) indicates the number of floating points operations required by a
network to process a single sample, Acc(+) indicates the top-1 validation accuracy
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of a network, and R, _1 is the reduced network obtained at the previous iteration,
defined as

Roo1 = € _1(€_o(ch(6(B))) 6.2)

being €} the reduction operation chosen at iteration 4, and €, (-) the application of
a reduction operator over a network.

Exploring each hypothesis requires to re-train a new network, and each step of
the coordinate descent procedure described above requires to independently train
a number of networks equal to the number of reduction operators. As opposed to a
recent work by Feichtenhofer et al. [35], which investigated the use of coordinate
descent for progressively increasing the size of a model, in our case the size and
computational cost of the models decrease at each iteration.

Applying a constant computational complexity scaling factor

To ensure that the steps taken in the coordinate descent approach are consistent
along each direction, we design our reduction operations so to keep a constant
complexity reduction factor between the application of two subsequent reduction
operations whenever possible. Under the hypothesis that C'(e;(R-—-1))/C(R--1)
is constant, the rule for selecting the best hypothesis (see Eq. 6.1) can be reduced
to simply selecting the hypothesis with maximum accuracy, i.e.

er = argmax Acc(ej(Rr—1)), € € {€s, €, €5, €c, €1} (6.3)

€5

In practice, we apply reduction operators which lead to a complexity reduction
factor C'(¢;(R,-1))/C(R,—1) roughly equal to 2 (e.g., halving the temporal
resolution of a model usually leads to halving the FLOPs required by a model). It
shall be noted, however, that the reduction in computational complexity depends
on both the reduction operator and on the architecture of the current network. For
instance, when the temporal resolution of the reduced model becomes lower than
the total temporal downsampling factor of the network (determined by the overall
stride in temporal convolutions), the temporal resolution of the activation maps
in the network tail will become equal to 1. In this case, halving the temporal
resolution would reduce the computational complexity by a factor < 2. Only in
these cases, we choose to maintain the reduction operators unaltered and opt for
Eq. 6.1 for choosing the best reduction operation, while using Eq. 6.3 in all the
other cases.
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6.1.3 Training via Distilling the Knowledge

As the reader will have noticed, the base network 5 has not been involved in
the optimization process until now, except for being employed as the architec-
tural starting point for a sequence of progressively reduced networks. At each
iteration 7, we want to keep the knowledge from B as much as possible, while
cutting down the complexity of R, with respect to the network produced at the
previous iteration, R ,_1. Therefore, when training a reduced network R, we
distill knowledge [56] from the base network B to the current reduced network.
Knowledge Distillation [56] has recently emerged as a powerful technique to
transfer knowledge from large models to smaller ones: these two roles are fulfilled
by the base network B and the progressively reduced networks R, respectively.

The process of transferring knowledge from the base network to a reduced one
works as follows. The base network B is trained on a dataset D with a standard
cross-entropy loss on each training sample, i.e.:

K N
ePk
Lep =— E yi log <ZK ﬁ,> ; (6.4)
ePi

k=1 j=1

where K is the number of different classes, y represents the ground-truth one-hot
vector of a sample and p represents the output logits from the base network. The
same loss is applied when training a hypothesis of reduced network R ;, using its
own output logits in place of p.

Besides employing a cross-entropy loss, which maximizes the probability
of the correct labels, we train each reduced network hypothesis to minimize a
Kullback-Leibler divergence loss with respect to the output probabilities of the
base network. Formally, this is defined as

K
Lir=— Zlog (;’:) : 6.5)

k=1

where 2, represents the soft targets from the base network B, and z;, indicates the

normalized output from the reduced network hypothesis. Formally,
ePr/t ePr/t
= =5 (6.6)
ijl ebi/t ijl epilt

where the same softmax temperature ¢ > 1 is applied to both probability distribu-
tions. Following [56], we also multiply the KL loss by ¢? when using both hard
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and soft targets. The final objective used to train each reduced network hypothesis
is a weighted sum of the cross-entropy and KL losses, as follows:

Ls=Lcg+ot’Lir. (6.7)

Besides distilling knowledge from the base network by employing the activa-
tions from the last layer, in our preliminary experiments we also explored with
different Knowledge Distillation methods involving intermediate feature maps
— e.g. by adopting a MSE loss or a partial L, distance together with a margin
ReLU [53] between the Student’s and the Teacher’s activations, although without
observing significant improvements. More details can be found in Sec. 6.2.5.

6.1.4 Adaptively fine-tuning from previous iterations

So far, the reduced network obtained at a given iteration, R, has been trained
from scratch on the target dataset, starting from random weights, and by distilling
knowledge from the base model B. While this training strategy clearly creates
a link between the current reduced network and the base model, we also aim at
creating a training dependency with the reduced model obtained at the previous
iteration, R ,_;. Being the latter the best model reached so far in terms of the
complexity/accuracy trade-off, we expect its knowledge to be beneficial for the
network hypotheses which are developed at the next stage. To this aim, we im-
plement an adaptive fine-tuning strategy that aims at recovering the knowledge
from the reduced models obtained at previous iterations. As shown in Fig. 6.2
with the blue dashed lines, at each iteration 7 and before training the reduced
hypotheses €,;(R,_1), €; € {¢s, €1, €1, €c, € }, we initialize them with the weights
of the reduced network from the previous iteration R._1, instead of using ran-
dom weights. This fine-tuning is not always straightforward, since architectural
modifications are possible during the iterations. We apply the adaptive fine-tuning
when all the weights of €;(R-_1) and R,_; have the same shape. This is verified
only when applying an operator impacting the input shape, i.e. €5, €;, €. When a
hypothesis requires to use an operator impacting the weights shape, instead, we do
not apply the fine-tuning strategy and train from random weights. Future works
will investigate the possibility of applying fine-tuning even in these cases: when
the number of layers in the network is reduced, or the number of channels in each
layer shrinks, one could initialize weights starting from a subset of those of the
model obtained at the previous iteration.

Our progressive shrinkage mechanism is presented in Algorithm 1, assuming that
Eq. 6.3 can be used in place of Eq. 6.1.
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Algorithm 1: Progressive Architecture Shrinkage

Data: Pre-trained base network 5, reduction operations {es, €, € fr€cs €1 }, number of
iterations [

Result: Reduced networks R, 7 € {1,...,I};

Ro <« B;

fort:=1— Ido

TopAcc = 0;

for ¢; in {es, €, €5, €c, €} do

if €; in {es, €1, €4} then

RE €5 (R‘rfl);

Initialize R with weights from R, _1;

Train R with Lg;

else

RZ— — € (7_27'71);

Initialize R with random weights;

Train RZwith Lg;

end

if Acc(R2) > TopAcc then

6:_ €55

R+ +— RL; v

TopAcc + Acc(R%);

end

end
end

6.2 Experimental results

6.2.1 Datasets

We adopt the Kinetics-400 [70] dataset for training all the reduced models ob-
tained with our architecture shrinkage approach. As already introduced in Sec. 5.1,
the Kinetics-400 consists of approximately 240k training and 20k validation videos
belonging to 400 different human action classes, with each class comprising at
least 400 videos. Following a common procedure in literature, we report both the
top-1 and top-5 classification accuracy on the validation set as a metric of effect-
iveness, and the number of FLOPs as a metric for computational cost. Since the
standard practice for inference consists averaging class-probabilities for multiple
spatio-temporal crops of the same video, we underline that the computational cost
linearly increases with the number of crops adopted during inference.

We also evaluate the transfer capabilities of our reduced models by fine-tuning
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them on UCF101 [124] and HMDBS51 [76]. UCF101 consists of about 13k videos
belonging to 101 different action classes, while HMDBS51 has only about 6k videos
split across 51 classes. They both provide three different splits for training and
testing, and we report the average accuracy over these splits. In our preliminary
experiments, we also tested our progressive architecture shrinkage technique
when training from scratch on UCF101 and HMDBS51: although our strategy still
improved the computational performances, we observed strong overfitting. More
details can be found in Sec. 6.2.5.

6.2.2 Implementation details

While in principle our algorithm could be applied to any video backbone, here
we consider two recent spatio-temporal CNNs to showcase the effectiveness of
our approach. Namely, we employ our PyTorch re-implementation of R(2+1)D-
18 [133] and SlowFast-4x 16-R50 [36] for all our experiments. Some differences
(primarily in training strategies) between our implementation and the original ones
can be found, mainly for computational reasons.

R(2+1)D-18. This backbone decomposes 3D convolutions into 2D spatial con-
volutions followed by 1D temporal ones. We adopt the 18-layers version of this
backbone and train a base model 5 following the original implementation presen-
ted in Tran et al. [133]: during training, we resize video frames to 128 x 171
and apply random crop with size 112 x 112. Each input clip of the base network
consists of 16 consecutive frames. In the reduced models, when downsampling
the spatial size, we also downsample the crop size accordingly.

During each training epoch, we sample 3 clips per video from random temporal
locations for temporal jittering. Synchronized SGD is adopted on 64 NVIDIA
GPUs, with a total mini-batch size of 1536 (24 per GPU). The base learning rate
is set to 0.96, with linear warm-up during the first 10 epochs. Afterwards, the
learning rate is divided by 10 every 10 epochs, in both the base model and reduced
models. When training a reduced model starting from pre-trained weights, i.e.
when applying the adaptive fine-tuning presented in Sec. 6.1.4, the base learning
rate is instead divided by 10. Training is always completed in 45 epochs. During
inference, we use 112 x 112 center crops from 10 clips uniformly sampled from
the video. Output probabilities of these 10 clips are averaged to obtain video-level
prediction.

SlowFast-4x16-R50. SlowFast networks consist of two pathways, a Slow path
operating at low frame-rate, and a Fast one operating at higher frame-rate and
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employing fewer channels in convolutional layers. We consider a base SlowFast
instantiation with a ResNet-50 backbone [52]. During the training of the SlowFast
base network, the shorter side of the input video is resized to a random value in the
interval [256, 320] and keeping the aspect ratio, then 224 x 224 clips are randomly
cropped from the video. The raw clips length is set to 64 frames, and the Slow
path samples 4 frames with stride 16 from each clip, while the Fast path samples
32 frames with stride 2 from each clip [36]. In reduced models, we downsample
input and temporal sizes accordingly.

As with R(2+1)D, 3 clips are randomly sampled from a video for an epoch.
SGD on 128 GPUs is adopted, with a total mini-batch size of 2048 (16 per GPU).
The base learning rate is set to 1.6, with linear warm-up during the first 5 epochs
and cosine annealing after. Also in this case, the base learning rate is divided by
10 when training a reduced model with adaptive fine-tuning. Again, 45 epochs
are performed on both the base and reduced models to lighten the computational
requirements, while the original SlowFast implementation [36] suggested 256
epochs without temporal jittering. In inference, 256 x 256 center crops are
extracted from 10 uniformly sampled clips (instead of 30 [36]), and their softmax
scores are averaged to obtain video-level prediction.

Hyper-parameters tuning. Our approach requires different hyper-parameters to
be tuned. The reduction operations could be arbitrarily chosen, and may depend
on the task at hand. For video understanding, the easiest choice involves spatio-
temporal resolution, network layers, and layer filters. The number of iterations
should also be tuned depending on the resource requirements, but we observe
that three to five iterations are enough for obtaining a good accuracy/computation
trade-off (we fix the maximum number of iterations of the coordinate descent to
5). Moreover, the constant reduction factor at each iteration has been fixed to 2: a
smaller factor could result in better trade-offs, however with more iterations to be
performed. In order to roughly halve FLOPs, we set v, = 1.4, v, = 2, 75 = 2,
Y. = 1.4 and v; = 2. For ;, we uniformly halve the layers in each residual block.
The t value in Eq. 6.6 is set to 5, while the « value in Eq. 6.7 is 500. For both
R(2+1)D-18 and SlowFast-4 x 16-R50, we used a momentum of 0.9 and a weight
decay of 10, A dropout of 0.5 has been applied before the final classification
layer when using the SlowFast backbone. Finally, since SlowFast consists of two
paths which sample frames differently from the input video, we clarify how we
handle the two sampling strategies when reducing the temporal resolution or the
frame rate. Specifically, we first apply the chosen reduction operations to the input
clip and then allow each path to sample frames from the reduced input according
to its sampling strategy.
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Model top-1  top-5 GFLOPs
R(2+1)D-18 [133] 69.2 88.1 40.8 x 10
R(2+1)D-18-PAS-1 69.5 88.7 204 x 10
R(2+1)D-18-PAS-2 68.8 88.1 10.2 x 10
R(2+1)D-18-PAS-3 67.5 87.0 54 x 10
R(2+1)D-18-PAS-4 66.0 86.3 32 x 10
R(2+1)D-18-PAS-5 63.6 84.6 2.5 x 10
SlowFast-4x 16-R50 [36] 735 913  36.6 x 10

SlowFast-4 x 16-R50-PAS-1 73.8 91.7 18.9 x 10
SlowFast-4x 16-R50-PAS-2 734 91.1 10.2 x 10
SlowFast-4 x16-R50-PAS-3  71.7 90.3 5.1 x 10
SlowFast-4x16-R50-PAS-4  69.8 88.9 29 x 10
SlowFast-4x 16-R50-PAS-5  67.0 87.3 1.4 x 10

Table 6.1: Top-1 and top-5 accuracy, together with inference cost in terms of
GFLOPs per view x adopted views, on Kinetics-400 validation set. Progressively
reduced models obtained from our PAS algorithm are reported, starting from a
R(2+1)D-18 and a SlowFast-4 x 16-R50 backbone, respectively.

6.2.3 Main Results

R(2+1)D-18 results. We start presenting the results obtained using the R(2+1)D-
18 [133] backbone on the Kinetics-400 dataset. The upper side of Table 6.1 reports
the top-1 and top-5 accuracy of the reduced models obtained by our progressive
architecture shrinkage approach, as well as the number of GFLOPs required by
each architecture to process a single view, multiplied by the number of views
adopted during inference for a given video. In the Table, R(2+1)D-18-PAS-x
indicates the reduced model obtained at iteration x. As it can be observed, the
total drop in accuracy from the base network (R(2+1)D-18) to the reduced model
obtained in the last iteration (R(2+1)D-18-PAS-5) is 5.6 % (from 69.2 to 63.6),
while the number of GFLOPs required to process each view is reduced from
40.8 to 2.5. It is also worth noting that the reduced model obtained at the first
iteration (R(2+1)D-18-PAS-1) has a slightly increased accuracy compared to the
base network (69.5 versus 69.2), despite requiring half of its GFLOPs per view
(40.8 vs 20.4).

Fig. 6.3 shows in detail the overall procedure and the performances of all
the hypotheses obtained at each iteration. The red dashed line highlights the
best performing hypothesis selected at each iteration. Specifically, the sequence
of reduction operations which has been chosen by the coordinate descent is the
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Model w/ PAS w/o PAS

top-1  top-5 top-1  top-5

R(2+1)D-18-PAS-1 69.5 88.7 67.9 87.5
R(2+1)D-18-PAS-2 68.8 88.1 65.0 85.4
R(2+1)D-18-PAS-3 67.5 87.0 61.1 83.1
R(2+1)D-18-PAS-4 66.0 86.3 60.7 82.5
R(2+1)D-18-PAS-5 63.6 84.6 59.5 81.3

SlowFast-4x16-R50-PAS-1 ~ 73.8 91.7 73.1 91.0
SlowFast-4x 16-R50-PAS-2 734 91.1 70.5 89.5
SlowFast-4x16-R50-PAS-3  71.7 90.3 68.1 88.4
SlowFast-4x 16-R50-PAS-4  69.8 88.9 66.0 86.8
SlowFast-4x16-R50-PAS-5  67.0 87.3 61.2 83.6

Table 6.2: Performance comparison between models with exactly the same archi-
tecture, trained with or without our PAS strategy, on the Kinetics-400 validation
set.

following: [e., €7, €, €, €], so the procedure firstly selects to reduce the number
of channels, then the frame rate of the input clip, and then its temporal length
(three times). Please note that different reductions may lead to the same top-1
accuracy, as happens at iteration 5 for €; and €: to choose the best operation in
these cases, we adopt the top-5 accuracy as the performance metric. The accuracy
obtained by the other hypotheses, on which the remaining reductions were applied,
is also reported at each step.

The blue dashed line in Fig. 6.3 represents, at each iteration, the accuracy
of a model with the same architecture as the best performing hypothesis, but
trained without using the Knowledge Distillation and the adaptive fine-tuning
strategy. This is further detailed in the top part of Table 6.2, where we report
the advantage of progressively reducing R(2+1)D-18 models through our PAS
algorithm, compared to a standard KD-free and cross-entropy based training from
scratch. At the third iteration, for instance, after the reductions [e., € I €], the
proposed PAS provides a gain of 6.4% top-1 accuracy (67.5 vs 61.1).

SlowFast-4x16-R50 results. We also present results using the more recent
SlowFast-4 x 16-R50 [36] network. The lower side of Table 6.1 shows the ac-
curacy and GFLOPs of a progressively reduced SlowFast instantiation using our
PAS strategy. Accuracy drops from 73.5 (base network) to 67 (SlowFast-4x 16-
R50-PAS-5) in the sequence of iterations, while the number of GFLOPs per
view is reduced from 36.6 to 1.4. Again, SlowFast-4 x 16-R50-PAS-1 improves
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Figure 6.3: PAS strategy over 5 iterations applied to a R(2+1)D-18 (base network).
Different markers represent the performance of different reduction operations. The
red dashed line follows the best performing models, while the blue one shows
what happens if the best model is trained without our PAS algorithm.
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Figure 6.4: PAS strategy over 5 iterations applied to a SlowFast-4 x 16-R50 (base
network).

the performance of the base model from 73.5 to 73.8, while cutting down the
computational complexity from 36.6 to 18.9 GFLOPs per view.

Fig. 6.4 depicts the PAS procedure for this backbone, using the same notation
as in Fig. 6.3. The best sequence of reduction operations here is [e., €5, €, €5, €£].
Finally, in Table 6.2 bottom, we show the comparison between PAS-based Slow-
Fast networks and their PAS-free counterparts at each iteration of our algorithm,
as already observed for R(2+1)D-18. At iteration 5, the gap reaches its maximum
value, with an absolute top-1 accuracy gain of 5.8%.
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Observations

It is important to underline how the sequence of reduction operations chosen
by our PAS method reflects which axes should be reduced in order to lower the
computational requirements without compromising accuracy: for R(2+1)D-18,
4 out of 5 reductions involve time-related axes. This means that, for the given
initial input shape (16 x 3 x 112 x 112) defined by the authors [133], the temporal
dimension is the most redundant. SlowFast networks rely on stronger temporal
modeling: ¢; and e are indeed chosen only once, respectively. The input spatial
resolution of 256 x 256 has some redundancy, and ¢ is chosen twice. Moreover,
Figures 6.3 and 6.4 share a common trend: going on with iterations, €, and ¢
degrade performance much more compared to €, €; and €. This gap confirms the
usefulness of loading weights from previous iterations for input-related reductions,
as explained in Sec. 6.1.4.

Another important aspect concerns the application of one reduction operation
at a time, which may be sub optimal. Alternatives for reducing training resources
and for faster shrinkage may consist in applying multiple reductions at each step
(e.g. reductions operations affecting the same axes, like temporal resolution and
frame rate). However, it should be noted that after obtaining a given reduction
sequence for a model, similar networks probably benefit from the same sequence.
For instance, this avoids performing again the coordinate descent for ResNet-like
architectures. This together with the opportunity to search for the optimal set of
operations to be applied at once, will be further studied in future works.

Comparison with other methods

In order to directly compare the models obtained in the succession of PAS iterations
with other well-known models, we present the performance of several existing
methods on the Kinetics-400 validation set in Table 6.3. For each method, the
top-1 and top-5 accuracy are shown, along with pretraining strategy and inference
GFLOPs. We report only the best performing model for the adopted backbones,
obtained through PAS, and achieving state-of-the-art computation-accuracy trade-
offs. Differently from X3D models [35], which exploit an expansion algorithm
starting from a pre-defined architecture, the performance of our models highly
depends on the base network capabilities: in this sense PAS differs from other
strategies aiming to provide the highest possible accuracy. We believe that the
main advantage of the PAS algorithm consists in its generalization ability: one can
choose an existing strong network (based on some requirements) and apply PAS
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Model pretrain  top-1  top-5 GFLOPs
13D [18] ImNet 71.1 90.3 108 x N/A
Two-stream 13D [18] ImNet 75.7 92.0 216 x N/A
Nonlocal R101 [147] ImNet 77.7 93.3 359 x 30
Nonlocal R50 [147] ImNet 76.5 92.6 282 x 30
TSM R50 [84] ImNet 74.7 N/A 65.0 x 10
ME-Net [21] ImNet 72.8 90.4 11.1 x 50
Two-stream 13D [18] None 71.6 90.0 216 x N/A
ip-CSN-152 [132] None 77.8 92.8 109 x 30
Oct-13D+NL [20] None 75.7 N/A 28.9 x 30
R(2+1)D-18 [133] None 69.2 88.1 40.8 x 10
SlowFast-4 x 16-R50 [36] None 73.5 91.3 36.6 x 10
R(2+1)D-18-PAS-1 None 69.5 88.7 204 x 10

SlowFast-4 x 16-R50-PAS-1 None 73.8 91.7 18.9 x 10

Table 6.3: Comparison with existing methods on Kinetics-400 validation set in
terms of top-1 and top-5 accuracy. Inference cost is reported in terms of GFLOPs
per view x adopted views. ImNet stands for ImageNet. PAS is limited by the
performances of the base network, but its effectiveness is confirmed on two
different well-known backbones.

on it to reduce its computation while maintaining performances almost unaltered.
The ability to limit the accuracy loss when reducing computation is confirmed on
two different backbones, with different designs and performances, so PAS could
potentially be applied to X3D models, too.

Ablation experiments

PAS leverages two key techniques to avoid an abrupt decay in performance of pro-
gressively reduced models, namely Knowledge Distillation and fine-tuning from
previous iterations. In order to quantify the role of these two solutions, we present
ablation experiments in Table 6.4 for iteration 3 of PAS, applied to R(2+1)D-18.
Here we first remove the Knowledge Distillation from the Student training process,
but we load pre-trained weights from R(2+1)D-18-PAS-2. Then, we restore KD
and train another Student from scratch, i.e. with randomly-initialized weights. In
both cases, accuracy drops compared to our full solution. We explore only e,
¢; and ey reductions for ablation purposes, since fine-tuning is unfeasible when
applying €. and ¢;, while applying KD but not fine-tuning is exactly what we
propose for €. and ;.
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Model KD fine-tuning €s €t €f

R(2+1)D-18-PAS-3 v v 66.2 675 66.9
R(2+1)D-18-PAS-3 X v 65.6 663 654
R(2+1)D-18-PAS-3 v X 645 657 653

Table 6.4: Performance obtained when removing Knowledge Distillation or fine-
tuning from previous iteration.

Metric R(2+1)D  PAS-1 PAS-3 PAS-5
Avg GPU Util 39.1 20.8 12.7 7.7
Avg GPU Mem 11.3 6.1 32 1.0
Metric SlowFast PAS-1  PAS-3  PAS-5
Avg GPU Util 26.7 28.6 17.2 8.2
Avg GPU Mem 9.7 7.7 3.8 0.8

Table 6.5: Computational analysis of PAS-based models. Values are expressed as
a percentage.

Resource utilization

Here we investigate the advantage of a model shrinked by PAS, in terms of
both GPU utilization and memory consumption. Table 6.5 shows the average
percentage utilization of CUDA cores and the average percentage of GPU memory
consumption for a base backbone and PAS models. We used 4 NVIDIA V100
GPUs, each with 32 GB of memory. Values are collected for each GPU at every
iteration over the whole Kinetics-400 validation set, with a batch size of 1 clip per
GPU. Finally, we averaged the obtained measures over validation iterations and
over GPUs. PAS allows resource saving while ensuring limited accuracy loss.

Computational capacity used during experiments

Our algorithm employs significant computational resources to find the best se-
quence of reduction operations. Nevertheless, after exploring different network
hypotheses, it provides a compressed model with a complexity/accuracy trade-off
of choice. In this section, we report some quantitative details about the number
of GPU-hours required when performing five iterations with PAS. With the im-
plementation details presented in Sec. 6.2.2, training each network hypothesis
required about 15-16 hours for both R(2+1)D-18 and SlowFast-4 x 16-R50. Using
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Model pretrain UCF HMDB GFLOPs
R(2+1)D-18 [133] K400 9.4 70.0 40.8 x 10
R(2+1)D-18-PAS-1 K400 94.0 71.0 20.4 x 10
R(2+1)D-18-PAS-2 K400 93.5 68.1 10.2 x 10
R(2+1)D-18-PAS-3 K400 91.6 63.3 5.4 x 10
R(2+1)D-18-PAS-4 K400 89.8 58.9 32x 10
R(2+1)D-18-PAS-5 K400 87.0 54.0 2.5 x 10
SlowFast-4 x 16-R50 [36] K400 95.0 - 36.6 x 10
SlowFast-4 x 16-R50-PAS-1 K400 95.3 - 18.9 x 10
SlowFast-4 x 16-R50-PAS-2 K400 95.1 - 10.2 x 10

SlowFast-4 X 16-R50-PAS-3 K400 94.0 70.4 5.1 x 10
SlowFast-4x 16-R50-PAS-4 K400 92.8 68.3 29 x 10
SlowFast-4 x 16-R50-PAS-5 K400 90.4 63.3 1.4 x 10

Table 6.6: Transfer ability of PAS models on UCF101 and HMDBS51 datasets.
K400 stands for Kinetics-400.

64 GPUs for a single R(2+1)D-18 experiment, we employed ~25.000 GPU-hours
for training 25 network hypotheses (5 iterations X 5 reduction operators). For
SlowFast-4 x 16-R50 training, we used 128 synchronized GPUs and employed a
total number of ~50.000 GPU-hours. In all our experiments we used distributed
training on nodes with 4 NVIDIA V100 GPUs each, distributing the computation
across 16 and 32 nodes, respectively, when employing the R(2+1)D-18 backbone
and the SlowFast-4x 16-R50 backbone. All the training and evaluations have been
performed on the CINECA Marconil00 accelerated cluster, which consists of
980 nodes, and is ranked 18" in the top500' ranking of the 500 most powerful
commercially available computer systems in the world.

6.2.4 Transfer capabilities

In this section, we assess the transfer capabilities of PAS-generated models trained
on the Kinetics-400 dataset, by fine-tuning them on UCF101 and HMDB51. When
fine-tuning a model, the base learning rate is divided by 10, while all the other
implementation details remain the same, as presented in Sec. 6.2.2. The PAS
strategy is not adopted again in these experiments: we simply fine-tune available
PAS models trained on the Kinetics-400 dataset, to verify if the transfer capabilities
are maintained in the sequence of PAS iterations.

"https://top500.0rg/
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Table 6.6 shows the top-1 classification accuracy when fine-tuning all the
models obtained with our PAS strategy. As it can be seen, the transfer capability
is preserved for both datasets: R(2+1)D-18-PAS-1 exceeds the performance of
the base network on HMDBS51, while SlowFast-4 x 16-R50-PAS-1 and SlowFast-
4x16-R50-PAS-2 exceed the accuracy of the base network on UCF101, despite
being much lighter. The first three SlowFast models in Table 6.6 are not evaluated
on HMDB51, since many videos last between 1 and 2 seconds given a fixed frame-
rate of 30 fps, which makes unfeasible to sample 64 frames (corresponding to the
base temporal resolution for SlowFast networks). Being the chosen reductions
sequence (e, €5, €, €5, € 7] for SlowFast, the input temporal resolution is reduced
to 32 in the third iteration, which allows us to report the accuracy of the last three
models on HMDB51, too.

6.2.5 Additional experiments

Distilling knowledge from intermediate feature maps. In Table 6.7, we invest-
igate the usage of a Knowledge Distillation loss employing the activations from
intermediate layers. Specifically, we build an additional loss between the activa-
tions of the base network and of each network hypothesis, which is applied after
each residual block of the backbone. We test the usage of both an L, loss and
the margin ReLLU-based approach presented by Heo et al. [53]. Table 6.7 shows
the role of distilling knowledge from intermediate feature maps during the first
iteration of PAS. As it can be observed, the introduction of an additional loss on
intermediate layers does not increase the top-1 accuracy. In the final formulation
of PAS, we only employ network logits for knowledge distillation.

Role of Batch Normalization. An important factor to consider when distilling
the knowledge from the base network B to reduced models is the role of batch-
normalization. As reported by Heo et al. [53], Batch-norm layers should behave in
the same way in the teacher and in the student (i.e., they should be both in training
mode or in evaluation mode). For this reason, our base model is set to training
mode when computing its logits for Knowledge Distillation, since the students
are in training mode, too. This ensures that the features from both the teacher and
the student are normalized in the same way. Table 6.8 shows the advantage of
distilling the knowledge from an R(2+1)D-18 base model in training mode with
respect to evaluation mode. Top-1 accuracy on Kinetics-400 is reported for the
first iteration of PAS and for all reduction operations.

Training PAS on smaller datasets without Kinetics-400 pretraining. As an-
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Initial model ~ Red. Op.  Logitsonly +MSE +mReLU [53]
R(2+1)D-18 € 68.8 68.1 68.0

Table 6.7: Performance when using different KD approaches on intermediate
activations.

Reduction operator

Initial model ~ Btrain B eval €s €t €f €c €]
R(2+1)D-18 v 67.7 68.6 69.0 69.5 6838
R(2+1)D-18 v 675 684 688 69.0 682

Table 6.8: Performance gain when setting the base model B in training mode with
respect to evaluation mode.

ticipated in Sec. 6.2.1, we also trained PAS on UCF101 without employing a
Kinetics-400 pre-training. Table 6.9 shows the top-1 accuracy of a progressively
reduced R(2+1)D-18 model. For simplicity, we only report the top-1 accuracy
obtained on the first split of UCF101. The performance of the base model 5 is
62.3 top-1 accuracy. For each PAS iteration, the accuracy obtained by applying
each reduction operator is reported, along with the accuracy of the best reduced
model trained from scratch without any knowledge distillation (last column).

In the first iteration, while the performance drop caused by ¢, €; and ¢/ is
comparable with that observed in Kinetics-400, the same does not hold for €. and
€;. Specifically, using PAS for reducing the number of channels or the number of
layers increases the top-1 accuracy by 5.0% and 3.2%, respectively. Looking at
the second row of Table 6.9, last column, it is clear that the accuracy gain is not
completely due to PAS: when reducing the number of channels (best-performing
reduction operator in the first iteration) and training the reduced model without
PAS, accuracy still increases with respect to the base model (64.6 vs. 62.3), even
with 50% fewer FLOPs. This highlights that the model capacity of R(2+1)D-18 is
excessive for UCF101, which leads to strong overfitting. The same is visible in
the following iteration. Despite overfitting, we notice that PAS still plays a key
role in improving performance while reducing the number of FLOPs. From the
third iteration on, reduced models trained without PAS start to get worse, while
PAS-based training still ensures a minimal accuracy loss.

SlowFast-4x16-R50 Network architecture. For reference, in Table 6.10 we
report the detailed architecture of the base network and of the reduced hypotheses
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Reduction operator

Initial model €s €t €f €c € w/o PAS
R(2+1)D-18 - - - - - 62.3
R(2+1)D-18-PAS-1  60.5 620 615 673 655 64.6
R(2+1)D-18-PAS-2  63.8 663 662 66.7 66.5 64.0
R(2+1)D-18-PAS-3  63.5 654 658 653 65.1 60.3
R(2+1)D-18-PAS-4 628 653 64.1 630 635 59.3
R(2+1)D-18-PAS-5 622 63.7 639 618 622 57.8

Table 6.9: PAS applied on the UCF101 dataset with a R(2+1)D-18 backbone.

used in all our experiments with the SlowFast-4 x 16-R50 backbone. The archi-
tecture is reported as a function of the total reduction factors applied on spatial
resolution, temporal length, frame rate, number of channels and layers (denoted as
s> V> V> Ve» Y1) as aresult of applying a sequence of reduction operators. The
base network B corresponds to the configuration where all 7, are equal to 1, and
is identical to the one proposed by Feichtenhofer et al. [36]. At each iteration 7, a
chosen reduction operation ¢; can increase the corresponding reduction factor 7;
by a factor of v; (see Sec. 6.1.1), and modifies the network architecture according

to Table 6.10.
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Table 6.10: Architecture of the base model and of reduced hypotheses based on
SlowFast-4 x 16-R50, as a function of the total reduction factor applied on spatial
resolution, temporal length, frame rate, number of channels and number of layers
(Vs> Vt» Vf» Ve» Y1)- Kernels are denoted as {TXSQ, C} for temporal, spatial, and
channel sizes, while strides as {temporal stride, spatial stride?}. Convolutional
residual blocks are represented in brackets. The speed ratio between the Fast and
the Slow paths is 8, while the channel ratio is 1/8.



Chapter 7

Conclusions

This thesis reports the research activity I carried out during my PhD, from the
definition of the problems to solution proposal and experimental evaluation. Being
my PhD granted by and done in collaboration with Metaliquid S.R.L, it focused
on the development of deep learning solutions for video-related tasks with the goal
of proposing effective algorithms and models able to fulfill the requirements of
both academia and industry.

Our research contributed to specific video-based tasks, i.e. spatio-temporal
action detection and soccer event spotting, with the continuous goal of making
them relevant for the academic world, but also suitable for production scenarios
and feasible in practice. Moreover, general issues caused by video data have been
addressed. Specifically, video databases are usually orders of magnitude larger
compared to image datasets, determining the need for large deep neural networks in
order to learn from this massive data variability, with millions (or even billions) of
parameters. This entails huge computational and hardware requirements, resulting
in the video research community being limited by this constraint. On the other
hand, we tackled the inherent privacy issues of videos, common to all action
recognition systems involving humans.

In the following, we briefly summarize the contributions presented in this
thesis for each task, we describe possible future directions, and we acknowledge
all those who played a role in the development of the proposed solutions. Finally,
in Appendix A, we also present other research activities done in collaboration with
other PhD students and/or researchers, and which fall under different topics from
those dealt with up to now.

Deep video understanding for human actions, multimedia and computing

95



CHAPTER 7. CONCLUSIONS

Spatio-temporal action detection

Spatio-temporal action detection aims to predict a fine-grained representation
of human actions in video clips. Given an input video, the goal is to detect
all the actors in the scene for specific keyframes and to classify their (possibly
multiple) actions. Our proposal consists of a lightweight module based on a graph
representation of the entities, considering multiple detections in a frame (space)
and in subsequent frames, too (time). A graph-attention network is devised for
learning the relations between graph nodes, and the strength of the edges is made
stronger if they are spatially close. Our STAGE module does not need to be
finetuned end-to-end with the feature extraction network, and could potentially
be applied to every spatio-temporal backbone. Experiments over three different
challenging benchmarks confirm the effectiveness of the approach, which is able to
reach state-of-the-art performance with negligible training overhead and minimum
additional parameters.

Soccer action spotting

The automatic highlight generation from broadcast sports videos is of great import-
ance for the multimedia industry and represented a key goal in the collaboration
with Metaliquid S.R.L. during my PhD. In this sense, soccer action spotting is
a recently proposed task in literature, which we decided to tackle as a first step
towards highlight generation. Specifically, given a broadcast soccer match, the
objective is to find the exact timestamp in which relevant events (like goals or
substitutions) occur. Our solution is a simple and lightweight network inspired by
detection models: given a clip from the whole game, it simultaneously predicts
the action class (which could also be background) and the relative offset of the
event in the clip, by using both classification and regression losses. Moreover, a
masking strategy forces the network to focus on the frames following the event,
which usually bring the most informative visual cues. Our solution reaches state-
of-the-art results even when using pre-computed features over the SoccerNet
dataset. Our proposal placed third in the SoccerNet-v2 challenge in the CVPR
2021 International Challenge on Activity Recognition Workshop.

Privacy-preserving action recognition

When handling video clips, we realized that sensitive information of involved
humans is often disclosed, which could result in privacy issues when the action
recognition model is run by a third-party service provider. This problem is not
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specific to action analysis but is inherent to all tasks involving humans and videos.
Focusing on action recognition, in this thesis we proposed a knowledge-distillation
approach for training a student network on blurred videos, thus hiding sensitive
information of involved actors at two levels of granularity: masking people’s faces
(light anonymization) or whole bodies (strong anonymization). During training,
the student network is given only anonymized videos as input but leverages the
output logits of a teacher network pretrained on original, not blurred video clips.
The distillation is based on both direct knowledge transfer between obfuscated
and non-obfuscated videos and pairwise relations between corresponding couples
of samples. During inference, the student is able to predict correct labels from
anonymized videos, without requiring the teacher privileged information. In
this way, only the training set needs to be disclosed, for pretraining the teacher
model: in a client-server scenario, the user can choose an anonymization schema in
agreement with the provider, and send blurred videos in order to perform inference
and avoid a sensitive information leak. Results show that the student is able to
reach (or even exceed) the teacher performance in case of face anonymization and
to achieve negligible accuracy loss in presence of strong anonymization strategies.

Efficiency in action recognition

Another common issue of handling video datasets is their huge variability given
by the additional temporal dimension, which usually determines large models with
millions (or even billions) of parameters and long training times. In this thesis, we
also presented a strategy for reducing the computational complexity of existing
spatio-temporal networks, while limiting the loss in accuracy. Specifically, we
define a given action recognition model using a number of axes, e.g. the number
of layers, the input spatial resolution, or the input temporal resolution (number of
input frames). We then devise an iterative algorithm, named PAS, which trains a
number of network hypotheses at each iteration, where each of them is obtained
from the model chosen at the previous iteration, by reducing one of the axes in
order to save a fixed amount of computation. Each hypothesis is trained starting
from the weights of the previously obtained model (when the reduction axis allows
it), and by exploiting knowledge distillation with the original spatio-temporal
network (the one from which the first iteration starts). At each iteration, we keep
the hypothesis with the best computation/accuracy trade-off. PAS allows to choose
a computational configuration of choice and to continue iterations until reaching
it. For instance, PAS is able to reduce the computation (in terms of floating-point
operations) by four times, with negligible accuracy loss.
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Future works and open problems

Even if the work presented in this thesis provides research advancements in the
mentioned fields, it also represents a starting point for future research and applica-
tions. Many of the possible future works have been highlighted by the reviewers of
our published papers, some of which we report in the following. In spatio-temporal
action detection, for instance, an end-to-end finetuning of the STAGE module
together with the feature extraction backbone has not been explored, given the
resource and computation requirements. For the privacy-preserving strategy, only
a limited number of obfuscation techniques has been explored, which reduces the
possibility for the final user to choose an anonymization technique of choice for
his videos. Moreover, domain adaptation could be a possible class of approaches
for reducing the domain gap presented in Sec. 5.2.1, and privileged distillation
could be a solution for preserving sensitive information for many other tasks where
people’s identity should not be disclosed. For the PAS strategy, a limited number
of existing spatio-temporal networks have been considered, and the overall training
process consumes a huge amount of resources, which is not desirable for a method
aiming to reduce the inference cost. The opportunity to search for the optimal
set of operations to be applied at once represents a major area of improvement.
Finally, for the soccer event spotting task, highlight generation has been partially
tackled: there is still a lot of work to be done in order to generate highlights from
automatically detected events.

Publications, achievements, and acknowledgments

The majority of the works presented in this thesis have been published in inter-
national conferences and journals. A detailed list of publications is available in
Appendix B. Moreover, the work on soccer event spotting placed third in the
SoccerNet-v2 challenge in the CVPR 2021 International Challenge on Activity
Recognition Workshop. During my PhD, I also had the opportunity to support
some customer-oriented activities of Metaliquid S.R.L. even for projects different
from those presented in this thesis. As a final note, I would like to thank all
my colleagues from the AlmageLab, together with my tutors and supervisors
for the advice and the opportunities, without which this work would not have
been possible. Moreover, I thank Metaliquid for the continuous support, all the
UNIMORE ICT school, the NVIDIA AI Technology Centre, and CINECA with
their staff for the collaboration and assistance.
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Other research activities

In addition to the research activities presented in the main chapters of this thesis,
which follow my main research topic focused on deep learning applied to video
understanding, I also had the opportunity to work on deep learning applied to the
cultural heritage and to digital humanities. In the following, we briefly report two
works in this field, related to image-to-image translation and face retrieval in the
context of paintings and artworks in general.

A.1 Art2Real

Computer vision techniques have been rarely adapted to work in the domain of
cultural heritage, mainly because applying state-of-the-art techniques to artworks
is rather difficult, and often brings poor performance. This can be motivated by the
fact that the visual appearance of artworks is different from that of photo-realistic
images, due to the presence of brush strokes, the creativity of the artist and the
specific artistic style at hand. As current vision pipelines exploit large datasets
consisting of natural images, learned models are largely biased towards them.
The result is a gap between high-level convolutional features of the two domains,
which leads to a decrease in performance in the target tasks, such as classification,
detection or segmentation.

This chapter proposes a solution to the aforementioned problem that avoids

This chapter is related to publications 1, 2, 3, 8 reported in Appendix B, by the author of the
thesis. See Appendix B for details.
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~
Artistic Domain N Realistic Domain

Figure A.1: We present Art2Real, an architecture which can reduce the gap
between the distributions of visual features from artistic and realistic images, by
translating paintings to photo-realistic images.

the need for re-training neural architectures on large-scale datasets containing
artistic images. In particular, we propose an architecture which can reduce the shift
between the feature distributions from the two domains, by translating artworks
to photo-realistic images which preserve the original content. A sample of this
setting is depicted in Fig. A.1.

As paired training data is not available for this task, we revert to an un-
paired image-to-image translation setting [171], in which images can be translated
between different domains while preserving some underlying characteristics. In
our art-to-real scenario, the first domain is that of paintings while the second one
is that of natural images. The shared characteristic is that they are two differ-
ent visualizations of the same class of objects, for example, they both represent
landscapes.

Contributions. In the translation architecture that we propose, new photo-realistic
images are obtained by retrieving and learning from existing details of natural
images and exploiting a weakly-supervised semantic understanding of the artwork.
To this aim, a number of memory banks of realistic patches is built from the set of
photos, each containing patches from a single semantic class in a memory-efficient
representation. By comparing generated and real images at the patch level, in a
multi-scale manner, we can then drive the training of a generator network which
learns to generate photo-realistic details, while preserving the semantics of the
original painting. As performing a semantic understanding of the original painting
would create a chicken-egg problem, in which unreliable data is used to drive
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Figure A.2: Overview of our Art2Real approach.

the training and the generation, we propose a strategy to update the semantic
masks during the training, leveraging the partial convergence of a cycle-consistent
framework.

A.1.1 Proposed approach

Our goal is to obtain a photo-realistic representation of a painting. The proposed
approach explicitly guarantees the realism of the generation and a semantic binding
between the original artwork and the generated picture. An overview of our model
is presented in Fig. A.2.

Patch memory banks

Given a semantic segmentation model, we define a pre-processing step with the
aim of building the memory banks of patches which will drive the generation.
Each memory bank B¢ is tied to a specific semantic class ¢, in that it can contain
only patches which belong to its semantic class. To define the set of classes, and
semantically understand the content of an image, we adopt the weakly-supervised
segmentation model from Hu et al. [59]: in this approach, a network is trained to
predict semantic masks from a large set of categories, by leveraging the partial
supervision given by detections. We also define an additional background memory
bank, to store all patches which do not belong to any semantic class.

Following a sliding-window policy, we extract fixed-size RGB patches from
the set of real images and put them in a specific memory B¢, according to the
class label c of the mask in which they are located. Since a patch might contain
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Figure A.3: Memory banks building. A segmentation model [59] computes
segmentation masks for each realistic image in the dataset, then RGB patches
belonging to the same semantic class are placed in the same memory bank.

pixels which belong to a second class label or the background class, we store in
B¢ only patches containing at least 20% pixels from class c.

Therefore, we obtain a number of memory banks equal to the number of
different semantic classes found in the dataset, plus the background class, where
patches belonging to the same class are placed together (Fig. A.3). Also, semantic
information from generated images is needed: since images generated at the
beginning of the training are less informative, we first extract segmentation masks
from the original paintings. As soon as the model starts to generate meaningful
images, we employ the segmentation masks obtained on generated images.

Semantically-aware generation

The unpaired image-to-image translation model that we propose maps images
belonging to a domain X (that of artworks) to images belonging to a different
domain Y (that of natural images), preserving the overall content. Suppose we
have a generated realistic image G(x) at each training step, produced by a mapping
function G which starts from an input painting x. We adopt the previously obtained
memory banks of realistic patches and the segmentation masks of the paintings in
order to both enhance the realism of the generated details and keep the semantic
content of the painting.

Pairing similar patches in a meaningful way. At each training step, G(x) is
split in patches as well, maintaining the same stride and patch size used for the
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memory banks. Reminding that we have the masks for all the paintings, we denote
a mask of the painting = with class label ¢ as MS. We retrieve all masks M, of
the painting = from which G(x) originates, and assign each generated patch to
the class label c of the mask M in which it falls. If a patch belongs to different
masks, it is also assigned to multiple classes. Then, generated patches assigned to
a specific class c are paired with similar realistic patches in the memory bank B¢,
i.e. the bank containing realistic patches with class label c. Given realistic patches
belonging to B¢, B¢ = {bj} and the set of generated patches with class label c,
K¢ = {kf}, we center both sets with respect to the mean of patches in B¢, and
we compute pairwise cosine distances as follows:

kS — ué) - (bS — us
dfj:<1_ <; ’ib) <CJ ucl,)) A
g — pgly 105 — wg]],

where pj = N% > ; b5, being N the number of patches in memory bank B¢. We
compute a number of distance matrices equal to the number of semantic classes
found in the original painting x. Pairwise distances are subsequently normalized
as follows:

C
dS, = ——2  wheree =1le — 5 A2
Y ming dS, + € (A2)
and pairwise affinity matrices are computed by applying a row-wise softmax
normalization:

) (A.3)
~ 0 otherwise

Y3 exp(l —d5/h)
where h > 0 is a bandwidth parameter. Thanks to the softmax normalization, each
generated patch k{ will have a high-affinity degree with the nearest real patch and
with other not negligible near patches. Moreover, affinities are computed only
between generated and artistic patches belonging to the same semantic class.

e — mﬂ@M>_{w1m%<%ij

Approximate affinity matrix. Computing the entire affinity matrix would require
an intractable computational overhead, especially for classes with a memory bank
containing millions of patches. In fact matrix A€ has as many rows as the number
of patches of class c extracted from G(z) and as many columns as the number of
patches contained in the memory bank B°.

To speed up the computation, we build a suboptimal Nearest Neighbors index
I¢ for each memory bank. When the affinity matrix for a class ¢ has to be
computed, we conduct a k-NN search through I¢ to get the k£ nearest samples of
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each generated patch k{. In this way, A° will be a sparse matrix with at most as
many columns as % times the number of generated patches of class c¢. The Softmax
in Eq. A.3 ensures that the approximated version of the affinity matrix is very close
to the exact one if the k-NN searches through the indices are reliable. We adopt
inverted indexes with exact post-verification, implemented in the Faiss library [67].
Patches are stored with their RGB values when memory banks have less than
one million vectors; otherwise, we use a PCA pre-processing step to reduce their
dimensionality, and scalar quantization to limit the memory requirements of the
index.

Maximizing the similarity. A contextual loss [96] for each semantic class in M,
aims to maximize the similarity between couples of patches with high affinity

value:
C C C 1 C

where N is the cardinality of the set of generated patches with class label c. Our
objective is the sum of the previously computed single-class contextual losses over
the different classes found in M:

1
Lox(K,B) =Y —log < NE (Z max A;) ) (A.5)

(&)

where c assumes all the class label values of masks in M. Note that masks in M,
are not constant during training: at the beginning, they are computed on paintings,
then they are regularly extracted from G(x).

Multi-scale variant. To enhance the realism of generated images, we adopt a
multi-scale variant of the approach, which considers different sizes and strides in
the patch extraction process. The set of memory banks is therefore replicated for
each scale, and G(x) is split at multiple scales accordingly. Our loss function is
given by the sum of the values from Eq. A.5 computed at each scale, as follows:

Loxms(K,B) =) Lix(K,B) (A.6)
where each scale s implies a specific patch size and stride.

Unpaired image-to-image translation baseline

Our objective assumes the availability of a generated image G(x) which is, in our
task, the representation of a painting in the photo-realistic domain. In our work,
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we adopt a cycle-consistent adversarial framework [171] between the domain of
paintings from a specific artist X and the domain of realistic images Y. The
data distributions are © ~ pgata(x) and y ~ pgara(y), while G : X — Y and
F :'Y — X are the mapping functions between the two domains. The two
discriminators are denoted as Dy and Dx.

The full cycle-consistent adversarial loss [171] is the following:

Leca(G,F,Dx,Dy) = Lcan(G,Dy,X,Y)
+ Loan(F,Dx,Y, X) (A7)
+ Loy (G, F)

where the two adversarial losses are:

‘CGAN (Ga DY7 X7 Y) = EyNPdata(y) [lOgDY (y)]
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and the cycle consistency loss, which requires the original images x and y to be
the same as the reconstructed ones, F'(G(z)) and G(F(y)) respectively, is:

Leye (G F) =Egpypa (@ |1 F(G(2)) — 2]
(A.10)
+ Eympaea ) IGEF () — ylll.

Full objective

Our full semantically-aware translation loss is given by the sum of the baseline
objective, i.e. Eq. A.7, and our patch-level similarity loss, i.e. Eq. A.6:

‘C(G7F7 DXaDYvaB) = ['cca(GaFa DX»DY)

(A.11)
+ )\[:CXMS(K,B)

where A controls our multi-scale contextual loss weight with respect to the baseline
objective.
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A.1.2 Experimental results

Datasets. In order to evaluate our approach, different sets of images, both from
artistic and realistic domains, are used. Our tests involve both sets of paintings
from specific artists and sets of artworks representing a given subject from dif-
ferent authors. We use paintings from Monet, Cezanne, Van Gogh, Ukiyo-e
style and landscapes from different artists along with real photos of landscapes,
keeping an underlying relationship between artistic and realistic domains. We
also show results using portraits and real people photos. All artworks are taken
from Wikiart.org, while landscape photos are downloaded from Flickr through the
combination of tags landscape and landscapephotography. To obtain
people photos, images are extracted from the CelebA dataset [93]. All the images
are scaled to 256 x 256 pixels, and only RGB pictures are used. The size of each
training set is, respectively, Monet: 1072, Cezanne: 583, Van Gogh: 400, Ukiyo-e:
825, landscape paintings: 2044, portraits: 1714, real landscape photographs: 2048,
real people photographs: 2048.

Architecture and training details. To build generators and discriminators, we
adapt generative networks from Johnson et al. [68], with two stride-2 convolutions
to downsample the input, several residual blocks and two stride-1/2 convolutional
layers for upsampling. Discriminative networks are PatchGANs [63, 78, 81] which
classify each square patch of an image as real or fake.

Memory banks of real patches are built using all the available real images,
i.e. 2048 images both for landscapes and for people faces, and are kept constant
during training. Masks of the paintings, after epoch 40, are regularly updated every
20 epochs with those from the generated images. Patches are extracted at three
different scales: 4 x 4, 8 x 8 and 16 x 16, using three different stride values: 4, 5
and 6 respectively. The same patch sizes and strides are adopted when splitting
the generated image, in order to compute affinities and the contextual loss. We use
a multi-scale contextual loss weight A, in Eq. A.11, equal to 0.1.

We train the model for 300 epochs through the Adam optimizer [72] and using
mini-batches with a single sample. A learning rate of 0.0002 is kept constant for
the first 100 epochs, making it linearly decay to zero over the next 200 epochs.
An early stopping technique is used to reduce training times. In particular, at each
epoch the Fréchet Inception Distance (FID) [55] is computed between our gener-
ated images and the set of real photos: if it does not decrease for 30 consecutive
epochs, the training is stopped. We initialize the weights of the model from a
Gaussian distribution with 0 mean and standard deviation 0.02.

Competitors. To compare our results with those from state-of-the-art techniques,
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Method Monet Cezanne Van Gogh Ukiyo-e Landscapes Portraits Mean

Original paintings 69.14  169.43 159.82 177.52 59.07 7295 | 117.99
Style-transferred reals 74.43  114.39 137.06  147.94 70.25 62.35 |101.07

DRIT [79] 68.32  109.36 108.92  117.07 59.84 4433 | 84.64
UNIT [90] 56.18 9791 98.12 89.15 47.87 4347 | 72.12
Cycle-GAN [171] 49.70  85.11 85.10 98.13 44.79 30.60 | 65.57
Art2Real 4471  68.00 78.60 80.48 35.03 34.03 | 56.81

Table A.1: Evaluation in terms of Fréchet Inception Distance [55].

we train Cycle-GAN [171], UNIT [90] and DRIT [79] approaches on the previ-
ously described datasets. The adopted code comes from the authors’ implementa-
tions and can be found in their GitHub repositories. The number of epochs and
other training parameters are those suggested by the authors, except for DRIT [79]:
to enhance the quality of the results generated by this competitor, after contacting
the authors we employed spectral normalization and manually chose the best epoch
through visual inspection and by computing the FID [55] measure. Moreover,
being DRIT [79] a diverse image-to-image translation framework, its performance
depends on the choice of an attribute from the attribute space of the realistic
domain. For fairness of comparison, we generate a single realistic image using
a randomly sampled attribute. We also show quantitative results of applying the
style transfer approach from Gatys et al. [42], with content images taken from the
realistic datasets and style images randomly sampled from the paintings, for each
set.

Visual quality evaluation

We evaluate the visual quality of our generated images using both automatic
evaluation metrics and user studies.

Fréchet Inception Distance. To numerically assess the quality of our generated
images, we employ the Fréchet Inception Distance [55]. It measures the difference
of two Gaussians, and it is also known as Wasserstein-2 distance [139]. The FID
d between a Gaussian GG; with mean and covariance (m1, C7) and a Gaussian G4
with mean and covariance (ms, C5) is given by:

d*(G1,Ga) = ||my — mal|s + Tr(Cy + Cy — 2(C1C5)Y/?) (A.12)

For our evaluation purposes, the two Gaussians are fitted on Inception-v3 [128]
activations of real and generated images, respectively. The lower the Fréchet
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Cycle-GAN [171] UNIT [90] DRIT [79]
Realism 36.5% 27.9% 14.2%
Coherence 48.4% 25.5% 7.3%

Table A.2: User study results. We report the percentage of times an image from a
competitor was preferred against ours. Our method is always preferred more than
50% of the times.

Inception Distance between these Gaussians, the more generated and real data
distributions overlap, i.e. the realism of generated images increases when the FID
decreases. Table A.1 shows FID values for our model and a number of competitors.
As it can be observed, the proposed approach produces a lower FID on all settings,
except for portraits, in which we rank second after Cycle-GAN. Results thus
confirm the capabilities of our method in producing images which looks realistic
to pre-trained CNNSs.

Human judgment. In order to evaluate the visual quality of our generated images,
we conducted a user study on the Figure Eight crowd-sourcing platform. In
particular, we assessed both the realism of our results and their coherence with the
original painting. To this aim, we conducted two different evaluation processes,
which are detailed as follows:

¢ In the Realism evaluation, we asked the user to select the most realistic
image between the two shown, both obtained from the same painting, one
from our method and the other from a competitor;

* In the Coherence evaluation, we presented the user the original painting
and two generated images which originate from it, asking to select the most
faithful to the artwork. Again, generated images come from our method and
a competitor.

Each test involved our method and one competitor at a time leading to six different
tests, considering three competitors: Cycle-GAN [171], UNIT [90], and DRIT [79].
A set of 650 images were randomly sampled for each test, and each image pair
was evaluated from three different users. Each user, to start the test, was asked
to successfully evaluate eight example pairs where one of the two images was
definitely better than the other. A total of 685 evaluators were involved in our tests.
Results are presented in Table A.2, showing that our generated images are always
chosen more than 50% of the times.
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Method Classification Segmentation Detection
Real Photos 3.99 0.63 2.03
Original paintings 4.81 0.67 2.58
Style-transferred reals 5.39 0.70 2.89
DRIT [79] 5.14 0.67 2.56
UNIT [90] 4.88 0.69 2.54
Cycle-GAN [171] 4.81 0.67 2.50
Art2Real 4.50 0.66 2.42

Table A.3: Mean entropy values for classification, segmentation, and detection of
images generated through our method and through competitor methods.

Reducing the domain shift

We evaluate the capabilities of our model to reduce the domain shift between
artistic and real data, by analyzing the performance of pre-trained convolutional
models and visualizing the distributions of CNN features.

Entropy analysis. Pre-trained architectures show increased performances on
images synthesized by our approach, in comparison with original paintings and
images generated by other approaches. We visualize this by computing the entropy
of the output of state-of-the-art architectures: the lower the entropy, the lower the
uncertainty of the model about its result. We evaluate the entropy on classification,
semantic segmentation, and detection tasks, adopting a ResNet-152 [52] trained
on ImageNet [28], Hu et al. [59]’s model and Faster R-CNN [112] trained on the
Visual Genome [1, 75], respectively. Table A.3 shows the average image entropy
for classification, the average pixel entropy for segmentation and the average
bounding-box entropy for detection, computed on all the artistic, realistic and
generated images available. Our approach is able to generate images which lower
the entropy, on average, for each considered task with respect to paintings and
images generated by the competitors.
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Feature distributions visualization. To further validate the domain shift reduc-
tion between real images and generated ones, we visualize the distributions of
features extracted from a CNN. In particular, for each image, we extract a visual
feature vector coming from the average pooling layer of a ResNet-152 [52], and we
project it into a 2-dimensional space by using the t-SNE algorithm [95]. Fig. A.4
shows the feature distributions on two different sets of paintings (i.e., landscapes
and portraits) comparing our results with those of competitors. Each plot repres-
ents the distribution of visual features extracted from paintings belonging to a
specific set, from the corresponding images generated by our model or by one
of the competitors, and from the real photographs depicting landscapes or, in
the case of portraits, human faces. As it can be seen, the distributions of our
generated images are in general closer to the distributions of real images than to
those of paintings, thus confirming the effectiveness of our model in the domain
shift reduction.

Qualitative results

Besides showing numerical improvements with respect to state-of-the-art ap-
proaches, we present some qualitative results coming from our method, compared
to those from Cycle-GAN [171], UNIT [90], and DRIT [79]. We show examples
of landscape and portrait translations in Fig. A.5. We observe increased realism in
our generated images, due to more detailed elements and fewer blurred areas, espe-
cially in the landscape results. Portrait samples reveal that brush strokes disappear
completely, leading to a photo-realistic visualization. Our results contain fewer
artifacts and are more faithful to the paintings, more often preserving the original
facial expression. Moreover we show, through a number of qualitative examples,
that a fake-realistic image generated by our architecture is easily understandable
by state-of-the-art models, unlike its original painted version. Fig. A.6 shows
painting-generated image pairs which are both given as input to Mask R-CNN [51]
pre-trained on COCO [88]: besides improving the score for well-labeled masks,
we are also able to reduce the number of false positives (top-left and bottom-right)
and false negatives (bottom-left). Finally, Fig. A.7 illustrates bounding boxes
predicted by Faster R-CNN [112] pre-trained on Visual Genome [75]: again we
demonstrate improved results, detecting true clouds instead of pillows (top-right)
or true sky instead of water (top-left and bottom-left).
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Art2Real Cycle-GAN [171] UNIT [90] DRIT [79]
5 . .

Figure A.5: Qualitative results on portraits and landscapes.
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Original Painting Ours Original Painting Ours

Figure A.6: Segmentation results on original portraits and their translated versions.
Our method leads to improved segmentation performance of existing models on
artistic data.
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Figure A.7: Detection results on original paintings and their translated versions.
Our model leads to improved results of existing detection models on the artistic
domain.
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A.2 PersonArt

Even though there isn’t an artwork depicting yourself, there are probably some
which contain faces that look just like you, as testified by the number of people
who found their “Doppelginger” in a painting while visiting a museum' [24].
Taking inspiration from these accidental discoveries, we develop an interactive
multimedia solution which can retrieve similar faces in a collection of paintings
given a query photo from a visitor. Once the visitor has arrived at the museum, we
imagine a situation where he can take a photo of himself, and get back the name
and the location of the painting where his Doppelginger lies, as a possible starting
point for his visit.

This setting requires to detect faces in both paintings and selfies taken by the
visitors, and also to retrieve faces that look similar between the real domain (that
of photographs) and the artistic one (that of paintings). As images from these two
domains can look very different in terms of low-level statistics due to the presence
of strokes and the peculiarities of the artistic style, the task demands for a domain
adaptation stage, in which features extracted from the two domains can be merged
and compared to get the final retrieval result. Additionally, as often happens when
dealing with artistic data, there are no annotated datasets for the task, since no
dataset contains photos of real people annotated with the most similar paintings in
a given collection.

Contributions. To tackle these issues, we define a deep learning-based domain
translation strategy, which lets us recover artistic proxies of real faces while still
exploiting annotations coming from datasets with real faces. This allows us to
exploit the supervision given by datasets originally designed for tasks similar to
the one we are addressing (e.g. face recognition and attribute prediction) while
working in a domain where no supervision is given. In this regard, this is the first
work to propose a face retrieval system, trained with a shared embedding space
and with no explicit supervision, for the artistic domain.

Beyond developing a retrieval algorithm, we also design a multimedia system
for face retrieval in the artistic domain with user interaction. In our system, we let
the user customize the final result by interacting with the application. Moreover,
we let the user impose constraints on the attributes of retrieved faces, e.g. requiring
that retrieved results should be smiling, wearing a hat, having a big nose, and so
on. This in turn permits a better exploration of the space of artworks. An overview
of our approach is depicted in Figure A.8.

1https://www.thoughtco.com/art7museumfdoppelgangersf4154789
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Figure A.8: Overview of our approach: given a real face as query, we retrieve
similar faces from paintings, jointly taking into account the aesthetic similarity
and the correspondence between semantic attributes. The user can further refine
the retrieved set by providing feedback and imposing constraints on attributes.
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The proposal is evaluated on both synthetic and realistic settings, on a variety
of different datasets. Experimental evaluations will show the effectiveness of the
presented architecture, when employing different face embeddings, and the role of
both face recognition and attribute detection in retrieval performance.

A.2.1 Learning cross-domain face retrieval

As it is rarely feasible to find and annotate a variety of Doppelgingers from
paintings, almost no data exist for training a retrieval algorithm to find similar
faces between the artistic and the real domain. While sources of supervision are
available on photo-realistic images, our method needs to be aware of the domain
shift between artistic and real images, which demands different feature extractors
and a domain adaptation strategy.

To address these challenges, we define a translation approach that generates
artistic proxies of real faces and lets us exploit the annotations of datasets contain-
ing real faces. Secondly, we address the lack of training data by exploiting proxy
tasks for which training data is available and which share some of the underlying
characteristics of our task. We employ face recognition and face attribute detection,
as they are closely related to the goal of finding similar faces and define a learned
retrieval strategy which lets us recover faces across the two domains. Finally,
we also discuss how our architecture can be combined with relevant feedback
strategies to consider suggestions from the user during the retrieval phase. As an
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additional result, we provide explanation maps to highlight which regions of the
retrieved results contribute most to the final similarity.

Addressing the domain shift

To be robust to the domain shift between artistic and real images, we define a
way of converting real images to artistic proxies, which we will later employ as a
data translation strategy to train the retrieval network. Here, we take inspiration
from style transfer techniques, firstly proposed in [43]: given a realistic input face
I*? and an artistic face I, we build an artistic version of IZ, called I¢, which
preserves the content of 77 and the artistic style of 7. The generated image can
be built by back-propagating directly on its pixel values while minimizing a loss
function L that takes into account both the artistic style of /4 and the content of
I, Formally, pixel values of the input real image are updated as

oL
G G

where (%, j) represents the coordinates of a pixel on the input image, and 7 is the
step size of Stochastic Gradient Descent. To encode the artistic style of 14, we
focus on textures and employ the Gram matrix obtained from the activations of a
pre-trained CNN when applied on I4. Given a layer [ from the CNN, we define
an /5 loss function between the Gram matrix of the generated image and that of
the artistic image, as follows:

o= 1 (@0 - 6119, (A.14)
7
where G! denotes the Gram matrix obtained from activations at layer [, and G ! ()1 j
denotes its element in position (4, j). To encode the content of /%, and to make
sure that the same content is preserved in ¢, we combine the previously defined
loss with a regularization term built on top of CNN activations. Given a layer [,
we define an ¢5 loss function between raw activations as follows:

1
Be=5 > (F(IM) = FI%:,)", (A15)

(%]

where F! denotes the activations at layer /. By combining the style loss with the
reconstruction regularizer into the final loss (i.e. L = E; + aF,), and exploiting
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appropriate pre-trained layers to encode style and content, we obtain a style-
transferred version of I which matches the artistic style of 7. To encode
multi-level and multi-scale information, we also combine the activations extracted
at multiple layers and define a separate loss function for each layer.

Learning from face identities

Having obtained artistic proxies of real faces, we can train a similarity function
which is aware of the domain gap between artistic and real faces. Firstly, we
employ the preservation of face identities across domains as a proxy task. We
employ a face recognition network ¢(-) to extract face-level features and a common
embedding space, which is trained to recognize faces of the same identity across
the two domains.

To project the representations of artistic and real images in a common se-
mantic space, we perform a non-symmetric linear projection, followed by a {2-
normalization step, so that the embedding space lies on the /5 unit ball. When
projecting, we also employ a residual connection which was observed to slightly
improve residual performance during our preliminary experiments. Formally:

FalI Wa, Wg) = Lo norm (WI(L+ ¢(I4, wy))) (A.16)
fr(IRaWhW(b) = 62,norm(wl(1 + ¢(IR’W¢)))’ (A.17)

where ¢3 ;,0rm is the £ normalization function. Being D, the output dimensional-
ity of ¢ and D the dimensionality of the joint embedding space, w, and w, are
Dy, x D matrices which are in charge of storing different weights for the artistic
and real projection branches. w indicates the weights of the face recognition
network ¢.

Artistic and real faces can be compared in the joint embedding space by
computing the dot product (i.e. the cosine similarity) between their projections, so
that the similarity between a (real) query face /% and an artistic face I becomes

si(I7, 1) = fu(I) - fr(I7), (A.18)

where we drop the dependency on weights for brevity. The utility of the joint
embedding space is maximized when it exhibits suitable cross-domain matching
properties, i.e. when distances in the embedding space correspond to meaningful
distances across the artistic and the real domain, and when corresponding pairs
are matched in the embedding space. When this is verified to some extent, the
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embedding space acts as a bridge between the two domains and makes it possible
to retrieve artistic faces given real faces as queries.

In order to learn an embedding space with such properties, we leverage face
recognition datasets partially translated into the artistic domain using the strategy
outlined in Sec. A.2.1. We train the parameters of the model according to a Hinge
triplet ranking loss with maximum violation [34] and margin «, defined as

(IR, 1) = ma [ — s(I%, 14) + s(1%,14)] +
14 +
+ max [a — (IR, 14 + s(ﬁ,r“)} , (A.19)
IR +

where [z], = max(0, z). In the equation above, (I, I*) is a matching artistic-
real pair of faces (such that the identity of the person in I is the same of that
in [ A) while TR is a negative real face with respect to I“ (such that the person
in IR is different from that of T A) and T4 isa negative artistic face with respect
to I (such that the person in I A s different from that of T R). The two terms
contained in the loss require that the difference in similarity between the matching
and the non-matching pair is higher than a margin «: in the first term, this is done
by considering a real anchor and matching or non-matching artistic images; in the

latter, instead, an artistic image is used as anchor.

Learning from semantic attributes

While preserving people identities across domains is a good proxy objective for
retrieving similar faces, the network described so far might be unable to maintain
face attributes (i.e. hair style, presence of glasses, age) in retrieved elements, as
it focuses on face identification features rather than considering properties of the
face that might change over time. For this reason, we complement the common
embedding with attribute detection capabilities, to ensure that the correct attributes
are maintained in retrieved faces.

To this aim, we employ two attribute detection networks, one for the artistic
and one for the real domain. We start from a face recognition model and then feed
the activations of its last layer to n identical branches, each in charge of predicting
the presence of an attribute. In our implementation, each branch is a composition
of four fully connected layers, the last having an output size of two. Each branch
is then trained, via a categorical cross-entropy loss, to predict the presence of the
i-th attribute.
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At test time, given predictions from the two attribute networks, we binarize
them by tresholding, so to obtain a binary vector with length n for each image,
and compute a similarity function by means of their Hamming distance as follows:

Sa(IR,IA) -1 %(7(IR7177(IA))’ (AZO)
where 7(+) indicates the binarized prediction from the attribute prediction network,
‘H the Hamming distance and n the number of attributes.

The final retrieval function is a weighted combination of the similarity com-
puted through cross-domain face recognition and that computed by extracting
semantic attributes:

]. +Si(IR,IA)

s(I®, 1) = 5

+ Asq (1T, 14, (A.21)
where s;(I7, ), resulting from a cosine similarity, is projected back to the same
range of s,(I%, I4), i.e. [0, 1]. For a given ), the resulting similarity score jointly
takes into account the similarity of face traits and the similarity in attributes.

Interacting with user feedback

To foster the interactivity of the application and considering the subjectivity
of the task, we also let the user give a feedback on retrieved results. This is,
in turn, used to iteratively improve the quality of the retrieval following the
preferences expressed by the user. In particular, the user is presented with the first
k retrieved artworks and can refine the results by labelling a retrieved item either
as positive (when it is more satisfactory than the others) or negative (if completely
unsatisfactory).

As our retrieval depends on a face recognition and a face attribute branch, and
given that the face attribute branch is easily controllable from the exterior (e.g. by
asking the user which attributes he prefers to see in retrieved results), we here
focus on the face recognition branch of our architecture. We employ two relevance
feedback strategies to alter the embeddings of the query and database items. Given
an item I” labeled by the user as positive and an item /™ labelled as negative, we
firstly change the position of the query /7 in the embedding space according to
the user’s feedback, as follows:

fr(17) = af (1) + Bfa(I?) = yfa(I"). (A22)
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Figure A.9: Schema of the relevance feedback strategy. Given a query /9, an item
labeled by the user as positive /P and one labeled as negative 1™, we firstly change
the position of the query according to the user feedback. Then, we also change the
position of the database items (gray dots) employing Feature Space Warping.

Then, we also change the position of the database items employing Feature Space
Warping [19, 12]. This consists in moving all data points towards or away the
new query vector f,.(I?) according to their similarities with the user’s feedbacks.
Formally,

falI) < fo(I) +ne=WeD=FUDI( £, (19) — f,())
— ne= WeD=1alM (5, (1) — f,(I)), (A.23)

where c is a bandwith parameter. The procedure above might be repeated at
multiple feedback iterations, until the user is satisfied with at least one of the k
retrieved results. A graphical overview of the approach is depicted in Fig. A.9.

In practice, as it will be reported in the experimental section, in most cases the
initial retrieved set already contains sufficiently similar images and few feedback
iterations are enough to retrieve a significant set of similar faces. Nevertheless
the adoption of a relevance feedback strategy is useful for corner cases in which
retrieval fails and to accommodate user’s preferences.

Providing explanations

Even in the case that retrieved results are satisfactory before the user provides a
feedback or imposes any constraint on attributes, it is important to explain why a
particular artistic face was selected and presented to the user. This is particularly
significant considering that the user might struggle to perceive his own face, and
thus the retrieved results, in an objective way.

Following recent works on Explainable Al [2] and techniques on prediction
attribution [120, 127, 125, 117], for each retrieved item [ A we provide the user
with a saliency map that visually indicates which regions of I® have mostly
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contributed to the final similarity score s(I, I), as an explanation of why the
particular image was selected and presented. Ideally, a pixel in the saliency (or
explanation) map & should be high if the corresponding pixel in I has contributed
to increase the final similarity, lower otherwise.

To compute an explanation map £, we follow the Integrated Gradients ap-
proach [127] by considering the straight-line path from a black baseline image to
I and computing the gradients of the similarity score at all points along the path.
Integrated gradients are obtained by accumulating these gradients. Specifically,
a pixel (7,4) in £ is computed as the path integral of the gradients along the
straight-line path from 0 to I7(i, j), i.e.

1 R TA

IR T

&y =TE. / %da. (A.24)
a=0

i,

Given the structure of our retrieval network, the computation of the partial
derivative in Eq. A.24 requires to back-propagate on both the face identity branch
of the architecture and the face attribute branch of the network, thus providing an
explanation which takes into account the dual nature of the similarity function.

A.2.2 Datasets and implementation details
Datasets

To train and evaluate our model, we use — and in some cases extend — different
datasets which contain real photos and portraits of people of known identities. To
further validate our proposal, we also collect a large set of paintings containing
people faces that can be used in real scenarios in which the corresponding portrait
of a person is not known in advance.

Celeb-A [93]. This dataset contains more than 200, 000 face images belonging
to 10, 177 different celebrities. Each image is annotated with 40 facial attributes
ranging from the gender and hair style of the person to the presence of specific
accessories such as eyeglasses, hat, or earrings. Since its size is sufficiently large to
train a neural network, we employ this dataset to address the domain shift between
artistic and real faces and to train the proposed architecture. To address the domain
shift, we create a copy of this dataset where each image is converted into an
artistic representation of itself using the style transfer strategy. For each image,
we apply the style of a randomly selected painting from WikiArt? (i.e. different

https://www.wikiart.org/
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Figure A.10: Sample results of the style transfer strategy for addressing the domain

shift between real and artistic faces. Real photos and paintings come from Celeb-A
and WikiArt, respectively.

Result

1

images of the same identity are style-transferred with a different painting) and
use the annotations of identity and attributes to train the two branches of our
architecture. Sample results of the style transfer performed on Celeb-A are shown
in Figure A.10.

WebCaricature [60, 61]. This dataset contains real photos and caricatures of 252
different subjects. For each person, the number of caricatures ranges from 1 to
114, while the number of real photos from 7 to 59. Overall, the dataset contains
6, 042 caricatures and 5, 974 photos. In our experiments, we use the entire set of
caricatures as test set and the real photos as queries to test the effectiveness of our
approach in the case of caricatures.

IIIT-D Sketch [9]. It comprises real photos and sketches of 238 different subjects.
For each person, a single sketch, drawn by a professional sketch artist, is available.
Also for this dataset, we use all 238 sketches as test set and the corresponding real
photos as queries, thus testing our solution in the case of sketches.

DeviantArt Faces. This is a dataset that we collected and released as part of this
work. It features portraits from the DeviantArt website®, which contains art images
produced by the users, divided in different categories (e.g. photography, traditional
art, cartoons). On this website, many portraits of well known figures, especially
celebrities, are available and can be used for this task. In general, images vary from
oil or acrylic painted portraits to sketches, and lack of a photo-realistic quality.

3https://www.deviantart .com/
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To create the dataset, we start from the set of portraits described in [24]
containing 1, 088 images, one for each person, collected from DeviantArt. Since
only the original image URLs are provided, we discard all identities for which
the artistic image is no longer available obtaining a starting set of 617 portraits.
We then extend this set of images by collecting new portraits of different people
manually downloading them from this website. Overall, we obtain a set of 1, 215
different identities for which a single portrait is collected. For the real counterpart,
we download 5 different photos from Google Images for each identity that we
manually validate to ensure the identity preservation and avoid errors. Also for
this dataset, we use the entire set of portraits as test set and the real photos as
queries.

Even though this dataset contains artworks instead of caricatures or sketches,
it still cannot be used to fully test our target task, as it deals with a paired setting
in which, given a real image, artistic portraits of the same person can be retrieved.
Our task, instead, deals with an unpaired setting in which given a real face it is
only possible to retrieve similar artistic faces.

WikiArt Faces. To qualitatively validate our solution in a real and unpaired
scenario, we also collect a large set of paintings from WikiArt in which at least one
face is present. To extract face bounding boxes, we use a deep learning-based face
detector [167] that experimentally works well also on less realistic images. Then,
we manually validate all detected faces, removing any false positive detection.
Overall, we collect 15,116 artistic faces from paintings of different styles and
periods. As previously mentioned, we release both DeviantArt Faces and WikiArt
Faces.

Implementation details

Before presenting the experimental evaluations and their corresponding results,
we here provide implementation and training details of our face retrieval approach.

Face detection. The first stage of our pipeline consists of the detection of the
user face. Similarly, all database images are firstly offline fed through a face
detector [167] that extracts a bounding box for each detected face. We apply the
same face detector for both artistic and real images as we found face detections to
be quite reliable on both domains. In our experiments, we keep all detected faces
with a lower edge size of at least 100 pixels. To include the whole head, we extend
face bounding boxes by a factor of 0.4.

Style-transferred art proxies. To generate art proxies from real faces, we employ
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a pretrained VGG-19 [122] and extract features from layers convl_1, conv2_1,
conv3_1, conv4_1, and conv5_1 to encode the artistic style, and from layer
conv4_2 to encode the content of the real image. The relative weight « of content
and style loss is set to 0.02. The generated face I¢ is initialized with the realistic
face I®. During the update of 1€, all CNN parameters are kept fixed, and we
backpropagate the loss only with respect to the pixels in I“, using a L-BFGS
optimizer [170] and clamping I¢ between 0 and 1 at each iteration. We manually
check the generated images to ensure that they have sufficient visual quality and
repeat the generation with a different artistic image when needed. Noticing that
bad visual quality is often associated with an high loss during the generation,
we discard a sample and repeat the random choice until the loss is always lower
than a threshold. In our experiments, we set this threshold to 40.0 as it generally
corresponds to good generated results.

Face embeddings. To extract face feature vectors, we use and compare dif-
ferent face recognition networks, namely: SphereFace [92], VGG-Face [107],
LightCNN [155], and VGG-Face-2 [15]. The feature embedding sizes respect-
ively are of 512, 4096, 256, and 2048. For the Light-CNN network, we use its
variants composed of 9 and 29 layers. For the VGG-Face-2, instead, we use two
different versions of the model: one based on ResNet-50 [52], while the other
based on SE-ResNet-50 with squeeze-and-excitation blocks [58]. We employ the
implementations provided by the authors, when available.

Attribute prediction. We test the usage of two separate attribute prediction
models, one for artistic images and one for real photos, and that of a shared
one. In our experiments, we train the two separate models by using real photos
and style-transferred images from Celeb-A, each of them annotated with binary
attributes. When employing a shared prediction model, instead, we train it on
both real and style-transferred images. The network structure consists of n = 40
identical branches, one for each facial attribute. Starting from the feature vector
coming from a face recognition network, each branch is composed of four fully
connected layers having output sizes of 1024, 512, 64, and 2. We use dropout after
the first and second layer with a probability of 0.2 and 0.4, respectively. Also for
this model, we extract face feature vectors from different face recognition models.

Training details. To train all our models, we employ the Adam optimizer [72].
For face retrieval, we use an initial learning rate of 10~° decreased by a factor of
0.1 when recall metrics on validation set stop improving. When finetuning the
whole face embedding model, we instead use a learning rate of 10~°. The margin
of the Hinge ranking loss is set to 0.1. For attribute prediction, we employ an
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Celeb-A ‘WebCaricature IIIT-D Sketch DeviantArt Faces
Face Embedding Emb. Size Finetuning R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

SohercFace si2 3 302 440 S04 229 409 493 299 573 675 30 71 104
P v 330 469 528 268 457 542 316 620 697 38 95 132
) X 692 807 838 690 847 888 577 8L6 897 193 319 387
LightCNN-9L 236 v 69.6 80.8 842 693 850 89.0 577 812 90.6 19.6 325 39.6

3 701 827 862 709 872 916 6L1 868 9L5 205 378 464
VGG-Face 409 v 777 882 909 752 89.7 930 615 87.2 902 265 453 543
) X 878 924 936 822 916 941 526 756 838 351 519 594
LightCNN-29L 236 v 88.6 932 941 825 925 948 551 78.6 863 363 551 629
VGG-Face-2 2048 X 90.5 944 952 901 964 97.6 667 $85 923 457 654 731
(ResNet) v 90.9 946 953 896 961 977 637 885 932 459 65.6 734
VGG-Face-2 2048 X 911 946 953 916 974 985 607 87.6 927 476 670 748
(SE-ResNet) v 915 948 955 913 972 982 581 863 93.6 479 67.1 748

Table A.4: Face recognition branch performance (Recall@k) on Celeb-A, WebCa-
ricature, IIIT-D Sketch, and DeviantArt Faces.

initial learning rate of 10~# decreased by a factor of 0.8 every 3 epochs. For all
our experiments, we use a batch size of 32.

Relevance feedback. The parameters of the relevance feedback algorithms are
respectively setto: a« = 0.8, 8 = 0.1,y = 0.1,7 = 0.5, ¢ = 0.8.

A.2.3 Experimental Results

In the following, we first evaluate the performance of the two branches of our
architecture in presence of the artistic domain gap, and then assess the quality of
the retrieved results in the final application scenario, also in combination with the
user’s feedback.

Face retrieval

We evaluate the performance of the embedding space trained on the recognition of
face identities, by ablating our approach and removing the face attribute networks.
We use real faces as query and artistic or style-transferred images as database
items. Table A.4 shows the performances in terms of Recall@k (k=1, 5, 10) when
finetuning the whole feature face recognition network and when training only
the non-symmetric linear projections with residuals. For completeness, results
are reported for all the face recognition backbones we employ and on Celeb-A,
WebCaricature, IIIT-D Sketch, and DeviantArt Faces. For fairness, in the case
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Celeb-A WebCaricature DeviantArt Faces

Figure A.11: Top retrieved results from Celeb-A, WebCaricature, and DeviantArt
Faces from the face recognition branch (A = 0).

of Celeb-A we remove the style-transferred version of the query from the set of
retrievable elements.

We observe that our strategy for addressing the domain shift can produce
significantly effective results on face recognition (with R@1 greater than 90% on
some backbones), and further notice that fine-tuning the backbone is generally
beneficial. Analyzing the different backbones, VGG-Face-2 provides the best
performance, followed by LightCNN. SphereFace, instead, provides the worse
performance on our setting, with a R@1 barely over 30%. As it can be seen, the
impact of finetuning the backbone is particularly evident in the case of backbones
which have low or medium effectiveness. When comparing the performance of
the different datasets, instead, it is noticeable that recalls on III'T-D Sketch and
DeviantArt Faces are generally lower than those on Celeb-A and WebCaricature:
this is explained by the smaller average number of relevant items for each query
(i.e. only one for IIIT-D Sketch and DeviantArt Faces, around 20 for Celeb-A and
WebCaricature).

Figure A.11 qualitatively evaluates the performance of the branch by showing
the top-3 retrieved results when using queries from Celeb-A, WebCaricature and
DeviantArt Faces. As it can be seen, the branch is capable of preserving the
identity of the query most of the times, although as expected it sometimes fails to
preserve the facial attributes of the query.
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Accuracy (%)

Model Training Set Real photos ~ Style transfer
VGG-Face 88.9 85.2
VGG-Face-2 (ResNet) Real 88.5 86.3
VGG-Face-2 (SE-ResNet) 87.7 85.8
VGG-Face 88.7 87.2
VGG-Face-2 (ResNet) Style Transfer 87.9 87.0
VGG-Face-2 (SE-ResNet) 87.1 86.3
VGG-Face 88.8 87.0
VGG-Face-2 (ResNet) Joint 88.4 87.0
VGG-Face-2 (SE-ResNet) 87.4 86.4

Table A.5: Facial attribute prediction accuracy on Celeb-A.

Face retrieval using semantic attributes

In Table A.5, we report the accuracy of the attribute prediction branch of our archi-
tecture on Celeb-A. We evaluate the performance of the two attribute prediction
networks (one trained on real faces, one on style-transferred versions) on both
real and artistic images, and test also the usage of a shared attribute prediction
network for both real and artistic images. While VGG-Face tends to perform better
in almost all settings, we notice that the obtained results are positive in terms of
overall accuracy and always greater than 85% for both real and artistic settings
and with all considered backbones. Further, we also notice that using a shared
backbone does not decrease performances significantly.

Further, in Table A.6 we employ our full architecture and evaluate the role of
the two branches by varying the relative weight of the face recognition and the
attribute prediction branches. Also in this case we test on Celeb-A, WebCaricature,
IIT-D Sketch, and DeviantArt Faces, and report Recall@1 for face recognition, as
well as the attribute accuracy of the first retrieved element with respect to the query.
As it can be seen, increasing A up to 0.2 generally leads to boosting the attribute
accuracy of the retrieved elements, without significantly loosing in terms of face
recognition, thus obtaining better quality results in terms of the final similarity
and validating the appropriateness of combining face recognition and attribute
prediction.

To validate the weighted retrieval approach on our target setting (i.e. that of
a real museum), in Figure A.12 we use queries from the test set of Celeb-A and
retrieve artistic faces coming from WikiArt. As it can be noticed, A = 0.2 and
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A=0.0 A=0.1 A=0.2 A=0.5 A=1.0 A=5.0 X=10.0

Face Embedding R@1 Acc. R@1 Ace. R@1 Ace. R@1 Ace. R@1 Ace. R@1 Ace. R@1 Acc.
Celeb-A
SphereFace 33.0 854 341 87.7 328 889 260 90.5 17.3 913 6.2 91.7 6.1 91.7
LightCNN-9L 69.6 865 70.0 874 695 88.1 63.6 8.3 523 904 135 918 9.1 919
VGG-Face 7777 868 774 87.8 757 885 68.0 89.6 540 90.6 13.6 91.8 99 91.8
LightCNN-29 88.6 86.8 886 87.6 88.1 88.1 842 89.1 744 900 21.1 91.8 108 91.8
VGG-Face-2 (ResNet) 90.9 869 90.7 87.6 90.1 882 855 892 737 902 179 918 106 91.8
VGG-Face-2 (SE-ResNet) 91.5 86.7 91.2 87.6 905 882 857 893 738 903 17.7 919 10.7 919
WebCaricature
SphereFace 26.8 850 302 893 30.6 915 264 946 190 964 109 974 109 974
LightCNN-9L 693 86.8 699 885 699 89.7 648 921 53.0 943 17.7 974 151 974
VGG-Face 752 87.6 755 893 739 905 673 928 543 947 19.6 973 167 974
LightCNN-29 825 87.1 827 885 826 8.5 775 91.7 650 938 225 973 169 974
VGG-Face-2 (ResNet) 89.6 87.5 893 88.8 832 89.8 812 920 672 942 20.6 974 175 974
VGG-Face-2 (SE-ResNet) 91.3 87.5 90.7 889 89.8 89.9 83.7 921 69.0 942 215 973 178 974
IIIT-D Sketch
SphereFace 316 84.0 359 846 37.6 8.2 31.6 806 244 921 85 933 85 933
LightCNN-9L 577 840 620 858 624 870 560 887 389 90.8 11.5 932 9.0 933
VGG-Face 61.5 853 620 863 624 871 56.8 836 432 904 9.8 932 7.7 933
LightCNN-29 55.1 845 547 858 564 87.1 504 887 37.6 906 115 932 85 933
VGG-Face-2 (ResNet) 63.7 850 64.1 86.0 632 870 52.6 8.2 350 914 94 933 81 933

VGG-Face-2 (SE-ResNet)  58.1 849 61.5 862 598 870 51.7 89.0 363 913 98 933 85 933

DeviantArt Faces

SphereFace 38 841 48 8.6 50 910 40 943 27 958 1.6 965 1.6 965
LightCNN-9L 19.6 85.1 203 87.6 202 89.0 174 919 11.6 942 29 965 24 965
VGG-Face 265 86.5 263 882 253 89.6 202 922 134 943 34 965 27 965
LightCNN-29 363 857 36.6 873 358 885 302 912 200 936 42 965 2.8 965
VGG-Face-2 (ResNet) 459 86.0 456 875 43.6 888 348 915 215 942 37 965 29 965

VGG-Face-2 (SE-ResNet)  47.9 86.0 473 875 45.1 887 352 914 21.8 940 39 965 3.0 965

Table A.6: Weighted retrieval results on Celeb-A, WebCaricature, IIIT-D Sketch,
and DeviantArt Faces. Results are reported for different A values in terms of recall
and attribute preservation accuracy.

A = 0.5 offer the best result in terms of attribute preservation without significant
loss in terms of the overall face similarity. Retrieved paintings generally look
similar to the corresponding real queries and tend to preserve most of the facial
attributes, in addition to face appearance.

Additionally, we quantitatively evaluate how attributes are preserved in re-
trieved results. In Table A.7, we retrieve elements from WikiArt Faces using
our weighted retrieval and queries from the test set of Celeb-A, and measure the
attribute accuracy between the query and the top-1 retrieved element. As it can be
seen, increasing A effectively increases the preservation of attributes also in the
case of real paintings.
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Query A=0.0 =02 =0.5 Query A=0.0 =02 =0.5

Figure A.12: Top-1 retrieved element from WikiArt Faces using weighted retrieval
and different values of \.

Accuracy for different X\ values

Face Embedding 0.0 0.1 0.2 0.5 1.0 5.0 10.0
SphereFace 833 873 899 940 959 96.7 96.7
LightCNN-9 83.1 858 87.8 91.5 943 96.7 96.7
VGG-Face 83.7 864 884 921 945 96.6 96.7
LightCNN-29 83.1 854 873 912 940 96.6 96.7
VGG-Face-2 (ResNet) 83.1 855 87.6 920 947 96.7 96.7

VGG-Face-2 (SE-ResNet) 83.1 853 872 91.0 937 96.7 96.7

Table A.7: Top-1 attribute accuracy on WikiArt Faces using different values of \.

Relevance feedback and user interaction

Experimental results provided so far have shown that, when a good face recognition
backbone is chosen, the first retrieved element is generally similar enough to the
query. However, as the user is presented with the top-k retrieved elements in our
application scenario, we also need to assess the quality of the complete ranking.
For this reason, we evaluate the Average Precision (AP) of the predicted ranking,

and how it changes when the user interacts with the relevance feedback algorithm.

In the following experiments, we use a subset of the Celeb-A test set composed
of a single randomly selected image for each identity (i.e. 989 query images) and
all style-transferred images of the test set as retrievable items (i.e. around 18, 000
images). For WebCaricature, we instead perform the experiments on the whole
dataset. To simulate user interaction, at each iteration we provide the relevance
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Parameters VGG-Face-2 (ResNet) VGG-Face-2 (SE-ResNet)
a B v n c 1 5 10 1 5 10
Celeb-A

QPM 00 1.0 00 00 0.0 56.41 5620 55.98 59.68 59.64 60.15
FSW 1.0 00 00 05 038 56.23 62.74 67.24 60.02 64.23 68.32
Ours 08 0.1 0.1 05 0.8 56.56 73.63 82.23 56.68 173.00 81.53

WebCaricature

QPM 00 1.0 00 00 0.0 47.07 46.60 46.79 50.17 50.36 50.72
FSW 1.0 00 00 05 08 5894 62.15 65.67 61.49 64.34 67.43
Ours 08 0.1 0.1 05 08 71.10 81.93 86.51 72.13 81.73 85.71

Table A.8: Ablation study on relevance feedback hyper-parameters.

feedback algorithm with one positive item (randomly selected among images
which share the same identity with the query) and one negative item (randomly
selected among images which do not share the same identity with the query).

First, we evaluate the proposed relevance feedback model through an ablation
study. In Table A.8 we report the Average Precision (AP) of the predicted ranking
after 1, 5 and 10 relevance feedback iterations, when employing three different
variants of the proposed strategy: (1) Query Point Movement (QPM), where at
each iteration a new query is reformulated as the mean of positive feedbacks, that
corresponds to « = 0, f = 1.0, v = 0, n = 0; (2) Feature Space Warping (FSW)
without changing the query point, corresponding to a = 1.0, 5 = 0, v = 0; (3) the
full proposal, with both Query Point Movement and Feature Space Warping. The
experiments are conducted on both Celeb-A and WebCaricature datasets and by
using the two versions of VGG-Face-2 (i.e. ResNet and SE-ResNet). Our complete
strategy leads to the best performance according to both datasets and backbones,
with an overall AP over 80% after 10 iterations. On the contrary, when employing
only one of the relevance feedback components, the final AP is generally lower
than 60% and 70% for the QPM and FSW models respectively.

Then, in Figure A.13, we show the AP of different backbones on Celeb-A and
WebCaricature, after a variable number of relevance feedback iterations. As it can
be seen, the two versions of VGG-Face-2 obtain the best results on both datasets,
with an initial AP of 48.5% (ResNet) and 48.6% (SE-ResNet) on Celeb-A, and
65.5% (ResNet) and 67.2% (SE-ResNet) on WebCaricature. In both cases, the
initial AP is further increased by 15 points after four relevance feedback iterations,
reaching more than 70% and 80% on Celeb-A and WebCaricature respectively.

130

Deep video understanding for human actions, multimedia and computing



APPENDIX A. OTHER RESEARCH ACTIVITIES
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Figure A.13: Relevance feedback evaluation with different backbones on Celeb-A
and WebCaricature (A = 0.2).
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Figure A.14: Weighted retrieval results with attribute constraints (A = 0.2).

Additionally, in Figure A.14 we show some qualitative examples of using
attributes as a further constraint to retrieval. In this case, the user is presented
with the list of all possible attributes and can constraint the retrieval so that the
retrieved set contains samples with a given attribute.
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1. Matteo Tomei, Lorenzo Baraldi, Marcella Cornia, and Rita Cucchiara. What
was Monet seeing while painting? Translating artworks to photo-realistic
images. In Proceedings of the European Conference on Computer Vision
Workshops, 2018.

2. Matteo Tomei, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Art2real:
Unfolding the reality of artworks via semantically-aware image-to-image trans-
lation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

3. Matteo Tomei, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Image-
to-image translation to unfold the reality of artworks: an empirical analysis. In
Proceedings of the International Conference on Image Analysis and Processing.
Springer, 2019.

4. Matteo Tomeli, Lorenzo Baraldi, Simone Calderara, Simone Bronzin, and Rita
Cucchiara. Rms-net: Regression and masking for soccer event spotting. In

Proceedings of the International Conference on Pattern Recognition. IEEE,
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Cucchiara. Video action detection by learning graph-based spatio-temporal
interactions. Computer Vision and Image Understanding, 206:103187, 2021.
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6. Matteo Tomei, Lorenzo Baraldi, Simone Bronzin, and Rita Cucchiara. Es-
timating (and fixing) the effect of face obfuscation in video recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2021.

7. Matteo Tomei, Lorenzo Baraldi, Giuseppe Fiameni, Simone Bronzin, and Rita
Cucchiara. A computational approach for progressive architecture shrinkage in
action recognition. Software: Practice and Experience, 2021.

8. Marcella Cornia, Matteo Tomei, Lorenzo Baraldi, and Rita Cucchiara. Match-
ing faces and attributes between the artistic and the real domain: the personart
approach. ACM Transactions on Multimedia Computing, Communications and
Applications, 2021.
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