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Optimal Coordination of Automated Vehicles at
Intersections: Theory and Experiments

Robert Hult , Mario Zanon , Sebastien Gros , and Paolo Falcone

Abstract— In this paper, we present a bilevel, model predictive
controller for coordination of automated vehicles at intersections.
The bilevel controller consists of a coordination level, where
intersection occupancy timeslots are allocated, and a vehicle level,
where the control commands for the vehicles are computed.
We establish persistent feasibility and stability of the bilevel
controller under some mild assumptions and derive conditions
under which closed-loop collision avoidance can be ensured with
bounded position uncertainty. We thereafter detail an imple-
mentation of the coordination controller on a three-vehicle test
bed, where the intersection-level optimization problem is solved
using a distributed Sequential Quadratic Programing method.
We present and discuss results from an extensive experimental
campaign, where the proposed controller was validated. The
experimental results indicate the practical applicability of the
bilevel controller and show that safety can be ensured for large
positioning uncertainties.

Index Terms— Distributed optimization, intersection coordina-
tion, model predictive control (MPC), networked mobile systems.

I. INTRODUCTION

THE recent years have seen a rapid development in the
field of automated driving, and such technologies are

expected to penetrate the consumer market in the industrialized
world in the upcoming decades. With the introduction of
vehicle-to-vehicle (V2V) communication, cooperative auto-
mated vehicles (CAVs) offer new possibilities to increase both
safety of passengers and efficiency of the traffic system. In
particular, communication-based, cooperative strategies can
augment the capabilities of autonomous vehicles and allow
them to jointly resolve difficult and safety critical-traffic
situations without relying on current traffic rules. Locations
where roads cross or merge form a particularly problematic
subset of the traffic system. It has, for instance, been reported
that 21% of the traffic fatalities and 43% of the crashes
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occur in and around intersections in the European Union [1],
and similar numbers have been found in USA. The risks
associated with traffic intersections require a strict regulation
of the involved vehicles, which is currently performed using
traffic lights, signs, and right-of-way rules. In part due to the
regulation, intersections tend to form bottlenecks in the traffic
system and are commonly one of the causes of congested
traffic. As a consequence, energy is wasted (e.g., through
deceleration/acceleration and idling [2]), and improvements to
traffic flow typically require an expansion of the infrastructure.
The introduction of CAVs enables a potential remedy; rather
than using the current regulations, the CAVs could be con-
trolled using automated coordination algorithms, which could
guarantee collision avoidance, increase energy efficiency, and
optimize the traffic flow. The CAVs are then envisioned to be
able to travel through intersections at high speeds in tightly
packed, interlocking streams. This requires the coordination
algorithms to act on the individual vehicles rather than con-
trolling the traffic flows through, e.g., adaptive traffic signal
timings.

The problem of coordinating CAVs at traffic intersections
poses a number of challenges [3], [4]. For instance, a coordi-
nation algorithm must rely on potentially lossy wireless com-
munication [5], utilize imperfect measurements (in particular
for positioning), and handle various forms of perturbations at
the vehicle level. The coordination algorithm must therefore
be executed in closed loop, and the control of the vehicles
continuously be adjusted to incorporate up-to-date information
about the vehicle states and the surroundings.

In this paper, we utilize an optimal control (OC) formulation
of the coordination problem at intersections, first presented
in [6], and propose its application to closed-loop, receding
horizon control. In particular, we propose a bilevel controller
consisting of: 1) an intersection-level control loop that allo-
cates and updates optimal and collision-free timeslots during
which each vehicle is allowed to occupy the intersection and
2) lower level control loops that provide optimal actuation
commands for all vehicles given the allocated timeslots.
We provide a study of the nominal closed-loop system and
present conditions enforcing persistent feasibility and stability.
We also propose a modification of the controller, which allows
it to retain persistent feasibility in the presence of bounded
perturbations, and present conditions ensuring robust collision
avoidance. Furthermore, we describe an implementation of the
proposed controller on an experimental test bed consisting of
three communicating, automated vehicles. The implementation
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uses the Sequential Quadratic Programing (SQP) algorithm
proposed in [7] and [8], which is solved in a semidistributed
fashion using V2V communication. We thereafter present
results from an experimental campaign, where we demonstrate
the proposed controller’s behavior and discuss the consistency
of its performance as well as its ability to reject perturbations.

A. Related Work

The last decade has seen a number of contributions to the
study of coordination algorithms in the context of automated
vehicles, in most cases focusing on intersections. In the early
work of Dresner and Stone [9], a system was presented, where
the oncoming vehicles request a reservation of timeslots,
within which they are allowed to pass the intersection, to a cen-
tralized intersection manager (IM). The IM thereafter performs
a forward simulation of the relevant vehicles and rejects the
reservation only if a collision is predicted to occur. In this case,
the vehicle slows down and sends new reservation requests. A
different and provably safe timeslot-reservation-based IM was
proposed in [10], where the timeslot reservations are improved
incrementally as the system evolves with the purpose of
minimizing travel time. In [11], another method is presented,
where an IM allocates timeslots to the vehicles by minimizing
the total timeslot overlap. In particular, the IM uses constant
acceleration predictions to determine when the vehicles would
occupy the intersection and attempts to find the accelerations
that give the smallest timeslot overlap. In [12], an algorithm
is proposed, where a central entity first decides the crossing
order and timeslots of the vehicles using results from polling
system theory and, thereafter, computes their respective control
commands. Gregoire and Frazzoli [13] propose a similar
scheme, where the central component schedules occupancy
timeslots within which the vehicles thereafter are controlled
to pass the intersection at maximum speed. It is shown that
the efficiency of the coordination scheme with respect to travel
time delay is inherited from the scheduling algorithm used. It
is noted in [14] that the gains of coordination diminish as the
vehicles come closer to the intersection, and a method that
controls the vehicles long before the intersection is proposed.
In particular, the authors of [14] suggest to first cluster the
vehicles into platoons and, thereafter, coordinate the inter-
section crossing of these platoons rather than the individual
vehicles. The intersection coordination problem is addressed
from a different angle in [15], where a supervisory control
structure is proposed, which ensure collision avoidance. The
proposed controller is designed to override the inputs of the
drivers (or driver agents) when those take the system to a state
from which a collision is unavoidable.

Recently, several authors have proposed OC and model
predictive control (MPC) as frameworks in which the coor-
dination problem can be formulated. For instance, in [16],
an OC-based algorithm is developed, where the vehicles decide
sequentially how the intersection should be crossed. In this
scheme, each vehicle is required to find the optimal plan
that avoids collision with the vehicles that precedes it in the
decision order. The algorithm is applied to receding horizon
control in a distributed fashion in [17]. Another distributed

MPC scheme was proposed in [18], where the vehicles utilize
the previous predictions from other vehicles to enforce col-
lision avoidance. More precisely, each vehicle is assigned
a priority and solves an OC problem, where the previously
predicted positions of higher priority vehicles are used as
constraints to ensure safety. Similarly, Kim and Kumar [19]
propose to find a crossing order through a rule-based priority
assignment and only let a vehicle cross the intersection if its
future path is not occupied by a vehicle with higher priority.
The priority assignment is incorporated in an MPC scheme
through manipulation of terminal state constraint, which is set
to a point beyond the intersection if the vehicle is allowed to
cross or to a point before the intersection if it must come
to a stop. Qian et al. [20] propose an MPC scheme that
assumes a given crossing order and include constraints that
restrict the control inputs of each vehicle to lie in an order-
preserving set of inputs. This is shown to guarantee nominal
collision avoidance. An MPC scheme for intersection crossing
is proposed in [21], in which risk minimization is chosen as
the objective. This leads to solutions where the vehicles cross
the intersection with large margins with respect to collisions
when possible, and small margins only when necessary. A
continuous-time optimal controller for intersection coordina-
tion based on indirect methods is proposed in [22], where
the crossing order is assumed to be given by a first-in first-
out heuristic. Other related works include [23], where the
problem is posed using a spatial rather than temporal OC
formulation and [24] that uses a robust MPC formulation of
the problem in the context of collision avoidance between
automated and nonautomated vehicles. For a more thorough
review of the state of the art on coordination problems for
automated vehicles, the reader is referred to the two excellent
survey papers [25], [26] and the references therein.

B. Contributions

The control strategy proposed in this paper builds on the OC
formulation of [6] and [7] with the following novel contribu-
tions: 1) the formulation of a bilevel MPC for coordination
at intersections; 2) an analysis of the stability and persistent
feasibility properties of the bilevel controller; 3) an extension
of the controller that provides robustness against perturbations
and facilitate a practical implementation; 4) a description of
a real-time implementation of the bilevel controller that use
distributed computation; and 5) an experimental validation of
the algorithm and an analysis of experimental results.

In contrast to the existing coordination strategies, we high-
light that our approach uses a general formulation of the
problem, which does not require specific motion profiles and
can make use of a large class of prediction models, constraints,
and objective functions. In addition, we are not aware of
any other MPC-based coordination strategy, where the con-
ditions for stability and persistent feasibility are established.
Although experimental results on intersection coordination
and collision avoidance algorithms have been reported before
(see [27], [28], or [29]), this is, to the best of our knowledge,
the first time an MPC-based coordination scheme has been
validated on real vehicles. We point out that extensive com-
parisons with other existing approaches are beyond the scope
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Fig. 1. Schematic of the scenarios considered in this paper. The arrows show
the fixed paths of the vehicles, and the red square illustrates the zone inside
the intersection, where collisions can occur.

of this paper and will be considered in the future research.
Finally, while details on how the involved optimization prob-
lems are solved are indeed interesting and relevant, such details
are largely left out of this paper, and we instead focus on the
closed-loop control aspects. The interested reader is instead
referred to [7] and [8].

C. Outline

The remainder of this paper is organized as follows.
In Section II, we state the intersection coordination OC
problem and introduce its application to receding horizon
control. In Section III, we provide an analysis of the closed-
loop system and present conditions under which the con-
troller is both persistently feasible and stabilizes the system.
In Section IV, we present a modification to the controller,
which ensures persistent feasibility in the presence of pertur-
bations, and present conditions under which robust collision
avoidance can be ensured. In Section V, we describe the
experimental setup used to validate the controller and present
results from an experimental campaign. Finally, this paper is
concluded in Section VI with a discussion of the contributions
and final remarks.

II. PROBLEM FORMULATION

In this paper, we are considering scenarios, such as that
shown in Fig. 1, in which Na CAVs need to cross an inter-
section. We assume that no noncooperative entities (vehicles,
pedestrians, and so on) are present.

A. System Model

We assume that the vehicles move along predefined and
fixed paths and model their motion along these paths as

ẋ c
i (t) = f c

i

(
xc

i (t), uc
i (t)

)
(1)

where xc
i (t) ∈ R

ni denotes the state and uc
i (t) the control, and

f c
i (·) is continuously differentiable. Without loss of generality,

we assume that the position pc
i (t) of the vehicle along its

path is a state so that xc
i (t) = (pc

i (t), zc
i (t)), where zc

i (t) ∈

R
ni−1 collects all nonposition states. The states and controls

are subject to constraints hi (xc
i (t), uc

i (t)) ≤ 0 capturing, e.g.,
actuator saturation and speed limits. We assume that (1) and
hi (xc

i (t), uc
i (t)) ≤ 0 are such that ṗc

i (t) > 0 and f c
i (·) is such

that pc
i (t) does not depend on uc

i (t) directly.
We describe the intersection as the interval [pin

i , pout
i ] on

the path on each vehicle i and define the times t in
i , tout

i when
the vehicle enters and exits the intersection through

pc
i

(
t in
i

) = pin
i and pc

i

(
tout
i

) = pout
i . (2)

A sufficient condition for collision avoidance is that

tout
i ≤ t in

j or tout
j ≤ t in

i ∀i, j, i �= j. (3)

In our formulation, we will use the discretized dynamics

xi,k+1 = fi (xi,k , ui,k , ts) (4)

where xi,k ∈ R
ni and ui,k ∈ R

mi are the state and control
of vehicle i at time tk = kts , where ts is the sampling
time. Here, fi (x, u, τ ) denotes the solution to (1) at time
t = τ , starting from x at t = 0 and using uc

i (t) = u,
t ∈ [0, τ ]. In the discrete-time setting, the evolution of the
vehicle position is described by a sequence (pi,0, pi,1, . . .)
rather than a continuous trajectory, thus requiring modification
of the definition of t in

i , tout
i in (2). To this end, we introduce

the following continuous-time representation of the position
in the discrete-time setting:

pi(t, wi ) := [1, 01×ni−1] fi (xi,k , ui,k , t − kts) (5)

where wi := (xi,0, ui,0, xi,1, ui,1, . . .), k = �t/ts�, and
�·� denotes rounding down to the closest integer. That is,
the position at t ∈]kts, (k + 1)ts[ is obtained through the
integration of continuous-time dynamics from state xi,k using
input ui,k , where k is dependent on t . For a given wi

satisfying (4), pi (t, wi ) is continuous in t , and we define
t in
i , tout

i in the discrete-time case through pi (t in
i , wi ) = pin

i
and pi (tout

i , wi ) = pout
i . The discretization of the position

and its properties is discussed at length in [7]. We clarify the
above-mentioned definitions by Example 1.

Example 1 (Double-Integrator Dynamics): The vehicle is
modeled as a point on the path coordinate, and its motion
is described by p̈c

i (t) = uc
i (t). The discrete-time representa-

tion is

xi,k+1 =
[

1 ts
0 1

]
xi,k +

[1

2
t2
s

ts

]

ui,k (6)

where xi,k = [pi,k, vi,k ]�, vi,k being the velocity along the
path. In this case, using k = �t/ts�, (5) becomes

pi (t, wi ) = pi,k + (t − tk)vi,k + 1

2
(t − tk)

2ui,k . (7)

Remark 2: We remark that the shape of the predefined paths
does not influence how the scenario is modeled. Straight paths
are not a necessity, and scenarios where some vehicles travel
on turning paths can be described similarly.
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B. Open-Loop Optimal Coordination

In this section, we introduce the OC formulation of the
intersection coordination problem, first presented in [6]. Due
to, e.g., finite horizon effects, model mismatches and perturba-
tions acting on the real system, it is convenient to differentiate
between the open- and closed-loop trajectories. We therefore
denote the open-loop prediction of the state at time (k+n)ts as
x̄i,k+n , recalling that the actual state of the vehicle at time tk is
xi,k . Moreover, we denote the predicted intersection occupancy
timeslot as Ti = (t in

i , tout
i ) and define the stacked timeslots as

T := (T1, . . . , TNa ) as well as the stacked state of all vehicles,
Xk := (x1,k, . . . , xNa ,k). For a given time slot Ti , the predicted
optimal state and control trajectories of vehicle i at time tk
are obtained as the minimizer of the following finite-time OC
problem:

Vi (xi,k , Ti )

:= min
wi

V f
i (x̄k+Ni )+

Ni−1∑

n=0

�i (x̄i,k+n , ūi,k+n ) (8a)

s.t. x̄i,k = xi,k (8b)

x̄i,k+n+1 = fi (x̄i,k+n , ūi,k+n ), n ∈ I[0,Ni−1] (8c)

hi (x̄i,k+n , ūi,k+n ) ≤ 0, n ∈ I[1,Ni ] (8d)

pi
(
t in
i , wi

)− pin
i ≤ 0 (8e)

pout
i − pi

(
tout
i , wi

) ≤ 0. (8f)

where V f
i (·) is the terminal cost, �i (·) is the stage cost,

both continuously differentiable, Ni ∈ N is the prediction
horizon, wi := (x̄i,k , . . . , x̄i,k+Ni , ūi,k , . . . , ūi,k+Ni−1), and
I[a,b] = {a, a + 1, . . . , b} for integers a and b. Here, and in
the remainder of this paper, we write fi (x, u, τ ) = fi (x, u)
when τ = ts .

We let Ti (xi,k) be the set of timeslots Ti for which the
parametric optimization problem (8) is feasible for xi,k at
time tk and define the intersection crossing order as S :=
(s1, . . . , sNa ). The crossing order S is a permutation of the
set I[1,Na ], such that vehicle si crosses the intersection before
vehicle si+1. The optimal collision-free timeslots at tk are
obtained as the solution to

V (Xk) := min
T ,S

Na∑

i=1

Vi (xi,k , Ti ) (9a)

s.t. Ti ∈ Ti (xi,k), i ∈ I[1,Na ] (9b)

tout
si
≤ t in

si+1
i ∈ I[1,Na−1] (9c)

S ∈ perm(I[1,Na ]) (9d)

where perm(I[1,Na ]) denotes the set of all permutations of
the index set I[1,Na ]. The timeslot allocation problem (9)
thus includes both finding the order S, in which the vehicles
cross, and the continuous-time schedule T , which minimizes
the aggregated cost of all vehicles. We note that due to the
constraint (9d), the problem (9) is combinatorial.

C. Receding Horizon Optimal Coordination

A closed-loop coordination is achieved by applying
(8) and (9) in a receding horizon fashion. Consequently,
at each time instant k, the optimization problems (8) and (9)

Fig. 2. Schematic of the bilevel control structure for one vehicle. The
coordinator is in closed loop with all vehicles in the same way.

are solved, and each vehicle applies the resulting minimizing
control action ū∗i,k . As illustrated in Fig. 2, we implement the
closed-loop controller as a bilevel feedback structure, where
the current state of a vehicle is used not only to compute that
vehicle’s own control action but, through the timeslots, also
the feedback laws of all other vehicles. In particular, denoting
the solution to (9) at Xk as T∗(Xk), the closed-loop dynamics
for vehicle i is

xi,k+1 = fi
(
xi,k , ū∗i,k

(
xi,k , T ∗i (Xk)

))
. (10)

In the following, we refer to the receding horizon application
of (8) as the vehicle-level control loop, differentiating it from
the intersection-level control loop, consisting of the calculation
of T∗(Xk) through (9). Next, we study the properties of the
nominal bilevel controller and establish persistent feasibility
and stability for the closed-loop system (10).

III. CLOSED-LOOP STABILITY AND

PERSISTENT FEASIBLITY

We first introduce the OC problem

V u
i (xi,k) := min

wi
(8a), s.t. (8b)− (8d) (11)

which is the vehicle-level optimization problem (8) without
the position constraints (8e) and (8f). This corresponds to
the optimal uncoordinated case, where the collisions are not
explicitly avoided. Furthermore, we denote Ni := {xi,k | zi,k =
zref

i }, where zref
i is a reference, such that Ni ⊂ Hi and

Hi := {xi,k | ∃ui,k : hi (xi,k , ui,k ) ≤ 0}. In addition, we define
the distance from a point a to a set A as

|a|A = min
b∈A
||a − b|| (12)

and say that a vehicle state is stabilized to A if |xi,k |A → 0
as k →∞ [30]. Finally, we make Assumptions 3 and 4.

Assumption 3 (Stability and Persistent Feasibility of Unco-
ordinated Vehicle-Level MPC): The vehicle-level MPC for-
mulated based on (11) satisfies �i (xi,k , ui,k ) ≥ α1,i (|xi,k |Ni )

for all feasible xi,k and ui,k and V f
i (xi,k) ≤ α2,i (|xi,k |Ni )

for xi,k ∈ Hi , where α1,i and α2,i are K∞-functions.
Moreover, there exists a controller κ f (xi,N ), such that
V f

i ( f (xi,N , κ f (xi,N )))−V f
i (xi,N ) ≤ −�i (xi,N , κ f (xi,N )) and

fi (xi,k , κ
f (xi,k)) ∈ Hi for all xi,N ∈ Hi .
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Assumption 4 (Regularity of Vehicle-Level Optimal Control
Problems): For all xi,k , such that Problem (11) is feasible,
linear independence constraint qualifications and the second-
order sufficient conditions hold at the solution.

Neither Assumption 3 nor 4 is restrictive. Assumption 3
states that the receding horizon application of (11) is persis-
tently feasible and implies that V u

i (·) is a Lyapunov function
for the closed-loop system so that the vehicle state is stabilized
to the set Ni . That is, if no other cars are present and no
coordination is required, the vehicle will track the reference
zref

i . Assumption 4 is standard in the MPC context and means
that MPC problem (11) is well posed.

A. Persistent Feasibility

While a receding horizon controller based on (11) is per-
sistently feasible by Assumption 3, this is not necessarily
the case for the receding-horizon application of (8). This is
due to the presence of the position constraints (8e) and (8f).
We note, in particular, that due to (5), (8e) and (8f) are
formulated using the state and control at time index kin

i =�t in
i /ts� and kout

i = �tout
i /ts�, respectively. That is, at time

instant k, (8e) and (8f) constrain the predicted state and
control at nin

i = kin
i − k and nout

i = kout
i − k time steps

in the future. Consequently, as the system evolves and k
increases, nin

i and nout
i decrease if t in

i and tout
i are constant,

and the constraints (8e) and (8f) are “shifted" toward the
beginning of the prediction horizon. These issues are addressed
in Proposition 5, where its proof is given in Appendix A.

Proposition 5 (Nominal Persistent Feasibility): Suppose
that Assumption 3 holds that the vehicle states Xk at time
tk are such that a feasible solution to (9) exists and that the
bilevel controller (10) is applied to the vehicles. Then, the opti-
mization problems (8) and (9) are feasible at time tk+n , n > 0.

B. Nominal Stability

By Assumption 3, an MPC based on (11) stabilizes the
vehicle state to the set Ni ∀i . However, the assumption does
not directly imply stability in the coordinated case, where the
MPC is based on (8), due to the introduction of the constraints
(8e) and (8f). Consider, for instance, the case where the closed-
loop system is initialized so that xi,k ∈ Ni , and collisions
occur if the vehicles are not coordinated. By Assumption 3,
the uncoordinated closed-loop system will remain in Ni by
use of an MPC based on (11). However, for a collision-
free timeslot schedule T , xi,k can be forced to deviate from
Ni to satisfy (8e) and (8f) when an MPC based on (8) is
used. Consequently, for collision-free stabilization to Ni , both
V u

i (xi,k) and Vi (xi,k , Ti ) can increase, and therefore, they
are not Lyapunov functions for the coordinated closed-loop
system. For this reason, the notion of stability is modified,
and we consider stabilization to the sets Qi = Ni ∩Pi , where
Pi = {xi,k | pi,k ≥ pout

i }. We formalize the stability result in
Theorem 6, where its proof is given in Appendix B.

Theorem 6 (Stability of the Bilevel Controller): Suppose
that the timeslots are updated through the solution of (9)
and Assumptions 3 and 4 hold. Then, the bilevel controller
stabilizes Xk to Q =∏Na

i=1 Qi , where
∏

denotes the Cartesian

Fig. 3. Illustration of the feasible sets of (8) for a given Ti using the double-
integrator system of Example 1 and ts = 0.1. The set z j is the set of states
xi,k for which (8) has a solution when t in

i −tk = j ts . The red star is a one-step
prediction from the blue star and the red box the bounds of a modest uniform
uncertainty (±1 km/h and ±0.25 m), stemming from, e.g., model mismatch,
measurement errors, or external perturbations. This figure illustrates that since
z j is shrinking as the vehicle approach the intersection, infeasibility of (8) is
more likely.

product. Moreover, the bilevel controller is stabilizing if:1)
only T is optimized and S is fixed; 2) T and/or S optimized
at a lower rate than the vehicle-level problems; or 3) both T
and S are fixed.

IV. ROBUSTNESS WITH RESPECT TO PERTURBATIONS

The vehicle-level MPC Problem (8) differs from stan-
dard MPC problem formulations in that the position con-
straints (8e) and (8f) force the system to be at a prescribed
position at a given time. In the presence of perturbations,
e.g., process noise, or measurement errors, satisfaction of
such constraints is difficult in practice, and the persistent
feasibility guarantees of the nominal case no longer hold.
Since violations of the position constraints (8e) and (8f) by
the vehicles impliy a risk of collisions inside the intersection,
the issue must be resolved for the bilevel controller to be
useful in practice. In this section, we present a relaxation of the
bilevel control formulation, which ensures persistent feasibility
of the optimization problems (8) and (9). Furthermore, we also
state the conditions under which the closed-loop system is
collision-free.

A. Ensuring Optimization Problem Feasibility

As described in Section III-A, the position con-
straints (8e) and (8f) move closer to the first prediction stage
as the vehicle approachs the intersection and tk approaches t in

i
(and tout

i ). As a result, the number of stages at which the
controller has authority to affect the satisfaction of the position
constraints (8e) and (8f) decreases. As illustrated in Fig. 3,
this causes the set of states for which the vehicle-level
MPC problem (8) has a solution for a given Ti to shrink
as the closed-loop system evolves. Consequently, with mea-
surement uncertainty, external perturbations, and model-plant
mismatches, it is likely that (8) becomes infeasible for some
xi,k . In particular, the risk increases when the vehicle is close
to the intersection. To ensure feasibility of the optimization
problems (8) and (9) along the closed-loop system trajectories,
we propose the following relaxation of the constraints of the
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vehicle MPC problem (8), where σi = (σ in
i , σ out

i ) are slack
variables and ρi (·) is an exact penalty function:

V r
i (xi,k , Ti ) := min

wi ,σi
ρi (σi )+ (8a) (13a)

s.t. (8b), (8c), (8d) (13b)

pi
(
t in
i , wi

)− pin
i ≤ σ in

i (13c)

pout
i − pi

(
tout
i , wi

) ≤ σ out
i (13d)

σ out
i ≥ 0, σ in

i ≥ 0. (13e)

The solution to (13) has the following properties.
Proposition 7 (Characteristics of Solutions to the Relaxed

Vehicle Problem): Provided that ∇ρi (0) is large enough,
the relaxed problem has the following properties.

1) Whenever there exists a feasible solution for the original
problem (8), the relaxed problem (13) yields the same
primal solution.

2) Otherwise, the relaxed problem (13) yields a solution
that minimizes ||σi ||∞.

Proof: Claim 1) is well-known, and a proof can be
found in, e.g., [31, Th. 14.3.1]. However, we could not find
a proof for 2) in the literature and, therefore, provide one in
Appendix C, where we formalize the result as Theorem 13.

�
We note that with the relaxation of the constraints, the set

of xi,k for which (13) is feasible is the same as for the unco-
ordinated problem (11), i.e., the timeslot Ti does not affect
feasibility. As a consequence, the set of feasible times Ti (xi,k)
of the modified problem becomes R

2, and the intersection-
level problem (9) can be written as

min
T ,S

Na∑

i=1

V r
i (xi,k , Ti ) s.t. (9c), (9d). (14)

Consequently, the use of (13) instead of (8) relaxes (9), and the
following result holds for the characteristics of its solutions.

Proposition 8 (Characteristics of Solutions to the Relaxed
Timeslot Allocation Problem): If for all i , ρi (·) is chosen so
that ∇ρi (0) is large enough, the solution to the relaxed timeslot
allocation problem (14) coincides with the solution to (9),
whenever a solution to (9) exists. When a solution to (9) does
not exist, the solution (S, T) to (14) is such that the largest
constraint violation in (13) among all vehicles is minimized.

Proof: The intersection-level problem (9) can equivalently
be stated as

min
T ,S,σ,W

Na∑

i=1

ρi (σi )+
Na∑

i=1

(8a) (15a)

s.t. (13b)− (13e), i ∈ I[1,Na ] (15b)

tout
si
≤ t in

si+1
, i ∈ I[1,Na−1] (15c)

S ∈ perm(I[1,Na ]) (15d)

where σ := (σ1, . . . , σNa ) and W := (w1, . . . , wNa ). The
result follow from Proposition 7. �

This means that if a previously feasible timeslot schedule T
has become infeasible for one or more vehicles, the timeslot
allocation controller (14) utilizes the authority it has over all
vehicles to, if necessary, find the (T , S) that results in the
smallest constraint violation ‖σ‖∞.

Fig. 4. Illustration of the enlargement of the intersection resulting in a
tightening of constraints (13c) and (13d).

B. Ensuring Closed-Loop Collision Avoidance

Although the relaxation of (8e) and (8f) ensures persistent
feasibility of (13), the closed-loop system is not guaran-
teed to satisfy the collision avoidance constraints. However,
from Proposition 7, we know that the modified bilevel con-
troller minimizes the violations of the position constraints
(8e) and (8f). If an upper bound can be found to the largest
violation of (8e) and (8f) by the closed-loop system, (13) can
be modified to ensure the collision avoidance of the closed-
loop system. In particular, consider the following modifica-
tion of (13):

V t
i (xi,k , Ti ,�i )

:= min
wi

(8a) (16a)

s.t. (8b), (8c), (8d)(13e) (16b)

pi
(
t in
i , wi

)− pin
i +�i ≤ σ in

i (16c)

pout
i −�i − pi

(
tout
i , wi

) ≤ σ out
i (16d)

where �i ≥ 0 is a tightening of the constraints, corresponding
to an enlargement of the intersection, as illustrated in Fig. 4.
We then have the following.

Proposition 9: Suppose that T satisfies (9c) for some S
and that ∀i , at t0, (16) is feasible for (xi,k , Ti ,�i ). Then,
the closed-loop application of (16) ensures that no collisions
occur if �i is chosen so that �i ≥ σ in

i and �i ≥ σ out
i ∀k

and ∀i .
Proof: Denoting the position of the closed-loop system

at time t in
i as p̄i(t in

i ), we have p̄i(t in
i ) ≤ pin

i − �i + σ in
i ,

which due to �i ≥ σ in
i gives that p̄i (t in

i ) ≤ pin
i . Similarly,

due to �i ≥ σ out
i , we have that p̄i(tout

i ) ≥ pout
i . Consequently,

p̄i(t) ∈ [pin
i , pout

i ] ⇒ t ∈ [t in
i , tout

i ] and t �∈ [t in
i , tout

i ] ⇒
p̄i(t) �∈ [pin

i , pout
i ]. Since [t in

i , tout
i ] ∩ [t in

j , tout
j ] = ∅, j �= i

due to (9c), p̄i (t) ∈ [pin
i , pout

i ] ⇒ p̄ j (t) �∈ [pin
j , pout

j ], i �=
j ensuring that no collisions can occur for the closed-loop
system. �

Remark 10: While easy to include in the control formu-
lation, finding a tight upper bound �i can be challenging,
as it includes characterizing the closed-loop systems response,
in particular the satisfaction of constraints (13c) and (13d)
to model mismatch, measurement errors, and external
perturbations.

V. EXPERIMENTAL VALIDATION

In this section, we present experimental results from a
three-way intersection scenario, obtained from an implemen-
tation of the bilevel controller on a test setup consisting of
three automated vehicles equipped with GPS positioning and
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V2V communication systems. For ease of implementation,
the intersection-level problem (9) was solved for the fixed
order S during the experiments. However, we illustrate, in sim-
ulation, the behavior of the closed-loop system when the
intersection-level control loop includes computation of S.

A. Experimental Setup

The experimental validation of the bilevel, closed-loop
controller was performed at the Asta Zero test track outside
Gothenburg, Sweden, on a heterogeneous test setup consisting
of three different Volvo vehicles. In all experiment runs,
the vehicles were initialized in configurations that would
lead to collisions if no action was taken. From these initial
configurations, the bilevel controller was used to control the
vehicles through the intersection. The experimental validation
was carried out in two different modes: first, in a parallel
configuration on a highway stretch, where the intersection
was represented by a mutually exclusive segment of the road,
shown in Fig. 5(a), and second, in an actual intersection, shown
in Fig. 5(b). In particular, the parallel configuration was used
to safely carry out the validation at higher speeds. Due to
collision risks, the controller was only validated at speeds up
to 50 km/h and with added safety margins in the crossing
configuration. We emphasize that there were no differences in
the controller between the two configurations.

1) Test Platform: The test setup consisted of a central
computer, acting as a coordinator, and three Volvo Cars: one
Volvo S60 D5 turbo-diesel, one Volvo S60 T6 petrol-turbo,
and one Volvo XC90 T6 petrol-turbo. Each vehicle were
commanded through an interface to a low-level controller,
which tracked commanded acceleration inputs. The vehicles
were equipped with real-time kinematic GPS receivers, wheel
encoders and inertial measurement units, and V2V communi-
cation devices from RENDITS [33]. Furthermore, to improve
positioning accuracy, the measurements were fused using
extended Kalman filters (EKFs), as described in [29]. The
1-D position pi,k was constructed by projecting the current
estimate of the vehicle’s global position onto a reference path
along the road. Finally, the clocks in the three vehicles were
synchronized through the GPS receivers.

2) Prediction Model and Objective Function: For simplic-
ity, we used the double-integrator dynamics introduced in
Example 1 as the prediction model in (8). The choice of such a
simple model removed the need to identify any parameters of
the real systems and allowed the same controller to be used on
all cars. Furthermore, the path constraints (8d) were 0 ≤ vi,k ,
ui,k ≥ umin

i = −3 m/s2, and ui,k ≤ umax
i = 1.6 m/s2 ∀i, k,

where the input bounds reflect bounds present in the vehicles’
actuation interfaces. Finally, the objective was chosen as

Ji (wi ) =
(
vi,N − vref

i

)2
Q f

i +
Ni−1∑

i=0

(
vi,k − vref

i

)2
Qi + u2

i,k Ri

(17)

where Ri , Qi , and Q f
i are positive constants and vref

i is a
reference speed. To ensure that the vehicle-level controller
remained feasible throughout the experiments, the relaxed for-
mulation (13) was used to compute the control commands ui,k .

The exact penalty function

ρi (σi ) = 1

2
σ�i σiφ

q
i + φi 1�σi (18)

was used, where φi and φ
q
i are positive weights. With this

prediction model, objective, and penalty function, (13) and (8)
are the convex quadratic programs (QPs).

3) Algorithmic Implementation: The solution to (13)
and (8) was obtained using the dedicated MPC-QP-solver
HPMPC [34]. To solve the fixed-order timeslot allocation
problem (9), we employed the semidistributed SQP method
developed in [7] and [8], which we briefly describe here.
As noted in [7], the constraint (9b) can be written as
gi(xi,k , Ti ) ≤ 0, ∀i and evaluated by solving four linear
programs. With Li (xi,k , Ti , λi ) = Vi (xi,k , Ti )+λ�i gi (xi,k , Ti ),
where λi is the Lagrange multiplier corresponding to (9b) and
λ = (λ1, . . . , λNa ), the Lagrange function of (9) is

L(T ,λ,μ) =
Na∑

i=1

Li (xi,k , Ti , λi )+
Na−1∑

i=1

μi
(
tout
si
− t in

si+1

)
(19)

where μi is the Lagrange multiplier corresponding to the
precedence constraint (9c) and μ = (μ1, . . . , μNa−1). To solve
the intersection-level problem, (9), the iteration

T+ ← T + α�T (20a)

λ+ ← λ(1− α) + αλQ P (20b)

is performed until an exit criterion is met. Here, �T =
(�T1, . . . ,�TNa ) and λQ P = (λi,Q P , . . . , λNa ,Q P) are the
primal-dual solution to the QP

min
�T

Na∑

i=1

1

2
�T�i Hi�T�i +∇Ti V

r
i (xi,k , Ti )

��Ti (21a)

s.t. gi (xi,k , Ti )+∇Ti gi(xi,k , Ti )
��Ti ≤ 0, i ∈ I[1,Na ] (21b)

tout
si
≤ t in

si+1
, i ∈ I[1,Na−1] (21c)

where λi,Q P is the Lagrange multipliers of the con-
straint (21b). Furthermore, the step size α is in each iter-
ation chosen through the line search procedure described
in [8], and Hi is the possibly regularized Lagrange function
Hessian ∇2

Ti
Li (xi,k , Ti , λi ). The SQP procedure is summa-

rized in Algorithm 1. Note that while a central coordinator
is used, most computations, consisting of the evaluation of
∇Ti V

r
i (xi,k , Ti ), gi (xi,k , Ti ),∇Ti gi (xi,k , Ti ), and Hi , are per-

formed in parallel on-board the vehicles, and the result is sent
to the coordinator using the V2V communication. In particular,
the communication between the coordinator and the vehicles
is performed at lines 3, 5, and 7 in Algorithm 1. The only
computations performed by the coordinator are the solution
of the small SQP subproblems (21). We remark that if the
order S is not fixed, the coordinator is required to solve (9) for
both S and T . In this case, the problem is combinatorial, and
while distribution is still possible, the problem’s exponential
complexity is not affected by this fact. An approximate method
that finds an order using the information of the first SQP iterate
is presented in [35].
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Fig. 5. Photographs of the two different configurations used in the experimental validation. (a) Photograph of the parallel configuration used in the experimental
validation. The white lines mark the beginning and end of the intersection, pin

i and pout
i , and collisions are thereby avoided when only one vehicle is between

the two white lines at a given time. (b) Aerial photograph of the crossing configuration used in the experimental validation. The white lines before the square
representing the intersection illustrate the different safety margins employed. Video material from the experiments can be found in [32].

Algorithm 1 Schematic description of the Distributed SQP.
The arguments of the functions are removed for brevity.

4) Parameters: The horizon and sampling time were set to
Ni = 200, ts = 0.1 s. Moreover, the size of the intersection
was varied between and within the two different configura-
tions: in the parallel configuration it was set to 10.7 m, and
in the crossing configuration 17 and 12 m, corresponding to
two different safety margins [see Fig. 5(b)].1 Ri , Qi , Q f

i , and
vref

i were varied between different experiment runs.
Due to the latencies introduced by the communication

system and limitations of the hardware platforms used,
the intersection-level control loop was closed at a lower rate
than the vehicle-level control loop (8), and (9) was solved
every tc

s = 3 s. In particular, in most cases, the time required
by Algorithm 1 ranged between 0.5 and 1.5 s. To compensate
for this large delay, the timeslots, which were to be applied
at time ktc

s , were obtained by solving the intersection-level
problem (9) between (k−1)tc

s and ktc
s using a prediction of the

system state X at ktc
s . Finally, the intersection-level controller

was applied until one vehicle reached a distance of 50 m before
the intersection, after which the timeslot schedule was frozen.

B. Results

We index the vehicles with 1 for the XC90 and 2 and 3 for
the two S60’s, respectively, and consider scenarios, where the
crossing order is S = (1, 2, 3).

1The GPS antennas were mounted on the center of each vehicle, and the
beginning and end of the intersection used in (8e) and (8f) were therefore set
to pin

i − Li /2 and pout
i + Li /2, respectively, where Li is the length of the

vehicle. Satisfaction of (8e) consequently meant that the front of the vehicle
was before pin

i at t in
i , and satisfaction of (8f) meant that the rear of the vehicle

had passed pout
i at tout

i . This can be observed in Fig. 5(a).

1) Example Scenario: In one scenario, all vehicles were
controlled to be at 200 m from the intersection at the same time
while moving at 50 km/h, after which the bilevel controller
was applied. The objective function weights were set to Q1 =
100, R1 = 10, and Q2 = Q3 = 10, R2 = R3 = 1, and the
reference velocity to vref

i = 50 km/h, i = 1, 2, 3. The scenario
was thereby one where all vehicles started at the reference
velocity, equidistant from the intersection, so that all vehicles
would enter the intersection at the same time and cause a
three-way collision in the uncontrolled case.

Due to the weights, vehicles 2 and 3 were expected to
use more control effort and deviate more from the refer-
ence than vehicle 1 in order to avoid collisions. As seen
in Fig. 6(b) and (c), this was indeed the case: vehicle 1
increased its velocity slightly from the reference, whereas
vehicles 2 and 3 made larger deviations and required larger
accelerations The position trajectories in Fig. 6(a) illustrates
that the bilevel level controller thereby satisfied the precedence
constraints (9c). As emphasized by the cutout of Fig. 6(a),
the timeslots of the closed-loop trajectories were packed
tightly together but not overlapping. Since not controlling the
vehicles would have resulted in a complete overlap, the tight
packing of the timeslots additionally illustrates that with the
objective function (17), the vehicles are not actuated more than
necessary to avoid collisions.

Due to sensor noise, model-plant mismatch, and external
disturbances, the one-step predictions and measured actual
evolution of the vehicles differed. In addition to being contin-
uously counteracted in the lower control loop, this discrepancy
prompted the intersection-level control loop to perform adjust-
ments to the timeslot schedule T as the vehicles approached
the intersection. The difference between the optimal T at times
ktc

s and (k + 1)tc
s was, in general, small and decreased as

the vehicles got closer to the intersection. An illustration of
the change in the optimal timeslot schedule T is provided
in Fig. 6(d), clearly demonstrating this fact.

2) Perturbed Example Scenario: To highlight the ability of
the controller to counteract perturbations, the same scenario
was executed with a large input disturbance introduced to
vehicle 1. After the bilevel controller had been initialized,
the driver of the first vehicle pressed the brake pedal and
thereby suspended the MPCs authority to control that vehicle
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Fig. 6. Example from nonperturbed scenario. (a) Distance to intersection; the
solid horizontal lines indicates the beginning and end of the intersection, and
the dashed lines the scenario starting time and position. The colored blocks
illustrate the timeslot used by each vehicle. (b) Velocity. (c) Acceleration.
(d) Timeslot changes; difference in the optimal t in

i between two executions
of the intersection level control loop, as sent out by the coordinator.

between t = 1.8 s and t = 3.8 s. The closed-loop system
response is shown in Fig. 7. Fig. 7(d) illustrates the reaction of
the intersection-level control loop to the disturbance and shows
larger adjustments to the timeslots of all vehicles compared
to the unperturbed case [see Fig. 6(d)]. Recall that since the
time required to solve the intersection-level problem (9) is
nonnegligible, the timeslot applied at ktc

s is computed using
information known at (k − 1)tc

s (see Section V-A for details).
Although the disturbance starts at t = 1.8 s, the timeslot
adjustments are therefore not applied until t = 6 s

The difference between the actual acceleration resulting
from the driver intervention and the acceleration commanded
by the MPC is illustrated in Fig. 7(c). Note that the vehicle-
level control loop at first attempts to counteract the perturba-
tion with large acceleration commands to satisfy the timeslots
commanded at t = 0 and t = 3. When the recomputed timeslot
is applied shortly after t = 6, the control effort commanded
by the vehicle-level controller loop of vehicle 1 is reduced
noticeably, while it is increased for vehicle 3. This illustrates

Fig. 7. Example from a perturbed scenario. (a) Distance to intersection.
(b) Velocity. (c) Acceleration. (d) Timeslot changes. The gray bar illustrates
the time during which the MPC controller lost authority of vehicle 1 because
the driver overrode the system by pressing the brake pedal. The difference
between the actual acceleration ai,k and the MPC command ui,k for vehicle
1 and 3 is illustrated in (c).

the ability of the intersection-level control loop to distribute
the effort needed to counteract the perturbation between the
vehicles according to the objective (17).

To further demonstrate the capabilities of the bilevel con-
troller, results from a simulation of the perturbed scenario,
where the intersection-level control loop includes recomputing
the order s, are given in Fig. 8. In particular, the vehicles are
initialized as in the experimental scenario, and the recorded
perturbation from the experiment is applied to the simulated
vehicle 1. Here, the vehicles were simulated using a double
integrator with first-order actuator dynamics, i.e., ṗi(t) =
vi (t), v̇i (t) = ai (t), and ȧi (t) = (1/τ)(ui(t) − ai (t)), where
τ = 0.5 s for the two S60s and τ = 1 s for the larger XC90,
and the combinatorial problem of finding S was solved by
enumeration. The prediction model used and the remaining
parameters of the simulated vehicles (e.g., input bounds and
objective weights) were set according to Section V-A2. In this
specific scenario, the perturbation caused the crossing order to
change to S = (2, 1, 3) at t = 3, resulting in a change in T
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Fig. 8. Example from perturbed simulated scenario including recalculation of the order S. The disturbance from Fig. 7 is applied to the simulated vehicle 1.
(a) Distance to intersection. (b) Timeslot changes. (c) Velocity. (d) Acceleration.

that is significantly larger than in the experiment. The effect
of the large delays present during the experiment can be seen
by comparing Figs. 7(d) and 8(b); in the simulated scenario,
the intersection-level control loop can react instantaneously to
the disturbance and start to counter it already at t = 3.

3) Controller Consistency and Constraint Violations:
As illustrated in Fig. 7(a), the introduction of the large pertur-
bation did not significantly degrade the ability of the closed-
loop system to satisfy the precedence constraints (9c). During
the experimental campaign, more than 75 runs were per-
formed, which involved speeds ranging from 30 to 90 km/h,
more than 20 different sets of parameters (objective function
weights, starting configurations, and so on), and, in several
cases, larger perturbations. With a few exceptions, the bilevel
controller consistently managed to command the vehicles so
that little or no overlap of the timeslots occurred. In 56.7%2

of the evaluations, the position constraints (8e) and (8f)
were satisfied by the closed-loop system trajectories, whereas
in the remaining 40.2%, the constraint violation remained
below 0.7 m. In 3.1% of the cases, the constraint viola-
tions were larger than 1 m as the result of infeasible ini-
tial conditions, too large perturbations close to the intersec-
tion or experimental parameter tuning. While these runs were
considered failures, the results were expected. The distribution
of the constraint violations are shown in Fig. 9, and we note
especially that for 90% of the cases, where the constraints
were not satisfied, the violations remained below 0.4 m.
We want to highlight that these violations consist of the front
of the entering vehicle protruding a few decimeters into the
intersection while a few decimeters of the rear of the leaving
vehicle is still inside.

2The data were collected during 75 experimental runs, each with three
involved vehicles and two position constraint evaluations per vehicle. Of the
450 total evaluations, 255 satisfied the constraints, 181 had a violations smaller
than 1 m, and 14 had a violation larger than 1 m.

Fig. 9. Constraint violation statistics from 75 experiment runs, corresponding
to 450 evaluations of the position constraints (8e) and (8f) by the closed-loop
system. In 255 out of 450 evaluations, the constraints were satisfied by the
closed-loop system. A histogram of the constraint violations in the remaining
cases is given here. The plot only shows the data from successful runs, where
the violation was smaller than 1 m.

In Fig. 10, we illustrate the consistency of the controller by
reporting the position trajectories of the closed-loop system
in 34 of the successful experimental runs performed in the
parallel configuration. Fig. 10 shows an overlay of the system
trajectories in the configuration spaces of the vehicle pairs
(1, 2) and (3, 2) for each experiment so that the x-axis is the
position of vehicle 1 and 3 and the y-axis is the the position
of vehicle 2. The intersection is represented as the rectan-
gle R = ([pin

1 , pout
1 ]× [pin

2 , pout
2 ])∪ ([pin

3 , pout
3 ]× [pin

2 , pout
2 ]),

and consequently, if a trajectory is inside R, more than one
vehicle is inside the intersection at the same time. The small
constraint violations reported in Fig. 9 are noticeable in Fig. 10
as the overlaps of the trajectories on the corners of R.

4) Robustness Aspects: The fact that the constraint violation
statistics shown in Fig. 9 are collected over a range of
parameter settings, including speeds and intersection sizes,
is an indication that the accuracy of the constraint enforcement
is a property of the closed-loop system. Such data could
therefore be used to determine an appropriate size of the con-
straint tightening parameter �i , as discussed in Section IV-B.
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Fig. 10. Position trajectories from 34 experimental runs with three vehicles.
The trajectories of the system in the position space of vehicles 1 and 2 are
shown in red lines, whereas the corresponding trajectories for vehicles 2 and
3 are shown in blue lines. The gray rectangle R = ([pin

1 , pout
1 ]×[pin

2 , pout
2 ])∪

([pin
3 , pout

3 ] × [pin
2 , pout

2 ]) corresponds to the intersection, and consequently,
when a trajectory is inside it, at least one involved vehicle violates one of the
position constraints (8e) and (8f). The red square illustrates an intersection,
where the width is 1.4 m less than R in all dimensions.

In particular, the red square in the cutout of Fig. 10 illustrates
the results that would have been obtained if the intersection
was 1.4 m shorter on all roads, while the vehicles were
controlled using (16) with � = 0.7 m. As can be seen in
Fig. 10, the smaller intersection would, in this case, have
been completely mutually exclusive for all experimental runs,
and the closed-loop system would have satisfied all position
constraints (8e) and (8f).

5) Causes of Constraint Violation: Several factors most
likely contributed to the small constraint violations observed
during the experimental campaign. For instance, the simplistic
prediction model used failed to capture important aspects of
the vehicles’ behavior, causing the predicted and actual state
evolution to differ. In particular, the actual actuator dynamics
contained several unknown nonlinearities due to, e.g., turbo-
lag, gear shifts, and the vehicle interface logics, and exhibited
different dynamical behavior in acceleration and braking. This
is clearly seen in Fig. 11(a), which displays the commanded,
ui,k , and actual, ai,k , acceleration for a successful run. Note,
in particular, the delayed first-order behavior between t = 0 s
and t = 1 s, the dead-zone between t = 7 s and t = 13.5 s,
and the delayed but significantly faster dynamics at t = 14 s
resulting from the application of the friction brakes. The
corresponding velocity profile is given in Fig. 11(b), where an
open-loop prediction is shown for comparison. The effects of
the nonmodeled dynamics are clearly visible in the difference
between the open- and closed-loop trajectories. Moreover,
the upper bound on admissible actuation commands, umax

1 ,
was erroneously identified for vehicle 1 and the vehicle accel-
eration saturated at 1 m/s2 rather than 1.6 m/s2, which was

Fig. 11. Illustration of the model-plant mismatch. (a) Demanded, ui,k , and
actual acceleration, ai,k , where the difference between the two highlights
the nonmodeled dynamics. (b) Corresponding velocity profile, where the
prediction of v̄i,k at t = 5, 9, 13 is displayed.

Fig. 12. Position trajectories of one experimental run illustrating the
positioning issues in vehicles 2 (black line) and 3 (green line). Vehicle 2
suffered recurring large position errors, which are encircled here. For refer-
ence, more accurate position trajectories are given as red lines, which have
been reconstructed off-line based on raw measurements acquired during the
experimental run.

Fig. 13. Desired and actual acceleration of vehicle 2 corresponding to the
position trajectories in Fig. 12. The effects of the faulty position estimates are
visible as spikes in the demanded acceleration between t = 12 s and t = 17 s.

used in (8). Due to these model-plant mismatches, the nominal
prediction could satisfy the position constraints (8e) and (8f),
while the actual system would cause constraint violations.

Another explanation to the occurrence of constraint viola-
tions lies in the accuracy of the positioning of vehicles 2 and 3,
which was poor at times. This is illustrated in Fig. 12, where
the position estimate used by the controller is overlayed
on an off-line, reconstruction of the position with higher
accuracy. The better positioning of vehicle 1 is noticeable in
the constraint violation statistics; in 90% of the evaluations
of the positioning constraints (8e) and (8f) for vehicle 1,
the violations were smaller than 0.18 m, compared to 0.38 and
0.41 m for vehicles 2 and 3. The issues were most pronounced
in vehicle 2, where measurement errors on the order of meters
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Fig. 14. llustration of controller behavior for vehicle 1 with a penalty
function, where �ρi (σ i) is too small. (a) Distance to intersection; The light-
red colored blocks illustrate the times during which more than one vehicle
is inside the intersection (i.e., where the collision avoidance constraints are
violated). (b) Acceleration.

occurred with a frequency of 1 Hz, which is visible around
times t = 15.5 s and t = 16.5 s in Fig. 12. The error occurred
due to faulty parsing of the data supplied by the GPS receiver,
which caused the same position measurements to be used more
than once in the update of the EKF. Due to this, the vehicle
temporarily appeared stationary.

6) Constraint Violation Minimization: Due to the large
positioning errors in vehicle 2, the control commands were
occasionally computed based on positions that were further
away from the intersection than the actual system state.
To ensure satisfaction of the position constraints (8e) and (8f),
the controller attempted to compensate the faulty position
by commanding higher acceleration from the vehicle. The
behavior can be seen in Fig. 13, where spikes in the demanded
acceleration are present with frequency of 1 Hz, corresponding
to the occurrence of the large positioning errors. Moreover,
the amplitude of the spikes increases as the distance to the
intersection decreases since the control required to counteract
the perturbations has to performed over fewer and fewer
control stages. This exemplifies the reduction of the control
authority discussed in Section IV.

In particular, at t = 15.47 s, a control command is computed
based on the position p2,k = −4.168 m and velocity v2,k =
48.79 km/h, while the vehicle is required to have passed
pin

2 = −2.314 m at t in
2 = 15.484 s. The acceleration required

to satisfy the position constraints (8e) far exceeds the upper
bound on the input, and the MPC problem (8) is therefore
infeasible. The situation thus constitutes an example of the
infeasibility issues discussed in Section IV-A and illustrated
in Fig. 3. However, since the relaxed formulation of the
vehicle-level MPC (13) was used, the infeasibility issue is
avoided. Instead, Fig. 13 demonstrates the constraint-violation
minimization mode of the controller, which was discussed
in Section IV-A; that is, while no input exists such that the

Fig. 15. Illustration of controller behavior for vehicle 1 with a penalty
function, where ∇ρi (σi ) is large enough. (a) Distance to intersection. (b)
Acceleration. Note the discrepancy between the actual and modeled input
saturation level umax

1 in (b), as discussed in Section V-B3.

position constraints (8e) and (8f) are satisfied, the controller
saturates the input in order to make the constraint violation as
small as possible. As discussed in Section IV-A, the controller
minimizes the constraint violation, provided that ∇ρi (σi ) =
φi 1 + φ

q
i σi [see (18)] is chosen large enough. To illustrate

the effect on the controller performance, we provide results
from a run, where φi was set too small (φi = 100), and
from a run, where φi was adequately chosen (φi = 1000)
in Figs. 14 and 15, respectively. In both cases, the bilevel
controller is applied from the same starting configuration,
which is such that significant control effort is needed to ensure
collision avoidance. As illustrated in Fig. 14(b), with too small
φi , the controller does not utilize the full control authority
to avoid collisions. With φi chosen large enough, the input
is instead saturated, as shown in Fig. 15(b). As a result,
the closed-loop controller with small φi causes significant
violations of the collision avoidance constraints, as illustrated
in Fig. 14(a), while an adequately chosen φi results in only
minor constraint violations, as shown in Fig. 15(a).

VI. CONCLUSION AND DISCUSSION

In this paper, we first proposed, analyzed, and established
the properties of a bilevel, closed-loop controller for coor-
dination of automated vehicles at intersections. In particular,
we proved that the bilevel controller is nominally stable and
persistently feasible under mild assumptions and showed that
the controller can be modified to ensure robust persistent feasi-
bility and collision avoidance. We thereafter demonstrated the
applicability of the controller through experimental validation.
In particular, we showed that the controller performance was
consistent, it managed to counteract both large and small
perturbations, and the violations of the collision avoidance
constraints were small. We also discussed the causes of the
constraint violations and illustrated how collision avoidance
could be guaranteed by use of constraint tightening.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HULT et al.: OPTIMAL COORDINATION OF AUTOMATED VEHICLES AT INTERSECTIONS: THEORY AND EXPERIMENTS 13

A. Comments on the Experimental Results

The precision observed in the enforcement of the position
constraints (8e) and (8f) during the experimental campaign
was surprising, considering the simplicity of the prediction
model and the measurement noise. Most likely, inclusion of
actuator dynamics in the prediction model would have yielded
even higher precision, as would more accurate positioning.
While access to accurate positioning systems is a strong
assumption outside the experimental domain, we emphasize
that the controller presented in this paper could handle large
uncertainties by appropriately choosing the constraint tight-
ening parameter �i . Most likely, a practical implementation
of the controller would even utilize margins well beyond
the constraint satisfaction accuracy, if nothing else than for
the confidence of the passengers. Furthermore, we want to
emphasize that although the intersection-level control loop
exhibited large delays in its reaction to perturbations, this
was largely a consequence of implementation specifics that
could be improved. For instance, while Algorithm 1 usually
required 1–1.5 s to converge, well below 0.1 s was spent on
actual computations. The remaining time was largely spent
in various waiting or idling states and, to a small extent,
on communication. As a final comment on the experimental
results, we note that hardware availability limited the number
of vehicles to 3. The interested reader can find simulations,
including more cars in [7], [8], or [35].

B. Outlook and Future Research

As opposed to many other intersection coordination
schemes, the controller presented in this paper does not depend
on a specific dynamic equation [see (8c)], specific constraints
[see (8d)], nor a specific objective function [see (8a)]. The
coordination scheme therefore allows a designer to directly
incorporate complex models of vehicle dynamics and select an
objective to a priori specify the desired vehicle behavior. Due
to this flexibility, the controller presented in this paper could
be used as a component in a future intelligent transportation
system, where a higher level traffic flow controller adjusts
the objective of the coordination online, based on the current
conditions. This could, for instance, be a prioritization of
intersection throughput during rush hour traffic and an empha-
sis on energy efficiency in low-intensity situations. However,
the stability properties discussed in this paper are relevant for
batch-type problems, where no new vehicles arrive at the inter-
section as the system evolves. With continuously oncoming
vehicles, additional notions of stability and feasibility become
important. For instance, it is well known in the field of traffic
flow control that current intersections have limits on the rate
of cars that can be served without the formation of unstable
queues. Such limits will exist also when the intersections are
controlled by the approach proposed in this paper, and a future
direction of research is to study the behavior of the proposed
controller on a larger scale with continuously oncoming cars.
In particular, we plan to conduct a comparative study between
the proposed controller and both current regulatory mech-
anisms (i.e., traffic lights) and other coordination schemes
in this setting. While the proposed controller is optimal in

the performance metric (8a) by construction, a quantification
of the performance advantage is necessary. Moreover, while
the coordination controller presented in this paper does not
rely on a specific objective function, Assumption 3 imposes
some restrictions on its characteristics. It is our intention to
incorporate more general, economic objectives to the coordi-
nation controller in the future work, and we have presented
an initial study in [36]. Due to the safety-critical reliance
on V2V communication, a through study of the impact on
the controller by lossy or intermittent communication is also
necessary. Communication deficiencies will, in practice, limit
the sampling frequency of the intersection-level control loop
and, in case of distributed solution of (9), also how the
problem is solved. Therefore, an adaptation of the algorithm
that explicitly accounts for limited-capacity communication
channels is highly desirable.

Finally, while we did not discuss algorithms for the solution
of (9) in depth in this paper, we are currently developing
a distributed primal-dual interior point method tailored for
the problem with a fixed order S. It is our intention to
use this as the basis of a distributed mixed-integer nonlinear
program (NLP) solver to address (9), including finding the
order S.

APPENDIX

A. Proof of Proposition 5

A timeslot schedule T 0 = (T0,1, . . . , T0,Na ), which is
feasible in (9) for the state Xk , exists by assumption. We label
Problem (8) at tk with parameters (xi,k , T0,i ) as Pi,k and sim-
ilarly label Problem (8) at tk+1 with parameters (xi,k+1, T0,i )
as Pi,k+1. By assumption, Pi,k is feasible, and we denote its
solution w∗i,k = (xi,k , ū∗i,k , x̄∗i,k+1, . . . , x̄∗i,k+Ni

). Since we are
considering the nominal case, we have that xi,k+1 = x̄∗i,k+1
and need to establish that Pi,k+1 is feasible. Assumption 3
gives that wi,k+1 = (xi,k+1,ū∗i,k+1, . . . , x̄∗i,k+N , κ f (x̄i,k+N ),

f (x̄i,k+N , κ
f

i (x̄i,k+N ))) satisfies (8b)–(8d) in Pk+1. Further-
more, in Pi,k , (8e) constrains the predicted state and controls
nin

i time steps into the future. In Pi,k+1, on the other hand, (8e)
constrains the predicted state and controls nin

i − 1 time steps
into the future. However, since the nin

i − 1:th entry of wi,k+1

is identical to the nin
i :th entry of w∗i,k , wi,k+1 satisfies (8e) in

Pi,k+1. The same applies for (8f), and consequently, wi,k+1 is
feasible in Pi,k+1. Since Pk+1 is feasible ∀i , (9) has at least the
solution T 0 at tk+1. We note that by construction, a feasible
solution exists to (8) with (xi,k+1, T ∗i (Xk+1)), recalling that
T∗(Xk+1) is the optimal solution to (9) for Xk+1.

In summary, if (9) has a solution for Xk at tk , (8) is
feasible ∀i at tk . Due to this, (9) also has a solution at Xk+1,
whereby (8) are feasible ∀i at tk+1. The result for k+n, n > 1
and persistent feasibility follows.

B. Proof of Theorem 6

To prove the nominal stability of the bilevel controller,
we first establish the stability of the receding horizon controller
for a single vehicle and a fixed timeslot Ti .

Proposition 11 (Stability of One Vehicle Under a Fixed
Timeslot): Suppose that Assumptions 3 and 4 hold and that
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a feasible solution to (8) exists for (xi,k , Ti ). Then, the MPC
based on (8) stabilizes the vehicle state to Qi = Ni ∩ Pi .

Proof: Consider the candidate Lyapunov function

V̄i,k(xi,k , Ti ) = Vi (xi,k , Ti )+ α1,i
(

max
(
0, pout

i − pi,k
))

. (22)

Since the feasibility set of (8) is a subset of the feasibility
set of (11), we obtain

Vi (xi,k , Ti ) ≥ V u
i (xi,k) ≥ α1,i (|xi,k |Ni ) (23)

where the last inequality is due to Assumption 3, which
implies that V u

i (·) is a Lyapunov function for the closed-loop
system [30]. Then, there exists a K∞-function ᾱ1,i (|xi,k |Qi ) ≤
V̄i (xi,k , Ti )

ᾱ1,i (|xi,k |Qi ) := α1,i

(
1

2
|xi,k |Qi

)
(24a)

≤ α1,i

(
1

2

(|xi,k |Ni +max
(
0, pout

i − pi,k
))

)

(24b)

≤ α1,i
(|xi,k |Ni )+ α1,i

(
max

(
0, pout

i − pi,k
))

(24c)

≤ V̄i (xi,k , Ti ) (24d)

where (24c) follows from the property α(a + b) ≤
α(2a) + α(2b) of K∞-functions, and (24b) is due to
|x |Ni + max(0, pout

i − pi,k) = |x |Ni + |x |Pi ≥ |x |Qi .
3 We

now prove the existence of a K∞-function ᾱ2,i (|xi,k |Qi ) ≥
V̄i (xi,k , Ti ) by showing that V̄i (xi,k , Ti ) = 0 for xi,k ∈ Qi

and that V̄i (xi,k , Ti ) is continuous on ∂Qi . First,
we note that V u

i (xi,k) = Vi (xi,k , Ti ) for xi,k ∈ Pi .
Due to Assumption 3, V u

i (xi,k) = 0,∀xi,k ∈ Ni ,
which gives that V̄ (xi,k , Ti ) = Vi (xi,k , Ti ) = 0,∀xi,k ∈ Qi .
Since α1,i (·) and max(·, ·) are continuous, continuity of
V̄ (xi,k , Ti ) is inherited from V (xi,k , Ti ). There are two
cases of interest when xi,k ∈ ∂Qi : 1) when xi,k is in
the interior of Pi and 2) when xi,k ∈ ∂Pi . For case 1,
we note that V̄i (xi,k , Ti ) = Vi (xi,k , Ti ) = V u

i (xi,k), and that
continuity follows from Assumption 3. For case 2, (8e) is
removed, and (8f) holds with equality at the initial state,
i.e., pi,k = p̄i,k = pout

i . In directions of increasing pi,k ,
i.e., to the interior of Pi , tout

i and (8f) are removed from the
problem. Continuity of Vi (xi,k , Ti ) in this direction follows
from Vi (xi,k , Ti ) = Vi (xi,k) on ∂Pi and continuity of Vi (xi,k)
is due to Assumption 3. We now turn to directions, where
pi,k < pout

i and tout
i are such that (8) is feasible. Standard

results from parametric programing establish that the optimal
value function of a parametric NLP is continuous in the
problem parameters if the Mangasarian–Fromovitz Constraint
Qualification (MFCQ) holds [37, Th. 4.2]. Unfortunately,
MFCQ fails at ∂Pi , i.e., continuity does not directly follow
from the formulation (8). However, MFCQ does hold if the
position component of the initial condition constraint (8b)
is moved to the objective using an exact penalty function,
and its optimal value function is continuous in (pi,k , tout

i ).
By Theorem 12, this relaxed formulation is equivalent to (8),

3Note that a triangle inequality holds for |a|A; if A = B × C, where × is
the Cartesian product, we have that |a|B + |a|C ≥ |a|A.

and therefore, the continuity of Vi (xi,k , Ti ) follows. Finally,
we prove the decrease of V̄i (xi,k , Ti ) along the closed-
loop system trajectories, which follows from the standard
arguments in MPC, found in, e.g., [30]. We denote the solution
to (8) at tk as w∗i := (x∗i,0, . . . , x∗i,Ni

, u∗i,0, . . . , u∗i,Ni−1). Since
xi,k+1 = x∗i,1 and Proposition 5 states that closed-loop system
is persistently feasible, we have that

Vi (xi,k+1, Ti ) ≤ Vi (xi,k , Ti )− �i
(
xi,k , u∗i,0

)

− V f
i

(
x∗i,Ni

)+ �i
(
x∗i,N , κ

f
i

(
x∗i,Ni

))

+ V f
i

(
fi
(
x∗i,Ni

, κ
f

i

(
x∗i,Ni

))
. (25)

By Assumption 3, this gives

Vi (xi,k+1, Ti )− Vi (xi,k , Ti ) ≤ �i
(
xi,k , u∗i,0

)
. (26)

By construction, pi,k is nondecreasing in k, and there-
fore, α1,i (max(0, pout

i − pi,k)) is nonincreasing along the
closed-loop system’s trajectories. Consequently, V̄i (xi,k , Ti )
is a Lyapunov function for the closed-loop system, and
|xi,k |Qi → 0 as k →∞. �

We now provide the proof for Theorem 6.
Proof of Theorem 6: Consider the Lyapunov function

candidate

V̄ (Xk) =
N∑

i=1

V̄i (xi,k , Ti ). (27)

First, by Proposition 11, the terms in (27) are such that
V̄ (Xk) = 0,∀Xk ∈ Q and such that V̄ (Xk) is continuous
on ∂Q. Consequently, ∃ K∞-function α̃2,i (|Xk|Q) ≥ V̄ (Xk).
Second, ∃K∞-function α̃ for all feasible T such that

Na∑

i=1

ᾱ1,i (|xi,k |Qi ) ≥ α̃

( Na∑

i=1

|xi,k |Qi

)

≥ α̃(|Xk |Q) (28)

and since

V̄ (Xk) =
N∑

i=1

V̄i (xi,k , Ti ) ≥
Na∑

i=1

ᾱ1,i (|xi,k |Qi ) (29)

we have that V̄ (Xk) ≥ α̃(|Xk|Q). Finally, we note that
for a fixed timeslot schedule T , Proposition 11 ensures the
decrease of V̄ (Xk) since ∀i , V̄i (xi,k , Ti ) decreases. Denoting
the solution to (9) at Xk as T ∗i,k , i ∈ I[1,Na ], we have by
optimality that
Na∑

i=1

Vi
(
xi,k+1, T ∗i,k+1

) ≤
Na∑

i=1

Vi (xi,k+1, Ti ) <

Na∑

i=1

Vi (xi,k , Ti ).

(30)

Since this holds for all feasible Ti , then∑Na
i=1 Vi (xi,k+1, T ∗i,k+1) <

∑Na
i=1 Vi (xi,k , T ∗i,k). Finally,

since ∀i , α1,i (max(0, pout
i − pi,k)) is nonincreasing, V̄ (Xk)

must be decreasing also when the intersection-level loop is
closed, and T is recomputed. Consequently, V̄ is a Lyapunov
function for the bilevel closed-loop system, and |Xk |Q → 0
as k → ∞. Besides the case where T and S are optimized,
the decrease condition (30) holds also when T is optimized
and S is fixed when S is optimized and/or T is updated
more rarely than ts , as well as when both T and S are fixed.
Consequently, the bilevel controller is stabilizing under these
conditions as well. �
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Note that if S is updated using an external heuristic,
the bilevel controller is stabilizing if for S, T can be found,
which ensures (30). This is particularly important as the solu-
tion of the combinatorial problem (9) might be prohibitively
hard and reliance on heuristics for closed-loop control might
be necessary.

C. Proof of Proposition 7

Consider the NLP

min
w∈W

f (w) (31a)

s.t. h(w) ≥ 0 (31b)

and the relaxed NLP

min
w∈W,σ

f (w)+ p(σ ) (32a)

s.t. h(w)+ σ ≥ 0 (32b)

σ ≥ 0 (32c)

where W = {w | g(w) ≥ 0, ge(w) = 0}. We denote λ ≥ 0 as
the Lagrange multiplier associated with constraint (31b) and
let λmax be the largest value it can attain. In the following,
we are interested in analyzing the properties of NLP (32) in
the two cases, in which NLP (31) is feasible and infeasible.
For the former case, the following holds.

Theorem 12: Provided that (∂/∂s)p(0) ≥ λmax and
NLP (31) has a solution, the solution of NLP (32) yields σ = 0
and w = w∗, which is also optimal for NLP (31).

Proof: A proof of this theorem can be found in, e.g.,
[31, Th. 14.3.1], but we provide one here for the reader’s
convenience. We first note that the KKT conditions of (31)
and (32), they differ only in that

h(w) ≥ 0, λi hi (w) = 0, λ ≥ 0 (33)

hold at optimality for (31), whereas

h(w)+ σ ≥ 0, λi (hi (w)+ σi ) = 0, λ ≥ 0 (34a)

σ ≥ 0, siμi = 0, μ ≥ 0, (34b)

and

∂

∂σ
p(σ )− λ− μ = 0 (34c)

hold at optimality for (32), where μ is the Lagrange multiplier
of the constraint (32c). A primal-dual solution to (31) and
σ = 0 is, thus, a solution to (32) if (∂/∂s)p(0) ≥ λmax since

μ = ∂

∂s
p(s)− λ ≥ 0 (35)

implies that (34b) holds. Second-order optimality conditions
are then easily proven by noting that any perturbation of the
primal solution induces an increase in the cost function. �

To examine the case where (31) is infeasible, we further
introduce the infeasibility minimizing NLP

min
w∈W,σ

‖σ‖∞ (36a)

s.t. h(w)+ σ ≥ 0 (36b)

σ ≥ 0 (36c)

and the auxiliary NLP

min
w∈W,σ

f (w) (37a)

s.t. h(w)+ σ ∗ ≥ 0 (37b)

where σ ∗ is a solution to (36). We denote ν ≥ 0 as the
Lagrange multiplier associated with constraint (37b), and let
νmax be the maximum value it can attain.

Theorem 13: Provided that ∇σ p(σ ∗) ≥ νmax, NLP (32)
yields a solution σ = σ ∗ and w = w∗, which is also optimal
for (36).

Proof: We first note that any solution σ to (32) can be
written σ = σ ∗ + σ for some σ ≥ 0. Therefore, (32) is
equivalent to

min
w∈W,σ

f (w)+ p(σ ∗ + σ) (38a)

s.t. h(w)+ σ ∗ + σ ≥ 0 σ ≥ 0. (38b)

Since (38) is also a relaxation of (37), Theorem 12 gives that
σ = 0 when ∇σ p(σ ∗) ≥ νmax and a solution to (37) exists.
By construction, (36) and, therefore, (37) have a solution when
(32) has a solution. Therefore, the solution to (32) is σ = σ ∗
and w = w∗, which also is a solution to (36). �
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