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Abstract (English version)

The study of gas flows is an issue that nowadays responds to the necessities of various fields of research,
as aerospace engineering, climate studies, energy industries, etc. For this reason, the construction of
mathematical models simulating the behavior of real gas mixtures is extremely useful.

Among all possible approaches, the kinetic one, based on Boltzmann equations for species distri-
bution functions, seems to be a very powerful tool. It allows, in fact, to describe mixtures starting
from interaction among particles, with the possibility of deriving models for the behavior of the global
system at observable level. The work of this thesis is devoted to considering results obtained so
far for mixtures of gases and extending them considering more real-like cases, such as mixtures of
monoatomic and polyatomic gas species, that may also interact inelastically or chemically.

As first, we provide an introduction in which the basic concepts and the most relevant results for
kinetic description of gases are presented, along with a more detailed summary of the work carried
out in the thesis.

In Chapter 1, we propose the study of a reacting mixture of four gases using the classical Boltzmann
kinetic theory. This case was already analyzed when the four gases are considered to have the same
number of internal energy levels. We generalize it allowing each of the gas species to have a different
number of energetic levels.

Chapter 2 and Chapter 3 are devoted to the study of gas mixtures using a kinetic approach of BGK
type. In particular, in Chapter 2 we provide a BGK model for an inert mixture of monatomic and
polyatomic gases. We prove the consistency of the model and analyze the stability of equilibria, then
we derive macroscopic equations and perform some numerical simulations being inspired by real gases.
In Chapter 3, instead, we propose two BGK models for mixtures of reacting gases. In the first one we
have four gas species involved in a reversible chemical reaction, in the second case eight gases react
through two disjoint reactions. The same strategy is applied to both cases, the main differences are
in proving the consistency of the model, since in Chapter 3 we face more complicated transcendental
equations to determine all the parameters. Also in these cases, numerical simulations are performed
to simulate the behavior of real reacting mixtures.

In the remaining part of the thesis, we study gas mixtures using different techniques. In Chapter 4
we consider a mixture of five gas species, three of them constituting a background medium in which the
other two interact. Encounters among particles can be elastic, inelastic, or chemical and we suppose
that they occur at different time scales. We write classical Boltzmann equations for the interacting
components, we pass to the asymptotic diffusive limit and, by means of suitable integrations of the
kinetic equations, we obtain reaction-diffusion equations for densities of the species. Specifically,
we apply this procedure in three different hydrodynamic regimes, obtaining in each case a proper
reaction-diffusion system.

The stability properties of these systems are then studied in Chapter 5. We investigate the possibility
of having Turing instability for suitable choices of internal energy amounts and of collision frequencies.
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Through numerical simulations, we verify the formation of spatial patterns in the evolution of the
number densities of reactants, as predicted by Turing analysis.
We conclude with some further observations and perspectives for a future development of the

present research work.
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Abstract (versione italiana)

Lo studio delle miscele di gas è un tema che oggigiorno risponde alle necessità di vari campi di ricerca,
come l’ingegneria aerospaziale, gli studi climatici, le industrie energetiche, ecc. Per questo motivo la
costruzione di modelli matematici che simulino il comportamento di gas reali si rivela estremamente
utile.

Tra tutti gli approcci possibili, quello cinetico, che si basa sulle equazioni di Boltzmann per le
funzioni di distribuzione dei gas, rappresenta uno degli strumenti più validi. Esso permette, infatti,
di descrivere miscele a partire dall’interazione tra particelle, per poi derivare modelli per le quantità
osservabili. Il lavoro contenuto in questa tesi è volto a riprendere i risultati presenti in letteratura per
miscele di gas e ad estenderli considerando casi più realistici, come miscele di specie monoatomiche
e poliatomiche, che possono interagire in modo inelastico o chimico.

Per prima cosa, nell’introduzione vengono presentati i concetti basilari e i risultati più rilevanti per
lo studio cinetico dei gas, insieme a una sintesi più dettagliata dei contenuti della tesi.

Nel Capitolo 1 proponiamo lo studio di una miscela reattiva costituita da quattro gas utilizzando
la classica teoria cinetica di Boltzmann. Questo problema è già stato analizzato nell’ipotesi in cui i
gas hanno lo stesso numero di livelli di energia interna, lo affrontiamo nel caso più generale in cui
ciascuna delle specie coinvolte abbia un diverso numero di livelli energetici.

Nei due capitoli successivi vengono studiate miscele di gas utilizzando un approccio cinetico di
tipo BGK. In particolare, nel Capitolo 2 forniamo un modello BGK per una miscela inerte di gas
monoatomici e poliatomici. Dimostriamo la consistenza del modello e analizziamo la stabilità degli
equilibri; deriviamo poi opportune equazioni macroscopiche ed eseguiamo alcune simulazioni nu-
meriche ispirandoci ai gas reali.

Nel Capitolo 3, invece, proponiamo due modelli BGK per miscele di gas reagenti. Nel primo
consideriamo quattro specie di gas coinvolte in una reazione chimica reversibile, nel secondo otto
gas che partecipano a due reazioni disgiunte. La stessa procedura viene applicata in entrambi i casi,
la principale differenza risiede nel dimostrare la consistenza del modello, poiché nel Capitolo 3 si
ottengono equazioni trascendenti più complicate per la determinazione di tutti i parametri. Anche in
questo contesto vengono eseguite simulazioni numeriche che modellizzino il comportamento di miscele
reattive reali.

Nella parte restante della tesi, studiamo miscele di gas tramite tecniche ulteriori. Nel Capitolo
4 consideriamo una miscela di cinque specie di gas, di cui tre costituiscono il mezzo ospite in cui
interagiscono le altre due. Gli urti tra le particelle possono essere di tipo elastico, inelastico o chimico
e ci mettiamo nelle ipotesi in cui questi avvengano su scale temporali diverse. Successivamente,
scriviamo le equazioni di Boltzmann classiche per le funzioni di distribuzione delle varie componenti.
Dopo opportune integrazioni delle equazioni, si effettua un passaggio al limite, ottenendo equazioni
di reazione-diffusione per le densità di specie. Nello specifico, applichiamo questo procedimento
considerando tre diversi regimi idrodinamici, ottenendo in ciascuno di essi un diverso sistema di
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reazione-diffusione.
Le proprietà di stabilità di tali sistemi vengono discusse nel Capitolo 5. Studiamo in particolare

la possibilità che si verifichi il fenomeno dell’instabilità di Turing per scelte opportune dei valori di
energia interna e delle frequenze di collisione. Attraverso simulazioni numeriche, verifichiamo poi la
formazione di pattern nell’evoluzione delle densità dei reagenti, come previsto dall’analisi di Turing.

Concludiamo con alcune ulteriori osservazioni e prospettive per futuri sviluppi del presente lavoro
di ricerca.
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Introduction

The classical kinetic description of gas dynamics may be considered having its start in the Eighteenth
century, when Daniel Bernoulli adopted the model of a gas as a large set of molecules moving at
high speed and colliding elastically among themselves, [8]. The further development of kinetic theory
of gases was due to James Clerk Maxwell, who in 1860 carried out the probability distribution for
velocities at equilibrium [87]. But it was only with Boltzmann in 1872 [27] that an integro-differential
equation describing the dynamical evolution of the distribution function was provided, along with a
formal definition of entropy and a rigorous formulation of the second law of thermodynamics, known
as H-theorem; a complete view of Boltzmann results and biography can be found in [37].

These early results were formulated for a single rarefied gas, but it is indisputable that the nature of
gaseous flows in reality can be extremely various. First of all, a considerable number of components
having different nature may be simultaneously present in a gaseous environment. A generalization of
the Boltzmann model to a mixture of different gas species is treated in [36], where Carlo Cercignani
provides a fundamental set of results concerning the study of Boltzmann equations (i.e. uniqueness
of the equilibrium solution, its asymptotic stability and the relaxation to it from any initial condition)
and their possible applications. Also in other books authors provided a detailed study of the kinetic
theory for inert gas mixtures, as Chapman and Cowling [40], Kogan [72] or Ferziger and Kaper [52].

An important phenomenon that should also be considered in gas mixtures is that constituents may
undergo chemical reactions, causing actual changes in the physical nature of the flow. Several attempts
in the description of chemically reacting gas mixtures can be found in literature [10, 32, 123]. The
kinetic approach seems to be one of the most suitable for this task and first results have been carried
out in the Forties [74,99]. Afterwards, many advances have been obtained in this research line starting
from the Sixties and Seventies and, in particular, different types of approximation have been applied in
order to derive macroscopic quantities, like reaction rates or transport coefficients [90,101,109,122].
Other works from the Eighties, instead, are focused on fundamental aspects, as the analysis of
equilibrium [97]. A fairly exhaustive kinetic description for a mixture of four gases undergoing, apart
from mechanical collisions, also a bimolecular chemical reaction can be found in [104], as by-product
of previous works by the authors [25,35,55,102].

Besides chemical processes, a relevant issue to be taken into account is that colliding molecules
cannot always be considered perfect spheres. Polyatomic gas molecules, in particular, are more
complex particles having non-translational degrees of freedom, as vibrational and rotational ones.
These features may be represented by assigning to each particle a variable denoting the internal
energy state, that can be considered both discrete [56,58] or continuous [46,105]. As a consequence
of this assumption, interactions among particles in a gas mixture may also give rise to the non-
conservative phenomenon of inelastic scattering. In other words, once that a binary encounter takes
place, particles may change their internal energy state so that the total kinetic energy is not conserved.
The phenomenological derivation of this type of scattering may be found in [55, 113], whereas the

9



kinetic description of this framework is given in [103].
A following step in this research line consists in combining the results of [103] and [104] by con-

sidering a mixture of reacting gases endowed with discrete internal energy levels. This is, indeed, the
content of many works [14, 58–60]. Despite the relevant outcomes, in all the models considered so
far the gas species involved in the dynamics are assumed to have the same number N of possible
discrete energy levels. This assumption surely allows more handy calculations, but does not fit any real
physical environment. Molecules belonging to different species have different shape and dimension,
thus the possibilities for their internal energy amount are various as well. In most situations, due to
chemical dissociation and recombination reactions, gaseous elements may be found even in atomic
state, that can be modeled as species having only one possible internal energy level.

Providing models for gas mixtures in which polyatomic and monatomic gas species interact through
elastic, inelastic or chemical collisions is the basic purpose of this thesis. For this reason, the aim of
Chapter 1 in this work is to collect and, at the same time, generalize the classical cornerstones of a
Boltzmann description for a gas mixture. We analyze the case of four reacting gas species, each one
allowed to have a different number (greater of equal than one) of internal energy levels li, i = 1, 2, 3, 4.
Thus the mixture can be seen as made up by L = l1 + l2 + l3 + l4 components, indicated by Cij , where
the superscript identifies the species which the component belongs to, while the subscript indicates
the corresponding energy level. Accordingly to this notation, a generic bimolecular encounter between
components can be written as follows

Cij + Chk � C lm + Cnp .

This encounter can be elastic if components involved do not change their chemical nature nor their
energy state ((i, j) = (l,m) and (h, k) = (n, p)), inelastic when components change their internal
energy but they still belong to the same species (i = l, h = n but j 6= m or k 6= p or both), chemical
when there is an actual change in species (i 6= l and h 6= n).

We further adjust this notation using, instead of a pair of indices (i, j) to indicate each component,
a single index I, with 1 ≤ I ≤ L. We construct then a Boltzmann equation for each distribution
function fI corresponding to a component CI . The most relevant part is to derive the integral
collision term in each equation. Indeed, in writing the inelastic and chemical contributions to the
collision operators, one has to be aware that an internal energy gap is related to each encounter,
so (if this gap is positive) the transition takes place only when the pre-collisional total energy is
sufficient. This causes the presence of suitable energy threshold in the collision Boltzmann operators.
Then we investigate the global properties of the collision operator and we present collision invariants
as L-dimensional vectors constituting a 7-dimensional linear space. In this way, after defining in this
context the macroscopic observables, we derive a system of seven balance equations.
Afterwards, we provide the proof of the classical Boltzmann inequality for our model, that leads to

the characterization of collision equilibria that are, as expected, of Maxwellian type. In this frame,
we obtain also a relation at equilibrium between number densities of each energetic component and
the density of the species it belongs to, along with the classical mass action law (of Arrhenius type)
relating species densities and global temperature at chemical equilibrium [5]. Finally, H-theorem
provides asymptotic stability and uniqueness of the Maxwellian equilibrium.
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Looking at kinetic equations of Boltzmann type, it is immediate to note that the study of the
evolution of distributions as solution of an integro-differential system can be very complicated. For
this reason, multiple strategies have been investigated to replace the integral collision term with a
simpler one, also if this choice may lead to a loss of information at the level of microscopic two-
body interactions between molecules. The most relevant collision model, taking into account only
the average outcomes of collisions, is the one proposed by Bhatnagar, Gross and Krook for a single
gas species in 1954 [9], known as BGK model. The idea of such kind of models comes from the
fact that the dynamics of the system drives the configuration to "relax" towards a Maxwellian state,
so that collisions cause a change rate for the distribution proportional to the difference between the
distribution itself and a Maxwellian attractor.

The generalization of the classical BGK model to a gas mixture is not obvious (and not unique),
since in the Maxwellian attractors there appear several free parameters that could be properly chosen
in order to reproduce the basic features of the Boltzmann equations that one wants to approximate.
The available BGK models may be divided into two classes: one assuming the kinetic equation for
each species governed by a unique relaxation operator, introduced by Andries, Aoki and Perthame
in [1], and the other one showing a sum of binary relaxation operators, preserving thus the "structure"
of the original Boltzmann system, see for instance [63,71,88] and the recent paper [24].

A BGK–type description has been then adapted to gases whose particles are subject also to very
simple chemical reactions, usually bimolecular and reversible; in this respect, models with a single
collision operator per species have been proposed in [16, 61], while models with sums of relaxation
terms may be found in [30,75]. In general, most of the existing BGK models deal only with monatomic
particles, therefore in view of physical applications their generalization to polyatomic gases through
the introduction of a suitable internal energy is necessary. A BGK description in a similar situation is
presented in [11] and will be the starting point of Chpaters 2 and 3 of the present thesis.

In Chapter 2 we present a BGK model for a mixture composed by A ≥ 0 monatomic and B ≥ 0

polyatomic species having different numbers of internal energy levels (of course a monatomic species
has only one level). As usual, each polyatomic species can be considered as composed by components
in number equal to that of its energy levels. We build up a set of BGK-type equations for each
monatomic species and each polyatomic component of the mixture. In each of them a single BGK
operator appears, depending on auxiliary parameters individuated by the auxiliary number density of
each species/component, and the auxiliary mean velocity and temperature that are common to each
equation.

Imposing conservation of correct (Boltzmann) collision invariants, we try to express auxiliary quan-
tities in terms of the actual ones of the mixture. While for densities of monatomic species and for
mean velocity we get an explicit relation, densities of polyatomic components result to be expressed
in terms of real densities and auxiliary temperature. For the latter, we are not able to find an explicit
expression as well, but it turns out to be given as the solution of a transcendental equation (coming
essentially from the conservation of total energy, i.e. kinetic plus internal). We are able to prove that
such a transcendental equation admits a unique solution for any values of particle masses, internal
energies, and collision frequencies.

The asymptotic stability of Maxwellian equilibria in space homogeneous conditions is given by means
of the H-theorem, formulated in this framework: the proof of the entropy decreasing in time strongly
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depends on the structure of BGK equations and of Maxwellian attractors.
In a following step, after integration of the BGK equations, macroscopic equations for observables

of the mixture are derived for both monatomic and polyatomic species. Considering these equations
in space-independent conditions, we perform some numerical simulations in order to analyze the
trend towards equilibrium of the mixture. In a first test we consider a monatomic and a polyatomic
species changing the ratios between their masses, in a second one we take two polyatomic species
and we consider different sets of internal energies, as third test we take two polyatomic gases having
very different masses and we observe the trend towards equilibrium taking various amounts of initial
velocities.

In Chapter 3 our intention is to extend results obtained in the previous chapter to suitable reacting
mixtures. As first, we consider a mixture of four gas species Gi, i = 1, . . . , 4, that may undergo a
reversible chemical reaction of type G1 +G2 � G3 +G4. In this case we do not make a distinction
between monatomic and polyatomic species, but we consider each one as having a number of energy
levels greater or equal than one.
We write BGK equations as in the inert frame and we exploit conservation laws to recover auxiliary

parameters. The main difference appearing in this frame is the fact that, since number density of each
species is not preserved due to chemical reaction, the four global auxiliary densities are related not only
to auxiliary temperature but also to each other. By conservation of total energy, however, is possible
to express each auxiliary density in terms of actual parameters and of the auxiliary temperature. On
the other hand, fictitious densities have to satisfy a constraint which is the analogous of the mass
action law of chemistry. This fact provides an additional transcendental equation for the auxiliary
temperature, and also in this case is possible to prove that the solution exists and is unique in an
admissible set.

An analogous H-theorem in space homogeneous conditions is stated and proved in this reactive
case still making use of the mass action law. Moreover, we study again the behavior in time of
macroscopic quantities through numerical simulations inspired by real gas reactions.
In the second part of the chapter, the considered mixture is composed by eight gases Gi, i =

1, , . . . , , 8, chemically interacting through two separate reversible chemical reactions, G1 + G2 �

G3 +G4 and G5 +G6 � G7 +G8. In this case recovering the auxiliary parameters for the Maxwellian
attractor is even more complex. From conservation of mass, indeed, we find that is possible to express
fictitious number densities for the first four reacting species in terms of actual parameters, auxiliary
temperature and auxiliary density of only one species involved in the same reaction. This analogously
holds for the remaining four species involved in the second reaction. Conservation of total energy then
provides a relation between the fictitious temperature, a fictitious density species taking part in the
first reaction and another one reacting in the second. To determine these three unknowns we exploit
the fact that we have a mass action law for each chemical reaction. From the first one, indeed, using
the implicit function theorem, we are able to express one of the fictitious densities in terms of the
temperature. Using the second mass action law, at last, we individuate the auxiliary temperature as
the solution of a transcendental equation. Once that this procedure allows to determine the BGK
operators and, consequently, Maxwellian equilibria, their asymptotic stability is verified by means of
the H-theorem also in this case. Finally, numerical simulations show how concentrations of each
component, mean velocity and temperature tend to equilibrium, taking two physical reactions as test
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cases.

In the remaining part of the thesis, we study mixtures of reacting monatomic and polyatomic gases
using a different approach. Our task is again to build a kinetic model for a particular gas mixture and
to derive and study equations for the macroscopic observables in suitable hydrodynamic limits. In this
case, though, we start from the classical Boltzmann-type description of the physical setting and we
aim to derive reaction-diffusion equations for the number densities of constituents of the mixture.

In many physical problems involving a huge amount of interacting objects (not only particles as in
our reacting mixtures, but also cells, individuals, etc.) reaction–diffusion systems are built up starting
from phenomenological considerations, therefore diffusion coefficients and parameters appearing in the
reaction part are taken as arbitrary constants, and are not directly related to microscopic interactions
between cells, preys and predators, etc. In this respect, kinetic theory may be useful. Indeed, it is
based on a mesoscopic approach and major macroscopic fields can be recovered as suitable moments
of the distribution function and, in proper hydrodynamic regimes, a closure of macroscopic equations
may be obtained resorting to an asymptotic Chapman–Enskog procedure [40]. In fluid–dynamics,
the most common hydrodynamic systems are Euler and Navier–Stokes equations [36]. In the frame
of reacting gas mixtures, the connection between reactive kinetic equations and reaction–diffusion
systems has been explored starting from BGK or Fokker–Planck models [114, 115], and also from
Boltzmann operators for a single bimolecular chemical reaction [12]. Rigorous results on this kind of
limit have been recently proved in [51,94]. Under suitable assumptions on the macroscopic fields and
on the distribution functions, the diffusive asymptotic limit may also lead to reaction–diffusion systems
of Maxwell–Stefan type [2,3]. Also in different physical frameworks, some attempts to derive reaction–
diffusion equations from kinetic equations or as mean–field limit of interacting particle systems have
been performed [41,117].

The work presented in Chapter 4 fits into this research line. We consider a gaseous mixture
with several species, undergoing elastic collisions, inelastic transitions in polyatomic particles and
chemical reactions, and, following the strategy suggested in the paper [12], we derive reaction–
diffusion equations from the kinetic level in different hydrodynamic limits. Specifically, we consider
two species, one monatomic and the other polyatomic (diatomic) diffusing in a background medium
(typically, the atmosphere). The host medium is itself a mixture, constituted by particles with different
masses, and as a whole it is assumed accommodated at a Maxwellian distribution, with fixed mean
velocity and temperature. The kinetic system is thus composed by three Boltzmann equations, one for
the distribution of the monatomic species and the others for the distributions of the two components
of the diatomic gas, each one with its value of internal energy. Intra–species and inter–species elastic
scattering is allowed, as well as elastic scattering with the background medium. Inelastic transitions
may also occur, where polyatomic particles pass from one energy state to the other. Moreover,
two bimolecular and reversible chemical reactions are taken into account, involving the considered
monatomic and polyatomic constituents and the host medium as well. In the diffusive limit, the
dominant process is assumed to be, as usual, the elastic scattering with the background. Three
different regimes are explored, corresponding to different scales assumed for the collisions and for
chemical reactions. The first one, where all reactions have the same order of magnitude (they are
all slow), leads to a system of three reaction–diffusion equations for the number densities of the
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monatomic gas and of the two components of the polyatomic one. In the second one, for the
monatomic species the collisions with the background are supposed to be more frequent than for the
other components. This assumption has as a consequence the fact that in the resulting reaction–
diffusion system one of the three equations lacks the diffusive term. In the third regime, besides
more frequent collisions with background for one of the species, a reaction is assumed to be faster
than the other chemical and inelastic interactions. This allows to explicitly get one density in terms
of the other two, so that the final reaction–diffusion system is constituted by only two equations,
and it is similar to the classical Brusselator system [98]. These reductions resemble the classical
quasi–steady–state approximation, a standard procedure in the study of chemical reactions kinetics
in situations where certain species have a very short time of existence and therefore their variation
may be neglected, reducing thus the number of equations. A detailed description of such kind of
reductions can be found in [108, 112] and it is applied to the particular case of the Brusselator
in [44]. The possibility of modelling auto-catalytic reactions of the Brusselator system introducing an
intermediate unstable state was outlined also in [77], by one of the authors of the original paper [98].
In all the hydrodynamic limits considered in Chapter 4, we obtain that diffusion coefficients and
reaction terms of our macroscopic systems explicitly depend on particle masses, background density,
collision frequencies of all interaction phenomena, and internal energies of the species. This means
that properties of the systems can be explored starting from the microscopic structure of the mixture.
Such properties, in particular the stability of solutions of our macroscopic systems, are discussed in

Chapter 5. In particular, we recall that last system obtained in Chapter 4 is similar to the classical
Brusselator, that was introduced in order to model the behavior of cross–activator–inhibitor chemical
reactions for which pattern formation predicted by Turing [118] could be observed. One example of
reactive models showing pattern formation is the chloriteiodide–malonic acid (CIMA) reaction [78],
and other analogous models and results can be found in [57]. Analytical conditions on the parameters
involved in the equations leading to Turing instability were originally given in [98]. The target is to find
a homogeneous stationary state that in presence of diffusion turns into structures non–homogeneous
in space. Such structures are usually obtained when the concentration of some reactants and also the
diffusion coefficients of chemicals varying during the reaction fit into particular ranges.

Moreover, Turing instability has been recovered in several problems, as models for morphogene-
sis [81], prey–predator systems [79], epidemic models [47], models for metal growth [29], for multiple
sclerosis [83], for urban crime [82] or for vegetation spots on dryland [110], just to mention some of
them. In those systems, and many more, the stability properties are always discussed upon the param-
eters appearing in the equations. These parameters are often set starting from empirical observations
or heuristic considerations. In our case, instead, coefficients appearing in the equations are explicit
functions of microscopic parameters, characteristic of gas species (masses and internal energy levels)
and of the mixture (collision frequencies for each reaction and for mechanical encounters). This allows
us to investigate the occurrence of Turing instability for varying these microscopic parameters. More
precisely, for the system of two reaction–diffusion equations we are able to find explicit conditions
on the internal energies allowing (or preventing) the pattern formation; the analytical results are also
validated by some numerical simulations. An analogous study is then performed also for the systems
of three equations, that are much more involved, since the number of coefficients is higher and the
Turing instability conditions are more complicated. In particular, for the complete three reaction-
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diffusion equations case, we resort also to results derived in [107], where conditions for the occurrence
of Turing bifurcation in n-dimensional systems are provided. Analogies and differences between the
instability properties of our three systems are commented on.

We conclude this thesis with a summary of our main results along with further considerations and
perspectives for future developments of our work.
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1 Preliminaries: Kinetic description of gas
mixtures

The classical Boltzmann description of rarefied gas dynamics can be suitably extended to mixtures
of different gases [36, 40]. In this framework, apart from elastic mechanical binary collisions among
particles, also reversible chemical interactions between different gas species may occur. This case has
been extensively investigated in [104]. In following works, a generalization of this kind of representation
has been proposed for reacting species supposed to have an internal structure [56,58]. More precisely,
a mixture of four reacting gases was considered where each one was endowed with N > 1 discrete
quantized energy levels. This choice was performed in order to represent polyatomic molecules having
translational, rotational and vibrational degrees of freedom. With this assumption, also inelastic
scattering has to be taken into account, where after binary collisions particles may change their
internal energy state and kinetic energy is not conserved. Nevertheless, the assumption that the
number of discrete energy levels is the same for each gas species turns out to be very restrictive, since
these models can hardly be applied to real physical situations. For this reason, in this first chapter,
we present the kinetic description of such mixtures, with the further generalization that the number
of internal energy levels can be different for each species. We also consider the possibility of non
symmetric encounters, i.e. irreversible chemical reactions or inelastic transitions.
The procedure used to describe the mixture is the typical Boltzmann approach of classical kinetic

theory adapted and generalized to this context. We consider thus a mixture of four gas species Gi,
i = 1, . . . , 4 each one having mass mi. Writing the chemical reaction as

G1 +G2 � G3 +G4, (1.1)

masses have to satisfy the conservation m1 + m2 = m3 + m4. As already stated, each particle is
endowed with an internal energy state and each gas species may have a number li of possible discrete
values for it.. We denote each one of these values by Eij , j = 1, . . . , li. As a consequence, we treat the
i-th species as composed by li components Cij , j = 1, . . . , li, being the component Cij characterized
by the internal energy Eij . Energies are monotonically increasing with the index identifying the level
in the frame of each species, that means Eij > Eik for any j > k. We denote the energy gap for the
ground states by ∆E = E3

1 + E4
1 − E2

1 − E1
1 . At this point, binary interactions between molecules

are expressed by the notation

Cij + Chk � C lm + Cnp . (1.2)

In the case of mechanical collisions, in which molecules do not change their chemical nature, we may
have elastic scattering, when there is not energy dissipation due to absorption by the particles, thus
the total kinetic energy is conserved before and after the impact and in the formulation (1.2) we have
(i, j) = (l,m) and (h, k) = (n, p). If, instead, there is a variation of the internal energies of the pair
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of impinging particles, we have the collision (1.2) with i = l and h = n, but j 6= m and/or k 6= p. .
In case of chemical encounters, there is also a mass transfer and particles change the gas species they
belong to. When this happens we have collision (1.2) with (i, h), (l, n) ∈ {(1, 2), (3, 4), (2, 1), (4, 3)},
being (i, h) 6= (l, n) and i 6= n.

For a more handy notation, we introduce the vector based on numbers of energy levels

L = (1, . . . , l1, l1 + 1, . . . , l1 + l2, . . . , l1 + l2 + l3 + l4). (1.3)

We define the partial sums of the number of energy levels Ls = l1 + . . .+ ls for s = 1, 2, 3, 4 and the
total one L = l1 + l2 + l3 + l4; we also find it useful to define L0 = 0. In this way, for any energy
level Eij and for any component Cij we identify each couple of indices (i, j) with the index I given by

I = Li−1 + j. (1.4)

The reverse relation is

i = min{k : I − Lk ≤ 0, 1 ≤ k ≤ 4}, (1.5)

j = I − Li−1. (1.6)

Consequently, energy levels will be indicated with EI and components with CI , I = 1, . . . , L. We
rewrite the generic collision (1.2) as

CI + CJ � CH + CK . (1.7)

We also consider the L-dimensional vector of masses whose entries are mI = mi for any 1 ≤ I ≤ L

with i given by relation (1.5), that we indicate by m. It is worth underlying the fact that the "two-
indices" notation and the "single-index" one are totally equivalent. In this chapter we find it useful to
adopt the latter, but in the following of this thesis we shall use the former, since it will be important
to distinguish between species having one or several internal energy levels and also to easily identify
the fundamental level Ei1 of each species.

1.1 Boltzmann equation and collision operators

We are now able to describe in more detail the dynamics of each generic encounter (1.7). We will
indicate with v and w the pre-collisional velocities of two impinging particles belonging to components
CI and CJ , respectively, and with v′ and w′ the post-collisional velocities of resulting particles of
components CH and CK , respectively. With this notation, we have conservation of momentum, total
energy and mass given by

mIv +mJw = mHv′ +mKw′

1
2mIv

2 + EI + 1
2mJw

2 + EJ = 1
2mHv

′2 + EH + 1
2mKw

′2 + EK

mI +mJ = mH +mK .

(1.8)

We define the quantity ∆EHKIJ = EH +EK −EI −EJ as the variation of the global internal energy
of the impinging pair. In case of elastic collisions, it is obviously zero, in case of inelastic or chemical
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collisions, instead, it can be positive or negative. If it is greater than zero, namely the collision
CI + CJ → CH + CK is endothermic, it must be underlined that such interaction is possible only if
the total kinetic energy before the collision is sufficient. In other words it must hold

1

2

(
mIv

2 +mJw
2 −mHv

′2 −mKw
′2
)
> ∆EHKIJ . (1.9)

This results in a threshold effect on the interaction. More specifically, taking into account the relative
velocity of the two impinging particles and the velocity of the center of mass we have relations g = v −w

G = αIJv + αJIw

 g′ = v′ −w′

G′ = αHKv′ + αKHw′,
(1.10)

being αij = mi
mi+mj

. We also consider separately the absolute value and the direction of relative
velocity:

g = gΩ̂, g′ = g′Ω̂′, (1.11)

with |Ω̂| = 1. From the conservation formulas (1.8) and condition (1.9) we deduce that G = G′ and

g′ =

[
µIJ
µHK

(g2 − δHKIJ )

] 1
2

H
(
g2 − δHKIJ

)
, g =

[
µHK
µIJ

((g′)2 − δIJHK)

] 1
2

H
(
(g′)2 − δIJHK

)
,

(1.12)
being

δHKIJ = 2
∆EHKIJ
µIJ

, (1.13)

with µIJ the reduced mass given by mImJ
mI+mJ

and H the unit step Heaviside function. These transfor-
mations imply the fact that the post-collisional relative velocity g′ is well defined only if the argument
of the Heaviside function is positive, and this happens only, as already mentioned, if ∆EHKIJ < 0 or if
∆EHKIJ > 0 and the pre-collisional kinetic energy of the interacting molecules is sufficient. The same
holds for the good definition of g in terms of g′.

In the following it will also turn useful to write the explicit transformations coming from (1.10)
between pre and post-collision velocities provided by v′ = αIJv + αJIw + αKHg

′Ω̂′,

w′ = αIJv + αJIw − αHKg′Ω̂′,
(1.14)

Now let us consider the distribution function relevant to the component CI that is a function of
position x, velocity v and time t and we indicate it by fI(x,v, t). We also define the vector of all
the distribution functions f = (f1, . . . , fL). The evolution of the whole system is given by a set of
L coupled nonlinear integrodifferential equations that are a generalization of the classical Boltzmann
model

∂fI
∂t

+ v · ∇x fI = Q̄I [f ], 1 ≤ I ≤ L. (1.15)

The equation for each species I comes from the need to balance the variation (in absence of internal
forces) of the number of particles within an infinitesimal volume of the phase space dxdvdt. This
variation is due both to the flow of particles (each one with its molecular velocity) and to collisions
which change velocities of colliding molecules. The left hand side of (1.15) describes motion in

18



absence of collisions, while on the right hand side the collision operator QI [f ] takes into account all
the possible collisions in which the component CI can be involved. More specifically, the variation is
obtained by the algebraic sum of all the particles that during collision pass from velocity v to velocity
v′ (loss term) and those particles that from a velocity v′ pass to a velocity v (gain term). Thus we
are allowed to write (neglecting higher order terms)(

∂fI
∂t

+ v · ∇x fI

)
dxdvdt = (Q+

I [f ]−Q−I [f ])dxdvdt, 1 ≤ I ≤ L, (1.16)

that passing to the limit dxdvdt→ 0 leads to equation (1.15).
With respect to general collision (1.7), the loss term for component CI coming from the direct

collision
CI + CJ → CH + CK (1.17)

is given by ( [103,104])

Q−I [fI , fJ , fH , fK ](v) =

∫
R3

∫
S2

H
(
g2 − δHKIJ

)
gσHKIJ (g, Ω̂ · Ω̂′)fI(v)fJ(w)dwdΩ̂′. (1.18)

We omit dependence on position x and time t in distribution functions and collision integrals in order
to lighten the notation. The quantity σHKIJ is the differential cross section relevant to the process in
which two particles belonging to the species CI and CJ get transformed into two particles belonging to
the species CH and CK , respectively, and it depends on the intermolecular interaction potential [36].
It is azimuthally symmetric and depends only on the relative speed of the impinging molecules g and
on the product Ω̂ · Ω̂′. It also has to satisfy symmetry conditions

σHKIJ (g, Ω̂ · Ω̂′) = σHKJI (g,−Ω̂ · Ω̂′) = σKHIJ (g,−Ω̂ · Ω̂′). (1.19)

On the other hand, the gain term for component CI coming from the inverse collision

CI + CJ ← CH + CK (1.20)

is expressed by

Q+
I [fI , fJ , fH , fK ](v) =

∫
R3

∫
S2

H
(
(g′)2 − δIJHK

)
g′σIJHK(g′, Ω̂ · Ω̂′)fH(v′)fK(w′)dw′dΩ̂. (1.21)

Considering the total number of collisions in the infinitesimal volume dxdv′dt that is

dxdt

∫
R3

∫
S2

H
(
(g′)2 − δIJHK

)
g′σIJHK(g′, Ω̂ · Ω̂′)fH(v′)fK(w′)dv′dw′dΩ̂ (1.22)

and using relations (1.14) we have,

H
(
(g′)2 − δIJHK

) µHK
g′

dv′dw′dΩ̂ = H
(
g2 − δHKIJ

) µIJ
g
dvdwdΩ̂′. (1.23)

Thus, passing again to the limit, the total collision term (gain minus loss) for component CI is

QI [fI , fJ , fH , fK ](v) = Q+
I −Q

−
I

=

∫
R3

∫
S2

H
(
g2 − δHKIJ

) [ µIJ
µHK

(g′)2

g
σIJHK(g′, Ω̂ · Ω̂′)fH(v′)fK(w′)

−gσHKIJ (g, Ω̂ · Ω̂′)fI(v)fJ(w)
]
dwdΩ̂′. (1.24)
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We now exploit the microreversibility condition [52, 80] relating the cross section of an interaction
with the reverse one as

µ2
IJg

2σHKIJ (g, Ω̂ · Ω̂′) = µ2
HK(g′)2σIJHK(g′, Ω̂ · Ω̂′)H

(
g2 − δHKIJ

)
, (1.25)

obtaining

QI [fI , fJ , fH , fK ](v)

=

∫
R3

∫
S2

H
(
g2 − δHKIJ

)
gσHKIJ (g, Ω̂ · Ω̂′)

[(
µIJ
µHK

)3

fH(v′)fK(w′)− fI(v)fJ(w)

]
dwdΩ̂′.

(1.26)

For future utility in this work, we compute, always referring to the collision (1.7), the collision term
for components J,H,K. For the component J , it is sufficient to perform a permutation of indices
I ↔ J and thanks to properties (1.19) we get

QJ [fI , fJ , fH , fK ](v)

=

∫
R3

∫
S2

H
(
g2 − δHKIJ

)
gσHKIJ (g, Ω̂ · Ω̂′)

[(
µIJ
µHK

)3

fK(v′)fH(w′)− fJ(v)fI(w)

]
dwdΩ̂′.

(1.27)

For components CH and CK we consider the collision written as

CH + CK � CI + CJ , (1.28)

thus the collision operator for CH reads as

QH [fI , fJ , fH , fK ](v)

=

∫
R3

∫
S2

H
(
g2 − δIJHK

) [
σHKIJ (g′, Ω̂ · Ω̂′)

(g′)2

g

µHK
µIJ

fI(v
′)fJ(w′)

−gσIJHK(g, Ω̂ · Ω̂′)fH(v)fK(w)
]
dw dΩ̂′, (1.29)

and applying the microreversibility condition that in this case is

µ2
HKg

2σIJHK(g, Ω̂ · Ω̂′) = µ2
IJ(g′)2σHKIJ (g′, Ω̂ · Ω̂′)H

(
g2 − δIJHK

)
. (1.30)

we have

QH [fI , fJ , fH , fK ](v)

=

∫
R3

∫
S2

H
(
g2 − δIJHK

)
gσIJHK(g, Ω̂ · Ω̂′)

[(
µHK
µIJ

)3

fI(v
′)fJ(w′)− fH(v)fK(w)

]
dw dΩ̂′.

(1.31)

For the component CK we again perform permutation of indices H ↔ K, obtaining

QK [fI , fJ , fH , fK ](v)

=

∫
R3

∫
S2

H
(
g2 − δIJHK

)
gσIJHK(g, Ω̂ · Ω̂′)

[(
µHK
µIJ

)3

fJ(v′)fI(w
′)− fK(v)fH(w)

]
dw dΩ̂′.

(1.32)
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It can also be considered, instead of (1.7), an irreversible interaction between components
CI , CJ , CH , CK , it means that a couple of particles belonging to components CI and CJ can be
transformed in particles of components CH and CK , but the inverse transformation is not allowed.
So we have

CI + CJ → CH + CK . (1.33)

In this case, collision operators for components CI and CJ will be composed only by a loss term,
whereas for components CH and CK there will be only a gain one. As a result, repeating calculations
done for the reversible case we have

QI [fI , fJ , fH , fK ](v) = −
∫
R3

∫
S2

H
(
g2 − δHKIJ

)
gσHKIJ (g, Ω̂ · Ω̂′)fI(v)fJ(w)dwdΩ̂′, (1.34)

QJ [fI , fJ , fH , fK ](v) = −
∫
R3

∫
S2

H
(
g2 − δHKIJ

)
gσHKIJ (g, Ω̂ · Ω̂′)fJ(v)fI(w)dwdΩ̂′, (1.35)

QH [fI , fJ , fH , fK ](v) =

∫
R3

∫
S2

H
(
(g′)2 − δHKIJ

)
g′σHKIJ (g′, Ω̂ · Ω̂′)fI(v

′)fJ(w′) dw′ dΩ̂, (1.36)

that becomes, using the relation between pre-collisional and post-collisional quantities that in this
case provides the change

H
(
(g′)2 − δHKIJ

) µIJ
g′
dv′dw′dΩ̂ = H

(
g2 − δIJHK

) µHK
g

dvdwdΩ̂′, (1.37)

QH [fI , fJ , fH , fK ](v) =

∫
R3

∫
S2

H
(
g2 − δIJHK

) µHK
µIJ

(g′)2

g
σHKIJ (g′, Ω̂ · Ω̂′)fI(v

′)fJ(w′) dw dΩ̂′,

(1.38)
and analogously

QK [fI , fJ , fH , fK ](v) =

∫
R3

∫
S2

H
(
g2 − δIJHK

) µHK
µIJ

(g′)2

g
σHKIJ (g′, Ω̂ · Ω̂′)fJ(v′)fI(w

′) dw dΩ̂′.

(1.39)
We can now focus on a component CI and compute its total collision operator, considering all the

possible interactions with other particles of type (1.7) letting the indices J,H,K vary between 1 and
L. We consider at first all possible mechanical collisions, thus we define the set of triplets

DME
I = {(J,H,K), 1 ≤ J,H,K ≤ L : i = l, h = n} , (1.40)

being i, h, l, n obtained from I, J,H,K, respectively, using relation (1.5). Consequently, the collision
term taking into account all the mechanical interactions of the component CI reads as

QME
I [f ] =

∑
(J,H,K)∈DME

I

QI [fI , fJ , fH , fK ]. (1.41)

We notice that in this case operators QI have the formulation given in (1.26), with µIJ = µHK . In
case of elastic collisions, we have that the Heaviside function is constant H ≡ 1 and the operator is
analogous to the one provided by classical Boltzmann theory [36]. Then, the possible triplets giving
rise to chemical contribution for the component CI are, instead, listed in the set

DCH
I = {(J,H,K), 1 ≤ J,H,K ≤ L : (i, h) 6= (l, n), i 6= n,

(i, h), (l, n) ∈ {(1, 2), (3, 4), (2, 1), (4, 3)}} , (1.42)
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with i, h, l, n again related to I, J,H,K by (1.5). This allows us to write the chemical collision term

QCHI [f ] =
∑

(J,H,K)∈DCHI

QI [fI , fJ , fH , fK ]. (1.43)

Finally, we have all the elements to recover the total collision operator that provides the integral term
in the equation (1.15) for an index I

Q̄I [f ] = QME
I [f ] +QCHI [f ]. (1.44)

1.2 Collision invariants

Once defined all the collision operators for components CI , 1 ≤ I ≤ L, we take into account a
L-dimensional vector ϕ of smooth functions defined on R3, ϕI(v), and we define the functional

C[ϕ] =
L∑
I=1

∫
R3

ϕI(v)Q̄I [f ], (1.45)

that explicitly reads as

C[ϕ] =
∑

(I,J,H,K)∈DG

∫
R3

∫
R3

∫
S2

ϕI(v)H
(
g2 − δHKIJ

)
gσHKIJ (g, Ω̂ · Ω̂′)

×

[(
µIJ
µHK

)3

fH(v′)fK(w′)− fI(v)fJ(w)

]
dvdwdΩ̂′,

(1.46)

with DG = DME ∪DCH , being

DME = {(I, J,H,K), 1 ≤ I, J,H,K ≤ L : i = l, h = n} , (1.47)

and

DCH = {(I, J,H,K), 1 ≤ I, J,H,K ≤ L : (i, h) 6= (l, n), i 6= n,

(i, h), (l, n) ∈ {(1, 2), (3, 4), (2, 1), (4, 3)}} , (1.48)

with i, h, l, n again coming from I, J,H,K, respectively, through relation (1.5).
We now perform in the expression for C one of the following operations:

i. Interchange v with w and H with K, obtaining

C[ϕ] =
∑

(I,J,H,K)∈DG

∫
R3

∫
R3

∫
S2

ϕJ(w)H
(
g2 − δKHJI

)
gσHKJI (g,−Ω̂ · Ω̂′)

×

[(
µIJ
µHK

)3

fH(v′)fK(w′)− fJ(w)fI(v)

]
dvdwdΩ̂′,

(1.49)

this representation of C[ϕ] is equivalent to the one given in (1.46) due to the symmetry
properties of the differential cross section (1.19).
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ii. Renaming the variables (v,w, Ω̂′) ↔ (v′,w′, Ω̂) and interchanging I with H and J with K,
we have

C[ϕ] =
∑

(I,J,H,K)∈DG

∫
R3

∫
R3

∫
S2

ϕJ(v′)H
(
(g′)2 − δIJHK

)
g′σIJHK(g′,−Ω̂ · Ω̂′)

×

[(
µHK
µIJ

)3

fI(v)fJ(w)− fH(v′)fK(w′)

]
dv′dw′dΩ̂′.

(1.50)

Since in this case we have the Jacobian of the transformation (v′,w′, Ω̂)→ (v,w, Ω̂′) that is

J = H
(
(g′)2 − δIJHK

) µIJ
µHK

g′

g
, (1.51)

and the microreversibility condition may be cast as

µ2
HK(g′)2σIJHK(g′, Ω̂ · Ω̂′) = H

(
(g′)2 − δIJHK

)
µ2
IJg

2σHKIJ (g, Ω̂ · Ω̂′), (1.52)

we get

C[ϕ] =
∑

(I,J,H,K)∈DG

∫
R3

∫
R3

∫
S2

− ϕH(v′)H
(
g2 − δHKIJ

)
gσHKIJ (g, Ω̂ · Ω̂′)

×

[(
µIJ
µHK

)3

fH(v′)fK(w′)− fI(v)fJ(w)

]
dvdwdΩ̂′,

(1.53)

that is again an equivalent representation for (1.46).

iii. Combining transformations i. and ii. we obtain a fourth equivalent expression for the functional
C that is

C[ϕ] =
∑

(I,J,H,K)∈DG

∫
R3

∫
R3

∫
S2

− ϕK(w′)H
(
g2 − δKHJI

)
gσKHJI (g, Ω̂ · Ω̂′)

×

[(
µJI
µKH

)3

fK(w′)fH(v′)− fI(v)fJ(w)

]
dvdwdΩ̂′.

(1.54)

Those results have as consequence the fact that we can write the following expression

C[ϕ] =− 1

4

∑
(I,J,H,K)∈DG

∫
R3

∫
R3

∫
S2

H
(
g2 − δHKIJ

)
gσHKIJ (g, Ω̂ · Ω̂′)

×

[(
µIJ
µHK

)3

fH(v′)fK(w′)− fI(v)fJ(w)

]
×
[
ϕH(v′) + ϕK(w′)− ϕI(v)− ϕJ(w)

]
dvdwdΩ̂′. (1.55)

We now consider any vector of smooth functions ϕ and provide the following definition
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Definition 1.2.1. A vector of smooth functions ϕ is a collision invariant for the system if it satisfies
the following requirement

ϕH(v′) +ϕK(w′) = ϕI(v) +ϕJ(w), ∀(v.w, Ω̂′) ∈ R3×R3×S2, ∀(I, J,H,K) ∈ DG. (1.56)

It follows that for any collision invariant ϕ it holds

C[ϕ] = 0 ∀ f . (1.57)

It is easily verified that the scalar quantities

ϕI =mI , 1 ≤ I ≤ L,

ϕI =mIv, 1 ≤ I ≤ L,

ϕI =
1

2
mIv

2 + EI , 1 ≤ I ≤ L, (1.58)

representing mass, momentum and total energy of each component, respectively, are collision invari-
ants, due to conservation laws (1.8).
We now give the generalization of a fundamental result in kinetic theory [36].

Theorem 1.2.2. Collision invariants constitute a 7-dimensional linear space and they may be gener-
ically written as

ϕ(v) = a + m b · v + c
1

2
mv2, (1.59)

being a any L-dimensional vector with real entries, b any vector of R3 and c any real number such
that parameters a and c satisfy relations

aJ − aI = c (EJ − EI) ∀ I, J Ls−1 < I, J ≤ Ls, for all s = 1, 2, 3, 4, (1.60)

aL2+1 + aL3+1 − a1 − aL1+1 = c∆E. (1.61)

In order to prove the Theorem above, we make use of the following statement.

Lemma 1.2.3. Let f : Rn → R be a function such that

f(x1) + f(x2) = f(x1 + x2), ∀x1,x2 ∈ Rn, (1.62)

and f is continuous in at least one point x0 ∈ Rn. Then it exists a unique value u ∈ Rn such that

f(x) = u · x. (1.63)

For the proof of this result we address the reader to [36].

Proof of Theorem 1.2.2. First of all we observe that, if ϕ is a collision invariant, accordingly to
definition (1.56) if we take sub-indices I = J = H = K (simplest elastic collision) we have that, for
any (v.w, Ω̂′),

ϕI(v
′) + ϕI(w

′) = ϕI(v) + ϕI(w). (1.64)

We can apply a crucial result showed in [36], i.e. each function ϕI(v) has the form

ϕI(v) = a+ b · v + cv2, (1.65)
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for some a, c ∈ R, b ∈ R3. In this peculiar case, indeed, we are in the classical conditions for which
conservation of total momentum and total energy before and after the collision can be expressed as
follows  v + w = v′ + w′

v2 + w2 = v′2 + w′2.
(1.66)

Definition (1.2.1) implies that if v + w and v2 +w2 are constant, ϕI(v) + ϕI(w) must be constant
too. Thus the sum ϕI(v) + ϕI(w) is indeed function of only quantities v + w and v2 +w2, namely

ϕI(v) + ϕI(w) = ΦI(v + w, v2 + w2). (1.67)

We consider the even part and the odd part of functions ϕI and ΦI , respectively, defined as

ϕI+(v) =ϕI(v) + ϕI(−v),

ϕI−(v) =ϕI(v)− ϕI(−v),

ΦI+(v + w, v2 + w2) =ΦI(v + w, v2 + w2) + ΦI(−v −w, v2 + w2),

ΦI−(v + w, v2 + w2) =ΦI(v + w, v2 + w2)− ΦI(−v −w, v2 + w2). (1.68)

It is easy to verify the relations

ϕI+(v) + ϕI+(w) = ΦI+(v + w, v2 + w2),

ϕI−(v) + ϕI−(w) = ΦI−(v + w, v2 + w2), (1.69)

and this holds for any v, w ∈ R3. If we take w = −v, from the first equation of (1.69) we get
2ϕI+(v) = ΦI+(2v2, 0). It implies that ϕI+(v) = ψ(v2), consequently,

ψ(v2) + ψ(w2) = ΦI+(v + w, v2 + w2) (1.70)

. But in this case, to not get into contradiction, ΦI+ should depend only on v2 + w2, so we have
ψ(v2)+ψ(w2) = ΦI+(v2+w2). On the other hand, taking w = 0, we have ψ(v2)+ψ(0) = ΦI+(v2).
We are then allowed to write

ψ(v2) + ψ(w2) = ψ(v2 + w2) + ψ(0). (1.71)

Let us define the function f(v2) = ψ(v2)− ψ(0), from the equality above we obtain

f(v2) + f(w2) = f(v2 + w2). (1.72)

Moreover, since f(0) = 0, it is possible to extend the domain of f to the whole R setting

f(−x) = −f(x) (1.73)

for any x = v2 > 0. We observe that in this way, f is continuous, being ϕI continuous, and the
additivity requirement by Lemma 1.2.3 holds. As a consequence, we have f(x) = 2cx for some c ∈ R.
Taking a = ψ(0)

2 we have

φI+(v) = 2a+ 2cv2, a, c ∈ R. (1.74)
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Now we observe that, choosing v and w such that v·w = 0, since in this case v2+w2 = |v+w|2, from
the second equation in (1.69) we have ϕI−(v) + ϕI−(w) = ΦI−(v + w). In particular, considering
w = 0 it holds ϕI−(v) = ΦI−(v) and so ϕI−(v + w) = ΦI−(v + w). We can conclude that for
any couple of orthogonal v and w it holds ϕI−(v) + ϕI−(w) = ϕI−(v + w). We choose now v

and w such that v · w 6= 0, let z a third vector for which v · z = 0, w · z = 0 and z2 = |v · w|.
In particular, we can observe that for any v, since v · v ≥ 0, we can write ϕI−(2v) = 2ϕI−(v). If
v ·w > 0, it results (v + z) · (w − z) = 0, hence the vectors v + z and w − z are orthogonal, thus
ϕI−(v + z) + ϕI−(w − z) = ϕI−(v + w). Recalling that ϕI− is an odd function, we deduce

ϕI−(v) + ϕI−(w) = ϕI−(v + w). (1.75)

If, instead, v ·w < 0, the vectors v + z and w + z are orthogonal, so

ϕI−(v + z) + ϕI−(w + z) = ϕI−(v + w) + ϕI−(2z) (1.76)

. Using again the orthogonality of z with v and w we get again the additivity property (1.75). At this
point we can state that ϕI− satisfies hypothesis of Lemma 1.2.3, thus there exists a vector b ∈ R3

such that
ϕI−(v) = 2b · v. (1.77)

Finally, being ϕI(v) = 1
2 [ϕI+(v) + ϕI−(v)], we get

ϕI−(v) = a+ b · v + cv2, a, c ∈ R,b ∈ R3. (1.78)

As consequence of this result, each collision invariant ϕ can be written as

ϕ(v) = a + B v + cv2, (1.79)

with a, c two L-dimensional vectors and B a 3× L-dimensional matrix. This means that we end up
with 5L free coefficients. The fact that collision invariants satisfy (1.56) for any choice of vectors
(v,w, Ω̂′) in R3 × R3 × S2 and indices (I, J,H,K) in DG implies that we can make the particular
choice (v,w, Ω̂′) = (v,−v,− v

|v|) and indices such that I 6= J , I = H and J = K, namely we are
considering elastic scattering between different components. From relations (1.14) we deduce that in
this case  v′ = (αIJ − 3αJI)v

w′ = (3αIJ − αJI)v,
(1.80)

thus, condition (1.56) for a collision invariant written in the form (1.79) and for this peculiar choice
leads to the equations

8(αIJ − αJI)(cIαIJ − cJαJI)v2 + 4(BJαIJ −BIαJI) · v = 0, (1.81)

that must be satisfied for any v ∈ R3, v 6= 0 and for any I 6= J . But, just interchanging I and J ,
we notice that the only possibility is that both addenda in the left-hand sides must be equal to zero.
Consequently, it must be

BI

mI
=

BJ

mJ

def
= b

cI
mI

=
cJ
mJ

def
=

1

2
c, (1.82)
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for any I 6= J , 1 ≤ I, J ≤ L. We get to the same conditions when I = J repeating the procedure
choosing w = 0 and Ω̂′ = − v

|v| . Now we consider the case in which two particles of the same
component collide and after the encounter only one of them has changed its internal energy, namely
we take the quadruplet (I, I, I, J) with Ls−1 < I, J ≤ Ls, for some 1 ≤ s ≤ 4. For any choice of
vectors (v,w, Ω̂′) the post-collisional velocities are v′ = 1

2v + 1
2w + 1

2

√
g2 − δIJII Ω̂′

w′ = 1
2v + 1

2w − 1
2

√
g2 − δIJII Ω̂′

. (1.83)

In this way we have, again from (1.56), conditions

aJ − aI = c(EJ − EI), Ls−1 < I, J ≤ Ls, for all s = 1, 2, 3, 4. (1.84)

Finally, we take into account a quadruplet (I, J,H,K) belonging to DCH . From conservation laws,
relations (1.56) lead to

aH + aK − aI − aJ = c∆EHKIJ , (1.85)

that, combined with (1.84) give the constraint

aL2+1 + aL3+1 − a1 − aL1+1 = c∆E. (1.86)

This last result makes the functions defined in expression (1.79) have only 7 free coefficients. On the
other hand, it is easily verified that each vector of functions ϕ of the form

ϕ(v) = a + m b · v + c
1

2
mv2, (1.87)

with conditions (1.84) and (1.86) on coefficients, satisfies (1.56) and this concludes the proof.

A set of seven collision invariants {ϕ1, . . . ,ϕ7} that form a basis for the space defined through
Theorem (1.2.2) can be constructed as follows. Taking a1 = aL2+1 = 1, aL1+1 = 0, b = 0, c = 0,
we have ϕ1(v) such that

ϕ1
I =

 1 if 1 ≤ I ≤ L1 ∨ L2 < I ≤ L3

0 otherwise.
(1.88)

Taking, instead, a1 = 1, aL1+1 = aL2+1 = 0, b = 0, c = 0, we have ϕ2(v) that is

ϕ2
I =

 1 if 1 ≤ I ≤ L1 ∨ L3 < I ≤ L4

0 otherwise.
(1.89)

With aL1+1 = 1, a1 = aL2+1 = 0, b = 0, c = 0, we have ϕ3(v) equal to

ϕ3
I =

 1 if L1 < I ≤ L2 ∨ L3 < I ≤ L4

0 otherwise.
(1.90)

If we choose a1 = aL1+1 = aL2+1 = aL3+1 = 0, b = (1, 0, 0), c = 0 we obtain

ϕ4(v) = mv1, (1.91)
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and, analogously, with b = (0, 1, 0) and b = (0, 0, 1) we get ϕ5(v) = mv2 and ϕ6(v) = mv3,
respectively. Finally, picking as = Es, for s = 1, L1 + 1, L2 + 1, b = 0, c = 1, we find the last
independent invariant ϕ7(v) corresponding to

ϕ7(v) =
1

2
mIv

2 + EI . (1.92)

We notice that entries of ϕ4, ϕ5, ϕ6 and ϕ7 are exactly momentum and total energy defined in
(1.58). Instead the quantity m3ϕ

1 + (m4−m2)ϕ2 +m2ϕ
3 gives the mass, that is the first quantity

of (1.58). Moreover ϕ1 +ϕ3 is the total number of molecules involved in the model.

1.3 Macroscopic quantities

Results exposed in the previous sections provide tools to understand the behavior of the mixture at
a mesoscopic level, associating each component to its distribution function fI . Our aim is to move
now to a microscopic description of the model, for this reason we introduce the classical macroscopic
fields relative to each component CI , 1 ≤ I ≤ L, that are number densities

nI =

∫
R3

fIdv, (1.93)

mean drift velocities
uI =

1

nI

∫
R3

vfIdv, (1.94)

and temperatures

TI =
mI

3nI

∫
R3

|v − uI |2fIdv. (1.95)

Then we may consider the same quantities relative to each gas species Gs, 1 ≤ s ≤ 4,

ns =
Ls∑

I=Ls−1+1

nI , us =
1

ns

Ls∑
I=Ls−1+1

nIuI ,

T s =
1

ns

 Ls∑
I=Ls−1+1

nITI +
1

3

Ls∑
I=Ls−1+1

mI

(
|uI |2 − |us|2

) . (1.96)

At last, we define the quantities that globally characterize the gas mixtures. We have total number
density, mass density and mass velocity

n =

4∑
s=1

ns, ρ =

4∑
s=1

msns, u =
1

ρ

4∑
s=1

msnsus, (1.97)

while temperature is

T =
1

n

[
4∑
s=1

nsT s +
1

3

4∑
s=1

msns
(
|us|2 − |u|2

)]
. (1.98)

We also define excitation energy density

E =
4∑
s=1

Ls∑
I=Ls−1+1

EInI (1.99)
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and the total internal energy density

E =
3

2
nT + E. (1.100)

To describe completely the macroscopic features of the mixture, we also need the pressure tensor

P =
L∑
I=1

mI

∫
R3

(v − u)⊗ (v − u)fIdv, (1.101)

from which we recover the viscous stress p = P− 1

3
ItrP, and the thermal heat flux

q =
1

2

L∑
I=1

mI

∫
R3

(v − u)2(v − u)fIdv. (1.102)

With those quantities at hand, we are able to derive macroscopic conservation equations. From
Boltzmann equations (1.15), we take a test vector function ϕ(v) and multiplying each equation of
(1.15) by ϕI , integrating over velocities and summing over all the components we have

L∑
I=1

∫
R3

ϕI
∂fI
∂t

dv +
L∑
I=1

∫
R3

ϕIv · ∇xfIdv =
L∑
I=1

∫
R3

ϕIvQ̄I [f ]dv = C[ϕ]. (1.103)

Choosing now, as test functions, the seven collision invariants defined in the previous section,
ϕ1, . . . ,ϕ7, since for each one we have C[ϕq] = 0, q = 1, . . . , 7, it is a matter of simple calcu-
lations to derive the conservation laws. We firstly have the conservation of the total number densities
for the couple of species G1 +G3, indeed, taking the collision invariant ϕ1 in (1.103) and expliciting
the left-hand side as
L∑
I=1

∫
R3

ϕ1
I

∂fI
∂t

dv +
L∑
I=1

∫
R3

ϕ1
Iv · ∇xfIdv

=
∂

∂t

 L1∑
I=1

∫
R3

fIdv +

L3∑
I=L2+1

∫
R3

fIdv

+

3∑
l=1

∂

∂xl

 L1∑
I=1

∫
R3

vlfIdv +

L3∑
I=L2+1

∫
R3

vlfIdv

 ,

we are able to write the equation
∂

∂t
(n1 + n3) +∇x · (n1u1 + n3u3) = 0. (1.104)

Picking the other two invariants ϕ2 and ϕ3 we analogously get conservation of the total number
densities for the couples G1 +G4 and G2 +G4:

∂

∂t
(n1 + n4) +∇x · (n1u1 + n4u4) = 0, (1.105)

∂

∂t
(n2 + n4) +∇x · (n2u2 + n4u4) = 0. (1.106)

Considering the invariant ϕ4, instead, we obtain

L∑
I=1

∫
R3

ϕ4
I

∂fI
∂t

dv +

L∑
I=1

∫
R3

ϕ4
Iv · ∇xfIdv =

∂

∂t

L∑
I=1

∫
R3

mIv1fIdv +

3∑
l=1

∂

∂xl

L∑
I=1

∫
R3

mIv1vlfIdv

=
∂

∂t

L∑
I=1

∫
R3

mIv1fIdv +
3∑
l=1

∂

∂xl

L∑
I=1

(∫
R3

mI(v1 − u1)(vl − ul)fIdv +

∫
R3

mIu1ulfIdv

)

=
∂

∂t
(ρu1) +∇x · (ρu1u) +

3∑
l=1

∂

∂xl

L∑
I=1

∫
R3

mI(v1 − u1)(vl − ul)fIdv = 0. (1.107)
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Repeating calculations for the invariants ϕ5 and ϕ6 we get two expressions analogous to the previous
one, thus we are allowed to write the equation for the momentum as follows

∂

∂t
(ρu) +∇x · (ρu⊗ u + P) = 0. (1.108)

Finally, we take into account the last invariant ϕ7 and calculate

L∑
I=1

∫
R3

ϕ7
I

∂fI
∂t

dv +
L∑
I=1

∫
R3

ϕ7
Iv · ∇xfIdv

=
∂

∂t

L∑
I=1

∫
R3

(
1

2
mIv

2 + EI

)
fIdv +

3∑
l=1

∂

∂xl

L∑
I=1

∫
R3

(
1

2
mIv

2 + EI

)
vlfIdv

=
∂

∂t

L∑
I=1

∫
R3

[
1

2
mI

(
|v − u|2 + |u|2

)
+ EI

]
fIdv

+

3∑
l=1

∂

∂xl

L∑
I=1

∫
R3

[
1

2
mI

(
|v − u|2(vl − ul) + |u|2ul + |v − u|2ul

+2u · (v − u)(vl − ul)) + EIvl] fIdv, (1.109)

that provides the equation for the conservation of total energy

∂

∂t

(
1

2
ρu2 + E

)
+∇x ·

[(
1

2
ρu2 + E

)
u + P · u + q

]
= 0. (1.110)

Collecting equations (1.104) - (1.106), (1.108) and (1.110) we obtain a non-closed system of seven
balance equations that governs the behavior of macroscopic observables.
Different strategies may be adopted in order to close the hydrodynamic system (1.104) - (1.106),

(1.108) and (1.110) and study the behavior of macroscopic fields in certain physical conditions. We
introduce them briefly in order to provide few notions that will be useful later on in this chapter.
First of all we recall the definition of mean free path, λ, as the mean distance covered by a particle
between a collision and another one. In terms of order of magnitude it holds the following relation

λ ∼
1

n̄σ̄TOT
, (1.111)

being n̄ and σ̄TOT typical values for density and total cross section, respectively, for the model
considered. Let now L be a macroscopic typical length for the gas, the Knudsen number is defined as

Kn =
λ

L
. (1.112)

When we are in a spatial scale of observation for which Kn << 1, the dynamics is governed by
collisions and the gas is seen as a macroscopic continuum. Thus, passing to the hydrodynamic limit
of kinetic equations in which Kn → 0, quantities involved in the description of the model actually
pass from microscopic to macroscopic ones. If we consider now a generic Boltzmann equation for a
distribution f

∂f

∂t
+ v · ∇x f = Q[f ], (1.113)

30



and we rescale it introducing the macroscopic time τ and a typical value for molecular velocity ξ and
adimensionalizing variables and quantities

x̃ =
x

L
, ṽ =

v

ξ
, t =

t

τ
, ñ =

n

n̄
, σ̃ =

σ

σ̄TOT
, (1.114)

in the hypothesis in which for the Strouhal number, defined as,

Sh =
L/τ

ξ
, (1.115)

we have Sh ∼ 1, we obtain a rescaled Boltzmann equation that reads as

∂f

∂t
+ v · ∇x f =

1

Kn
Q[f ]. (1.116)

At this point, if the Knudsen number is assumed to be a small parameter ε, a resolution method for
the Boltzmann equation proposed by Hilbert [66, 67] is based on expressing the distribution f as a
series

f =

∞∑
n=0

εnfn, (1.117)

and inserting this ansatz into in the Boltzmann equation. Arresting the Hilbert expansion at step 0

and calculating the usual moments (total density, momentum, total energy), is possible to derive the
known Euler closed equations for the macroscopic quantities n, u, and T , containing fist order spatial
and temporal derivatives. Another possible way of obtaining a closed system for macroscopic quantities
is the so called Chapman-Enskog expansion [38,40,49]. In this case we still have an expansion for f ,
but the main moments are obtained only by the first term of the expansion, f0, while the other terms
are suppose to not contribute to the macroscopic observables (corresponding to collision invariants).
In this way, truncating the expansion at order 1 the classical Navier-Stokes equations are recovered,
with viscosity and conductivity coefficients explicit in terms of microscopic quantities of the gas (as
mass and collision frequencies). Also in this case we have a closed system of differential equations
for n, u, and T , but also second order spatial derivatives appear for mean velocity and temperature.
This kind of closures, presented here for a single Boltzmann equation, have been properly extended
in case of more complex gas dynamics. The main issue in these cases is the role played by inelastic
or chemical collisions. In particular, in [15], hydrodynamic limit is performed in two separate cases.
In the first one the elastic scattering is considered to be the dominant process, for which the relevant
relaxation time is much shorter than all the other processes. In another one, instead, all mechanical
collisions (elastic and inelastic) play a dominant role, while the time scale for chemical reactions is
longer. In both cases, for the resulting systems of Boltzmann equations is possible to perform a Hilbert
or Chapman-Enskog type expansion [6, 89] and get Euler or Navier-Stokes macroscopic equations.

1.4 Boltzmann entropy inequality

We define

W[f ] =

L∑
I=1

∫
R3

log

(
fI
m3
I

)
Q̄I [f ]dv, (1.118)
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a functional of the form (1.45), with test function ϕI = log
(
fI
m3
I

)
The result we are going to present

is a generalization in this context of the classical Boltzmann inequality, also known as Boltzmann
Lemma.

Theorem 1.4.1. The functional W defined in (1.118) is negative semidefinite, namely W[f ] ≤ 0 for
any f and, in particular, W[f ] = 0 if and only if

fH
m3
H

(v′)
fK
m3
K

(w′) =
fI
m3
I

(v)
fJ
m3
J

(w), ∀ (v.w, Ω̂′) ∈ R3 × R3 × S2, ∀ (I, J,H,K) ∈ DG.

(1.119)

Proof. Since we can consider the functional W[f ] as a particular case of (1.45) with ϕI = log
(
fI
m3
I

)
,

we can use formulation (1.55) to write

W[f ] =− 1

4

∑
(I,J,H,K)∈DG

∫
R3

∫
R3

∫
S2

H
(
g2 − δHKIJ

)
gσHKIJ (g, Ω̂ · Ω̂′)

× log

[(
µIJ
µHK

)3 fH(v′)fK(w′)

fI(v)fJ(w)

][(
µIJ
µHK

)3 fH(v′)fK(w′)

fI(v)fJ(w)
− 1

]
fI(v)fJ(w)dvdwdΩ̂′.

(1.120)

Being the function (x−1) log x nonnegative and vanishing it only for x = 1, we can conclude that for
each term in the sum on the right-hand side of (1.120) the argument of the integral is nonnegative
and it is zero if and only if the relation (1.119) holds for any quadruplet of indices.

The result expressed in Theorem 1.4.1 is a generalization of the so-called "detailed balance princi-
ple". We now provide the following definition

Definition 1.4.2. A vector of distributions f is a collision equilibrium if it satisfies

Q̄I [f ] = 0, ∀v ∈ R3, ∀ I = 1, . . . , L, (1.121)

with Q̄I the collision operator given in (1.44).

Theorem 1.4.3. A vector f is a collision equilibrium if and only if it satisfies the condition (1.119).

Proof. Let f be a collision equilibrium, from (1.118) is clear that W [f ] = 0 and thanks to Thoerem
1.4.1 we can state that f satisfies (1.119). On the other hand, if f is a distribution vector fulfilling
(1.119), from expression (1.26) we have that the integrand is zero and this holds for any (I, J,H,K)

in DG, consequently equation (1.121) is satisfied and f is a collision equilibrium.

An immediate consequence of this result is that a distribution vector f is a collision equilibrium
if and only if W [f ] = 0 and it implies that the net production of each gas component is null not
only once that the sum over all the collisions is calculated, but for every single encounter we have
the collision term vanishing. At this point, we are able to provide a more detailed and exhaustive
characterization of collision equilibria for our system.

Theorem 1.4.4. Collision equilibria constitute a class of distribution vectors fM such that

fI
M (v) = nIMI

(
v;u,

T

mI

)
, 1 ≤ I ≤ L, (1.122)
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with MI

(
v; u, T

mI

)
being the classical Maxwellians

MI

(
v; u,

T

mI

)
=
( mI

2πT

) 3
2

exp
[
−mI

2T
|v − u|2

]
. (1.123)

Furthermore, the relation between number density of each component nI and the density of the
species ns it belongs to is given by

nI =
ns

Zs(T )
exp

(
−EI − E

s

T

)
, for any I, s such that Ls−1 < I ≤ Ls, (1.124)

with the partition function Zs(T )

Zs(T ) =

Ls∑
K=Ls−1+1

exp

(
−EK − E

s

T

)
, (1.125)

and the quantity Es corresponding to ELs−1+1 for all s = 1, 2, 3, 4. In addition, the number densities
of the species involved in the reaction are bound together by the mass action law

n1n2

n3n4
=

(
m1m2

m3m4

) 3
2 Z1(T )Z2(T )

Z3(T )Z4(T )
exp

(
∆E

T

)
. (1.126)

Proof. Let f be a collision equilibrium, which, from Theorem 1.4.3 implies

log

(
fI
m3
I

)
(v) + log

(
fJ
m3
J

)
(w) = log

(
fH
m3
H

)
(v′) + log

(
fK
m3
K

)
(w′),

∀(v.w, Ω̂′) ∈ R3 × R3 × S2, ∀(I, J,H,K) ∈ DG. (1.127)

Recalling definition (1.56), this implies that the vector ψ(v) such that ψI(v) = log(fI(v)) is a colli-
sion invariant. Thus, from Theorem 1.2.2 there exist an L-dimensional vector a, a three-dimensional
vector b and a real constant c such that

ψI(v) = log

(
fI(v)

m3
I

)
= aI +mIb · v + c

1

2
mIv

2, 1 ≤ I ≤ L, (1.128)

with a and c satisfying relations (1.60) and (1.61). It means that

fI(v)

m3
I

= exp

(
aI +mIb · v + c

1

2
mIv

2

)
. (1.129)

The first thing we observe is that the parameter c cannot be positive, otherwise we would lose the
summability of functions fI with respect to v. Defining the quantities

γI = m3
I exp

(
aI −

mI |b|2

2c

)
, (1.130)

we rewrite equilibria as follows

fI(v) = γI exp

[
1

2
mIc

(
v +

b

c

)2
]
. (1.131)
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We now analyze how the parameters γI , b and c are related to the macroscopic observables of the
mixture. For each component CI the number density of distribution (1.131) is provided by

nI = γI

∫
R3

exp

[
1

2
mIc

(
v +

b

c

)2
]
dv. (1.132)

After a suitable change of variables and using polar coordinates (ρ, θ, φ) with dv = ρ2 sin θdθdφ the
integral above becomes

nI = γI2π

(
−2

mIc

) 3
2
∫ +∞

0
e−ρ

2
dv = −γIπΓ

(
1

2

)(
2

mIc

) 3
2

= γI

(
− 2π

mIc

) 3
2

, (1.133)

where the last result is obtained using the Euler gamma function Γ(·) (see Appendix A). Successively,
considering mean velocity of each component we have

uI =
1

nI
γI

∫
R3

v exp

[
1

2
mIc

(
v +

b

c

)2
]
dv, (1.134)

that, again through a change of variables is

uI =
1

nI
γI

∫
R3

(
ξ − b

c

)
exp

[
1

2
mIc (ξ)2

]
dv = − 1

nI

b

c
γI

∫
R3

exp

[
1

2
mIc (ξ)2

]
dv = −b

c
.

(1.135)
At last, taking into account the macroscopic temperature we obtain

TI =
mI

3nI
γI

∫
R3

|v − uI |2 exp

[
1

2
mIc

(
v +

b

c

)2
]
dv, (1.136)

turning into, again thanks to a change of variables,

TI =
mI

3nI
γI4π

(
−2

mIc

) 5
2
∫ +∞

0
ρ4e−ρ

2
dv =

mI

3nI
γI2π

3

4

√
π

(
−2

mIc

) 5
2

=
1

nI
γI

(
− 2π

mIc

) 3
2 1

c
= −1

c
. (1.137)

From (1.135) and (1.137) we conclude that, if the distribution vector f is a collision equilibrium all
the components CI share the same mean velocity uI = u and temperature TI = T . Thus, collecting
(1.133), (1.135) and (1.137) we have parameters γI , b and c in terms of macroscopic quantities of
the mixture:

γI = nI

( mI

2πT

) 3
2
, b = Tu, c = − 1

T
. (1.138)

Finally we can thus write the collision equilibria as vectors of Maxwellian distributions of the form

fI
M (v) = nI

( mI

2πT

) 3
2

exp
[
−mI

2T
|v − u|2

]
, 1 ≤ I ≤ L. (1.139)

Moreover, considering (1.130) we can write, for any I, J such that Ls−1 < I, J ≤ Ls, for some
1 ≤ s ≤ 4

nI = exp

(
aI +

mI |u|2

2T

)
(2πTmI)

3
2 , nJ = exp

(
aJ +

mJ |u|2

2T

)
(2πTmJ)

3
2 (1.140)
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But, since in this case mI = mJ , from relations (1.60) we get

nJ = exp

(
aI −

EJ − EI
T

+
mI |u|2

2T

)
(2πTmI)

3
2 = nI exp

(
−EJ − EI

T

)
. (1.141)

At this point, we have,

ns =

Ls∑
I=Ls−1+1

nI = nLs−1+1

Ls∑
I=Ls−1+1

exp

(
−EI − ELs−1+1

T

)
, (1.142)

from which, for any component CJ belonging to the species s, calling Es the first energy level of
such species, namely Es = ELs−1+1,

nJ = nLs−1+1 exp

(
−EJ − E

s

T

)
= ns

exp

(
−EJ − E

s

T

)
Ls∑

I=Ls−1+1

exp

(
−EI − E

s

T

) . (1.143)

In particular, for each s = 1, 2, 3, 4, if we define the partition function

Zs(T )
def
=

Ls∑
K=Ls−1+1

exp

(
−EK − E

s

T

)
, (1.144)

we can write
nLs−1+1 = ns

1

Zs(T )
, (1.145)

and, using again (1.130), we have

ns = nLs−1+1
1

Zs(T )
= exp

(
aLs−1+1 +

ms|u|2

2T

)
(2πTms)

3
2 Zs(T ). (1.146)

We can thus derive the expression

n1n2

n3n4
=

(
m1m2

m3m4

) 3
2 Z1(T )Z2(T )

Z3(T )Z4(T )
exp (a1 + aL1+1 − aL2+1 − aL3+1) , (1.147)

which, by virtue of (1.61), becomes

n1n2

n3n4
=

(
m1m2

m3m4

) 3
2 Z1(T )Z2(T )

Z3(T )Z4(T )
exp

(
∆E

T

)
, (1.148)

that represents the mass action law for the chemical reaction (1.1).

At this point we consider the space homogeneous version of the Boltzmann problem for our model
(1.15)

∂fI
∂t

= Q̄I [f ], 1 ≤ I ≤ L. (1.149)

The complete case with spatial gradients and boundary conditions is fully discussed in [36]. Theorem
1.4.4 provides a class of stationary states depending on 7 free parameters. We want now to give
results ensuring the fact that, given an initial configuration f0, it is possible to individuate a unique
asymptotically stable equilibrium state fM .
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As concerns the existence of such an equilibrium, from equations (1.104) - (1.106), (1.108) and
(1.110) in space homogeneous conditions we have that the quantities

n1 + n3, n1 + n4, n2 + n4, ρu,
3

2
nT + E (1.150)

are kept constant during the evolution. This means that the admissible equilibria are those Maxwellians
fM provided by Theorem 1.4.4 characterized by the same conserved macroscopic quantities.

Theorem 1.4.5. Fixed an initial state characterized by the distributions vector f0 for the system
(1.149), it is possible to individuate a unique vector of Maxwellian distributions characterized by the
same macroscopic observables of f0 that are conserved during the evolution.

Proof. Let f0 be an initial configuration and let ns0, s = 1, 2, 3, 4, u0, T 0 the initial number densities
of each species, the initial global mean velocity and the initial global temperature, respectively. First
of all we observe that we can choose a proper reference frame in such a way that u0 = 0. Our aim
is to individuate a Maxwellian configuration fM with

fI
M (v) = nMI MI

(
v; uM ,

TM

mI

)
, 1 ≤ I ≤ L, (1.151)

with number densities of components nMI satisfying

nMI =
nsM

Zs(TM )
exp

(
−EI − E

s

TM

)
, for any I, s such that Ls−1 < I ≤ Ls, (1.152)

and number densities of gas species nsM satisfying

n1
Mn

2
M

n3
Mn

4
M

=

(
m1m2

m3m4

) 3
2 Z1(TM )Z2(TM )

Z3(TM )Z4(TM )
exp

(
∆E

TM

)
. (1.153)

Conservation of quantities (1.150) implies

n1
M − n1

0 = n2
M − n2

0 = −(n3
M − n3

0) = −(n4
M − n4

0), (1.154)

nM =
4∑
s=1

nsM =
4∑
s=1

ns0 = n0, (1.155)

uM =
ρ0

ρM
u0 = 0, (1.156)

3

2
n0TM +

4∑
s=1

nsM
Zs(TM )

Ls∑
I=Ls−1+1

EI exp

(
−EI − E

s

TM

)
=

3

2
n0T 0 + E0. (1.157)

The fact that we have u = 0 for any t > 0 reduces the dimension of the subspace of collision equilibria
from 7 to 4, leaving us with a system with the 5 unknowns nsM , TM to be determined in order to
individuate the desired Maxwellian. We introduce functions

Ws(T )
def
=

Ls∑
I=Ls−1+1

EI exp

(
−EI − E

s

T

)
Zs(T )

, (1.158)
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for any 1 ≤ s ≤ 4 and we rewrite (1.157) as

3

2
n0TM +

4∑
s=1

(nsM − ns0)Ws(TM ) +

4∑
s=1

ns0Ws(TM ) =
3

2
n0T 0 + E0, (1.159)

that, using (1.154), becomes

3

2
n0TM +

(
n1
M − n1

0

) 4∑
s=1

λsWs(TM ) +
4∑
s=1

ns0Ws(TM ) =
3

2
n0T 0 + E0. (1.160)

This allows us to express each one of equilibrium densities in terms of the equilibrium temperature:

nsM = ns0 + λsX (TM ), s = 1, . . . , 4, (1.161)

with λ1 = λ2 = −λ3 = −λ4 = 1 and the function

X (T )
def
=
V(T )

Y(T )
, (1.162)

being

V(T )
def
=

3

2
n0T +

4∑
s=1

ns0Ws(T )− 3

2
n0T 0 − E0, (1.163)

Y(T )
def
= −

4∑
s=1

λsWs(T ). (1.164)

The fact that number densities are positive quantities has as consequence that, in virtue of (1.161),
the equilibrium temperature should belong to the admissible set

A
def
=
{
T > 0 : max(−n1

0,−n2
0) ≤ X (T ) ≤ min(n3

0, n
4
0)
}
. (1.165)

From mass action law (1.153), now, we can use the expression for number densities obtained above
to get the following transcendental equation

L(TM ) =

(
m1m2

m3m4

) 3
2

, (1.166)

taking the function L as follows

L(T ) = L1(T ) · L2(T ) · L3(T ),

L1(T )
def
=

[
n1

0 + X (T )
] [
n2

0 + X (T )
][

n3
0 −X (T )

] [
n4

0 −X (T )
] , L2(T ) =

Z3(T )Z4(T )

Z1(T )Z2(T )
, L3(T ) = exp

(
−∆E

T

)
.

(1.167)
Now we give proof of the following claims:

C1 On any interval I = (T 1, T 2) ⊆ A in which the function Y(T ) given in (1.164) is strictly
positive (negative), then the function X (T ) given in (1.162) is strictly monotonically decreasing
(increasing) in I.

C2 On any interval I = (T 1, T 2) ⊆ A the sign of Y(T ) given does not change.
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C3 The set A given in (1.165) is a connected set of R+.

C4 The function Y(T ) defined in (1.164) is strictly monotone in the set A, ranging from 0 to +∞.

Let us start with the demonstration of the first claim. C1-proof Computing explicitly the derivative
of function X we have

X ′(T ) =
V ′(T )

Y(T )
−X (T )

Y ′(T )

Y(T )
. (1.168)

Being

(Ws)′(T ) =

Ls∑
I=Ls−1+1

Ls∑
J=Ls−1+1

1

T 2

(
E2
I − EIEJ

)
exp

(
−EI + EJ − 2Es

T

)
(Zs(T ))2

, (1.169)

that, if we exchange indices I ↔ J is equal to

(Ws)′(T ) =

Ls∑
I=Ls−1+1

Ls∑
J=Ls−1+1

1

2T 2
(EI − EJ)2 exp

(
−EI + EJ − 2Es

T

)
(Zs(T ))2

≥ 0, (1.170)

for all s=1,. . . ,4. We have

V ′(T ) =
3

2
n0 +

4∑
s=1

ns0(Ws)′(T ) > 0, (1.171)

and

Y ′(T ) = −
4∑
s=1

λs(Ws)′(T ). (1.172)

This allows us to write

X ′(T ) =
1

Y(T )

{
3

2
n0 +

4∑
s=1

[ns0 + λsX (T )] (Ws)′(T )

}
. (1.173)

Observing that the terms in square brackets in (1.173) are strictly positive for any T belonging to
the admissible set A, we can conclude that on every interval (T 1, T 2) ⊆ A in which the function Y
is strictly positive (negative), the function X is strictly monotonically increasing (decreasing).
C2-proof Now we prove that the function Y does actually not change its sign on every interval

(T 1, T 2) ⊆ A. We first make the following considerations about the function V. Since, as already
observed, we have V ′(T ) > 0 and computing

lim
T→0+

V(T ) = lim
T→0+

3

2
n0T +

4∑
s=1

ns0


Es +

Ls∑
I=Ls−1+2

EI exp

(
−EI − E

s

T

)

1 +

Ls∑
I=Ls−1+2

exp

(
−EI − E

s

T

)
−

3

2
n0T 0 − E0

=

4∑
s=1

Ls∑
I=Ls−1+1

(Es − EI)n0
I < 0; (1.174)
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and the negativity of the result comes from the fact that the amount of energy of each level is increasing
with the index I within each species, recalling the definition of the excitation energy density (1.99).
Moreover it is simply verified that

lim
T→+∞

V(T ) = +∞. (1.175)

This means that the function V admits a unique positive root T = T#, which obviously belongs to
the admissible set A. Now we consider again function Y. We note that

lim
T→0+

Y(T ) = ∆E, lim
T→+∞

Y(T ) =

4∑
s=1

1

4
λs

Ls∑
I=Ls−1+1

EI , (1.176)

and the sign of Y ′(T ) changes, from (1.172), accordingly to internal energy levels. This means that
Y may have a positive root T ∗. Supposing that such a root exists and T ∗ 6= T#, this would imply

lim
T→T ∗

X (T ) = ±∞, (1.177)

getting a neighborhood of T ∗ not contained in A. Thus we can conclude that on every subinterval
(T 1, T 2) of A the function Y keeps the same sign. Instead, if it happens that Y(T#) = 0, we have
that TM = T# is a trivial solution of (1.160). This means that, from (1.154) and (1.153) we obtain
a second order algebraic equation in the unknown n1

M

n1
M

[
n2

0 + (n1
M − n1

0)
][

n3
0 − (n1

M − n1
0)
] [
n4

0 − (n1
M − n1

0)
] =

(
m1m2

m3m4

) 3
2 Z1(T#)Z2(T#)

Z3(T#)Z4(T#)
exp

(
∆E

T#

)
, (1.178)

and we can directly recover a Maxwellian state (n1
M , n

2
M , n

3
M , n

4
M , T

M ).
C3-proof We verify now that the set A defined in (1.165) is a connected set of R+. To prove this,

we consider a connected component of A, namely an interval (Ta, Tb). We distinguish two cases.
If Ta 6= 0, being the function X continuous and strictly monotonically increasing or decreasing on
(Ta, Tb), it assumes all the possible values between max(−n1

0,−n2
0) and min(n3

0, n
4
0). If Ta = 0,

since limT→0+ Y(T ) = ∆E and the sign of Y does not change on (Ta, Tb), supposing ∆E > 0,
we have that X is strictly monotonically increasing on (Ta, Tb), going from limT→0+ X (T ) < 0 to
min(n3

0, n
4
0) (the symmetric result is obtained if ∆E < 0). In both cases, the function X has a root

in (Ta, Tb), but as already observed, it has only one possible root. It follows that (Ta, Tb) is the only
connected component of A, thus A is a connected interval (Tmin, Tmax).
C4-proof All these results are crucial for the analysis of the behavior of function L given in (1.167).

We compute its derivative with respect to T . It holds

L′1(T ) =X ′(T )
(
n3

0 −X (T )
)−2 (

n4
0 −X (T )

)−2

×
[(
n1

0 + X (T )
)

+
(
n2

0 + X (T )
)] (

n3
0 −X (T )

) (
n4

0 −X (T )
)

×
[(
n3

0 −X (T )
)

+
(
n4

0 −X (T )
)] (

n1
0 + X (T )

) (
n2

0 + X (T )
)
, (1.179)

that can be cast as

L′1(T ) = L1(T )X ′(T )

4∑
s=1

[ns0 + λsX (T )]−1 . (1.180)
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Analogously we obtain

L′2(T ) = −L2(T )
1

T 2

4∑
s=1

λs
1

Zs(T )

Ls∑
I=Ls−1+1

(EI − Es) exp

(
−EI − E

s

T

)
. (1.181)

Moreover
L′3(T ) = L3(T )

∆E

T 2
. (1.182)

Thus, collecting the results we have

L′(T ) = L(T )

{
X ′(T )

4∑
s=1

[ns0 + λsX (T )]−1

− 1

T 2

4∑
s=1

λs

Zs(T )

Ls∑
I=Ls−1+1

(EI − Es) exp

(
−EI − E

s

T

)
+

∆E

T 2

 ,

(1.183)

that can be expressed, using function Y defined in (1.164), as

L′(T ) = L(T )

{
X ′(T )

4∑
s=1

[ns0 + λsX (T )]−1 +
1

T 2
Y(T )

}
. (1.184)

We have that, on the whole admissible set A, L(T ) > 0 while X ′(T ) and Y(T ) have the same sign.
Thus L is monotonically increasing or decreasing on A. Moreover, when X (T ) → max(−n1

0,−n2
0)

it holds L(T ) → 0, while when X (T ) → min(n3
0, n

4
0) it is L(T ) → +∞. Also if Tmin = 0 we

have, if ∆E > 0, limT→0 L(T ) = 0 and limT→Tmax L(T ) = +∞, the opposite if ∆E < 0. In this
way we can conclude that there exists a unique admissible value TM for which the transcendental
equation (1.166) is satisfied. This provides the equilibrium temperature and, from (1.161) together
with (1.145), the equilibrium densities for each component, allowing us to find the Maxwellian state
fM as the theorem states.

Just for illustrative purposes, we consider a real bimolecular reversible reaction involving hydrogen
H2 (with mass 2.02 g/mol), iodine I2 (253.8 g/mol) and hydrogen iodide HI (127.91 g/mol)

H2 + I2 � HI +HI, (1.185)

and we build a numerical model inspired by it in order to recover from initial fixed data the Maxwellian
configuration. So we take four gas species Gi, i = 1, ..., 4, and we set masses in such a way that
mass ratios are the ones involved in the reaction:

m1 = 0.1, m2 = 12.8, m3 = m4 = 6.45. (1.186)

We underline the fact that in this case two of the four species coincide, thus they will be endowed
with the same internal structure and initial data. Specifically, we take as configuration for internal
energy levels the following

E1
1 = 6.5, E1

2 = 7.5, E2
1 = 7, E2

2 = 8, E2
3 = 8.5,

E3
1 = 6, E3

2 = 7, E4
1 = 6, E4

2 = 7. (1.187)
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C1
1 C1

2 C2
1 C2

2 C2
3 C3

1 C3
2 C4

1 C4
2

n0 9 5 6 4 11 10 8 10 8

T0 2 4 1 2.5 2 6 1.5 6 1.5

Table 1.1

Initial data for number concentrations and temperatures are given in Table 1.1, while, as already said,
we suppose that the mean velocity is null (for simplicity we assume vanishing mean velocity for each
component).

In Figure 1.1 we report the behavior of all the functions involved in the calculations to get the
Maxwellian state. In panel (a) we plot the number densities of each species in function of the
temperature T as given in (1.161), this allows us to individuate the admissible set given by the
interval (Tmin, Tmax) = (2.86, 3.38) (indicated by the two dotted vertical lines) in which all the
quantities are positive. In panel (b), instead, it is possible to verify that both the functions X ′ and
Y (dash-dotted line) keep the same sign on the admissible set and that X (solid line) has a unique
root in it. In panel (c), instead, is given the function L and a magnification of the plot is in panel
(d). Here is reported also the horizontal line

y =

(
m1m2

m3m4

) 3
2

, (1.188)

and it is possible to find its intersection with the graph of L, in such a way we find the solution of the
transcendental equation (1.166) and obtain the equilibrium temperature TM = 3.37 (vertical solid
line). This value allows also to find the equilibrium densities of each species given by the intersection
of the vertical solid line in panel (a) with the other lines, getting

n1
M = 0.61, n2

M = 7.61, n3
M = n4

M = 31.39. (1.189)

1.5 Stability of equilibria: The H-theorem

We have proved the existence of an equilibrium state preserving the macroscopic quantities during
all the evolution, and now we inquire about the stability and the uniqueness of such a state in
space homogeneous conditions. For the stability we are able to provide an extension of the classical
Boltzmann H-Theorem [27]. Then, the physical entropy functional H is defined as follows

H[f ] =
L∑
I=1

∫
R3

ΦI(fI) dv, (1.190)

with
ΦI(x) = x log

(
x

(mI)3

)
, i = 1, . . . , L, (1.191)

and we exploit the fact that H is a Lyapunov functional for our problem in order to state that the
Maxwellian configuration previously found is an asymptotically stable equilibrium. We have, indeed,
the following result.

41



2.8 3 3.2 3.4T

0

10

20

30

40(a)

n
1

n
2

n
3
,n

4

2.8 2.9 3 3.1 3.2 3.3 3.4T
-20

-10

0

10

20
(b)

3.3 3.32 3.34 3.36 T
M 3.38 3.4T

-0.01

-0.005

0

0.005

0.01(c)

2.8 2.9 3 3.1 3.2 3.3 3.4T

0

50

100 (d)

X

Y

L

L

Figure 1.1: Behavior of different quantities in terms of the positive temperature T for a mixture of four reacting
gases involved in a reaction inspired by (1.185), considering masses as in (1.186), energy levels
as in (1.187) and initial values for number density and temperature as in Table 1.1. Panel (a):
number densities of each species as given in (1.161), panel (b): functions X and Y defined in
(1.162) and (1.164), respectively, panels (c)-(d): function L defined in (1.167).

Theorem 1.5.1 (H-Theorem). 1 Given an initial configuration f0, let fM be the corresponding
Maxwellian stationary point individuated by Theorem (1.4.5), then the functionalH defined in (1.190)
is a strict Lyapunov functional for the problem (1.15) in space homogeneous conditions. In particular,
it holds:

i. Being Ḣ[f ] the time derivative of H evaluated in the distribution vector f starting from f0,
Ḣ ≤ 0 for any t ≥ 0 and Ḣ = 0 only for f = fM , where fM is an equilibrium state compatible
with the initial state f0.

ii. H[f∗ ] > H[fM ] for any other possible configuration f∗ 6= fM .

Proof. It is easy to verify that, in space homogeneous conditions, if f is a solution of (1.15), we have

Ḣ[f ] =

L∑
I=1

∫
R3

log

(
fI
m3
I

)
Q̄I [f ]dv +

L∑
I=1

∫
R3

Q̄I [f ]dv =W[f ], (1.192)

with W̄ the functional (1.118) since the vector ϕI = 1, 1 ≤ I ≤ L, is trivially a collision invariant.
Thus from the formulation of W̄ given in (1.120) and Theorem 1.4.3, we get the nonpositivity of Ḣ
and the fact that it is null only at f = fM . To prove that H[f∗ ]−H[fM ] > 0 for any f∗ 6= fM in a
neighborhood of fM , we rewrite the functional (1.190) as follows

H[f ] =

∫
R3

H[f ] dv, H[f ] =
L∑
I=1

ΦI(fI). (1.193)

1In his original work, Boltzmann used the letter E to indicate the entropy function, but in 1890 Burbury used the
letter H [31] and in 1896 Boltzmann adopted the same notation [28]. This change aroused the curiosity of many
scholars, including Sidney Chapman, who suggested that actually the letter H stands for the capital Greek letter
eta, that corresponds to the Latin letter e [39].
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We also express the total energy density as

E [f ] =

∫
R3

E[f ] dv, E[f ] =
L∑
I=1

(
1

2
mI |v − u|2 + EI

)
fI . (1.194)

We compute

∂H

∂fI

∣∣∣∣
fM

= log nMI −
3

2
logmI − log

(
2πTM

)
− mI

2TM
|v − u|2 + 1 (1.195)

= − 1

TM
∂E

∂fI

∣∣∣∣
fM

+
Es

TM
+ log

nsM
Zs(TM )

− 3

2
logmI − log

(
2πTM

)
+ 1. (1.196)

having used the relation (1.152) to express nMI in terms of nsM with I, s such that Ls−1 < I ≤ Ls.
We pick now another density configuration f∗, for which number densities are

n∗I =

∫
R3

f∗I dv, i = 1, . . . , L. (1.197)

Now we calculate

L∑
I=1

∫
R3

∂H

∂fI

∣∣∣∣
fM

(
f∗I − fMI

)
dv

= − 1

TM

L∑
I=1

∫
R3

∂E

∂fI

∣∣∣∣
fM

(
f∗I − fMI

)
dv

+
L∑
I=1

[(
Es

TM
+ log

nsM
Zs(TM )

− 3

2
logmI − log

(
2πTM

)
+ 1

) (
nI
∗ − nMI

)]
. (1.198)

From conservation of the combinations of species densities n1 + n3, n1 + n4 and n2 + n4 we have

n1
M − n1

∗ = n2
M − n2

∗ = −(n3
M − n3

∗) = −(n4
M − n4

∗), (1.199)

thus second term on the right hand side of (1.198) reduces to[
− log

(
n1
Mn

2
M

n3
Mn

4
M

)
+

∆E

T
+

3

2
log

(
m1m2

m3m4

)
+ log

(
Z1(T )Z2(T )

Z3(T )Z4(T )

)]
(nM1 − n1

∗). (1.200)

In addition, being E an homogeneous function of order 1 in the variables fI , we can see that

E [f ] =

L∑
I=1

∫
R3

fI
∂E

∂fI
dv. (1.201)

From the conservation of total energy E , we have that E [f ∗] = E [f M ], consequently

L∑
I=1

∫
R3

∂E

∂fI

∣∣∣∣
fM

(
f∗I − fMI

)
dv = 0. (1.202)

But with (1.193) at hand, (1.198) turns into

L∑
i=1

∫
R3

(ΦI)
′(fMI )

(
f∗I − fMI

)
dv = 0. (1.203)
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We take now ΦTI that is first-order Taylor polynomial of functions ΦI relevant to fMI , i. e.

ΦTI (fI) = ΦI(f
M
I ) + (ΦI)

′(fMI )
(
fI − fMI

)
. (1.204)

Expression (1.203) leads to

H[f∗ ]−H[fM ] =

L∑
I=1

∫
R3

[ΦI(f
∗
I )− ΦI(f

M
I )]dv =

L∑
I=1

∫
R3

[ΦI(f
∗
I )− ΦTI (f∗I )]dv. (1.205)

At this point, we exploit the fact that ΦI are strictly convex functions in their domain. A direct
consequence is that each integral in the last term of (1.205) has nonnegative argument, in particular
it is positive on a set with nonzero measure and null only in the case f∗I = fMI for all I. We can thus
conclude that it holds H[f ] −H[fM ] ≥ 0 for any f , and the equality sign is provided if and only if
f = fM .

The just proved result provides the stability of the Maxwellian equilibrium. Its uniqueness is a
direct consequence of Theorem 1.5.1. Indeed, supposing the existence of another equilibrium fM1 ,
with fM1 6= fM , performing the same calculations of the previous proof, we would obtain that also
H[fM1 ] is a minimum, but then H[fM1 ] < H[fM ] and this is a contradiction. So we can conclude
with the last result

Theorem 1.5.2. Given an initial configuration f0 for the problem (1.15) in space homogeneous
conditions, the Maxwellian configuration fM individuated by Theorem (1.4.5) is the unique equilibrium
for the system and it is asymptotically stable.
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2 A BGK model for mixtures of monatomic and
polyatomic gases

In this chapter, we present a BGK-type kinetic model for a mixture of monatomic and polyatomic
gas species. The need for this type of model comes from the fact that such mixtures can be found in
most of physical environments. For example, in the upper atmosphere of the Earth is possible to find
molecular Oxygen (O2) and molecular Nitrogen (N2), which are both diatomic. Anyway, because of
chemical dissociation and recombination reactions, these two elements are present in atomic state O
and N as well, along with diatomic Nitrogen Monoxide (NO).

The classical way in which kinetic theory represents polyatomic molecules consists in modelling
the non-translational degrees of freedom by means of a suitable internal energy variable, discrete or
continuous. If the energy variable is discrete, the single species is considered as composed by a certain
number (the same as the number of levels) of components, each one corresponding to a particular
energy level [58]. On the other hand, monatomic molecules lack non-translational degrees of freedom
and thus are considered to have only one possible internal energy level. The same approach is used
in [11], where for the distribution function of each component is built up a kinetic equation with a
single BGK-type collision operator, as already proposed in [16, 61]. In the cited cases, all the species
involved are supposed to have the same number of internal energy levels. Our scope is to extend
such models to a mixture of gas species having different numbers of internal energy levels, and thus
to consider the possibility of having both polyatomic and monoatomic species in a mixture.

In more detail, the chapter is structured as follows. In Section 2.1 we introduce the notations
identifying the various components and their distributions. We avoid the notation used in the previous
chapter using a single index I for all the components, in order to stress the fact that we are considering
a mixture of both monatomic and polyatomic gases. Indeed, we shall use a single-index notation for
monatomic species and a double-index notation for polyatomic components. This choice makes
additional technicalities appear in the definitions of actual and auxiliary macroscopic fields, as well
as in the proofs of the consistency of the model. Afterwards we define macroscopic fields of single
species and of the global mixture, we discuss all types of collisions involving monatomic or polyatomic
particles and corresponding collision equilibria. Then, Section 2.2 is devoted to the construction of a
consistent BGK model for mixtures of monatomic and polyatomic gases, with the auxiliary parameters
uniquely determined in terms of the actual number densities, mean velocities and temperatures of
each monatomic species and each component of polyatomic ones. In particular, while for the auxiliary
number densities and mean velocity is possible to find an explicit expression, the individuation of the
auxiliary temperature involves the solution of a transcendental equation for which the well-posedness
in not trivial in this frame. Also in the proof of the H-theorem in space homogeneous conditions
the lack of symmetry in some kinds of collisions has to be carefully taken into account. In Section
2.3 we derive, from our BGK model, macroscopic evolution equations for densities, velocities and
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temperatures of all gas components. We then perform some numerical tests in order to analyze the
behavior in time and the trend to equilibrium of each quantity in space homogeneous conditions for
varying parameters. Two possible gas mixtures are considered, one of a monatomic and a polyatomic
species, and one of two polyatomic species having a different number of energy levels; in both cases
mass ratios will be varied making sure that the model represents real molecules. Some concluding
remarks and perspectives are finally summarized in Section 2.4. The content of this chapter is included
in the publication [20].

2.1 Statement of the problem and kinetic approach

We consider a mixture of various monatomic and polyatomic gases. More precisely, we assume to deal
with A monatomic and B polyatomic species. As in any kinetic approach, each monatomic gas Gi, i =

1, . . . , A, is described by means of a distribution function f i(t,x,v), depending on time t, position x,
and molecular velocity v. As concerns polyatomic species Gi with i = A + 1, . . . , A + B, similarly
to the Boltzmann description proposed in [58] and considered in Chapter 1, the non–translational
degrees of freedom are modeled by means of a discrete internal energy variable, and each polyatomic
gas is endowed with a structure of a proper number Li of discrete energy levels. Thus, analogously
to [11,58], each gas Gi with index i = A+1, . . . , A+B is represented as a mixture of Li monatomic
components Cij , each one characterized by a different energy level; the superscript i corresponds
to the gas which the component belongs to, while the subscript j identifies the energy level. The
distribution function of the component Cij is denoted by

f ij(t,x,v) , i = A+ 1, . . . , A+B, j = 1, . . . , Li . (2.1)

The energy level of the component Cij is then consistently denoted by Eij , and in the frame of the
same gas Gi the energy levels are assumed (without loss of generality) increasing with respect to
the subindex j, namely Eij < Eik for any j, k = 1, . . . , Li with j < k. The fact that we keep two
indices i, j to indicate components of the polyatomic gases and their energies allows us to identify
immediately the species and the component we are referring to.
All particles of the gas Gi are obviously characterized by the same mass mi. Number density, mass

velocity, and kinetic temperature of monatomic species Gi, i = 1, . . . , A, are provided, respectively,
by

ni =

∫
R3

f i(v) dv , ui =
1

ni

∫
R3

v f i(v) dv , T i =
mi

3ni

∫
R3

|v − ui|2f i(v) dv . (2.2)

We find also convenient to define for each monatomic species the pressure tensor and the heat flux

Pi = mi

∫
R3

(v − ui)⊗ (v − ui) f i(v) dv , qi =
mi

2

∫
R3

(v − ui) |v − ui|2 f i(v) dv . (2.3)

For polyatomic species Gi, i = A + 1, . . . , A + B, such macroscopic fields are given by suitable
combinations of moments of distributions of single components Cij as

ni =
Li∑
j=1

nij , ui =
1

ni

Li∑
j=1

nij uij , ni T i =
Li∑
j=1

nij T
i
j +

1

3
mi

Li∑
j=1

nij

(
|uij |2 − |ui|2

)
, (2.4)
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where

nij =

∫
R3

f ij(v) dv , uij =
1

nij

∫
R3

v f ij(v) dv , T ij =
mi

3nij

∫
R3

|v − uij |2f ij(v) dv . (2.5)

In addition,

Pi
j = mi

∫
R3

(v − uij)⊗ (v − uij) f
i
j(v) dv , qij =

mi

2

∫
R3

(v − uij) |v − uij |2 f ij(v) dv . (2.6)

For polyatomic species we can define the excitation energy density as follows

E =
A+B∑
i=A+1

Li∑
j=1

Eijn
i
j . (2.7)

The total number density n and mass density ρ of the mixture, as well as the global mean velocity
u and temperature T , are defined as

n =

A+B∑
i=1

ni , ρ =

A+B∑
i=1

mi ni ,

u =
1

ρ

A+B∑
i=1

mi ni ui , T =
1

n

[
A+B∑
i=1

ni T i +
1

3

A+B∑
i=1

mi ni
(
|ui|2 − |u|2

)]
.

(2.8)

We introduce also the total internal energy density as

E =
3

2
nT + E. (2.9)

As usual in kinetic theory, molecules interact only through binary instantaneous collisions, that lead to
a change in their velocity. Besides classical binary elastic collisions, in the present mixture even suitable
inelastic encounters may occur, implying changes of the internal energies of the colliding (polyatomic)
particles. More precisely, pairs of particles belonging to monatomic gases Gi, i = 1, . . . , A, may give
rise only to elastic collisions

Gi +Gh −→ Gi +Gh , 1 ≤ i, h ≤ A , (2.10)

preserving global momentum and kinetic energy:

mi v +mh w = mi v′ +mh w′ ,

1

2
mi |v|2 +

1

2
mh |w|2 =

1

2
mi |v′|2 +

1

2
mh |w′|2 ,

(2.11)

still denoting by (v,w) the molecular velocities of the ingoing particles, and by (v′,w′) the corre-
sponding post–collision velocities. On the other hand, pairs of polyatomic particles may give rise to
elastic collisions (with conservations analogous to (2.11)) or to inelastic scattering in which at least
one particle passes from one component to another of the same gas:

Cij + Chk −→ Cil + Chm , A+ 1 ≤ i, h ≤ A+B , 1 ≤ j, l ≤ Li , 1 ≤ k,m ≤ Lh . (2.12)
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In these collisions one has preservation of global momentum (which is the same as before) and of
total (kinetic and internal) energy:

1

2
mi |v|2 + Eij +

1

2
mh |w|2 + Ehk =

1

2
mi |v′|2 + Eil +

1

2
mh |w′|2 + Ehm . (2.13)

Analogous inelastic encounters may involve a monatomic and a polyatomic particle as

Gi + Chj −→ Gi + Chk , 1 ≤ i ≤ A A+ 1 ≤ h ≤ A+B , 1 ≤ j, k ≤ Lh , (2.14)

and conservation of total energy in this case reads as

1

2
mi |v|2 +

1

2
mh |w|2 + Ehj =

1

2
mi |v′|2 +

1

2
mh |w′|2 + Ehk . (2.15)

Is only a matter of change of notation proving that, also in this case of inert mixture, collision
equilibria are provided by Maxwellian distributions in which all species share the same mean velocity u

and the same temperature T , similarly to what is done in [36, 40] and repeated in Chapter 1. In
particular, denoting by M i(v; u, T/mi) the Maxwellian

M i

(
v; u,

T

mi

)
=

(
mi

2π T

)3/2

exp

(
− mi

2T
|v − u|2

)
, (2.16)

the equilibrium state for monatomic gases reads as

f iM (v) = niM i

(
v; u,

T

mi

)
, i = 1, . . . , A ; (2.17)

analogously, equilibrium distributions for polyatomic components may be cast as

f ijM (v) = nijM
i

(
v; u,

T

mi

)
, i = A+ 1, . . . , A+B , j = 1, . . . , Li , (2.18)

where, as proven in [58] and Chapter 1, number densities of single components nij and the total
number density ni of the gas Gi they belong to are related by the following relation depending on
the internal energy levels:

nij = ni
exp

(
− Eij−Ei1

T

)
Z i(T )

, (2.19)

with functions

Z i(T ) =

Li∑
k=1

exp

(
−
Eik − Ei1

T

)
. (2.20)

We have of course
∑Li

j=1 n
i
j = ni, and the ratio appearing in (2.19) represents the fraction of particles

of the gas Gi belonging to the component Cij in any equilibrium state. Notice that, in our frame
with increasing energy levels, such fractions are decreasing with respect to the index j, namely in
any equilibrium configuration ni1 > ni2 > · · · > ni

Li
(the bigger fraction of particles has the lowest

energy Ei1).
This system of particles has A+B+4 independent collision invariants, corresponding to preservation

of A+B species number densities ni, of the three components of global momentum u, and of total
energy (kinetic plus internal). In the next section we will build up a BGK model for our mixture able
to reproduce correct equilibria and collision invariants.
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2.2 BGK relaxation model

We generalize here the BGK model proposed in [11] to the present frame of a mixture of gases with a
different number of internal energy levels. We suppose that the kinetic equation for each distribution
function f i (with i = 1, . . . , A) and f ij (with i = A + 1, . . . , A + B and j = 1, . . . , Li) has a
collision operator constituted by a unique relaxation term, given by a suitable collision frequency
multiplied by the difference between the distribution itself and a Maxwellian–type attractor to be
properly determined. This idea was originally proposed in [1] for inert mixtures of monatomic gases,
and it allows to build up consistent BGK models that, besides Maxwellian equilibria and correct
conservation laws, guarantee positivity of distribution functions and species temperatures.

The BGK equations for monatomic gases Gi, with i = 1, . . . , A, read as

∂f i

∂t
+ v · ∇xf

i = νi(Mi − f i) , (2.21)

while for each polyatomic species Gi, with i = A+1, . . . , A+B, we have a set of Li kinetic equations,
one for each component Cij :

∂f ij
∂t

+ v · ∇xf
i
j = νij(Mi

j − f ij) , j = 1, . . . , Li . (2.22)

In this way, (2.21) and (2.22) constitute a set of A + LA+1 + · · · + LA+B BGK equations, where
νi and νij are macroscopic collision frequencies (independent of molecular velocity v, but possibly
dependent on macroscopic fields), whileMi andMi

j are Maxwellian attractors:

Mi(v) = ñi
(

mi

2π T̃

)3/2

exp

[
− mi

2 T̃
|v − ũ|2

]
, i = 1, . . . , A, (2.23)

Mi
j(v) = ñij

(
mi

2π T̃

)3/2

exp

[
− mi

2T̃
|v − ũ|2

]
,

i = A+ 1, . . . , A+B,

j = 1, . . . , Li,
(2.24)

depending on auxiliary parameters ñi (i = 1, . . . , A), ñij (i = A + 1, . . . , A + B, j = 1, . . . , Li), ũ,
T̃ , to be suitably determined in terms of the actual macroscopic fields. For any polyatomic gas Gi,
i = A+ 1, . . . , A+B, fictitious densities ñij are taken bound together as

ñij = ñi
exp

(
− Eij−Ei1

T̃

)
Z i(T̃ )

. (2.25)

In this way, collision equilibria of the BGK model (2.21)–(2.22) are correctly provided by Maxwellian
distributions sharing a common velocity and a common temperature, with number densities of com-
ponents of polyatomic species related to the total density of the gas by the expected relation (2.19).

The attractors are thus defined in terms of the A + B + 4 auxiliary disposable parameters ñi, ũ,
T̃ which, analogously to the procedure outlined in [1, 11], may be determined in such a way that
the BGK model (2.21)–(2.22) preserves the correct A + B + 4 collision invariants. Indeed, these
requirements yield the equations for preservation of

- number densities of monatomic species

νi
∫
R3

(Mi − f i)dv = 0 i = 1, . . . , A, (2.26)
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- number densities of polyatomic species

Li∑
j=1

νij

∫
R3

(Mi
j − f ij)dv = 0 i = A+ 1, . . . , A+B, (2.27)

- global momentum

A∑
i=1

νimi

∫
R3

v (Mi − f i)dv +

A+B∑
i=A+1

Li∑
j=1

νijm
i

∫
R3

v (Mi
j − f ij)dv = 0, (2.28)

- total energy

A∑
i=1

1

2
νimi

∫
R3

|v|2 (Mi − f i)dv +

A+B∑
i=A+1

Li∑
j=1

νij

∫
R3

(
1

2
mi|v|2 + Eij

)
(Mi

j − f ij)dv = 0.

(2.29)

We prove now that system (2.26)–(2.29) determines uniquely the A + B + 4 unknowns ñi, ũ,
T̃ , for any choice of masses mi, collision frequencies νi, νij , and internal energies Eij of polyatomic
components. Constraint (2.26) immediately provides

ñi = ni , i = 1, . . . , A , (2.30)

consistently with the fact that number densities of monatomic species do not change through binary
collisions. On the other hand, as concerns densities of polyatomic gas components, condition (2.27)
provides

Li∑
h=1

νih ñ
i
h =

Li∑
j=1

νij n
i
j , i = A+ 1, . . . , A+B , (2.31)

that recalling (2.25) yields

ñi =

 Li∑
j=1

νij n
i
j

Z i(T̃ )

Li∑
h=1

νih exp

(
−
Eih − Ei1

T̃

) , i = A+ 1, . . . , A+B , (2.32)

and

ñij =

 Li∑
j=1

νij n
i
j

 exp

(
− Eij−Ei1

T̃

)
Li∑
h=1

νih exp

(
−
Eih − Ei1

T̃

) ,
i = A+ 1, . . . , A+B ,

j = 1, . . . , Li.
(2.33)

These formulas determine uniquely the auxiliary number densities of polyatomic components in
terms of actual number densities nij , internal energies E

i
j , and auxiliary temperature T̃ , that has to

be determined too.
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Constraint (2.28), related to momentum conservation, yields

A∑
i=1

νimi ni (ũ− ui) +
A+B∑
i=A+1

 Li∑
h=1

νihm
i ñihũ−

Li∑
j=1

νijm
i niju

i
j

 = 0 , (2.34)

that owing to (2.31) provides

ũ =

A∑
i=1

νimi ni ui +
A+B∑
i=A+1

Li∑
j=1

νijm
i nij uij

A∑
i=1

νimi ni +
A+B∑
i=A+1

Li∑
j=1

νijm
i nij

, (2.35)

hence ũ is an explicit combination of actual number densities and mass velocities of single gas
components.

Finally, constraint (2.29) for temperature conservation is more complicated. Using the trivial
relations

|v − ũ|2 = |v|2 + |ũ|2 − 2 v · ũ, (2.36)

|v − ui|2 = |v|2 + |ui|2 − 2 v · ui, (2.37)

|v − uij |2 = |v|2 + |uij |2 − 2 v · uij , (2.38)

we integrate (2.29), and recalling the definitions of global temperature in (2.2) and (2.5) we obtain

A∑
i=1

νi
{

3

2
ñi T̃ − 3

2
ni T i − 1

2
miñi |ũ|2 − ni |ui|2

}

+
A+B∑
i=A+1

L1∑
j=1

νij

{[
3

2
ñij T̃ −

3

2
nij T

i
j

]
− 1

2
mi
[
ñij |ũ|2 − nij |uij |2

]
+ Eij

[
ñij − nij

]}
= 0. (2.39)

From the expressions of auxiliary densities in terms of actual ones and auxiliary temperature (2.30),
(2.31) and (2.33) we get a transcendental equation for T̃ of the form

F(T̃ ) = Λ , (2.40)

where F(T̃ ) in (2.40), after some trivial algebra takes the form

F(T̃ )
def
=

(
A∑
i=1

νi ni

)
3

2
T̃ +

A+B∑
i=A+1

 Li∑
j=1

νij n
i
j




3

2
T̃ +

Li∑
k=1

νik E
i
k exp

(
−
Eik − Ei1

T̃

)
Li∑
h=1

νih exp

(
−
Eih − Ei1

T̃

)
 , (2.41)

and the right hand side Λ contains several addends explicit in terms of actual densities, velocities,
and energies:

Λ
def
=

1

2

 A∑
i=1

mi νi ni
(
|ui|2 − |ũ|2

)
+

A+B∑
i=A+1

mi
Li∑
j=1

νij n
i
j

(
|uij |2 − |ũ|2

)
+

3

2

 A∑
i=1

νi ni T i +

A+B∑
i=A+1

Li∑
j=1

νij n
i
j T

i
j

+

A+B∑
i=A+1

Li∑
j=1

νij E
i
j n

i
j . (2.42)
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Even in the case with a different number of energy levels for each gas, it can be proved that the terms
on the right hand side in (2.42) involving mass velocities are non-negative. Indeed, the expression of
the auxiliary velocity ũ given in (2.35) provides

A∑
i=1

mi νi ni |ui|2 −

 A∑
i=1

mi νi ni +
A+B∑
i=A+1

mi
Li∑
j=1

νij n
i
j

 |ũ|2 +
A+B∑
i=A+1

mi
Li∑
j=1

νij n
i
j |uij |2 =

=

 A∑
i=1

νimi ni +
A+B∑
i=A+1

Li∑
j=1

νijm
i nij

−1
A∑

i,h=1

mimh νi νh ni nh
(
|ui|2 − ui · uh

)

+
A+B∑

i,h=A+1

Li∑
j=1

Lh∑
k=1

mimh νij ν
h
k n

i
j n

h
k

(
|uij |2 − uij · uhk

)

+

A∑
i=1

A+B∑
h=A+1

Lh∑
k=1

mimh νi νhk n
i nhk

(
|ui|2 + |uhk |2 − 2 ui · uhk

) , (2.43)

and the content of the curly brackets, by suitable exchanges of indices into each term separately,
becomes

1

2

A∑
i,h=1

mimh νi νh ni nh|ui − uh|2 +
1

2

A+B∑
i,h=A+1

Li∑
j=1

Lh∑
k=1

mimh νij ν
h
k n

i
j n

h
k |uij − uhk |2

+

A∑
i=1

A+B∑
h=A+1

Lh∑
k=1

mimh νi νhk n
i nhk |ui − uhk |2, (2.44)

providing thus the desired positivity result. Consequently, the whole quantity Λ is such that

Λ ≥
A+B∑
i=A+1

Li∑
j=1

νij E
i
j n

i
j ≥

A+B∑
i=A+1

Li∑
j=1

νij n
i
j E

i
1, (2.45)

recalling that min1≤j≤Li E
i
j = Ei1. Moreover, setting Gi(T̃ ) each term in square brackets appearing

in (2.41), i.e.

Gi(T̃ ) =
3

2
T̃ +

Li∑
k=1

νik E
i
k exp

(
−
Eik − Ei1

T̃

)
Li∑
h=1

νih exp

(
−
Eih − Ei1

T̃

)

=
3

2
T̃ +

νi1E
i
1 +

Li∑
k=2

νik E
i
k exp

(
−
Eik − Ei1

T̃

)

νi1 +

Li∑
h=2

νih exp

(
−
Eih − Ei1

T̃

) ,

(2.46)
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we immediately note that Gi(T̃ ) ≥ Ei1 for any T̃ ≥ 0, and moreover we have the strict positivity of

(Gi)′(T̃ )

=
3

2
+

Li∑
h,k=1

νik ν
i
h

(
Eik − Eih

)2
2(T̃ )2

exp

(
−
Eik + Eih − 2Ei1

T̃

) Li∑
h=1

νih exp

(
−
Eih − Ei1

T̃

)−2

.

(2.47)

Consequently, the function F(T̃ ) is strictly monotonically increasing, and for positive auxiliary tem-
perature T̃ it varies from

lim
T̃→0
F(T̃ ) =

A+B∑
i=A+1

Li∑
j=1

Ei1ν
i
j n

i
j (2.48)

to
lim

T̃→+∞
F(T̃ ) = +∞. (2.49)

It follows that, keeping inequality (2.45) in mind, the transcendental equation F(T̃ ) = Λ admits a
unique solution for any value of masses, energies, collision frequencies, and species densities, velocities
and temperatures.

This allows to conclude that all auxiliary parameters of this BGK model are uniquely determined in
terms of the actual macroscopic fields: number densities coincide with the actual ones for monatomic
species and are provided by relations (2.32) for polyatomic species; mass velocity ũ is given in (2.35),
while temperature T̃ , needed also in the construction of auxiliary number densities, is deduced as the
unique solution of the transcendental equation (2.40).

2.2.1 H - theorem in space homogeneous conditions

As already noticed, equilibrium states correspond to distribution functions coinciding with Maxwellian
attractors: f i = Mi for i = 1, . . . , A, and f ij = Mi

j for i = A + 1, . . . , A + B and j = 1, . . . , Li,
therefore

ui = ũ = u , T i = T̃ = T, i = 1, . . . , A, (2.50)

uij = ũ = u , T ij = T̃ = T, i = A+ 1, . . . , A+B, j = 1, . . . , Li, (2.51)

and number densities of polyatomic components nij are related to global density of the corresponding
gas ni and to temperature T by the relation (2.25), providing thus the correct equilibrium Maxwellian
configurations (2.17) and (2.18), with the constraint (2.19).

We can also prove the asymptotic stability of such equilibria. Indeed, in space homogeneous
conditions, we set f = (f1, . . . , fA, fA+1

1 , . . . , fA+B
LA+B ), and define the physical entropy as

H[f ] =
A∑
i=1

∫
R3

f i log

(
f i

(mi)3

)
dv +

A+B∑
i=A+1

Li∑
j=1

∫
R3

f ij log

(
f ij

(mi)3

)
dv, (2.52)

thus setting fM = (M1, . . . ,MA,MA+1
1 , . . . ,MA+B

LA+B ) we have the following classical result.

Theorem 2.2.1. The entropy functional (2.52) is a Lyapunov functional for the BGK model (2.23)
- (2.24). More precisely, once the initial state f0 is fixed, denoting by fM the corresponding (unique)
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stationary point we have H[f∗ ] > H[fM ] for any f∗ 6= fM , and Ḣ[f∗] < 0 for any f∗ 6= fM while
Ḣ[fM ] = 0.

Proof. The fact that, if conservation of global densities, momentum and energy holds, the H–
functional (2.52) takes its minimum value exactly at the equilibrium Maxwellian state has already
been shown in Chapter 1, and it is possible to repeat all the same procedure adjusting to the present
notation, that would be even simpler since we have directly conservation of total number density
for each species. As concerns the entropy inequality, being the time derivative of the entropy, by
(2.21)-(2.22) in space homogeneous conditions,

Ḣ[f ] =
A∑
i=1

∫
R3

∂f i

∂t
log

(
f i

(mi)3

)
dv +

A+B∑
i=A+1

Li∑
j=1

∫
R3

∂f ij
∂t

log

(
f ij

(mi)3

)
dv

=
A∑
i=1

νi
∫
R3

(
Mi − f i

)
log

(
f i

(mi)3

)
dv +

A+B∑
i=A+1

Li∑
j=1

νij

∫
R3

(
Mi

j − f ij
)

log

(
f ij

(mi)3

)
dv,

(2.53)

we have to prove that Ḣ[f∗] < 0 for all f∗ 6= fM . To this aim, at first we can check that

A∑
i=1

νi
∫
R3

(
Mi−f i∗

)
log

(
Mi

(mi)3

)
dv+

A+B∑
i=A+1

Li∑
j=1

νij

∫
R3

(
Mi

j−f ij
∗)

log

(
Mi

j

(mi)3

)
dv = 0 . (2.54)

The proof of (2.54) is more involved than the one for a mixture of polyatomic gases only, with the
same number of energy levels (see [11]). At first we explicitly compute the logarithm of Maxwellian
attractors, leading to

A∑
i=1

νi
∫
R3

(
Mi − f i∗

) [
log ñi − 3

2
log
(
mi
)
− 3

2
log
(

2πT̃
)]
dv

+

A∑
i=1

νi
∫
R3

(
Mi − f i∗

) [
−m

i

2 T̃

(
|v|2 − 2ũ · v + |ũ|2

)]
dv

+
A+B∑
i=A+1

Li∑
j=1

νij

∫
R3

(
Mi

j − f ij
∗) [

log ñij −
3

2
log
(
mi
)
− 3

2
log
(

2πT̃
)]
dv

+

A+B∑
i=A+1

Li∑
j=1

νij

∫
R3

(
Mi

j − f ij
∗) [−mi

2 T̃

(
|v|2 − 2ũ · v + |ũ|2

)]
dv . (2.55)

Then, owing to conservations of momentum and total energy, we note that the contribution due to
monatomic species vanishes, while the one due to polyatomic components simplifies to

A+B∑
i=A+1

Li∑
j=1

νij
(
ñij − nij

∗) [
log ñij +

Eij

T̃

]
, (2.56)

that also vanishes since, bearing in mind (2.25) and (2.32), the term

log ñij +
Eij

T̃
=
Ei1
T̃

+ log

 Li∑
h=1

νih n
i
h
∗

− log

 Li∑
h=1

νih exp

(
−
Eih − Ei1

T̃

) (2.57)

54



does not depend on the subindex j and the equality (2.31) holds for any index i. Then, by subtract-
ing (2.54) from (2.53) we easily get that for any f∗ 6= fM

Ḣ[f∗] = −
∫
R3

 A∑
i=1

νi
(
f i
∗ −Mi

)
log

(
f i
∗

Mi

)
+

A+B∑
i=A+1

Li∑
j=1

νij
(
f ij
∗ −Mi

j

)
log

(
f ij
∗

Mi
j

) dv
(2.58)

and the inequality Ḣ[f∗] < 0 holds owing to usual convexity arguments applied to the function
x log(x).

2.3 Macroscopic equations

In this section, starting from our BGK model (2.21)–(2.22), we derive evolution equations for the
main macroscopic fields useful in physical applications, namely for species number densities, mass
velocities and temperatures of monatomic species (ni, ui, T i, for i = 1, . . . , A) and all components
of polyatomic gases (nij , uij , T

i
j , for i = A + 1, . . . , A + B, and j = 1, . . . , Li). As illustrated at

the beginning of Section 2.1, such macroscopic quantities may be obtained as suitable moments of
distribution functions, therefore their balance equations are recovered (following the same procedure
used in the preliminaries for the Boltzmann case) by multiplying the BGK equations by suitable weight
functions ϕi(v), ϕij(v), obtaining

∂

∂t

∫
R3

ϕi(v) f i(v) dv +∇x ·
∫
R3

vϕi(v) f i(v) dv = νi
∫
R3

ϕi(v)
(
Mi(v)− f i(v)

)
dv , (2.59)

∂

∂t

∫
R3

ϕij(v) f ij(v) dv +∇x ·
∫
R3

vϕij(v) f ij(v) dv = νij

∫
R3

ϕij(v)
(
Mi

j(v)− f ij(v)
)
dv , (2.60)

for monatomic or polyatomic components, respectively. More precisely, equations for number densities
correspond to the option ϕi(v) = ϕij(v) = 1 for all components, equations for mean velocities are
provided by ϕi(v) = ϕij(v) = v, while equations for temperatures involve the computation of the
second order moments with ϕi(v) = ϕij(v) = |v|2. The streaming terms of such equations (obtained
performing integrals on the left-hand side of (2.59) - (2.60)) are of course the classical ones [36] and
we briefly report here results adjusting them to the present notation.

∂

∂t

∫
R3

f i(v) dv +∇x ·
∫
R3

v f i(v) dv =
∂ni

∂t
+∇x · (ni ui), (2.61)

∂

∂t

∫
R3

vf i(v) dv +∇x ·
∫
R3

(v ⊗ v) f i(v) dv =
∂(niui)

∂t
+∇x · (ni (ui ⊗ ui)) +

1

mi
∇x ·Pi,

(2.62)

∂

∂t

∫
R3

|v|2f i(v) dv +∇x ·
∫
R3

(|v|2v) f i(v) dv =
3

mi

∂(niT i)

∂t
+
∂(|ui|2ni)

∂t

+
2

mi
∇x · (ui ·Pi + qi), (2.63)
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for i = 1, . . . , A , and

∂

∂t

∫
R3

f ij(v) dv +∇x ·
∫
R3

v f ij(v) dv =
∂nij
∂t

+∇x · (nij uij), (2.64)

∂

∂t

∫
R3

vf ij(v) dv +∇x ·
∫
R3

(v ⊗ v) f ij(v) dv =
∂(niju

i
j)

∂t
+∇x · (nij (uij ⊗ uij)) +

1

mi
∇ ·Pi

j ,

(2.65)

∂

∂t

∫
R3

|v|2f ij(v) dv +∇x ·
∫
R3

(|v|2v) f ij(v) dv =
3

mi

∂(nijT
i
j )

∂t
+
∂(|uij |2nij)

∂t

+
2

mi
∇x · (uij ·Pi

j + qij), (2.66)

for i = A + 1, . . . , A + B, j = 1, . . . , Li, being Pi, qi, Pi
j , qij the pressure tensors and heat fluxes

for monatomic species and polyatomic components introduced in (2.3) and (2.6), respectively.
Now we focus the attention on the scattering contributions, i.e. integrals on the right-hand side of

(2.59) - (2.60). In the equations for number densities we have∫
R3

(
Mi(v)− f i(v)

)
dv = 0 , i = 1, . . . , A , (2.67)

consistently with the fact that particles of monatomic gases do not change during the evolution, while∫
R3

(
Mi

j(v)− f ij(v)
)
dv = ñij − nij , i = A+ 1, . . . , A+B, j = 1, . . . , Li (2.68)

for polyatomic components. Momentum exchange rates read as∫
R3

v
(
Mi(v)− f i(v)

)
dv = ni (ũ− ui) , i = 1, . . . , A , (2.69)

and ∫
R3

v
(
Mi

j(v)− f ij(v)
)
dv = ñij ũ− nij uij , i = A+ 1, . . . , A+B, j = 1, . . . , Li. (2.70)

Analogous results hold for the second order moments:∫
R3

|v|2
(
Mi(v)− f i(v)

)
dv =

3ni

mi
(T̃ − T i) + ni(|ũ|2 − |ui|2) , i = 1, . . . , A , (2.71)

and ∫
R3

|v|2
(
Mi

j(v)− f ij(v)
)
dv =

3

mi
(ñij T̃ − nij T ij ) + ñij |ũ|2 − nij |uij |2 ,

i = A+ 1, . . . , A+B, j = 1, . . . , Li.

(2.72)

With these results at hand, some simple algebra allows to write down four independent equations for
the main fields of each component. For the monatomic gases (i = 1, . . . , A) macroscopic equations
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may be cast as

∂ni

∂t
+∇x · (ni ui) = 0 ,

ni
(
∂ui

∂t
+ ui · ∇xui

)
+

1

mi
∇x ·Pi = νi ni(ũ− ui) ,

3

2
ni
(
∂T i

∂t
+ ui · ∇xT

i

)
+ Pi : ∇xui +∇x · qi =

= νi ni
[

3

2
(T̃ − T i) +

1

2
mi |ũ− ui|2

]
,

(2.73)

while for the components of the polyatomic species (i = A+ 1, . . . , A+B, j = 1, . . . , Li) one has

∂nij
∂t

+∇x · (nij uij) = νij(ñ
i
j − nij) ,

nij

(
∂uij
∂t

+ uij · ∇xuij

)
+

1

mi
∇x ·Pi

j = νij ñ
i
j(ũ− uij) ,

3

2
nij

(
∂T ij
∂t

+ uij · ∇xT
i
j

)
+ Pi

j : ∇xuij +∇x · qij =

= νij ñ
i
j

[
3

2
(T̃ − T ij ) +

1

2
mi |ũ− uij |2

]
.

(2.74)

2.3.1 Numerical simulations

We report now some numerical simulations of the macroscopic equations in space homogeneous
conditions just for illustrative purposes, in order to check and comment on the trend towards equilibria
of the main macroscopic fields, for varying parameters. The space homogeneous version of evolution
equations (2.73)–(2.74) reads as

∂ni

∂t
= 0 , i = 1, . . . , A,

∂nij
∂t

= νij(ñ
i
j − nij) ,

i = A+ 1, . . . , A+B,

j = 1, . . . , Li,

∂ui

∂t
= νi(ũ− ui) , i = 1, . . . , A,

∂uij
∂t

= νij
ñij
nij

(ũ− uij) ,
i = A+ 1, . . . , A+B,

j = 1, . . . , Li,

∂T i

∂t
= νi

(
T̃ − T i +

1

3
mi |ũ− ui|2

)
, i = 1, . . . , A,

∂T ij
∂t

= νij
ñij
nij

(
T̃ − T ij +

1

3
mi |ũ− uij |2

)
,

i = A+ 1, . . . , A+B,

j = 1, . . . , Li,

(2.75)

where ñij is provided by (2.25) and (2.32), ũ is explicitly given in (2.35), and T̃ may be obtained
as the unique solution of the transcendental equation (2.40). Equations (2.75) constitute thus a
closed system of 4(A+LA+1 + · · ·+LA+B) equations, having as unknowns densities, velocities and
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temperatures of monatomic gases and of all components of polyatomic species. Once the initial state
(ni)0, (nij)0, (ui)0, (uij)0, (T i)0, (T ij )0 is assigned, the corresponding equilibrium configuration is
unique and may be determined (analogously to the procedure used to relate auxiliary parameters with
the actual ones) bearing in mind the conservations of densities ni of monatomic gases, total densities∑Li

j=1 n
i
j of polyatomic gases, global velocity u and total energy 3

2 T +
∑A+B

i=A+1

∑Li

j=1E
i
j n

i
j .

We will show here results relevant to two different test cases: at first, a mixture of a monatomic
and a polyatomic gas, and then a mixture of two polyatomic gases. In both cases, for masses of gas
species, internal energy levels and initial values for number density, mean velocity and temperature
of each component, we set dimensionless quantities. The system (2.75) is simulated by means of
MATLAB routines for ordinary differential equations, based on the implementation of the explicit
Runge–Kutta method proposed in [26]. At each time step, a bisection method is used to solve the
transcendental equation (2.40) for the auxiliary temperature.

Test 1 - Mixture of one monatomic and one polyatomic gas

In the first test case, we consider a monatomic gas G1 and a polyatomic species G2, that is assumed
to be divided into three different components C2

1 , C
2
2 , C

2
3 , each one endowed with its internal energy:

E2
1 = 5, E2

2 = 6, E2
3 = 9. (2.76)

From now on, in place of number densities we will consider the components concentrations

ci = ni

 A∑
h=1

nh +
A+B∑
h=A+1

Lh∑
k=1

nhk

−1

, cij = nij

 A∑
h=1

nh +
A+B∑
h=A+1

Lh∑
k=1

nhk

−1

, (2.77)

and also velocities and temperatures will be suitably normalized. Initial data for number concentra-
tions, velocities and temperatures are given in Table 2.1.

G1 C2
1 C2

2 C2
3

c0 0.32 0.26 0.19 0.22

u0 0.3 0 0.1 0.4

T0 2 4 1 2.5

Table 2.1

Collision frequencies, instead, are taken as in [11], where they have been estimated imposing that
average loss terms of Boltzmann equations equal the BGK ones. For the monatomic gas, collision
frequency turns out to be a linear combination of number densities provided by

ν1 =
1

20

n1 +
∑

j=1,2,3

n2
j

 . (2.78)

The result for the polyatomic components is more complicated, since one has to separate the exother-
mic transitions, where the post–collision internal energy is less than the pre–collision value, from
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the endothermic transitions, where the internal energy increases through the collision. Setting for
j = 1, 2, 3

Dex2
j =

{
k, l,m = 1, 2, 3 : E2

l + E2
m − E2

j − E2
k ≤ 0

}
, (2.79)

Den2
j =

{
k, l,m = 1, 2, 3 : E2

l + E2
m − E2

j − E2
k > 0

}
, (2.80)

we finally take

ν2
j =

1

20
n1 +

∑
k,l,m,∈Dex2

j

νl,mk,j n
2
k +

∑
k,l,m,∈Den2

j

νl,mk,j n
2
k exp

(
E2
j + E2

k − E2
l − E2

m

T

)
, (2.81)

with νl,mk,j =
k + j

20(l +m)
.

We want to investigate the behavior of the mixture when the masses of the two considered gas
species are relevantly different. For this reason we shall take as reference case the one where the mass
ratio can be approximated by one. This case can occur in a realistic framework taking as monatomic
gas Argon Ar (39.95 g/mol) and as polyatomic Fluorine Gas F2 (37.99 g/mol). Then, with masses
m1 = 1.05, m2 = 1, equilibrium values for concentrations c1

M , c
2
jM , global mean velocity uM and

temperature TM are reported in Table 2.2.

G1 C2
1 C2

2 C2
3

cM 0.32 0.35 0.24 0.08

uM 0.21 0.21 0.21 0.21

TM 2.79 2.79 2.79 2.79

Table 2.2

The dynamics in time of species concentrations c1 and c2
j , normalized velocities ū1 = u1/uM and

ū2
j = u2

j/uM , normalized temperatures T̄ 1 = T 1/TM and T̄ 2
j = T 2

j /TM are computed numerically
and showed in Figure 2.1.
Of course the concentration of the monatomic gas G1 remains constant, while the equilibrium

densities of the components of G2 are decreasing with respect to their subindex, consistently with the
equilibrium condition (2.25). Velocities and temperatures show a monotone trend to the corresponding
equilibrium value.
Now we consider the case when the mass of the polyatomic species is much bigger than the mass of

the monatomic one. More precisely, we take m1 = 1 and m2 = 64.97; this ratio between masses can
be obtained with Helium He (4 g/mol) and Iodine Heptafluoride IF7 (259.89 g/mol). Equilibrium
values for concentrations in this case are shown in Table 2.3, as well as the equilibrium velocity and
temperature normalized with respect to the equilibrium values of the reference case: ūM = uM/0.21,
T̄M = TM/2.79.

Finally, we assume the monatomic gas to have mass significantly bigger than the polyatomic one.
For example, considering Radon Rn (222 g/mo) and molecular Hydrogen H2 (2.02 g/mol), we have
a ratio that will be numerically represented choosing m1 = 111 and m2 = 1. Normalized equilibrium
values obtained in this case are the ones in Table 2.4.
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Figure 2.1: Test 1, concentrations, normalized velocities and temperatures for a mixture of a monatomic and
a polyatomic gas with energy levels as in (2.76) and initial values as in Table 2.1, considering
masses (m1,m2) = (1.05, 1).

G1 C2
1 C2

2 C2
3

cM 0.32 0.34 0.24 0.09

ūM 0.76 0.76 0.76 0.76

T̄M 1.14 1.14 1.14 1.14

Table 2.3

G1 C2
1 C2

2 C2
3

cM 0.32 0.35 0.24 0.08

ūM 1.38 1.38 1.38 1.38

T̄M 1 1 1 1

Table 2.4

We observe that the equilibrium velocity depends only on mass ratio, and it is slightly increasing
versus the ratio m1/m2. Number densities and temperature at equilibrium, instead, depend mainly
on the polyatomic gas mass value: when it is small, values are approximately the same for any choice
for the mass of the monatomic gas, while, when it is bigger, the equilibrium temperature is a bit
higher and densities values are slightly closer to each other. Numerical results for these other two
mixtures are reported in Figure 2.2.
We notice that in these examples with the gases having disparate masses, velocities and tempera-

tures of the three components of the polyatomic gas (dashed line) tend to assume at first a common
value and after they still evolve together until they reach the prescribed equilibrium. This separation
between light and heavy particles, with the two species reaching at first a local Maxwellian equilib-
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Figure 2.2: Test 1, concentrations, normalized velocities and temperatures for a mixture of a monatomic (solid
line) and a polyatomic (dotted line) gas with energy levels as in (2.76) and initial values as in
Table 2.1, considering masses (m1,m2) = (1, 64.97) (panel (a)) and (m1,m2) = (111, 1) (panel
(b)).

rium and converging then to the global steady state, is in agreement with several physical problems
discussed in the pertinent literature [17, 68, 84]. Moreover, in the case with the mass of the poly-
atomic molecules much higher than the one of the monatomic particles, temperatures of polyatomic
components show a slight overshooting, namely a non monotone trend to the equilibrium.

Test 2 - Mixture of two polyatomic gases having similar masses

We consider now a mixture of two polyatomic gas species, G1 and G2. We suppose that the first
one has two possible internal energy levels and that the second one has three of them. In this way,
the mixture is composed by five different components, namely C1

1 , C
1
2 , C

2
1 , C

2
2 , C

2
3 . As before, we

set collision frequencies defining the sets, for i = 1, 2 and j = 1, 2, 3 (for a simpler notation, we shall
indicate three energy levels for the first gas too, imposing for the third energy value E1

3 = 0)

Dexij =
{
h = 1, 2, k, l,m = 1, 2, 3 : Eil + Ehm − Eij − Ehk ≤ 0

}
, (2.82)

Denij =
{
h = 1, 2, k, l,m = 1, 2, 3 : Eil + Ehm − Eij − Ehk > 0

}
, (2.83)

and choosing

νij =
∑

h,k,l,m,∈Dexij

νl,mk,j n
h
k +

∑
k,l,m,∈Denij

νl,mk,j n
h
k exp

(
Eij + Ehk − Eil − Ehm

T

)
, (2.84)

with νl,mk,j =
k + j

20(l +m)
.

At first, we show the case of gas species having similar masses and we let values of energy levels
vary. This case can be represented by taking as gas species Nitrous Oxide N2O (44 g/mol) and
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Ozone O3 (48 g/mol). For numerical simulation we take m1 = 1, m2 = 1.09 and initial data for
concentrations, velocities and temperatures those reported in Table 2.5.

C1
1 C1

2 C2
1 C2

2 C2
3

c0 0.25 0.22 0.2 0.15 0.175

u0 0.3 0.2 0 0.1 0.4

T0 2 3.5 4 1 2.5

Table 2.5

We set as reference case internal energy levels

E1
1 = 2, E1

2 = 4, E2
1 = 5, E2

2 = 6, E2
3 = 9, (2.85)

obtaining as equilibrium values for concentrations, mean velocity and temperature the ones reported
in Table 2.6.

C1
1 C1

2 C2
1 C2

2 C2
3

cM 0.31 0.16 0.26 0.19 0.07

uM 0.20 0.20 0.20 0.20 0.20

TM 3.02 3.02 3.02 3.02 3.02

Table 2.6

The evolution of macroscopic quantities in this case is presented in Figure 2.3.
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Figure 2.3: Test 2, concentrations, normalized velocities and temperatures for a mixture of two polyatomic
gases with energy levels as in (2.85) and initial values as in Table 2.5, considering masses
(m1,m2) = (1, 1.09).

We want to show evolution of global quantities considering different values for internal energy levels.
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First, with respect to energies in the reference case (2.85), we increase each amount of internal energy

E1
1 = 38, E1

2 = 40, E2
1 = 35, E2

2 = 36, E2
3 = 39, (2.86)

then we increase only energy levels of the second gas

E1
1 = 2, E1

2 = 4, E2
1 = 35, E2

2 = 36, E2
3 = 39. (2.87)

In both cases we obtain equilibrium values that are not significantly different from the reference ones.
As third case, we only increase the gap between the lower and the higher energy level for each

species,

E1
1 = 4, E1

2 = 40, E2
1 = 5, E2

2 = 18, E2
3 = 39, (2.88)

obtaining the normalized steady values ciM , cijM , ūM = uM/0.20, T̄M = TM/3.02 reported in Table
2.7.

C1
1 C1

2 C2
1 C2

2 C2
3

cM 0.45 0.02 0.38 0.12 0.02

ūM 1 1 1 1 1

T̄M 3.77 3.77 3.77 3.77 3.77

Table 2.7

Numerical results for the evolution of concentrations, normalized velocities and temperatures cor-
responding to the options (2.86), (2.87), (2.88) are shown in Figure 2.4.
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Figure 2.4: Test 2, concentrations, normalized velocities and temperatures for a mixture of a two component
(solid line) and a three component (dotted line) polyatomic gas with initial values as in Table 2.5,
considering masses (m1,m2) = (1, 1.09) and taking energy levels as in (2.86) (panel (a)), (2.87)
(panel (b)) and (2.88) (panel (c)).
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We point out that when there is a bigger gap between energy values as in (2.88), there is also
a bigger gap between concentrations of components corresponding to the highest and to the lowest
energy levels. Moreover, a high gap between internal energies causes a considerably higher value for
the final temperature (see panel (c)), since it is strongly affected by all the differences Eij − Ei1.

We may also observe that, when there is a quite big difference between the total amount of internal
energy of the two species, as in (2.87) (panel (b)), the one with higher internal energy levels reaches
the equilibrium faster.

At this point, we investigate the case in which one of the two polyatomic gases has a higher total
density. We set as initial values for concentrations the ones reported in Table 2.8.

C1
1 C1

2 C2
1 C2

2 C2
3

c0 0.47 0.43 0.04 0.03 0.03

Table 2.8

Then we keep initial values for velocities and temperatures the same of the reference case (Table
2.5) and energy levels as in (2.85). Normalized equilibrium values ciM , cijM , ūM = uM/0.20, T̄M =

TM/3.02 are listed in Table 2.9.

C1
1 C1

2 C2
1 C2

2 C2
3

cM 0.60 0.30 0.05 0.04 0.01

ūM 1.20 1.20 1.20 1.20 1.20

T̄M 0.97 0.97 0.97 0.97 0.97

Table 2.9

Normalized final values for mean velocity and temperature in this case are very close to the ones
obtained considering only the first gas (that would be ūM = 1.25 and T̄M = 0.96). Time behavior
of velocities and temperatures are compared with the reference case in Figure 2.5.
We can observe that the presence of a higher concentration of the first gas species leads it to a

faster reaching of equilibrium state. Indeed, the species with very high concentration plays the role of
a background medium (for instance, the atmosphere), in which a rarefied gas (for instance, a pollutant
powder) is diffusing. It has been proved that in this low density limit the particles dynamics may be
modelled by a linear Boltzmann equation [116], and the equilibrium velocity and temperature coincide
with the corresponding background values [36].

Test 3 - Mixture of two polyatomic gases having different masses

As final test, we show the case of two polyatomic gases having different masses. Keeping in mind a
real case of Hydrogen H2 (2 g/mol) and Arsine AsH3 (77.95 g/mol), we take as masses m1 = 1

and m2 = 38.97. We consider three different scenarios changing initial velocities of the components.
Firstly we take initial values as in Table 2.5 and energy levels as in (2.85), obtaining equilibrium values
reported in Table 2.10.
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Figure 2.5: Test 2, normalized velocities and temperatures for a mixture of two polyatomic gases with energy
levels as in (2.85) and initial values for velocities and temperatures as in Table 2.5, considering
masses (m1,m2) = (1, 1.09) and taking initial values for concentrations as in Table 2.8 (solid line)
and Table 2.5 (dotted line).

C1
1 C1

2 C2
1 C2

2 C2
3

cM 0.31 0.16 0.26 0.20 0.07

uM 0.16 0.16 0.16 0.16 0.16

TM 3.20 3.20 3.20 3.20 3.20

Table 2.10

Time behavior of normalized global quantities in this case is shown in Figure 2.6.
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Figure 2.6: Test 3, concentrations, normalized velocities and temperatures for a mixture of two polyatomic
gases with energy levels as in (2.85) and initial values as in Table 2.5, considering masses
(m1,m2) = (1, 38.97).
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Then we increase initial velocities of components of the gas having smaller mass as reported in
Table 2.11 and we get the normalized equilibrium values ciM , cijM , ūM = uM/0.16, T̄M = TM/3.20

reported in Table 2.12.

C1
1 C1

2 C2
1 C2

2 C2
3

u0 10 20 0 0.1 0.4

Table 2.11

C1
1 C1

2 C2
1 C2

2 C2
3

cM 0.24 0.23 0.18 0.17 0.16

ūM 3.06 3.06 3.06 3.06 3.06

T̄M 12.40 12.40 12.40 12.40 12.40

Table 2.12

Finally, we increase initial velocities of components of the gas having bigger mass setting the values
as in Table 2.13 and we obtain that normalized equilibrium values are those in Table 2.14.

C1
1 C1

2 C2
1 C2

2 C2
3

u0 0.3 0.2 10 30 40

Table 2.13

C1
1 C1

2 C2
1 C2

2 C2
3

cM 0.24 0.24 0.17 0.17 0.17

ūM 157.06 157.06 157.06 157.06 157.06

T̄M 388.81 388.81 388.81 388.81 388.81

Table 2.14

The behavior of the mixture taken into account is depicted in Figure 2.7.
As regards densities, when the initial velocities of components are higher, final equilibrium values are

closer to each other. The final value of mean velocity is clearly higher when initial values are higher,
but its order of magnitude strongly depends on the mean velocity of the gas having bigger mass;
moreover, the trend to equilibrium for the heavy particles is much faster than for the light ones. At
last, even equilibrium temperature increases significantly as initial velocities of various levels (especially
the ones of heavy molecules) are higher; the temperatures trend to the steady value turns out to be
monotone for components of the gas with low velocities, while an evident overshooting appears in the
first stage of the evolution of the faster components. The overshooting phenomenon in temperatures
evolution has been observed in several experiments both in space homogeneous conditions [33] and in
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Figure 2.7: Test 3, concentrations, normalized velocities and temperatures for a mixture of a two component
(solid line) and a three component (dotted line) polyatomic gas with energy levels as in (2.85) and
initial values for number densities and temperatures as in Table 2.5 considering masses (m1,m2) =

(1, 38.97) and taking initial values for velocities as in Table 2.11 (first panel) and Table 2.13 (second
panel).

space dependent situations, such as shock wave formation and combustion problems [48,69,85]. Even
the dependence of equilibrium values on the initial data is consistent with the physical expectations:
see for instance the discussions in [42, 43] about mixtures with high velocities or large temperature
differences between interacting species.

2.4 Conclusions

We have proposed a kinetic BGK model for a mixture of monatomic and polyatomic gases, whose
non-translational degrees of freedom are modeled by means of a suitable set of discrete energy levels.
This model generalizes the one presented in [11], where all species were assumed polyatomic and
with the same number of energy levels. Of course the present frame is much more technical to
deal with, since the nature of each interacting particle must be identified by a pair of indices, one
denoting the gas that it belongs to and the other referring to the particle energy level. This pair of
indices is needed also to denote distribution functions and main macroscopic fields relevant to the
various components of a polyatomic gas, as described in the previous sections. We stress again
the fact that, with a view to a lighter notation, the pair of indices could be substituted by a single
one, as done in Chapter 1, and all the calculations could be performed analogously. However, for
our purposes, we kept a separated formulation to treat monatomic and polyatomic species. We have
then proved that even for general mixtures the parameters appearing in the Maxwellian attractors of
the BGK operators are uniquely determined in terms of the actual fields of the various species by
imposing that the kinetic equations of relaxation type preserve the correct collision invariants of the
original Boltzmann equations. Even the classical H-theorem still holds. Finally, we have performed
some numerical simulations of evolution equations for species densities, velocities and temperatures
corresponding to our BGK model. We have considered a mixture constituted by a monatomic and a
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polyatomic gas, and another mixture composed by two polyatomic species having different number
of energy levels. Several tests have been performed for both mixtures, varying the mass ratio, the
internal energies, and also the initial values of number densities or mean velocities. In various cases
we have noticed that when one gas is very different from the other (for instance much heavier, or
denser), the two species spend a different amount of time to reach the equilibrium state. In such
situations with species showing disparate values, also overshooting of velocities or temperatures may
appear. The characteristic relaxation time for a BGK model depends of course on collision frequencies
that, at least for interaction of Maxwell molecule time, could be set in according with experimental
data following the method outlined in [17]. Anyway, our qualitative dependence of the hydrodynamic
time scale on the macroscopic data and the different species relaxation speed in case of disparate
masses are in agreement with the results of [64,70]. Such trends and in particular the separation of the
species for very high mass ratios should be discussed also in space-dependent problems, such as shock-
wave formation and evaporation-condensation phenomena between parallel plates [105]. In addition,
more sophisticated kinetic models for polyatomic particles are highly desirable, where the internal
energy is separated into two different components, the vibrational and the rotational ones; since it is
well known that the gap between two subsequent discrete levels is much lower for rotational energy
than for vibrational energy [65], a possible way of modeling could approximate the rotational part by
means of a continuous variable, keeping the vibrational part discrete. A corresponding Boltzmann or
BGK description should then mix together in a consistent way the discrete levels approach, introduced
in [58] and used also in this work, and the Borgnakke–Larsen procedure involving a continuous internal
energy, used for instance in kinetic models [46] and [19].
In the following chapter, we extend the present type of BGK models to frames in which some of the

species are subject also to chemical reactions, as already discussed in [11] for a very simple case of
only four species (all polyatomic with the same number of internal energies) subject to a bimolecular
and reversible chemical reaction. The main additional difficulty with respect to the inert case will be
the relations of Arrhenius type (mass action laws) which in any chemical equilibrium configuration
must relate temperature with number densities of the reacting species; indeed these are additional
transcendental equations to be managed in the construction of auxiliary parameters in the Maxwellian
attractors.
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3 Kinetic BGK models for reacting mixtures of
polyatomic gases

The main purpose of this chapter is to extend results obtained in the previous one for inert gas mixture
to a chemically reactive framework. More precisely, we suppose that gas particles of the mixture may
undergo, besides elastic and inelastic mechanical scattering, also bimolecular and reversible chemical
interactions, involving mass transfer during the collision.

Concerning Boltzmann description of reacting mixtures of particles several works are available [46,
58] and have been summarized and extended to a more general frame in Chapter 1. The treatment of
such models involving integro-differential equations can be quite cumbersome due to energy thresholds
appearing in the collision operators for endothermic chemical encounters. For this reason, a BGK-
type description of these types of mixtures can be helpful. In literature we can find generalizations
of the original model proposed in [1]. Such extensions have been performed in different ways, of
course facing different emerging technicalities, such as more complicated expressions for auxiliary
parameters affecting Maxwellian attractors [16], or the need of simplifying assumptions in the reactive
contributions [61].

As already outlined previously, in view of physical applications, for instance the investigation of gas
flows in the atmosphere, polyatomic gases should be included in the kinetic description. To this aim,
in [11] a BGK-type approximation of a mixture of four chemically interacting gas species has been
proposed. Anyway, such work follows the line of [58] and each gas species is endowed with the same
number of (discrete) energy levels. The physical need of considering both monatomic and polyatomic
species makes desirable an extension of this model to a mixture in which the number of energy levels
is different for each gas, analogously to Chapter 2.

In detail, in Section 3.1 of this chapter we firstly consider a mixture of four gas species, Gi,
i = 1, . . . , 4, whose particles, besides elastic collisions and inelastic transitions from one internal
energy level to another, are subject also to the reversible chemical reaction G1+G2 � G3+G4, where
a pair of reacting particles of species (G1, G2) provides, as products, a pair belonging to (G3, G4),
or vice versa. The additional difficulties with respect to the inert frame are essentially due to two
reasons. At first, single number densities are no more preserved during the evolution; consequently,
auxiliary number densities are related in a non–trivial way to species masses and concentrations,
to global (auxiliary) temperature and to the chemical energy gap. Then, the mass action law of
chemistry that characterizes chemical collision equilibrium, and that is assumed to be valid also for
auxiliary parameters, constitutes an additional transcendental equation to be combined to the energy
conservation requirement (that is a transcendental law by itself) in order to prove well–posedness
of auxiliary number densities and temperature. Mass action law also takes part in the proof of the
H-theorem in space homogeneous conditions, that ensures the consistency of the model. Then, in
Section 3.2 some numerical simulations, inspired by real bimolecular reactions, of trends to equilibrium
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of main macroscopic fields in space homogeneous conditions are shown and commented on.
In Section 3.3 we extend the model to a mixture in which there are eight gas species, Gi, with

i = 1, . . . , 8, that are subject to two reversible chemical reactions

G1 +G2 � G3 +G4, (3.1)

G5 +G6 � G7 +G8. (3.2)

In this case a second mass action law appears and this means that another transcendental equation
has to be solved in order to get the proper auxiliary number densities and temperature. Nevertheless,
the fact that the two reactions are indeed disjoint allows to reduce the number of unknowns and to
recover them as in the case of only four gases, as well as to prove the H-theorem in this case. Also in
this frame numerical simulations for the time behavior of macroscopic fields are performed in Section
3.4 and compared to the first case. Finally, Section 3.5 contains some concluding remarks. The first
model presented in this chapter is contained in [21], while the second one is contained in [23].

3.1 Statement of the problem for a mixture of four reacting gases and
discussion of the relative BGK relaxation model

We take into account a mixture of four polyatomic gas species, Gi, i = 1, . . . , 4. The reversible
chemical reaction in which the four gas species are involved is

G1 +G2 � G3 +G4. (3.3)

Using the same notation of the previous chapter, each gas species Gi will be characterized by a mass
mi and a certain number Li of discrete energy levels. Thus, it will be seen as a mixture of components
Cij , j = 1, . . . , Li, each one corresponding to a different energy level, denoted by Eij . In the frame
of the same gas Gi the energy levels are assumed (without loss of generality) to be increasing with
respect to the subindex j, namely Eij < Eik for any j, k = 1, . . . , Li with j < k. As concerns masses,
according to the conservation law, they have to satisfy the relation m1 +m2 = m3 +m4.

The distribution function of the component Cij is denoted by

f ij(t,x,v), i = 1, . . . , 4, j = 1, . . . , Li. (3.4)

We now consider possible interactions between particles, that will be, as usual, only binary instan-
taneous collisions. We may have, besides classical elastic collisions, also inelastic encounters in which
particles may change their internal energy, but also their nature, according to chemical reaction (3.3).
We write those generic chemical encounters as follows

Cij + Chk → C lm + Cnp ,
(i, h) 6= (l, n),

(i, h), (l, n) ∈ {(1, 2), (3, 4)} ,

1 ≤ j ≤ Li

1 ≤ k ≤ Lh

1 ≤ m ≤ Ll

1 ≤ p ≤ Ln,

(3.5)

and they are endothermic if Elm + Enp − Eij − Ehk ≥ 0 or exothermic if Elm + Enp − Eij − Ehk < 0.
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Denoting with (v,w) the molecular velocities of the ingoing particles and with (v′,w′) the corre-
sponding post-collision velocities, we have preservation of mass, global momentum and total energy:

mi +mh = ml +mn ,

mi v +mh w = ml v′ +mn w′ ,

1

2
mi |v|2 + Eij +

1

2
mh |w|2 + Ehk =

1

2
ml |v′|2 + Elm +

1

2
mn |w′|2 + Enp .

(3.6)

Again we will take into account the major moments of each component Cij , that are number
densities nij , drift velocity uij and kinetic temperature T ij (for their explicit expressions we address the
reader to the previous chapter). Clearly, the total density of each gas species, given by

ni =

Li∑
j=1

nij , i = 1, . . . , 4, (3.7)

is not constant in time, but thanks in the reaction (3.3) we have that three suitable combinations of
them, for instance n1 + n3, n1 + n4, n2 + n4, are conserved, as well as global momentum and total
energy of the mixture.

Using the current notation, results from the preliminary part apply directly to this case, in particular
equilibria in gas mixtures are provided by Maxwellian distributions in which all species share the same
mean velocity u and the same temperature T . In more detail, for a mixture of polyatomic gases with
discrete energies, denoting by M i(v; u, T/mi) the Maxwellian

M i

(
v; u,

T

mi

)
=

(
mi

2π T

)3/2

exp

(
− mi

2T
|v − u|2

)
, (3.8)

the equilibrium state for gas components reads as

f ijM (v) = nijM
i

(
v; u,

T

mi

)
, i = 1, . . . , 4, j = 1, . . . , Li , (3.9)

where, as proven before, number densities of single components nij are related to the total number
density ni of the gas Gi by the following relation depending on the internal energy levels:

nij = ni
exp

(
− Eij−Ei1

T

)
Li∑
k=1

exp

(
−
Eik − Ei1

T

) = ni
exp

(
− Eij−Ei1

T

)
Z i(T )

. (3.10)

In addition, in the present reactive frame, number densities of the four interacting gases must fulfill
at equilibrium the mass action law of chemistry representing the chemical equilibrium in a reversible
reaction

n1n2

n3n4
=

(
m1m2

m3m4

) 3
2 Z1(T )Z2(T )

Z3(T )Z4(T )
exp

(
∆E

T

)
, (3.11)

with
∆E = E3

1 + E4
1 − E2

1 − E1
1 . (3.12)

Without loss of generality, we suppose that the reaction involving the lower energy levels is endother-
mic, i.e. ∆E > 0.
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3.1.1 BGK model

We propose a BGK model analogous to Chapter 2 by writing a kinetic equation for each component’s
distribution function f ij (i = 1, . . . , 4, j = 1, . . . , Li) with a collision operator constituted by a unique
relaxation term. In this way, we get a set of L1 + . . .+ L4 BGK equations

∂f ij
∂t

+ v · ∇xf
i
j = νij(Mi

j − f ij) , i = 1, . . . , 4 j = 1, . . . , Li , (3.13)

where νij are macroscopic collision frequencies (independent of molecular velocity v, but possibly
dependent on macroscopic fields). The distributionsMi

j are Maxwellian attractors:

Mi
j(v) = ñij

(
mi

2π T̃

)3/2

exp

[
− mi

2T̃
|v − ũ|2

]
,

i = 1, . . . , 4,

j = 1, . . . , Li,
(3.14)

depending on auxiliary parameters ñij (i = 1, . . . , 4, j = 1, . . . , Li), ũ, T̃ , to be suitably determined
in terms of the actual macroscopic fields.
For any gas species Gi, i = 1, . . . , 4, fictitious densities ñij are taken bound together as

ñij = ñi
exp

(
− Eij−Ei1

T̃

)
Z i(T̃ )

, (3.15)

and in addition fictitious total densities ñi satisfy the constraint

ñ1ñ2

ñ3ñ4
=

(
m1m2

m3m4

) 3
2 Z1(T̃ )Z2(T̃ )

Z3(T̃ )Z4(T̃ )
exp

(
∆E

T̃

)
. (3.16)

In this way, collision equilibria of the BGK model (3.13) are correctly provided by Maxwellian dis-
tributions sharing a common velocity and a common temperature, with number densities related to
the total density of the gas by (3.10) and total densities bound together by (3.11). Our aim is to
find auxiliary parameters in terms of the actual ones imposing the preservation of the same (seven)
collision invariants of the Boltzmann equations in the BGK model. These correspond to three suitable
combinations of gas densities, for instance n1 + n3, n1 + n4, n2 + n4,

L1∑
j=1

ν1
j

∫
R3

(M1
j − f1

j )dv +
L3∑
j=3

ν3
j

∫
R3

(M3
j − f3

j )dv = 0 (3.17)

L1∑
j=1

ν1
j

∫
R3

(M1
j − f1

j )dv +

L4∑
j=4

ν4
j

∫
R3

(M4
j − f4

j )dv = 0 (3.18)

L2∑
j=2

ν2
j

∫
R3

(M2
j − f2

j )dv +
L4∑
j=4

ν4
j

∫
R3

(M4
j − f4

j )dv = 0, (3.19)

global momentum
4∑
i=1

Li∑
j=1

νijm
i

∫
R3

v (Mi
j − f ij)dv = 0, (3.20)
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and total energy
4∑
i=1

Li∑
j=1

νij

∫
R3

(
1

2
mi|v|2 + Eij

)
(Mi

j − f ij)dv = 0. (3.21)

Relations (3.17)-(3.19) lead to

Li∑
j=1

νij(ñ
i
j − nij) = λi

L1∑
j=1

ν1
j (ñ1

j − n1
j ), i = 1, . . . , 4, (3.22)

with
λ1 = λ2 = −λ3 = −λ4 = 1. (3.23)

A linear combination of previous equations, together with conservation of mass, gives as results

4∑
i=1

Li∑
j=1

νijñ
i
j =

4∑
i=1

Li∑
j=1

νijn
i
j (3.24)

and
4∑
i=1

mi
Li∑
j=1

νijñ
i
j =

4∑
i=1

mi
Li∑
j=1

νijn
i
j . (3.25)

Expression (3.22) can be written as

Li∑
j=1

νijñ
i
j =

Li∑
j=1

νijn
i
j + λi

L1∑
j=1

ν1
j (ñ1

j − n1
j ), i = 1, . . . , 4, (3.26)

and, from relation (3.15), we have

Li∑
j=1

νij
ñi

Z i(T̃ )

[
exp

(
−
Eij − Ei1

T̃

)]

=
Li∑
j=1

νijn
i
j + λi

L1∑
j=1

ν1
j

(
ñ1

Z1(T̃ )

[
exp

(
−
E1
j − E1

1

T̃

)]
− n1

j

)
, i = 1, . . . , 4.

(3.27)

This allows us to write three of the auxiliary total densities (ñ2, ñ3, ñ4) as function of the remaining
one (ñ1):

ñi

Z i(T̃ )
=

 Li∑
j=1

νij exp

(
−
Eij − Ei1

T̃

)−1
Li∑
j=1

νijn
i
j − λi

L1∑
j=1

ν1
j n

1
j

+ λi

 L1∑
j=1

ν1
j exp

(
−
E1
j − E1

1

T̃

) ñ1

Z1(T̃ )

 , (3.28)

that holds for i = 1, . . . , 4, since for i = 1 we get a trivial identity.
From momentum conservation (3.20) we get the equation involving auxiliary mean velocity

4∑
i=1

 Li∑
h=1

νihm
i ñihũ−

Li∑
j=1

νijm
i niju

i
j

 = 0 , (3.29)
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that owing to (3.25) provides

ũ =

4∑
i=1

Li∑
j=1

νijm
i nij uij

4∑
i=1

Li∑
j=1

νijm
i nij

, (3.30)

hence ũ is an explicit combination of actual number densities and mean velocities of single gas
components, analogously to inert mixture case illustrated in the previous chapter.

Total energy conservation (3.21) gives the equation

3

2

4∑
i=1

Li∑
j=1

νij n
i
j T̃ +

4∑
i=1

Li∑
j=1

ñijν
i
j E

i
j = Λ (3.31)

with Λ being a term explicitly depending on actual densities, velocities and energies

Λ
def
=

1

2

 4∑
i=1

mi
Li∑
j=1

νij n
i
j

(
|uij |2 − |ũ|2

)+
3

2

 4∑
i=1

Li∑
j=1

νij n
i
j T

i
j

+

4∑
i=1

Li∑
j=1

νij E
i
j n

i
j . (3.32)

By inserting expression (3.15) into the left-hand side of (3.31) we get an equation of the form

3

2

4∑
i=1

Li∑
j=1

νij n
i
j T̃ +

4∑
i=1

ñi

Z i(T̃ )

Li∑
j=1

νij E
i
j exp

(
−
Eij − Ei1

T̃

)
= Λ. (3.33)

At this point, we face the main difference with respect to the model without chemical reaction.
Instead of a transcendental equation for T̃ having one positive solution and depending only on the
actual parameters of the mixture, we have equation (3.33) containing both auxiliary parameters T̃
and ñ1. Following the procedure applied in [11], we are going to show that those two parameters are
uniquely determined, bearing in mind also the fictitious mass action law (3.16). At first, we find it
convenient setting

Y i =
ñi

Z i(T̃ )

Li∑
j=1

νij exp

(
−
Eij − Ei1

T̃

)
, (3.34)

and equation (3.33) thus becomes

3

2

4∑
i=1

Li∑
j=1

νij n
i
j T̃ +

4∑
i=1

Y i

Li∑
j=1

νij E
i
j exp

(
−
Eij − Ei1

T̃

)
Li∑
k=1

νik exp

(
−
Eik − Ei1

T̃

) = Λ. (3.35)

Since from (3.28) we have

Y i =
Li∑
j=1

νijn
i
j − λi

L1∑
j=1

ν1
j n

1
j + λiY 1, i = 1, . . . , 4, (3.36)

we end up with an equation of the form

Y 1 =
L1∑
j=1

ν1
j n

1
j + S(T̃ ), (3.37)
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where S(T̃ ) is written as

S(T̃ )
def
=
N (T̃ )

D(T̃ )
, (3.38)

with the numerator N

N (T̃ )
def
= Λ−

4∑
i=1

 Li∑
m=1

νim n
i
m




3

2
T̃ +

Li∑
j=1

νij E
i
j exp

(
−
Eij − Ei1

T̃

)
Li∑
k=1

νik exp

(
−
Eik − Ei1

T̃

)
 (3.39)

and the denominator D

D(T̃ )
def
=

4∑
i=1

λi

Li∑
j=1

νij E
i
j exp

(
−
Eij − Ei1

T̃

)
Li∑
k=1

νik exp

(
−
Eik − Ei1

T̃

) . (3.40)

We observe that, if we had repeated the previous calculations choosing a different gas species
in (3.22) to express the other three ones, we would have obtained analogous expressions for (3.28)
leading to

Y i =
Li∑
j=1

νijn
i
j + λiS(T̃ ), i = 1, . . . , 4. (3.41)

Putting expressions (3.41) for i = 1, . . . , 4 in the constraint (3.16), we obtain a transcendental
equation depending on T̃

G(T̃ ) =

(
m1m2

m3m4

) 3
2

, (3.42)

with

G(T̃ )
def
= G1(T̃ ) · G2(T̃ ) · G3(T̃ ), (3.43)

being

G1(T̃ )
def
=

 L1∑
j=1

ν1
j n

1
j + S(T̃ )

  L2∑
j=1

ν2
j n

2
j + S(T̃ )


 L3∑
j=1

ν3
j n

3
j − S(T̃ )

  L4∑
j=1

ν4
j n

4
j − S(T̃ )

 , (3.44)

G2(T̃ )
def
=

L3∑
k=1

ν3
k exp

(
−
E3
k − E3

1

T̃

) L4∑
k=1

ν4
k exp

(
−
E4
k − E4

1

T̃

)
L1∑
k=1

ν1
k exp

(
−
E1
k − E1

1

T̃

) L2∑
k=1

ν2
k exp

(
−
E2
k − E2

1

T̃

) , (3.45)

G3(T̃ )
def
= exp

(
− ∆E

T̃

)
. (3.46)
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Our aim is now to show that equation (3.42) admits one positive solution in the range in which
all the densities ni are positive. More precisely, referring to the quantities Y i, we are looking for a
solution in the set

A =

T̃ > 0 : max

− L1∑
j=1

ν1
j n

1
j ,−

L2∑
j=1

ν2
j n

2
j

 < S(T̃ ) < min

 L3∑
j=1

ν3
j n

3
j ,

L4∑
j=1

ν4
j n

4
j

 . (3.47)

We will go through the same proof performed in [11], adjusting it to the present frame of polyatomic
gases with a different number of internal energy levels. The first result that we point out is the
following.

Lemma 3.1.1. Let I = (T̃1, T̃2) ⊆ A be any interval in which the function D(T̃ ) given in (3.40) is
strictly negative (positive), then the function S(T̃ ) given in (3.38) is strictly monotonically increasing
(decreasing) in I.

Proof. From the expression of S(T̃ ) we easily get

S ′(T̃ ) =
N ′(T̃ )

D(T̃ )
− S(T̃ )

D′(T̃ )

D(T̃ )
. (3.48)

Then we have that

D′(T̃ ) =
4∑
i=1

λi

Li∑
j=1

Li∑
k=1

νijν
i
k

T̃ 2

[(
Eij
)2 − EijEik] exp

(
−
Eij + Eik − 2Ei1

T̃

)
 Li∑
k=1

νik exp

(
−
Eik − Ei1

T̃

)2 ; (3.49)

performing the exchange of indices j ↔ k, equation (3.49) can be written as

D′(T̃ ) =

4∑
i=1

λiF i(T̃ ) (3.50)

with

F i(T̃ )
def
=

Li∑
j=1

Li∑
k=1

νijν
i
k

2T̃ 2

[
Eij − Eik

]2
exp

(
−
Eij + Eik − 2Ei1

T̃

)
 Li∑
k=1

νik exp

(
−
Eik − Ei1

T̃

)2 ≥ 0, i = 1, . . . , 4. (3.51)

Analogously we get

N ′(T̃ ) = −
4∑
i=1

 Li∑
j=1

νij n
i
j

[3

2
+ F i(T̃ )

]
< 0 . (3.52)

Eventually, from (3.48), the expression for S ′(T̃ ) is

S ′(T̃ ) = − 1

D(T̃ )


4∑
i=1

3

2

 Li∑
j=1

νij n
i
j

+

4∑
i=1

 Li∑
j=1

νij n
i
j + λiS(T̃ )

F i(T̃ )

 . (3.53)
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We notice that the content of the square brackets in (3.53) is strictly positive for T̃ ∈ A and so the
content of the whole curly brackets is positive too, this means that S ′(T̃ ) and D(T̃ ) have opposite
sign.

We focus now on the behavior of the function S(T̃ ). For the numerator N (T̃ ) we have

Lemma 3.1.2. The function N (T̃ ) has a unique positive root T̃ ∗.

Proof. First of all we recall that N ′(T̃ ) < 0. Moreover we have

lim
T̃→0+

N (T̃ ) = Λ− lim
T̃→0+

4∑
i=1

 Li∑
m=1

νim n
i
m




3

2
T̃ +

Ei1ν
i
1 +

Li∑
j=2

νij E
i
j exp

(
−
Eij − Ei1

T̃

)

νi1 +
Li∑
k=2

νik exp

(
−
Eik − Ei1

T̃

)


= Λ−
4∑
i=1

 Li∑
m=1

νim n
i
m

Ei1

=
1

2

 4∑
i=1

mi
Li∑
j=1

νij n
i
j

(
|uij |2 − |ũ|2

)+
3

2

 4∑
i=1

Li∑
j=1

νij n
i
j T

i
j


+

4∑
i=1

Li∑
j=1

νij n
i
j

(
Eij − Ei1

)
. (3.54)

As it is shown in Chapter 2, the sum involving mean velocities in (3.54) is non–negative, so the whole
limit is strictly positive. In addition it holds

lim
T̃→+∞

N (T̃ ) = −∞. (3.55)

Thus, N (T̃ ) has a unique positive root T̃ ∗.

Following the same argument used in [11], we shall omit the situation in which the choice of initial
data, internal energies and collision frequencies is such that also D(T̃ ∗) = 0. In this case, T̃ = T̃ ∗

simplifies the function S(T̃ ) and we have to deal with a simple algebraic equation for our unknown
Y 1.

Now we make some considerations about D(T̃ ).

Lemma 3.1.3. On every interval
(
T̃1, T̃2

)
⊆ A the sign of D(T̃ ) does not change.

Proof. Since

lim
T̃→0
D(T̃ ) = −∆E < 0, lim

T̃→+∞
D(T̃ ) =

4∑
i=1

λi

Li∑
j=1

νij E
i
j

Li∑
j=1

νij

(3.56)

and the sign of D′(T̃ ) given in (3.50) changes in relation to internal energy levels and collision
frequencies, D(T̃ ) may have a positive root, call it T̃#, with T̃# 6= T̃ ∗. But in this case we would
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have
lim

T̃→T̃#
S(T̃ ) = ±∞ (3.57)

getting a neighborhood of T̃# not contained in A. Thus we can conclude that on every interval(
T̃1, T̃2

)
⊆ A the sign of D(T̃ ) does not change.

Consequently, from Lemma 3.1.1, neither the sign of S ′(T̃ ) changes. This allows us to prove the
following result.

Lemma 3.1.4. The set A given in (3.47) is a connected set of R+.

Proof. Let
(
T̃a, T̃b

)
be a connected component of A. If T̃a 6= 0 the function S(T̃ ) is continuous,

strictly monotonically increasing or decreasing on it, hence it assumes all the values between its upper
bound that is

min

 L3∑
j=1

ν3
j n

3
j ,

L4∑
j=1

ν4
j n

4
j

 (3.58)

and its lower bound that is

max

− L1∑
j=1

ν1
j n

1
j ,−

L2∑
j=1

ν2
j n

2
j

 . (3.59)

If T̃a = 0, since
lim
T̃→0
D(T̃ ) < 0, (3.60)

S(T̃ ) has to be strictly monotonically increasing on
(
T̃a, T̃b

)
, going from

lim
T̃→0
S(T̃ ) < 0 (3.61)

to

min

 L3∑
j=1

ν3
j n

3
j ,

L4∑
j=1

ν4
j n

4
j

 . (3.62)

Thus S(T̃ ) has a root in
(
T̃a, T̃b

)
, but we know that S(T̃ ) has only one positive root, T̃ ∗. It follows

that
(
T̃a, T̃b

)
is the only connected component of A, i.e. A is a connected set.

Now we are able to give the final result.

Lemma 3.1.5. The function G(T̃ ) defined in (3.43) is strictly monotone in the set A, ranging from
0 to +∞. More precisely, it is increasing if D(T̃ ) < 0 and decreasing if D(T̃ ) > 0.

Proof. We compute the derivative of the function G(T̃ ). We have

G′1(T̃ ) = S ′(T̃ )

 L3∑
j=1

ν3
j n

3
j − S(T̃ )

−2 L4∑
j=1

ν4
j n

4
j − S(T̃ )

−2

×


 L1∑

j=1

ν1
j n

1
j + S(T̃ )

+

 L2∑
j=1

ν2
j n

2
j + S(T̃ )

 L3∑
j=1

ν3
j n

3
j − S(T̃ )

  L4∑
j=1

ν4
j n

4
j − S(T̃ )


+

 L3∑
j=1

ν3
j n

3
j − S(T̃ )

+

 L4∑
j=1

ν4
j n

4
j − S(T̃ )

 L1∑
j=1

ν1
j n

1
j + S(T̃ )

 L2∑
j=1

ν2
j n

2
j + S(T̃ )


(3.63)
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that can be cast as

G′1(T̃ ) = G1(T̃ )
4∑
i=1

S ′(T̃ )

Li∑
j=1

νijn
i
j + λiS(T̃ )

. (3.64)

Proceeding in a similar way we have

G′2(T̃ ) = −G2(T̃ )
4∑
i=1

λi

T̃ 2

Li∑
j=1

νij
(
Eij − Ei1

)
exp

(
−
Eij − Ei1

T̃

)
Li∑
k=1

νik exp

(
−
Eik − Ei1

T̃

) , (3.65)

and, finally,

G′3(T̃ ) = G3(T̃ )
∆E

T̃ 2
. (3.66)

In this way we can conclude that

G′(T̃ ) = G(T̃ )


4∑
i=1


S ′(T̃ )

Li∑
j=1

νijn
i
j + λiS(T̃ )

− λi

T̃ 2

Li∑
j=1

νij
(
Eij − Ei1

)
exp

(
−
Eij − Ei1

T̃

)
Li∑
k=1

νik exp

(
−
Eik − Ei1

T̃

)
+

∆E

T̃ 2


,

(3.67)
that can be written, using function D(T̃ ) defined in (3.40), as

G′(T̃ ) = G(T̃ )




4∑
i=1

S ′(T̃ )

Li∑
j=1

νijn
i
j + λiS(T̃ )

−
D(T̃ )

T̃ 2


. (3.68)

We have that G(T̃ ) is positive in the set A that, as we proved in Lemma 3.1.4, is an interval
A =

(
T̃min, T̃max

)
; moreover, thanks to Lemma 3.1.1, S ′(T̃ ) and −D(T̃ ) have the same sign,

that does not change in A, and this means that G(T̃ ) is strictly monotone. Moreover, recalling the
definition of G(T̃ ) given in (3.43), when

S(T̃ )→ min

 L3∑
j=1

ν3
j n

3
j ,

L4∑
j=1

ν4
j n

4
j

 (3.69)

we have
G(T̃ )→ +∞ (3.70)

and when

S(T̃ )→ max

− L1∑
j=1

ν1
j n

1
j ,−

L2∑
j=1

ν2
j n

2
j

 (3.71)

we have
G(T̃ )→ 0; (3.72)
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also in the case in which T̃min = 0 it holds limT̃→0 G(T̃ ) = 0, since we are supposing ∆E > 0.
We observe here that also for the case ∆E < 0 it is sufficient to take the inverse of both sides of
equation (3.16) and modify the equation (3.42) studying the behavior of function 1

G(T̃ )
in order to

get the same result.

This final result allows us to assert that equation (3.42) has a unique solution, providing thus the
auxiliary temperature T̃ .
At this point, fictitious densities ñij are given by (3.15) and (3.28) together with expression (3.37),

hence they are known once T̃ is found, while fictitious mean velocity ũ is expressed in (3.30) and this
completes the construction of Maxwellian attractorsMi

j of our BGK model. The equilibrium states
correspond to f ij =Mi

j for i = 1, . . . , 4 and j = 1, . . . , Li, therefore

uij = ũ = u , T ij = T̃ = T, i = 1, . . . , 4, j = 1, . . . , Li, (3.73)

and number densities of components nij are related to global density of the corresponding gas ni by
the constraint (3.10), while the densities ni are bound together by (3.11).

3.1.2 H-Theorem for the homogeneous case

We can also prove the asymptotic stability of collision equilibria in this case. Indeed, in space homo-
geneous conditions, setting f = (f1

1 , . . . , f
4
L4), the physical entropy

H[f ] =
4∑
i=1

Li∑
j=1

∫
R3

f ij log

(
f ij

(mi)3

)
dv (3.74)

is a Lyapunov functional for the present BGK model. Specifically, if fM denotes the stationary state
corresponding to the initial state f0, we have H[f ] > H[fM ] for any f 6= fM . The proof of this result
for the present reactive model is a bit more involved with respect to the inert mixture case since the
conservation of species number densities does not hold anymore. Anyway, also in this case the proof
is analogous to the one performed in Chapter 2, so we skip details.
We can now prove the entropy inequality Ḣ[f∗] < 0 for any f∗ 6= fM , while Ḣ[fM ] = 0.
Let f∗ 6= fM , the time derivative of the H–functional (3.74) reads as

Ḣ[f ] =

4∑
i=1

Li∑
j=1

νij

∫
R3

(
Mi

j − f ij
∗)

log

(
f ij
∗

(mi)3

)
dv. (3.75)

At first we can check that

4∑
i=1

Li∑
j=1

νij

∫
R3

(
Mi

j − f ij
∗)

log

(
Mi

j

(mi)3

)
dv = 0 . (3.76)

Indeed, we explicitly compute the logarithm of Maxwellian attractors, leading to

4∑
i=1

Li∑
j=1

νij

∫
R3

(
Mi

j − f ij
∗) [

log ñij −
3

2
log
(
mi
)
− 3

2
log
(

2πT̃
)]
dv
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+

4∑
i=1

Li∑
j=1

νij

∫
R3

(
Mi

j − f ij
∗) [−mi

2 T̃

(
|v|2 − 2ũ · v + |ũ|2

)]
dv . (3.77)

Then, owing to conservation laws of momentum and total energy, it simplifies to

4∑
i=1

Li∑
j=1

νij
(
ñij − nij

∗) [
log ñij +

Eij

T̃
− 3

2
logmi

]
; (3.78)

bearing in mind (3.15), the previous equation becomes

4∑
i=1

Li∑
j=1

νij
(
ñij − nij

∗) [
log ñi +

Ei1
T̃
− log

(
Z i(T̃ )

)
− 3

2
logmi

]
. (3.79)

Using the relations (3.22), the quantity above can be written as

L1∑
j=1

ν1
j

(
ñ1
j − n1

j
∗) 4∑

i=1

λi
[
log ñi +

Ei1
T̃
− log

(
Z i(T̃ )

)
− 3

2
logmi

]

=

L1∑
j=1

ν1
j

(
ñ1
j − n1

j
∗){

log

[
ñ1ñ2

ñ3ñ4

(
m3m4

m1m2

) 3
2

]
− log

[
Z1(T̃ )Z2(T̃ )

Z3(T̃ )Z4(T̃ )
exp

(
∆E

T̃

)]}
= 0 (3.80)

due to the mass action law (3.16) for auxiliary parameters. Then, by subtracting (3.76) from (3.75)
we easily get that for any f∗ 6= fM

Ḣ[f∗] = −
4∑
i=1

Li∑
j=1

νij

∫
R3

(
f ij
∗ −Mi

j

)
log

(
f ij
∗

Mi
j

)
dv (3.81)

and the inequality Ḣ[f∗] < 0 holds owing to usual convexity arguments.

3.2 Macroscopic equations for mixtures of four reacting gases

Performing the same calculations done in Chapter 2, we are able to derive from BGK model (3.13)
the evolution equations for the main macroscopic fields, i.e. number densities, mean velocities and
temperatures of all components of the four reacting gases (nij , uij , T

i
j , for i = 1, . . . , 4 and for

j = 1, . . . , Li). We obtain the following system

∂nij
∂t

+∇x · (nij uij) = νij(ñ
i
j − nij) ,

nij

(
∂uij
∂t

+ uij · ∇xuij

)
+

1

mi
∇x ·Pi

j = νij ñ
i
j(ũ− uij) ,

3

2
nij

(
∂T ij
∂t

+ uij · ∇xT
i
j

)
+ Pi

j : ∇xuij +∇x · qij

= νij ñ
i
j

[
3

2
(T̃ − T ij ) +

1

2
mi |ũ− uij |2

]
,

(3.82)

where Pi
j are pressure tensors and qij heat fluxes for each component defined as

Pi
j = mi

∫
R3

(v − uij)⊗ (v − uij) f
i
j(v) dv , qij =

mi

2

∫
R3

(v − uij) |v − uij |2 f ij(v) dv . (3.83)
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For illustrative purposes we will show some numerical results for two reacting mixtures taking into
account the space homogeneous and one–dimensional version of evolution equations (3.82) that reads
as 

∂nij
∂t

= νij(ñ
i
j − nij) ,

i = 1, . . . , 4,

j = 1, . . . , Li,

∂uij
∂t

= νij
ñij
nij

(ũ− uij) ,
i = 1, . . . , 4,

j = 1, . . . , Li,

∂T ij
∂t

= νij
ñij
nij

(
T̃ − T ij +

1

3
mi (ũ− uij)2

)
,

i = 1, . . . , 4,

j = 1, . . . , Li,

(3.84)

where ñij is provided by (3.15) and (3.28), ũ is explicitly given in (3.30), and T̃ may be obtained as
the unique solution of the transcendental equation (3.42). Equations (3.84) constitute thus a closed
system of 3(L1 + . . . + L4) equations, having as unknowns densities, velocities and temperatures
of all components of polyatomic species. Once the initial state (nij)0, (uij)0, (T ij )0 is assigned,
the corresponding equilibrium configuration is unique and may be determined bearing in mind the
conservations of three suitable combinations of total densities, global velocity and total energy.

3.2.1 Numerical simulations

Test 1

The first mixture we model is inspired by the reversible reaction involving hydrogen H2 (with mass
2.02 g/mol), iodine I2 (253.8 g/mol) and hydrogen iodide HI (127.91 g/mol)

H2 + I2 � HI +HI. (3.85)

So we take into account four gases Gi, i = 1, ..., 4, with mass ratios reproducing the ones of the gases
involved in the reaction: m1 = 0.1, m2 = 12.8, m3 = m4 = 6.45. Notice that in this bimolecular
reaction the third and the fourth species coincide, therefore they are characterized by the same internal
structure and by the same initial data. We suppose that gas species G1, G3 ≡ G4 are endowed with
two and G2 is endowed with three discrete energy levels, respectively. Specifically, we assume the
following configuration of internal energy levels

E1
1 = 6.5, E1

2 = 7.5, E2
1 = 7, E2

2 = 8, E2
3 = 8.5,

E3
1 = 6, E3

2 = 7, E4
1 = 6, E4

2 = 7. (3.86)

From now on we will consider concentration cij of each component Cij defined as

cij =
nij∑4

h=1

∑Lh

k=1 n
h
k

, (3.87)

and also velocities and temperatures will be suitably normalized with respect to the corresponding
equilibrium values. Initial data for number concentrations, velocities and temperatures are given in
Table 3.1.
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C1
1 C1

2 C2
1 C2

2 C2
3 C3

1 C3
2 C4

1 C4
2

c0 0.13 0.07 0.08 0.06 0.15 0.14 0.11 0.14 0.11

u0 0.3 0 0.1 0.4 0.2 0.6 0.1 0.6 0.1

T0 2 4 1 2.5 2 6 1.5 6 1.5

Table 3.1

The choice of collision frequencies is done as in [11], setting the sets of indices for i = 1, . . . , 4 and
j = 1, . . . , Li

D1i
j =


h = 1, . . . , 4,

m = 1, . . . , Li,

k, p = 1, . . . , Lh

: Eim + Ehp − Eij − Ehk ≤ 0

 , (3.88)

D2i
j =


h = 1, . . . , 4,

m = 1, . . . , Li,

k, p = 1, . . . , Lh

: Eim + Ehp − Eij − Ehk > 0

 , (3.89)

D3i
j =

h, l, n :

(i, h) 6= (l, n), i 6= n,

(i, h), (l, n)

∈ {(1, 2), (3, 4), (2, 1), (4, 3)} ,

k = 1, . . . , Lh,

m = 1, . . . , Ll,

p = 1, . . . , Ln

: Elm + Enp − Eij − Ehk ≤ 0

 ,

(3.90)

D4i
j =

h, l, n :

(i, h) 6= (l, n), i 6= n,

(i, h), (l, n)

∈ {(1, 2), (3, 4), (2, 1), (4, 3)} ,

k = 1, . . . , Lh,

m = 1, . . . , Ll,

p = 1, . . . , Ln

: Elm + Enp − Eij − Ehk > 0

 ,

(3.91)
and taking

νij =
∑

h,k,m,p∈D2i
j

νm,pj,k n
h
k exp

(
−
Eim + Ehp − Eij − Ehk

T

)
+

∑
h,k,m,p∈D1i

j

νm,pj,k n
h
k

+
∑

h,k,l,m,n,p∈D4i
j

νm,pj,k n
h
k

(
mimj

mlmn

) 3
2

exp

(
−
Elm + Enp − Eij − Ehk

T

)

+
∑

h,k,l,m,n,p∈D3i
j

νm,pj,k n
h
k

(3.92)

with νm,pj,k =
k + j

20(m+ p)
. Equilibrium values for concentrations cijM obtained in this setting are

reported in Table 3.2 while equilibrium global mean velocity is uM = 0.29 and equilibrium temperature
is TM = 3.47.

The evolution in time of species concentrations computed numerically is depicted in Figure 3.1.
It is possible to observe that, according to constraint (3.10), for each gas species the component
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C1
1 C1

2 C2
1 C2

2 C2
3 C3

1 C3
2 C4

1 C4
2

cM 0.001 0.001 0.042 0.031 0.027 0.256 0.192 0.256 0.192

Table 3.2

corresponding to a higher energy level will have a lower concentration and vice-versa. Moreover, due
to relation (3.11), the concentrations of species G1 and G2 are lower, in particular the one of G1

(that has the lowest mass in the mixture) is the lowest, while concentrations of species G3 and G4

are higher. In other words, chemical equilibrium is achieved when species G1 is almost completely
disappeared, so that almost no reactive collision can occur. We also note that trend to equilibrium
for concentrations may be non monotone, see for instance c2

1 and c2
2.
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Figure 3.1: Test 1, concentrations for a mixture of four reacting gases with energy levels as in (3.86) and
initial values as in Table 3.1, considering masses (m1,m2,m3,m4) = (0.1, 12.8, 6.45, 6.45).

In Figure 3.2 we report the behavior of normalized velocities ūij = uij/uM and normalized tempera-
tures T̄ ij = T ij/TM . We can observe that the species G1 takes a longer time to reach the equilibrium
value for velocity and temperature, its components keep nearly constant values in the first stage of
the evolution.

Test 2

The second reacting mixture we take into account for our simulations is the following

ClNO2 +NO � NO2 + ClNO, (3.93)

where the chloro nitride ClNO2 (81.46 g/mol) reacts with nitric oxide NO (30.01 g/mol) forming
nitrosyl chloride ClNO (65,46 g/mol) and nitrogen dioxide NO2 (46.01 g/mol), and vice-versa in
the reverse reaction. As before, we take in our model four gases having mass ratios similar to the ones
involved in the real reaction: m1 = 1, m2 = 2.72, m3 = 2.18, m4 = 1.53. We make the assumption
that the first gas G1 is composed by two, the second gas G2 is composed by four, and the other two
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Figure 3.2: Test 1, normalized velocities and temperatures for a mixture of four reacting gases with energy
levels as in (3.86) and initial values as in Table 3.1, considering masses (m1,m2,m3,m4) =

(0.1, 12.8, 6.45, 6.45).

gases G3 and G4 are composed by three components, respectively. Each component corresponds to
a different internal energy level as follows

E1
1 = 6, E1

2 = 7, E2
1 = 7, E2

2 = 8, E2
3 = 10, E2

4 = 12,

E3
1 = 5.5, E3

2 = 6, E3
3 = 7.5, E4

1 = 4, E4
2 = 9, E4

3 = 10. (3.94)

We set initial concentrations, velocities and temperatures as reported in the Table 3.3.

C1
1 C1

2 C2
1 C2

2 C2
3 C2

4 C3
1 C3

2 C3
3 C4

1 C4
2 C4

3

c0 0.12 0.09 0.07 0.08 0.11 0.06 0.07 0.05 0.13 0.03 0.08 0.09

u0 0.3 0 0.1 0.4 0.2 0.6 0.1 0.4 0.5 0.3 0 0.2

T0 2 4 1 2.5 2 6 1.5 2.5 3 4.5 5 1

Table 3.3

In this case, equilibrium values for equilibrium concentrations of components cijM are given in Table
3.4, while equilibrium global mean velocity is uM = 0.28 and temperature is TM = 3.59.

C1
1 C1

2 C2
1 C2

2 C2
3 C2

4 C3
1 C3

2 C3
3 C4

1 C4
2 C4

3

cM 0.09 0.07 0.12 0.08 0.04 0.02 0.13 0.11 0.07 0.2 0.05 0.04

Table 3.4

Numerical results for behavior in time of concentrations for all the components are showed in Figure
3.3. In this case, since there is less difference among masses than in the previous case, final values
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Figure 3.3: Test 2, concentrations for a mixture of four reacting gases with energy levels as in (3.94) and
initial values as in Table 3.3, considering masses (m1,m2,m3,m4) = (1, 2.72, 2.18, 1.53).

of number densities are more similar; we only have a significantly higher concentration of component
C4

1 that corresponds to the lowest energy level.
Trends for normalized mean velocities and temperatures of the species are reported in Figure 3.4

and also in this case we can observe that the lighter gas G1 takes a longer time to reach the equilibrium
value.
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Figure 3.4: Test 2, normalized velocities and temperatures for a mixture of four reacting gases with energy
levels as in (3.94) and initial values as in Table 3.3, considering masses (m1,m2,m3,m4) =

(1, 2.72, 2.18, 1.53).

Test 3

At this point, we consider the following physical case

O +OH → O2 +H. (3.95)
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This irreversible exothermic reaction between the two radicals atomic Oxygen O (15.99 g/mol) and
Hydroxide OH (17.01 g/mol) is known to cause production of molecular Oxygen O2 (31.99 g/mol)
along with Hydrogen H (1.01 g/mol) in the cold core of interstellar clouds [100,111].

Clearly, since our present model is built up for reversible chemical reactions, it is not possible to
implement it to reproduce such physical event. Nevertheless we try to describe a reversible virtual
chemical encounter of type (3.3) performing a choice of parameters (energy levels, collision frequen-
cies, initial concentrations, temperatures and velocities) in such a way that inverse reaction becomes
highly improbable and the equilibrium state corresponds to a considerable consumption of one of
the reactants (its concentration become negligible, as in the equilibrium configuration of the real
irreversible process).

Thus we take four gases Gi, i = 1, . . . , 4 having mass ratios analogous to the ones involved in the
real reaction, i.e we set m1 = 15.83,m2 = 16.83,m3 = 31.67,m4 = 1. Then we suppose that gas
species G1 and G4, being monatomic, have only one internal energy level, whereas we assign to both
species G2 and G3 two energy levels. Fixing values for energies, we assume the energy gap between
reactants and products sufficiently large:

E1
1 = 12, E2

1 = 40.9, E2
2 = 41, E3

1 = 0.6, E3
2 = 0.7, E4

1 = 0.8. (3.96)

We set initial data for number concentrations, velocities and temperatures for the one-dimensional
case as reported in Table 3.5. The initial concentration of reactants is higher than the one of products
and we take initial temperatures lower than the values adopted in the previous simulations.

C1
1 C2

1 C2
2 C3

1 C3
2 C4

1

c0 0.21 0.367 0.42 0.0005 0.001 0.001

u0 0.1 0.3 0.2 0.4 0.2 0.5

T0 0.002 0.003 0.004 0.005 0.003 0.006

Table 3.5

For the collision frequencies, we consider for each i = 1, . . . , 4 and j = 1, . . . , Li the following

νij =
∑

h,k,m,p∈D2i
j

νm,pj,k n
h
k exp

(
−
Eim + Ehp − Eij − Ehk

T

)
+

∑
h,k,m,p∈D1i

j

νm,pj,k n
h
k

+
1

100

∑
h,k,l,m,n,p∈D4i

j

νm,pj,k n
h
k

(
mimj

mlmn

) 3
2

exp

(
−
Elm + Enp − Eij − Ehk

T

)

+
∑

h,k,l,m,n,p∈D3i
j

νm,pj,k n
h
k

(3.97)

with νm,pj,k =
k + j

20(m+ p)
and the set of indices D1i

j , D2i
j , D3i

j and D4i
j as defined in (3.88), (3.89),

(3.90) and (3.91), respectively. The factor 1
100 in front of the third addendum in (3.97) represents

the fact that inverse endothermic reaction is less frequent than the direct exothermic one.
Equilibrium values obtained for final concentrations of single components cijM are reported in Table

3.6 while equilibrium mean velocity and temperature are uM = 0.22 and TM = 7.19, respectively.
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C1
1 C2

1 C2
2 C3

1 C3
2 C4

1

cM 0.001 0.291 0.287 0.106 0.104 0.21

Table 3.6

We report the behavior in time of concentrations of energy components (Figure 3.5), mean velocities
and temperatures (Figure 3.6).
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Figure 3.5: Test 3, concentrations for a mixture of four reacting gases with energy levels as in (3.96), initial
values for concentrations and velocities as in Table 3.5, considering masses (m1,m2,m3,m4) =

(15.83, 16.83, 31.67, 1).
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Figure 3.6: Test 3, normalized velocities and temperatures for a mixture of four reacting gases with energy
levels as in (3.96), initial values for concentrations and velocities as in Table 3.5, considering
masses (m1,m2,m3,m4) = (15.83, 16.83, 31.67, 1).

We highlight the nearly total disappearance of the monatomic reactant G1. This means that
the equilibrium state of the mixture is similar to the result of an irreversible reaction (the consumed
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quantity of G1 and G2 is approximately the same). Moreover it is worth noticing how the temperature
of the mixture is higher than the initial ones, because of the exothermic property of the reaction.

3.3 Statement of the problem for a mixture of eight gases involved in
two disjoint chemical reactions and discussion of the relative BGK
relaxation model

The following step we would like to take in building BGK models in gas mixtures is to consider a
number of gas species greater than four, involved in different chemical reactions. In this case, the
equilibrium configuration is governed by a higher number of mass action laws, that lead to a higher
number of auxiliary quantities to be determined; in particular we have to find (by means of three
transcendental equations) the auxiliary temperature and two of the auxiliary densities. Our intent is
to show that, when the reactions are disjoint, i.e. no gas species is involved in more than one reaction,
it is possible to write one of the auxiliary densities in terms of the other ones and of the auxiliary
temperature. Successively we manage to express everything in terms of the auxiliary temperature and
again it can be detected as the unique admissible solution of a transcendental equation.
Thus, we consider a model for a mixture of eight gas species, Gi, i = 1, , . . . , , 8 and we suppose

that they are involved in two separate reversible chemical reactions:

G1 +G2 � G3 +G4, (3.98)

G5 +G6 � G7 +G8. (3.99)

Each gas species Gi has its own mass mi and, due to conservation laws, particle masses satisfy the
relations m1 + m2 = m3 + m4 and m5 + m6 = m7 + m8. As before, each gas species can be seen
as formed by a certain number Li of components, Cij , j = 1, . . . , Li, each one corresponding to a
discrete internal energy level Eij . Even in this case we assume Eij < Eik for any 1 ≤ j, k ≤ Li, with
j < k. Distribution functions for each energy component Cij are

f ij(t,x,v), i = 1, . . . , 8, j = 1, . . . , Li. (3.100)

Encounters among particles of the mixture are modeled as binary instantaneous collisions and can
be generically written as

Cij + Chk → C lm + Cnp , 1 ≤ i, h, l, n ≤ 8,

1 ≤ j ≤ Li

1 ≤ k ≤ Lh

1 ≤ m ≤ Ll

1 ≤ p ≤ Ln.

(3.101)

Those encounters can be elastic if i = l, h = n, j = m, k = p, inelastic if i = l, h = n, j 6= m or
k 6= p, chemical if (i, h) 6= (l, n) with (i, h), (l, n) ∈ {(1, 2), (3, 4)} or (i, h), (l, n) ∈ {(5, 6), (7, 8)};
in the last two cases the collision is endothermic if Elm + Enp − Eij − Ehk ≥ 0 or exothermic if
Elm + Enp − Eij − Ehk < 0.
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Moments of components Cij we are interested in are number densities nij , satisfying the relation

ni =

Li∑
j=1

nij , i = 1, . . . , 8, (3.102)

drift velocities uij and kinetic temperature T ij . During the kinetic evolution in time of the mixture we
have conservation of global quantities that are six combinations of gas species number densities that
can be chosen as n1 +n3, n1 +n4, n2 +n4, n5 +n7, n5 +n8, n6 +n8, momentum and total energy.

As usual, at equilibrium the distribution functions of each component will be in the form

f ijM (v) = nijM
i

(
v; u,

T

mi

)
, i = 1, . . . , 8, j = 1, . . . , Li , (3.103)

with

M i

(
v; u,

T

mi

)
=

(
mi

2π T

)3/2

exp

(
− mi

2T
|v − u|2

)
, (3.104)

the Maxwellian containing the common mean velocity u and temperature T .
The relation at equilibrium between number density of each component nij and the total density

ni is still provided by (3.10). Moreover, we have the two mass action laws of chemistry regulating
the ratio between reacting species densities:

n1n2

n3n4
=

(
m1m2

m3m4

) 3
2 Z1(T )Z2(T )

Z3(T )Z4(T )
exp

(
∆E∗

T

)
, (3.105)

n5n6

n7n8
=

(
m5m6

m7m8

) 3
2 Z5(T )Z6(T )

Z7(T )Z8(T )
exp

(
∆E∗∗

T

)
, (3.106)

with ∆E∗ = E3
1 +E4

1 −E2
1 −E1

1 and ∆E∗∗ = E7
1 +E8

1 −E5
1 −E6

1 .. We shall prove that the choice
for the signs of the two quantities is arbitrary and it does not affect the results.
The BGK model we are showing here is analogous to the previous ones, thus we write the set of

L1 + . . .+ L8 kinetic BGK-type equations as

∂f ij
∂t

+ v · ∇xf
i
j = νij(Mi

j − f ij) , i = 1, . . . , 8, j = 1, . . . , Li , (3.107)

in which the collision operator is a relaxation term, with νij macroscopic collision frequencies andMi
j

Maxwellian attractors

Mi
j(v) = ñij

(
mi

2π T̃

)3/2

exp

[
− mi

2T̃
|v − ũ|2

]
,

i = 1, . . . , 8,

j = 1, . . . , Li,
(3.108)

depending on auxiliary parameters ñij (i = 1, . . . , 8, j = 1, . . . , Li), ũ, T̃ .
In order to be sure that the BGK model provides correct collision equilibria given by Maxwellian dis-

tributions depending on a common mean velocity and temperature, we require that fictitious densities
satisfy relations

ñij = ñi
exp

(
− Eij−Ei1

T̃

)
Z i(T̃ )

,
i = 1, . . . , 8,

j = 1, . . . , Li,
(3.109)
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and in addition fictitious total densities ñi satisfy the constraints

ñ1ñ2

ñ3ñ4
=

(
m1m2

m3m4

) 3
2 Z1(T̃ )Z2(T̃ )

Z3(T̃ )Z4(T̃ )
exp

(
∆E∗

T̃

)
, (3.110)

ñ5ñ6

ñ7ñ8
=

(
m5m6

m7m8

) 3
2 Z5(T̃ )Z6(T̃ )

Z7(T̃ )Z8(T̃ )
exp

(
∆E∗∗

T̃

)
. (3.111)

Our purpose is to show that is possible to express auxiliary parameters in terms of the actual
quantities of the mixture. This is achieved imposing that the BGK model preserves the conservation
of the same collision invariants of the Boltzmann equations. More specifically, we impose conservation
of the six combinations of number densities expressed before that give

Lh∑
j=1

νhj

∫
R3

(Mh
j − fhj )dv +

Lk∑
j=1

νkj

∫
R3

(Mk
j − fkj )dv = 0, (3.112)

with (h, k) varying in the set {(1, 3), (1, 4), (2, 4), (5, 7), (5, 8), (6, 8)}. Then we have conservation of
global momentum

8∑
i=1

Li∑
j=1

νijm
i

∫
R3

v (Mi
j − f ij)dv = 0, (3.113)

and total energy
8∑
i=1

Li∑
j=1

νij

∫
R3

(
1

2
mi|v|2 + Eij

)
(Mi

j − f ij)dv = 0. (3.114)

Relations (3.112) can be expressed as

Li∑
j=1

νijñ
i
j =

Li∑
j=1

νijn
i
j + λi

L1∑
j=1

ν1
j (ñ1

j − n1
j ), i = 1, . . . , 4, (3.115)

Li∑
j=1

νijñ
i
j =

Li∑
j=1

νijn
i
j + λi

L5∑
j=1

ν5
j (ñ5

j − n5
j ), i = 5, . . . , 8, (3.116)

with
λ1 = λ2 = −λ3 = −λ4 = λ5 = λ6 = −λ7 = −λ8 = 1. (3.117)

Bearing in mind (3.109), from (3.115) and (3.116), we can express total fictitious densities ñ2, ñ3,

ñ4 and ñ6, ñ7, ñ8 in terms of ñ1 and ñ5, respectively:

ñi

Z i(T̃ )
=

 Li∑
j=1

νij exp

(
−
Eij − Ei1

T̃

)−1
Li∑
j=1

νijn
i
j − λi

L1∑
j=1

ν1
j n

1
j

+ λi

 L1∑
j=1

ν1
j exp

(
−
E1
j − E1

1

T̃

) ñ1

Z1(T̃ )

 , i = 1, . . . , 4, (3.118)

ñi

Z i(T̃ )
=

 Li∑
j=1

νij exp

(
−
Eij − Ei1

T̃

)−1
Li∑
j=1

νijn
i
j − λi

L5∑
j=1

ν5
j n

5
j

+ λi

 L5∑
j=1

ν5
j exp

(
−
E5
j − E5

1

T̃

) ñ5

Z5(T̃ )

 , i = 5, . . . , 8, (3.119)
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observing that for i = 1 and i = 5 we get trivial identities. We rewrite expressions above in a more
compact form using functions

P i def=
1

Z i(T̃ )

Li∑
j=1

νij exp

(
−
Eij − Ei1

T̃

)
, i = 1, . . . , 8, (3.120)

thus relations (3.118)-(3.119) become

ñi = λiñ1P1(T̃ )

P i(T̃ )
+

αi

P i(T̃ )
, i = 1, . . . , 4, (3.121)

ñi = λiñ5P5(T̃ )

P i(T̃ )
+

βi

P i(T̃ )
i = 5, . . . , 8, (3.122)

with quantities

αi
def
=

Li∑
j=1

νijn
i
j − λi

L1∑
j=1

ν1
j n

1
j , i = 1, . . . , 4, (3.123)

βi
def
=

Li∑
j=1

νijn
i
j − λi

L5∑
j=1

ν5
j n

5
j , i = 5, . . . , 8. (3.124)

Since in the model we obviously have conservation of total mass, that is expressed as

8∑
i=1

mi
Li∑
j=1

νijñ
i
j =

8∑
i=1

mi
Li∑
j=1

νijn
i
j , (3.125)

we write conservation of total momentum (3.113) as

8∑
i=1

 Li∑
h=1

νihm
i ñihũ−

Li∑
j=1

νijm
i niju

i
j

 = 0 , (3.126)

and we use (3.125) to express the auxiliary mean velocity as follows

ũ =

8∑
i=1

Li∑
j=1

νijm
i nij uij

8∑
i=1

Li∑
j=1

νijm
i nij

. (3.127)

Conservation of total energy (3.114), instead, leads to

3

2

8∑
i=1

Li∑
j=1

νij n
i
j T̃ +

8∑
i=1

Li∑
j=1

ñijν
i
j E

i
j = Λ (3.128)

and the term Λ containing only actual densities, velocities, temperatures and energies is

Λ
def
=

1

2

 8∑
i=1

mi
Li∑
j=1

νij n
i
j

(
|uij |2 − |ũ|2

)+
3

2

 8∑
i=1

Li∑
j=1

νij n
i
j T

i
j

+

8∑
i=1

Li∑
j=1

νij E
i
j n

i
j . (3.129)
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and we have that (3.128) becomes

3

2

8∑
i=1

Li∑
j=1

νij n
i
j T̃ +

8∑
i=1

Li∑
j=1

ñi

Z i(T̃ )
νij E

i
j exp

(
−
Eij − Ei1

T̃

)
= Λ. (3.130)

Inserting (3.121) and (3.122) into (3.130), we have the following expression

D(T̃ )

ñ1P1(T̃ )−
L1∑
j=1

ν1
j n

1
j

+ B(T̃ )

ñ5P5(T̃ )−
L5∑
j=1

ν5
j n

5
j

 = N (T̃ ), (3.131)

with functions

D(T̃ )
def
=

4∑
i=1

λi E i(T̃ ), B(T̃ )
def
=

8∑
i=5

λi E i(T̃ ), (3.132)

N (T̃ )
def
= Λ−

8∑
i=1

 Li∑
m=1

νim n
i
m

[3

2
T̃ + E i(T̃ )

]
, (3.133)

being

E i(T̃ )
def
=

Li∑
j=1

νij E
i
j exp

(
−
Eij − Ei1

T̃

)
Li∑
k=1

νik exp

(
−
Eik − Ei1

T̃

) . (3.134)

Expression (3.131) gives a relation between the auxiliary densities ñ1, ñ5 and T̃ , in particular, it allows
us to express ñ5 in terms of ñ1 and T̃ . Showing that these quantities are uniquely determined and
that are physically admissible is a much more involved problem, in comparison with the case of only
four reacting gases, since we have two remaining free unknowns. Anyway, we can exploit in this case
the two fictitious mass action laws (3.110)-(3.111) in order to construct a system of two equations.
By inserting the expressions (3.121) in (3.110) we get a first transcendental equation

G∗(T̃ , ñ1) =

(
m1m2

m3m4

) 3
2

, (3.135)

with

G∗(T̃ , ñ1)
def
= G1(ñ1) · G2(T̃ ) · G3(T̃ ), (3.136)

being

G1(T̃ , ñ1)
def
=

ñ1

[
ñ1+

α2

P1(T̃ )

]
[
−ñ1 +

α3

P1(T̃ )

] [
−ñ1 +

α4

P1(T̃ )

] , (3.137)

G2(T̃ )
def
=

L3∑
k=1

ν3
k exp

(
−
E3
k − E3

1

T̃

) L4∑
k=1

ν4
k exp

(
−
E4
k − E4

1

T̃

)
L1∑
k=1

ν1
k exp

(
−
E1
k − E1

1

T̃

) L2∑
k=1

ν2
k exp

(
−
E2
k − E2

1

T̃

) , (3.138)
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G3(T̃ )
def
= exp

(
− ∆E∗

T̃

)
. (3.139)

We want now to show that there exists a unique pair of values (T̃ , ñ1) for which ñ5 is uniquely
determined accordingly to the two mass action laws and in addition all the densities ñi are positive.
First of all we consider equation (3.135) and define the set of admissible densities ñ1 as

A1 =

{
ñ1 > 0 : max

(
0,− α2

P1(T̃ )

)
< ñ1 < min

(
α3

P1(T̃ )
,

α4

P1(T̃ )

)
, ∀ T̃ > 0

}
. (3.140)

Now we rewrite equation (3.135) as follows

L∗(T̃ , ñ1) = 0, (3.141)

with

L∗(T̃ , ñ1)
def
= G1(T̃ , ñ1)−M(T̃ ), M(T̃ )

def
=
[
G2(T̃ ) · G3(T̃ )

]−1
·
(
m1m2

m3m4

) 3
2

, (3.142)

being G1, G2, G3 defined in (3.136), (3.138), (3.139), respectively. We can state the following result.

Lemma 3.3.1. For any value T̄ > 0 there exists a unique positive value n̄1 in the admissible set A1

such that (3.141) is satisfied. Moreover there exists an open interval I with T̄ ∈ I and a unique
function ñ1(T̃ ) : I → (0,+∞) such that ñ1(T̄ ) = n̄1 and L∗(T̃ , ñ1(T̃ )) = 0 for any T̃ ∈ I. Moreover
ñ1(T̃ ) is differentiable on I and it is possible to write explicitly its derivative with respect to T̃ .

Proof. We compute

∂G1

∂ñ1
= G1P1(T̃ )

[
1

P1(T̃ )ñ1
+

1

P1(T̃ )ñ1 + α2
+

1

−P1(T̃ )ñ1 + α3
+

1

−P1(T̃ )ñ1 + α4

]
, (3.143)

and we observe that
∂G1

∂ñ1
is strictly positive in the admissible set A1. It follows that for any fixed

value T̄ > 0 the function G1 is strictly monotonically increasing with respect to ñ1 in A1 and it ranges
between

lim
ñ1→max

(
0,− α2

P1(T̄ )

)G1 = 0 (3.144)

and
lim

ñ1→min
(

α3

P1(T̄ )
, α4

P1(T̄ )

)G1 = +∞. (3.145)

Thus, for any positive value T̄ , there is a unique admissible value n̄1 for which equation (3.141) is
satisfied and we are able to express it explicitly in terms of T̄ :

n̄1 = ñ1(T̄ ) =
−α2 −M(T̄ )(α3 + α4) +

√[
α2 +M(T̄ )(α3 + α4)

]2
+ 4α3α4M(T̄ )(1−M(T̄ ))

2
(
1−M(T̄ )

)
P1(T̄ )

.

(3.146)

Being
∂L∗

∂ñ1
=
∂G1

∂ñ1
strictly positive and being L∗(T̃ , ñ1) differentiable with respect to T̃ for any T̃ ,

we can apply the implicit function theorem that allows us to write the derivative

(ñ1)′(T̃ ) = −

(
∂L∗(T̃ , ñ1)

∂T̃

)(
∂L∗(T̃ , ñ1)

∂ñ1

)−1

. (3.147)
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At this point we compute the derivative of function L∗(T̃ , ñ1) with respect to T̃

∂L∗(T̃ , ñ1)

∂T̃
=
∂G1

∂T̃
−M ′(T̃ ), (3.148)

thus, being

∂G1

∂T̃
= G1ñ

1(P1)′(T̃ )

[
1

P1(T̃ )ñ1
+

1

P1(T̃ )ñ1 + α2
+

1

−P1(T̃ )ñ1 + α3
+

1

−P1(T̃ )ñ1 + α4

]
,

(3.149)
we get

(ñ1)′(T̃ ) = − ñ
1(T̃ )(P1)′(T̃ )

P1(T̃ )
+M ′(T̃ )

(
∂G1

∂ñ1

)−1

, (3.150)

with, repeating calculations analogous to those performed in Section 3.1,

M ′(T̃ ) =
[
G2(T̃ ) · G3(T̃ )

]−1
·
(
m1m2

m3m4

) 3
2

· D(T̃ )

T̃ 2
. (3.151)

Now we adopt the notation

Y i(T̃ , ñi)
def
= ñiP i(T̃ ), i = 5, . . . , 8, (3.152)

and, combining (3.122) and (3.131) we express quantities Y 5, . . . , Y 8 in terms of Y 1 and T̃

Y i = λi

N (T̃ )

B(T̃ )
+
D(T̃ )

B(T̃ )

 L1∑
j=1

ν1
j n

1
j − Y 1

+
Li∑
j=1

νijn
i
j , i = 5, . . . , 8. (3.153)

In addition, thanks to the results obtained in the previous lemma, quantities (3.153) can be actually
written in terms of the variable T̃ only; indeed, it is sufficient to insert in the relations above the
quantity Y 1(T̃ )

def
= ñ1(T̃ )P1(T̃ ), with ñ1(T̃ ) given by expression (3.146), defining

S(T̃ )
def
=
N (T̃ )

B(T̃ )
+
D(T̃ )

B(T̃ )

 L1∑
j=1

ν1
j n

1
j − Y 1(T̃ )

 , (3.154)

and getting

Y i(T̃ ) = λiS(T̃ ) +
Li∑
j=1

νijn
i
j , i = 5, . . . , 8. (3.155)

Inserting such quantities into (3.111) we have a second transcendental equation in T̃

G∗∗(T̃ ) =

(
m5m6

m7m8

) 3
2

, (3.156)

with

G∗∗(T̃ )
def
= G4(T̃ ) · G5(T̃ ) · G6(T̃ ), (3.157)
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being

G4(T̃ )
def
=

 L5∑
j=1

ν5
j n

5
j + S(T̃ )

  L6∑
j=1

ν6
j n

6
j + S(T̃ )


 L7∑
j=1

ν7
j n

7
j − S(T̃ )

  L8∑
j=1

ν8
j n

8
j − S(T̃ )

 , (3.158)

G5(T̃ )
def
=

L7∑
k=1

ν7
k exp

(
−
E7
k − E7

1

T̃

) L8∑
k=1

ν8
k exp

(
−
E8
k − E8

1

T̃

)
L5∑
k=1

ν5
k exp

(
−
E5
k − E5

1

T̃

) L6∑
k=1

ν6
k exp

(
−
E6
k − E6

1

T̃

) , (3.159)

G6(T̃ )
def
= exp

(
− ∆E∗∗

T̃

)
. (3.160)

We show that is possible to find a unique solution of (3.156) in terms of the actual parameters of
the mixture. Firstly, we define the admissible set for the temperature

A2 =

T̃ > 0 : max

− L5∑
j=1

ν5
j n

5
j ,−

L6∑
j=1

ν6
j n

6
j

 < S(T̃ ) < min

 L7∑
j=1

ν7
j n

7
j ,

L8∑
j=1

ν8
j n

8
j

 .

(3.161)
Then, we extend results obtained in Section 3.2 to this case.

Lemma 3.3.2. Let I = (T̃1, T̃2) ⊆ A2 be any interval in which the function B(T̃ ) given in (3.132)
is strictly negative (positive), then the function S(T̃ ) is strictly monotonically increasing (decreasing)
in I with respect to T̃ .

Proof. Recalling expressions (3.133) and (3.132), we define

N̂ (T̃ )
def
= N (T̃ ) +D(T̃ )

 L1∑
j=1

ν1
j n

1
j − Y 1(T̃ )

 . (3.162)

Thus we write S(T̃ ) as

S(T̃ ) =
N̂ (T̃ )

B(T̃ )
, (3.163)

and its derivative with respect to T̃ can be written as

S ′(T̃ ) =
N̂ ′(T̃ )

B(T̃ )
− S(T̃ )

B′(T̃ )

B(T̃ )
. (3.164)

Defining functions

F i(T̃ )
def
=

Li∑
j=1

Li∑
k=1

νijν
i
k

2T̃ 2

[
Eij − Eik

]2
exp

(
−
Eij + Eik − 2Ei1

T̃

)
 Li∑
k=1

νik exp

(
−
Eik − Ei1

T̃

)2 ≥ 0, i = 1, . . . , 8, (3.165)
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we are able to write

D′(T̃ ) =
4∑
i=1

λiF i(T̃ ), B′(T̃ ) =
8∑
i=5

λiF i(T̃ ), (3.166)

getting

N̂ ′(T̃ ) =− 3

2

8∑
i=1

 Li∑
j=1

νij n
i
j

− 8∑
i=5

 Li∑
j=1

νij n
i
j

F i(T̃ )

−
4∑
i=1

 Li∑
j=1

νij n
i
j + λi

Y 1(T̃ )−
L1∑
j=1

ν1
j n

1
j

F i(T̃ )−D(T̃ )(Y 1)′(T̃ ) (3.167)

which, since the quantity Y 1(T̃ ) belongs to A1, is negative. Thus we get

S ′(T̃ ) =− 1

B(T̃ )

3

2

8∑
i=1

 Li∑
j=1

νij n
i
j

+
8∑
i=5

 Li∑
j=1

νij n
i
j + λiS(T̃ )

F i(T̃ )

+
4∑
i=1

 Li∑
j=1

νij n
i
j + λi

Y 1(T̃ )−
L1∑
j=1

ν1
j n

1
j

F i(T̃ ) +D(T̃ )(Y 1)′(T̃ )

 . (3.168)

Underlying the fact that we are taking T̃ in the admissible set A2 and since by results of Lemma 3.3.1
we have

(Y 1)′(T̃ ) = (ñ1)′(T̃ )P1(T̃ ) + ñ1(T̃ )(P1)′(T̃ ) = M ′(T̃ )

(
∂G1

∂ñ1

)−1

, (3.169)

with M ′(T̃ ) expressed in (3.151) that, being the functions G2 and G3 positive, has the same sign of
D(T̃ ). We can then conclude that the term in the whole curly brackets of (3.168) is positive and
thus the signs of S ′(T̃ ) and B(T̃ ) are opposite.

We prove another result concerning the behavior of S.

Lemma 3.3.3. The function S(T̃ ) admits a unique positive value T ∗ such that S(T̃ ) = 0.

Proof. Since

S(T̃ ) =
N̂ (T̃ )

B(T̃ )
, (3.170)

keeping in mind the the expression of N̂ (T̃ ) defined in (3.162), we show that the function vanishes
for a unique value of T̃ . We are discussing the result depending on the sign of the quantity ∆E∗. If
∆E∗ < 0, recalling the definition of function M(T̃ ) given in (3.142), we have limT̃→0+ M(T̃ ) = 0,
and from expression (3.146) we have

Y 1(T̃ ) =
−α2 −M(T̃ )(α3 + α4) +

√[
α2 +M(T̃ )(α3 + α4)

]2
+ 4α3α4M(T̃ )(1−M(T̃ ))

2
(

1−M(T̃ )
) .

(3.171)
So we can write

lim
T̃→0+

Y 1(T̃ ) = 0. (3.172)
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If, instead, ∆E∗ > 0, the limit for T̃ → 0+ of M(T̃ ) is +∞, so the computation of the limit of
Y 1(T̃ ) is not straightforward. In fact we get (rationalizing (3.171))

lim
T̃→0+

Y 1(T̃ )

= lim
T̃→0+

2α3α4M(T̃ )

α2 +M(T̃ ) (α3 + α4) +

√
(α2)2 +M(T̃ )2 (α3 − α4)2 +M(T̃ ) (2α2 [α3 + α4) + 4α3α4]

= lim
T̃→0+

2α3α4

α2

M(T̃ )
+ (α3 + α4) +

√
(α2)2

M(T̃ )2
+ (α3 − α4)2 + α2(α3+α4)+4α3α4

M(T̃ )

=
2α3α4

α3 + α4 + |α3 − α4|
= αK , (3.173)

with K = 4 if α3 > α4 or K = 3 if α4 > α3, the effective value does not affect the result. At this
point we can state that, keeping in mind the expressions for quantities αi given in (3.123),

lim
T̃→0+

D(T̃ )

 L1∑
j=1

ν1
j n

1
j − Y 1(T̃ )

 =


−∆E∗

L1∑
j=1

ν1
j n

1
j if ∆E∗ < 0

∆E∗
LK∑
j=1

νKj n
K
j if ∆E∗ > 0,

(3.174)

that is, in both cases, a positive quantity. Computing the limit of N (T̃ )

lim
T̃→0+

N (T̃ ) =
1

2

 8∑
i=1

mi
Li∑
j=1

νij n
i
j

(
|uij |2 − |ũ|2

)+
3

2

 8∑
i=1

Li∑
j=1

νij n
i
j T

i
j


+

8∑
i=1

Li∑
j=1

νij n
i
j

(
Eij − Ei1

)
> 0, (3.175)

we can state that the function N̂ (T̃ ) tends to a positive value as T̃ → 0+. On the other hand

lim
T̃→+∞

N̂ (T̃ ) = −∞. (3.176)

Recalling now that N̂ ′(T̃ ) < 0, and being the function N̂ (T̃ ) continuous, it is null in only one
T̃ = T ∗.

Now we have the following result.

Lemma 3.3.4. On every interval
(
T̃1, T̃2

)
⊆ A2 the sign of B(T̃ ) does not change.

Proof. Being the limit

lim
T̃→0
B(T̃ ) = −∆E∗∗, lim

T̃→+∞
B(T̃ ) =

8∑
i=5

λi

Li∑
j=1

νij E
i
j

Li∑
j=1

νij

, (3.177)
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and since the derivative of B(T̃ ) expressed in (3.166) may change sign in relation to internal energy
levels and collision frequencies, it could exist a positive value T# root of B(T̃ ). We shall suppose
that the choice of initial data, internal energies and collision frequencies is such that T# 6= T ∗, since
in this case we would have only algebraic equations. We suppose that T# belongs to an interval(
T̃1, T̃2

)
⊆ A2, but we would have also

lim
T̃→T̃#

S(T̃ ) = ±∞ (3.178)

getting a neighborhood of T̃# not contained in A2. Thus B(T̃ ) does not vanish on any interval(
T̃1, T̃2

)
of A2.

Now, let
(
T̃a, T̃b

)
be a connected component of A. The previous result has as a consequence the

fact that on
(
T̃a, T̃b

)
the sign of S ′(T̃ ) does not change. This means that S(T̃ ) varies monotonically

from the minimum to the maximum value that it can assume in A2, which have different sign.
Consequently it has a root in

(
T̃1, T̃2

)
. Also in the case in which T̃a = 0, since limT̃→0 B(T̃ ) < 0,

S(T̃ ) is monotonically increasing from limT̃→0 S(T̃ ) < 0 to its upper bound that is positive, having
a root as well. Since in Lemma 3.3.3 we proved that S(T̃ ) has a unique positive root, it follows that(
T̃a, T̃b

)
is the only connected component of A2, then the set A2 is connected. This fact allows us to

study the properties of the function G∗(T̃ , Y 5) defined in (3.136), in particular we have the following
statement.

Lemma 3.3.5. There exists a unique value T̄ ∈ A2 such that

L∗∗(T̄ )
def
= G∗∗(T̄ )−

(
m5m6

m7m8

) 3
2

= 0. (3.179)

Proof. We compute the derivative with respect to T̃ of the function L∗∗(T̃ ). Repeating the same
calculations performed in Section 3.1 we have

dL∗∗(T̃ )

dT̃
= L∗∗(T̃ )

S ′(T̃ )

 8∑
i=5

 Li∑
j=1

νijn
i
j + λiS(T̃ )

−1− 1

T̃ 2
B(T̃ )

 . (3.180)

The term in square brackets is positive in A2 and, as proved in Lemma 3.3.2, (S)′(T̃ ) and −B(T̃ )

have the same sign. It follows that L∗∗(T̃ ) is strictly monotonically increasing or decreasing in A2,

that is an interval of type
(
T̃min, T̃max

)
. In particular, when T̃ → T̃min, L∗∗(T̃ )→ −

(
m5m6

m7m8

) 3
2 and

when T̃ → T̃max, L∗∗(T̃ ) → +∞, or vice versa. This holds also in the case T̃min = 0 if we have
∆E∗∗ > 0; if, instead, ∆E∗∗ < 0, it is needed to take the inverse in both sides of equation (3.156)

and repeat all the calculations defining L∗∗(T̄ ) as
[
G∗∗(T̄ )

]−1 −
(
m7m8

m5m6

) 3
2 . Thus, we can find a

value T̄ for which L∗∗(T̄ ) = 0.

This result provides the existence and uniqueness of a solution of an admissible auxiliary temperature
T̃ that can be expressed in terms of actual parameters of the mixture. By inserting it in (3.146) we get
the admissible quantity Y 1 then from (3.121) and (3.153) we obtain the remaining Y i, i = 2, . . . , 8.
This allows us to reconstruct the Maxwellian attractors Mi

j given in (3.108) and those attractors
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provide the equilibrium states of the distribution functions for i = 1, . . . , 8 and j = 1, . . . , Li. In
particular, equilibrium mean velocities, temperatures, and number densities of each component will
be exactly the auxiliary parameters individuated previously:

uij = ũ = u , T ij = T̃ = T, nij = ñij , i = 1, . . . , 8, j = 1, . . . , Li, (3.181)

with global density of each gas ni related to the number densities of its components by the usual
constraint

nij = ni
exp

(
− Eij−Ei1

T̃

)
Z i(T̃ )

, (3.182)

and all the densities ni of the the two quadruples involved in the two reactions are bound together
by (3.105) and (3.106), respectively. We are able to prove that, in space homogeneous conditions,
these equilibria are asymptotically stable. Indeed, we set the densities vector f = (f1

1 , . . . , f
8
L8) and

we define the physical entropy as

H[f ] =
8∑
i=1

Li∑
j=1

∫
R3

f ij log
(
f ij
)
dv. (3.183)

Then we have the classical result already shown in analogous or more general settings.

Theorem 3.3.6. Let f0 be an initial state for the problem (3.107) in space homogeneous conditions
and let fM be the corresponding stationary state. Then for the functional H defined in (3.183)
we have H[f∗] > H[fM] and Ḣ[f∗] < 0 for any f∗ 6= fM, while Ḣ[fM] = 0. It follows that the
functional H defined in (3.183) is a Lyapunov functional for the BGK model and fM is the unique
stable equilibrium.

Proof. The proof of this result is analogous to the one performed in Section 3.2 for the four gases
case. The main differences are that, when showing the minimality of the Maxwellian configuration,
computing the quantity

8∑
i=1

Li∑
j=1

∫
R3

∂H

∂f ij

∣∣∣∣∣
fM

(
f ij
∗ −Mi

j

)
dv (3.184)

with

H[f ] =
8∑
i=1

Li∑
j=1

f ij log

(
f ij

(mi)3

)
(3.185)

and f ij
∗ any other configuration, we have to take into account the fact that for number densities in

the Maxwellian state ni and for those in the other state ni∗ we have

n1 − n1∗ = n2 − n2∗ = −(n3 − n3∗) = −(n4 − n4∗), (3.186)

n5 − n5∗ = n6 − n6∗ = −(n7 − n7∗) = −(n8 − n8∗). (3.187)

Moreover, in the calculations, we have to take into account both the mass action laws. Similarly, the
two laws apply when we show that Ḣ[f∗] < 0 for any f∗ 6= fM and Ḣ[fM] = 0, in particular we use
them to state that

8∑
i=1

Li∑
j=1

νij

∫
R3

(
Mi

j − f ij
∗)

log

(
Mi

j

(mi)3

)
dv = 0 . (3.188)
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3.4 Macroscopic equations for mixtures of eight gases involved in two
disjoint chemical reactions

We derive from the BGK model (3.107) evolution equations for main macroscopic fields (number
densities, mean velocities, temperatures) for each component of the gas species of the mixture,
performing the same calculations reported in the previous sections; we restrict also in this case to the
space homogeneous conditions in one space dimension, obtaining the following system

∂nij
∂t

= νij(ñ
i
j − nij) ,

i = 1, . . . , 8,

j = 1, . . . , Li,

∂uij
∂t

= νij
ñij
nij

(ũ− uij) ,
i = 1, . . . , 8,

j = 1, . . . , Li,

∂T ij
∂t

= νij
ñij
nij

(
T̃ − T ij +

1

3
mi (ũ− uij)2

)
,

i = 1, . . . , 8,

j = 1, . . . , Li.

(3.189)

Auxiliary quantities are given in terms of the actual ones, more specifically, ũ is explicitly given in
(3.127), ñij is provided by (3.109) and (3.118)-(3.119), once that the temperature T̃ is found as
solution of the system of two transcendental equations given by (3.135)-(3.156) and the quantity ñ5

can be obtained from (3.131). The evolution of the 3(L1 + . . .+ L8) equations of (3.189) provides
the trend towards a unique equilibrium configuration that is uniquely determined once that initial
quantities (nij)0, (uij)0, (T ij )0 are assigned.

3.4.1 Numerical simulations

For simulations, we take into account the two reversible reactions taken as model in Section 3.2, that
were considered as two separate mixtures, and we take them now as a mixture of eight interacting gas
species. The two reactions are one involving hydrogen H2 (with mass 2.02 g/mol), iodine I2 (253.8
g/mol) and hydrogen iodide HI (127.91 g/mol)

H2 + I2 � HI +HI, (3.190)

and another one having as reactants chloro nitride ClNO2 (81.46 g/mol) and nitric oxide NO (30.01
g/mol) forming nitrosyl chloride ClNO (65,46 g/mol) and nitrogen dioxide NO2 (46.01 g/mol)

ClNO2 +NO � NO2 + ClNO. (3.191)

Thus, we set up eight gas species that have mass ratios reproducing gases involved in reactions (3.190)
- (3.191). In particular, we suppose that species G3 and G4 coincide, so they shall share not only
the same mass but also the same internal structure and initial data. Masses of gas species involved
in our model will then be

m1 = 0.1, m2 = 12.8, m3 = m4 = 6.45,

m5 = 4.03, m6 = 1.49, m7 = 2.28, m8 = 3.24. (3.192)
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For the internal energy structure of species involved, instead, we suppose each gas composed by
energy components with corresponding energy values for each species as follows

G1 = C1
1 ∪ C1

2 , E1
1 = 6.5, E1

2 = 7.5,

G2 = C2
1 ∪ C2

2 ∪ C2
3 , E2

1 = 7, E2
2 = 8, E2

3 = 8.5,

G3 = C3
1 ∪ C3

2 , E3
1 = 6, E3

2 = 7,

G4 = C4
1 ∪ C4

2 , E4
1 = 6, E4

2 = 7,

G5 = C5
1 ∪ C5

2 , E5
1 = 6, E5

2 = 7,

G6 = C6
1 ∪ C6

2 ∪ C6
3 ∪ C6

4 , E6
1 = 7, E6

2 = 8, E6
3 = 10, E6

4 = 12,

G7 = C7
1 ∪ C7

2 ∪ C7
3 , E7

1 = 5.5, E7
2 = 6, E7

3 = 7.5,

G8 = C8
1 ∪ C8

2 ∪ C8
3 , E8

1 = 4, E8
2 = 9, E8

3 = 10.

(3.193)

Quantities considered in our simulations will be components concentrations given by

cij =
nij∑8

h=1

∑Lh

k=1 n
h
k

, (3.194)

along with velocities and temperatures, both normalized with respect to the corresponding equilibrium
values. We set now initial data for concentrations, velocities and temperatures as reported in Table
3.7 and Table 3.8.

C1
1 C1

2 C2
1 C2

2 C2
3 C3

1 C3
2 C4

1 C4
2

c0 0.06 0.03 0.04 0.02 0.07 0.06 0.05 0.06 0.05

u0 0.3 0 0.1 0.4 0.2 0.6 0.1 0.6 0.1

T0 2 4 1 2.5 2 6 1.5 6 1.5

Table 3.7

C5
1 C5

2 C6
1 C6

2 C6
3 C6

4 C7
1 C7

2 C7
3 C8

1 C8
2 C8

3

c0 0.06 0.05 0.04 0.04 0.06 0.03 0.04 0.02 0.07 0.06 0.04 0.05

u0 0.3 0 0.1 0.4 0.2 0.6 0.1 0.4 0.5 0.3 0 0.2

T0 2 4 1 2.5 2 6 1.5 2.5 3 4.5 5 1

Table 3.8

As regards collision frequencies, we define the sets of indices as done in Sections 3.1 and 3.2, taking
for i = 1, . . . , 8 and j = 1, . . . , Li

D1i
j =


h = 1, . . . , 8,

m = 1, . . . , Li,

k, p = 1, . . . , Lh

: Eim + Ehp − Eij − Ehk ≤ 0

 , (3.195)
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D2i
j =


h = 1, . . . , 8,

m = 1, . . . , Li,

k, p = 1, . . . , Lh

: Eim + Ehp − Eij − Ehk > 0

 , (3.196)

D3i
j =

h, l, n :

i 6= n,

(i, h), (l, n)

∈ {(1, 2), (3, 4), (2, 1), (4, 3)} ,

k = 1, . . . , Lh,

m = 1, . . . , Ll,

p = 1, . . . , Ln

: Elm + Enp − Eij − Ehk ≤ 0

 ,

(3.197)

D4i
j =

h, l, n :

i 6= n,

(i, h), (l, n)

∈ {(1, 2), (3, 4), (2, 1), (4, 3)} ,

k = 1, . . . , Lh,

m = 1, . . . , Ll,

p = 1, . . . , Ln

: Elm + Enp − Eij − Ehk > 0

 ,

(3.198)

D5i
j =

h, l, n :

i 6= n,

(i, h), (l, n)

∈ {(5, 6), (7, 8), (6, 5), (8, 7)} ,

k = 1, . . . , Lh,

m = 1, . . . , Ll,

p = 1, . . . , Ln

: Elm + Enp − Eij − Ehk ≤ 0

 ,

(3.199)

D6i
j =

h, l, n :

i 6= n,

(i, h), (l, n)

∈ {(5, 6), (7, 8), (6, 5), (8, 7)} ,

k = 1, . . . , Lh,

m = 1, . . . , Ll,

p = 1, . . . , Ln

: Elm + Enp − Eij − Ehk > 0

 ,

(3.200)
and taking

νij =
∑

h,k,m,p∈D2i
j

νm,pj,k n
h
k exp

(
−
Eim + Ehp − Eij − Ehk

T

)
+

∑
h,k,m,p∈D1i

j

νm,pj,k n
h
k (3.201)

+
∑

h,k,l,m,n,p∈D4i
j∪D6i

j

νm,pj,k n
h
k

(
mimj

mlmn

) 3
2

exp

(
−
Elm + Enp − Eij − Ehk

T

)
(3.202)

+
∑

h,k,l,m,n,p∈D3i
j∪D5i

j

νm,pj,k n
h
k (3.203)

with νm,pj,k =
k + j

20(m+ p)
. Results obtained show final concentrations of single components and of

gas species set as reported in Table 3.9, Table 3.10 and Table 3.11.

C1
1 C1

2 C2
1 C2

2 C2
3 C3

1 C3
2 C4

1 C4
2

cM 0.002 0.002 0.02 0.015 0.013 0.111 0.084 0.111 0.084

Table 3.9

In particular, we have that ratios between reactants and products of the two reactions are

γ1
M + γ2

M

γ3
M + γ4

M

= 0.13,
γ5
M + γ6

M

γ7
M + γ8

M

= 0.54. (3.204)
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C5
1 C5

2 C6
1 C6

2 C6
3 C6

4

cM 0.044 0.033 0.055 0.041 0.023 0.013

C7
1 C7

2 C7
3 C8

1 C8
2 C8

3

cM 0.068 0.059 0.039 0.129 0.031 0.024

Table 3.10

G1 G2 G3 G4 G5 G6 G7 G8

γM 0.004 0.047 0.195 0.195 0.077 0.133 0.165 0.227

Table 3.11

Compared with results in Section 3.2 for the two reactions taken separately, for which we recall that
ratios between reactants and products were 0.033 for reaction (3.190) and 0.7 for reaction (3.191), we
can observe that the equilibrium is different. In particular, for reaction (3.190) we have a higher final
presence of reactants, instead for reaction (3.191) reactants are slightly more reduced, with consequent
higher increasing of products. Final values for mean velocity and temperature are, instead, uM = 0.27

and TM = 3.54. These values are not very different from the ones obtained in the two simulations
for the separate reactions. The behavior in time of components concentrations, normalized mean
velocities ūij = uij/uM and normalized temperatures T̄ ij = T ij/TM in space homogeneous conditions
is depicted in Figures 3.7 and 3.8.

3.5 Conclusions

We have generalized the BGK model proposed in Chapter 2 to mixtures of polyatomic gases under-
going bimolecular and reversible chemical reactions. The additional difficulties with respect to the
inert frame are essentially due to two reasons. At first, single number densities are no more preserved
during the evolution, since particles involved in a reactive collision change their nature; consequently,
proper auxiliary number densities affect the Maxwellian attractors of the BGK collision operators,
and they are related in a non–trivial way to species masses and concentrations, to global (auxiliary)
temperature and to the chemical energy gap. Then, the mass action laws of chemistry that charac-
terize chemical collision equilibrium, and that are assumed to be valid also for auxiliary parameters,
constitute additional transcendental equations to be combined to the energy conservation requirement
(that is a transcendental law by itself) in order to prove well–posedness of auxiliary number densities
and temperature.
In particular, as first model, we have considered a gas mixture of four species undergoing a chemical

reaction. In this case from the conservation of total mass, we found that all auxiliary densities can be
expressed in terms of only one of them and of the auxiliary temperature. Moreover, from conservation
of total energy, the former can be expressed as function of the latter. Finally, from the mass action law
related to the reaction, we obtained a transcendental equation for the auxiliary temperature and we
proved that it has a unique positive solution in the admissible set, i.e. the set for which all the auxiliary
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Figure 3.7: Concentrations for a mixture of eight reacting gases with energy levels as in (3.193), initial val-
ues for concentrations, velocities and temperatures as in Tables 3.7 and 3.8, considering masses
reported in 3.192.

densities are positive. We have also performed some numerical simulations of evolution equations for
species concentrations, velocities and temperatures corresponding to this BGK model. Firstly, we
have considered two different mixtures, with particle mass ratios corresponding to real cases, namely
to the ones of two real bimolecular and reversible chemical reactions. The trend to equilibrium turns
out to be much slower for the species much lighter than the others, and this is in agreement with the
separation of species with disparate masses observed in several physical problems [68]. As last test,
we have taken into account a real case of bimolecular but irreversible reaction. Aware of the fact that
our model is based on reversible reactions (for irreversible ones the mass action law used would not
be applicable) we have performed numerical simulations taking mass ratios similar to the real ones
and then adjusting parameters to have a consistent consumption of one of the reactant in favor of a
major final quantity of products. Results obtained show that we have such an outcome taking a quite
high energy gap between reactants and products, low initial temperatures values and setting collision
frequencies in order to make the inverse endothermic reaction less probable.

The second model for which we have made a BGK-type based study is a mixture of eight gas

105



0 0.05 0.1 0.15 0.2t
0

1

2

Velocities

G
1

G
2

G
3

G
4

0 0.05 0.1 0.15 0.2t
0

1

2
Temperatures

G
1

G
2

G
3

G
4

0 0.05 0.1 0.15 0.2t
0

1

2G
5

G
6

G
7

G
8

0 0.05 0.1 0.15 0.2t
0

1

2
G

5

G
6

G
7

G
8

Figure 3.8: Normalized velocities and temperatures for a mixture of eight reacting gases with energy levels as
in (3.193), initial values for concentrations, velocities and temperatures as in Tables 3.7 and 3.8,
considering masses reported in 3.192.

species involved in two separate chemical reactions. For this framework, the expression of auxiliary
quantities in terms of actual parameters is much more technical. From conservation of total mass, we
have that species involved in the first reaction can be expressed in terms of the auxiliary temperature
and one of the four densities involved, the same for the second reaction. Thus we have three auxiliary
unknowns. Applying conservation of total energy, we have obtained a relation involving the three
quantities, and this yields that one of the two densities can be written in terms of the other one
and the temperature. Using the first mass action law, we have shown that is possible to express the
remaining density as function of the temperature, which is finally the only admissible solution of a
transcendental equation coming from the second mass action law. The demonstration of existence
of such solution is more involved, especially in the first part. Here, in fact, in the computation of
various limits the sign of the energy gap related to the first reaction plays an important role and
we had to distinguish two possible cases. Also for this second mixture we have performed numerical
simulations for macroscopic quantities. Considering the two reversible reactions taken as separated
models in the four-species case, we have taken them together, observing different equilibrium ratios
between reactants and products for both.
We finally point out how it would be interesting to test our BGK model and corresponding macro-

scopic equations also in space dependent problems, as for instance the shock wave structure, comparing
our results with the ones obtained for inert mixtures in the frame of extended thermodynamics [85],
or from kinetic systems for reactive monatomic gases [18] or for a single polyatomic gas [73,96].
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4 Derivation of reaction-diffusion equations from
kinetic models for gas mixtures

In the previous part of the thesis, we have derived, from BGK models, equations for the macroscopic
quantities. As known, the whole system describing the behavior in space and time of observables is
not closed. Through proper scaling procedures is possible to derive the classical Euler or Navier-Stokes
equations for gaseous flows, see e.g. [15]. Another possible strategy leading to closed macroscopic
systems, adopted in [12], is to obtain, starting from the kinetic description of Boltzmann type for a
mixture of four reacting gas species, reaction-diffusion equations for the number densities of reactants.
The utility of such an asymptotic closure is confirmed by the fact that a wide range of phenomena can
be described by means of reaction-diffusion systems in mathematical biology, with particular reference
to the epidemiology (diffusion of infectious diseases) [86, 91, 92, 120], in ecology [34], in the physics
of hot plasmas [121], and of course in chemistry [76]. Mathematical aspects of these systems have
been extensively investigated, see for instance [62,95,119].

Starting from the features of gas mixtures considered so far, we want to apply the strategy of [12] to
a mixture where monoatomic and polyatomic gases interact, not only elastically, both also chemically
and non-elastically. In more detail, this chapter is organized as follows. In Section 4.1 we present the
physical setting we are considering: a binary mixture composed by a polyatomic (diatomic, having two
discrete internal energy levels) and a monatomic gas, diffusing in a gaseous background (typically,
the atmosphere) composed by three much denser monoatomic gas species. We write the kinetic
Boltzmann equations for the two components of the polyatomic species and the monatomic one, with
explicit collision operators for elastic collisions, two possible inelastic transitions and two reversible
chemical encounters. We perform a time scaling in which the dominant process is assumed to be
the elastic scattering with the host medium, while we present three different scalings for the various
chemical reactions. In the first one we assume that all elastic encounters with the background
occur with the same frequency, and that all chemical and inelastic collisions occur at a much slower
(common) scale. In the second, we suppose that monatomic species collides with the background
more frequently, while in the third one we also take one of the chemical reactions occurring at a
faster time scale. Section 4.2 is devoted to the diffusive asymptotic limit from the kinetic level, in the
first hydrodynamic regime, leading to a closed set of three reaction–diffusion equations for species
number densities. Then, in Section 4.3 the second regime is explored, obtaining a system of two
reaction–diffusion equations and a third equation with only a reactive term. The last modification in
the regime is considered in Section 4.4, in which we obtain a reduced set of only two macroscopic
equations similar to the classical Brusselator system. Finally, Section 4.5 contains some concluding
remarks. This chapter is an extension of results proposed in author’s post-print [22].
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4.1 Physical setting and Boltzmann equations

We consider a mixture of two rarefied gases diffusing in a background medium: one species Y is
supposed to have two possible energy levels, E1 and E2, thus, according to the way of modeling
proposed in [56,58] and considered throughout the other chapters of this work, it can be decomposed
into two different components, Y1 and Y2; the other gas Z is monatomic and has only one energy
level, EZ . Particle masses of these gases are denoted by mY and mZ , respectively.
The host medium, which from the physical point of view could be seen as the atmosphere, is

a gaseous mixture and is much denser than the considered species Y1, Y2, Z. Specifically, in this
model the background is provided by a mixture of three gas species A, B and C, with different
particle masses mA, mB, mC . Also these background species are supposed to have only one possible
energy level, expressed by EA, EB, EC , respectively. Their distributions are supposed to be fixed
Maxwellians, with constant number densities nA, nB, nC , temperature equal to one and zero mean
velocity:

fJ(v) = nJMJ(v) MJ(v) = nJ

(mJ

2π

) 3
2

exp

(
−mJ |v|2

2

)
J = A,B,C. (4.1)

We shall write and investigate (in different asymptotic limits) kinetic Boltzmann equations for the
evolution of distribution functions of species Y1, Y2, Z, denoted by f1, f2, fZ , respectively. Besides
on molecular velocity v, they depend also on time t and on the space variable x. Particles, in addition
to elastic collisions with the background medium and among themselves, are assumed subject to the
following inelastic transitions or chemical reactions

A+ Y1 → A+ Y2, (4.2)

Z + Y2 → Z + Y1, (4.3)

B + Y1 � A+ C, (4.4)

Y1 + Y1 � Z +B. (4.5)

The interactions (4.2) and (4.3) are inelastic transitions where particles of species Y , colliding with
the background (in (4.2)) or with the other species Z (in (4.3)), pass from one energy state to the
other, namely a particle of the component Y1 transforms itself into a particle of the component Y2

or vice versa. The collisions (4.4) and (4.5) represent bimolecular and reversible chemical reactions:
(4.4) describes creation or disappearance of a particle of species Y1 through interactions with the
background medium; in (4.5) a pair of particles Y1 produces a particle Z and a background particle
or the other way round. From the physical point of view, the reactions (4.2)–(4.5) represent a simple
set of bimolecular interactions (that can be easily modelled by Boltzmann operators) allowing to
recover, in a suitable hydrodynamic limit that will be detailed afterwards, the well known Brusselator
system [98]. External production of particles is provided by chemical interactions with the fixed
background, and passages from one component to another (with the same mass) occur through
inelastic transitions.
The kinetic Boltzmann equations for distributions fI(t,x,v), with I = 1, 2, Z, may be cast as

∂fI
∂t

+ v · ∇xfI =
∑

J=A,B,C

QIEL(fI , nJMJ) +
∑

K=1,2,Z

QIEL(fI , fK) +QIIN (f) +QICH(f) . (4.6)
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Here QIEL(fI , nJMJ) denotes the collision operator for the elastic scattering between the considered
species I and one background species J = A,B,C. Then, the operator QIEL(fI , fK) describes the
elastic collisions between particles of the species I and particles of only one other species K = 1, 2, Z,
including of course the case K = I. Finally, the operator QIIN (f) takes into account the effects on
species I due to inelastic transitions (4.2), (4.3), and QICH(f) the effects due to the chemical reactions
(4.4), (4.5); here f denotes the whole set of distributions, the precise dependencies will be specified
here below.

We shall write explicitly the collision operators that govern the dynamics, adapting the generic
operators derived in section 1.1 of Chapter 1, which are written for generic encounters, to each
particular collision (4.2)–(4.5). For this reason, we shall use the same notation for all quantities and
functions involved in calculations. For convenience, we report the operator for a generic encounter
between four components, CI , CJ , CH , CK ,

CI + CJ � CH + CK , (4.7)

that is (for component CI)

QI [fI , fJ , fH , fK ](v)

=

∫
R3

∫
S2

H
(
g2 − δHKIJ

)
gσHKIJ (g, Ω̂ · Ω̂′)

[(
µIJ
µHK

)3

fH(v′)fK(w′)− fI(v)fJ(w)

]
dwdΩ̂′.

(4.8)

Concerning operators relative to elastic collisions, they come directly from the classical Boltzmann
collision model. In this case there is nor internal energy exchange, nor change of particles masses, thus
both the Heaviside function and the ratio between reduced masses are identically one. Consequently,
elastic operators between a gas component I and a background species J are

QIEL(fI , nJMJ)(v) =

∫
R3×S2

σIJ(g, Ω̂ · Ω̂′)g
[
fI(v

′)nJMJ(w′)− fI(v)nJMJ(w)
]
dwdΩ̂′ (4.9)

for I = 1, 2, Z and J = A,B,C, while elastic operators between a gas component I and another
component K are

QIEL(fI , fK)(v) =

∫
R3×S2

σIK(g, Ω̂ · Ω̂′)g
[
fI(v

′)fK(w′)− fI(v)fK(w)
]
dwdΩ̂′ . (4.10)

In this case we indicate by σIJ(g, Ω̂ ·Ω̂′) and σIK(g, Ω̂ ·Ω̂′) the differential cross sections. Moreover,
a Maxwell molecule assumption [87] will be adopted throughout the chapter: the intermolecular forces
are supposed to be proportional to the in verse power 1

d5 , where d is the intermolecular distance. This
has as a consequence [36] that∫

S2

σIJ(g, Ω̂ · Ω̂′)g dΩ̂′ def= νIJ ,

∫
S2

σIK(g, Ω̂ · Ω̂′)g dΩ̂′ def= νIK , (4.11)

where νIJ and νIK are constant collision frequencies.
As concerns inelastic transitions, we have dissipation or absorption of internal energy during the

collision, but particles do not change their nature. Furthermore, we are taking into account only "one-
way" transitions, thus we shall take the collision operator in case of irreversible processes, outlined

109



in Chapter 1 as well. Since components Y1 and Y2 are involved in both interactions (4.2) and (4.3),
their inelastic operators may be split into two parts

QIIN (f) = QIIN (f1, f2, nAMA) +QIIN (f1, f2, fZ) , I = 1, 2. (4.12)

Inelastic collision operator for Y1 related to the collision (4.2) is simply provided by a loss term as

Q1
IN (f1, f2, nAMA)(v) = −

∫
R3×S2

H
(
g2 − δA2

A1

)
gσA2

A1(g, Ω̂ · Ω̂′) f1(v)nAMA(w) dwdΩ̂′ . (4.13)

On the other hand, collision (4.2) produces a gain term for component Y2, that may be cast as

Q2
IN (f1, f2, nAMA)(v) =

∫
R3×S2

H
(
g2 − δA1

A2

) (g′)2

g
σA2
A1(g′, Ω̂ · Ω̂′)f1(v′)nAMA(w′)dwdΩ̂′.

(4.14)
Analogous operators are in order for transition (4.3), with a gain term for Y1 and a loss term for Y2:

Q1
IN (f1, f2, fZ)(v) =

∫
R3×S2

H
(
g2 − δZ2

Z1

) (g′)2

g
σZ1
Z2(g′, Ω̂ · Ω̂′) f2(v′)fZ(w′) dwdΩ̂′ , (4.15)

Q2
IN (f1, f2, fZ)(v) = −

∫
R3×S2

H
(
g2 − δZ1

Z2

)
gσZ1

Z2(g, Ω̂ · Ω̂′) f2(v)fZ(w) dwdΩ̂′. (4.16)

The species Z is involved only in the inelastic transition (4.3), and it has both a gain term and a loss
term, thus we have

QZIN (f) = QZIN (f1, f2, fZ)(v) =

∫
R3×S2

[
H
(
g2 − δZ2

Z1

) (g′)2

g
σZ1
Z2(g′, Ω̂ · Ω̂′) f2(v′)fZ(w′)

−H
(
g2 − δZ1

Z2

)
gσZ1

Z2(g, Ω̂ · Ω̂′) f2(v)fZ(w)
]
dwdΩ̂′.

(4.17)

Boltzmann collision operators relevant to chemical reactions (4.4) and (4.5) are more standard,
since bimolecular reversible reactions have been extensively studied in kinetic theory [12, 13, 58] and
they can be directly derived from the general operator (4.8). Component Y1 is involved in both
reactions (4.4) and (4.5), therefore the relevant operator is the sum of two terms

Q1
CH(f) = Q1

CH(f1, nAMA, nBMB, nCMC) +Q1
CH(f1, fZ , nBMB) , (4.18)

where the first one, taking into account the reaction (4.4), is provided by

Q1
CH(f1, nAMA,nBMB, nCMC)(v) =

∫
R3×S2

H
(
g2 − δACB1

)
σACB1 (g, Ω̂ · Ω̂′)g

×

[(
mBmY

mAmC

)3

nCMC(v′)nAMA(w′)− f1(v)nBMB(w)

]
dwdΩ̂′ , (4.19)

and the second one, accounting for the effects of (4.5), reads as

Q1
CH(f1, fZ , nBMB)(v) =

∫
R3×S2

H
(
g2 − δZB11

)
σZB11 (g, Ω̂ · Ω̂′)g

×

[(
m2
Y

mZmB

)3

fZ(v′)nBMB(w′)− f1(v)f1(w)

]
dwdΩ̂′ . (4.20)
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The other component Y2 of the polyatomic gas is not involved in reactions (4.4) and (4.5), therefore
Q2
CH(f) = 0. The monatomic gas Z appears only in reaction (4.5), and we have

QZCH(f) = QZCH(f1, fZ , nBMB)(v) =

∫
R3×S2

H
(
g2 − δ11

ZB

)
σ11
ZB(g, Ω̂ · Ω̂′)g

×

[(
mZmB

m2
Y

)3

f1(v′)f1(w′)− fZ(v)nBMB(w)

]
dwdΩ̂′ . (4.21)

Even for inelastic transitions (4.2), (4.3) and for the direct reactions in (4.4), (4.5), cross sections
will be assumed of Maxwell molecule type as∫

S2

σHKIJ (g, Ω̂ · Ω̂′)g dΩ̂′ def= νHKIJ , (4.22)

with νHKIJ denoting constant collision frequencies.

4.2 Derivation of a three-component reaction-diffusion system

In this section we derive a reaction–diffusion system for the number densities of the two components Y1

and Y2 of the polyatomic gas, and of the monatomic constituent Z as well, in a suitable hydrodynamic
limit. To this aim, we rescale the set of Boltzmann equations (4.6) in terms of a small parameter
ε, standing for the Knudsen number (ratio of the particle mean free path to a macroscopic length,
introduced in Chapter 1). We assume different time scales for collisions among particles as follows:
the dominant phenomenon is provided by the elastic collisions with the much denser background
medium, that are taken of order 1/ε; binary elastic collisions between particles of the species Y1, Y2,
Z are less frequent, of order εp with whatever p ≥ 0; inelastic and chemical encounters (4.2), (4.3),
(4.4) and (4.5) are assumed to be slow processes of order ε. Since we are interested also in the effects
on species number densities of inelastic or chemical interactions, we take the same O(ε) scaling in
front of the temporal derivatives. Thus, the rescaled Boltzmann equations for distribution functions
of Y1, Y2 and Z read as

ε
∂f ε1
∂t

+ v · ∇xf
ε
1 =

1

ε

∑
J=A,B,C

Q1
EL(f ε1, nJMJ) + ε p

∑
I=1,2,Z

Q1
EL(f ε1, f

ε
I )

+ ε Q1
IN (f) + εQ1

CH (f) , (4.23)

ε
∂f ε2
∂t

+ v · ∇xf
ε
2 =

1

ε

∑
J=A,B,C

Q2
EL(f ε2, nJMJ) + ε p

∑
I=1,2,Z

Q2
EL(f ε2, f

ε
I ) + ε Q2

IN (f) , (4.24)

ε
∂f εZ
∂t

+ v · ∇xf
ε
Z =

1

ε

∑
J=A,B,C

QZEL(f εZ , nJMJ) + ε p
∑

I=1,2,Z

QZEL(f εZ , f
ε
I )

+ ε QZIN (f) + εQZCH (f) . (4.25)

In order to stress the fact that the solution of this system depends on the scaling parameter ε,
distribution functions are denoted by f εI , I = 1, 2, Z, and the corresponding number densities will be
given by nε1, n

ε
2, n

ε
Z , respectively. We have skipped here the rigorous dimensional analysis leading

to the rescaled system (4.23), (4.24), (4.25). A detailed derivation of dimensionless Boltzmann–like
or BGK kinetic equations may be found in several references, as for instance [4, 7, 36,93,106].
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We immediately note that in the kinetic equations (4.23), (4.24) and (4.25) the Boltzmann oper-
ators describing collisions with the background play the dominant role, namely∑

J=A,B,C

QIEL(f εI , nJMJ) = O(ε), I = 1, 2, Z. (4.26)

We show now how distributions f εI , for I = 1, 2, Z, may be seen as perturbations of a collision
equilibrium. Since (4.26), we write a first order expansion for each distribution:

f εI (t,x,v) = f̃ εI (t,x,v) + ε h̃εI(t,x,v) , I = 1, 2, Z, (4.27)

Consequently, for any subindex I the Boltzmann equation can be written as

v ·∇xf̃
ε
I =

1

ε

∑
J=A,B,C

QIEL(f̃ εI , nJMJ) +
∑

J=A,B,C

QIEL(h̃εI , nJMJ) + ε p
∑

I=1,2,Z

QJEL(f̃ εI , f̃
ε
J) +O(ε).

(4.28)
As first, we immediately get∑

J=A,B,C

QIEL(f̃ εI , nJMJ) = 0, I = 1, 2, Z. (4.29)

This means that the functions f̃ εI are of Maxwellian type, having mean velocity 0 and temperature
one as the host medium, namely

f̃ εI (t,x,v) = ñεI(t,x)MI(v), (4.30)

with

MI(v) =
(mI

2π

) 3
2

exp

(
−mI |v|2

2

)
. (4.31)

From the next order (O(ε0)) of (4.28) we have instead (here we consider the case p = 0)

v · ∇xf̃
ε
I −

∑
I=1,2,Z

QJEL(f̃ εI , f̃
ε
J) =

∑
J=A,B,C

QIEL(h̃εI , nJMJ). (4.32)

If we define the linear operator:

LI(·)
def
=

∑
J=A,B,C

QIEL(·, nJMJ), (4.33)

it turns out to have the well known mathematical properties of boundedness, self–adjointness, and
validity of the Fredholm alternative [12,36] in a suitable L2 space W , which can be thus decomposed
as

W = R(LI)⊕K(LI), (4.34)

being R(LI) and K(LI) the range and the kernel of LI , respectively. It means that is possible to
uniquely (up to a Maxwellian addendum) determine the functions h̃εI . Summing up, we have

f εI (t,x,v) = ñεI(t,x)MI(v) + ε h̃εI(t,x,v), I = 1, 2, Z. (4.35)
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Integrating (4.35) in dv we get, indicating by nεI the number density provided by
∫
R3 f

ε
I (v)dv,

ñεI(t,x) = nεI(t,x)−
∫
R3

h̃εI(v)dv, (4.36)

and, inserting this expression into (4.35),

f εI (t,x,v) = nεI(t,x)MI(v) + ε hεI(t,x,v), I = 1, 2, Z, (4.37)

with
hεI(t,x,v) = h̃εI(v)−MI(v)

∫
R3

h̃εI(v)dv. (4.38)

The function hεI is of order O(1), fulfilling the constraint∫
R3

hεI(v) dv = 0. (4.39)

Therefore, in this hydrodynamic regime, in order to describe the evolution of distribution functions
f εI at leading order accuracy it is enough to build up consistent evolution equations for number
densities nε1, n

ε
2, n

ε
Z .

4.2.1 Equation for the density of the first component

By integrating (4.23) with respect to the kinetic variable v, we get

ε
∂

∂t

∫
R3

f ε1dv +∇x ·
∫
R3

vf ε1dv = ε

∫
R3

(
Q1
IN (f) +Q1

CH (f)
)
dv, (4.40)

since elastic contributions obviously vanish [36] (the nature of particles does not change in elastic
collisions):∫

R3

Q1
EL(f ε1, nJMJ)dv = 0, J = A,B,C, and

∫
R3

Q1
EL(f ε1, f

ε
I )dv = 0, I = 1, 2, Z.

(4.41)
Bearing in mind the expression of the distribution functions provided in (4.37), the equation (4.40)
becomes

ε
∂

∂t
nε1 + ε∇x ·

∫
R3

vhε1dv = ε

∫
R3

(
Q1
IN (nM) +Q1

CH (nM)
)
dv +O(ε 2), (4.42)

with nM the whole set of Maxwellian distributions nεIMI (I = 1, 2, Z) and nJMJ (J = A,B,C).
Inelastic and chemical collision contributions may be explicitly computed (for Maxwell molecules

interactions) when distributions are accommodated at a Maxwellian shape [13, 56, 58]. Detailed
calculations for a general bimolecular and reactive encounter are reported in Appendix A, here we
summarize the results relevant to species Y1. Contributions due to inelastic transitions (4.2) and
(4.3) read as∫

R3

Q1
IN (nε1M1, n

ε
2M2, nAMA)(v)dv = −νA2

A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ε
1, (4.43)

∫
R3

Q1
IN (nε1M1, n

ε
2M2, n

ε
ZMZ)(v)dv = νZ1

Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nεZn

ε
2, (4.44)
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respectively. As expected, contribution (4.43) is negative, since transitions (4.2) produce a loss of
particles Y1, while term (4.44) is positive, since in encounters (4.3) one gains a particle Y1. Reactive
source terms due to collisions (4.4) and (4.5) are provided, respectively, by∫

R3

Q1
CH(nε1M1, nAMA, nBMB, nCMC)(v)dv =νACB1

2√
π

Γ

(
3

2
,Θ(∆EACB1 )

)
×

[(
mBmY

mAmC

) 3
2

exp
(
∆EACB1

)
nAnC − nBnε1

]
,

(4.45)

∫
R3

Q1
CH(nε1M1, n

ε
ZMZ , nBMB)(v)dv = νZB11

2√
π

Γ

(
3

2
,Θ(∆EZB11 )

)
×

[(
m2
Y

mBmZ

) 3
2

exp
(
∆EZB11

)
nεZnB − (nε1)2

]
, (4.46)

and they turn out to be a balance between a gain and a loss term, since reactions (4.4) and (4.5) are
reversible. In (4.43)–(4.46), symbols νHKIJ denote collision frequencies defined in (4.22), while Γ is
the incomplete Euler gamma function

Γ(α, y) =

∫ +∞

y
τα−1e−τdτ , (4.47)

and Θ(y) = max{y, 0}. The presence of these functions is due to the fact that if a reaction is
endothermic (namely with a positive internal energy gap ∆EHKIJ > 0), it occurs only if the kinetic
energy of the ingoing particles is enough, as already explained in Chapter 1.
By inserting results (4.43)–(4.46) into equation (4.42), we get

∂

∂t
nε1 +∇x ·

∫
R3

vhε1dv

= −νA2
A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ε
1 + νZ1

Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nεZn

ε
2

+ νACB1

2√
π

Γ

(
3

2
,Θ(∆EACB1 )

)[(
mBmY

mAmC

) 3
2

exp
(
∆EACB1

)
nAnC − nBnε1

]

+ νZB11

2√
π

Γ

(
3

2
,Θ(∆EZB11 )

)[(
m2
Y

mBmZ

) 3
2

exp
(
∆EZB11

)
nεZnB − (nε1)2

]
+O(ε). (4.48)

We would like to express even the integral
∫
R3 vhε1dv in terms of our unknown macroscopic fields

(number densities); to this aim we resort to the momentum equation for species Y1. More precisely,
we multiply (4.23) by the weight function v and integrate in dv:

ε
∂

∂t

∫
R3

vf ε1dv+∇x ·
∫
R3

(v ⊗ v)f ε1dv

=
1

ε

∑
J=A,B,C

∫
R3

vQ1
EL(f ε1, nJMJ)dv + ε p

∑
I=1,2,Z

∫
R3

vQ1
EL(f ε1, f

ε
I )dv

+ ε

∫
R3

vQ1
IN (f) dv + ε

∫
R3

vQ1
CH (f) dv. (4.49)
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By substituting the expansions (4.37) for I = 1, 2, Z, we obtain

∇x ·
nε1
mY

I + ε∇x ·
∫
R3

(v ⊗ v)hε1 dv

=
∑

J=A,B,C

∫
R3

vQ1
EL(hε1, nJMJ)dv + εp+1

∑
I=1,2,Z

∫
R3

vQ1
EL(hε1, n

ε
IMI)dv

+ εp+1
∑

I=1,2,Z

∫
R3

vQ1
EL(nε1M1, h

ε
I)dv + ε

∫
R3

v
(
Q1
IN (nM) +Q1

CH (nM)
)
dv

+O(ε 2). (4.50)

Here it has been taken into account that, since all Maxwellians share the same zero mean velocity, it
clearly holds∑

J=A,B,C

∫
R3

vQ1
EL(nε1M1, nJMJ)dv =

∑
I=1,2,Z

∫
R3

vQ1
EL(nε1M1, n

ε
IMI)dv = 0, (4.51)

and use has been made also of the trivial results∫
R3

v nε1M1dv = 0 ,

∫
R3

(v ⊗ v)nε1M1dv =
nε1
mY

I . (4.52)

Neglecting O(ε) terms, (4.50) may be cast as

∇x ·
nε1
mY

I =
∑

J=A,B,C

∫
R3

vQ1
EL(hε1, nJMJ)dv +O(ε) . (4.53)

We aim now at computing the elastic contribution on the right hand side of (4.53), bearing in mind
that the weak form of the bi-species elastic Boltzmann operator derived in Chapter 1 now reads as∫

R3

ϕ(v)QEL(fI , fJ)dv =

∫
S2

∫
R3×R3

[
ϕ(v′)− ϕ(v)

]
σIJ(g, Ω̂ · Ω̂′)g fI(v) fJ(w) dv dw dΩ̂′ .

(4.54)
In our case we have∫

R3

vQ1
EL(hε1, nJMJ)dv =

∫
S2

∫
R3×R3

(v′−v)σ1J(g, Ω̂ ·Ω̂′)g hε1(v)nJMJ(w) dv dw dΩ̂′ , (4.55)

therefore, recalling relations between pre-collision and post-collision velocities reported in Chapter 1

v′ = αIJ v + αJI w + αJI g Ω̂′, (4.56)

being αIJ the mass ratio αIJ = mI/(mI +mJ), we have to compute∫
S2

∫
R3×R3

σ1J(g, Ω̂ · Ω̂′)gαJY (gΩ̂′ − v + w)hε1(v)nJMJ(w) dv dw dΩ̂′. (4.57)

By parity arguments ∫
S2

σ1J(g, Ω̂ · Ω̂′)gΩ̂′dΩ̂′ = 0 . (4.58)

Still adopting the Maxwel molecules hypothesis and taking collision frequencies νIJ as the integral of
cross section multiplied by module of relative velocity, as defined in (4.11), we have to determine

− ν1JαJY

∫
R3

vhε1(v)dv

∫
R3

nJMJ(w)dw + ν1JαJY

∫
R3

hε1(v)dv

∫
R3

wnJMJ(w)dw; (4.59)
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last term obviously vanishes, and in conclusion we get∫
R3

vQ1
EL(hε1, nJMJ)dv = −ν1JnJαJY

∫
R3

vhε1(v)dv. (4.60)

By inserting this result into (4.53) we obtain

∇x ·
nε1
mY

I = −

 ∑
J=A,B,C

ν1JnJαJY

∫
R3

vhε1(v)dv +O(ε). (4.61)

In this way we have expressed the sought streaming contribution appearing in (4.48) in terms of
masses, collision frequencies and number densities; more precisely, by substituting (4.61) into (4.48),
we get the reaction–diffusion equation

∂

∂t
nε1−

∆x n
ε
1

mY

∑
J=A,B,C

ν1JnJαJY

= −νA2
A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ε
1 + νZ1

Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nεZn

ε
2

+ νACB1

2√
π

Γ

(
3

2
,Θ(∆EACB1 )

)[(
mBmY

mAmC

) 3
2

exp
(
∆EACB1

)
nAnC − nBnε1

]

+ νZB11

2√
π

Γ

(
3

2
,Θ(∆EZB11 )

)[(
m2
Y

mBmZ

) 3
2

exp
(
∆EZB11

)
nεZnB − (nε1)2

]
+O(ε).

(4.62)

It’s important to remark that an evolution equation of this kind could be obtained also without
Maxwell molecule assumptions on collision kernels. At first, even for hard potentials or for hard
spheres with cutoff, the spectral properties of the linear Boltzmann operator [36] allow to conclude
that distributions functions in the present scaling take the form (4.27). Moreover, looking at the
detailed computations of inelastic and reactive contributions outlined in Appendix A, we note that their
dependence on species number densities may be recovered without any assumption on cross sections
σHKIJ (see formula (A.10)); the Maxwellian potential allows only to explicitly compute the coefficient
in front of the classical Arrhenius term, vanishing at chemical equilibrium. The major additional
difficulty arising for non–Maxwell collisions concerns the computation of the integral

∫
R3 vhε1dv, since

in general it is not directly amenable to the moment of the linear operator
∫
R3 vQ1

EL(hε1, nJMJ)dv

as in (4.60). By inserting expansions (4.27) into the rescaled Boltzmann equation (4.23), we get that
hε1 should be a solution to the linear problem∑

J=A,B,C

Q1
EL(hε1, nJMJ)(v) = vM1(v) · ∇xn

ε
1 +O(ε). (4.63)

It can be proved [12, 45] that the problem Q1
EL(k1J , nJMJ)(v) = vM1(v) has a unique solution

that may be cast as k1J(v) = − k̃1J(|v|) v, where k̃1J(|v|) depends only on the modulus of v.
Consequently, the sought perturbation takes the form hε1 = −

(∑
J=A,B,C k̃1J(|v|)

)
v ·∇xn

ε
1 +O(ε),

and the streaming term of the macroscopic equation for nε1 becomes

∇x ·
∫
R3

vhε1dv = −

 ∑
J=A,B,C

∫
R3

k̃1J(|v|) |v|
2

3
dv

∆x n
ε
1 , (4.64)
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therefore it is again a diffusion operator, but with a non explicit diffusion coefficient. Since the final
aim of our work is to investigate the stability properties of reaction–diffusion systems derived from the
kinetic level, we consider only the case of Maxwell molecule interactions, in order to have diffusion and
reaction coefficients completely explicit in terms of the microscopic parameters of the gas mixture.

4.2.2 Equation for the density of the second component

Now we perform the same procedure in order to obtain an equation for density nε2. By integrating
(4.24) in dv we get

ε
∂

∂t

∫
R3

f2dv +∇x ·
∫
R3

f2dv = ε

∫
R3

Q2
IN (f) dv , (4.65)

since∫
R3

Q2
EL(f ε2, nJMJ)dv = 0, J = A,B,C and

∫
R3

Q2
EL(f ε2, fI)dv = 0, I = 1, 2, Z.

(4.66)
Substituting again for I = 1, 2, Z the asymptotic expansions (4.37) we have

ε
∂

∂t
nε2 + ε∇x ·

∫
R3

vhε2dv = ε

∫
R3

Q2
IN (nM) dv +O(ε 2). (4.67)

Inelastic collision contributions may be computed as described in Appendix A, giving

∂

∂t
nε2+∇x ·

∫
R3

vhε2dv

= νA2
A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ε
1 − νZ1

Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nεZn

ε
2 +O(ε) , (4.68)

where the first term appearing on the right side is due to encounters (4.2) and the second one to
interactions (4.3). In order to have an explicit expression for the streaming term, similarly to previous
subsection we multiply (4.24) by v and integrate in dv, getting

ε
∂

∂t

∫
R3

vf ε2dv+∇x ·
∫
R3

(v ⊗ v)f2dv

=
1

ε

∑
J=A,B,C

∫
R3

vQ2
EL(f ε2, nJMJ)dv + ε p

∑
I=1,2,Z

∫
R3

vQ2
EL(f ε2, fI)dv

+ ε

∫
R3

vQ2
IN (f) dv. (4.69)

We again substitute, for I = 1, 2, Z, the expansions (4.37) for the distribution functions obtaining,
as above,

∇x ·
∫
R3

(v ⊗ v)nε2M2dv =
∑

J=A,B,C

∫
R3

vQ2
EL(hε2, nJMJ)dv +O(ε), (4.70)

since all other elastic contributions vanish to the leading order accuracy. This leads, as for the
component Y1, to

∇x ·
nε2
mY

I = −

 ∑
J=A,B,C

ν2JnJαJY

∫
R3

vhε2(v)dv +O(ε). (4.71)
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Finally, inserting (4.71) into equation (4.68) we have the reaction–diffusion equation

∂

∂t
nε2−

∆xn
ε
2

mY

∑
J=A,B,C

ν2JnJαJY

= νA2
A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ε
1 − νZ1

Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nεZn

ε
2 +O(ε). (4.72)

4.2.3 Equation for the density of the monatomic species

Once again, we start from the rescaled kinetic equation (4.25) and integrate in dv, obtaining

ε
∂

∂t

∫
R3

f εZdv +∇x ·
∫
R3

vf εZdv = ε

∫
R3

(
QZIN (f) +QZCH (f)

)
dv, (4.73)

being∫
R3

QZEL(f εZ , nJMJ)dv = 0, J = A,B,C and
∫
R3

QZEL(f εZ , fI)dv = 0, I = 1, 2, Z.

(4.74)
Substituting the asymptotic expansions (4.37) we have

ε
∂

∂t
nεZ + ε∇x ·

∫
R3

vhεZdv = ε

∫
R3

(
QZIN (nM) +QZCH (nM)

)
dv +O(ε 2). (4.75)

We observe that the contribution given by the inelastic encounter (4.3) is null, since there is no net
production of particles of species Z, in fact we have∫
R3

QZIN (nM)(v)dv =

∫
R3×R3×S2

H
(
g2 − δZ2

Z1

) (g′)2

g
σZ1
Z2(g′, Ω̂ · Ω̂′)n2M2(v′)nZMZ(w′)dvdwdΩ̂′

−
∫
R3×R3×S2

H
(
g2 − δZ1

Z2

)
gσZ1

Z2(g, Ω̂ · Ω̂′)n2M2(v)nZMZ(w)dvdwdΩ̂′;

(4.76)

using relation (1.37) given in Chapter 1, and noticing that in this case we do not have mass exchange,
in the first term on the right-hand side of the integral above it becomes∫
R3

QZIN (nM)(v)dv =

∫
R3×R3×S2

H
(
(g′)2 − δZ1

Z2

)
g′ σZ1

Z2(g′, Ω̂ · Ω̂′)n2M2(v′)nZMZ(w′)dv′dw′dΩ̂

−
∫
R3×R3×S2

H
(
g2 − δZ1

Z2

)
gσZ1

Z2(g, Ω̂ · Ω̂′)n2M2(v)nZMZ(w)dvdwdΩ̂′ = 0.

(4.77)

We now compute the chemical integral due to the bimolecular and reversible reaction (4.5) and we
get

∂

∂t
nεZ+∇x ·

∫
R3

vhεZdv

= −νZB11

2√
π

Γ

(
3

2
,Θ(∆EZB11 )

)[(
m2
Y

mBmZ

) 3
2

exp
(
∆EZB11

)
nεZnB − (nε1)2

]
+O(ε).

(4.78)

118



By multiplying (4.25) by v and integrating in dv we have

ε
∂

∂t

∫
R3

vf εZdv+∇x ·
∫
R3

(v ⊗ v)f εZdv

=
1

ε

∑
J=A,B,C

∫
R3

vQZEL(f εZ , nJMJ)dv + ε p
∑

I=1,2,Z

∫
R3

vQZEL(f εZ , f
ε
I )dv

+ ε

∫
R3

v
(
QZIN (f) +QZCH (f)

)
dv , (4.79)

and use of expansions (4.37) now gives

∇x ·
∫
R3

(v ⊗ v)nεZMZdv

=
1

ε

∑
J=A,B,C

∫
R3

vQZEL(nεZMZ , nJMJ)dv +
∑

J=A,B,C

∫
R3

vQZEL(hεZ , nJMJ)dv

+ ε

∫
R3

(
QZIN (nM) +QZCH (nM)

)
dv +O(ε 2), (4.80)

leading again to the equality

∇x ·
nεZ
mZ

I = −

 ∑
J=A,B,C

νZJnJαJZ

∫
R3

vhεZ(v)dv +O(ε). (4.81)

We have now obtained the third reaction-diffusion equation for the density of species Z

∂

∂t
nεZ−

∆x n
ε
Z

mZ

∑
J=A,B,C

νZJnJαJZ
(4.82)

= −νZB11

2√
π

Γ

(
3

2
,Θ(∆EZB11 )

)[(
m2
Y

mBmZ

) 3
2

exp
(
∆EZB11

)
nεZnB − (nε1)2

]
+O(ε).

(4.83)

4.2.4 Reaction-diffusion system

By passing to the limit ε → 0 in equations (4.62), (4.72), and (4.83), and denoting by (n1, n2, nZ)

the limit of the sequence of density functions (nε1, n
ε
2, n

ε
Z), we have that (n1, n2, nZ) is a solution of

the system of reaction–diffusion equations:

∂

∂t
n1 −

1

mY

∑
J=A,B,C

ν1JnJαJY
∆xn1 = ã− (b̃+ c̃)n1 + η̃nZn2 + ẽnZ − f̃n2

1

∂

∂t
n2 −

1

mY

∑
J=A,B,C

ν2JnJαJY
∆xn2 = b̃n1 − η̃nZn2

∂

∂t
nZ −

1

mZ

∑
J=A,B,C

νZJnJαJZ
∆xnZ = f̃n2

1 − ẽnZ , (4.84)
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with

ã =νACB1

2√
π

Γ

(
3

2
,Θ(∆EACB1 )

)(
mBmY

mAmC

) 3
2

exp
(
∆EACB1

)
nAnC (4.85)

b̃ =νA2
A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nA (4.86)

c̃ =νACB1

2√
π

Γ

(
3

2
,Θ(∆EACB1 )

)
nB (4.87)

η̃ =νZ1
Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)
(4.88)

ẽ =νZB11

2√
π

Γ

(
3

2
,Θ(∆EZB11 )

)(
m2
Y

mZmB

) 3
2

exp
(
∆EZB11

)
nB (4.89)

f̃ =νZB11

2√
π

Γ

(
3

2
,Θ(∆EZB11 )

)
. (4.90)

Later on in this work, the stability properties of system (4.84) will be investigated in a regular open
space domain Ω. If we suppose that the rescaled distribution functions f εI , I = 1, 2, Z, satisfy the
initial conditions

f εI (0,x,v) = f0
I (x,v), I = 1, 2, Z, (4.91)

and the specular reflection boundary conditions

f εI (t,x,v) = f εI (t,x, Rv) ∀ t > 0, x ∈ ∂Ω, v ∈ R3, I = 1, 2, Z, (4.92)

with Rv = v− 2(v · n̂)n̂, being n̂(x) the outward normal vector to ∂Ω at a point x, then, as proved
in [12], by integrating the rescaled kinetic system (4.23)–(4.25) over (t,x,v) ∈ (0,+∞) × Ω × R3

and passing to the limit ε→ 0, we get exactly the weak form of the reaction–diffusion system (4.84),
with initial data

nI(0,x) =

∫
R3

f0
I (x,v)dv, I = 1, 2, Z, (4.93)

and homogeneous Neumann boundary conditions

n̂ · ∇xnI = 0 on (0,+∞)× ∂Ω, I = 1, 2, Z. (4.94)

Changing the time variable t̃ = c̃t and defining

a =
ã

c̃
, b =

b̃

c̃
, η =

η̃

c̃
, e =

ẽ

c̃
, f =

f̃

c̃
, (4.95)

D1 =

c̃ mY

∑
J=A,B,C

ν1JnJαJY

−1

, D2 =

c̃ mY

∑
J=A,B,C

ν2JnJαJY

−1

,

DZ =

c̃ mZ

∑
J=A,B,C

νZJnJαJZ

−1

,

(4.96)

we have that the system (4.84) for n1, n2 and nZ may be rewritten as
∂n1

∂t
−D1∆xn1 = a− (b+ 1)n1 + ηnZn2 + enZ − fn2

1

∂n2

∂t
−D2∆xn2 = bn1 − ηnZn2

∂nZ
∂t
−DZ∆xnZ = fn2

1 − enZ .

(4.97)

120



Diffusion coefficients D1, D2, DZ are essentially due to the very frequent interactions with the
host medium; indeed, they depend on collision frequencies of such dominant collisions, on number
densities of background species, and on masses of the colliding particles. The terms on the right
hand sides are due to inelastic transitions and chemical reactions (4.2)–(4.5). Notice that, besides
quadratic contributions due to binary reactions involving a pair of the considered components Y1, Y2,
Z, there are linear terms caused by non–conservative interactions with background particles, and in
the equation for n1 there appears also a constant source term, taking into account the production
of particles Y1 due to the background only (see the reverse reaction in (4.4)). As we will show in
the following, the occurrence of this “external” particle source allows the system to have a unique
homogeneous state, independent of initial data. A great advantage of the present derivation from the
kinetic level is that diffusion and reaction coefficients are explicitly provided in terms of the microscopic
parameters of the colliding system, namely particle masses, collision frequencies and internal energies.

4.3 Derivation of a reaction-diffusion system with a non-diffusive
species

In [44] the so-called bimolecular Brusselator model is presented. It is inspired by the idea introduced
in [77] of considering an intermediate state in the classical Brusselator chemical environment. This
system is composed by three differential equations, two of which of reaction-diffusion type, while the
third is an ODE for the time evolution of the species. Aiming to obtain a similar system for our model,
we suppose that the species Z has a faster collision rate with the background, more precisely, elastic
collisions between gas species Z and A,B,C are of order 1

ε2
. We keep all the other assumptions

made in the previous section, i.e. interactions of species Y1, Y2 with the background are of order 1/ε,
all other bi–species elastic collisions are of order ε p, p ≥ 0, as above, and inelastic encounters (4.2),
(4.3) and chemical reactions (4.4),(4.5) are of order ε. For the distribution functions of Y1 and Y2

we have the same Boltzmann equations given in (4.23) and (4.24), whereas, for the species Z the
Boltzmann equation reads as

ε
∂f εZ
∂t

+v ·∇xf
ε
Z =

1

ε2

∑
J=A,B,C

QZEL(f εZ , nJMJ)+ε p
∑

I=1,2,Z

QZEL(f εZ , f
ε
I )+ε QZIN (f)+εQZCH (f) .

(4.98)
Also in this case, the dynamics is dominated by collisions with the background, it means that∑

J=A,B,C

QIEL(f εI , nJMJ) = O(ε) I = 1, 2,
∑

J=A,B,C

QIEL(f εI , nJMJ) = O(ε2) I = Z.

(4.99)
thus the perturbed expressions of distributions are now

f εI (t,x,v) = nεI(t,x)MI(v) + ε hεI(t,x,v) , I = 1, 2, (4.100)

f εI (t,x,v) = nεI(t,x)MI(v) + ε2 hεI(t,x,v) , I = Z, (4.101)

with functions hεI still fulfilling constraint (4.39).
We observe that, willing to obtain partial differential equations for number densities nε1 and nε2

we can repeat the integration procedure of Boltzmann equations performed in the previous section,
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ending up with the same expressions (4.62) and (4.72). For the density nεZ , instead, if we integrate
(4.98) in dv we obtain again (4.73) but, substituting the expressions (4.100) for f ε1, f

ε
2 and (4.101)

for f εZ , we get

ε
∂

∂t
nεZ = ε

∫
R3

(
QZIN (nM) +QZCH (nM)

)
dv +O(ε 2), (4.102)

that, once computed the integrals, provides

∂

∂t
nεZ = −νZB11

2√
π

Γ

(
3

2
,Θ(∆EZB11 )

)[(
m2
Y

mBmZ

) 3
2

exp
(
∆EZB11

)
nεZnB − (nε1)2

]
+O(ε). (4.103)

We see that the diffusive term does not appear because of its higher order nature. Collecting equations
(4.62), (4.72) and (4.103) and considering again the limit ε → 0, the system for number densities
(n1, n2, nZ) is

∂

∂t
n1 −

1

mY

∑
J=A,B,C

ν1JnJαJY
∆xn1 = ã− (b̃+ c̃)n1 + η̃nZn2 + ẽnZ − f̃n2

1

∂

∂t
n2 −

1

mY

∑
J=A,B,C

ν2JnJαJY
∆xn2 = b̃n1 − η̃nZn2

∂

∂t
nZ = f̃n2

1 − ẽnZ , (4.104)

with coefficients of the equations defined as in (4.85)-(4.90).
Considering again a regular open domain Ω, we can set initial data and boundary conditions for

the distribution functions as (4.91) and (4.92) and after the time scaling t̃ = c̃t we obtain the
reaction-diffusion system

∂n1

∂t
−D1∆xn1 = a− (b+ 1)n1 + ηnZn2 + enZ − fn2

1

∂n2

∂t
−D2∆xn2 = bn1 − ηnZn2

∂nZ
∂t

= fn2
1 − enZ ,

(4.105)

with coefficients

a =
ã

c̃
, b =

b̃

c̃
, η =

η̃

c̃
, e =

ẽ

c̃
, f =

f̃

c̃
, (4.106)

D1 =

c̃ mY

∑
J=A,B,C

ν1JnJαJY

−1

, D2 =

c̃ mY

∑
J=A,B,C

ν2JnJαJY

−1

, (4.107)

initial data

nI(0,x) on Ω, I = 1, 2, Z, (4.108)

and homogeneous Neumann boundary conditions

n̂ · ∇xnI = 0 on (0,+∞)× ∂Ω, I = 1, 2, Z. (4.109)
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4.4 Derivation of a reduced two-component reaction-diffusion system

The presence of an intermediate unstable state in the Brusselator–type reaction was introduced in [77],
later it has been explored in [44]. More precisely, to obtain the classical two-species Brusselator
system, besides being a non diffusive component, the transient state is also considered to be quickly
disappearing through proper interactions. In this section we present a derivation from our kinetic
model of a closed Brusselator–type system of reaction–diffusion equations for the two components
Y1, Y2 of the polyatomic gas only. In this hydrodynamic regime, the other gas Z will play the role of
the unstable particle state.

We show that it is possible to derive such a reduction assuming, in addition to faster time scales
for elastic collisions between the background and the species Z as done in the previous section, also a
faster rate for the reaction (4.5) which involves the unstable state Z. In particular, we prove that in
the considered scaling the number density nεZ is completely determined in terms of the number density
nε1 and other fixed parameters (masses, internal energies, and background density), therefore in order
to have a complete description of the evolution of concentrations, it suffices to derive a system of
two coupled reaction–diffusion equations for nε1, n

ε
2.

In the present scaling, elastic scattering with the host medium is still the dominant process: collisions
of the two components of the gas Y with the background are taken of order 1/ε , while scattering
between the monatomic gas Z and the background is assumed of order 1/ε2. All other elastic collisions
are of order ε p, p ≥ 0, as above. Inelastic encounters (4.2), (4.3) and chemical reaction (4.4) are
of order ε (slow as above), while the bimolecular reaction (4.5), involving the unstable state Z, is
faster, of order 1. This means that a pair of particles Y1 easily recombines to give rise to a particle Z,
and then such particle Z, colliding with the host medium, very quickly dissociates again into a pair
(Y1, Y1). We use here a separate notation for the chemical collision operator for reactions (4.4) and
(4.5), respectively:

Q1∗
CH (f) = Q1

CH(f ε1, nAMA, nBMB, nCMC),

Q1∗∗
CH (f) = Q1

CH(f ε1, f
ε
Z , nBMB),

QZ
∗∗

CH (f) = QZCH(f ε1, f
ε
Z , nBMB) . (4.110)

Thus, rescaled Boltzmann equations for Y1, Y2 and Z read as:

ε
∂f ε1
∂t

+ v · ∇xf
ε
1 =

1

ε

∑
J=A,B,C

Q1
EL(f ε1, nJMJ) + ε p

∑
I=1,2,Z

Q1
EL(f ε1, f

ε
I ) + ε Q1

IN (f)

+ ε Q1∗
CH (f) + Q1∗∗

CH (f) , (4.111)

ε
∂f ε2
∂t

+ v · ∇xf
ε
2 =

1

ε

∑
J=A,B,C

Q2
EL(f ε2, nJMJ) + ε p

∑
I=1,2,Z

Q2
EL(f ε2, f

ε
I ) + ε Q2

IN (f) ,

(4.112)

ε
∂f εZ
∂t

+ v · ∇xf
ε
Z =

1

ε

∑
J=A,B,C

QZEL(f εZ , nJMJ) + ε p
∑

I=1,2,Z

QZEL(f εZ , f
ε
I )

+ ε QZIN (f) + QZ
∗∗

CH (f) . (4.113)
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The same dominant role as in the previous section is played by collisions with the background,∑
J=A,B,C

QIEL(f εI , nJMJ) = O(ε) I = 1, 2,
∑

J=A,B,C

QIEL(f εI , nJMJ) = O(ε2) I = Z.

(4.114)
Consequently, the perturbed expressions of distributions are once again

f εI (t,x,v) = nεI(t,x)MI(v) + ε hεI(t,x,v) , I = 1, 2, (4.115)

f εI (t,x,v) = nεI(t,x)MI(v) + ε2 hεI(t,x,v) , I = Z , (4.116)

where assume again constraint (4.39).

4.4.1 Equation for the density of the first component

By integrating the Boltzmann equation (4.111) with respect to the velocity variable v, and substituting
the expressions (4.115) and (4.116) for distributions we get, eliminating vanishing terms,

ε
∂

∂t
nε1 + ε∇x ·

∫
R3

vhε1dv = ε

∫
R3

(
Q1
IN (nM) +Q1∗

CH (nM)
)
dv +

∫
R3

Q1∗∗
CH (nM) dv

+ ε

∫
R3

Q̃1∗∗
CH(hε1, n

ε
1M1)dv +O(ε 2) , (4.117)

where Q̃1∗∗
CH(hε1, n

ε
1M1) is the first order (O(ε)) correction of the dominant chemical term Q1∗∗

CH(f)

given in (4.20), that turns out to be

Q̃1∗∗
CH(hε1, n

ε
1M1) = − 2

∫
R3

∫
S2

H
(
g2 − δZB11

)
σZB11 (g, Ω̂ · Ω̂′)g hε1(v)nε1M1(w)dwdΩ̂′ . (4.118)

We notice that, at the first order, only the correction of the loss term in the the chemical operator
remains, since the gain term contains the expansion of fZ , so that its correction is of order 2, and
thus negligible.
Leading order of equation (4.117) provides∫

R3

Q1∗∗
CH (nM) dv = O(ε), (4.119)

which after the explicit computation of collision contribution, following the procedure outlined in
Appendix A, becomes

νZB11

2√
π

Γ

(
3

2
,Θ(∆EZB11 )

)[(
m2
Y

mZmB

) 3
2

exp
(
∆EZB11

)
nεZnB − (nε1)2

]
= O(ε). (4.120)

We note that this provides an explicit expression for number density nεZ , to the leading order accuracy,
as function of nε1:

nεZ = (nε1)2

[(
m2
Y

mZmB

) 3
2

exp
(
∆EZB11

)
nB

]−1

+O(ε). (4.121)

With this result at hand, by writing explicitly next order (O(ε)) of equation (4.117) we get

∂

∂t
nε1 +∇x ·

∫
R3

vhε1dv =

∫
R3

(
Q1
IN (nM) +Q1∗

CH (nM)
)
dv +

∫
R3

Q̃1∗∗
CH(hε1, n

ε
1M1)dv +O(ε).

(4.122)
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Under a Maxwell molecule assumption for the direct reaction in (4.5), the last integral in (4.122) is
explicitly provided by∫

R3

Q̃1∗∗
CH(hε1, n

ε
1M1) dv = − 2 νZB11 nε1

∫
R3

∫
R3

H
(
g2 − δZB11

)
hε1(v)M1(w) dvdw. (4.123)

If we suppose that the quantity ∆EZB11 = EB + EZ − 2E1 < 0, we have H
(
g2 − δZB11

)
≡ 1 and

thus the whole integral is zero, owing to (4.39). In the opposite case, the contribution cannot
be made explicit without further assumptions on the perturbation hε1(v). Anyway, we expect that
such contribution would be very small (bearing in mind (4.39)), and therefore negligible in the final
macroscopic equation; moreover, we will see in next chapter that the assumption ∆EZB11 < 0 is
almost no restrictive in determining the configurations of masses and energy values allowing pattern
formation, therefore it may be reasonably adopted.

Also in equation (4.122) we need an expression for
∫
R3 v hεIdv in terms of number densities; we

multiply (4.111) by v and integrate in dv. Substituting again expansions (4.115) and (4.116) and
taking only the leading order terms, we obtain

∇x ·
∫
R3

(v⊗v)nε1M1dv =
∑

J=A,B,C

∫
R3

vQ1
EL(hε1, nJMJ)dv+

∫
R3

vQ1∗∗
CH (nM) dv+O(ε). (4.124)

But for ∆EZB11 < 0 we easily get ∫
R3

vQ1∗∗
CH (nM) dv = 0 , (4.125)

since it is enough to perform the change of variables (v,w)→ (g,G) expressed in formula (1.10) of
the preliminary Chapter and to observe that∫

R3

G exp
(
−mY G

2
)
dG =

∫
R3

g exp

(
−1

4
mY g

2

)
dg = 0. (4.126)

Thus it holds again the relation

∇x ·
nε1
mY

I = −

 ∑
J=A,B,C

ν1JnJαJY

∫
R3

vhε1(v)dv +O(ε). (4.127)

It is now sufficient to insert this into the equation (4.122) and to compute inelastic and chemical
collision integrals in order to obtain the reaction–diffusion equation

∂

∂t
nε1−

∆x n
ε
1

mY
∑

J=A,B,C ν1JnJαJY

= −νA2
A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ε
1 + νZ1

Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nεZn

ε
2

+ νACB1

2√
π

Γ

(
3

2
,Θ(∆EACB1 )

)[(
mBmY

mAmC

) 3
2

exp
(
∆EACB1

)
nAnC − nBnε1

]
+O(ε).

(4.128)
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Substituting on the right hand side the expression (4.121) for the density of the unstable state nεZ , it
becomes

∂

∂t
nε1−

∆x n
ε
1

mY
∑

J=A,B,C ν1JnJαJY

= −νA2
A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ε
1 (4.129)

+ νZ1
Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)[(
m2
Y

mZmB

) 3
2

exp
(
∆EZB11

)
nB

]−1

(nε1)2nε2

+ νACB1

2√
π

Γ

(
3

2
,Θ(∆EACB1 )

)[(
mBmY

mAmC

) 3
2

exp
(
∆EACB1

)
nAnC − nBnε1

]
+O(ε).

(4.130)

4.4.2 Equation for the density of the second component

Being the component Y2 not involved in reaction (4.5), that is the only one with a modified scaling
with respect to previous sections, the derivation of the reaction–diffusion equation for density nε2
is really analogous to the one performed in Section 4.2, thus we skip details here. With the usual
asymptotic procedure we derive the equation

∂

∂t
nε2−

∆xn
ε
2

mY
∑

J=A,B,C ν2JnJαJY

= νA2
A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ε
1 − νZ1

Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)
nεZn

ε
2 +O(ε). (4.131)

Again we substitute the expression for nεZ provided by (4.121), obtaining

∂

∂t
nε2−

∆xn
ε
2

mY
∑

J=A,B,C ν2JnJαJY

= νA2
A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nAn

ε
1

− νZ1
Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)[(
m2
Y

mZmB

) 3
2

exp
(
∆EZB11

)
nB

]−1

(nε1)2nε2 +O(ε). (4.132)

4.4.3 Reaction-diffusion system

We pass to the limit ε→ 0 in (4.130) and (4.132) obtaining the following reaction–diffusion system
for the unknown number densities n1, n2, which denote the limiting values of the sequences nε1, n

ε
2:

∂n1

∂t
− 1

mY

∑
J=A,B,C

ν1JnJαJY
∆xn1 = ã− (b̃+ c̃)n1 + d̃n2

1n2

∂n2

∂t
− 1

mY

∑
J=A,B,C

ν2JnJαJY
∆xn2 = b̃n1 − d̃n2

1n2,

(4.133)
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with

ã = νACB1

2√
π

Γ

(
3

2
,Θ(∆EACB1 )

)(
mBmY

mAmC

) 3
2

exp
(
∆EACB1

)
nAnC (4.134)

b̃ = νA2
A1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
nA (4.135)

c̃ = νACB1

2√
π

Γ

(
3

2
,Θ(∆EACB1 )

)
nB (4.136)

d̃ = νZ1
Z2

2√
π

Γ

(
3

2
,Θ(∆EZ1

Z2)

)[(
m2
Y

mZmB

) 3
2

exp
(
∆EZB11

)
nB

]−1

. (4.137)

Notice that coefficients ã, b̃, c̃ coincide with the ones obtained in the previous section for the system
of three equations (see formulas (4.85), (4.86), (4.87)). The coefficient d̃ may be instead recovered
from (4.88), (4.89), (4.90) as d̃ = η̃ f̃/ẽ. Indeed, system (4.133) could also be formally obtained
from the macroscopic system (4.84) in a suitable scaling. In order to do this, one has to carefully
check the implications at the macroscopic level of the additional assumption ∆EZB11 < 0 introduced in
this section. Specifically, this requirement makes the chemical contribution (4.123) vanish, implying
that nεZ = f̃(nε1)2/ẽ + O(ε2). For this reason, the right scaling allowing to derive (4.133) from
(4.84) consists in putting 1/ε2 in front of the right hand side of equation for nεZ in (4.84) and in the
analogous contribution appearing in the equation for nε1. The derivation of a system of type (4.133)
as a reduction of a system of three equations may be found also in [44], where one of the species (Z)
is assumed non–diffusing and unstable, so that it may be considered accommodated at an equilibrium
configuration, with its number density related to the ones of other constituents as in (4.121).
We will investigate Turing instability of system (4.133) in a bounded domain Ω, and to this aim,

as already motivated in previous sections, we set an initial datum

nI(0,x) =

∫
R3

f0
I (x,v)dv, I = 1, 2, (4.138)

and we assume Neumann boundary conditions

n̂ · ∇xnI = 0 on (0,∞)× ∂Ω, I = 1, 2. (4.139)

For convenience, we perform again the change of time variable t̃ = c̃t and define

a =
ã

c̃
, b =

b̃

c̃
, d =

d̃

c̃
, (4.140)

D1 =

c̃mY

∑
J=A,B,C

ν1JnJαJY

−1

, D2 =

c̃mY

∑
J=A,B,C

ν2JnJαJY

−1

; (4.141)

in this way, the evolution system for n1 and n2 reads as

∂n1

∂t
−D1∆xn1 = a− (b+ 1)n1 + dn1

2n2,

∂n2

∂t
−D2∆xn2 = bn1 − dn1

2n2.

(4.142)
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The system (4.142) is similar to the classical Brusselator model, whose stability properties were
investigated for the first time in [98] and [77] (the only difference is the presence of our coefficient d
instead of 1). In that context, coefficients of the system were expression of the kinetic constants of
the individual reaction steps of the auto–catalytic process and of concentrations of constant reactants
involved. Here, coefficients of the system play a similar role; indeed, their dependence is on microscopic
quantities that, besides masses and energy levels, are collision frequencies (determining the interaction
rates between elements of the mixture) and densities of the background species.

4.5 Conclusions

We have derived reaction–diffusion equations from the kinetic level for a mixture of two gas species
in a dense background medium in three different hydrodynamic limits. The mixture is assumed
composed by a monatomic and a polyatomic gas, this last one having two possible internal energy
levels, thus it is considered separated into two different components. Different interactions between
particles have been taken into account. In particular, apart from elastic scattering with the background
(the dominant process), intra–species or inter–species elastic collisions (both less frequent), also two
inelastic transitions and two reversible chemical reactions have been supposed to take place among
particles at different time scales. In the first scenario, all inelastic and chemical transitions have been
assumed of the same order. This has allowed us to derive from the rescaled Boltzmann equations
suitable closed macroscopic equations for the number densities of the monatomic gas and of the two
components of the polyatomic one. In the system of reaction–diffusion equations obtained, coefficients
of both the diffusive and the reactive part are actually functions of microscopic quantities as particle
masses, background densities, collision frequencies and internal energy amounts. We have repeated
the same asymptotic procedure in a second case in which the elastic scattering with the background
has not the same features for all the species. In particular for the monatomic gas, collisions with the
host medium are supposed to be faster, this leads to the fact that the diffusion term for this species
vanishes at leading order accuracy. Thus we have derived a system similar to the previous, but with a
non-diffusive component. Finally, an additional assumption has been made for the model, i.e. one of
the two chemical reactions (the one involving the unstable state, namely the monatomic gas) has been
considered faster. In this case, in the derivation of the reaction-diffusion system the number density
of the monatomic component can be expressed in terms of the other two concentrations. This has
led to a system of only two reaction-diffusion equations, similar to the classical Brusselator, known
to exhibit Turing instability for particular choices of the coefficients. In this frame, a natural step is
the investigation of Turing instability for our reaction–diffusion systems and its discussion upon the
dependence of the coefficients on microscopic quantities. The next chapter will be devoted to such
an analysis.
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5 Turing instability of reaction-diffusion systems
for gas mixtures

As observed, the three reaction-diffusion systems derived in Chapter 4 are somehow related to the
classical Brusselator model, used to describe a class of chemical reactions that have as a result
the formation of oscillating patterns. The implementation of a specific mathematical model able
to reproduce real phenomena in which there is pattern formation was introduced by Alan Turing
in his work of 1952 [118]. His aim was to describe the chemistry behind morphogenesis, i.e. the
formation of different patterns in natural systems. At the basis of this phenomenon there is a reaction-
diffusion system for which a stable homogeneous stationary state turns into spatially non–homogeneous
structures in presence of diffusion. This kind of investigation was then applied in various fields in
which is possible to observe patterns, as biology, social science, medicine, environmental studies, etc.
Consequently, our aim is to apply this analysis to the reaction-diffusion systems obtained and to find
proper conditions on parameters of the gas mixture leading to spatial patterns.

In more detail, this chapter is structured as follows. In Section 5.1 we discuss the Turing instability
for the reduced system of two equations. In particular, we write conditions on the coefficients of
both reactive and diffusive part of the system. Then we express them as functions of the amount
of internal energy of components of the mixture, fixing all the other microscopic parameters. We
individuate then a range of possible energies for which we have space non-homogeneous equilibria and
we validate our results through numerical simulations. In Section 5.2 the discussion is made for the
complete system of three reaction-diffusion equations. In this case we are able to find only necessary
conditions for the Turing instability, but with the help of numerical simulations we are able to show,
also in this case, pattern formation. In Section 5.3, finally, we perform the analysis for the system of
three equations with a non-diffusive component; as in the two equations case, here we find explicit
conditions on energy levels allowing to observe Turing patterns. Section 5.4 contains some concluding
remarks. Part of the results presented in this chapter are contained in [22].

5.1 Turing instability for the reduced two-components system

We consider the last system derived in Chapter 4, that we report here for the convenience of the
reader

∂n1

∂t
−D1∆xn1 = a− (b+ 1)n1 + dn1

2n2,

∂n2

∂t
−D2∆xn2 = bn1 − dn1

2n2.

(5.1)

Quantities n1 and n2 are the number densities for the two energetic components of the species Y
that take part in the system of reactions
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A+ Y1 → A+ Y2, (5.2)

Z + Y2 → Z + Y1, (5.3)

B + Y1 � A+ C, (5.4)

Y1 + Y1 � Z +B, (5.5)

modeled in the previous chapter. The behavior of these quantities will be studied in a bounded,
open, regular spatial domain Ω, having fixed initial data n1(0,x), n2(0,x) and Neumann boundary
conditions

n̂ · ∇xnI = 0 on (0,∞)× ∂Ω, I = 1, 2. (5.6)

Following the procedure outlined in more detail in Appendix B, we first look for conditions on the
coefficients a, b, d and on diffusion coefficients D1, D2 in order to have Turing instability, then we
discuss the fulfillment of such conditions for varying microscopic quantities, energy levels in particular.
The first step consists in imposing the stability of a space homogeneous steady state, and to this aim
we consider the system in absence of diffusion:

∂n1

∂t
= a− (b+ 1)n1 + dn1

2n2

∂n2

∂t
= bn1 − dn1

2n2.

(5.7)

We note that this set of ODEs admits a unique stationary state, provided by

(n̄1, n̄2) =

(
a,

b

ad

)
. (5.8)

Uniqueness of the equilibrium is due to the presence of a source term a, related to chemical interactions
with the host medium. Indeed, in self–contained reacting systems, involving for instance four gases
undergoing only a bimolecular and reversible chemical reaction, one has that the collision contribution
in equations for number densities is provided by an Arrhenius–type law, having a manifold of steady
equilibria (of the form n1 n2 = K n3 n4) [12,104].

In order to study the equilibrium stability in space homogeneous conditions, we linearize the system
(5.7) getting

∂W

∂t
= AW, (5.9)

with W =

 n1 − n̄1

n2 − n̄2

 and A =

 b− 1 a2d

−b −a2d

 . Conditions to have the stability of the

stationary state are tr A < 0 and detA > 0. Since in our model coefficients of the system are all
positive quantities, the determinant is trivially positive, while for the sign of the trace we get the
constraint

b < 1 + a2d. (5.10)

The linearized system including diffusive terms in a bounded space domain Ω ⊂ RN with zero–flux
boundary conditions reads as

∂W

∂t
= D∆xW +AW on (0,∞)× Ω

n̂ · ∇xW = 0 on (0,∞)× ∂Ω

(5.11)
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with diffusion matrix D =

 D1 0

0 D2

 .

We look for solutions of this system represented in Fourier series as

W(x, t) =
∑
k

Wk(x, t) =
∑
k

cke
λktW̃k(x) , (5.12)

with k ∈ N and the eigenfunction W̃k(x) denoting a solution of the time–independent problem
∆xW̃ + k2W̃ = 0 on (0,∞)× Ω

n̂ · ∇xW̃ = 0 on (0,∞)× ∂Ω.

(5.13)

In our numerical simulations we will consider as domain Ω a one-dimensional segment Ω = [0, L],
and solutions of (5.13) in this case are

W̃kn(x) = Cn cos (kn x) (5.14)

with wavenumbers kn given by

kn =
nπ

L
, n ∈ N . (5.15)

Going back to (5.11), with the ansatz (5.12), the linear PDE provides∑
k

λkcke
λktW̃k(x) = D

∑
k

(−k2)cke
λkW̃k(x) +A

∑
k

cke
λktW̃k(x), (5.16)

and this means that, for each k, λk is an eigenvalue of the matrix A−k2D. Imposing det(A−k2D−
λkI) = 0, we find

λk1,2 =
1

2

[
trA− k2(D1 +D2)±

√
[trA− k2(D1 +D2)]2 − 4h(k2)

]
, (5.17)

being the function

h(k2)
def
= k4D1D2 + k2[D2(1− b) +D1a

2d] + a2d. (5.18)

Turing instability occurs if there exists at least one wavenumber k̄ such that the corresponding solution
Wk̄(x, t) has Reλk̄ > 0. This implies that h(k2) is needed to attain a negative value for some k 6= 0.
To this aim, we have to require firstly that

D2(1− b) +D1a
2d < 0. (5.19)

If we introduce the quantity δ def
= D1

D2
, conditions (5.10) and (5.19) may be recast as

δ <
b− 1

a2d
< 1 , (5.20)

and consequently it must be δ < 1 and b > 1. Compared to the classical theory of Turing systems
[92, 118], this result states that the component Y2 of gas species Y corresponding to the energy
level E2 plays the role of “inhibitor”, while the component Y1 plays the role of “activator” in the
reaction–diffusion dynamics, being known that Turing patterns may appear only below a critical value
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for the parameter δ, representing the ratio of the diffusion constants of the activator to the inhibitor.
A second condition to be satisfied in order to have h(k2) < 0 is that hmin < 0, and being

hmin = − [D2(1− b) +D1a
2d]2 − 4D1D2a

2d

4D1D2
, (5.21)

it becomes
δ2a4d2 − 2δ(1 + b)a2d+ (1− b)2 > 0. (5.22)

By solving this algebraic equation with respect to the parameter δ, we get

δ <
(
√
b− 1)2

a2d
∨ δ >

(
√
b+ 1)2

a2d
, (5.23)

but, bearing in mind (5.20), only the first of the two inequalities above provides admissible values for
δ.

In conclusion, necessary conditions to have unstable modes can be summed up as follows

0 <
b− 1

a2d
< 1,

δ <
(
√
b− 1)2

a2d
.

(5.24)

The range of possible wavenumbers k̄ such that Reλk̄ > 0 is then k1 < k̄ < k2, where k2
1, k

2
2 are the

solutions of the equation h(k2) = 0, reading as

k2
1,2 =

b− 1− δa2d±
√

(1− b+ δa2d)2 − 4a2d

2D1
. (5.25)

We should bear in mind that for finite domains the relevant wavenumbers are discrete (see (5.15) for
a one–dimensional problem), therefore Turing instability occurs only if at least one of them belongs
to the interval (k1, k2).

5.1.1 Analysis with respect to microscopic parameters

We investigate now conditions (5.24) in terms of the parameters of the mixture. Before proceeding
in this direction, we introduce some assumptions, especially concerning the fixed parameters of the
host medium. Indeed, since the background may be considered as a unique external medium, we may
suppose that collision frequencies relevant to elastic scattering of species Y1 with the background take a
unique value, independently of the species A, B, C of the colliding molecule: ν1A = ν1B = ν1C = ν̄1,
and analogously for scattering involving species Y2 and the background: ν2A = ν2B = ν2C = ν̄2.
Also for background number densities we assume for simplicity nA = nB = nC = n̄. We fix particle
masses of background species and of gases Y and Z, bearing in mind the obvious conservations of
masses prescribed by the encounters considered. We fix also background energies, and for convenience
we pick a value for E1 in such a way that ∆EACB1 ≤ 0. This implies Γ

(
3
2 ,Θ(∆EACB1 )

)
=
√
π

2 , but the
presence of a different value would not change the main results of the investigation below.
With these assumptions, the analysis of Turing instability depends only on the difference E2 − E1

and on EZ , which has to be chosen such that ∆EZB11 ≤ 0, as required by assumptions made in
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Chapter 4 for the integral of chemical collision operator (4.123). Reaction coefficients of system (5.1)
may be recast as

a =

(
mBmY

mAmC

) 3
2

exp
(
∆EACB1

)
n̄,

b =
νA2
A1

νACB1

Γ

(
3

2
,Θ(∆EA2

A1)

)
2√
π
,

d =
νZ1
Z2

νACB1

Γ

(
3

2
,Θ(∆EZ1

Z2)

)[√
π

2

(
m2
Y

mZmB

) 3
2

exp
(
∆EZB11

)
n̄2

]−1

, (5.26)

while the ratio between diffusion coefficients is simply provided by

δ =
D1

D2
=
ν̄2

ν̄1
. (5.27)

By defining the following functions

G(E2 − E1)
def
= Γ

(
3

2
,Θ(∆EA2

A1)

)
−
νACB1

νA2
A1

√
π

2
(5.28)

H(E2 − E1)
def
=

[√
Γ

(
3

2
,Θ(∆EA2

A1)

)
−

√
νACB1

νA2
A1

√
π

2

]2

(5.29)

N (E2 − E1)
def
= γ Γ

(
3

2
,Θ(∆EZ1

Z2)

)
(5.30)

with

γ =

(
m3
BmZ

m2
Cm

2
A

) 3
2

exp
(

2(EA + EC)− 3EB

) νZ1
Z2

νACB1

, (5.31)

conditions (5.24) can be written as

0 <
G(E2 − E1)

N (E2 − E1)
eEZ < 1 (5.32)

δ <
H(E2 − E1)

N (E2 − E1)
eEZ . (5.33)

We observe that H(E2 − E1) ≥ 0 and N (E2 − E1) > 0, thus the first requirement to have Turing
instability is

G(E2 − E1) > 0. (5.34)

This is possible only if the ratio νACB1

νA2
A1

is less than one. More precisely, for E2 − E1 ≤ 0 we have

G ≡
√
π

2

(
1−

νACB1

νA2
A1

)
, (5.35)

while in the range E2 − E1 > 0 the function G is decreasing 1 and

lim
E2−E1→+∞

G = −
√
π

2

νACB1

νA2
A1

< 0. (5.36)

1We recall the definition of upper incomplete Euler gamma function provided in Appendix A, that is Γ(α, β) =∫ +∞

β

τα−1e−τdτ , thus its derivative with respect to β is
∂Γ(α, β)

∂β
= −βα−1e−β .
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Therefore, if ν
AC
B1

νA2
A1

< 1, there exists a unique value E∗ such that G > 0 for every E2 − E1 < E∗ and
G is negative after this threshold.

In this admissible range, conditions (5.32) and (5.33) can be summarized as

δ
N (E2 − E1)

H(E2 − E1)
< eEZ <

N (E2 − E1)

G(E2 − E1)
. (5.37)

At this point, we notice that there could be admissible values for EZ only if the inequality

δ
G(E2 − E1)

H(E2 − E1)
< 1 (5.38)

holds. It’s easy to check that the function δ GH is increasing where G is positive, and its limit for
E2 − E1 → E∗ is +∞. Since for E2 − E1 ≤ 0 we have

δ
G
H
≡ δ

(
1 +

√
νACB1

νA2
A1

)(
1−

√
νACB1

νA2
A1

)−1

, (5.39)

only if collision frequencies are chosen in such a way that this quantity is less than one we can find a
nonnegative value E (less than E∗) such that δ GH < 1 for every E2−E1 < E. Another condition for
the existence of values for the energy EZ fulfilling (5.37) is that the right hand side has to be greater
than one (since energy EZ is positive):

N (E2 − E1)

G(E2 − E1)
> 1 . (5.40)

But, being the function NG increasing where G is positive, ranging from zero (for E2 − E1 → −∞)
to +∞ (for E2 − E1 → E∗), we get that there exists a unique Ẽ such that NG (Ẽ) = 1, and NG > 1

for E2 − E1 > Ẽ. Thus, we can conclude that Turing instability may occur only if Ẽ < E and we
take values for E2 − E1 in the interval

(
Ẽ, E

)
. With E2 − E1 in this range, inequalities (5.37) are

fulfilled for EZ such that

log (δ) + log (N (E2 − E1))− log (H(E2 − E1)) < EZ < log (N (E2 − E1))− log (G(E2 − E1)) .

(5.41)
As test case, we choose the following set of masses and background energies for the mixture:

mA = 2, mB = 3.5, mC = 4, mY = 2.5 mZ = 1.5, (5.42)

EA = 4.5, EB = 3.6, EC = 4, (5.43)

and we fix E1 = 7.2. We remark that masses fulfill conservation laws prescribed by chemical reactions
(5.4)–(5.5), namely mB + mY = mA + mC and 2mY = mZ + mB. Collision frequencies are the
ones listed below

νA2
A1 = 0.004, νZ1

Z2 = 0.3, νACB1 = 0.0001, νZB11 = 1, (5.44)

ν̄1 = 150, ν̄2 = 20, ν̄Z = 3000. (5.45)

Elastic collisions frequencies ν̄1, ν̄2, ν̄Z are much higher than the others in order to take into account
that scattering with the host medium is the dominant process. We note that, actually, ν̄Z disappears
from the quantities involved in the discussion, but we find it useful to set it as well, underlining that

134



it is much higher than ν̄1 and ν̄2 in order to express the fact that the species Z has more frequent
collisions with the background. Concerning the other collision rates, νZB11 = 1 is the highest recalling
the assumption that the chemical reaction (5.5) is faster.

Region of energy parameters allowing Turing instability is the black one in Figure 5.1.

Figure 5.1: Values for EZ and E2 − E1 satisfying requirements for Turing instability in system (5.1). Values
for masses as in (5.42), background energies as in (5.43), frequencies as in (5.44)-(5.45) and
E1 = 7.2. The region allowing Turing instability is depicted in black. The meaning of the plotted
curves is explained in the text.

The first value that we highlight is E∗ ≈ 4.77, for which G(E∗) = 0. Then we plot the critical
curve given by

C1 : EZ = log (N (E2 − E1))− log (G(E2 − E1)) , (5.46)

whose intersection with the E2−E1 axis is at the point Ẽ ≈ −9.03. For points (E2−E1, EZ) in the
region under this curve we have linear stability of the stationary state. Moreover, we have the other
critical curve

C2 : EZ = log (δ) + log (N (E2 − E1))− log (H(E2 − E1)) , (5.47)

and the intersection of curves C1 and C2 occurs at E ≈ 4.36. For (E2−E1, EZ) in the region between
curves C2 and C1, conditions (5.24) for Turing instability hold. We should recall that we have to take
EZ < 2E1−EB = 10.8 (individuated by the horizontal dashed line), therefore, in conclusion, energy
levels for which pattern formation can be expected are the ones in the black area of the picture. It is
worth noticing that Turing instability may occur both if E2−E1 is positive, namely with the inelastic
transition (5.2) endothermic and (5.3) exothermic, and also if E2 − E1 is negative, thus with (5.2)
exothermic and (5.3) endothermic.

5.1.2 Numerical simulations

We perform some numerical simulations for the system (5.1) in a one-dimensional domain Ω = [0, L],
taking values for masses, background energies and collision frequencies as in (5.42), (5.43) and
(5.44)-(5.45), and fixing energy of component Y1 as E1 = 7.2. Initial data are random perturbations
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of the space homogeneous equilibrium state. We take values for the difference of energy values
E2−E1 and for EZ in the region where Turing instability is expected. It is important to remark that
pattern formation occurs only if at least a squared wavenumber k2

n = (nπ/L)2 belongs to the interval
individuated by the roots (5.25); in our simulations we fix L = 30.

Firstly, we choose E2 −E1 = 1 and take three possible values for EZ . The results of this case are
shown in Figure 5.2.

Figure 5.2: Panels (a), (b), (c): Configuration at time t = 30 of the densities compared to their equilibrium
state n̄1 (dotted line) and n̄2 (solid line) taking E2−E1 = 1 and EZ = 9.3, 9.8, 10.3, respectively.
Panels (d), (e), (f): behavior of density n1 in space and time for the energy levels taken above.
Panels (g), (h), (i): behavior of density n2 in space and time. Values for masses as in (5.42),
background energies as in (5.43), frequencies as in (5.44)-(5.45) and E1 = 7.2.

In the panels (a), (b), (c), we plot the configuration at time t = 30 of number densities n1,
n2, compared with the relevant space homogeneous equilibrium value. We see that the density of
the two components is considerably heterogeneous and we notice that the two distributions oscillate
around the homogeneous equilibrium values. As EZ increases, we observe for the quantity n1 a bigger
fluctuation from the equilibrium, giving rise to regions where n1 is nearly zero alternated to regions
with higher density. For n2, instead, oscillations are not equally sharp and for higher values of EZ its
plot remains mostly under the equilibrium value. In the other plots of Figure 5.2 we show the time
and space behavior of number densities (panels (d), (e), (f) for n1 and panels (g), (h), (i) for n2):
in the trend from the initial data to the oscillating configurations at t = 30 one can appreciate the
formation of space periodic patterns.

Analogous behaviors appear in different tests, we show here two of them focusing the attention
mainly on density n1, which shows higher oscillations. We fix EZ = 10.3 and we increase E2 − E1

starting from 1 to a value close to the highest one allowing Turing instability. Results for this case
can be observed in Figure 5.3.

We note that for higher values of E2 − E1, the number of space oscillations for n1 decreases, but
the space amplitude of the peaks increases. Fixing, instead, a negative value for E2 − E1 = −2,
when EZ is higher we observe that the number of oscillations for n1 is lower, but peaks are high and
narrow, thus the component Y1 is highly concentrated in few points, as can be observed in Figure
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Figure 5.3: Panels (a), (b), (c): Configuration at time t = 30 of the densities compared to their equilibrium
state n̄1 (dotted line) and n̄2 (solid line) taking EZ = 10.3 and E2−E1 = 1, 1.6, 2.2, respectively.
Panels (d), (e), (f): behavior of density n1 in space and time for the energy levels taken above.
Values for masses as in (5.42), background energies as in (5.43), frequencies as in (5.44)-(5.45)
and E1 = 7.2.

5.4.

Figure 5.4: Panels (a), (b), (c): Configuration at time t = 30 of the densities compared to their equilibrium
state n̄1 (dotted line) and n̄2 (solid line) taking E2−E1 = −2 and EZ = 8.2, 8.9, 9.6, respectively.
Panels (d), (e), (f): behavior of density n1 in space and time for the energy levels taken above.
Values for masses as in (5.42), background energies as in (5.43), frequencies as in (5.44)-(5.45)
and E1 = 7.2.

5.2 Turing instability for the complete three-components system

This section is devoted to the investigation of stability properties and pattern formation for system
obtained in Section 4.2 of the previous chapter. It is a system of three reaction-diffusion equations
describing the dynamics of number densities for two energy components of a polyatomic gas species
Y and a monatomic species Z. The system turns out to be the following

∂n1

∂t
−D1∆xn1 = a− (b+ 1)n1 + ηnZn2 + enZ − fn2

1

∂n2

∂t
−D2∆xn2 = bn1 − ηnZn2

∂nZ
∂t
−DZ∆xnZ = fn2

1 − enZ .

(5.48)
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Also in this case we describe how densities change in a spatial domain Ω once that initial data n1(0,x),
n2(0,x), nZ(0,x) and Neumann boundary conditions

n̂ · ∇xnI = 0 on (0,∞)× ∂Ω, I = 1, 2, Z (5.49)

are fixed.
First of all, we look for stationary states for our model in absence of diffusion, given by the system

∂n1

∂t
= a− (b+ 1)n1 + ηnZn2 + enZ − fn2

1

∂n2

∂t
= bn1 − ηnZn2

∂nZ
∂t

= fn2
1 − enZ .

(5.50)

By imposing in the system above ∂n1
∂t = ∂n2

∂t = ∂nZ
∂t = 0, we get a unique steady state

(n̄1, n̄2, n̄Z) =

(
a,

be

aηf
,
fa2

e

)
. (5.51)

The state (n̄1, n̄2, n̄Z) is Turing unstable if it is locally stable for the homogeneous system (5.50), but
unstable for the system with diffusion (5.48). We linearize at first the system in space homogeneous
conditions, writing it in the following form

∂W

∂t
= BW, (5.52)

with W =


n1 − n̄1

n2 − n̄2

nZ − n̄Z

 and

B =


−b− 1− 2af

a2ηf

e
e

(
b

af
+ 1

)
b −a

2ηf

e
− be
af

2af 0 −e

 . (5.53)

The stability of the stationary state is achieved if all the eigenvalues of B have negative real part.
They are provided by the roots of the characteristic polynomial

− λ3 + λ2trB − λ Λ̃ + detB, (5.54)

with

trB = −b− 1− 2af − a2ηf

e
− e < 0 , (5.55)

Λ̃ = 2
a3ηf2

e
+ a2ηf +

a2ηf

e
− eb+ e (5.56)

and detB = −a2ηf < 0. Applying the Routh–Hurwitz criterion [54], all roots have negative real part
if the condition

Λ̃ trB < detB (5.57)
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is satisfied. Of course this is possible only if the term Λ̃ is positive; more precisely, since in this case
we would have Λ̃ trB = detB + Γ̃ with Γ̃ a negative quantity, the condition Λ̃ > 0, that we rewrite
as [

2af + 1

e2
+

1

e

]
a2ηf > b− 1, (5.58)

is also sufficient for the equilibrium stability.
Now we consider the linearized system including diffusive terms in Ω with zero–flux boundary

conditions 
∂W

∂t
= D∆xW +BW on (0,∞)× Ω

n̂ · ∇xW = 0 on (0,∞)× ∂Ω

(5.59)

with diffusion matrix

D =


D1 0 0

0 D2 0

0 0 DZ

 . (5.60)

As in Section 5.1, we look for solutions in the form

W(x, t) =
∑
k

Wk(x, t) =
∑
k

cke
λktW̃k(x), (5.61)

with W̃k(x) solution of the time–independent problem. Choosing as domain Ω a one–dimensional
segment of length L it can be checked that wavenumbers allowing the existence of a solution to the
time–independent problem are again kn = π n/L, with n ∈ N. Concerning the global problem (5.59),
for each k, the exponent λk has to be an eigenvalue of the matrix B − k2D, hence a root of the
characteristic polynomial

− λ3 + λ2tr
(
B − k2D

)
− λΛ + det

(
B − k2D

)
, (5.62)

with tr
(
B − k2D

)
= trB − k2(D1 +D2 +DZ) < 0,

Λ = (D1D2 +D1DZ +D2DZ) k4

+

(
D2 + 2afD2 +D1

a2ηf

e
+ 2DZaf +DZb+DZ + 2D1DZ

a2ηf

e
+D2e

)
k2

+
a2ηf

e
+ 2

a3ηf2

e
+ a2ηf − eb+ e (5.63)

and

β(k2)
def
=det(B − k2D) = −D1D2DZk

6

−
(
D1DZ

a2ηf

e
+ 2D2DZaf + eD1D2 + bD2DZ +D2DZ

)
k4

−
(

2DZ
a3ηf2

e
+D1a

2ηf +DZ
a2ηf

e
−D2eb+ eD2

)
k2 − a2ηf. (5.64)

Turing instability may occur only if for some k the characteristic polynomial (5.62) has roots with
positive real part. Again for the Routh–Hurwitz criterion, this happens if there exists k such that

det(B − k2D) > 0 (5.65)
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or

Λ tr(B − k2D) > det(B − k2D). (5.66)

We notice that last five terms of Λ in (5.63) are exactly the quantity Λ̃ that we have supposed to
be positive in (5.58) for the stability in the homogeneous problem, and consequently we have Λ > 0.
Since we have

Λ tr(B − k2D) = det(B − k2D) + Γ, (5.67)

being Γ a negative quantity, we see that (5.66) can never be satisfied. It means that the matrix
B − k2D has eigenvalues with positive real part only if condition (5.65) holds.

5.2.1 Analysis with respect to microscopic parameters

We aim at finding more specific conditions on the parameters of the system (5.48) allowing Turing
instability. As in Subsection 5.1.1, we suppose that collision frequencies for the elastic scattering with
the background take a unique value for each species:

ν1A = ν1B = ν1C = ν̄1, ν2A = ν2B = ν2C = ν̄2, νZA = νZB = νZC = ν̄Z , (5.68)

and also background number densities have the common value nA = nB = nC = n̄. We fix
energies EA, EB, EC , and E1 in such a way that ∆EACB1 ≤ 0, so that Γ

(
3
2 ,Θ(∆EACB1 )

)
=
√
π

2 .
The analysis of conditions allowing pattern formation still depends on the difference E2 − E1 and
on EZ : we restrict our investigation to EZ such that ∆EZB11 ≤ 0 (just for convenience, in order to
be able to compare results with the ones obtained for the two–component system in Section 5.1).
Moreover, as usual in kinetic models dealing with energy levels [56, 58], we assume E2 > E1, then
also Γ

(
3
2 ,Θ(∆EZ1

Z2)
)

=
√
π

2 . With these assumptions at hand, the parameters appearing in the
reaction–diffusion system (5.48) read as

a =

(
mBmY

mAmC

) 3
2

exp
(
∆EACB1

)
n̄,

b =
νA2
A1

νACB1

Γ

(
3

2
,Θ(∆EA2

A1)

)
2√
π
,

η =
νZ1
Z2

νACB1

1

n̄
,

e =
νZB11

νACB1

(
m2
Y

mZmB

) 3
2

exp
(
∆EZB11

)
,

f =
νZB11

νACB1

1

n̄
, (5.69)

D1 =

νACB1 mY n̄ν̄1

∑
J=A,B,C

nJαJY

−1

, D2 =
ν̄1

ν̄2
D1, DZ =

νACB1 mZ n̄ν̄Z
∑

J=A,B,C

nJαJZ

−1

.

(5.70)
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Our first purpose is to find suitable values for energies E2 −E1 and EZ in order to have condition
(5.58) for the linear stability in the space homogeneous problem satisfied. We find convenient rewriting
condition (5.58) as

(1− b)e2 + ea2ηf + (2af + 1)a2ηf > 0. (5.71)

If b < 1 this inequality is obviously fulfilled, while the case b > 1 is much more involved. The
condition b > 1 means

L(E2 − E1)
def
=

νA2
A1

νACB1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
− 1 > 0; (5.72)

the function L has the same behavior of the function G introduced in the previous section, thus also
in this case there exists a unique value E∗ such that L > 0 for every E2 − E1 < E∗. Notice that
in the inequality (5.71) the dependence on EZ is included only in the parameter e. Therefore, by
defining a second function

T (E2 − E1)
def
=

γ

2

[
1 +

√
1 + 4χ

(
νA2
A1

νACB1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
− 1

)]
, (5.73)

with γ as in (5.31) and

χ = 2

[(
mBmY

mAmC

) 3
2

exp
(
∆EACB1

) νZ1
Z2

νACB1

]−1

+

[(
mBmY

mAmC

)3

exp
(
2∆EACB1

) νZ1
Z2ν

ZB
11

(νACB1 )2

]−1

, (5.74)

condition (5.71) leads to the explicit constraint:

eEZ <
T (E2 − E1)

L(E2 − E1)
. (5.75)

Since we are dealing with positive energies, we have eEZ > 1, so we must require that the right hand
side of (5.75) is greater than one. But, being L′ > 0 and(

T
L

)′
=
γ

2

(
−
√

1 + 4χL − 1− 2χL
L2
√

1 + 4χL

)
L′, (5.76)

the function TL is increasing where L is positive, and its limit for E2 − E1 → E∗ is +∞, while for
E2 − E1 = 0 we have

T
L
≡
γ

[
1 +

√
1 + 4χ

(
νA2
A1

νACB1

− 1
)]

2
(
νA2
A1

νACB1

− 1
) . (5.77)

Consequently, if masses, background energies and collision frequencies are chosen in such a way that
the quantity above is less than one, then there exists a unique Ẽ < E∗ for which T /L > 1 is satisfied
for every E2 −E1 > Ẽ; otherwise, if the same quantity is greater than one, then T /L > 1 holds for
every E2 − E1 > 0. In conclusion, for E2 − E1 ∈ (max{Ẽ, 0}, E∗), condition (5.71) guaranteeing
stability of the steady state of the homogeneous problem is fulfilled for

EZ < log (T (E2 − E1))− log (L(E2 − E1)) . (5.78)

As concerns Turing instability, it has been proved in [107] that it is prevented if all minors of order
q of the matrix B given in (5.53) have a determinant with the same sign as (−1)q (with 1 ≤ q ≤ 3,
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in our three equations system). Consequently, it’s easy to check that in our problem a bifurcation
leading to Turing instability is possible only when the determinant of the submatrix extracted from B

eliminating the second row and second column, given by −b− 1− 2af e

(
b

af
+ 1

)
2af −e

 , (5.79)

has a negative determinant. This implies the condition b > 1, namely E2 −E1 < E∗, analogously to
the result obtained in previous section for the reduced two–component system. In this region, we are
able to find a necessary condition on parameters EZ and E2−E1 for Turing instability, recalling that
unstable modes are possible only if the determinant of the matrix B−k2D, given by (5.64), is positive
for some k. According to the Descartes rule, the cubic function β(k2) may have two positive roots
(and consequently it may assume positive values) only if the coefficient of k2 in (5.64) is positive,
which means

(1− b)e2 +
D1

D2
a2ηfe+

DZ

D2
a2ηf(2af + 1) < 0. (5.80)

Keeping in mind (5.58) (that has to be valid for the stability of the homogeneous equilibrium), the
above relation implies that at least one of coefficients D1 and DZ must be smaller than D2. Defining
the function

S(E2 − E1)
def
=

γ

2

D1

D2

[
1 +

√
1 + 4

DZ

D1
χ

(
νA2
A1

νACB1

2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
− 1

)]
, (5.81)

condition (5.80) becomes

eEZ >
S(E2 − E1)

L(E2 − E1)
. (5.82)

The behaviour of the ratio SL is analogous to that of TL discussed above. We point out that condition
(5.82) is compatible with (5.75) only if

T (E2 − E1)

S(E2 − E1)
> 1, (5.83)

but this is ensured if we take also D1 > DZ .
One should also check that the cubic function β assumes a positive value in correspondence of its

positive stationary point, but with this analysis we are not provided with any information about the
sign of det(B− k2D) as function of k. Nevertheless, as proved in [107], a wider range of k for which
det(B − k2D) > 0 can be obtained taking the diffusion coefficients D1 and DZ sufficiently smaller
than D2. More precisely, taking D1 = αDZ ≈ ω, with ω small positive quantity, we have

det(B − k2D) = D2e(b− 1)k2 − a2ηf −O(ω). (5.84)

In this case, the component Y2 can be seen as inhibitor and component Y1 and gas species Z as
activators.

Just for illustrative purpose, we report the conditions established in this section in Figure 5.5,
choosing as particle masses and background energies the same as in (5.42) and (5.43), fixing E1 = 7.2,
taking as collision frequencies for the inelastic and the chemical collisions the ones below

νA2
A1 = 0.004, νZ1

Z2 = 0.3, νACB1 = 0.0001, νZB11 = 0.1, (5.85)
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and adopting the following choice for collision frequencies with the background

ν̄1 = 1.5× 103, ν̄2 = 2, ν̄Z = 3× 103, (5.86)

in order to have diffusion coefficients given in (5.70) such that D1 > DZ and D1 � D2. With
these data we have again E∗ ≈ 4.77 such that L(E∗) = 0, and Turing instability prevented for
E2 − E1 > E∗. In Figure 5.5 we show the critical curve given by

C3 : EZ = log (T (E2 − E1))− log (L(E2 − E1)) , (5.87)

under which we have linear stability of the stationary state, and also the second curve

C4 : EZ = log (S(E2 − E1))− log (L(E2 − E1)) , (5.88)

above of which the determinant of the matrix B − k2D might have positive roots. We also plot the
line EZ = 2E1 − EB, below of which the assumption ∆EZB11 ≤ 0 is satisfied, and the region where
Turing instability might occur is thus the black one.

Figure 5.5: Values for EZ and E2−E1 satisfying (5.75) and (5.82). Values for masses as in (5.42), background
energies as in (5.43), frequencies as in (5.85), (5.86) and E1 = 7.2. The region allowing Turing
instability is depicted in black. The meaning of the plotted curves is explained in the text.

We may compute det(B − k2D) numerically: in Figure 5.6 we plot it versus k for some values of
EZ and E2 − E1, and in Table 5.1 we show its maximal value in the right half–plane.

We notice that, for EZ = 10 and E2 − E1 = 2.5 there is a particularly wide range in which there
could exist wavenumbers k leading to unstable modes. For these values we perform a simulation
of the behaviour in time and space for functions n1, n2, nZ in a one–dimensional domain of size
L = 0.15 and we report the result in Figure 5.7. We see that for a time t = 50, the component Y1

and the gas species Z, characterized by a very low diffusion coefficient, turn out to be concentrated
in one point of the domain, while we have a low but nearly uniform concentration of component Y2,
due to its much higher diffusion coefficient.
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EZ E2 − E1 Max det(B − k2D)

7.5 1 1.16×106

10 2.5 5× 107

6.4 2.5 6.27× 105

8 3.5 −3.1× 104

Table 5.1: Maximal values of determinant det(B − k2D) as function of k picking some values for EZ and
E2 −E1 when values for masses are as in (5.42), background energies as in (5.43), frequencies as
in (5.85), (5.86) and E1 = 7.2.
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Figure 5.6: Panel (a): Behavior of the quantity in (5.64) as function of wavenumbers k, taking values of EZ

and E2 − E1 as in Table 5.1 (the graph corresponding to the values EZ = 10, E2 − E1 = 2.5 is
reduced by a factor 5). Panel (b): Zoom of the area close to k = 0 of panel (a).
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Figure 5.7: Panels (a), (b), (c): Configuration at time t = 50 of the densities n1, n2 and nZ (solid lines)
compared to their equilibrium state (dotted lines), respectively, taking EZ = 10 and E2−E1 = 2.5.
Values for masses as in (5.42), background energies as in (5.43), frequencies as in (5.85), (5.86)
and E1 = 7.2.
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5.3 Turing instability for three-components system with a non-diffusive
term

Adding a further assumption on different frequency of collisions with the background for the
monatomic species Z, in Section 4.3 of the previous chapter we derived a second system of three
reaction-diffusion equations in which the diffusion term for species Z disappears at first order accuracy.
The resulting system is

∂n1

∂t
−D1∆xn1 = a− (b+ 1)n1 + ηnZn2 + enZ − fn2

1

∂n2

∂t
−D2∆xn2 = bn1 − ηnZn2

∂nZ
∂t

= fn2
1 − enZ .

(5.89)

We want to investigate its stability properties again in a spatial domain Ω with initial conditions
n1(0,x), n2(0,x), nZ(0,x) and with absence of flux at the boundary, i.e.

n̂ · ∇xnI = 0 on (0,∞)× ∂Ω, I = 1, 2, Z. (5.90)

In absence of diffusion, we have the same system as (5.50), that linearized around the equilibrium
state has the same matrix B given in (5.53); for this reason, the unique equilibrium state is again the
one given in (5.51) and condition for the linear stability is again[

2af + 1

e2
+

1

e

]
a2ηf > b− 1. (5.91)

If we include the diffusion, instead, we have a system similar to (5.59), but with a different diffusion
matrix: 

∂W

∂t
= D0∆xW +BW on (0,∞)× Ω

n̂ · ∇xW = 0 on (0,∞)× ∂Ω

(5.92)

D0 =


D1 0 0

0 D2 0

0 0 0

 . (5.93)

We still look for a solution of the system of the form

W(x, t) =
∑
k

cke
λktW̃k(x), (5.94)

and wavenumbers, considering again as domain Ω a one-dimensional segment of length L, kn = π nL .

Eigenvalues of the matrix B − k2D0, λk, are now roots of the characteristic polynomial

− λ3 + λ2tr
(
B − k2D

)
− λ [Ξ] + det

(
B − k2D0

)
, (5.95)

with

Ξ =

(
D2 + 2afD2 +D1

a2ηf

e
+ 2D1 +D2e

)
k2 +

a2ηf

e
+ 2

a3ηf2

e
+ a2ηf − eb+ e (5.96)
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and

ρ(k2)
def
= det(B − k2D0) = −eD1D2k

4 −
(
D1a

2ηf +D2eb− eD2

)
k2 − a2ηf. (5.97)

Also in this case, the only condition allowing to have eigenvalues with positive real part is

det(B − k2D0) > 0, (5.98)

i.e. the function ρ(k2) should attain a positive value for some k 6= 0. It means requiring firstly that

D2(1− b) +D1a
2 ηf

e
< 0, (5.99)

that, if we introduce the quantity δ def
= D1

D2
, becomes

δ <
(b− 1)e

a2ηf
(5.100)

which implies conditions δ < 1 + 2af+1
e and b > 1. Also in this case, the component Y2 can be

seen as inhibitor and Y1 as activator. A second condition to be satisfied to have ρ(k2) > 0 is that
ρmax > 0 and being

ρmax =

[
D2(1− b) +D1a

2 ηf

e

]2

− 4D1D2a
2 ηf

e

4D1D2
, (5.101)

it becomes

δ2a4

(
ηf

e

)2

− 2δ(1 + b)a2 ηf

e
+ (1− b)2 > 0. (5.102)

Solving with respect to the parameter δ, we get as a result

δ <
(
√
b− 1)2e

a2ηf
∨ δ >

(
√
b+ 1)2e

a2ηf
. (5.103)

But, since (5.100), the only admissible values for δ are given by the first of the two inequalities above.
To conclude, necessary conditions to have unstable modes can be summed up as follows

0 <
(b− 1)e

a2ηf
< 1 +

2af + 1

e

δ <
(
√
b− 1)2e

a2ηf
.

(5.104)

Turing instability then occurs if at least a wavenumber belongs to the interval (k1, k2), with

k2
1,2 =

b− 1− δa2 ηf

e
±

√(
1− b+ δa2

ηf

e

)2

− 4a2
ηf

e

2D1
. (5.105)
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5.3.1 Analysis with respect to microscopic parameters

Coefficients of system (5.89) are explicitly expressed in (5.69) and (5.70) and, in addition, we have

δ =

∑
J=A,B,C

ν2JnJαJY∑
J=A,B,C

ν1JnJαJY
. (5.106)

Assumptions on the other parameters, i. e. collision frequencies, masses and background energies,
are the same as in previous sections, in such a way that the analysis still depends only on the difference
E2−E1 (as in the previous section we suppose E2−E1 > 0) and on EZ . As already noticed, conditions
on parameters for the stability of homogeneous equilibrium are not different from the previous section,
that we recall here

EZ < log (T (E2 − E1))− log (L(E2 − E1)) , (5.107)

with functions T and L defined in (5.72) and (5.73), respectively.
For Turing instability analysis, instead, we define the following function

H(E2 − E1)
def
=

1

γ

[√
2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
−

√
νACB1

νA2
A1

]2

(5.108)

with γ as in (5.31). In this way conditions (5.104) can be written as, recalling also (5.107),

δ

H(E2 − E1)
< eEZ <

T (E2 − E1)

L(E2 − E1)
. (5.109)

Also here, there are admissible values for EZ only if the inequality

δ
L(E2 − E1)

H(E2 − E1)T (E2 − E1)
< 1 (5.110)

holds. We compute the derivative(
L
HT

)′
= − LH

′

T H2

[√
νACB1

νA2
A1

(√
1 + 4χL+ 1 + 2χL

)
+ 4χL

(√
2√
π

Γ

(
3

2
,Θ(∆EA2

A1)

)
+

√
νACB1

νA2
A1

)]
.

(5.111)

Referring to the condition (5.72), we observe that the functions L and H have the same sign, and in
particular we identify again the value E∗ such that H > 0 for every E2 − E1 < E∗. in addition, we
have H′ > 0, thus the function L

HT is increasing, with the limit for E2 −E1 going to E∗ being +∞.
For E2 − E1 = 0, instead, we have

δ
L
HT

≡ δ

(
νA2
A1

νACB1

− 1
)

2

[
1 +

√
1 + 4χ

(
νA2
A1

νACB1

− 1
)](

1−
√

νACB1

νA2
A1

)2 . (5.112)

As a consequence, if choice for collision frequencies is made in such a way the quantity above is
smaller than one, there exists a nonnegative value Ē such that δ LHT < 1 for every 0 < E2−E1 < Ē.
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We now take masses and background energies as in (5.42) and (5.43). For collision frequencies,
instead, the ones for inelastic and chemical reactions are as in Section 5.2, while collisions frequencies
of components Y1, Y2 and species Z with the background as in Section 5.1, recalling the fact that
they have different orders of magnitude:

νA2
A1 = 0.004, νZ1

Z2 = 0.3, νACB1 = 0.0001, νZB11 = 0.1, (5.113)

ν̄1 = 150, ν̄2 = 20, ν̄Z = 3000. (5.114)

Taking E1 = 7.2 in this case as well, we individuate the region of parameters leading to Turing
instability reported in Figure 5.8 (black area).

Figure 5.8: Values for EZ and E2−E1 satisfying (5.109). Values for masses as in (5.42), background energies
as in (5.43), frequencies as in (5.113)- (5.114) and E1 = 7.2.The region allowing Turing instability
is depicted in black. The meaning of the plotted curves is explained in the text.

Here we have again the curve C3 given in (5.87) and the other curve

C5 : EZ = log(δ)− log(H(E2 − E1)). (5.115)

Their intersection occurs at Ē ≈ 4.36. We may now perform a comparison between this case and
the previous two. The stability region for the steady state of current system is obviously the same of
the complete three-equations system (5.48), which in both cases is bigger than the stability region of
system (5.1). For the Turing instability, instead, with respect to the case of species Z diffusing, the
range of possible values for the difference E2−E1 allowing pattern formation is considerably shorter,
but, differently from the two-equations case, values close to zero for this quantity can be taken. We
also observe that in both the three-equations cases the energy level EZ must be, in order to have
Turing instability, higher than in the reduced case, where very low values are admitted.
We verify the formation of pattern taking EZ = 10 and E2 − E1 = 1. The behavior in time and

space of quantities n1, n2, nZ is reported in Figure 5.9.
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Figure 5.9: Panels (a), (b), (c): Configuration at time t = 25 of the densities n1, n2, nZ (solid lines) compared
to their equilibrium states (dotted lines) taking E2 − E1 = 1 and EZ = 10. Panels (d), (e), (f):
behavior of densities n1, n2, nZ in space and time for the energy levels taken above. Values
for masses as in (5.42), background energies as in (5.43), frequencies as in (5.113)-(5.114) and
E1 = 7.2.

5.4 Conclusions

The different reaction-diffusion systems derived in Chapter 4 for a mixture of two gas species (a
monatomic and a polyatomic one, the latter having two possible internal energy levels) in a dense
background medium considering various hydrodynamic limits have been here analyzed in detail. In
particular we have inquired about the possibility of having Turing instability and the consequent
formation of spatial patterns for the densities of chemical species involved, setting the discussion
upon the dependence of the coefficients on microscopic quantities.

We have started from the two equations system and we have focused our analysis on collision
frequencies and energy levels. First of all, we have pointed out that, as in any system showing
formation of Turing patterns in which the diffusion coefficient of the inhibitor species has to be bigger
than the one of the activator, in our case this means that for component of the polyatomic species
corresponding to the higher energy level (playing the role of inhibitor) collision frequencies with the
background have to be less than the ones relevant to the the other component corresponding to
the lower energy, (acting as activator). We have explicitly individuated a region for values for the
internal energy of the monatomic gas and for the difference of the two energy levels of the polyatomic
species in order to have spatial oscillations in the equilibrium configuration. We have also verified
the appearing of a spatially non–homogeneous solution owing to some numerical simulations, and we
have discussed the dependence of the number of oscillations on the choice of the energy levels. As
expected, the component with the higher diffusion coefficient shows a more homogeneous profile at
equilibrium. Concerning the complete system of three equations, we have been able to derive necessary
conditions on microscopic parameters allowing Turing instability but, being the number of parameters
involved higher than in the two–component Brusselator–type system, it has not been possible to verify
analytically when such conditions really lead to unstable modes. To this aim we have numerically
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simulated a test case, obtaining as final state a configuration in which the polyatomic component
having the lower energy is concentrated in a small region, as well as the monatomic species, while
the density of the second component, characterized by a much higher diffusion coefficient, is basically
constant in space. For the system of three equations in which only the two components of the
polyatomic gas exhibit a diffusion term, at last, the fact that the diffusion matrix contains only two
nonzero terms on the diagonal has allowed us to find explicit conditions leading to unstable modes, as
in the reduced case. Thus, we have been able to make comparisons between this case and the other
ones, and we have also validated results obtained analytically with a numerical simulation.
The derivation performed in these chapters, based on a diffusive asymptotic limit of a system of

kinetic equations, has provided reaction–diffusion systems in which the diffusion matrix is diagonal
and constant. Actually, in many physical situations the Brusselator–type dynamics is better described
if the diffusive part is nonlinear, as for instance in [53], or if there is also a cross diffusion term, as
in [50]. In these cases the discussion of Turing instability requires a deeper analysis of parameters
appearing in the diffusion part. A possible step forward in our models is to look for a different set
of possible interactions among particles of the mixture, and to investigate different hydrodynamic
limits of the kinetic equations that may lead to the appearance of nonlinear diffusion or cross diffusion
terms, in order to study also their dependence on microscopic quantities.
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Concluding remarks and perspectives

The research work presented in this thesis has been aimed at constructing kinetic models and hydro-
dynamic equations able to reproduce accurately the behavior of real gas mixtures. The main features
of physical settings we considered take into account the fact that, in a gaseous flow, gas species may
be found in both monoatomic or polyatomic state and they may interact elastically, inelastically or
chemically.

We have, first of all, collected the main results of the classical Boltzmann description of a mixture
of four polyatomic gases involved in a bimolecular and reversible chemical reaction proposed in [15],
extending them to a more general case in which the four gas species may have different numbers of
discrete internal energy levels. In this way, also the presence monatomic constituents (having only
one internal energy level) is allowed. To this aim, we have introduced a more compact notation for
the description of the model.

Aware of the mathematical and computational difficulties of the investigation of the the classical
Boltzmann model, in the following chapters of the thesis we have adopted a BGK-type description
of a gas mixture, following the research line of [11]. We have built up consistent BGK models for
coexisting monatomic and polyatomic species in an inert (Chapter 2) or reacting (Chapter 3) frame.
This generalization has allowed us to simulate numerically the behavior of more realistic chemical
species. In the inert case we have been able to understand how the possible differences between
masses of interacting species may affect the trend towards equilibrium of the macroscopic quantities.
For the reacting model, furthermore, we could take inspiration from real bimolecular reactions and
we describe the behavior of densities, mean velocities and temperatures. A further development
in this research line could involve a more specific description of the internal energy structure of
particles, considering separately the rotational and the vibrational energy of each polyatomic species.
The macroscopic analysis presented in Chapters 2 and Chapter 3 was performed essentially in space
homogeneous conditions; it would be highly desirable to consider also space dependent problems, for
example shock wave structure, starting from suitable BGK models.

On the other hand, in this thesis we have approached to the time-space dependent problems
for macroscopic quantities following a different line. In fact, in Chapter 4 and Chapter 5, we have
performed a derivation of reaction-diffusion equations for the densities of a mixture of a polyatomic and
a monatomic species interacting in a gaseous medium, starting from the Boltzmann type description
of the model. In this case,our starting point was the paper [12], where an analogous derivation is
obtained for a mixture of four reacting species, without considering the internal energy structure
of each one. In our work we have considered various hydrodynamic regimes, one of them leading
to a reaction-diffusion system analogous to the classical Brusselator system. Our approach allows
thus to derive classical chemical systems starting from the kinetic level, with reaction and diffusion
coefficients completely explicit in terms of microscopic parameters (masses, collision frequencies,
internal energies). In our reaction-diffusion systems, we have investigated the possible occurrence of
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Turing instability, namely the formation of periodic non-homogeneous stable solutions. We have been
able to find analytic conditions on the microscopic parameters of the mixture allowing or preventing
pattern formation, and our results have been confirmed by numerical simulations. The utility of this
approach to the study of gas mixtures is that it can be extended to a wide set of possible interactions
among particles. An important future research line, already in progress, should be the investigation
of different asymptotic limits of the kinetic equations, possibly leading to the appearance of nonlinear
diffusion or cross diffusion terms, to be studied also in terms of microscopic quantities.
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A Integrals of collision contributions

In Chapter 4 of this thesis a system of reaction-diffusion equations for number densities of components
of a particular gas mixture is derived from a system of Boltzmann equations for the distribution
functions. In particular, after writing each distribution function as a Maxwellian distribution plus a
perturbation term, the derivation is obtained by integrating each Boltzmann equation. Thus, we have
to compute the integrals of Boltzmann collision operators involving Maxwellian distributions. We
provide here details of such calculations considering a generic bimolecular encounter of type

A1 +A2 � A3 +A4, (A.1)

with each component having a certain mass mI and internal energy EI , I = 1, 2, 3, 4. We assume
that distribution functions are

fI(v) = nIMI(v) MI(v) = nI

(mI

2π

) 3
2

exp

(
−mI |v|2

2

)
I = 1, 2, 3, 4. (A.2)

Keeping in mind the notation used in the preliminary chapter of this work, we write the collision
operator for each component, denoting by nM the vector [n1M1, n2M2, n3M3, n4M4]. The collision
operator for A1 reads as

Q1[nM](v) =

∫
R3

∫
S2

H
(
g2 − δ34

12

)
gσ34

12(g, Ω̂ · Ω̂′)

×

[(
µ12

µ34

)3

n3M3(v′)n4M4(w′)− n1M1(v)n2M2(w)

]
dwdΩ̂′, (A.3)

recalling that µij =
(mi+mj)
mimj

, δhkij = 2
∆Ehkij
µij

, with ∆Ehkij = Eh+Ek−Ei−Ej . Here we suppose that
∆E34

12 > 0. Operators for the remaining AI can be derived accordingly to the exchange of indices
and variables performed in Chapter 1, obtaining

Q2[nM](v) =

∫
R3

∫
S2

H
(
g2 − δ34

12

)
gσ34

12(g, Ω̂ · Ω̂′)

×

[(
µ12

µ34

)3

n4M4(v′)n3M3(w′)− n2M2(v)n1M1(w)

]
dwdΩ̂′, (A.4)

Q3[nM](v) =

∫
R3

∫
S2

H
(
g2 − δ12

34

)
gσ12

34(g, Ω̂ · Ω̂′)

×

[(
µ34

µ12

)3

n1M1(v′)n2M2(w′)− n3M3(v)n4M4(w)

]
dwdΩ̂′, (A.5)

Q4[nM](v) =

∫
R3

∫
S2

H
(
g2 − δ12

34

)
gσ12

34(g, Ω̂ · Ω̂′)

×

[(
µ34

µ12

)3

n2M2(v′)n1M1(w′)− n4M4(v)n3M3(w)

]
dwdΩ̂′. (A.6)
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It is worth to observe that in (A.5) and (A.6) the quantity H
(
g2 − δ12

34

)
could have been omitted since

it is identically 1 with hypothesis made on energy gap. We are now interested in calculating explicitly
the integral ∫

R3

Q1[nM](v)dv. (A.7)

Substituting the expressions for the Maxwellians we have∫
R3

Q1[nM](v)dv =
1

(2π)3

∫
R3×R3

∫
S2

σ34
12(g, Ω̂ · Ω̂′)g H

(
g2 − δ34

12

)
×

[(
m1m2√
m3m4

)3

n3n4 exp

(
−1

2
m3v

′2 − 1

2
m4w

′2
)

− (m1m2)
3
2 n1n2 exp

(
−1

2
m1v

2 − 1

2
m2w

2

)]
dw dv dΩ̂′, (A.8)

and using the conservation of total energy during the collision (A.1) written as

1

2
m3v

′2 +
1

2
m4w

′2 = −∆E34
12 +

1

2
m1v

2 +
1

2
m2w

2, (A.9)

we have∫
R3

Q1[nM](v)dv =
(m1m2)

3
2

(2π)3

[(
m1m2

m3m4

) 3
2

exp
(
∆E34

12

)
n3n4 − n1n2

]∫
S2

σ34
12(g, Ω̂ · Ω̂′)g dΩ̂′

×
∫
R3×R3

H
(
g2 − δ34

12

)
exp

(
−1

2
m1v

2 − 1

2
m2w

2

)
dw dv. (A.10)

The Maxwell molecules assumption adopted throughout this work still holds here, thus we have
constant collision frequency ∫

S2

σ34
12(g, Ω̂ · Ω̂′)g dΩ̂′ def= ν34

12 . (A.11)

Moreover, inside the six-folds remaining integral∫
R3×R3

H
(
g2 − δ34

12

)
exp

(
−1

2
m1v

2 − 1

2
m2w

2

)
dw dv (A.12)

by writing

m1v
2 +m2w

2 =
m1 −m2

m1 +m2
(m1v

2 +m2w
2) + 2

m1m2

m1 +m2
(v ·w)− 2

m1m2

m1 +m2
(v ·w)

=
|m1v +m2w|2

m1 +m2
+
m1m2|v −w|2

m1 +m2
, (A.13)

we perform the change of variables (v,w)→ (g,G) that we recall here g = v −w

G = α12v + α21w,
(A.14)

being αij = mi
mi+mj

, and we obtain∫
R3

exp

(
−1

2
G2(m1 +m2)

)
dG

∫
g2>δ34

12

exp

(
−1

2
g2 m1m2

m1 +m2

)
dg. (A.15)
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Passing to spherical coordinates in both integrals above, we have

16π2

∫ +∞

0
exp

(
−1

2
ρ2
G(m1 +m2)

)
ρ2
GdρG

∫
ρ2
g>δ

34
12

exp

(
−1

2
ρ2
g

m1m2

m1 +m2

)
ρ2
gdρg. (A.16)

Setting

y =

√
1

2
(m1 +m2)ρG, ξ =

1

2

m1m2

m1 +m2
ρ2
g, (A.17)

the integral may be rewritten as

16π2 2

(m1m2)
3
2

∫ +∞

0
exp

(
−y2

)
2y2dy

∫
ξ>∆E34

12

exp (−ξ)
√
ξdξ

= 16π
5
2

1

(m1m2)
3
2

Γ

(
3

2
,Θ(∆E34

12)

)
, (A.18)

with Γ(α, β) the upper incomplete Euler gamma function

Γ(α, β) =

∫ +∞

β
τα−1e−τdτ (A.19)

and Θ(x) = max{x, 0}. Finally we get the result

∫
R3

Q1[nM](v)dv = ν34
12

2√
π

Γ

(
3

2
,Θ(∆E34

12)

)[(
m1m2

m3m4

) 3
2

exp
(
∆E34

12

)
n3n4 − n1n2

]
.

We want now to calculate integrals for the remaining collision operators (A.4)-(A.6). We notice that,
via a change of variables v↔ w, it is easy to check that∫

R3

Q2[nM](v)dv =

∫
R3

Q1[nM](v)dv.

For the remaining two integrals, being the Jacobian of the transformation involving pre-collisional and
post-collisional velocities (v′,w′, Ω̂)→ (v,w, Ω̂′) for the reverse reaction in (A.1) equal to

H
(
(g′)2 − δ34

12

) µ12

µ34

g

g′
, (A.20)

we have, after the change of variables,∫
R3

Q3[nM](v)dv =

∫
R3×R3

∫
S2

H
(

(g′)
2 − δ12

34

) g2

g′
σ12

34(g, Ω̂ · Ω̂′)

×
(
µ34

µ12

)2 [
n1M1(v′)n2M2(w′)

−
(
µ12

µ34

)3

n3M3(v)n4M4(w)
]
dv′dw′dΩ̂, (A.21)

By microreversibility introduced in (1.25) [52, 80] and that now reads as

µ2
34g

2σ12
34(g, Ω̂ · Ω̂′) = µ2

12(g′)2σ34
12(g′, Ω̂ · Ω̂′), (A.22)
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the integral above becomes∫
R3

Q3[nM](v)dv =

∫
R3×R3

∫
S2

H
(

(g′)
2 − δ12

34

)
g′σ34

12(g′, Ω̂ · Ω̂′)

×

[
n1M1(v′)n2M2(w′)−

(
µ12

µ34

)3

n3M3(v)n4M4(w)

]
dv′dw′dΩ̂

= −
∫
R3

Q1[nM](v)dv. (A.23)

Exchanging again velocities v and w we get∫
R3

Q4[nM](v)dv =

∫
R3

Q3[nM](v)dv = −
∫
R3

Q1[nM](v)dv. (A.24)

Considering, instead, a "one-directional" irreversible collision of type

A1 +A2 → A3 +A4, (A.25)

accordingly to results obtained in the preliminaries, the collision operator for components A1 has only
the loss term, thus its integral is∫

R3

Q1[nM](v)dv = −
∫
R3×R3

∫
S2

H
(
g2 − δ34

12

)
gσ34

12(g, Ω̂ · Ω̂′)n1M1(v)n2M2(w)dwdΩ̂′

= −ν34
12

2√
π

Γ

(
3

2
,Θ(∆E34

12)

)
n1n2. (A.26)

Repeating the procedure performed for the reversible case we get to relations for the other integrals∫
R3

Q2[nM](v)dv =

∫
R3

Q1[nM](v)dv = −
∫
R3

Q3[nM](v)dv = −
∫
R3

Q4[nM](v)dv .

(A.27)
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B Turing instability in reaction-diffusion systems

In Chapter 5, the stability properties of three different types of reaction-diffusion systems previously
obtained are analyzed through the Turing instability procedure, outlined by Alan Turing in 1952 [118]
and applied by Murray in [92] to models describing pattern formation in biology. We report here an
overview of the topic.

The starting point is the reaction-diffusion system for a certain number of substances that diffuse,
interacting, on a bounded domain. The system reads as

ut = D∆xu + F(u), (B.1)

where u = (u1, . . . , uk) is the vector whose entries are the uri nknown quantities of the system
depending on time and The systems are somehow related to the classical Brusselator model, used
to describe a class of chemical reactions that have as a result the formation of patterns. The im-
plementation of a specific mathematical model able to reproduce real phenomena in which there is
pattern formation was introduced by Alan Turing in his work of 1952 [118]. His aim was to describe
the chemistry behind morphogenesis, i.e. the formation of different patterns in natural systems. The
analysis of a generic reacting system with linear diffusion, along with the discussion of its stability
properties, leading to an accurate description pattern formation in biology, was provided by Murray
in [92] space ui = ui(x, t), D is the diffusion matrix containing diffusion rates and F is a vector of
smooth non-linear functions representing the interaction among quantities. Turing’s idea was that
steady heterogeneous spatial patterns may be obtained by means of a diffusion-driven instability of
the steady state. In other words, the appearance of patterns occurs when the system exhibits the
so-called Turing instability: a homogeneous steady state is stable under small perturbation when there
is no diffusion, but it becomes unstable if the diffusive part is considered. These stability/instability
features can be obtained only if specific necessary and sufficient conditions on the diffusion coefficients
and on parameters of the reaction functions are satisfied, and identifying these conditions is the main
issue of the Turing analysis.
We shall present here the classical model in which two quantities (in our case are they are number

densities of gaseous constituents) u, v are involved, but, as discussed in the last part of this thesis, it
can also be generalized to a higher number of components, not without additional technical difficulties.
We will also consider only the case in which the matrix D is diagonal. Thus we write the system in
the form

ut −D1∆xu = f(u, v)

vt −D2∆xv = g(u, v), (B.2)

with t ∈ (0,+∞) and x ∈ Ω, being Ω a smooth, bounded and connected set. The functions f and g

represent the interaction between u and v, while the matrix D =

 D1 0

0 D2

 contains the positive
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diffusion rates of the two chemical species on Ω. The dynamics is all contained in Ω, for this reason
we impose zero flux at the closed boundary ∂Ω of the domain (homogeneous Neumann boundary
conditions):

n̂ · ∇xu = 0, n̂ · ∇xv = 0 on (0,+∞)× ∂Ω, (B.3)

being n̂ the unit outward normal to ∂Ω. Once that initial data u(x, 0), v(x, 0) are set on Ω, the first
step is to individuate a steady state for the space-homogeneous system obtained without considering
the diffusion, namely

ut = f(u, v)

vt = g(u, v). (B.4)

Thus, imposing f(u, v) = 0 and g(u, v) = 0, we assume the existence of a steady state belonging to
the interior of Ω, that we denote by (ū, v̄).
As mentioned before, the diffusion-driven instability occurs when the state is first of all stable in

spatial homogeneous conditions, under small perturbations. To this aim, we linearize the system in
absence of diffusion around the state (ū, v̄) and we write it in a compact form, getting

Wt = AW, (B.5)

with W =

 u− ū,

v − v̄

 and the matrix A defined as A =

 fu fv

gu gv

 =

 ∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

∣∣∣∣∣∣
(ū,v̄)

.

The stability of the steady state, that now is W̄ = (0, 0), implies that the solution W of (B.5) is
such that W→ (0, 0) as t→ 0 when the initial state is sufficiently close to zero. Being the solution
W with respect to time of the form eλt, with λ given by eigenvalues of the matrix A, the asymptotic
stability of the steady state is possible only if the eigenvalues have negative real part. Computing the
characteristic polynomial of A, which is

p(λ) = det(A− λI) = λ2 − λtrA+ detA, (B.6)

its roots have negative real part if trA < 0 and detA > 0, conditions that can be explicitly written
as

fu + gv < 0, fugv − fvgu > 0. (B.7)

The fulfillment of conditions above depends on the parameters appearing in f and g, upon which is
usually set the analysis.
After that conditions on linear stability are set, we consider the complete system with the diffusion,

again linearized around the steady state, together with the boundary conditions considered above,
that is 

Wt = D∆xW +AW on (0,∞)× Ω

n̂ · ∇xW = 0 on (0,∞)× ∂Ω

(B.8)

The solutions of this system are represented in Fourier series as

W(x, t) =
∑
k

Wk(x, t) =
∑
k

cke
λktW̃k(x) , (B.9)

158



where k ∈ N and each eigenfunction W̃k(x) is a solution of the time–independent problem
∆xW̃ + k2W̃ = 0 on (0,∞)× Ω

n̂ · ∇xW̃ = 0 on (0,∞)× ∂Ω.

(B.10)

Inserting the series (B.9) in the linear PDE of (B.8) we get∑
k

λkcke
λktW̃k(x) = D

∑
k

(−k2)cke
λkW̃k(x) +A

∑
k

cke
λktW̃k(x). (B.11)

This implies that, for each k,

λkW̃k(x) =
[
A− k2D

]
W̃k(x), (B.12)

thus λk is an eigenvalue of the matrix A− k2D, whose characteristic polynomial is

pk(λ) = det(A− k2D − λI) = λ2 + λ
[
k2(D1 +D2)− (fu + gv)

]
+ r(k2), (B.13)

with the function
r(k2)

def
= k4D1D2 − k2[D1gv +D2fu] + fugv − fvgu. (B.14)

The instability predicted by Turing analysis is achieved if at least one term Wk̄(x, t) of (B.9) is not
vanishing as t → +∞, it means that there exists at least one wavenumber k̄ such that Reλk̄ > 0.
Since, for each k, roots of (B.13) are

λk1,2 =
1

2

[
fu + gv − k2(D1 +D2)±

√
[fu + gv − k2(D1 +D2)]2 − 4r(k2)

]
, (B.15)

and recalling the negativity of trA required for the linear stability, one eigenvalue λk̄ may have positive
real part only if the function r(k2) attains a negative value. To have this, keeping in mind the other
constraint detA > 0, first of all it must be

D2fu +D1gv > 0. (B.16)

Taking (B.7) and (B.16) together, it follows that fu and gv must have opposite signs. This means
that if fu > 0 it has to be D2 > D1, the opposite if fu < 0. The discussion of all possible cases along
with physical examples can be found in [92], in which the “activator-inhibitor” dynamics is considered
to be at the basis of pattern formation.

On the other hand, condition (B.16) is not sufficient to ensure r(k2) < 0 for some values of k, in
fact we should also check that rmin < 0 and, being

rmin = −(D2fu +D1gv)
2

4D1D2
+ fugv − fvgu, (B.17)

it means
4D1D2(fugv − fvgu)− (D2fu +D1gv)

2 < 0. (B.18)

Summing up, if the following conditions are satisfied by parameters of the system

trA = fu + gv < 0,

detA = fugv − fvgu > 0,

D2fu +D1gv > 0

4D1D2(fugv − fvgu)− (D2fu +D1gv)
2 < 0,

(B.19)
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is possible to identify a range (k2
1, k

2
2) of wavenumbers, with k2

1 and k2
2 solutions of r(k2) = 0 given

by

k2
1,2 =

D1gv +D2fu ±
√

(D1gv +D2fu)2 − 4D1D2(fugv − fvgu)

2D1D2
, (B.20)

such that for any integer (if there exists) k̄ such that k2
1 < (k̄)

2
< k2

2 one has Reλk̄ > 0, getting an
unstable mode Wk̄ that leads to formation of patterns.
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