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ABSTRACT 

This research project aims to investigate covariation understood not only as the ability to 

visualize two or more magnitudes while co-varying simultaneously (Thompson & Carlson, 

2017), but in a broader epistemological sense, as the ability to grasp relationships of invariance 

between two quantities. The need to better characterize more complex forms of reasoning 

performed by students in mathematical modelling activities, led us to introduce second-order 

covariation, a form of covariation that consists in describing relations in which not only variables 

are involved but also parameters (Arzarello, 2019). These enable to represent families of 

relationships between variables that is classes of real phenomena characterized, from a 

mathematical standpoint, through parameters, which determine the specificities of the 

mathematical model.   

The discussion of this theme arises not only from research needs in the field of Mathematics 

Education, i.e., the existence of a theoretical framework only partially useful to describe the 

covariational reasoning of students, but above all by its relevance in terms of teaching 

practices. There is a wide literature showing that in mathematical modelling situations the 

ability to reason covariationally is essential because it allows to visualize the invariant 

relationships that exist between quantities involved in dynamic situations (Thompson, 

2011). The indications for teaching mathematics in high schools (MIUR, 2010) underline the 

relevance of introducing mathematical modelling as a representation of classes of real 

phenomena. However, despite the acknowledged relevance of covariation for the learning of 

numerous mathematical concepts, in the National Indications, as well as in most textbooks, 

references to this approach are generally absent. The teachers themselves have little specific 

knowledge of covariation and therefore struggle to introduce it into their teaching practices. 

The data analyzed in this project come from three didactical experiments developed in some 

classes of a scientific high school and whose aim is the mathematical description of some real 

situations: specifically, the motion of a ball along an inclined plane and the relationship between 

temperature and humidity described in the so-called psychrometric diagram. Using appropriate 

technological tools, the students were guided in deriving a mathematical formula that described 

such phenomena and in recognizing the different role played by variables and parameters in the 

writing and reading of different registers of mathematical representations. Students' reasoning 

processes and the evolution of the different semiotic aspects (spoken, gestural, 
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representational) involved in the teaching-learning processes were analyzed; as well the 

support of technology and the role of the teacher in enhancing covariational reasoning through 

appropriate adaptive teaching strategies, were considered. 

This study led us not only to the elaboration of a broader theoretical framework, which 

consistently includes second-order covariation, but also to hypothesize the existence of a third-

order covariation. In addition, some research studies complementary to the main one described 

above, allowed us to explore the theme of assessment of covariation as a form of conceptual 

understanding and to elaborate a mathematical interpretation of the covariation construct using 

category theory (Mac Lane, 1978) and the cognitive mechanisms of conceptual blending 

(Fauconnier & Turner, 2002). 
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BREVE DESCRIZIONE 

Questo progetto di ricerca si propone di indagare la covariazione intesa non solo come 

capacità di visualizzare due o più grandezze mentre co-variano simultaneamente (Thompson & 

Carlson, 2017), ma in un più ampio senso epistemologico, come capacità di cogliere relazioni di 

invarianza tra due grandezze. L’esigenza di caratterizzare meglio forme di ragionamento più 

complesse messe in atto da studenti in attività di modellizzazione matematica, ci ha portato a 

introdurre la covariazione al secondo ordine, una forma di covariazione che consiste nel 

descrivere le relazioni in cui sono coinvolte non solo variabili ma anche parametri (Arzarello, 

2019). Questi ultimi consentono di rappresentare famiglie di relazioni tra variabili cioè classi di 

fenomeni reali caratterizzati, da un punto di vista matematico, da parametri che determinano le 

specificità del modello matematico. 

La trattazione di questo tema nasce non solo da esigenze a livello di ricerca nel settore della 

Didattica della Matematica, ovvero l’esistenza di un quadro teorico solo parzialmente utile a 

descrivere i ragionamenti covariazionali degli studenti, ma soprattutto da una sua rilevanza a 

livello di pratiche didattiche. Infatti, esiste un’ampia letteratura che mostra come in situazioni di 

modellizzazione matematica sia essenziale la capacità di ragionare in modo covariazionale 

poiché essa consente di visualizzare le relazioni invarianti che sussistono tra grandezze fisiche 

coinvolte in situazioni dinamiche (Thompson, 2011). Le indicazioni per l’insegnamento della 

matematica nei licei (MIUR, 2010) sottolineano l’importanza dell’introduzione alla 

modellizzazione matematica intesa come rappresentazione di classi di fenomeni reali eppure, 

nonostante la riconosciuta importanza della covariazione per l’apprendimento di numerosi 

concetti matematici, nelle Indicazioni Nazionali così come nella maggior parte dei libri di testo i 

riferimenti a questo approccio sono generalmente assenti. Gli insegnanti stessi hanno poche 

conoscenze in merito alla covariazione e quindi faticano a introdurla nelle loro pratiche 

didattiche. 

I dati analizzati in questo progetto provengono da tre sperimentazioni didattiche condotte in 

alcune classi di un liceo scientifico e aventi come obiettivo la descrizione matematica di alcune 

situazioni reali quali, nello specifico, il moto di una pallina lungo un piano inclinato e la relazione 

tra temperatura e umidità descritta nel cosiddetto diagramma psicrometrico. Attraverso 

l’utilizzo di opportuni strumenti tecnologici, gli studenti sono stati guidati nel ricavare una 

formula matematica che descrivesse tali fenomeni e nel riconoscere il differente ruolo svolto da 
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variabili e parametri nella scrittura e lettura di diversi registri di rappresentazione matematica. 

Sono stati analizzati i processi di ragionamento degli studenti, l’evoluzione dei diversi aspetti 

semiotici (parlato, gestualità, rappresentazioni) coinvolti nei processi di insegnamento-

apprendimento, il supporto della tecnologia e il ruolo dell’insegnante nel favorire il 

ragionamento covariazionale adottando adeguate strategie didattiche adattive.  

Questo studio ci ha portato non solo all’elaborazione di un più ampio quadro teorico che 

includesse in modo coerente la covariazione al secondo ordine, ma anche a ipotizzare l’esistenza 

di un terzo ordine di covariazione. Inoltre, alcuni studi di ricerca complementari a quello 

principale finora descritto, ci hanno permesso di esplorare il tema della valutazione della 

covariazione intesa come forma di apprendimento concettuale e ad elaborare 

un’interpretazione matematica del costrutto covariazione usando la teoria delle categorie (Mac 

Lane, 1978) e i meccanismi cognitivi del blending concettuale (Fauconnier & Turner, 2002). 
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1 INTRODUCTION 

International studies in Mathematics Education have deeply underlined and supported with 

evidence-based research the importance of covariational reasoning for a deep understanding of 

many mathematical concepts like proportion, rate of change, variable, periodic functions, 

exponential growth, and in particular functions of one and two variables (Thompson, 1994a; 

Thompson & Silverman, 2008; Thompson & Carlson, 2017), the conceptualization of dynamic 

situations (Carlson et al., 2002; Carlson, 1998), and a full comprehension of many physical 

magnitudes, for instance force, work, momentum and energy (Thompson et al., 2017). 

Covariational reasoning emerges when students are able to reason “about values of two or more 

quantities varying simultaneously” (Thompson & Carlson, 2017, p. 422), namely in case they are 

able to grasp “that there is an invariant relationship between their values that has the property 

that, in the person’s conception, every value of one quantity determines exactly one value of the 

other” (Thompson & Carlson, 2017, p. 436). The issue of covariational reasoning has gained an 

increased educational interest in the last decades, and its theoretical framework is enlarging and 

detailing from many different points of view, but there are still many research gaps and 

perspectives that are worthy to be explored and we are going to describe and address all these 

issues in the following, underlining the scientific relevance of this research.  

1. Covariation is essential for modelling activities  

There are many reasons why students struggle with the concept of function, in mathematics as 

well as in all the STEM-areas. One main reason is that students are often introduced to the 

concept of function through a static definition, for instance the one of Bourbaki (1939) as a 

relationship between the elements of two sets, a definition adopted also in textbooks today 

widely used in school such as Manuale.blu di matematica (2020). Consequently, students do not 

understand the dynamic nature of functions conceptualized by covariation, that is how the 

independent and the dependent variables change together. Carlson’s studies (1998) highlight 

the lack of a covariational approach may be one of the reasons why students are unable to 

interpret dynamic situations and to construct meaningful formulas suitable for representing one 

quantity as a function of another. 

Covariation is crucial in activities of mathematical modelling because “the operations that 

compose covariational reasoning are the very operations that enable one to see invariant 



 

2 
 

relationships among quantities in dynamic situations” (Thompson, 2011, p. 46), and so it reveals 

essential for entering into the so-called modelling cycle (Blum, 1996). Despite the recognized 

importance of covariation, most of mathematics curricula do not contain explicit references to 

covariation and therefore even teachers do not enhance it in their school practices.  

2. The theoretical framework of covariation is worthy to be enlarged 

The already existing theoretical framework about covariation deeply addresses how students 

reason when trying to co-vary two or more variables, and this kind of characterization relies on 

the cognitive features of students’ reasoning. In the last two decades new theoretical 

perspectives emerged and they mainly developed in two directions: the first one refers to the 

design principles of activities enhancing covariation and specifically the role of technology, e.g., 

DGS environment, in supporting covariational reasoning processes (e.g., Johnson et al., 2017; 

Johnson, 2013). This thread of research mainly provides a wider characterization of the 

covariation construct from a didactical point of view, investigating how supporting covariational 

reasoning at a task design level and teaching practices level. The second line of research, a more 

recent one, approaches covariation as a larger form of reasoning that considers mathematical 

objects jointly with their mathematical relations. This enlarged vision of covariation allows to 

coherently introduce a more complex form of reasoning, second-order covariation (Arzarello, 

2019), the main object of investigation of this research project, which consists in the description 

of invariant relations in which are involved not only variables but also parameters. The latter 

allow to represent families of relations between variables, that is classes of real phenomena 

characterized, from the point of view of the mathematical representation, by peculiar 

parameters determining the specificities of the mathematical model. Hence, this broadening of 

the existing framework about covariation enables to include an improvement of the theoretical 

construct of covariation with the introduction of second-order covariation, and to widen the 

characterization of this construct not only on the cognitive side, but also from didactical and 

mathematical standpoints.  

3. Teachers also struggle with covariation  

Covariation is a complex type of reasoning, and many students meet difficulties in attaining and 

maintaining it (e.g., Adu-Gyamfi & Bossé, 2014; Carlson et al., 2002; Ellis et al., 2016). These same 

bodies of literature suggest that since covariational reasoning is uncommon among students, 

instruction should emphasize it in students' learning activities and should place an increased 
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emphasis on teachers’ instructions to reach individual students' cognitive needs for prompting 

covariational reasoning. The truth is that teachers also struggle with a covariational view of the 

concept of function and are usually not so efficient in teaching this concept, especially when a 

function within the same family of functions varies with respect to varying parameters.  

As previously hinted, adaptive instruction may be a first answer to this issue: investigating how 

teachers interact with students to adapt their instruction to teach complex mathematical 

concepts and specifically the teacher’s role in facilitating students’ evolution towards the 

understanding of a specific mathematical content, covariation in our case, carries important 

theoretical, methodological, and pedagogical implications. But the key to a successful adaptive 

instruction is a deep knowledge and mastery of both first- and second-order covariation which 

would equip teachers with a flexible overview of handling adaptive teaching of covariation in 

school at a theoretical as well as at a practical level. 

4. The assessment of covariation 

Given the peculiarity and complexity of covariation as a theoretical and cognitive construct, and 

its rare presence in school practices, the assessment of this form of reasoning turns out to be 

challenging. Even studies on mathematical modelling do not propose a systematic exploration 

of the issue of its assessment, which should reflect not only the aims of applications and 

appropriate modelling (Blum, 2015), but also students’ ability to reason in a covariational 

manner. In addition, covariational reasoning deals with a typical conceptual knowledge 

construct, which is more complex than a content area or procedure to be assessed because of 

the variety and complexity of students’ forms of reasoning. Bisson et al. (2016) highlight the 

difficulties of using standard assessment practices when conceptual understanding is under the 

lens and even in Italy assessing conceptual understanding and the connections between 

different mathematical domains or between different subjects like math and physics is 

underrepresented in summative mathematics tests. While already existing method of 

assessment of covariation mainly focus on the features of the proposed tasks and its possible 

answers or on the taxonomy of covariational reasoning, we are not aware of studies that explore 

its assessment though the adoption of a holistic method that also supports teachers that are not 

so confident with all the facets of this form of reasoning. As it will be discussed later (Chapter 

15), we identified in the comparative judgement a valuable tool, whose features could support 

the assessing of a complex construct as covariation, especially when it expresses forms of 

conceptual understanding. 
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The theoretical characterization of the construct of covariation, both from a cognitive, didactical, 

and mathematical standpoint, is the main object of investigation of this research and we are 

going to address the issues set out in points 1-2-3 of this Introduction in the main body of this 

work. The state of art about covariation with reference to existing literature will be exposed in 

detail in Chapter 2 along with some new perspectives about covariational reasoning arose in the 

last decades (Section 2.1) and some historical notes about the relevance of this form of reasoning 

in different fields of Mathematics (Section 2.2). In Chapter 3, the main conceptions and 

approaches to the concept of function in mathematics, including the covariational one, will be 

recalled together with the epistemological obstacles that students face when dealing with 

functions in modelling activities. Moreover, the support of technology is a valuable ally to 

introduce covariation in classroom activities and to instrument this kind of reasoning processes 

(Chapter 4). Chapter 5 contains a preliminary formulation of the research questions that led us 

in the design of this study both on an experimental, methodological, and epistemological level.  

The complexity of the topic of covariation and the numerous standpoints from which it is 

analyzed required various and suitable theoretical lenses to be networked: the four theoretical 

perspectives (semiotic bundle, commognition, conceptual blending and adaptive teaching) are 

presented in their main aspects in Chapter 6 jointly with their network. A clear definition of the 

theoretical framework enabled us to produce a definitive formulation of the research questions 

(Chapter 7). The methodology of our research is illustrated in Chapter 8 that is structured in the 

following four sections: the main features of a qualitative research based on teaching 

experiments (8.1), the design principles connoting our experimentations (8.2), the 

methodological tool of the Timeline (8.3) and finally some notes concerning the methods for data 

analysis (8.4). Moreover, given the relevance of the role of the teacher we collected some 

relevant information about her background and the school where the teaching experiments 

were conducted in Chapter 9. Chapters 10, 11, and 12 are devoted to the analysis of the three 

teaching experiments and the structure is recurrent: overview of the tasks and prospective 

analysis, data analysis of some selected episodes, discussion of the results according to four 

different layers of analysis, and some concluding remarks. Eventually Chapter 13 contains the 

answers to the research questions, some didactical implications and limitations of this study and 

some further purposes of research.  

The last part of the thesis contains some extra chapters related to the topic of covariation which 

were not part of the original design of the research and respond to specific research purposes.  
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Indeed, the discussion of the results of the research revealed the need of a further investigation 

of the theoretical construct of covariation so to enlighten the characterization of second-order 

covariation and this interpretation emerged in particular in the last teaching experiment. These 

evidences led us to explore a mathematical interpretation adopting the universal language of 

category theory and the cognitive lens of conceptual blending. Preliminary results are exposed 

in Chapter 14.  

The issue of the assessment of covariational reasoning in the form of conceptual understanding 

is specifically addressed in Chapter 15 adopting the technique of comparative judgement as 

method of assessment. Chapter 16 is a deeper exploration of the features of the notion of 

instrumented covariation and contains an analogy for variables and parameters based on C 

programming language.  
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2 THE STATE OF ART ABOUT COVARIATION 

Covariational reasoning started being considered and studied as a theoretical construct only 

in the late 1980s and early 1990s. Covariational reasoning entails thinking about how two 

quantities’ values change together. However, there is no single understanding of what ways of 

thinking constitute covariational reasoning and in the following we are going to recall the main 

conceptions that contributed to a full conceptualization and definition of this construct. 

Confrey (1991) and Confrey and Smith (1994) described a preliminary notion of covariation, 

where students coordinate a completed change in the values of x with a completed change in the 

values of y. Hence, they characterized covariation in terms of coordinating two variables’ values 

as they change. 

Thompson and Thompson (1992) and Thompson (1994a; 1993), in the theory of quantitative 

reasoning, described a notion of covariation where students simultaneously track two 

quantities’ varying values: a quantity is defined as someone’s conceptualization of an object such 

that it has an attribute that could be measured; a person reasons covariationally when she 

envisions two quantities’ values varying and then envisions them varying simultaneously. 

Saldanha and Thompson (1998) further elaborated Thompson’s notion of covariation. They 

explained that their notion of covariation is “of someone holding in mind a sustained image of 

two quantities values (magnitudes) simultaneously” (p. 299). The individual mentally forms a 

multiplicative object, a new conceptual object formed merging the attributes of the two initial 

quantities. According to the authors, this notion was derived from Piaget’s notion of and as a 

multiplicative operator (1950), an operation that Piaget described as underlying operative 

classification and seriation in children’s thinking. The authors clarify that their idea of 

multiplicative object differs from the one contained in Sfard’s theory of reification (1991) 

because it should not be intended as a mathematical concept that a person can operate upon 

mentally, but as a specific cognitive act: hence, the focus is not on the resulting object, but on the 

cognitive process itself. To provide an example of multiplicative object, the conceptualization of 

torque requires to conceive the “amount of twist” thinking simultaneously to a force and the 

distance from a fulcrum to the force’s point of application (Thompson & Saldanha, 2003), or 

again ordered pairs represented by points in the Cartesian plane are multiplicative objects when 

understood as values of two quantities that vary simultaneously. 

Thompson et al. (2016) deeply investigated the relevance of creating a multiplicative object from 

two magnitudes to mastering a covariational meaning for graphs. They suggested that students’ 
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difficulties with graphs could be partially attributed to not having conceived points on a graph 

as multiplicative objects that condense two measures simultaneously. 

Carlson and colleagues (2002) described a developmental notion of covariation, where students 

begin by coordinating directional changes in the values of two quantities and eventually 

coordinate continuous change in one quantity with the instantaneous rate of change of another 

quantity. Moreover, Castillo-Garsow (2012) identified three distinctions of students’ thinking 

about how a quantity’s value varies: discrete, chunky continuous, and smooth continuous.  

The current view of covariational reasoning as a theoretical construct, which has been widely 

presented in The Compendium for Research in Mathematics Education (Thompson & Carlson, 

2017), retains emphasis on three main elements: (i) quantitative reasoning and multiplicative 

objects, (ii) coordination of changes in quantities’ values, and (iii) the ways in which an 

individual conceives quantities as varying. It consists of a hierarchy of six different framework 

levels that we are going to present referring to “the bottle problem” as done in Thompson and 

Carlson (2017). In the bottle task, given a bottle of a certain shape, students are asked to sketch 

a graph of the height of the water in the bottle as a function of the amount of the poured water.  

• A student at the no coordination level (L0) would not coordinate the height of the water 

with the amount of water contained in the bottle.  

• At the pre-coordination of values level (L1), a student would observe that when some 

water is added to the bottle, the height of the water increases. 

• At the gross coordination of values level (L2), the student would describe this covariation, 

saying that “the height increases as the volume increases”.  

• A student at the coordination of values level (L3) would coordinate the values of the 

water’s height in the bottle with a certain increment of the quantity of added water.  

• A student at the chunky continuous covariation level (L4) would envision the height of the 

water changing simultaneously with the amount of water, but these changes would refer 

to intervals of a fixed size, with the student unable to perceive the variables “height” and 

“volume” as passing through the intermediate values of the interval.  

• In the end, a student at the smooth continuous covariation level (L5) would conceive height 

and volume as varying simultaneously through intervals in a smooth and continuous way. 

These framework levels can be interpreted as descriptors of a class of behaviors or as the 

characteristics of a person’s capacity to reason covariationally. A person showing a certain level 

of covariational reasoning means that she is able to reason reliably at lower levels but cannot 
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reason reliably at higher levels. Co-variation necessarily involves two or more magnitudes 

varying simultaneously; when conceptualizing how a single quantity’s values vary, the authors 

refers to it as variational reasoning, a framework consisting itself of six different cognitive levels:  

• Variable understood only as symbol; 

• No variation (L0) of the variable is perceived, it has a fixed value; 

• Discrete variation (L1), when the variable is conceived as assuming specific values; 

• Gross variation (L2), if the values of a variable are conceived as increasing or decreasing; 

• Chunky continuous variation (L3), when the variable’s values are intended as changing by 

intervals of a fixed size; 

• Smooth continuous variation (L4), when the variable’s values are intended as changing 

smoothly and continuously within those intervals.  

Some other concluding remarks concerning the cognitive construct of covariation follow. 

Saldanha and Thompson (1998) speak of global image of the simultaneous states of two co-

varying quantities and graphs are intended as a modality to represent this image: in short, 

covariation is not just finalized to the reading and drawing of mathematical diagrams. 

Thompson and colleagues (2017) have never investigated the problem of covariational 

reasoning among quantities whose values are related by a formula, but recent studies have been 

elaborated in this area involving students of algebra and analysis courses (Frank, 2016). 

Finally, even if the existing literature until now is limited to a small number of subjects, its 

findings suggest that reasoning covariationally is uncommon among students and teachers, at 

least in the U.S where most research studies about covariation are carried out. Moreover, studies 

that investigate covariational reasoning either internationally or with a large, geographically 

diverse sample are not known (Thompson et al., 2017). 

2.1 NEW PERSPECTIVES ABOUT COVARIATION 

In the last years, new perspectives about covariation emerged as line of research in Mathematics 

Education and in this paragraph we are going to present three main contributions that have 

some contact points with our study. 

1. Metavariation, Hoffkamp (2009; 2011) 

In the German educational context the term functional thinking was introduced for the first time 

with the so-called Meraner reform of 1905 initiated by Felix Klein. In its initial and broad sense, 
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the term functional thinking addressed thinking in variations and functional dependencies and 

emphasized the aspects of change. According to Vollrath’s definition (1989), functional thinking 

can be intended as the typical way to think when working with functions and in German 

mathematics curriculum the idea of functional dependency is one of the five central 

competencies, which form the mathematics education. Recently Hoffkamp (2009; 2011) 

analyzed how the use of Interactive Geometry Software (IGS) allows the visualization of the 

dynamic aspect of functional depencies simultaneously in different representations and offers 

the opportunity to experiment with them. Specifically, she underlined how some activities 

designed with IGS allow two levels of variation. The first level is that of covariation, when one 

can visualize the dynamic aspects varying within the given situation. To understand a dynamic 

situation one needs to construct an executable mental model to achieve mental simulation. The 

second level, called metavariation, arises when one changes the situation itself and watches the 

effects on the graph. Metavariation allows the user to investigate covariation in several 

scenarios. It is a variation within the function that maps the situation to the graph of the 

underlying functional dependency and changes the functional dependency itself. This leads to a 

more global view of the dependency. Therefore metavariation refers to the object view of the 

function, forces the detachment from concrete values, and leads to a qualitative view of the 

functional dependency and its local and global characteristics. Metavariation is intended as a 

step towards the perception of a function as an object.  

Moreover, in the case studies analyzed by Hoffkamp in her research, the students were always 

asked to verbalize their observations when working with the applets in the IGS environment. 

Language acquires a role of mediator between the representations and the mental images of the 

students, so it is of special importance in the conceptualization process (Janvier, 1978). 

2. Instrumented covariation and second-order covariation, Arzarello (2017; 2019)  

In 2017 Arzarello remarked how covariation is an omnipresent idea within modern 

mathematical thinking. Therefore he suggested considering covariation not just as limited to the 

introduction of the concept of function but as a form of thinking with a larger epistemological 

and cognitive value, which considers mathematical objects together with their mutual relations. 

Moreover, he observed that covariation can be approached with a certain success since the first 

years of primary school thanks to the support of technological tools and analyzed some case 

studies supporting this claim (Arzarello, 2017; 2019).  
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Conceiving suitable didactical situations where students are introduced to covariational 

reasoning thanks to the mediation of appropriated artefacts constitutes a clear example of what 

he calls instrumented covariation, a didactical counterpart of the covariation construct that we 

are going to deepen in Chapter 4.  

Moreover, analyzing the data from a secondary school teaching experiment about the modelling 

of a physical situation, i.e., a ball rolling along an inclined plane, Arzarello (2019) noticed that 

the law of the motion of the ball, a formula linking two variables and a parameter, was 

interpreted by students according two levels: the first one is that of the covariation between the 

two variables involved, time and distance, the second level is that of the covariation between the 

distance-time graph and the parameter depending on the angle of inclination of the plane. This 

second level is called second-order covariation and its identification gave rise to new research 

questions concerning its rigorous definition, its relationship with the already existing theoretical 

framework about covariation and its didactical implications. The denomination second-order 

covariation well fits with the terminology “second order functions” used by Bloedy-Vinner 

(2001) to address those functions whose argument is a parameter and whose corresponding 

outputs are equations or functions. 

3. Covariation through a commognitive lens, Lisarelli (2019) 

The Ph.D. research project conducted by Lisarelli (2019) aimed at investigating and describing 

students’ learning of functions, when introduced to this notion through a particular dynamic 

approach, which stresses its covariational aspects: specifically, the dynamic aspects of the 

concept of variable and the dependency among variables. 

The theoretical lens of commognition (Sfard, 2008) was adopted in this study to investigate 

covariation and it was a novelty in the research paramount. Commognition was used to:  

- analyze the students’ emerging discourses on covariation: categorizing the several 

instances of covariation in students’ discourse, Lisarelli identified three different levels 

of covariation mirroring the expert discourse on covariation: (i) covariation of time and 

distance (the two variables involved in the tasks); (ii) covariation of the dependent 

variable with respect to the independent one; (iii) covariation of ratios that is “a 

description of the speed of a variable with respect to the speed of the other one” (Lisarelli, 

2019, p. 204). In particular, the author states that “students expressed covariation by 

using verbs that refer to movement and changing over time, and with the help of dynamic 
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visual mediators such as gestures, dragging and dragsturing1 actions” (Lisarelli, 2019, p. 

205); 

- collect the expressions used by students to read f(a)=b and analyze how they use the 

word “function” in their discourses. The recognized expressions explicitly mentioned the 

dependence relation, contained some references to motion and the most reified 

realizations of correspondence were even without words.  

As a didactical implication, the study suggested “a specific design of activities that can be 

employed in order to exploit the use of dynamic realizations of functions within a DIE [Dynamic 

Interactive Environment] to support the emergence of students’ discourse on functions in terms 

of covariation of two quantities” (Lisarelli, 2019, p. 225). The analysis of the discourse of the 

involved students revealed numerous “references to the dynamic and temporal aspects of 

functions and graphs of functions and also their frequent use of non-formal mathematical words” 

(Lisarelli, 2019, p. 226). As stated by the author, an aspect that is absent in her study is a focus 

on the role of the teacher. In our research, given the relevance of the teacher in enhancing the 

transition to higher order covariational reasoning and the importance of teacher-led classroom 

discussion, we are going to deal with the analysis of emerging adaptive teaching strategies. 

2.2 SOME HISTORICAL NOTES 

Covariation became an explicit form of reasoning in mathematics around 1000 C.E., but for 

several centuries it had been considered only as a way of thinking and not as a mathematical 

concept. Attention to covariation from a theoretical standpoint was initiated by Klein’s early 

twentieth century research2 (2016) and then was explored in more recent papers (Janvier, 1978; 

Swan, 1985; Saldanha & Thompson, 1998) that deeply contributed to its theoretical definition 

toward the end of 20th century (Thompson & Carlson, 2017).  

The notion of function mainly developed as a search for relationships between concrete, 

dynamic and continuous variables and to express the idea of change. Ancient scholars lacked a 

mathematical description of movement because they saw distance and time as measurable 

quantities, but not speed which was conceived only in its qualitative nature (Arzarello, 2008). 

Indeed, according to Aristotelian philosophy, qualities (qualia) and quantities (quanta) 

represented two distinct categories: qualities referred to the kind of subject or event considered; 

 
1 Dragsturing = action subsuming both dragging and gesturing characteristics. 
2 Its original work dates to 1908 but the first complete translation into English from the original German Edition of 
the three volumes dates to 2016.  
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quantities to something displaying the possibility of being measured and so being attributed 

numerical values. Ideas changed from the Middle Ages onwards, and it was in the XIV century 

that new revolutionary ideas developed at the Merton College at Oxford (1280-1340), and in 

Paris with Nicole Oresme (1325-1380). The Medieval philosophers realized that qualities also 

have an intensity, qualia began to be considered as quanta, and started that process of 

quantification of qualities, which developed through different approaches (Sylla, 1971). 

The term Merton College or Merton School generally denotes four major Mertonians: John 

Dumbleton, Richard Swineshead, William Heytesbury, and Thomas Bradwardine. The Mertonian 

approach to the quantification of qualities that has been defined by historians as arithmetical 

and algebraic. Strongly influenced by the studies in the field of optics, Mertonians initiated an 

addition theory regarding only intensities of qualities, and often entirely neglecting extension. 

Thanks to the so-called Merton mean degree theorem or mean speed theorem, stating that “a body 

moving with a uniformly accelerated motion covers the same distance in a given time as a body 

moving for the same duration with a uniform speed equal to its mean (or average) speed”, they 

proved that “uniformly difform, i.e. linearly increasing or decreasing, qualities correspond to 

their mean degrees” (Sylla, 1971, p. 9). Nonetheless, Mertonians did not try to support their 

claim that their measures were additive with empirical experiments and nevertheless were 

aware that the additivity of their measures was an important issue. By the way, this approach 

lately contributed to a development of a quantification of qualities “based on intensity as an 

extensive and additive quality” (Sylla, 1971, p. 15). 

On the other hand, Oresme initiated an approach to the quantification of qualities that can be 

labelled as geometrical: he distinguished between qualitative intensity and extension and 

proposed geometrical methods of representing the configurations of qualities. In his work, 

Tractatus de configurationibus qualitatum et motuum (1350), he used the term configuratio with 

two different meanings: the first meaning refers to the use of geometrical representations to 

graph intensities in qualities and velocities in motion. “Thus the base line of such figures is the 

subject when discussing linear qualities or the time when discussing velocities, and the 

perpendiculars raised on the base line represent the intensities of the quality from point to point 

in the subject, or they represent the velocity from instant to instant in the motion” (Clagett, 1970, 

p. 226) (Figure 1). The resulting figure represents the whole distribution of intensities in the 

quality i.e., the quantity of the quality, or in case of motion the total velocity or the total space 

traversed in the given time. To provide an example, a quality of uniform intensity is thus 
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represented by a rectangle that is its configuration, while a right triangle represents a quality of 

uniformly nonuniform intensity starting from zero intensity (Figure 1). Concerning the law of 

falling bodies, Oresme suggested that the speed of the fall of bodies is directly proportional to 

the time of fall, rather than the distance of fall. He did not apply the Merton rule of the measure 

of uniform acceleration by its mean speed, as done by Galileo lately, but he knew this rule and 

provided the first geometric proof of it in one of his works (Clagett, 1970).  

 

Figure 1 – On the left, a page of Tractatus de latitudinibus formarum (1505), a reduced version 
of the original book by Nicole Oresme. On the right, a rectangle and a right triangle 

representing respectively the configuratios of a quality of uniform intensity and a quality of 
uniformly nonuniform intensity 

Covariational reasoning appeared dramatically in mathematics with the birth and development 

of modern algebra through the works of Viète, Descartes, and others. The methods of analysis 

and synthesis in algebra, borrowed from the geometry of the Greeks, introduced a revolutionary 

way of approaching the problems of mathematics, which Lagrange in the early 19th century could 

summarize as follows: “Algebra taken in the most extensive sense, is the art of determining 

unknowns by functions of known quantities, or which are regarded as known” (Lagrange, 1806, 

p. vii).  

Not only, the method of covariational reasoning with physical quantities enabled to express 

mathematically the physical laws and so made possible the birth of modern science with the 
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sensate esperienze e necessarie dimostrazioni [sensible experiences and mathematical 

demonstrations] of Galileo. With his master work Discorsi e dimostrazioni matematiche intorno 

a due nuove scienze attenenti alla meccanica e ai movimenti locali [Discourses and Mathematical 

Demonstrations Relating to Two New Sciences] (1638), Galileo decreed the end of the medieval 

theory of mechanics and of the entire Aristotelian cosmology founded on it. He has the merit of 

having shown that natural phenomena are not always trivial, but they can actually be really 

complex. After having formulated some hypotheses on the motion of falling bodies and having 

foreseen the trend of a ball rolling along an inclined plane, he performed some experiments to 

confirm his assumptions. After hundreds of replications of his sophisticated experiment, Galileo 

could state that “gli spazii passati esser tra loro come i quadrati de i tempi, e questo in tutte le 

inclinazioni del piano, cioè del canale nel quale si faceva scender la palla; dove osservammo 

ancora i tempi delle scese per diverse inclinazioni mantener esquisitamente tra loro quella 

proporzione3” (Galileo, 1638).   

The conception of quantities’ values varying continuously deeply contributed to the arise of 

calculus as a body of thought (Kaput, 1994) and so continuous covariation can be seen as central 

to the development of the mathematical notion of function (Thompson & Carlson, 2017). Just to 

quote a relevant author, Newton in his The method of fluxions and infinite series (1736) explicitly 

spoke of quantities flowing from one value to another and so assuming specific values.  

According to Boyer (1946), the final stage in the development of the concept of function started 

with the definition of function introduced by Dirichlet (1838) basing on a precise law of 

correspondence between variables: “If a variable y is so related to a variable x that whenever a 

numerical value is assigned to x, there is a rule according to which a unique value of y is 

determined, then y is said to be a function of the independent variable x”. Nowadays in schools, 

the mathematical definition of function is that of Dirichlet translated into Cartesian products and 

ordered pairs according to Bourbaki’s definition (1939): “Let E and F be two sets, which may or 

may not be distinct. A relation between a variable element x of E and a variable element y of F is 

called a functional relation in y if, for all x ∈ E, there exists a unique y ∈ F which is in the given 

relation with x. We give the name of function to the operation which in this way associates with 

every element x ∈ E the element y ∈ F which is in the given relation with x, and the function is 

said to be determined by the given functional relation. Two equivalent functional relations 

 
3 “Distances traversed are proportional to the square of fall times, and this in all inclinations of the plane, that is of 
the channel in which the ball rolled down; where we observed again the times of the descents for various 
inclinations to maintain between them exactly that proportion”. 
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determine the same function”. Both these definitions do not leave space to the idea covariation 

between variables’ values: they are static approaches that freeze the dynamic nature of functions 

in the static language of set theory. 
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3 CONCEPTIONS OF VARIABLES AND FUNCTIONS 

In this chapter we are going to explore in synthesis the main conceptions of variables and functions 

which are both relevant for a clear theoretical framing and definition of first- and second- order 

covariation. Moreover, some hints about the teaching and learning of these concepts in school practice 

are outlined. Finally, the last section addresses the relevance of covariation in the mathematics curricula.  

3.1 VARIABLES AND PARAMETERS IN THEORY AND IN TEACHING PRACTICE 

The concept of variable assumes different roles in algebra (Bernardi, 1994; Küchemann, 1981); 

in Arcavi et al. (2016), in agreement with a larger literature, five facets of meaning are identified:  

- A variable can be intended as a placeholder of a numerical value, a blank space to be filled 

with a specific value within the formulation of an algebraic expression describing a 

certain situation. 

- A second facet is that of unknown, hence a number to be found like in the case of 

equations.  

- A third meaning is that of varying quantity: in this case the literal symbol does not 

represent a single value but rather a domain of possible values and hence incorporates 

and idea of motion and dynamicity.  

- A variable is a generalized number when it is used to describe general properties like 

physical laws or the formulas for the area and volume of geometrical figures.  

- Eventually, a parameter can be intended as a higher order variable in the sense that its 

value determines a situation as a whole.  

The meaning of these terms is therefore related to a specific context, but in the teaching practice 

it is not always defined or sometimes it is not because a rigorous definition would require a 

certain level of knowledge in the field of mathematical logic.  

Moreover, there exists tacit conventions on the choice of the letters to be used in the different 

contexts: x, y, z for unknows or undetermined variables; a, b, c for the coefficient of a curve in its 

canonical form; h, k for the parameters within families of lines or conics (Chiarugi et al., 1995). 

This fact involves the risk that such choices induce to understand the literal symbols as rigid 

designators (Arzarello, Bazzini & Chiappini, 1994, p. 37) and so that students facing an equation 

in which the unknown is denoted with the letter a instead of x, may find themselves in difficulty.  
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Among the various educational problems which students struggle with there are certainly the 

mastery of the manipulation of the symbols of algebraic language and particularly the distinction 

between variables and parameters (Reggiani, 2002; Furinghetti & Paola, 1994). These 

difficulties are related not only to the dependence on the role assumed by the letters according 

to the context, but also on the logical complexity required to explain the difference between their 

roles (Bloedy-Vinner, 2001). 

One of the first topic in which students face variables and parameters already in the first two 

years of high secondary school is the discussion of literal equations. An analysis of the textbooks 

currently in use revealed that the presence of a definition of the term parameter is of recent 

introduction. For instance, in Algebra.blu (2016), today of wide use in the school practice in its 

various reissues, the term parameter is used for the first time when introducing the literal 

problems and it is defined as “a term that represents a known value and that is not an unknown” 

(p. 502). And again, in the paragraph devoted to literal equations “the letters” present “in 

addition to the unknown” (p. 506), are called parameters. This attempt of definition recalls those 

conventional choices described above and to the possible difficulties linked to them. 

3.2 CONCEPTIONS AND REPRESENTATIONS OF FUNCTIONS 

In the literature in Mathematics Education three main views of student conceptions of functions 

have been distinguished (Vollrath, 1989; Slavit, 1997) that collect various approaches. Now we 

are going to present them briefly including also the covariational approach in this classification:  

1. Action/operational views of function: this is the view initially acquired by students (Sfard, 

1989); it consists in computing the numeric values for a given input adopting an 

algorithm or a rule of association. In this view, functions are intended as non-permanent 

objects and the focus is on the computational aspects. 

2. Object-Oriented views of function: this view can be interpreted as an evolution of students’ 

action-oriented view into an object-oriented notion, i.e., a more permanent one. Three 

main approaches fall into this category:  

- Correspondence or mapping approach, the one introduced by Confrey and Smith (1994) 

where quantity 1 is assigned to quantity 2, or equivalently asking for the value of f at x1 

and x2. Functional relationships describe connections between two quantities’ values, 

without making the quantities explicit. 
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- Covariation approach, deeply explained in Chapter 12,  that consists in the understanding 

of the way in which quantity 1 co-varies with quantity 2, or equivalently asking for how f 

changes with x. Thompson and Carlson (2017) introduced a definition of function that is 

based on this approach and according to them it was something missing in the literature. 

The meaning they propose is the following:  

a function, covariationally, is a conception of two quantities varying simultaneously such that there is 

an invariant relationship between their values that has the property that, in the person’s conception, 

every value of one quantity determines exactly the value of the other. (Thompson & Carlson, 2017, p. 

436) 

The authors remark that a function is a conception, hence their definition does not use 

the terms independent and dependent variable because they entirely depend on the 

person’s conception of the situation. 

- Holistic approach: the function is conceived as an abstract object resulting from a 

reification of mathematical operations and is described by holistic features (Sfard, 1991). 

3. Property-oriented view of function: this view of functions “deals with the gradual 

awareness of specific functional growth properties of a local and global nature, followed 

by the ability to recognize and analyze functions by identifying the presence or absence 

of this growth properties” (Slavit, 1997, p. 266). Functional properties can be classified 

into global such as symmetry and periodicity, or local like intercepts or points of 

inflections. Some properties such as continuity, transcend this possible classification. A 

student reifies the notion of function as mathematical object possessing or not possessing 

certain properties. This property-oriented view differs from the covariational approach 

because less emphasis is put on the way in which variables change and more emphasis is 

on the properties resulting from these changes.  

In addition to this vertical development of the concept of function, in which there is an evolution 

from process aspects to the function concept intended as an object, there is a horizontal 

development of the same concept that is obtained relating different representations. These two 

dimensions are called depth and breadth respectively of the function concept, where increasing 

depth means higher levels of cognitive abstraction (DeMarois & Tall, 1996). The breadth 

dimension consists of various representations such as the numeric one using tables, the 

geometric using graphs, and the symbolic using equations: these three facets have been widely 

discussed in the literature (e.g., Thompson, 1994b). Other facets are the written and verbal 

descriptions of function, the function notation, the colloquial facet using the notion of function 
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machine and the kinesthetic aspect might be represented by asking students to act out their 

understanding about function. The use of multiple representations strongly supports the 

learning of mathematical concept, but they are non-trivial for students to relate and identify 

connections (Ainsworth, 2006). More details concerning this issue will be provided in Section 

8.2.1.  

To conclude, some didactical remarks follow. In line with the definition of function established 

last century (see Bourbaki’s definition reported in Section 2.2), in school practices and school 

textbooks, the notion of function is mainly introduced as a generalization of the concept of 

relationship. Here, an emblematic example from Manuale.blu di matematica (2020): “Una 

relazione dall’insieme A all’insieme B è una funzione se a ogni elemento di A associa uno ed un 

solo elemento di B”4 (Vol. 1, p. 237). This approach is extremely static and does not leave space 

to an underlining idea of motion or dynamicity. The same holds for the possible representations 

of relationships that can be consequently applied to the specific case of functions.  In the same 

book (p. 229), four different types of representation are reported:  

- Enumeration, that is writing the set of all ordinate pairs of the elements that are in 

relationship e.g., R= {(2;1), (4;2), (6;3)}. 

- Sagittal representation or arrow diagram using Euler-Venn’s set and making visible the 

correspondence between elements of the sets using arrows. 

- Double entry tables in which the elements of the first set are disposed in vertical, the 

elements of the second horizontally and the pairs in relations are marked by a cross. In 

the specific case of functions, can be translated into the two columns table used to 

represent a function by points.  

- The cartesian graph in which pairs in relation are detected by points. 

As already highlighted in Chapter 2, paired couples are an example of multiplicative objects but 

only when understood as values of two quantities that vary simultaneously, and this approach 

is not typically enhanced in school practices but most frequently reduced to the correct 

representation of some numerical values in a law of correspondence. 

 
4 A relationship from set A to set B is a function if to each element of A associates one and only one element of B. 
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3.3 RELEVANCE OF COVARIATIONAL REASONING IN THE MATHEMATICS 

CURRICULA 

Despite the recognized importance of covariation, school practices and mathematics curricula 

rarely focus on covariational reasoning, even in the U.S. where covariation is an extremely 

relevant research topic (Thompson et al., 2017). Exceptions can be found in a few Eastern 

countries like South Korea, Russia, and Japan (e.g., see Japanese Ministry of Education, 2008). 

Even the curricula for Italian secondary schools, both for second cycle MIUR (2010a, 2010b, 

2010c) and for first cycle MIUR (2012), do not contain explicit references to covariation. 

Concerning the curricula for scientific-oriented secondary school, an implicit reference can be 

found in the following statement, which could be interpreted according to a covariational 

reasoning perspective: “Un tema importante di studio sarà il concetto di velocità di variazione 

di un processo rappresentato mediante una funzione”5 (MIUR, 2010a, p. 340). From the early 

years of high school, functions are studied, especially as representations of real phenomena, and 

the Italian curricula stress the relevance of mathematical modelling activities in teaching 

practices. The words model and modelling appear nearly 12 times, under the headings General 

Guidelines, Change and relationships and Uncertainty and data. In particular, it states that 

modeling consists in the “possibilità di rappresentare la stessa classe di fenomeni mediante 

differenti approcci”6 (MIUR, 2010a, p. 337) and that the study of the language of functions is the 

“primo passo all’introduzione del concetto di modello matematico”7 (MIUR, 2010a, p. 339). This 

lack of explicit references is also reflected in the fact that, apart from a minority of textbooks 

which in recent years have introduced covariation as a thinking tool (Paola & Impedovo, 2014), 

most Italian textbooks currently in use do not foster this approach when dealing with the 

modelling of classes of phenomena or conceptualization of dynamic problems. For instance, 

when teachers introduce the concept of function, they mainly adopt a static definition as the ones 

recalled in the previous section. Literature suggests that the lack of a covariational approach may 

be one reason why students are unable to interpret dynamic situations and to construct 

meaningful formulas suitable for representing one quantity as a function of another (Carlson, 

1998). 

 
5 An important topic of study will be the concept of rate of change of a process represented through a function.  
6 The possibility to represent the same class of phenomena through different approaches. 
7 First step to the introduction to the concept of a mathematical model. 
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4 INSTRUMENTED COVARIATION 

The term instrumented covariation has been introduced by Arzarello (2017) and it refers to 

the exploration of certain mathematical problems or situations with the use of appropriate 

artefacts supporting the learning of covariational aspects.  

The adjective instrumentation is recovered from the instrumental approach by Vérillon and 

Rabardel (1995), in which it is underlined the distinction between artefact (material or abstract 

object produced by the human activity) and instrument (mixed entity characterized by an 

artefact component and cognitive component consisting of the utilization schemes).  

Numerous research studies in the field of Mathematics Education (Trouche, 2005; Drijvers, 

2019) are oriented to the exploration of the didactical modalities in which the modern digital 

technologies can foster the learning of mathematics: instrumented covariation may help 

teachers in designing suitable activities, which could initiate and support students to 

covariational reasoning, for instance within Dynamic Geometry Environments (DGE) or 

Computer Algebra System (CAS).  

Some details concerning the covariational approach applied to the formulation of an open 

problem are provided in Arzarello (2017) and Arzarello (2019). In the Theoretical framework 

of Euclidean Geometry (TGE), a covariational approach should have the following requirements:  

- Leading to a “different” geometrical form (e.g., that typical of open problems where the 

formulation of hypotheses is explicitly required); 

- The implication of an epistemological change with respect to TGE; 

- Some cognitive consequences;  

- Some didactical consequences in the classroom environment. 

“In particular, the environment of dynamic geometry is an artefact which amplifies the 

phenomena that depend on the formulation of the problem and allow their instrumentation” 

(Arzarello, 2017, p. 12). Moreover, as example of instrumented covariation is quoted the 

teaching experiment conducted in Bari (Italy) and deeply described in Faggiano, Montone, and 

Rossi (2017): a duo of artefact, in the sense by Maschietto and Soury-Lavergne (2013), is 

adopted to produce an instrumented understanding of covariation in a situation of geometric 

symmetry between two points. The analysis of the classroom discussion mainly revealed the 

internalization of the covariation of the symmetric figures and the synergic effect of the two 

artefacts. These findings reveal that covariation can be approached with a certain success ever 
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since first years of primary school thanks to the mediation of suitable technological supports 

(Arzarello, 2017). These results are groundbreaking with respect to the traditional perspective 

emerging in the literature. For instance, in the study by Johnson et al. (2017) we can read that 

“[c]ovariational reasoning, entailing the individuals’ conceptions of change and variation, is a 

critical form of mathematical reasoning for secondary students to use when studying the 

gatekeeping concepts of rate and function”, or again “[a]lthough covariational reasoning can be 

challenging even for successful university students […], secondary students can engage in 

covariational reasoning” (p. 852). 

Concerning the design of activities aiming at promoting students’ covariational reasoning, 

researchers have often designed tasks in dynamic computer environments displaying 

animations and graphs (Ellis et al., 2016; Johnson, 2013; Saldanha & Thompson, 1998), but 

literature reveals that students working on such tasks may not show the intended reasoning as 

in designers’ intentions (Carlson et a., 2002). In particular, Moore et al. (2013) suggest providing 

students opportunities to interpret and represent quantities using different axes in Cartesian 

representation. Finally, “[i]f students only view features of dynamic computer environments and 

related tasks as physical features, rather than attributes possible to measure, it can inhibit their 

development of more complex forms of mathematical reasoning” (Johnson et al., 2017, p. 862). 

Recently, even more sophisticated technologies than the ones previously quoted are employed 

and studied so to support the conceptualization of the dynamic aspects involved in tasks of 

mathematical modelling: one of these technologies is the Augmented Reality, an environment 

that can help to bring together both continuous dynamic features of a real phenomenon and its 

mathematical representations.  A relevant study in which Augmented Reality is used to engage 

students in covariational reasoning is Swidan, Schacht et al. (2019).  

Some examples related to the instrumentation of the concepts of variables and parameters with 

different approaches are proposed in Section 16.2.   

4.1 A DIFFERENT APPROACH TO THE INSTRUMENTATION OF COVARIATION8  

Despite the definition of instrumented covariation and all its features presented in broad terms 

in the previous paragraph and that we are going to deepen during the development of this 

 
8 We would like to thank Prof. Nathalie Sinclair for sharing with us her point of view about this issue and suggesting 
us interesting insights.  
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research study, a different approach to instrumentation could be grasped from the already 

existing literature. Past times mathematical activities related to covariational reasoning have 

always been performed just adopting the tools available at the time, meaning pencil and paper 

or computer. In both cases, students had the chance to interact only through one single input 

(the pen or the mouse pointer) which nowadays seems really limiting at least in a task involving 

covariational reasoning where, by definition, it is required to coordinate simultaneously the 

values of two different quantities. The remarkable technological developments of the last 

decades, such as touchscreen tablets, are bringing sensorimotor interaction back into 

mathematics learning activities and offer today some novelty approaches that long ago we could 

not have expected. Research in Mathematics Education offers some interesting examples of a 

concrete form of instrumentation of certain mathematical reasoning processes achieved not 

only using a technological support but also using hands and their movements so to directly 

interact with the technology and perceive on a bodily-sensorial level the mathematical process 

that is instrumented. If we wanted to distinguish this approach to the interpretation previously 

presented, we could speak of an embodied instrumented covariation. Some examples are 

presented in the following lines.  

A first one is described by Abrahamson and Sánchez-García (2016) and consists in the use of the 

Mathematical Imagery Trainer for Proportion (MIT-P). The MIT-P set at a certain ratio, for 

instance at a 1:2 ratio, displays a green background, meaning a favorable sensory stimulus, when 

the student positions the right hand twice as high along the monitor as the left hand (see                                          

Figure 2) and a red stimulus when the hands position is incorrect.  

A second example is provided by some software applications (apps) that exploit affordances of 

multi-touch devices for fostering the learning of certain mathematical concepts: some 

emblematic studies in this sense are that by Bairral and Arzarello (2015) exploring students’ 

geometrical reasoning using a free online touch Device, the Geometric Constructer (GC) 

software, and that by Sinclair and Ferrara (2021) in which primary school students experience 

the concepts of numbers and quantities in a Digital Multitouch Environment, i.e., using a multi-

touch iPad application called TouchCounts (see Figure 3). 

Figure 2 - Schematic description of a possible student’s 
interaction with MIT-P: hands are positioned correctly thus 
the screen is green. It becomes red when hands are 
positioned incorrectly 
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Figure 3 – A screen of the TouchCounts application 
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5 RESEARCH QUESTIONS: A PRELIMINARY FORMULATION 

The main issue of this study is the investigation of students’ understanding of the covariation 

among magnitudes involved in the modelling of real phenomena. In 2017 a first teaching 

experiment was conducted in an Italian 9th grade classroom. The main purpose of the 

experiment was about the so-called Galileo experiment (Galileo, 1638), a ball running along an 

inclined plane, in order to model the law of the motion with the support of technological tools. 

The analysis of the classroom discussion revealed some unexpected ways of covariational 

reasoning: students tried not only to covary the main variables, time (t) and distance (s), but also 

to understand how the distance-time graph changed according to the inclination of the plane. 

These two forms of covariations manifested in a double way of reading the formula of the law of 

the motion s= k ∙ t2: the first order is the s-t covariation, the second-order covariation between 

(s,t) graph and the parameter k depending on the angle of inclination of the plane. It seemed to 

us that this aspect does not completely fit with the framework of covariation developed by 

Thompson and Carlson (2017). The results of this work, partially illustrated in Arzarello (2019), 

specifically guided us to the formulation of a preliminary definition of this more complex form 

of covariational reasoning, second-order covariation, and that seems to consist in grasping a 

further relationship in a family of invariant relations among two or more varying quantities, where 

this family is characterized by the presence of one or more parameters. This preliminary definition 

will be validated and revised thanks to the results from three teaching experiments, one of which 

is the one quoted before: we have reanalyzed it in detail in view of our research questions and 

the adopted theoretical framework.   

This second-order covariation is not the only contribution that seems to widen the already 

existing framework of covariation: in Section 2.1 we already introduced metavariation, a 

construct that seems to address covariation from the tasks design point of view but has some 

points in common with our vision of second-order covariation. Moreover, in Swidan, Sabena and 

Arzarello (2020), the authors speak of covariation of a covariation when students consider 

functions globally and focus on how the changes in one graph are linked to the changes in the 

graph of its slope, and conversely. Also, this way of reasoning covariationally reveals to be more 

cognitively demanding than the one presented in the six levels taxonomy and differs from our 

second-order covariation. Hence, this is a contribution worthy to be kept into account in the 

perspective of a theoretical enlargement that aims at coherently including more complex forms 
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of covariational reasoning and opens up to the possibility of existence of other orders of 

covariation. 

The scientific relevance of covariation as a research topic, the main research gaps we identified 

in the literature and the numerous standpoints from which covariation can be addressed have 

already been widely discussed in the Introduction. All these considerations and findings led us 

to a preliminary formulation of some research questions that can be condensed as follows:  

1. How can the theoretical framework of covariational reasoning be enriched to better explicit 

the relationships among a plurality of variables involved in a physical-mathematical problem? 

2. Is it possible to identify some gestural, linguistic, and semiotic markers that connote the way 

students can enter into each of the levels of first- and, possibly, second-order covariation?  

3. Which could be the role of the teacher in enhancing covariational reasoning in her school 

practices? 

These questions will be refined and reformulated in the Chapter 7 in light of the theoretical 

lenses that we are going to make explicit in the next chapter.  
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6 THEORETICAL FRAMEWORKS 
In order to investigate covariational reasoning from various standpoints, we are going to 

adopt various theoretical lenses and as a consequence, networking of theories becomes essential 

to elaborate a coherent framework. In this chapter, after having recalled the main features of the 

networking of theories (6.1), we are going to describe in detail the multiple theoretical lenses 

adopted in this study: the semiotic bundle (6.2), the commognition (6.3), the conceptual blending 

(6.4) and the adaptive teaching (6.5). The networking of all these theoretical contributions will 

be performed using mainly the strategy of coordinating them to look at the complex 

phenomenon of covariation from different educational points of view. The elements of 

commonalities and dissimilarities between the different lenses will be pointed out jointly with 

their specific use so to answer to research goals.   

6.1 NETWORKING OF THEORIES 

The complexity of the teaching-learning processes developing within the mathematics 

classroom and the variety of research purposes guiding our study require suitable theoretical 

frameworks to give justice to the multi-faceted phenomenon under the lens of analysis and a 

suitable methodological tool should be drawn up to respond to research aims. 

Literature in Mathematics Education offers different definitions of theory but in the following we 

are going to intend it according to Radford’s approach (2008), i.e., a way to produce 

understanding and modes of actions based on: a system of principles P characterized by a strong 

relationship between many of its elements; a methodology M characterized by operability and 

coherence with respect to the principles, and some research questions Q. Hence theories can be 

identified as a triplet (P, M, Q): they bring the footprint of the initial research questions they tried 

to answer, but then they emerge as response to specific problems.  

The diversity of theories characterizing the educational research is a source of richness but in 

order to allow a comparison between these theoretical frameworks a metalanguage is required, 

enabling to speak of commonalities and differences between the theoretical lenses. According to 

Radford (2008), this semiotic environment can be identified in Lotman’s semiosphere (1990): it 

is a multi-cultural space necessary to the existence and functioning of languages; outside of the 

semiosphere there can be neither communication nor language. It is a space where all the 

existing theories are embedded and allows them to dialogue with each other. It is within this 
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semiotic space that is possible realize a networking of two or more theories (Prediger et al., 2008): 

this term denotes a collection of “research practices that aim[s] at creating a dialogue and 

establishing relationships between parts of theoretical approaches while respecting the identity 

of the different approaches” (Bikner-Ahsbahs & Prediger, 2014, p. 118). There are many 

different ways and degrees to bring theoretical approaches into dialogue (Prediger et al., 2008) 

but we are going to recall only four main strategies:  

- Coordinating and combining are the strategies “mostly used for a networked 

understanding of an empirical phenomenon or a piece of data” (Prediger et al., 2008, p. 

172). Whereas combining theories can be intended as a juxtaposition of theories and does 

not require a full compatibility of them, coordinating theories instead refers to the use of 

analytical elements of different theories so to investigate specific research problem; 

- Comparing and contrasting are the most widely used strategies and the difference 

between them is subtle. While comparing theories means highlighting in a neutral way 

both commonalities and dissimilarities between strategies, contrasting them consists in 

underlining mainly the differences between them.  

6.2 THE SEMIOTIC BUNDLE 

One suitable semiotic lens we are going to adopt in this study is that of the semiotic bundle. 

Introduced by Arzarello (2006), it is a good tool to grasp the interplay within the semiotic 

activities, productions, and interactions in the mathematics classroom. It arises as  

a system of signs […] that is produced by one or more interacting subjects and that evolves in time. 

Typically, a semiotic bundle is made of the signs that are produced by a student or by a group of 

students while solving a problem and/or discussing a mathematical question. Possibly, the teacher too 

participates in this production, and so the semiotic bundle may include also the signs produced by the 

teacher. (Arzarello et al., 2009, p. 100) 

In particular, the signs can be produced by artefacts that are used during the interactions, from 

old ruler and compass to more sophisticated technological devices, and these artefacts are 

included in the learning environment. Typically, the semiotic bundle embraces students’ and 

teacher’s perceptuo-motor activities and productions: from language (utterances, written texts, 

etc.) and extra-linguistic modes of expression (gestures and glances) to different types of 

inscriptions (drawings, sketches, graphs, etc.), that is all the semiotic resources produced or 

acted on to think and communicate in the classroom environment. The semiotic bundle, 

constituted by both a collection of semiotic components and their mutual relations, is a dynamic 



 

31 
 

structure which changes in time because of the semiotic activities of the subjects, and allows to 

describe these multimodal semiotic activities in a holistic way. Hence “the semiotic bundle 

considers the semiotic resources in a unifying analysis tool” (Bikner-Ahsbahs et al., 2015, p. 168). 

Moreover, the semiotic bundle dynamics can be analyzed in two different and complementary 

ways: a synchronic analysis, which considers the relationships among different semiotic 

resources simultaneously in a specific moment in time; a diachronic analysis, focusing on the 

evolution of signs and of their relationships over time. “Together, synchronic and diachronic 

analysis allow us to foreground the roles that the different types of signs (gestures, speech, 

inscriptions) play in students’ cognitive processes” (Arzarello et al., 2009, p. 101).  

6.2.1 The importance of gestures 

It is well-established in the literature that cognitive processes of students emerging during 

mathematical activities manifest not only through oral productions. Indeed, we can adopt 

multiple modes to communicate meanings to others (words, sounds, sketches, gestures) and 

these modes typically are active together in an integrated way: the term multimodality addresses 

exactly this variety of modalities of communication (Kress, 2004).  

Gestures are relevant both from a communicational and a cognitive perspective (Goldin-

Meadow, 2003; McNeill, 1992). Gestures belong to the wide world of nonverbal communication, 

and they are defined by McNeill (1992) as “movements of the hands and arms that we see when 

people talk” (p. 1). The author also identifies four dimensions of gestures: (1) deictic, used in 

concrete or abstract pointing; (2) iconic or representational, arm or hand movements with a 

perceptual relation with the concrete object that is represented; (3) metaphoric, similar to iconic 

gestures but referring to abstract objects and (4) beats, up and down flicks of the hand or tapping 

motions. These dimensions should be seen as overlapping, rather than discrete categories: “Most 

gestures are multifaceted: iconicity is combined with deixis, deixis is combined with 

metaphoricity, and so forth. Rather than categories we should think in terms of dimensions” 

(McNeill, 1992, p. 38). In addition, we consider another overlapping dimension, that of writing 

gestures (Shein, 2012; Alibali & Nathan, 2007), generating indelible marks on figural 

representations. Gestures may also assume the following functions (Roth, 2001): narrative 

function (especially for iconic and metaphoric gestures), when gestures connect the gestural and 

verbal narrative to the pictorial background; interactive function (concerning beats) for those 

gestures that serve to regulate the rhythm of the speech or grounding function (in particular 

deictic ones) when gestures allow to relate mental structures to external objects (Nathan, 2008; 
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Roth, 2001). Moreover, research has shown how gestures and speech work together to express 

meanings (Kendon, 2004) and the way in which they express largely non-overlapping semantic 

information have been referred to with different terminology as “complementary” (McNeill, 

1992) or “mismatching” (Church & Goldin-Meadow, 1986). In this work, we are going to focus in 

particular on the detection of non-redundant gestures with respect to speech (Alibali et al., 

2000), that is on gestures that communicate additional information with respect to those 

expressed orally. 

Concerning significant glances, Kendon (1967) identified three main social functions of gazes 

during a conversation and in particular focusing on the gazes of speakers toward their listeners. 

Gaze patterns analyzed send signals to another person with a regulatory, monitoring, or 

expressive intent but they are mainly sent without awareness. In this study we are going to focus 

on the features and functions of gazes emerging during face-to-face interactions where both 

subjects involved can perceive and signal information. According to the cognitive model of 

Interpersonal Gaze Processing (IGP) developed by Cañigueral and Hamilton (2019) and focusing 

specifically on social interactions, a gaze may assume an active sensing function when the 

movement of eyes aims to gain useful information from the environment, or a social signaling 

function when expressing a clear communicative intent to others. In particular the IGP model 

distinguishes the behavior of gazes depending on the kind of social stimuli, i.e., when the social 

stimulus is an inanimate object (picture or video) or a real person, but we will not dwell on this 

distinction.  

6.2.2 The semiotic game  

The investigation through the semiotic bundle will also allow us to enter into what in the 

literature is called semiotic game9 (Arzarello & Paola, 2007; Arzarello et al., 2009), a specific 

aspect of teacher’s revoicing (O'Connor & Michaels, 1996). The semiotic games are typical 

communication strategies among subjects, who share the same semiotic resources in a specific 

situation (Arzarello & Paola, 2007). In a semiotic game the teacher exploits the potentialities 

expressed by semiotic resources adopted by the students to enhance the construction of 

mathematical knowledge and scientifically shared meanings. For instance, a semiotic game 

 
9 The expression semiotic game may recall the language-game introduced by Wittgenstein in his Philosophical 
Investigations (1953). It is a philosophical concept referring to simple examples of language use and the actions into 
which the language is woven. Wittgenstein argued that a word or even a sentence has meaning only as a result of 
the "rule" of the "game" being played. 
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happens when students communicate their thoughts through two different semiotic channels: 

speech and gestures. Typically, the speech is confused, but the gestures in their iconic-

metaphorical dimension suggest to the teacher that students are near to the right understanding. 

Hence the teacher imitates the students’ gestures but suitably changes their utterances dressing 

their gesture with appropriate linguistic expressions and explanations (Arzarello & Paola, 2007). 

Teacher’s interventions are imitative-based: the teacher imitates the student’s gestures and 

accompanies them with certain scientific meanings, in order that in the following, the student 

will be able to imitate the teacher’s words.  

Such semiotic games can develop if the students produce something meaningful with respect to 

the problem at hand: words, gestures, drawings, inscriptions, etc. It is apt for the teacher to seize 

these moments to enact the semiotic game. Even a vague gesture of the students can really 

indicate a certain comprehension level, even when students have not yet the words to express 

themselves at this level. In a Vygotskian frame, the semiotic game is useful for the student’s 

cognitive development, if student-teacher interactions are developing in a suitable zone of 

proximal development (ZPD) for a certain concept (Vygotsky, 1978). As pointed out by Radford 

(2010, p. 3), “[t]he ZPD is not a kind of well-delimited and rigid region that belongs to one 

particular student but a social, complex system in motion with evolving tensions” between the 

teacher and the students. Hence this complex relationship must be built in the classroom 

through the semiotic interactions between the teacher, the students, and the instruments. It is 

within the semiotic bundle that semiotic games can arise (Arzarello et al., 2009). Semiotic games 

can happen and develop because of joint teacher’s and students’ semiotic productions and 

productive interactions. Both are the actors of a semiotic game, which is a typical interactional 

construct that could not exist without the ‘tuned’ contribution of all its actors, teacher and 

students. 

6.2.3 The role of artefacts 

The semiotic bundle will also allow to properly analyze the relationships with the artefacts used 

in our teaching experiments and contributing to the development of teaching-learning 

processes. 

In particular, we will underline two different modalities of student-artefact interactions that can 

be observed: an ascending modality, when students use the tool with an explorative approach, 

looking for relationships and mathematical properties; a descending modality emerges when the 

students already have a conjecture in mind and use the tool to verify it, searching for data 
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supporting their hypothesis. These two different cognitive approaches were identified by Saada-

Robert (1989) regarding the control schemes activated by the subject when facing a given 

problematic situation. Moreover, the students’ interactions with different artefacts possibly 

contribute to produce a synergy or a conflict between them. The notion of synergy between 

artefacts has been introduced and studied by Faggiano, Montone, and Mariotti (2018): there is 

synergy when the use of different artefacts “can foster the integration of different and 

complementary meanings providing a rich support to the development of the expected 

mathematical meaning”, namely “the combined, intentional and controlled use of the […] 

artefacts may develop a synergy, so that each activity enhances the potential of the other[s]” (p. 

1).  We speak of conflict between artefacts, when the use of different artefacts to face the same 

situation fosters different, not converging, or even apparently contradictory meanings for the 

situation. The term conflict has here an intuitive meaning and has no epistemic connotation: in 

a sense, it is the opposite of synergy.  

What we call instrumented covariation will be the result of an evolution, where all the 

components of the semiotic bundle model prove essential for students’ knowledge formation. 

6.3 THE THEORY OF COMMOGNITION 

Given the importance of multimodal aspects for our analysis, including the communicational 

features of the teaching-learning process and the purpose to explore the evolution from first-

order of covariation towards second-order of reasoning, we retain suitable that the lens of 

commognition, which perfectly fits with the Vygotskian basis of the semiotic bundle, could 

contribute to a deeper analysis of some discursive elements highlighting the progress of the 

mathematical modelling activity in relation to covariational reasoning.  

According to the commognitive perspective, which refuses a dualist vision of learning in favor of 

a communicative approach, mathematics is conceived as a historically established discourse and 

learning mathematics means becoming a participant in this specific discursive activity (Sfard, 

2008). One of the peculiar aspects of the mathematical discourse lies in its autopoietic nature: 

mathematics creates all the elements of its discourse and the process of construction of new 

mathematical objects is called objectification (Sfard, 2020). Four features are relevant to 

consider a discourse as “mathematical”: keywords, visual mediators that are visible objects that 

are operated upon as a part of the process of communication such as symbolic artefacts, 

narratives, i.e., any sequence of utterances that is “a description of objects, of relations between 
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objects, or of processes with or by objects” (Sfard, 2008, p.134), and finally repetitive patterns 

characteristic of the given discourse called routines. 

Considering knowledge as a multimodal form of communication means, from the research 

perspective, studying the processes of development and evolution of mathematical discourses 

(Sfard, 2020). The learning is intended as a social and collective process more than an individual 

one and it happens through three different degrees of discursive involvement: explorations, tasks 

requiring a reformulation of a specific kind of mathematical narrative; routines, action patterns 

with mathematical objects reflecting human tendency to repetitions and rituals, recapitulation 

of actions of previous performers process taking place thanks to the interactions with others. 

Moreover, learning can happen on two distinct levels: on an object-level, it consists in the 

enlargement of already existing narratives about familiar mathematical objects; on a meta-level, 

learning means subsuming an old discourse into a new one changing the meta-rules of the 

discourse. If object-level learning can be led simply by the learner’s interest in the outcome, the 

meta-level learning requires the intervention of a participant, recognized as an expert by all 

participants in the discourse, who has the fundamental role to foster the overcoming of the 

encounter with an incommensurable discourse, what is called commognitive conflict. It 

originates from apparently incompatible narratives: for instance, on a semantic level, that 

incommensurability can be generated by a same word intended and used in different ways. The 

commognitive conflict is resolved by a rational argumentation and the gradual acceptance of 

others’ discourses.  

Many studies adopting a commognitive approach are focused on the detection of the 

developmental levels, whether ontogenetic or historical, of mathematical discourses. Caspi and 

Sfard (2012) worked on the levels of elementary algebra, conceived as a meta-discourse of 

arithmetic; Kim et al. (2012) investigated the learning about infinity and limits comparing data 

by Korean and American students. These studies are conducted in the perspective that 

mathematical discourse annexes its own successive meta-discourses, and the process of growth 

results in a “hierarchy of increasingly complex, increasingly reified, and possibly mutually 

incommensurable discourses on a specific mathematical topic” (Kim et al., 2012, p. 89). In 

accordance with those studies, we will direct our efforts to the identification of a hierarchy of 

levels of the mathematical discourse concerning the conceptualization and modelling of real 

phenomena.  

Finally, Sfard and Kieran (2001) developed a powerful tool that reveals helpful to evaluate the 

real interest of the interlocutors in creating a dialogue with their partners. It is the interactivity 
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flowchart: it represents as arrows the interactions between the different subjects involved in a 

communication. The analysis of the arrows, which can represent reactive or proactive 

interactions, allows to understand if the subjects are really aiming at creating a communicative 

channel with their partners or their communicative efforts are more directed to a private 

channel, that is a communication with themselves. 

It is important to underline that the two used theoretical lenses presented until now, semiotic 

bundle and commognition, are coherent each other, since both are based on similar founding 

principles, and consider communication as “the glue that holds human collectives together” 

(Sfard, 2008, p. 81). The coordination of these two frameworks is effective because on the one 

hand the semiotic bundle is a coherent extension of the commognitive approach that allows to 

highlight some components, which are only hinted in Sfard’s approach. In a sense, the semiotic 

bundle model is a concrete instantiation of what Sfard calls signifiers’ realizations in 

mathematical discourse. Among what she calls visual modalities of these signifiers’ realizations, 

in contraposition to spoken and written words, we also find the gestural component, as well as 

what we called inscriptions. But let us sketch a subtle difference between the two models. One 

of the basic assumptions for the semiotic bundle model is the unity between its three main 

components (speech, gestures, inscriptions); in this sense it broadens McNeill’s claim (1992) 

that “gesture and the spoken utterance [are] different sides of a single underlying mental 

process” (p. 1), namely that “gesture and language are one system” (p. 2). In fact, “the unitary 

nature of processes within the semiotic bundle shows that under mental processes, there is a 

richer and more complex system” (Arzarello et al., 2009, p. 108).  

In the commognitive approach, even if the different modalities of signifiers’ realizations are 

acknowledged, a form of differentiation remains between symbolic, basically verbal and 

sequential means of representation, and the visual ones, e.g., gestures:   

The symbolic means, on the other hand, are basically verbal and thus sequential and as such exert 

greater demands on one’s memory. And yet, what is lost in simplicity is gained in generalizability and 

applicability. The process-object duality of symbolic mediators is a basis for compression and the 

subsequent extension of mathematical discourse, and it renders this discourse independent of 

external, situation-specific visual means. All this ensures a very wide applicability of the discourse. 

(Sfard, 2008, p. 162) 

On the other hand, the added value of commognition to the semiotic bundle, at least 

according to our point of view, can be identified in the relevance attributed to interactions 

between subjects involved that further remarks the social aspects of the process of learning 
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and makes them visible thanks to the interaction flowchart. Moreover, the commognitive 

framework puts the spotlights on the mathematical discourse and suggests which elements 

should be pinpointed for both a punctual and holistic analysis.  

6.4 CONCEPTUAL BLENDING 

During the last of the three teaching experimentations that we are going to present in this 

research, the need for a new theoretical lens emerged. This necessity was motivated by the 

inability to fully describe from a cognitive standpoint students’ forms of reasoning, especially 

when dealing with more than one representation of the same phenomenon. These findings led 

us to consider introducing conceptual integration. Called also conceptual blending, it is a mental 

operation which is essential for the construction of meaning. It is “an invisible and unconscious 

activity involved in every aspect of human life” (Fauconnier & Turner, 2002, p. 18). The 

functioning of the conceptual integration can be described through a network of relationships 

(see Figure 4), meaning a schematic diagram representing four mental spaces and their related 

interconnections. The mental spaces, represented by circles, are small conceptual packets that 

we construct while thinking and talking so to understand and act in relation to what is said; 

elements in the mental spaces are represented by points or icons, and their connections are 

represented by lines. “In a neural interpretation of these cognitive processes, mental spaces are 

sets of activated neuronal assemblies, and the lines between elements correspond to 

coactivation-bindings of a certain kind” (Fauconnier & Turner, 2002, p. 40). The four mental 

spaces characterizing the conceptual integration network are:  

- Input spaces, at least two of them, containing the input elements of the two spaces which 

are going to be blended;  

- Cross-space mapping, connecting counterparts in the input mental spaces; 

- Generic space, mapping onto each of the inputs and containing what the inputs have in 

common. “A given element in the generic space maps onto paired counterparts in the two 

inputs spaces” (Fauconnier & Turner, 2002, p. 47); 

- Blended space, also called the blend, containing the projection of the structure from the 

two input mental spaces. A phenomenon of selective projection verifies because not all 

the elements contained in the inputs are projected onto the blend. The blended space is 

related to the generic space since it contains the generic structure of the generic space, 

but also a more complex and specific one.  
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The emergent structure of the blend is not copied from the inputs but is obtained through 

three different mental operations:  

- Composition of projections from the inputs so to create relations that do not exist in the 

separate inputs;  

- Completion that brings additional structure to the blend. It is the most basic kind of 

recruitment of background knowledge and structure that are brought into the blend 

unconsciously. It is based on frames and scenarios recruited independently; 

- Elaboration of the blend is obtained by treating it as a simulation and running it 

imaginatively according to the principles established for the blend.  

 

Figure 4 – Diagram showing the functioning of conceptual network integration 

The conceptual integration network presented until now is a minimal diagram: blending 

networks actually “can have several input spaces and even multiple blended spaces” 

(Fauconnier & Turner, 2002, p. 47). According to this theoretical lens, blending knowledge in 

different mental spaces is the way in which students make sense of new information. We would 

like to quote a few interesting studies valuing this framework: for instance, Apkarian and 

colleagues (2019) used conceptual blending to reveal the processes and structure of students’ 

reasoning when dealing with the Sierpinski triangle. During their analysis, they leveraged on the 

three constituent elements of blending, and this enabled them to grasp and emphasize students’ 

unusual ideas when reasoning about complex mathematical concepts. A less recent contribution 

applied to physics is the one by Hu and Rebello (2013) who made a significant study analyzing 

in detail a physics problem on resistance: adopting the tool of conceptual blending, they 

investigated how students bring together specific information to set up mathematical integrals 
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in physics and so how they blend knowledge from the domains of calculus and physics. This kind 

of analysis led the authors to better understand students’ difficulties on this topic.  

The presence of blends is typically revealed by the linguistic forms employed and in this sense, 

conceptual blending seems to be a suitable lens to shed light on the inputs provided by the 

various representations adopted and to grasp how they are blended in students’ reasoning. This 

framework, with respect to the semiotic bundle and commognition, works as a magnifying lens 

on the verbal component that enables to see the input spaces of knowledge and the new 

emerging blends revealing some forms of covariational reasoning. Indeed, its main contribution 

from an analytical point of view mainly resides on the instrumentation level: it will help us to 

evaluate the influence and specifically the benefits or disadvantages coming from the 

employment of several representations. This kind of analysis will emerge predominantly in all 

those aspects of classroom discussions related to the mathematical discourse.  

6.5 ADAPTIVE TEACHING 

In order to reach individual students' cognitive necessities for prompting covariational 

reasoning, teachers should resort to adaptive instruction that is specifically geared to meet the 

needs of the individually different students (Gallagher et al., 2020). Adaptive instruction is an 

ongoing process in which teachers continuously respond to interactions observed in the 

classroom, rather than following a predetermined lesson plan with standardized materials.  

Helping students meet their individual learning needs requires adaptive teachers to be 

proficient in a range of practices (e.g., asking useful questions, requesting clarifications, 

facilitating class discussions). The adaptive instruction featured in this study is oriented to a 

specific, and particularly challenging content, which adds an additional layer to the complexity 

of the instruction process. 

The idea of adaptive instruction is long standing in the literature. Dewey, in his 1902 essay, Child 

and Curriculum, expressed his concerns about the current emphasis on a single kind of 

curriculum development that produced a uniform, inflexible sequence of instruction that 

ignored or minimized the child’s individual peculiarities, whims, and experiences. Following 

Dewey, Wang and Lindvall (1984) defined adaptive instruction as “an educational approach that 

incorporates alternative procedures and strategies for instruction and resource utilization and 

has the built-in flexibility to permit students to take various routes to, and amounts of time for, 

learning” (p. 161). Corno and Snow (1986) defined adaptive instruction as instructional 
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approaches and techniques that are geared to meet the needs of individually different students. 

In a similar way, Park and Lee (2003) described adaptive instruction as “educational 

interventions aimed at effectively accommodating individual differences in students while 

helping each student develop the knowledge and skills required to learn a task” (p. 651). 

Although several definitions of adaptive instruction exist in the literature, the common thread of 

these theoretical considerations is that the instruction inside the classroom should be flexible 

enough to meet the student’s specific learning needs.  

Researchers of adaptive instruction mainly distinguish between two types of adaptiveness: 

macro-adaptations and micro-adaptations (Corno, 2008; Randi, & Corno, 2005). Macro-

adaptations refer to the teacher's efforts outside the educational setting to redesign instructional 

and curricular plans in light of new information about students learning. Micro-

adaptations occur when teachers flexibly respond to students’ demands in the moment of 

teaching. More recently, other scholars (e.g., Maskiewicz & Winters, 2012, Vaughn & Parsons, 

2013) have proposed that adaptive teaching is also demonstrated through responsive guidance, 

where a teacher “works first to engage students in the pursuit of [their authentic questions], and 

then to support them in their pursuit in ways that afford progress toward canonical practices 

and ideas” (Hammer et al., 2012, p. 55). In this form, teachers seek out the queries of their 

students, and then adaptively constructs learning activities that address these student interests 

and curiosities, eventually tying them back to broader scientific concepts. 

For teachers to develop adaptive instruction, literature suggests that they need a strong 

pedagogical and content knowledge, a vision of ideal teaching, and a deep understanding of and 

familiarity with their students (Fairbanks et al., 2010). This means that teachers need to 

constantly learn about who their students are moment-to-moment, what their students can and 

want to do with guidance from their teacher, and how and what their students think about the 

content. Thus, adaptive instruction requires teachers to learn continually about students and to 

develop ways and strategies to teach them. Not only, adaptive instruction is crucial in the 

teaching process to foster students’ learning especially when inquiry-based learning is 

implemented in the classroom, where learning is both an individual and a social process, 

including work by individual students, work by small groups of students, and teacher-led whole 

classroom discussions.  

Gallagher and colleagues (2020), in a review of the literature, found that mathematics educations 

researchers have focused mainly on these aspects related to adaptive teaching: (a) how curricula 
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can serve as stimuli aiding adaptive teaching practices (e.g., Choppin, 2011; van Es, 2012)); (b) 

the primary factors to which adaptive teachers respond - namely stimuli from students, the 

learning trajectory, or their own actions (e.g., Scherrer & Stein, 2013; Wager, 2014; Weiland et 

al., 2014); and (c) additional teacher responses, including orchestrating classroom discourse, 

modifying curricular materials, or selecting teaching aids (Huang & Li, 2012; van Es & Conroy, 

2009). Adaptive instruction on the micro level of teacher-student interaction has rarely been 

investigated with respect to students’ content-specific learning pathways or with respect to the 

utterances, gestures, and observations of the students (Jacobs & Empson, 2016). Less attention 

has been paid to the adaptive teaching oriented to a specific mathematical content. Even scanter 

attention has been paid to adaptive instruction of a specific content in a teaching situation based 

on digital technology, and to the teacher’s role in facilitating students’ evolution towards the 

understanding of a specific mathematical content.  

In this research, we try to address this gap in knowledge by examining a teacher adaptive 

instruction while using several artefacts and focusing on the development of a specific content, 

meaning covariational reasoning, adding an additional layer to the complexity of the instruction 

process. We do believe that understanding how teachers interact with students to adapt their 

instruction to teach complex mathematical concepts carries important theoretical, 

methodological, and pedagogical implications.  

In Section 9.2 we are going to show the reasons why the teacher involved in this research 

represents a good example to speak of adaptive teaching and lately, over the three teaching 

experiments, some adaptive teaching strategies suitable to foster covariational reasoning within 

a digitally rich environment will be described and discussed. 
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7 RESEARCH QUESTIONS: DEFINITIVE FORMULATION 

In the Introduction (Chapter 1) we highlighted the recognized relevance of covariational 

reasoning for a deep understanding of many mathematical concepts and specifically its 

importance in modelling tasks; we underlined difficulties met by both students and teachers in 

secondary school when dealing with the teaching and learning of the complex concept of 

function, in particular when tasks enhance dynamic aspects requiring a covariational approach 

that goes beyond the static definition of function. Moreover, a strong revision of the already 

existing literature brought to light some contributions remarking that the framework of 

covariation finalized by Thompson and Carlson seems not enough to fully address the variety of 

reasoning’s displayed by students when working with functions. Starting from these 

observations and findings, we elaborated three teaching experiments involving modelling 

activities concerning classes of real phenomena to introduce students to families of functions 

characterized by the presence of parameters. This approach was supported by the use of suitable 

technological tools which can enhance covariational reasoning processes and help in 

appreciating the dynamic nature of functions.   

The theoretical framework elaborated and presented in the previous chapter consists of four 

different theoretical lenses: the semiotic bundle, the theory of commognition, conceptual 

blending, and adaptive teaching. We suitably networked those theories coordinating them and 

this clarified framework allows us to introduce a second and definitive formulation of the 

research questions of this study. We aim at deepening students’ understanding of covariation 

not only between variables, but also between variables and parameters, in the context of 

mathematical modelling of classes of real phenomena through the use of technology enhancing 

a dynamic approach; we are going to focus especially on students’ discursive and linguistic 

productions and on the teaching strategies that can foster covariational reasoning.   

In the following we give a specific formulation of the four research questions guiding our study, 

now addressing them through the theoretical lenses we have already introduced. 

7.1 RESEARCH QUESTION 1  

How can the Thompson and Carlson’s theoretical framework about covariation be enlarged so to 

encompass second-order covariation in a unique and coherent construct?  
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This first question reflects the main purpose of our research: it has a theoretical value that will 

be addressed throughout the entire study and will find an answer only at the end, considering 

from a global standpoint all the findings of this research. As outlined before, we aim at enlarging 

the already existing framework about covariation including not only the still under construction 

construct of second-order covariation, but also all the other hints coming from a revision of the 

literature and that do not fit completely the Thompson and Carlson hierarchy. We would like to 

extend a theorization based predominantly on a cognitive characterization, also to other 

standpoints, specifically the mathematical and didactical ones.  

7.2 RESEARCH QUESTION 2 

Is it possible to identify some levels connoting second-order covariation?  

As done in Thompson and Carlson (2017), we aim at identifying some levels connoting second-

order covariation: since we will mainly analyze classroom discussions and brief working group 

activities, and not individual interviews, we hypothesize that we will not be able to elaborate a 

rigorous taxonomy of cognitive levels but we aim at least at identifying some mathematical 

connotations, obviously determined by the mathematical context of our teaching experiments, 

in which second-order covariation manifests.  

7.3 RESEARCH QUESTION 3 

Which linguistic markers connote specifically each of the levels of students’ covariational reasoning? 

From a linguistic standpoint, we aim at conducting a strict analysis of the recurrent syntactical 

structures or lexical markers that can be associated to the different levels of covariational 

reasoning. Despite the limitations of a merely qualitative analysis restricted to a limited sample 

of students in a well-defined contest, this investigation could provide interesting insights on the 

way in which students express when reasoning covariationally.   

7.4 RESEARCH QUESTION 4 

Which levels characterizing the discourse about modelling of real phenomena can be distinguished 

and how do they relate to covariation?  

We are interested in investigating how the students’ emerging discourse about modelling of real 

phenomena manifests: we aim at classifying the different levels that can be recognized according 
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to a commognitive perspective and grasp how the use of various technological tools influences 

and manifests in these various levels of the mathematical discourse. Moreover, we would like to 

investigate how these levels relate to the evolution of students’ covariational reasoning. 

7.5 RESEARCH QUESTION 5 

Which adaptive teaching strategies does the teacher use to responsively guide the students to engage 

in covariational reasoning within classroom activities?  

Finally, with this last question, we would like to clarify which is the role of the teacher when 

dealing with classroom activities that involve covariational reasoning: adopting the definition 

by Maskiewicz and Winters (2012) who consider that adaptive teaching is demonstrated 

through responsive guidance, we aim at identifying some relevant adaptive teaching strategies 

that our expert teacher uses in her school practices and from which students benefit because 

these strategies help them in better explicating covariational reasoning. The identification of 

these strategies could be helpful also for other teachers because their adoption in their school 

practices could support students’ covariational processes.  

All these questions will be addressed in Chapters 10, 11 and 12 and will have a well formulated 

answer in Chapter 13. Moreover, Chapter 14 will contain some additional and preliminary 

results helpful to enrich the answer to research question 1.   
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8 METHODOLOGY  

8.1 TEACHING EXPERIMENTS: A QUALITATIVE RESEARCH 

The research presented in this dissertation has all the features of a qualitative study in the sense 

that its main goal is the discover and analysis of the meanings and interpretations elaborated by 

students (Gall et al., 1996) when dealing with tasks requiring covariational reasoning and 

specifically related to mathematical modelling situations. At the beginning of each teaching 

experiment (T.E.), we made a hypothetical planning of our experimentations and we 

implemented it in the classroom setting over a period of few weeks. During the implementation, 

we made careful observations about the efficacy of the original plan, and we used them to refine 

our planning along the way according to students’ reaction to the proposed activities. Our 

observations and the analysis of the collected data enabled us to gain insights on the students’ 

mathematical conceptualization of the administered tasks and to reflect on how teacher’s 

choices influenced students’ understanding. Despite the qualitative nature of our research, it 

displays many of the characteristics of a scientific research (Groth, 2010) and in particular:  

- The adoption of a conceptual framework originated by the networking of several 

theoretical lenses deeply presented in Chapter 6 and specifically: the semiotic bundle, 

commognition, conceptual blending, and adaptive instruction;  

- The direct and empirical observation of some specific and relevant research questions: 

their formulation and motivation have been illustrated in Chapter 7;  

- A rich description of the setting in which the study was carried out (see Section 9.3, and 

Chapters 10, 11, and 12);  

- A variety of qualitative data collected through classroom observations (video and audio 

recordings) and some interviews as described in the Data collection paragraphs and 

Section 8.4. 

Moreover, since we, as researchers, are not only investigating teachers’ attitude, but also 

theorizing about others’ (those of students and in some sense also of the teacher) cognitions 

related to covariation, we are contributing to the phenomenon we are analyzing: reflexivity, 

according to Steier’s definition (1995), means first of all to be aware that our involvement as 

researchers helps to create the behavior we wish to study. While we struggle with sense-making 

of others’ mathematical understanding, “[t]he images, goals, and intensions guiding [our] actions 
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appear explicitly in [our] image of another’s understanding, and [we] attempt to take those 

aspects of others’ experiences into account as [we] try to understand their realities” (Thompson, 

1995, p. 124). Reflexive research, as is our research, also implies that we can never capture our 

current understanding; at best we can capture where we have been, so “we always reflect 

retrospectively on our contributions to the phenomena of interest” (Thompson, 1995, p. 125). 

This explains why we felt the need to reformulate in a finer way our research questions during 

the study and why the preliminary definition of second-order covariation was partially revised 

and enriched during each of the teaching experiments but only at the end of the whole study we 

will be able to provide a coherent characterization. Furthermore, as already mentioned, it is only 

during the analysis of data from the third T.E. that we felt the need to introduce an additional 

theoretical lens. 

In addition to this point, we have to clearly state that the introduction of our enlarged framework 

about covariational reasoning presents many constraints related to the design and context of 

our research:  

- The context in which we investigate covariational reasoning is that of mathematical 

modelling intended as mathematical representation of classes of real phenomena;  

- We investigate the problem of covariational reasoning among quantities whose values 

are related by a formula which is something that Thompson and colleagues actually never 

dealt with, but recent studies have been elaborated in this area involving students of 

algebra and analysis courses (Frank, 2016); 

- The specific kind of instrumentation we propose in our teaching experiments deeply 

influences the path leading students to a full grasping of second-order covariation. 

8.2 DESIGN PRINCIPLES 

The three teaching experiments we designed as research group have as main topic the modelling 

of real phenomena describable through a mathematical formula and interpretable through 

various representations. The phenomena we chose to investigate locate in a perspective of 

multidisciplinariety, but the focus of the proposed tasks is always that of mathematical 

interpretation. Hence, the most suitable perspective to read these activities is that of 

mathematical modelling in the sense intended by Blum and Niss (1991).  The design of the 

activities proposed in our teaching experiments makes explicit use of various artefacts and 

technological supports which allow an instrumentation of covariational processes and that 
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constitute multiple external representations (MERs) of the same phenomenon of interest. The 

teacher has always been involved in designing all the tasks and in structuring the three 

experiments in their entirety: her wise experience in teaching has been a precious element in 

determining the time required for each of the activities proposed and in remodulating on the 

spot the requests of the students according to the trend of achievements and difficulties. 

8.2.1 Modelling 

Mathematical modelling has not a unique definition in Mathematics Education literature. 

According to the PISA mathematics framework, the mathematical modelling competence is 

intended as a lens onto the real world (Niss & Højgaard, 2019): mathematical models 

represent an ideal conceptualization of a real-life or scientific phenomenon; they are 

formulated in mathematical language and use a wide variety of mathematical tools and 

results. Moreover, summarizing Blum and Ferri (2009), mathematical modelling is a tool 

that: (a) helps students to better understand the world; (b) supports mathematics learning, 

understanding and motivation; (c) contributes to developing various mathematical 

competencies; and (d) contributes to an adequate picture of mathematics. From the 

didactical standpoint, many scholars and researchers have underlined the usefulness of 

modeling tasks for developing mathematical competencies in students (Zbiek & Conner, 

2006; Watson & Ohtani, 2015; Arcavi & Friedlander, 2018). Specifically, modeling physical 

phenomena can produce a useful joint pedagogical fulfillment of the inquiry-based 

epistemologies of science and mathematics: an interesting concrete didactical example of 

this approach is given by the Fibonacci Project (Harlen, 2012). Commenting this experience, 

Artigue and Blomhøj (2013) focus some features of this kind of approach to mathematics 

teaching-learning. Among them: the epistemological relevance of the questions from a 

mathematical perspective; the modelling dimension of the inquiry process; the experimental 

dimension of mathematics; the autonomy and responsibility given to students, from the 

formulation of questions to the production and validation of answers; the guiding role of the 

teacher and teacher–students dialogic interactions; the collaborative dimension of the 

inquiry process. Starting from this background, which clearly reveals the validity of 

introducing modelling in mathematics classroom, we share the vision of mathematical 

modelling emerging from Italian Indicazioni Nazionali (2010a), meaning as representation 

of the same class of real phenomena.  
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To describe the steps of mathematical modelling process, we need to refer to the modelling cycle 

(Figure 5). Inspired by Blum (1996), it consists of two parallel chambers, reality and 

mathematics, which comprise four other building blocks: real situation, which is the starting 

stage of the process, real world model, mathematical model, and results which are the numerical 

solution to a given problem. Other modelling cycles can be found in the literature (Sokolowski, 

2015), but they all begin with a real situation and conclude with an attained unique solution. The 

process of modelling is generally characterized by removing noise, meaning removing all those 

disturbing elements that could make challenging pass from the real situation to a mathematical 

model: a first cleaning phase happens when passing from the real situation to the scientific 

simulation or real world model; the second round happens during the transition toward the 

mathematical model which necessarily requires some simplifications so that numerical 

mathematical results are obtainable and computable. Therefore, a mathematical model may 

present a conceptualization that is understood to be an approximation or an intentional 

simplification of the object phenomenon. The passages previously described are underlying the 

arrows of the modelling cycle.  

Figure 5 – Mathematical modelling cycle inspired by Blum (1996) 

From the description of the tasks proposed in our teaching experiments, it will clearly emerge 

that we are not so rigorous in the application of the steps of the modelling cycle: in 2020 teaching 

experiment, students start with an experiment conducted in classroom under the guidance of 

their teacher and the results will reveal that it has a strong influence on students’ reasoning; in 

2017 and 2019 teaching experiments instead do not start from a real situation but rather from 

a simulation or a reproduction of the same through a video or a GeoGebra applet. In these cases, 
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the reproduction of the experiment in the physics laboratory was the last step of their modelling 

activities which allowed to verify the validity of their mathematical model.  

As we mentioned before, we locate these activities in a perspective of multidisciplinarity, but the 

disciplines other than mathematics, i.e., physics or science, just constitute the background where 

the modelling situations under investigation arose: the specific method of investigation of those 

subjects does not interfere in the experimentation. Students are guided to look at the contest 

and inputs always with the eyes of the mathematician. If we wanted to condense the aim of our 

teaching experiments in a few words, those of Dirac (1939) reveal highly appropriate:  

The mathematician plays a game in which he himself invents the rules while the physicist plays a game 

in which the rules are provided by Nature, but as time goes on it becomes increasingly evident that the 

rules which the mathematician finds interesting are the same as those which Nature has chosen. (P. A. 

M. Dirac, From Lecture delivered on presentation of the James Scott prize, (6 Feb 1939), 'The Relation 

Between Mathematics and Physics', printed in Proceedings of the Royal Society of Edinburgh (1938-

1939), 59, Part 2, 124) 

8.2.2 Multiple External Representations (MERs) 

The acronym MERs stands for Multiple External Representations, meaning different modalities 

of representations so to enhance the learning of the characterizing aspects of the analyzed 

phenomenon (Ainsworth, 1999). Multi-representational systems employ at least two 

representations, but commonly many more are available and typical multi-media system can 

display pictures, text, animations, sound, equations, and graphs. Combinations of 

representations can play at least three different functions in supporting learning (Ainsworth, 

2006): 

- Complementary function: when MERs complement each other, they do so because they 

differ either in the processes each supports or in the information each contains. By 

combining representations that differ in these ways, it is hoped that learners will benefit 

from the advantages of each of the individual representations;  

- Constrain interpretation: certain combinations of representations can help learning when 

one representation constrains the interpretation of a second representation; 

- Construct deeper understanding: multiple representations support the construction of 

deeper understanding when learners integrate information from MERs to achieve 

insights that would be difficult to achieve with only a single representation. 
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Literature shows that the use of multiple representations strongly supports the learning of 

mathematical concepts but, although multiple representations are beneficial to the learners, 

they are non-trivial for students to relate and identify connections (Ainsworth, 2008). In our 

T.E.s our teacher will play a crucial role in mediating between the involved representations. The 

theoretical lens of conceptual blending will enable us to analyze how MERs affect cognitively 

students’ reasoning: the analysis of students’ emerging mathematical discourses during 

classroom discussions or working group activities will help us to focus on the level of 

instrumentation and to observe how the blending of the inputs from the several MERs adopted 

will reveal and shape students’ covariational reasoning.  

The representations adopted in designing the proposed tasks have mainly a 

complementary/construct deeper understanding role, but all the details will be provided in the 

following sections while describing the specific tasks for each case study.  

8.2.3 Overview of the whole experimentation and general sequence of tasks 

The data presented and discussed in this study come from three teaching experiments. Now we 

are going to provide briefly some details concerning logistic information, the topic and goals of 

the tasks proposed:  

1) Teaching experiment 2017 (Chapter 10): it was conducted in a 9th grade classroom, and it was 

about leading students to construct the mathematical meaning of the quadratic function 

starting from the simulation of a real phenomenon that is a ball rolling along an inclined 

plane, the so-called Galileo experiment. Dr Osama Swidan, from the Ben-Gurion University of 

the Negev, while he was visiting fellow in Turin, deeply contributed to the experimentation, 

both with the design of the GeoGebra applet and with the logistic organization of video 

recordings. In this T.E., covariational reasoning processes were instrumented thanks to the 

use of two main artefacts: a video reproducing the experiment and a GeoGebra applet 

simulating it (Figure 6). The two artefacts provided complementary information that will be 

presented in detail in Section 10.1. 
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Figure 6 – The two main artefacts used in the 2017 T.E. instrumentation process 

2) Teaching experiment 2019 (Chapter 11): it took place in a 10th grade classroom, and it was a 

replication of the 2017 teaching experiment with some other additional tasks. The aim of the 

activities was to obtain the law of the motion of the ball running along an inclined plane and 

in particular: (a) obtain the formula describing the motion of the ball s = k ∙ t²; (b) explore the 

relationship between the angle of inclination of the plane and the (s, t) graph.  

The instrumentation of the modelling cycle in this case was made possible through four main 

artefacts: a video and a GeoGebra applet, as done in 2017 T.E., a second applet containing 

additional information (both numerical and analytical), and finally the reproduction of the 

experiment in the physics laboratory so to validate the mathematical model (Figure 7). The 

experiment constituted the point of arrival in this cycle and so, it was not so influent in 

students’ reasoning, but the comparison with reality enabled students to verify the validity 

of the mathematical results obtained from the video or the applets.  

 

Figure 7 – Instrumentation of 2019 T.E. modelling process 
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Globally, we can claim that the MERs adopted have a complementary role when providing 

additional information, also on a different semiotic register, and help to construct a deeper 

understanding when enabling to get in touch with different aspects of the phenomenon under 

investigation. 

3) Teaching experiment 2020 (Chapter 12): it was conducted in a 11th grade classroom,  the same 

of the previous teaching experiment, and had three main goals: (a) investigating the 

relationship between humidity and temperature; (b) being able to read and interpret the 

psychrometric chart 10  in order to explain real phenomena concerning temperature and 

humidity; (c) distinguishing the role of variables and parameters in reading charts. Even in 

this case, the instrumentation of the modelling process and covariational reasoning is 

supported by four main artefacts: a classroom experiment, a real psychrometric chart and 

two GeoGebra applets (Figure 8). In this case the classroom experiment constituted the 

starting point of the whole modelling activity and, as the data analysis will reveal, it was a 

solid reference point throughout the whole T.E., both in reading the psychrometric chart and 

the graphs showed in the GeoGebra environment: it constituted the element which enabled 

students to interpret the mathematical representations from a physical point of view. Even 

in this T.E., the MERs adopted have mainly a complementary or construct deeper 

understanding function. 

Figure 8 – Instrumentation of 2020 T.E. modelling process 

 
10 A psychrometric chart, or Carrier diagram, is a graph of the thermodynamic parameters of moist air at a constant 
pressure, often equated to an elevation relative to sea level. Although the principles of psychrometry apply to any 
physical system consisting of gas-vapor mixtures, the most common system of interest is the mixture of water vapor 
and air, because of its application in heating, ventilation, air-conditioning, and meteorology. 
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All the three projects have seen the involvement of the same classroom teacher, Silvia, both 

during the design phase and during the classroom implementation. Some details concerning her 

background formation and her teaching method will be presented in Chapter 9.  

From a methodological point of view, the teaching experiments consisted in an alternating of 

working group activities to teacher-led discussions. During the working group phase, students 

mainly focused on a single representation (video, GeoGebra applet, chart…) and, thanks to some 

instruction provided by a worksheet, students were guided through an exploratory phase 

consisting of the formulation of some hypotheses about the phenomenon under investigation. 

During the explorational phases the role of the teacher was primarily that of supervising 

students’ work and helping the groups in case of problems with the technology involved. Her 

role became determinant during classroom discussions, which always followed the working 

group activities and during which the teacher typically started the debate from the written 

answers of the different groups. Since the teacher had the chance to read the works before 

starting the discussion, the order in which answers were read and commented on was not casual 

but somehow planned in order to encourage the discussion, starting from the answers less rich 

of information to the ones more deepened and somehow near to the correct answer. We expect 

the teacher to start from reading the conjectures elaborated by the different groups and inviting 

the members of the group in explaining them. During the following phases, thanks to the 

complementary or additional information provided by the newly introduced artefact, students 

were asked to validate or falsify their previous assumptions and reformulate them in a more 

correct and complete form. 

8.3 THE TIMELINE: A TOOL TO DESCRIBE WHAT HAPPENS WITHIN THE 

MATHEMATICS CLASSROOM  

The theoretical lenses presented in Section 6.2 allow to properly explore the didactical 

phenomena that happen in the classroom but given their numerosity and complexity, a specific 

tool which can condense all the sought information and help the researchers in a proficient 

analysis is required. Starting from the theoretical perspective of the semiotic bundle, a suitable 

tool of analysis, called Timeline, has already been presented in Arzarello et al. (2010), in the 

Italian book Matematica: Non è solo questione di testa (2011), and in Sabena et al. (2012): it arises 

from the need to describe in detail the didactic situations and the dense intertwining of 

relationships between the variables present in the classroom. It is supposed to be used as a 

microanalysis tool which provides a global view on the different semiotic registers of the 
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semiotic bundle: speech, body, and inscriptions. In line with the characterization of the semiotic 

bundle construct, two kinds of analysis may be carried out with the Timeline: a diachronic one, 

focusing on the evolution of the various components over time; and a synchronic one, allowing 

to grasp the relations of the components in a specific moment in time. The Timeline, a table with 

many rows and columns, is both a powerful and complex tool of analysis and deserves some 

words to be spent in a detailed description of its various rows dedicated to the analysis of the 

specific aspects of the semiotic and discursive students’ and teachers’ productions, including 

their interactions with tools. Given the density of details, the Timeline is suitable for an accurate 

analysis of short episodes. However, one of the advantages of this tool is that it can be easily 

adapted and integrated to respond to different research purposes, for example also for a 

macroanalysis of longer episodes (Javorski & Potari, 2009). 

In this study, in order to satisfy our purposes of research, we propose a new version of the 

Timeline aiming at integrating the semiotic bundle with the other theoretical lenses we 

introduced. The improved version of the Timeline we are going to present in this section allows 

to represent the dynamic flow of the various episodes in a condensed form and to underline the 

specific main components according to the different theoretical standpoints in each of them. In 

these rich cognitive processes, all the different components of the semiotic bundle, enriched by 

a more subtle analysis made possible by the networking with other theoretical frameworks, are 

active in a unitary way and in the end the second-order covariation is conquered by many 

students within this unitary process itself.  

This enhanced Timeline allows to point out with great detail:  

- how the complex interactions between the teacher and the students, suitably represented 

in the interaction flowchart, intertwine and enhance the exploration and learning of 

mathematical concepts;  

- how artefact interactions can instrument the steps through which the students approach 

second-order covariation within the communicational environment of the classroom 

discussion and their evolution in time. Sometimes the students use instruments to get 

answers to their inquiry processes, sometimes they base on instruments’ semiotic 

productions to settle contrasting conjectures in discussions with their mates or with the 

teacher. Other times it is the teacher herself that suitably echoes and develops such 

productions at the blackboard to trigger, support, or provoke students’ conjectures; 
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- the deep structure of what happens in the classroom and shows like in a movie students’ 

growing understanding of the second-order covariation thanks to the adaptive 

instruction method used by the teacher;  

- the evolution of classroom discourse about modelling of real phenomena, the way in 

which the various external representations of the situations proposed emerge in 

students’ discourse revealing a blending of their knowledge of it and which linguistic 

features connote their claims involving covariation;  

- a tentative classification of the orders and levels of covariational reasoning. 

All the details concerning the information collected in the Timeline in order to respond to our 

research goals are presented in the following: the interface of the Timeline is also shown in  

Figure 9 with a brief description of the function of each of its rows.  

(i) Interaction flowchart - The first row of the Timeline is the flowchart of interactions between 

the teacher and the students during classroom discussions or among students during working-

group sessions. The interactivity flowchart, already introduced in 6.3, arises within a 

commognitive perspective and was firstly elaborated by Sfard and Kieran (2001) with the aim 

to collect all the oral interactions and reveal the real interest of the interlocutors in 

communicating with their partners. The interactions, represented by arrows, can be of three 

kinds: reactive (diagonally back arrow), proactive (diagonally forward arrow) and both reactive 

and proactive (both diagonally back and forward arrow). Lately, Liljedahl and Andrà (2014) 

have further developed the interactivity flowchart including gazes produced in social 

interactions, specifically their direction and intensity (denoted by the different thickness of the 

arrows). Our innovative contribution consists of including non-verbal interactions that is the 

main gestures produced by the subjects involved in the discussion. In particular, the following 

symbology, reported also in Table 1, is adopted: blue arrows for gestures, dotted blue arrows 

for gazes and dashed-dotted blue arrows to refer to writing gestures; black arrows for oral 

interactions, dashed arrows to denote questions, and double arrows to underline the semiotic 

games.  

(ii) Utterances – This section collects the oral utterances, and it is divided into two rows devoted 

to the teacher and the students. Revoiced sentences are reported in italics. In addition, we 
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indicate with T→11  when the teacher asks the students something and use the notation T⇓ when 

the teacher repeats (revoices) a sentence pronounced by a student to underline the importance 

or the correctness, possibly even using gestures.  

(iii) Linguistic analysis – This row re-proposes students’ utterances revealing covariational 

reasoning. The translation into English is preceded by the original statements in Italian. The 

main goal of this Timeline row is to highlight some linguistic markers, meaning recurrent 

linguistic structures and features, connoting the various forms of covariational reasoning. 

Moreover, when needed, a finer grain attention was paid to the identification of terms afferent 

to different mental input spaces. Linguistic markers, jointly with the other components of the 

semiotic bundle, e.g., gestures, inscriptions, and interactions with artefacts, can be indicators of 

subsequent moments in the development of the second-order covariation as will be explained 

below in the microanalysis and, with greater detail, in the analysis of some episodes.  

(iv) Discourse levels - Basing on the commognition framework, a row of the Timeline is reserved 

to the analysis of the discourse on mathematical modelling and the identification of some levels 

connoting its evolution. Some benchmark studies are those developed by Caspi and Sfard (2012) 

about the levels of algebraic discourses and those by Kim et al. (2012) on the levels of discourse 

on infinity. While these studies adopt a historical or ontogenetic approach, we are instead going 

to focus on the narratives connoting the mathematical discourse. 

(v) Gestures - Gestures are analyzed according to the four dimensions (deictic, iconic, 

metaphoric, and beats) identified by McNeill (1992) and adapted to the analysis of mathematics 

teaching-learning processes as in Arzarello et al. (2015). In addition, we consider another 

overlapping dimension, that of writing gestures (Shein, 2012; Alibali & Nathan, 2007). The main 

function of gestures, narrative, interactive or grounding, is reported in red boxes. In particular, 

non-redundant gestures with respect to speech (Alibali et al., 2000) are marked with a red 

triangle in the Timeline. Concerning significant gazes, their features and function, sensing or 

signaling, according to the Interpersonal Gaze Processing Model (Cañigueral & Hamilton, 2019), 

are reported in blue boxes.   

(vi) Inscriptions - The row dedicated to inscriptions shows the writings produced by the teacher 

or students on the blackboard, the interactive whiteboard or on their worksheets.  

 
11 In this dissertation we are going to use this arrow, instead of a dashed one as done in the Timelines, to denote 
teacher’s questioning. 
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(vii) Artefacts interactions - In this row we record how the students and the teacher refer and 

interact with the different artefacts, denoted with a capital letter, along the time. Basing on the 

Saada-Robert microgenesis model of the representation of a problem (1989), further elaborated 

by Arzarello and colleagues (2002), we distinguish two main modalities which feature the 

interactions with artefacts, already presented in 6.2.3: ascending control (X→) or descending 

control (→X).  

(viii) Covariation (order and level) – Eventually, this row is devoted to a tentative analysis of the 

orders and levels of covariational reasoning. Specifically, we consider an extension of the already 

existing taxonomy of Thompson and Carlson (2017) consisting of: first-order covariation (COV 

1) and its six levels hierarchy (L0: No coordination, L1: Pre-coordination of values, L2: Gross 

coordination of values, L3: Coordination of values, L4: Chunky continuous covariation, L5: 

Smooth continuous covariation) and the new construct of second-order covariation (COV 2). 

Those rare examples of reasoning revealing variational reasoning will be denoted with letter V. 

Its sublevels are recalled in Chapter 2. 
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Figure 9 - Timeline interface 

TIMING – The timings reported correspond to 

the relevant interventions or actions performed 

by the teacher and students, hence they are 

functional to analysis purposes. There is no fixed 

interval of time.  

 

INTERVENTIONS – The name of the person who is intervening is 

recalled in this row. 

INTERACTION FLOWCHART – This flowchart collects all the verbal 

and non-verbal interactions between the teacher and the students and 

reveals the interest of the interlocutors in creating a real dialogue with 

their partners. The interactions are represented as arrows and can be of 

three kinds: reactive (diagonally back), proactive (diagonally forward) or 

both reactive and proactive (both diagonally back and forward). To 

describe each type of interaction we used identical corresponding 

arrows (see Table 1). Each line of the flowchart is devoted to a single 

person speaking. 

UTTERANCES – This section is divided into two rows devoted to the 

teacher and the students. Utterances, originally in Italian, are reported  

and translated into English. Revoiced sentences are reported in italics.  

LINGUISTIC ANALYSIS – The sentences displaying covariational 
reasoning are reported both in Italian and in English, aiming at 
identifying recurrent linguistic structures or markers. 
 

DISCOURSE LEVEL – The various levels of the mathematical discourse 
regarding the modelling of real phenomena we could identify are 
outlined in this row. 
 

GESTURES – This section is divided into two rows devoted to the 
teacher and the students. We report a picture of the performed gestures 
and a brief description. Moreover, the nature and function of the gestures 
and significant gazes are reported. 
 Gaze 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSCRIPTIONS – In this section we report some pictures, or we 

describe verbally the main inscriptions made by the teacher on the 
blackboard, the sketches, symbols, and formulas used by the teacher and 
the students. 
 

ARTEFACTS INTERACTIONS – This row concerns the various 
artefacts we observed and recognized in the scrutinized episodes 
denoted with a capital letter. In the row we record how the students and 
the teacher refer and interact with the artefacts along the time. 
 

COVARIATION – In agreement with the extended framework of 
covariation presented in the paper, in the first row we report the order 
of variational/covariational reasoning and their sub-levels. 
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Section of the 
timeline 

Symbol Meaning Comments 

INTERACTION 
FLOWCHART 

 Sentences Short arrows denote utterances 
addressed to the whole classroom and 
not to a specific student.  

 Questions 

 Revoiced utterances 

 Gestures  

 Imitated gestures in 
the context of a 
semiotic game 

In case of semiotic games, the imitated 
gesture is generally synchronous with a 
specific utterance. 

 Writing gestures  

 Gazes  

UTTERANCES 
 

Semiotic game 
played by the 
teacher 

 

 Teacher’s questions  

GESTURES 

   Redundant gestures Gestures which are redundant with 
respect to the information conveyed in the 
related utterance. 

 Non-redundant 
gestures 

Gestures which are non-redundant with 
respect to the accompanying speech.  

 Nature and function 
of gestures 

Gestures are analyzed according to the 
classification of McNeill (1992). He 
identifies four types of gestures: deictic, 
iconic or representational, metaphoric 
and beats. Moreover, we considered 
writing gestures (Shein, 2012). Gestures 
may assume three different functions: 
narrative, interactive or grounding. 

 Nature and function 
of gazes 

We considered some significant gazes, 
underlining their features and functions 
(sensing or signaling) according to the 
Interpersonal Gaze Processing Model 
developed by Cañigueral and Hamilton 
(2019).  

ARTEFACTS 
INTERACTIONS 

 X → Ascending control on 
the artefact 

The student uses the tool with an 
explorative approach, looking for 
relationships and mathematical 
properties. 

→ X Descending control 
on the artefact 

The student already has a conjecture in 
mind and uses the tool to verify it, 
searching for data supporting his 
hypothesis. 

X←→ Y Conflict between 
artefacts 

 

X § Y Synergy between 
artefacts 

 

Table 1 - Symbology adopted for the encoding and analysis in the Timeline 
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8.4 METHODS FOR DATA ANALYSIS 

Before starting to analyze data, we produced a prospective analysis of the possible results of the 

teaching experiments based on: the background of the students in mathematics, some 

retrospective interviews to the teacher asking her what her aim from a specific intervention was 

and also, in the case of 2019 and 2020 teaching experiments, the results emerged from the 

previous experimentations.  

Then, we analyzed the data in two phases and using two complementary lenses. In the first 

phase, we performed a macroanalysis: the video was gone over repeatedly so to identify those 

crucial episodes clearly revealing covariational reasoning processes and then transcribed 

verbatim. At this macro-level, we began to develop some hypotheses that might explain relations 

among the observed aspects in the classroom environment, but this process is ongoing and 

interactive as we continue to add data and analyze them in a wider and more global perspective.  

In the second phase, the microanalysis, we applied a range of qualitative data analysis techniques 

in tune with the theoretical lenses to address our research questions. One of the most important 

aspects of interactions in the classroom are the mutual relationships between its different 

components in different snapshots of their evolution (synchronic analysis) and in their evolution 

in time (diachronic analysis). The Timeline tool enabled us to capture the complex structure of 

interactions in the classroom and how the goal of the teaching-experiment is achieved. The 

microanalysis provided us access to the joint point of view of the teacher and the students within 

our analysis, rather than only those of the teacher or of the students (Vygotsky, 1978; van der 

Veer & Valsiner, 1991), and a focus on the semiotic resources involved. 

After a detailed analysis of the single episodes based on the components collected in the 

Timeline, we produced a more transversal analysis of the episodes spread over four main layers:  

- Layer (a): Covariational reasoning – This layer of analysis is focused on the identification of 

the different levels of COV 1 according to Thompson and Carlson’s taxonomy and on the 

manifestation of higher orders of covariational reasoning and the semiotic forms in which 

they emerge. Particular attention is given to the elements denoting a transition from COV 

1 toward COV 2. This analysis is the result of both a synchronic and a diachronic use of 

the Timeline and of a process of descriptive coding (Saldana, 2015) that enabled us to 

describe and label the emerging covariational reasoning. This process went through 

several cycles until we obtained a definitive coding; 
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- Layer (b): Linguistic analysis – In this layer we analyzed students’ utterances revealing 

covariational aspects with the purpose of identifying some linguistic markers connoting 

the different levels of covariational reasoning. After having classified the levels of COV 

and thanks to a synchronic use of the Timeline, these markers were identified mainly 

paying attention to the syntactic and lexical dimension. The former brought the focus on 

the use of comparative structures, the presence of coordinated or subordinated clauses, 

all relevant features of syntactic complexity in students’ language production (Abedi, 

2006; Prediger & Sahin-Gür, 2019), and the predominance of unary, binary, or ternary 

relations when co-varying two magnitudes, as done in the study of Chesnais (2018) about 

teachers’ articulation of relations of symmetry. Concerning the latter, the lexical 

dimension, the attention was directed towards the identification of recurring adverbs or 

other terms denoting aspects of locality or globality in students’ utterances, the use of 

qualitative or quantitative terms with respect to the evolution of the levels of COV, and 

the presence of subjective versus objective sentences (e.g., the use of personal pronouns). 

Moreover, when needed we conducted a more punctual analysis of the terminology used 

so to identify the input mental spaces referring to the multiple representations involved;  

- Layer (c): Discourse levels - Freeing us from any attempt to adopt a historical or ontogenetic 

approach, in the identification of some possible levels of the discourse about 

mathematical modelling of real phenomena we focused on a main distinctive 

characteristic of the discourse according to the commognition theoretical framework that 

is the narratives interlacing during the discussions, i.e. descriptions of objects, or of 

relations between objects, and the purpose connoting these narrative e.g., reporting, 

explaining meanings, or interpreting, in relation to the various steps of the modelling 

process. We also focused on the emergence of possible blends, and on those words that 

denote an informal and intuitive language with respect to a more formal and scientific 

one. This analysis was the result of a mainly diachronic use of the Timeline;  

- Layer (d): Adaptive teaching strategies – This analysis is the result of a disentangling work 

of all the teaching strategies adopted by the teacher so to identify those that really help 

in fostering covariation, i.e., those that enable students to better grasp, and therefore 

express, their covariational reasoning. To identify these strategies, we used a descriptive 

coding (Saldana, 2015) to code each intervention of the teacher according to its goal and 

to the presence of elements of responsive guidance. For each intervention, we composed 

a description of the particular goals that had prompted the teacher to intervene and to 
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enhance the trustworthiness of our analysis, we interviewed the teacher retrospectively, 

watching the episodes with her and asking her to explain her motives from the 

intervention. For example, if the teacher imitates students’ gesture or words, we coded 

this intervention, after the teacher’s confirmation, as a semiotic game. Then, we revised 

the codes focusing on strategies that were recurrent, i.e., happened more than one time 

during the discussion and that displayed elements of similarity. We observed that 

strategies rarely manifest singularly, but throughout all the episodes they manifest 

interlaced with other strategies. 

All these results and their analysis will be compared to the initial working hypotheses and the 

prospective analysis so to produce a retrospective analysis and elaborate some preliminary 

concluding remarks that in the end of the study will be revised and combined in a global and 

coherent framework. 
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9 THE TEACHER AND THE SCHOOL  

Silvia is the mathematics and physics teacher who deeply contributed to the planning and 

design of all the teaching experiments analyzed in this study and involved her students in these 

activities. She widely uses an adaptive teaching approach during her lessons: to better support 

this claim, in this chapter we are going to provide more details concerning her background 

formation and her school practices and didactic methodology. Moreover, a few details about the 

environment of the secondary school where the teaching experiments were carried out are 

given. 

9.1 THE TEACHER: BACKGROUND FORMATION 

After the four-year degree in Mathematics, in 2000 Silvia began her career as teacher. At the 

beginning she made some substitutions and worked in a private school; since 2007 she got 

tenure and worked for five years in a professional school and then moved to a scientific-oriented 

school in province of Turin and she is still teaching in this school where all our teaching 

experiments took place. Throughout all her teaching career, she always remained in contact with 

Professor Arzarello, her thesis advisor, and the research groups on Mathematics Education at 

Turin University Department of Mathematics. Her thesis had an experimental footprint: roughly 

speaking, she proposed to analyze data from a test (PM5) administered in the 5th grade of a 

primary school. Concluded the thesis, she continued working with an association of teachers 

mainly from primary school dealing with formation and assessment, which collaborated with 

the design and administration of the PM5 test. Nowadays, Silvia is a founding member of that 

association. Since 2010, Silvia has joined the group of INVALSI, Istituto nazionale per la 

valutazione del sistema educativo di istruzione e di formazione 12 . Within this group, Silvia 

contributes to the writing of the tests employed in the assessment of students’ knowledge and 

competencies on a national scale. Lately Silvia joined the subgroup of INVALSI which specifically 

focuses on tests for grade 13. In addition to the huge amount of work required for the design of 

the tests and the development of a reliable assessment method, a long period of formation and 

training is required to all those who are involved in the INVALSI group, and this formation 

typically translates into annual meeting addressed to the creation, reading and use of those tests. 

Her professional career is also connoted by a constant content and pedagogical formation: this 

 
12 National Institute for the Evaluation of the Education and Training System. 
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opportunity is offered by the University of Turin that starting from 2015 initiated a group of 

teacher-researchers whose professional development is taken care by the research group in 

Mathematics Education of the University itself. The group of teachers regularly meets on Monday 

afternoon every two weeks and works on specific thematic issues.  In the meanwhile, Silvia 

became tutor of m@t.abel, a national project addressed to teachers and that, with the 

collaboration of disciplinary experts and employing an e-learning and blended modality, 

provides teachers with some tools to bring students closer to Mathematics in an engaging and 

practical way, proposing activities that facilitate the understanding of the close relationship 

between theoretical abstraction and daily life events. Finally, Silvia collaborated with the Unione 

Matematica Italiana13 association to design a didactical path on the new Indicazioni Nazionali, 

Italian National Curricula for high school; she was actively engaged in several courses for the 

Piano Lauree Scientifiche14 and attended a two-year master addressed to teachers’ trainers in 

Mathematics Education. All these elements and experiences connoting Silvia’s background 

reveal her strong pedagogical and content knowledge which are essential to develop suitable 

adaptive teaching strategies. Her wise approach to education will also emerge from her school 

practices better described in the following section.  

9.2 TEACHING PRINCIPLES AND METHODS  

The approach of Silvia to teaching well reflects not only her wide background but also her vision 

of the mathematics classroom. The information presented in this paragraph comes from some 

informal interviews to Silvia and an attentive observation of her lessons.  

Mathematics classroom, in Silvia’s ideal vision of teaching, is intended as a mathematics 

laboratory according to the definition presented in Matematica 2003. La matematica per il 

cittadino (MIUR, UMI & SIS, 2003), where we can read:  

Il laboratorio di matematica non è un luogo fisico diverso dalla classe, è piuttosto un insieme 

strutturato di attività volte alla costruzione di significati degli oggetti matematici. Il laboratorio, quindi, 

coinvolge persone (studenti e insegnanti), strutture (aule, strumenti, organizzazione degli spazi e dei 

tempi), idee (progetti, piani di attività didattiche, sperimentazioni). L’ambiente del laboratorio di 

matematica è in qualche modo assimilabile a quello della bottega rinascimentale, nella quale gli 

apprendisti imparavano facendo e vedendo fare, comunicando fra loro e con gli esperti. La costruzione 

di significati, nel laboratorio di matematica, è strettamente legata, da una parte, all’uso degli strumenti 

 
13 Italian Mathematical Union. 
14 Scientific Degree Program. 
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utilizzati nelle varie attività, dall’altra, alle interazioni tra le persone che si sviluppano durante 

l’esercizio di tali attività15. (MIUR, UMI & SIS, 2003, p. 26) 

Thereby, all the proposed activities have the common goal to construct shared meanings of 

mathematical objects and this goal is reached through different didactical practices. First, a 

method deeply used by Silvia in her lessons is that of Varied Inquiry (MVI), a multi-layered spiral 

approach that guides students to become engaged in inquiry-based learning. Starting from the 

observation of a certain situation, students are asked to formulate questions and give them 

answers; then modifying the situation, and as a consequence of what is observed, new 

observations, questions and answers arise. MVI thus allows the construction of mathematical 

competencies, in which knowledge is intertwined with the students’ argumentative skills in 

situations where they are involved as mathematician investigators to solve and pose themselves 

some problems. It is the teacher’s responsibility to foster the transition from one layer of the 

MVI spiral to the other and to advance the learning within each layer through inquiry-based 

learning. These activities mainly consist of an alternation between small working group phases 

and collective discussions with the whole classroom. The mathematics discussions orchestrated 

by the teacher are “una polifonia di voci articolate su un oggetto matematico (concetto, 

problema, procedura, ecc.), che costituisce un motivo dell’attività di insegnamento 

apprendimento”16 (Bartolini Bussi et al., 1995, p. 7). The role of the teacher within a mathematics 

discussion is that of a guide that inserts a specific discussion in the flow of classroom activities 

and influences in a determinant way the development of the discussion through her 

interventions. Not only, throughout all the classroom activities her role is that of a formalizer of 

the mathematical contents and of a mediator who directs students’ attention to what is relevant: 

the teacher cannot inject knowledge into students, but she can guide them in the process of 

domestication of the eye (Radford, 2010) through an intense recourse to semiotic resources like 

gestures, words, and rhythm. The semiotic game is one of the main strategies naturally used by 

Silvia to support students’ internalization processes and improve their achievements and this 

 
15 The mathematics laboratory is not a physical place different from the class, it is rather a structured set of activities 
aimed at constructing the meanings of mathematical objects. The laboratory, therefore, involves people (students 
and teachers), structures (classrooms, tools, organization of spaces and timings), ideas (projects, educational 
activity plans, experiments). The environment of the mathematics laboratory is somehow similar to that of the 
Renaissance workshop, in which the apprentices learned by doing and seeing others do, communicating with each 
other and with the experts. The construction of meanings, in the mathematics laboratory, is closely linked, on the 
one hand, to the use of the tools used in the various activities, on the other, to the interactions between people 
developing during the exercise of such activities.  
16 A polyphony of voices articulated on a mathematical object (concept, problem, procedure, etc.) which constitutes 
a reason of the teaching-learning activity. 
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strategy is used when the non-verbal resources used by the students reveal that they are in a 

ZPD.   

Pulling the string, we can conclude that knowledge is intended as a social construction according 

to a Vygostkijan perspective and the students construct this knowledge not only in the 

interactions with others, both the teacher and other students, but also thanks to a varied inquiry 

approach in which students have the possibility to explore and investigate on their own what 

doing mathematic means. The teacher does not pour her knowledge into students, but she 

creates the conditions of possibility for students to gain consciousness about mathematical 

objects.  

Looking at Silvia’s lessons through a commognitive lens, we can notice how mathematical 

knowledge is generated by discursive actions of the individuals and the teacher enters as a 

facilitator, but her leadership is recognized by the whole classroom and thanks to her 

knowledge, she can guide students through the resolution of commognitive conflicts arising 

during the mathematical activity.  

Among all the artefacts adopted in a mathematics classroom, all the technological supports 

introduced in the various activities help in making the classroom a digital-rich environment, but 

a non-technological artefact widely used by Silvia assumes a central role: the blackboard. Silvia 

writes on it all the relevant information emerging during the collective discussions and students 

are conscious that what is written on the blackboard is worthy to be remembered.   

Other two aspects connote in an original way Silvia’s approach to teaching. First, in a perspective 

of vertical curriculum, concepts are introduced gradually and sometimes anticipated with 

respect to what is reported in Indicazioni Nazionali. One powerful tool not listed in the 

Indicazioni Nazionali but used in Silvia’s classroom, is that of finite differences17 (f.d.) that have 

the double advantage of initiating students to differential calculus ever since the first years of 

secondary school and of being easily implementable through didactic softwares. A second aspect 

is a wide mesh a priori analysis of the activities: while designing the activities Silvia identifies a 

wide field of possible contents to work on, but the goals of the task are not strictly defined; they 

become clearer during the retrospective analysis that constitutes an opportunity of learning for 

 
17 Considering a certain variable z, the first finite differences of z are all the differences between two consecutives 
values of that variable: z2 -z1, z3-z2, …, zn-zn-1. Second finite differences are the first differences of the first differences 
and so the definition can be extended to n-th finite differences.  
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the teacher herself. Hence the design of didactic activities is conceived as a dynamic process that 

can be reshaped after the retrospective analysis.  

9.3 THE ENVIRONMENT OF THE SECONDARY SCHOOL 18 

At a geographical-territorial level, the high school where we held the teaching experiments  

locates in province of Turin and has a wide catchment area: the enrolled students come from 

about 20 different municipalities, distributed on a geographic area that is particularly lively from 

the cultural point of view. The school building dates back to 1989 and is located in an 

environment free of disturbing elements. The school has laboratories (science, physics, 

computer science, languages), drawing rooms, an equipped auditorium, a library, gym, sports 

fields and outdoor green spaces, interactive whiteboards (IW) and PC in each classroom. This 

upper secondary school offers many branches and among this there is also the scientific one, 

where our three teaching experiments were conducted. In general, the social, economic, and 

cultural level of the students' families is medium-high, such to guarantee to at least 95% of 

students the continuation of studies at the University. There are no particular social, economic, 

and cultural disadvantages. In the last years there has been an increase in students with special 

educational needs (SEN). School students acquire satisfactory levels of social and civic skills, 

learning to learn, digital skills, and a spirit of initiative and entrepreneurship. The school adopts 

common indicators and evaluation criteria for conduct and certifies the key competences and 

citizenship acquired in the two-year period. The Disciplinary Departments draw up a vertical 

programming in which the skills and abilities that students should achieve are specified for each 

school year.  

 
18 The information reported in this paragraph comes from the Rapporto di Auto Valutazione (RAV) [Self-assessment 
report] of the secondary school in question.  
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10 GALILEO TEACHING EXPERIMENT (2017)19  

This first teaching experiment took place in 2017 in Turin (Italy), where Prof. Arzarello 

(University of Turin - Italy) and Dr Swidan (visiting fellow from Ben-Gurion University - Israel) 

developed and designed a teaching session based on simulations of a real-world phenomenon, 

namely, a ball rolling on an inclined plane, the so-called Galileo experiment. They observed the 

teacher, Silvia, as she led two 1.5-hour lessons. At the beginning of each lesson, students were 

required to work in small groups, sharing within each group a worksheet (containing the tasks) 

and a computer. While the students worked in small groups, the teacher walked around the 

classroom and periodically interacted with those students who had questions or needed help. 

After the small working group session, the teacher held a discussion with all the students. She 

initiated the discussion by asking the students to share with the whole classroom the 

mathematical ideas that emerged during their participation in the group work.  

Concerning my involvement in this teaching experiment, I started to deal with this research 

problem only in 2019, nearly at the end of the first year of my Ph.D. program. Hence, I did not 

contribute to the design phase of this teaching experiment, but I was deeply engaged in the phase 

of data analysis. The prospective analysis presented in the following was made by me basing on 

the description of the tasks and the considerations of the researchers and the teacher involved. 

Some details about this experimentation and a first analysis can be found in Arzarello (2019). 

Participants 

The participants in this case study comprised an entire 9th grade classroom of 20 students. At 

the time the study took place, the participants had already learned the concepts associated with 

linear functions, which had been taught to them based on their high school textbook, but not yet 

those of the quadratic function. The students were familiar with the concept of finite differences 

and its representation: in particular they had previously studied in their math course that a 

function with n-th differences constant and the previous n-1 not constant, is a n-th-degree 

polynomial function. They already had reasoned on properties of functions starting from 

numerical data, specifically values of finite differences for functions represented in tables. 

 
19 Some of the findings presented in this chapter are the result of a collaboration with Dr O. Swidan, Prof. F. Arzarello 
and the teacher S. Beltramino. The findings here described will be partially presented in a paper entitled “Adaptive 
Instruction Strategies to Foster Covariational Reasoning in a Digital Rich Environment” that will be published on a 
Special Issue on the Journal of Mathematical Behavior.  
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Nonetheless, they had no formal physics background on quantities like time, space, velocity, 

acceleration, and their mutual relationships; the students were already familiar with the concept 

of parabola just from the lower secondary school. In addition, the students were also familiar 

with conventional function graph software (e.g., GeoGebra), which they had already used in the 

framework of their school’s formal mathematics curriculum. 

Data collection 

During the original teaching experiment, the sessions were video recorded in their entirety, 

including the general discussion led by the teacher. During the group work, all the student 

groups (and their computer screens) were filmed as they worked together to solve the task, 

including teacher’s intervention with a dedicated camera. All the written worksheets adopted 

during lessons were in Italian and here they are integrally reported translated into English. The 

data analyzed in the following come from the first of the two teacher-led discussions, the only 

research material in my possession. The video recording was watched multiple times and those 

episodes revealing the emergence of covariational reasoning were transcribed and then deeply 

analyzed according to the methods presented in Section 8.4. 

The parents of the students and the school consented to the use of the produced multimedia 

material for research purposes: the original version of the used consent form is contained in 

Appendix A. 

10.1 OVERVIEW OF THE TASKS AND PROSPECTIVE ANALYSIS 

A sequence of two tasks was designed based on the assumption that the exploration of different 

characteristics of the same phenomenon adopting multiple representations may lead students 

to construct the mathematical meaning of the quadratic function in its different aspects. Below 

we describe the tasks and the artefacts related to them.  

10.1.1  Task 1 

In the first task students watched a short video reproducing the well-known Galileo experiment, 

a ball rolling on an inclined plane, and then students were asked to share their observations 

about the motion of the ball. The video (Figure 10, available here) shows a pendulum always 

marking the same unit of time, the distance traversed by the ball in that interval, and the total 

amount of distance covered until that moment, while the inclination angle of the plane is kept 

fixed. Insofar as it demonstrates the rolling of a ball on an inclined plane, the video is effectively 

https://catalogo.museogalileo.it/multimedia/PianoInclinato.html
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an artefact with an important role in the process of the students’ construction of mathematical 

meaning. Indeed, it works as a mediator between the students’ general understanding of the 

physical phenomenon of a rolling ball on an inclined plane and its mathematical model, which is 

described by a quadratic function. 

First Worksheet (Task 1) 

Task 1 

Your task is to watch Galileo Inclined Plane Experiment clip and to answer the following 

questions.  

A) What caught your attention while watching the clip? Write as many observations as 

you can.  

B) Can you make a conjecture on which one of the observations will change if the plane 

inclination changes? Why? 

Corresponding computer screen  

 
Figure 10 - Galileo experiment video (Galileo Museum, Florence) 

10.1.2  Task 2 

The second task entailed the interactive exploration of the same situation analyzed in the first 

task. In this case the artefact was a dynamic digital environment, made using the GeoGebra 

software, that allowed students to simulate the rolling of a ball while simultaneously observing 

the values of the distances traversed by the ball while it is in motion via a numerical 

representation of the distance-time relationship. The applet interface consisted of two parts 

(Figure 11). On the left, it displayed an inclined plane simulating the one of Galileo’s experiment 

shown in the video and students could vary the inclination of the plane by dragging the blue 

point at the end of the inclined plane; on the right, there was a table with two columns containing 

data related to time and distance traversed. In this task, the students were requested to think of 

an equation describing the motion of the ball on the inclined plane. 

Second Worksheet (Task 2) 

Task 2 
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Your task is to explore how the change of the plane’s inclination may affect the movement 

of the ball. Please, open Galileo 2 applet and change the plane inclination by dragging the 

blue point in the applet. 

A) Can you make a conjecture on how the change of the inclination may affect the ball 

movement?  

B) Change the plane inclination by dragging the blue point in the applet to verify or 

refute the conjectures you raised in (A). Do your conjectures change? If yes, why? If 

not, prove your conjectures.  

C) Can you find an equation that describes the ball movement? Why or why not? Justify 

your answer.  

Corresponding computer screen  

 

 
 
 

 

 

Figure 11 - The GeoGebra applet interface 

Given the description above, it is clear that the two representations of the Galileo experiment, 

the video and the GeoGebra applet, assume a complementary function (Ainsworth, 2006): while 

the former provides values of time and distance for a fixed angle and shows all the physical 

details of the experiment, the latter enables student to grasp the dependence of distance 

traversed on the angle of inclination of the plane. We can consider how much the interaction 

between the two artefacts occurs in a consonant or dissonant way speaking of synergy or conflict 

respectively between the effects of such interactions. A similar approach will be used with 

respect to the other artefacts present in our story: the blackboard used by the teacher to 

underline some crucial moments in students’ conceptualization, the tables of values made by 

students to compute first finite differences of time and distance, and the mathematical formulas 

(on the screen or on the blackboard) supporting students in their processes. In addition to these 

artefacts, the students were free to use other artefacts, such as GeoGebra, Excel sheets, 

calculators, sheets of paper, etc. 

10.1.3  Prospective analysis  

In the following chapter we are going to analyze some relevant episodes from a teacher-led 

discussion which was conducted after the working group sessions on Task 1 and 2. Given the 
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complementary function of the two main representations of the physical phenomenon, the video 

and the applet, we expect students to use the information provided by the two artefacts in a 

synergic way. We assume that the numerical information contained in the video and the table of 

numerical values will lead students to reason and communicate in a mainly quantitative 

perspective. Students may not be able to guess the trend of s-t graph given their little background 

and we do not expect them to elaborate any physical interpretation of the phenomenon. Second-

order covariation will probably emerge gradually. Moreover, the teacher will deeply contribute 

to enhance higher order covariational reasoning. Indeed, when interviewing the teacher, it 

resulted that she had very clear in her mind which was the goal of the teaching experiment, 

namely that students could fully grasp the motion law of the ball, particularly its dependence on 

the inclination angle of the plane, and that they could represent it with a suitable algebraic 

expression, involving distance, time, and the inclination angle. 

10.2 DATA ANALYSIS 

Below we illustrate in detail five episodes of the discussion examined using the double lens of 

the macro and micro analysis. The reader can see all the details concerning the analysis of the 

episodes in the Timelines reported at the end of each episode. During the tasks, the students 

worked divided in five groups that we are going to denote with the letters A-B-C-D-E. The letter 

accompanying the name of the student in the transcript denotes the group to which the student 

belonged. Throughout the whole analysis, four different artefacts will make their appearance: 

the video (V), the GeoGebra applet (G), the formulas (F) and the blackboard (B).  

10.2.1  Episode 1 (Discussion, 23:40-23:56) 

In this short episode (23:40-23:56), Andrea answers the teacher’s question “What did you 

observe while watching the video?” [1] describing the distance between the metal bells that are 

on the inclined plane.  

 Timing Who Utterances Gestures 

620 00:23:40 AndreaB The distance between the doors 
was always two. 

 

7 00:23:44 Teacher  It was always?  

8 00:23:45 AndreaB Two  

9 00:23:46 VirginiaB  Increased by two  

 
20 Lines from 1 to 5 are only present in the Timeline. 
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10 00:23:48 Teacher It was always two, or it is 
increased by two? 

 

11 00:23:50 AndreaB Increased always by two 
between a door and the other.  

Gesture with his left hand 
(Figure 12, left side) 

12 00:23:56 Teacher The distance between the doors 
always increased by two. 

The teacher moves her 
right hand rightward as 
she utters (Figure 12, right 
side)   

At [6], Andrea describes the distance between two consecutive metal bells that are on the 

inclined plane shown in the video. The teacher, who is listening to him carefully, uses his words 

to formulate a question, “It was always?”. In this case, the teacher, conscious that his answer is 

incorrect, decides to use the same semiotic register as the students do to clarify what the 

students mean [7] and encourage him to better reflect on his statement. Right after, Virginia 

introduces the word “increase”, trying to correct Andrea’s statement. There is an evident 

confusion between the value of a quantity and the value of its increment. At this moment, it 

seems that the teacher is not sure what the students mean. Do they mean the distance increased 

by two or the distance is a constant and equal two? To clarify Andrea’s intention, the teacher 

plays the semiotic game again, but this time she integrates the two utterances articulated by 

Andrea and Virginia [10] and adds also a non-verbal component. The teacher also reproduces 

Andrea’s metaphoric gesture [12], namely opening thumb and forefinger, that simulates the 

distance between the doors. The teacher grasps that Andrea is leaning on the gestural 

component to better express his thought and so she includes it into the semiotic game thereby 

generating common semiotic resources that can be shared within the classroom discussion 

(Figure 12).  

Figure 12 - On the left, the fingers gesture made by Andrea; on the right the same gesture 
reproduced by the teacher 
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The interaction flowchart (Figure 13) referred to this episode presents a back-and-forth 

structure revealing the ability of the teacher to foster the dialogue. This goal is achieved through 

the questioning (dashed arrows) and the revoicing of the students’ words (double arrows). 

Figure 13 – The interaction flowchart from Episode 1 

In this episode the students are trying to describe what they observed in the video and the 

language they adopt is the everyday one, not yet scientific, according to Vygotsky 's (1986) 

distinction: we are going to label this level of the discourse as descriptive; indeed, the gestures 

adopted by both the teacher and the students have mainly a narrative function because they help 

to better describe the experiment shown in the video simulating door distancing. The video-

artefact is what most influences this episode: the references to it are numerous and clear. In 

terms of covariational reasoning, in the first part of the discussion many variables are 

highlighted by the terms used by the students: speed, door spacing, time, inclination. They 

continue to constitute an indistinct jumble, in which we begin to capture traces of concealment 

in a not so clear way. Even if a first sketch of covariation appears, the language reduces it to the 

variations of the values of the same quantities (L2) (Figure 14 - COV row). In response to this 

confusion, the teacher plays a semiotic game which seems to help Andrea to describe the 

distance between two consecutive metal bells correctly. 
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Figure 14 – Timeline 1 (Galileo 2017) 
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10.2.2  Episode 2 (Discussion, 27:00-28:45) 

In the following excerpt (27:00-28:45), after the students have recognized the variables that are 

involved in the phenomenon, the motion of a ball along an inclined plane, the teacher requests 

them to find an equation that describes the movement of the ball.              

 Timing Who Utterances Gestures 

13 00:27:00 Teacher Let’s go to the next question: 
"Can you find an equation, a 
formula which describes the 
movement of the ball?" 

 

14 00:27:27 CaterinaA  We have to find the x and the y; 
for the x-axis, something that 
increases and for the y-axis 
something that decreases... 
because actually, the line in the 
applet was a decreasing line.   

 

15 00:27:46 Teacher Which is the decreasing line? The teacher comes closer to 
group A to see their screen. 

16 00:27:55 CaterinaA Imagining this is a Cartesian 
plane, the pink line which 
denotes the movement of the 
ball [on the applet it has the 
same color of the trajectory of 
the ball] is decreasing… on the 
y-axis, there must necessarily be 
something that is decreasing.                                     

Caterina makes a pointing 
gesture, following with her 
finger the trend of the pink 
line on the screen (see 
Figure 15). 

17 00:28:17 Teacher Did you hear what Caterina 
said? Caterina says we have to 
find an x that is increasing and a 
y, which is decreasing because 
the pink line represents the 
movement of the ball... but they 
[group A] are not able to 
understand what put on the 
axes. 

 

18 00:28:42 Teacher What are the “something,” the 
variables essentially, that help 
us describing the motion? 

 

19 00:28:45 Different 
voices 

Time and space; [someone says] 
the inclination. 

 

To foster the discussion in the classroom the teacher asks questions – addressing one to the 

whole class and one to a specific student (Figure 17 - interaction flowchart row). In [13] the 

teacher addresses a question to the whole classroom that is to find the equation that 
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represents the ball movement. Caterina argues that to find the equation, they should consider 

x and y, and that x should be something increasing and y something decreasing. 

Simultaneously with her utterance, she performs a pointing gesture and then a metaphoric 

one. The former, which has a grounding function, is used to point at the inclined plane in the 

applet. The latter, which has narrative function, is used to reproduce the decreasing line. 

Caterina comes to these insights because of the shape of the simulated apparatus in the app, 

where the inclined plane is displayed as a decreasing linear function (Figure 15).  

 

Figure 15 - The screen of the GeoGebra applet in which the ball trajectory is marked by a pink 
line 

The teacher does not judge Caterina’s answer [15]. On the contrary, the teacher approaches 

Caterina’s laptop and looks at her screen (Figure 16). The teacher’s gaze, which has a sensing 

function, suggests that she does not understand Caterina's claim and that by gazing at her screen 

she wants to understand it better. In [16] Caterina elaborates her determination keeping on the 

same level of discourse, that we are going to refer to as analytical: students try to express in 

mathematical terms and to generalize the specific physical situation proposed. In a similar way 

as in [14], Caterina simultaneously performs a pointing gesture as she articulates her utterance. 

This time the pointing gesture functions as narrative and grounding. By addressing a question 

to the whole classroom, the teacher shifts the discussion from one-to-one to a general discussion 

involving the whole classroom [17]. In doing so, the teacher again plays the semiotic game as she 

repeats Caterina's words and redundantly performs a metaphoric gesture, which its function is 

grounding (Figure 17 - gesture row). Although the idea of Caterina’s group is based on the 

analogy between a physical trail and the graph representing a motion on the trail, a well-known 

misconception in the literature (Clement, 1985), the teacher values the group’s work and moves 

forward with the discussion by addressing a new question to the whole classroom [18]. The 

covariational reasoning in the excerpt above is characterized as L2 of first-order covariational 

reasoning (Figure 17 - COV row), in which the students and the teacher describe qualitatively 

the relationship between x and y using the verbs decrease/increase. 
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Figure 16 - The teacher comes closer to group A to see the screen of their laptop 

Figure 17 – Timeline 2 (Galileo 2017) 
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10.2.3  Episode 3 (Discussion, 30:58-31:49) 

In this episode (30:58-31:49) Alessandro criticizes Caterina’s answer and argues that both the 

variables – time and distance – should increase. The teacher asks Alessandro to explain why the 

two variables are increasing. 

 Timing Who Utterances Gestures 

20 00:30:58 Teacher Why do they [time and space] 
both increase? 

 

21 00:31:05 AlessandroE In my opinion, when you 
increase the length, the ball 
takes longer to do it, hence, if 
you tilt the plane, the ball is 
faster… 

 

22 00:31:11 Teacher I don’t understand…  

23 00:31:21 AlessandroE According to the inclination of 
the plane, the time increases 
and… it takes less time... the 
ball takes less time to travel 
that distance… 

 

24 00:31:29 Teacher The ball takes less time to 
travel that distance. 

 

25 00:31:35 AlessandroE The same distance, but since 
the plane is more inclined, the 
ball has a higher speed, it is 
faster. 

 

26 00:31:41 Teacher Ok, at the same distance…  

27 00:31:45 AlessandroE Less time  

28 00:31:48 Teacher And at the same time?  

29 00:31:49 AlessandroE Greater distance.  

When the teacher asks Alessandro [20], she uses a metaphoric gesture, the function of which is 

interactive, and looks at Alessandro as she invites him to explain why both the variables should 

increase. Redundantly with respect to his utterances, he makes metaphoric and iconic gestures 

which have narrative function to describe why the two variables increase (Figure 20 – gestures 

row). In effect, Alessandro introduces two new variables into the discourse with the teacher, the 

length of the plane and the speed of the ball. It seems that he associates the length of the plane 

with its inclination. To encourage Alessandro to provide more description, the teacher indicates 

that she does not understand his description in [21]. Using simultaneous gestures and utterances 

(Figure 18), Alessandro describes his idea again by referring this time explicitly to the 
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inclination of plane [23]. It seems that, based on the experiments he did with the applet and on 

the values in the table, he concludes that as the inclination increases, the ball goes faster.  

Figure 18 - The metaphoric gestures performed by Alessandro while describing the 
relationship between the motion of the ball and the length of the plane 

This type of reasoning is corresponding to L2 of the first-order covariational reasoning, in that 

Alessandro draws a qualitatively connection between the two variables – inclination of the plane 

and the velocity (Figure 20 – COV row). In [24] the teacher plays the semiotic game by revoicing 

with an approval tone to support his idea. In [26] the teacher plays again the semiotic game, this 

time focusing her question only on one term used by Alessandro – the distance or the time. The 

teacher asks him what would happen to the time if the distance is kept fixed [26], and what 

would happen to the distance if the time fixed [28]. In both cases the teacher supports her 

utterances with simultaneous metaphoric gestures, which have narrative function (Figure 19).    

Figure 19 - On the left, the gesture performed by the teacher and on the right, the same 
gesture reproduced by Alessandro 
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Figure 20 – Timeline 3 (Galileo 2017) 
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10.2.4  Episode 421 (Discussion, 37:00-41:19) 

To help the students construct the meaning of the quadratic function describing the law of the 

motion, the teacher turns to the various artefacts that are available in the environment. Through 

her play of the semiotic game, the teacher draws the students’ attention to the several artefacts, 

each time focusing on one of them. The following episode (37:00-41:19) illustrates the influence 

of three main artefacts, the video, the GeoGebra applet and the blackboard: the teacher resorts 

first to the video, then, thanks to Alessandro's response, she introduces the GeoGebra artefact.        

 Timing Who Utterances Gestures 

30 00:37:00 ChiaraC If it is a parabola, shouldn’t be 
there something to the second 
power? (→F) 

 

31 00:37:05 Teacher If it is a parabola, there will be 
something to the second 
power. Is there something to 
the second power? (T→) 

 

32 00:37:10 AdaA In the top of the video it is 
written 𝑠: 𝑡2(V→) 

 

33 00:37:15 Teacher  The teacher writes the 
formula from the video on 
the blackboard. 

34 00:37:20 Teacher  The teacher looks around 
waiting for a reaction. 

35 00:37:34 Teacher Then? (T→)  

36   [noise]  

37 00:38:10 VirginiaB In the video there were the 
sums of all the routes, for 
example, when the space was 
16, time was 4. (V→) 

 

38 00:38:15 Teacher  The teacher draws a 
sketch of the inclined 
plane on the blackboard 
(B→) 

39 00:38:26 VirginiaB If we count the time, we can 
see that s is 𝑡2; 4² = 16. (V→) 

 

   […]  

 
21 In this section we also introduce the notations with arrows to highlight the different dynamics of artefacts and 
the role of the teacher. Lines 40-41-42 are present only in the Timeline. 
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43 00:40:11 AlessandroE It is correct, but here it is 
different: if we make 2² it 
doesn’t come out for us… 

 

44 00:40:40 Teacher The teacher rephrases 
Alessandro’s words. 

 

45 00:40:52 Teacher The teacher rephrases Virginia’s 
words. 

 

46 00:41:15 Teacher Alessandro says "it’s ok" even 
though ... 

 

47 00:41:16 AlessandroE But it doesn’t come in our 
examples that we made on 
GeoGebra 

He checks the values on 
the sheet of paper. 

48 00:41:19 Teacher It is correct, although, not so 
correct according to 
Alessandro, because in the 
examples it didn’t come out in 
this way. 

 

This episode can be translated into the following narrative: previously the students had 

discussed whether the graph describing the motion could be a straight line, and discarded it 

basing on what they had seen in the GeoGebra spreadsheet: the parabola appears first evoked 

by them as "something to the second power" ([30], →F). The evocation is further reinforced by 

the teacher ([31] T⇓ and T→), by the reference to V ([32], V→) and by the further actions of the 

teacher ([33-34] T⇓; [35] T→): see Figure 21. 

Figure 21 - Ada, on the left, writes the formula from the video in the air using her pen. The 
teacher, performing a writing gesture, notes that formula (s:t2) on the blackboard 

Still referring to the video, Virginia evokes the numbers and formulas that appear there [30] and 

the teacher reinforces Virginia’s observations by drawing on the blackboard ([38], B→; Figure 

23 – inscriptions row). Finally, Virginia explains the formula of the video ([39], V→). 

From [43] to [48] a conflict appears, created by the interventions of Alessandro, who disagrees 

with Virginia. While Virginia bases her computations on what is in the video, Alessandro 

supports his claim with the computations his group made in GeoGebra: we indicate this conflict 

with V←→G. The conflict is apparent, and the teacher revoices both Alessandro’s and Virginia’s 
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utterances [44-45] thus pushing the conflict forward to the class. The implicit meaning of her 

repeated interventions makes clear to the students that the differences between the two 

computations are not the effect of a trivial mistake, but that the conflict is more subtle and 

worthy of consideration.  

We can make three observations about this issue: they highlight the relevance of this point in 

the development of teaching-learning processes in the classroom. First, this conflict can be 

interpreted as a commognitive conflict: the two students’ computations are incommensurable 

and only apparently incompatible. As Sfard (2008) points out, the only way to overcome a 

conflict is to make apparent that there are two incommensurable discourses, while no factual 

incompatibility is concerned. This result is got through teacher’s revoicing: as observed above, 

with her implicit claim that there is no calculation error she avoids the incompatibility issue and 

makes possible the emergence of incommensurability in the classroom. Second, the conflict 

concerns a turning point in the way students grasp the covariation among the different 

quantities involved in the ball motion phenomenon: the discrepancy between the Virginia’s and 

Alessandro’s calculations is the starting point for entering into second-order covariation. It is 

again the teacher who makes apparent this with her written revoicing of the two students’ 

utterances (Figure 22). 

Figure 22 - The inscriptions made by the teacher on the blackboard while revoicing 
Alessandro’s and Virginia’s words 

Third, the conflict emerges through the apparently contradictory results produced by the two 

artefacts, the video and the GeoGebra applet: it is an instrumented conflict. The teacher does not 

mediate at all but supports only the emergence of the conflict avoiding the trivial incompatibility 

interpretation, as pointed above. This way of acting by the teacher shows one of the main 

features of her approach to managing the class. As a further general comment, we can say that 

in this part of the video the artefacts are present at different times and are used, sometimes 

spontaneously by students, sometimes at the teacher's request, to carry out inquiries, and to 

formulate or validate hypotheses. Therefore, a thread of relations between V, G, and B, that goes 

from one to the other and that are generally discontinuous, is created through the actions and 

comments of the students. However, the actions that students perform with such artefacts are 

often inconsistent, so showing a conflict between the different uses. [continue on p. 90] 
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Figure 23 – Timeline 4 – Part I (Galileo 2017) 
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Figure 24 – Timeline 4 – Part II (Galileo 2017)  
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These culminate with the final conflict discussed above. In this part, according to the hierarchy 

of the first order covariation, we have (until [39]) a smooth continuous covariation (L5) with 

detail (Figure 24 – COV row).  

10.2.5  Episode 5 (Discussion, 47:10-48:45) 

In the last part of the discussion (47:10-48:45), the role of the artefacts changes dramatically: 

from the initial conflict between them to a final synergy in their instrumented use, “where each 

activity enhances the potential of the others” (Faggiano, Montone & Mariotti, 2018, p.1). The 

teacher makes possible the positive evolution of the V←→G conflict, which concluded the 

previous episode, into the synergy of three artefacts V § G § B [49]. The teacher’s requests and 

interventions direct students’ attention to the numerical data written on the blackboard and the 

students’ actions, generated by the synergic interweaving between V § G § B and these data, lead 

to the construction of a general formula F describing mathematically the physical phenomenon. 

Moreover, the elaboration of this general formula, including a parameter which depends on the 

plane inclination angle, reveals not only a deeper understanding of the s-t covariation, but also 

the grasping of a new and more complex order of covariation. 

 Timing Who Utterances Gestures 

49 00:47:10 GiorgiaE In this case it might be 𝑦 =

2,13 ⋅ 𝑥2, in this case with 25°, 
because it is in this case that a 
constant value of 2.13 is 
reached... The values can vary. 

 

50 00:47:24 Teacher The teacher rephrases 
Giorgia’s words. 

 

51 00:47:45 Teacher And if the angle varies?  

52 00:47:48 GiorgiaE The constant value can vary.  

53   The teacher suggests trying 
different values of the 
inclination and students try 
using GeoGebra. 

 

54 00:48:20 AndreaB [incomprehensible] The 
constant number depends on 
the angle. 

 

55 00:48:28 Teacher I’ll repeat because he speaks in 
a low voice. He said: if we 
change the angle of 28°, the 
constant changes and becomes 
2.36, but it is always 2.36. 
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56 00:48:45 GiorgiaE It might be 𝑦 = 𝑘 ⋅ 𝑥2, where k 
is a constant varying with the 
inclination. 

The teacher writes the 
formula on the 
blackboard. 

In the episode reported above (47:10-48:45), the teacher allows the transition from the first- to 

the second-order covariation, made explicit through students’ utterances and denoted in 

Timeline 5 (Figure 25) as intermediate order, and the full achievement of the COV 2 [56]. Giorgia 

is the student who first better succeeds in the formalization through an explicit formula 

describing the motion of the ball. She elaborates a formula (F→) for a specific value of the angle 

([49], 𝑦 = 2,13 ⋅ 𝑥2): this achievement is reached starting from the support of the numerical data 

in the table, provided by the applet in GeoGebra, and the computations shown on the blackboard 

that the ratios between distance and time to the second power always provides the same 

constant (specifically 2.13; see inscriptions row - Figure 25). Thanks to the teacher’s 

questioning and directions, shown also in the interaction flowchart in Figure 25, the 

dependence of the constant on the inclination angle has become explicit and the property is 

experimented in GeoGebra with different values of the angle (→G): several students find that the 

constant depends on the value of the plane inclination angle. The transition from the first to the 

second-order covariation (intermediate order) deserves particular attention in this analysis: it 

happens gradually, and a clear cognitive pivot of this transition can be detected in Giorgia’s 

utterance “the constant value can vary” [52]: this apparently contradictory statement makes 

explicit the epistemic conflict between the parameter and the variables in the formula. The 

student refers to the unknown concept of parameter in an intuitive and natural way, adopting 

an expression that is already documented in the literature (Bloedy-Vinner, 2001). The use of 

antithetical expressions is also typical of some common locutions of the algebraic language, e.g., 

arbitrary constant (Bernardi, 1994). Moreover, this idea of varying quantity represents one of 

the main facets of the concept of variable that we recalled in Section 3.1. When a variable is 

conceived as a varying quantity, it does not stand for a single unknown value but for a domain 

of possible values. Despite the focus remaining on the covariation of the dependent and 

independent variable, the presence of the variable k introduces an underlying idea of motion and 

dynamicity. Just in a second moment the students understand that the value of that quantity 

determines the situation as a whole. Referring to our example, like the students well say, 

changing the value of the angle of inclination of the plane, not only determines a change in the 

value of the constant k but also of the traversed space. In this perspective, the parameter can be  
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Figure 25 – Timeline 5 (Galileo 2017) 
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intended as a higher order variable in the sense of Arcavi et al. (2016) and this idea well fits with 

our notion of second-order covariation. According to a commognitive perspective, the 

expression “the constant value can vary” is a clear sign of a commognitive conflict due to a double 

interpretation of the word “constant” on two different semantic levels (Sfard, 2008). The 

transitional order of covariational reasoning represents the coming to the surface of the 

incommensurability between the mathematical narratives and it culminates when the process 

of evolution to second-order covariation is completed, and students grasp the role of the 

parameter within the formula of the motion of the ball. Eventually, Giorgia is able to develop a 

generalized formula ([56], y=k·x²), in which the dependence on the inclination angle is 

encapsulated within the parameter k. The latter students’ interventions express their ability to 

read the formula s = k·t2 on a "double order": at a first-order the covariation s-t; at a second-order 

the covariation between the (s,t) function and the parameter k.  

The artefacts interactions row in the Timeline (Figure 25) collects all the different modalities in 

which the artefacts intervene in the discussion, highlighting the synergy between their purpose 

of use. The teacher constantly uses the blackboard in order to take notes of the emerging 

formulas (→B) and these writing gestures have a grounding function: the blackboard B 

represents the artefact which allows the creation of common resources shared by the whole 

classroom for use in the discussion. Moreover, the writing gestures of the teacher implicitly 

reveal to the students the relevance of what is written on the blackboard. Contrary to our 

expectations, the analysis of the gestures produced by the students does not reveal many non-

redundant gestures with respect to speech. We expected to find them especially during cognitive 

transitional phases, but they are not so evident: one possible explanation for this could be the 

previous working group session during which students already reasoned on the tasks proposed 

and elaborated their own reasoning. The level of the mathematical discourse is initially 

analytical and then flows into a higher level that we are going to refer to as objectified ([49], 

[56]) when a mathematical formula is clearly elaborated (Figure 25 – discourse level row). 

10.3 DISCUSSION  

In this section we are going to analyze the five episodes previously described according to the 

four layers of analysis presented in Section 8.4. 

10.3.1  Layer (a): Covariational reasoning 

The episodes analyzed in the five Timelines reveal the existence of a transitional phase between 

the two orders of covariation in which the focus of reasoning remains on the covariation of the 
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dependent and independent variable, but the presence of a parameter introduces an underlying 

idea of motion and dynamicity. As described in Arcavi et al. (2016), the parameter is conceived 

as a varying quantity: it does not stand for a single unknown value but for a domain of possible 

values. This intermediate order requires a further investigation: data from other T.E.s will help 

us to better understand whether it is a standalone order or rather a low level of COV 2 that 

contributes to a cognitive theorization of this second-order construct. COV 2 is fully reached at 

the end of the discussion when Giorgia conceptualizes that using k is possible to condense in one 

formula an entire family of relationship.  

The tasks performed during the teaching experiment show that the technological supports allow 

an instrumentation not only of the first-order of covariation but also of the second one: 

specifically, in the GeoGebra applet, dragging the blue point located at the end of the plane, 

students can modify the angle of inclination, observe the related values of time and distance 

traversed contained in the table and deduce the properties of the s-t function. This kind of 

instrumentation of COV 2 is a clear example of metavariation (Hoffkamp, 2009). Indeed, varying 

the inclination of the plane enables to investigate covariation in several scenarios.  

10.3.2  Layer (b): Linguistic analysis 

This layer of analysis is the result of a synchronic use of the Timeline: after having identified the 

levels of covariational reasoning emerging in students’ utterances, we analyzed the linguistic 

structure of their statements. We are going to refer to the magnitudes involved denoting them 

with a capital letter (A, B…) and not mentioning them explicitly: this approach helped us to focus 

specifically on the structure of the sentences and not on the specific magnitudes. Here we collect 

in a table the emerging examples and the related observations. 

COV 1 Description of the level Examples from Galileo 
2017 T.E. 

Syntactical and lexical analysis 

L1 The students perceive 
a change in both the 
magnitudes, but the 
way in which this 
change happens is not 
described and in 
particular they do not 
explain how a change 
in a quantity affects 
the other. 

[5] A è sempre la stessa, 
B cambia. 
A is always the same, B 
changes. 

From the syntactical point of 
view, we can recognize this 
structure:  
Sentence about A, sentence about B 
where the two sentences are not 
correlated.   
From the lexical point of view, we 
can observe the use of the adverb 
always, sign of a qualitative 
description. 
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L2 
 

Students observe that 
an increase/decrease 
in one variable 
produces an 
increase/decrease in 
the other variable 
involved. 

[2] A aumenta 
gradualmente mentre 
[la palla] scende. 
A increases gradually as 
[the ball] goes down. 

[14] Per l’asse x 
qualcosa che cresce e 
per l’asse y qualcosa che 
decresce. 
For the x-axis 
something increasing 
and for the y-axis 
something decreasing. 

[16] Quando aumenti A, 
la palla ci mette di più a 
farlo [=percorrere il 
piano].  
When you increase A, B 
is greater.                            

[21] Quando inclini il 
piano, la palla è più 
veloce. 
When you increase A, 
the ball is faster. 

[23] Quando inclini il 
piano, la palla ci mette 
meno B per percorrere 
la stessa C.  
When you increase A, 
the ball takes less B to 
do the same C. 

[25] Essendo il piano più 
inclinato, la pallina ha 
una B maggiore. 
Since more A, greater B. 

[27] [Se il piano è più 
inclinato], nella stessa B 
meno C. 
[Since more A,] same B, 
less C. 

[29] [Se il piano è più 
inclinato], nello stesso C, 
meno B. 

The syntactical structures that 
can be identified are the 
following:  
Sentence about A as/while 
sentence about B. 
Since more/less A, more/less B to 
do the same C. [3 magnitudes] 
When you increase A, B is greater. 
Since more A, greater B.   
The relations are mainly binary or 
ternary and clauses are mainly 
subordinate. It also emerges the 
use of comparatives. 

From the lexical standpoint, 
students use temporal linking words: 
as, while, when (often followed by a 
subjective sentence in which ‘you’ is 
the subject: when you increase A). In 
all these examples we can observe 
a qualitative description of the 
variation of the two or three 
magnitudes involved, and it is 
clear that a change in one quantity 
produces a change in the others.  
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[Since more A,] same C, 
less B. 

L5 
 

At this level of 
covariational 
reasoning, students 
overcome the simpler 
coordination of the 
numerical values of 
the quantities and 
arrive at a more global 
vision of the 
relationship between 
the two magnitudes. 

[37] Quando A era 16, B 
era 4. 
When A is n^2, B is n. 

[39] A è (=) B² 
A is (=) B² 

[43] Il tempo alla 
seconda dà lo spazio... 
quindi y= x² 
Time to second power 
gives space… hence y= 
x² 

From the syntactical standpoint, 
the relation between A and B is 
condensed adopting the verb to 
be or the equal sign.  
From the lexical point of view, the 
continuous covariation between 
magnitudes A and B is expressed 
through the description in formal 
terms of their mathematical 
relationship or the use of a 
formula with an independent (x) 
and a dependent variable (y). 
Sentences are objective and 
relations expressed are true 
globally. The verb to be is used 
with the same meaning of the 
equal sign.  
Sentence [37] distinguishes for 
the presence of a subordinate 
clause in which the relation is 
expressed in a local form adopting 
numerical values. 

 

Higher COV Description of the 
level  

Examples from Galileo 
2017 T.E. 

Syntactical and lexical analysis 

Intermediate 
COV 

Transitional 
cognitive order 
toward a full 
achievement of COV 
2. Students try to 
describe in an 
intuitive way the 
concept of 
parameter. 

[49] y = 2,13 ∙ x² in 
questo caso con 25° 
y = 2,13 ∙ x² in this 
case with 25° 

[52] Il valore della 
costante potrebbe 
cambiare. 
The constant value 
can vary. 

[54] Il numero della 
costante dipende 
dall’angolo. 
The constant number 
depends on the angle. 

From the syntactical 
standpoint, we do not observe 
recurring structures. 
From the lexical standpoint, 
we can notice a quantitative 
approach [49] with the 
elaboration of a mathematical 
formula for a fixed value of the 
angle or the use of some 
antithetic expressions [52-54] 
in which students state that 
the value of the so-called 
constant can vary. 

COV 2 Students succeed in 
the elaboration of a 
general formula 
containing the 
parameter: k 

[56] y = k ∙ x² dove k è 
una costante che varia 
con l’inclinazione. 

From the syntactical 
standpoint, we do not observe 
relevant  structures. 
The lexical analysis reveals 
that this order of covariation 
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encapsulates the 
dependence on a 
specific magnitude 
and allows to 
describe an entire 
class of phenomena. 

 

y = k ∙ x² where k is a 
constant varying with 
the inclination. 

manifests in a quantitative 
way, with a formula 
containing the two variables 
and a parameter.  
The parameter is still 
identified with an antithetic 
expression i.e., a constant 
varying with the inclination, 
probably due to the absence of 
a more specific mathematical 
background.   

Finally, a few examples of variational reasoning can be recognized: at [6], referring to door 

spacing, Andrea says that it “was always 2” [6] (L1 – discrete variation); only in a second 

moment, thanks to teacher’s and Virginia’s intervention, he elaborates that it “increased by 2” 

[10] (L2 – gross variation). 

10.3.3  Layer (c): Discourse levels 

A diachronic use of the Timelines enabled us to appreciate the evolution of the mathematical 

discussion developing throughout the five episodes. In particular, we identified three main levels 

of the mathematical discourse:  

- Descriptive: students’ utterances are simple descriptions of the inputs from different 

external representations. There are explicit references to the artefacts and to the specific 

physical context presented. The language adopted is the everyday one, not yet scientific, 

according to Vygotsky 's (1986) distinction. 

For instance, in [2] Lorenzo, while describing what he observed in the video, says “speed 

increases gradually as it goes down”; in [32] Ada says “In the top of the video it is written 

𝑠: 𝑡2 ” and in [37] Virginia states “In the video there were the sum of all routes […]”. 

Utterances are objective. Something slightly different can be observed in [21] where 

Alessandro, starting from the inputs provided by the video, claims that “if you tilt the 

plane, the ball is faster”. He imagines modifying the physical situation presented in the 

video and expresses it in a subjective way: he uses the personal pronoun “you” followed 

by the verb “tilt”.  

- Analytical: at this level, the use of an analytical language starts making its appearance in 

the mathematical discourse. Students conceptualize the magnitudes involved with a 

mathematical symbol, a variable, and reason in terms of numerical relationships or in 

terms of x and y in the Cartesian plane. The sentences are more “isolated” from the 
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specific physical contest and describe some possible variations of the physical 

phenomenon.  

Some clear examples of this level can be recognized in Timeline 2 ( 

 

 

Figure 16 - The teacher comes closer to group A to see the screen of their laptop 

Figure 17) when Caterina starts thinking of the s-t graph and says “for the x-axis 

something that increase and for the y-axis something that decreases…” [14] and again 

reinforces at [16] saying “On the y-axis there must necessarily be something that is 

decreasing”. Or at [42], Virginia reflecting on the data presented in the video observes 

that “the first two pieces took 2 as time and they were worth 4 together”. 

- Objectified: the process of modelling leads to the elaboration of a mathematical 

relationship, a function or a formula that has a general validity and does not fit only with 

the specific physical contest presented at the beginning. The mathematical discourse is 

objective and formal. At [39], Virginia states “s is t2”, and again at [42]: “time to the second 

power gives space […] hence y=x2”. In the last episode, other formulas appear: “y=2.13 ∙ 

x2” ([49]) and “y=k ∙ x2” ([56]). The formula allows to describe mathematically the real 

situation with a global approach.  

10.3.4  Layer (d): Adaptive teaching strategies 

The process of descriptive coding helped us to identify four main strategies that the teacher used 

to adapt her instruction to the students in the classroom. It is worthy to note that the teacher did 

not follow the strategies separately; on the contrary, we observed several strategies interlaced 

in the same episode. The strategies were named based on the teacher aim from performing the 

strategy. We retrospectively interviewed the teacher asking her what her aim from a specific 

intervention was. The strategies were recurring but the episodes we chose exemplified them at 

best. Strategies are listed below in order of appearance in time and not in order of relevance: 

1 - Semiotic game: through this game, the teacher revoices students’ words and reproduces 

students’ gestures to ascribe them with mathematical meanings. In the first episode (10.2.1), the 

semiotic game played by the teacher helps Andrea to describe the distance between two 

constitutive metal bells correctly. 
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2 - Fostering the discussion in the classroom and facilitating its flow: the teacher encourages the 

discussion in the classroom and makes it run through questioning. The teacher never judges 

students’ argument as it is correct or incorrect, but she always lets the students try to respond 

by formulating a new question, with the aim of pushing them to deepen the problem at stake. 

This strategy is evident in Episode 2 (10.2.2). 

3 - Exploring students’ actions and thinking: adopting an investigative approach, the teacher tries 

to better understand what the students are really thinking and referring to. In Episode 3 (10.2.3), 

we have observed that the teacher addresses many questions, sometimes to a specific student, 

other times to the whole classroom and she pretends to have not understood Alessandro’s 

statement, so to help him dig into his thoughts.  

4 - Drawing students’ attention to the information provided by the different artefacts used in the 

learning process: the teacher brings the students' attention to the mathematical relationships 

displayed by the digital artefacts and uses the blackboard to create shared semiotic resources 

with the whole classroom; the aim is to look at a situation from a fresh standpoint. This strategy 

is predominant in the last two episodes: in Episode 4 (10.2.4), the role of the teacher is essential 

in bringing to the surface the conflict emerging in the classroom and to better analyze the 

apparently contradictory information provided by the artefacts involved; then in Episode 5 

(10.2.5) she successfully guides students toward the resolution of the conflict helping them in 

using artefacts in a synergic way.  

10.4 CONCLUDING REMARKS 

The analysis of the evolution of students’ reasoning when dealing with the conceptualization of 

ball motion shows two important features concerning how they can learn functions. From the 

one side, their learning processes are fostered by teaching situations, where they are asked to 

model real phenomena through an inquiry methodology. As we have seen, many of the features 

of modelling tasks we recalled in Section 8.2.1 are observable in our teaching experiment, so 

confirming that this inquiry-based approach to a modelling task reveals useful for triggering 

students’ understanding of a complex mathematical construct like second-order covariation of 

magnitudes. From the other side, continuous covariational reasoning, both of first- and second-

order, reveals important for their conceptual understanding of functions. We will now shortly 

discuss the two items. For this issue, it is interesting to recall the explanation given by Bloedy-

Vinner (2001) about the difficulties that students meet when facing situations where they must 
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manage ‘second order functions’, namely functions whose argument is a parameter, and their 

corresponding values are equations or functions. This mathematical definition explains why 

students run into a cognitive conflict when working with parameters and they could perceive 

them as constants that vary. Embracing a commognitive perspective, this conflict could be 

interpreted as something more than just psychological: on a semantic level it reflects in the use 

of an oxymoronic expression; on a discourse level it reveals the encounter between incompatible 

narratives and the necessity to make evolve the mathematical discourse so to resolve the 

incommensurability of the previous discourse accepting the possibility of introducing new 

mathematical notions, e.g. the parameter in our case, in order to solve that emerging conflict. 

The data analysis also revealed the emergence of a transitional phase in between the two orders 

of covariation in which the parameter k makes its appearance and introduces dynamicity. 

Finally, the analysis of Episode 4 (10.2.4) underlines the important role played by the teacher in 

non-trivializing the emergence of the commognitive conflict and in contributing to its resolution 

adopting suitable teaching strategies, like directing students’ attention to the most suitable 

information, questioning, and enhancing unexplored ways of reasoning.  
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11 GALILEO TEACHING EXPERIMENT (2019)  

This second teaching experiment took place in September/October 2019, and it was 

substantially a replication of the one conducted in 2017 with some slightly modifications. The 

design of the tasks was revised by the teacher, Silvia, and me under the supervision of Prof. 

Arzarello. The activity proposed took at least 3 weeks of work for a total amount of nearly 16 

hours including a few hours of homework. Students worked divided in 5 small group-works 

(specifically 3 groups of 4 students and 2 groups of 5 students). Groups remained always the 

same throughout all the activities.  

During the group-work, students conducted mainly exploratory activities and the teacher 

supervised the work, resolving possible difficulties with the tools and answering students’ 

questions with suggestions on how to face the activity. All the group-work sessions were 

followed by classroom discussion mediated by the teacher. She always started from the different 

answers of the groups, underlining similarities and differences, and enhancing an argumentative 

approach in order to justify their assumptions.  

As a researcher, I was present in class during most of the activities proposed and I personally 

took care of the video-recordings.  

Participants 

The 10th grade classroom involved was made of 22 students. Thanks to their previous studies in 

mathematics, students knew the meaning of finite differences and that a function with constant 

first differences is a line, a function with constant second differences (and first differences not 

constant) is a second-degree polynomial function and in general a function with n-th differences 

constant and the previous n-1 not constant, is a n-th-degree polynomial function. Students were 

used to work with technology and in particular with GeoGebra applets. They already had 

reasoned on properties of functions starting from numerical data that is with values of finite 

differences for functions represented in tables.  

According to the physics school program, students were also familiar with the notions of 

distance, velocity, and the decomposition of forces along an inclined plane. Students had not yet 

studied the scientific concept of acceleration and used that term from their everyday experiences 

of situations related to motion (e.g., cars).  
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Data collection 

The entire teaching experiment was video-recorded adopting various disposals to film the 

working groups and a dedicated camera to film the teacher. In some cases, thanks to the use of 

the software Camtasia, the computer screens were also recorded. All the written worksheets 

used during the lessons were in Italian and here they are integrally reported translated into 

English. The written protocols of the students were collected and analyzed. The salient parts of 

the lessons revealing the emergence of covariational reasoning were transcribed and then 

deeply analyzed.  

The parents of the students and the school consented to the use of the multimedia material 

produced; the original version of the used consent form is contained in Appendix A. 

11.1 OVERVIEW OF THE TASKS AND PROSPECTIVE ANALYSIS 

The main purpose of this activity was that of exploring the physical phenomenon of the motion 

of a ball running along an inclined plane. This was done through different representations 

provided by the vision of a video, some applets in the GeoGebra environment, the reading of 

Galileo’s original text on falling bodies and the reproduction of the experiment in the laboratory. 

The final goal was to obtain and deeply understand the law of the motion of the ball.  

All the tasks are reported below in eight different worksheets with the corresponding computer 

screen when present. We are going to present all the details and the prospective analysis, based 

mainly on the teaching experiment of 2017, merely of those tasks that we are going to analyze 

in the following. The tasks which are not object of analysis will be presented briefly, just to 

provide an overall view of the experimentation.  

11.1.1  Task 1 

In Task 1, the students had first to watch on the computer shared by the whole group the video 

from the website of Galileo Museum (Florence) describing the motion of a ball along an inclined 

plane (the same of 2017 T.E.). After the vision of the video, students were asked to formulate 

some observations about the motion of the ball.  

First Worksheet (Task 1) 

Task 1 

Look at the video about the experiment of the Inclined Plane of Galileo (Galileo Museum, 

Florence). 
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What caught your attention in the video concerning the movement of the ball? Write down 

all the observations that come up to your mind.  

Corresponding computer screen (see Figure 10)   

This request can be classified as a formulation task since students are asked to write some 

observations arising from the vision of the video. 

11.1.2  Task 2 

In Task 2, students had to explore a GeoGebra applet showing on the left the ball running along 

an inclined plane in which the angle of inclination of the plane is highlighted in green color and 

on the right a table displays in two different columns values of time and distance covered by the 

ball at each time. In particular, time intervals are equal to 1 second. Moving the blue point at the 

end of the inclined plane, it is possible to change its inclination. Resetting the simulation and 

making it run again, different values of time and space are obtained. Hence students had the 

possibility to explore how those values change when the inclination of the plane varies.  

Second Worksheet (Task 2) 

Task 2 

Explore the GeoGebra file Galileo1.ggb. 

You can move the blue point in order to modify the inclination of the plane. 

a) What happens varying the inclination of the plane? Why? 

b) According to you, are the conjectures you have made after the vision of the video 

verified? How can you prove them? 

If otherwise they are not verified, how would you change them? 

c) Can you find an equation describing the motion of the ball? Which one? Justify your 

answer. 

Corresponding GeoGebra screen (see Figure 11) 

Task 2 initially consists in an explorational phase within the GeoGebra environment: changing 

the inclination of the plane, the table provides the values of time and distance traversed. Point 

(b) of the task is more a situation of validation. Students are asked to combine both the 

information provided by the initial video and the applet, validate their previous assumptions, 

and support them with an argumentative approach. The last question (c) requests to provide a 

reasonable equation describing the motion of the ball. The video of Galileo Museum shows the 

expression “𝑠: 𝑡2” where s and t are recognized by the students since they are familiar with the 

standard notations adopted in physics to denote distance and time. Even if the video does not 
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give information on the meaning of the formula, it could direct the students to consider the right 

variables to formulate the equation of the motion law.  

Before moving to the following tasks, the teacher introduced a mathematical discussion 

(Discussion 1) focused on Task 1 and Task 2. The main goal was that of sharing the possible 

conjectures and equations formulated by the groups and comment on them with an 

argumentative approach.  

11.1.3  Task 3 

Task 3 was a sort of complement to the previous activities. Students were involved in justifying 

their previous conjectures comparing them with the extra information provided by a new 

GeoGebra file. The table on the right of the applet presented two extra columns containing the 

numerical values of the first finite differences of distance and in the middle of the screen there 

was a cartesian plane showing a discrete graph of the distance-time relationship. Changing the 

inclination of the plane shown on the left, students could observe how the shape of the graph 

and the finite differences are related to the angle of inclination of the plane.  

Third Worksheet (Task 3) 

Task 3 

In this activity you are asked to explain and justify your answers using the graphs and their 

numerical representations.  

Open the file Galileo2.ggb and observe how the distance traversed varies with the angle of 

inclination of the plane.  

a) Observe the shapes of the curves related to the variation of the inclination of the 

plane. How can you justify them? 

b) How do the finite differences of the values of the x and the y of the points of the 

graph change with the variation of the inclination of the plane? Motivate your 

statements. 

c) Do you have other observations? Which ones? 
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Corresponding GeoGebra screen (Galileo2.ggb) 

 
 

 

 

 

 

 

 

Figure 26 – The GeoGebra applet interface (Galileo2.ggb) 

This activity was followed by a teacher-led discussion (Discussion 2) aiming at deeply investing 

the relationship between the distance-time graph and the angle of inclination of the plane, so 

enhancing second-order covariational reasoning processes.  

11.1.4  Task 4 

A new concept is introduced in Task 4. Firstly, students faced the concept of relative distance 

with its definition and an example referring to a car and distance traversed. Students were asked 

to make assumptions on how relative distances change in time and then, using a GeoGebra applet 

similar to the one of Task 3 with in addition a column reporting relative increments in distance, 

students were invited to verify their assumptions. The same approach was proposed to 

investigate the relationship between relative distances and the inclination of the plane. At the 

end of the group-work session, a mathematical discussion was introduced by the teacher with 

the aim of reasoning on the conjectures elaborated by the different groups. This task will not be 

object of analysis.  

Fourth Worksheet (Task 4) 

Task 4 

A relative distance is defined as the ratio between the distance traversed by a body in a 

specific unit of time and the distance covered by the same body until that moment.  

For example, if you look at the figure 
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we can observe a car left from point P, that in the unit of time ∆t, has travelled the distance 

𝐴𝐵തതതത from point A to point B. The relative distance (RC) is the ratio between the distance 

𝐴𝐵തതതത and the distance 𝑃𝐵തതതത covered by the car until that moment: 𝑅𝐶 =
𝐴𝐵തതതത

𝑃𝐵തതതത
=  

∆𝑠

𝑠
. 

a) Make some assumptions on how the relative distance changes in time. Justify your 

hypotheses.  

b) Open the applet Galileo3.ggb, run the simulation and observe how the relative spaces 

of the ball change. Are your observations in accordance with the conjectures 

previously formulated? If not, how would you change your conjectures? 

c) Vary the inclination of the plane. How do the relative distances of the ball change? 

d) Verify your hypothesis with the applet: what can you observe? Motivate your 

answers. Looking at the applet, do other conjectures come to your mind? How do 

you justify them? Which of them can you prove?  

e) Provide some examples inspired by real life in which talking about relative 

increments makes sense.  

Corresponding GeoGebra screen 

Figure 27 - The GeoGebra applet interface (Galileo3.ggb) 

11.1.5  Task 5 

Task 5 was an activity of re-elaboration. Neither exploration was required, nor extra information 

was introduced. Students were involved in making the point on all the knowledge acquired in 

the previous activities and were invited to communicate it in a written and mathematical form. 

A few hours were devoted to this writing activity. These elaborates were assessed through the 

method of comparative judgement: all the details entailing this research study will be provided 

in Chapter 15.  

Fifth Worksheet (Task 5) 

Task 5 

Thinking back to the work carried out on the inclined plane, write to schoolmates of another 

class to outline the work itself and, specifically, the relationship that describes and explains 

mathematically the motion of the ball along the inclined plane. This report should be a 

theoretical support for you and your schoolmates. 
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11.1.6  Task 6 

Task 6 entailed the reading of the original text of Galileo describing the experiment on the 

inclined plane. Students read the text in their groups and then, with the help of the teacher, they 

made sure to have caught the meaning of all the words used by the author and how Galileo made 

the experiment with the tools available at his time. Moreover, a brief video, from Galileo 

Museum, provided some information on the cultural context of that historical period. Then 

students were involved in reproducing themselves the experiment of Galileo. In the physics 

laboratory they had the chance to verify directly the assumptions made by Galileo, detecting with 

a stopwatch the time taken by the ball to cover the whole plane and having the possibility to 

change the inclination of the plane. This task will not be object of analysis.  

Sixth Worksheet  

Galileo and the Falling Bodies. 

Taken from "Discorsi e dimostrazioni matematiche intorno a due nuove scienze attinenti 

alla meccanica e ai movimenti locali".  

[The text here reported is in Italian, its original language] 

“In un regolo, o vogliam dir corrente, di legno, lungo circa 12 braccia, e largo per un verso mezzo 

braccio e per l’altro 3 dita, si era in questa minor larghezza incavato un canaletto, poco più largo di un 

dito; tiratilo drittissimo, e, per averlo ben pulito e liscio, incollatovi dentro una carta pecora zannata e 

lustrata al possibile, si faceva in esso scendere una palla di bronzo durissimo, ben rotondata e pulita; 

costituito che si era il detto regolo pendente, 

elevando sopra il piano orizzontale una delle sue 

estremità un braccio o due ad arbitrio, si lasciava 

(come dico) scendere per il detto canale la palla, 

notando, nel modo che appresso dirò, il tempo che 

consumava nello scorrerlo tutto, replicando il 

medesimo atto molte volte per assicurarsi bene 

della quantità del tempo, nel quale non si trovava mai differenza né anco della decima parte d’una 

battuta di polso. Fatta e stabilita precisamente tale operazione, facemmo scender la medesima palla 

solamente per la quarta parte della lunghezza di esso canale, e misurato il tempo della sua discesa, si 

trovava sempre puntualissimamente esser la metà dell’altro; e facendo poi l’esperienza di altre parti, 

esaminando ora il tempo di tutta la lunghezza col tempo della metà, o con quello delli due terzi o dei 

3/4, o in conclusione con qualunque altra divisione, per esperienze ben cento volte replicate sempre 

s’incontrava, gli spazii passati esser tra loro come i quadrati de i tempi, e questo in tutte le inclinazioni 

del piano, cioè del canale nel quale si faceva scender la palla; dove osservammo ancora i tempi delle 

scese per diverse inclinazioni mantener esquisitamente tra loro quella proporzione che più troveremo 

essergli assegnata e dimostrata dall’autore. Quanto poi alla misura del tempo, si teneva una gran 

secchia piena d’acqua, attaccata in alto, la quale per un sottil cannellino, saldatogli nel fondo, versava 

un sottil filo d’acqua, che s’andava ricevendo con un piccol bicchiero per tutto ‘l tempo che guisa 

raccolte, s’andavano di volta in volta con esattissima bilancia pesando, dandoci le differenze e la palla 

scendeva nel canale e nelle sue parti: le particelle poi dell’acqua, in tal proporzioni de i pesi loro le 
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differenze e proporzioni de i tempi; e questo con tal giustezza, che, come ho detto, tali operazioni, 

molte e molte volte replicate, già mai non differivano d’un notabil momento.” 

  

Seventh Worksheet (Task 6) 

Task 6 

a) To reflect:  

- Galileo hypothesizes that when two bodies fall from the same height and are not 

subjected to friction forces (but only to weight force) then they will reach the soil 

in equal times even if they have very different masses. 

- How to verify this assumption? Galileo studied the motion of bodies with different 

masses making them roll along an inclined plane. He eliminated the friction force 

as much as he could and so he succeeded in studying the motion of free falling of 

bodies even without having at disposal sophisticated instruments to measure time 

and distance. The inclination of the plane makes the motion slower, hence more 

easily observable.  

- Watch the video https://catalogo.museogalileo.it/multimedia/CadutaGravi.html 

b) Let us reconstruct the plane of Galileo in the laboratory. 

Corresponding screenshot of the video by Galileo Museum 

 

 
Figure 28 - Screenshot of the video by Galileo Museum 

11.1.7  Task 7 

Last task consisted in a questionnaire conceived for investigating the general perception of the 

students about the activity. Question 1 was formulated in order to obtain feedback about the 

structure of the activity and the use of multiple artefacts aimed at investigating the same 

problem from different perspectives; question 2 aimed at collecting some insights on the 

https://catalogo.museogalileo.it/multimedia/CadutaGravi.html
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potentiality of GeoGebra applets according to students’ point of view and in the end question 3 

left carte blanche for comments and suggestions to improve the teaching experiment.  

Eight Worksheet (Questionnaire) 

Questionnaire 

1. The law of the inclined plane was obtained adopting different tools (video, GeoGebra, 

Galileo’s text, experiment). Do you think it was worthy exploring the problem with 

these different tools? Why? 

2. According to you, which are the advantages in the use of GeoGebra applets? Which of 

their functionalities did you take advantage of in order to verify the conjectures made 

during the vision of the video and the formulation of the equation relating time and 

distance? 

3. If this experience was proposed to your 10th grade schoolmates next year, which 

modifications would you suggest making? Do you have any other inputs to give or 

comments to share? 

11.1.8  Prospective analysis 

The expected results of this T.E. are in line with the prospective analysis already outlined in 

10.1.3 so what we are going to expound in the following are the substantial differences and 

improvements with respect to the 2017 T.E.. Firstly, a comment about the representations 

involved: the video and the first GeoGebra applet have a complementary function has already 

outlined in 10.1.2. The second GeoGebra applet has instead a construct deeper understanding 

role because it provides not only numerical additional information, first finite differences of 

distance, but also a discrete representation of the values of time and distance that was 

completely absent in the previous artefacts and that constitutes a mediator between the 

simulation of the inclined plane on the left and the table of values on the right. Hence, in this T.E., 

the graphical representation component is much more advanced. Since in Task 3 students could 

envision a discrete version of the s-t graph and work on it during an entire working group 

session, we expect students to better succeed in the elaboration of a mathematical formula 

thanks also to the support of the second GeoGebra applet, to explore more in detail the relation 

between the shape of the graph and the angle of inclination of the plane and to constantly 

establish a connection between the mathematical model and its physical interpretation given 

their wider knowledge. Given the findings emerged from the 2017 T.E., we expect students to 

express in a descriptive way when referring to the video artefacts reasoning both in qualitative 

and quantitative terms and to succeed in envisioning some possible variations of the situation 

proposed when changing the angle. We also expect some references to velocity to emerge given 

their more extensive preparation in physics. When referring to the GeoGebra applet, we expect 
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students to move their discourse on an analytical or even objectified level and to achieve more 

easily the elaboration of a general mathematical formula, maybe also adopting their knowledge 

about the decomposition of forces along the inclined plane. Finally, after having worked with the 

second GeoGebra applet, we hypothesize students would describe with a holistic approach the 

distance-time graph highlighting some properties of its trend and relating them to finite 

differences. The experiment and the text of Galileo constitute the final steps in this T.E. hence 

their influence in students’ reasoning will not emerge in the episodes analyzed in the following. 

Concerning the teacher, we assume she will manage the whole T.E. with great ability since it is a 

replication of the previous one and we expect to recognize the same adaptive teaching strategies 

identified in the 2017 T.E. analysis. 

11.2 DATA ANALYSIS 

In this section we illustrate in detail seven episodes examined adopting the Timeline tool and 

using the double lens of the macro and micro analysis. In particular:  

- Episode 1 (11.2.1) and Episode 2 (11.2.2) are excerpts from the first classroom 

discussion (Discussion 1) which was introduced after the first two tasks. Students had 

worked in small groups on the video and the first GeoGebra applet. These episodes 

correspond to the episodes analyzed during 2017 T.E. and so they constitute a fertile 

ground for a strict comparison of the results of the discussion, reflecting on how the 

different background of the students influenced their approach to second-order 

covariation;  

- Episode 3 (11.2.3) and Episode 4 (11.2.4) come from the working group session 

during which students worked on the second GeoGebra applet displaying the 

distance-time graph and the first finite differences of distance. These are the only two 

episodes referring to work-group activity and in particular they refer to two different 

groups. They will help us to dig into students’ reasoning when specifically dealing 

with the covariation of the parameter (the angle of inclination of the plane) and the 

shape of the distance-time graph. In Section 11.2.5 we will comment briefly on the 

results emerging from the other three groups, focusing exclusively on their written 

productions;  

- Episode 5 (11.2.5), Episode 6 (11.2.7), and Episode 7 (11.2.8) are excerpts from the 

second teacher-led discussion (Discussion 2) which took place after the group-work 

session involving the second GeoGebra applet.  
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During the tasks, the students worked divided in five groups that we are going to denote with 

the letters A-B-C-D-E. The letter accompanying the name of the student in the transcript denotes 

the group to which the student belonged. Throughout the whole analysis, seven different 

artefacts will make their appearance: the video (V), the GeoGebra applet (G), the formulas (F), 

the table of numerical values (T), the finite differences computed by the students (FD), the 

interactive whiteboard (IW) and the blackboard (B).  

11.2.1  Episode 1 (Discussion 1, 09:15-12:32) 

This episode is an excerpt from the first teacher-led discussion: the teacher is asking her 

students about the observation they wrote watching the video and then working with the 

GeoGebra applet. Group A starts sharing with the whole classroom some considerations about 

the video and then Silvia turns to group B for other claims.  

 Timing Who Utterances Gestures 

64 00:09:15 Teacher Then?  

65 00:09:20 FabioB The more the angle of 
inclination of the plane comes 
closer to 90°, the more the 
speed and so the descent time 
increases because the ball 
reaches before its maximum 
velocity and its maximum 
acceleration… 

 

   […]  

66 00:10:25 Teacher According to you, in which 
situation will we reach the 
maximum velocity? 

 

67 00:10:30 FabioB During the last section… […]  

68 00:10:50 Teacher  

 

FabioB 

 

Teacher 

Ok, hence if we have the 
inclined plane, the maximum 
velocity is in the last section, 
The last section 
[simultaneously with the 
teacher] 
but before you said “the more 
the angle of inclination of the 
plane comes closer to 90°, the 
more the speed increases until 
it reaches its maximum 
velocity”…  

 

69 00:11:03 FabioB Maximum for that angle…  
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70 00:11:05 Teacher Maximum for that angle… And 
the maximum speed by far? 

 

71 00:11:12 FabioB It depends on the force you 
apply. In this case I apply only 
the weight force but if I push it 
the force changes […] 

 

72 00:11:36 Teacher No no, we just have the weight 
force. Will we have a maximum 
speed by far? And a minimum 
speed by far or not? 

 

73 00:11:50 FabioB The minimum speed [is 
reached] with an angle of 
0,0000001. It can’t be 0° 
otherwise there won’t be the 
motion… and so the speed 
would be 0. 

 

74 00:12:10 Teacher If we take an angle of 0,00001 
we have a certain velocity and 
then it increases until… 

 

75 00:12:25 FabioB Until the angle is of 90° […]  

76 00:12:32 Teacher  [The teacher writes on the 
IW] 

With the aim of making the conversation flow, the teacher clearly addresses group B [64] 

(Figure 29 – interaction flowchart): Fabio takes the word and shares some considerations trying 

to relate the angle of inclination of the plane to the speed of the ball. The student states that “the 

more the angle comes to 90°, the more the descent speed of the ball increases” [65]: while Fabio 

speaks, he makes some iconic and metaphoric gestures simulating the angle of inclination and 

the ball descending the plane. Fast-talking, Fabio claims, incorrectly, that also the descent time 

increases, but it seems that he intended “decreases” because immediately after he tries to 

support his statement attributing it to the fact that the ball reaches first its maximum velocity 

and acceleration. The claim about acceleration is incorrect too but we recall that students had 

not studied it yet during their physics course, so they use this term in an intuitive way and as 

something related to velocity. What is emerging in Fabio’s reasoning is covariation between the 

angle and the speed (Figure 29 – L2, COV row); the teacher wisely grasps what is emerging and 

values it writing on the IW a sentence that condenses it: “the more the angle comes closer to 90°, 

the more the speed increases” (Figure 29 – inscriptions row); now this claim is under the eyes 

of the whole classroom. At [66], the teacher tries to enhance covariation between the angle and 

speed asking Fabio in which situation the ball will reach the maximum velocity. The student  
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Figure 29 – Timeline 1 (Galileo 2019) 
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answers that the ball reaches its maximum speed in the last section [of the inclined plane; he 

refers to the sections shown in the video] so he reduces his reasoning into a covariation between 

speed and distance traversed (Figure 29 – COV row). The teacher does not abandon her purpose 

to consolidate covariational reasoning with the angle of inclination: playing the semiotic game, 

she recalls what Fabio said with an approval tone and simulates the situation described by the 

student with a pen; then she asks again clarification, but Fabio still crushes his reasoning onto a 

covariation between speed and distance; Silvia tries to explicitly ask for a situation in which an 

“absolute speed by far” [70] is reached accompanying her words with a metaphoric arm gesture 

(Figure 29 – gesture row). Initially Fabio responds that it depends on the force applied [71], but 

the teacher precises that only the weight force is acting and again reformulates her question 

[72]. Finally, Fabio introduces a covariational reasoning between the angle and the speed: the 

student states that the minimum speed is reached with an angle of 0,0000001 (very small, but 

different than 0). Silvia rephrases his words with an approval and supportive tone and then 

relaunches the word to Fabio who says that the velocity increases until an angle of 90° is reached 

[75]. In both cases, [73] and [76], the teacher writes on the IW the values of the limit angles and 

the associated velocities (Figure 30). The level of covariational reasoning is low (L2) in this first 

part of the discussion: the student does not seem ready yet to covary the angle of inclination 

with the speed; it is essential the role of the teacher in highlighting those elements of Fabio’s 

reasoning that are relevant for the mathematical discussion and her wise questioning in 

transitioning toward covariational reasoning between the angle and the speed. The level of the 

discourse can be identified as descriptive (Figure 29 – discourse level row).  

Figure 30 – Inscriptions of the teacher on the IW 

11.2.2  Episode 2 (Discussion 1, 28:34-31:32)22 

The teacher is concluding the roundup during which she asked to the five groups their 

observations. Now it is the time of the last group, group E, and Valeria, as a representative of the 

group, takes the word. We will notice that during this first discussion the students do not succeed 

so easily in the elaboration of a mathematical formula but given their more extensive 

background, they correctly intuit the shape of the distance-time graph and are able to explain 

the dependence on the inclination angle from a representational point of view. 

 
22 The analysis of this episode has been partially presented in Bagossi (2021a). 
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 Timing Who Utterances Gestures 

77 00:28:34 ValeriaE Hence, we noticed that first 
finite differences of time were 
always of 1 second, except for 
the last one, while in one 
second the first finite 
differences of distance 
increased more and more so 
we noticed that there was an 
acceleration. 

 

78 00:28:54 Teacher Ok, in one second it covered 
more distance and so there was 
acceleration. And then you 
noticed that the second finite 
differences of distance…. 

 

79 00:29:06 ValeriaE They were constant and the 
third were equal to 0. 

 

80 00:29:13 Teacher The second were constant and 
the third, always of distance, 
were null. 

 

81 00:29:24 ValeriaE Then, we thought that the 
graph could be of second 
degree since second finite 
differences are constant and 
also because we knew that the 
formula of the acceleration is 
s/t2. 

 

   […]  

82 00:30:25 Teacher And you assumed that the 
graph could be… 

 

83 00:30:29 ValeriaE A curve that before had an 
inclination almost horizontal 
and then became always more 
vertical. 

 

84 00:30:37 Teacher Could you draw it?  

85 00:30:49 ValeriaE We divided the horizontal axis 
that was the one of time in 
various sections representing 
one second and then we 
noticed that in the time of one 
second the inclination was 
always more vertical. 

She draws the graph on 
the interactive 
whiteboard. 

86 00:31:17 Teacher Ok, because in one second it 
covered always more distance. 
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And if the angle changes, what 
happens according to you? 

87 00:31:20 ValeriaE If the angle changes, the uphill 
is faster. 

 

88 00:31:28 Teacher And if you should make 
another graph changing the 
angle? 

 

89 00:31:32 ValeriaE  She draws another curve, 
more inclined. 

Valeria takes the word and begins describing what they did during they work-group session.  She 

immediately starts to expose how they worked with finite differences: they noticed that first 

finite differences (f.d.) of time were always of one second while first f.d. of distance increased 

more and more and they, incorrectly, related this increase to acceleration [77]. Silvia does not 

focus anymore on the misconceptions emerging during the mathematical discussion, but instead 

starts taking notes on the IW about f.d.. While pointing with the pen to the IW (Figure 33 – 

gesture row), the teacher revoices Valeria’s word and asks for the order of f.d.. The student 

claims that the second f.d. of distance are constant and the third are null [79]. While writing on 

the IW, the teacher repeats Valeria’s words [80] and then the student continues exposing and 

says that “the graph could be of second degree because second f.d. are constant and also because 

we knew the formula of acceleration is s/t2” (they make this assumption about the formula as a 

generalization of the formula about velocity) [81]. Silvia continues taking notes on the IW 

revealing to students the relevance of those conjectures. If until this moment the level of the 

discourse could be identified as analytical given the strong rely on finite differences, now 

something different is revealing: f.d. are related to the degree of the graph, and as a consequence 

to its shape, and the argumentation is also supported by the presumed formula of acceleration 

containing time to the second power. The language adopted seems to reveal a blend of elements 

coming from the various representations (algebraic, numerical, and graphical) that now are 

connected in a coherent sentence: we are going to denote this level of the discourse as 

interpretative (Figure 33 – discourse level row).  At [82], Silvia asks more details about the graph 

so to facilitate the flow of the discussion; Valeria replies describing not only with her words but 

also adopting some metaphoric gestures (Figure 31) “a curve that before had an inclination 

almost horizontal and then became always more vertical” [83]. 
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Figure 31 – Hand gestures performed by Valeria while describing the graph of the function 

The teacher invites Valeria to draw the curve on the IW [84]: the student comes closer to the IW 

and starts narrating how they reasoned to elaborate the shape of the graph (see Figure 32, left 

side). They did not use a global approach but instead reasoned in terms of fixed intervals of time 

[85]. The teacher revoices her words with an approval tone and then asks what happens when 

the angle changes [86]. This question represents the opportunity to enhance higher order 

covariational reasoning, modifying the angle, that is the parameter, and observing how it affects 

the situation as a whole. At [87], Valeria clearly answers that “If the angle changes, the uphill [of 

the graph] is faster” and then, under request of the teacher, draws on the IW a second curve, 

more inclined (see Figure 32, right side).  

Figure 32 – On the left, the first curve drawn on the IW after having divided the horizontal axis 
in intervals of 1 second. On the right, a second curve, more inclined, is added by the student  

In the last part of this episode the level of the discourse turns to objectified: the student is able 

to envision the distance-time relationship in a smooth continuous way (Figure 33 – COV row) 

and to represent it in a graphical form. Once again, it is the clever questioning of the teacher that 

gives the right direction to the discussion and allows the transition toward second-order 

covariational reasoning. Specifically, in this episode, COV 2 manifests in a qualitative and 

representational form: even if the students do not elaborate a mathematical formula, they grasp 

the distance-time relationship and express it in a graphical form [85; 89]. The dependence on 

the inclination angle manifests in the properties of the graph function and specifically in a change 

of the graph slope.  

Finite differences of time and distance constitute the algebraic tool which mainly leads the 

students to the inference of the properties of the s-t relationship [77; 79], not only algebraically  
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Figure 33 – Timeline 2 (Galileo 2019) 
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but also graphically. Actually, it is the possibility of changing the inclination of the plane, a 

metavariation (Hoffkamp, 2009; 2011), that better allows to explore the dependence on the 

inclination angle, so changing the situation as a whole and enhancing COV 2. The two following 

episodes are excerpts from the working-group session which followed immediately the previous 

discussion: the students specifically worked on the second GeoGebra applet and tried to answer 

to the questions presented on the third worksheet (see 11.1.3). The two episodes refer to two 

different groups, B and E. In 11.2.5 we are going to comment briefly on the data from worksheets 

of groups A, C and D. 

11.2.3  Episode 3 (Group-work B, 01:02:15-01:03:00) 

This episode refers to group B: they are at the beginning of their working group session. Matilde 

reads out loud question a) on their worksheet and then students start sharing their observations.  

 Timing Who Utterances Gestures 

90 01:02:15 MatildeB Matilde reads out loud question 
(a) on the worksheet. 

 

91 01:02:22 MatteoB Practically, the more the angle 
increases, the more the 
inclination [of the graph] 
increases; the smaller is the 
angle, the more comes like 
this… 

Matteo describes with his 
pen the trend of the graph 
on the screen. 

92 01:02:28 FabioB But why? She [the teacher] 
wants that we find a function… 

 

93 01:02:36 MatteoB Wait, this is a table with x, y 
and the differences. It [the 
graph] is of second degree 
hence this [pointing second f.d. 
on their sheet] is the half…no, 
the double of the coefficient… I 
seem to remember from the 
last year… 

 

94 01:02:55 FabioB Yes, yes.  

95 01:03:00 MatteoB So, 3.51 is the coefficient.   

Immediately after Matilde’s reading, Matteo takes the word and tries to share his observations: 

at [91] he correctly notices that “the more the angle increases, the more the inclination [of the 

graph] increases” and he accompanies his words with some gestures with a narrative function 

through which using his pen he follows the trend of the discrete curve displayed on the GeoGebra 
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applet (Figure 34 – gesture row). Despite the correctness of Matteo’s statement, his mate Fabio 

insists that the teacher is not requesting only qualitative observations but more than that “a 

function” [92]. Then Matteo observes with deeper attention the various information provided 

by the GeoGebra applet [93]: the table of finite differences and the graph that is of second degree; 

hence remembering from the past year, Matteo recalls that second f.d. (he points at their 

computations on their sheet, Figure 34 – inscriptions row) are the double of the coefficient of 

the function. So, they divide by two the number they obtained as value of second f.d. (7.02) and 

Matteo writes 3.51 as coefficient of their function [95] (y= 3.51 ∙ x2 – inscriptions row, Figure 

34). The level of the discourse is initially descriptive when Matteo limits himself to elaborate in 

a qualitative way the inputs provided by the GeoGebra applets, but then turns to objectified 

when the distance-time graph is related to its mathematical properties and in particular to a 

mathematical formula. Matteo succeeds in elaborating that generally the coefficient of a second-

degree function is the half of second f.d. and then translates it into a numerical value for the 

specific angle they have chosen on their applet which returns a coefficient of 3.51. What is 

actually missing in students’ reasoning is a physical interpretation of the phenomenon explored: 

their remarks are based on a property-oriented view of function thanks to which they relate 

finite differences to the shape and degree of the polynomial function. The level of covariational 

reasoning is clearly of an order higher than the first: Matteo’s statement [91] locates on the meta-

variation level because the student is able to envision how a changing in the parameter affects 

the situation as a whole. At [93] Matteo still reasons at second-order covariation (Figure 34 – 

COV row), but this time he mainly focuses on a general mathematical formula describing the 

distance-time curve globally and in this formula the dependence on the parameters affecting the 

real phenomenon is enclosed in the specific value of second f.d. At [95], reasoning crushes onto 

an intermediate order since Matteo tries to find the coefficient for a specific situation, i.e., the 

angle shown in the applet.  

Finally, the interaction flowchart reveals the strong role of Matteo in moving forward the 

discussion and in contributing with punctual and relevant observations, thanks also to Fabio’s 

provocative question (Figure 34 – interaction flowchart).  
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Figure 34 – Timeline 3 (Galileo 2019) 
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11.2.4  Episode 4 (Group-work E, 47:12-48:06) 

This episode refers to group E, the same group that firstly succeeded in relating numerical values 

of time and distance to the shape of the graph (11.2.2). In the following excerpt, they try to 

answer to question (a) on worksheet 3 (11.1.3). 

 Timing Who Utterances Gestures 

96 00:47:12 ValeriaE The distance traversed in one 
second increases while 
increasing the inclination of the 
plane. 

 

97 00:47:21 AriannaE In this way it seems you speak 
of the single point… 

 

98 00:47:55 AriannaE I’d say… The greater is the 
angle, I’d say the angle so that 
we don’t have problems of 
definition, the greater is the 
angle, the faster the parable 
will grow… 

 

99 00:48:06 ValeriaE The greater is the angle, the 
greater is the distance 
traversed in one second and 
the faster the parable will 
grow. 

 

Looking at the GeoGebra applet on their computer screen (sensing gaze, gesture row – Figure 

35) Valeria tries to answer to question (a): she observes that “the distance traversed in one 

second increases while increasing the inclination of the plane” [96]. She relates the inclination 

of the plane with both distance and time, condensing them in the distance traversed in one 

second (i.e., first f.d.). Arianna immediately reacts to her mate’s claim contesting the formulation 

of her utterance: firstly, Arianna states that in that way the utterance seems referred to a “single 

point” [97], then rephrases Valeria’s claim saying that “the greater is the angle, the faster the 

parable will grow” [98]. Her reformulation suggests that instead of focusing on what happens on 

a fixed interval of time, one second, she favors a description that relates the variation of the angle 

to the function, the parable, as a unicum and while speaking Arianna follows with her finger the 

trend of the curve displayed on the screen (Figure 35 – gesture row). Finally, Valeria welcomes 

Arianna’s suggestion and tries to formulate an answer that could be written on their worksheet 

and that keeps into account both points of view: “the greater is the angle, the greater is the 

distance traversed in one second and the faster will grow the parable” [99]. In this excerpt, even 
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if the order of covariational reasoning is COV 2, two different approaches emerge. Initially 

Valeria focuses on a covariation between finite differences and the angle implicitly interpreted 

as a parameter: her discourse is objectified and mainly insists not only on a quantitative aspect, 

but also on a local point of view rather than a global one. Then Arianna moves the attention on 

the distance-time graph conceived as a whole and co-varies, or more precisely meta-varies, it 

with the angle of inclination. The mathematical discourse, already objectified in its initial stage, 

becomes interpretative when the inputs from the table of values and the graph, are coordinated 

in a unique sentence in which the physical phenomenon, i.e., the inclined plane, is related to its 

mathematical representation, i.e., the parable. Finally, the modality in which the students of 

group E use the GeoGebra applet is ascending because their approach is mainly explorative 

(artefacts interaction row – Figure 35).  

 

Figure 35 – Timeline 4 (Galileo 2019) 
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11.2.5  Data from Task 3 of group-work A-C-D 

In this paragraph we briefly report also the relevant considerations produced by the other three 

groups on their worksheets. Group A answered to question (a) saying that “As the angle 

increases, the curve comes always closer to y-axis, because thanks to acceleration it covers the 

same distance but faster” [100] (Figure 36). 

Figure 36 – Group A’s answer to question (a) 

Group C instead accompanied their answer also with a graphical representation to support their 

statement. Answer to question (a) reports: “As the angle of the plane increases, the curve of the 

parable is more accentuated because the ball travels the same distance faster respect to when 

the angle is smaller (graph on the nasty sheet)” [101]. 

 Figure 37 - Group C’s answer to question (a) 

Figure 37 shows on the left the answer of group C and on the right their graphical representation 

in which they drew four different curves corresponding to four different values of the angle of 

inclination of the plane. Moreover, their answer to question (b), the one about finite differences, 

says that “when the angle is greater, first finite differences are greater, because they are 

proportional to the angle of inclination of the plane” [102] (Figure 38).  

 

Figure 38 - Group C’s answer to question (b) 

Finally, group D stated that “increasing the angle the curves are more inclined. And so, 

decreasing it the curves will be less inclined. This because the curve of the graph represents the 
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acceleration of the ball as  increases” [103]. Figure 39 shows on the left their written answer 

and on the right a drawing in which they showed two different possible curves for two different 

angles of inclination where in particular  is supposed smaller than . 

Figure 39 - Group D’s answer to question (a) 

The following episodes are excerpts from the discussion following the working group session 

about Task 3 (Discussion 2). This discussion was conducted at the beginning of a new lesson, 

and it took nearly one hour and a half. The teacher had the possibility to read the groups’ answers 

before starting the classroom discussion.  

11.2.6  Episode 5 (Discussion 2, 07:35-08:50) 

This episode locates at the beginning of the classroom discussion: the teacher opens the 

discussion asking clarifications about the answers they wrote on worksheets. Her aim seems to 

relate the increase in distance traversed to the numerical representation, meaning first f.d. 

provided in the table. Students initially refer to the graphical representation, but then Silvia 

directs their attention elsewhere.  

 Timing Who Utterances Gestures 

104 00:07:35 Teacher What does it mean that in 
equal times the distances that 
we have increase? 

 

105 00:07:41 ChiaraB The ball to cover a larger 
distance must accelerate. 

 

106 00:07:50 Teacher The ball must change its 
velocity, increase its velocity. 
In some way it has to 
accelerate.                                                               
How do we know from here 
that our ball in equal times 
does not traverse equal 
distances? 
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107 00:08:11 GiuliaC The curve starts slower and 
then goes higher and higher. 

 

108 00:08:22 Teacher Ok, for sure it stars slow and 
then it goes up and up. 

 

109 00:08:28 FabioB From the first finite differences 
equal…in the table. 

 

110 00:08:32 Teacher There would be equal first 
finite differences if… 

 

111 00:08:38 FabioB If it always goes at the same 
speed. 

 

112 00:08:45 Teacher Ok, if we had first finite 
differences equal, it would 
have always the same speed, 
but she [Giulia] says that at a 
certain point it drives up so… 
what does it mean? 

 

113 00:08:48 GiuliaC It goes faster.  

114 00:08:50 Teacher It goes faster.  

At [104] the teacher asks the whole classroom what it means that “in equal times the distances 

that we have increase”. Chiara, from group D, replies saying that it is due to acceleration [105] 

and Silvia, playing the semiotic game, rephrases her words with an approval tone [106] and 

introduces some metaphoric gestures indicating a variation in speed (gesture row – Figure 40). 

Immediately after she poses a new question in order to deeply investigate that issue and asks 

where they can deduct from the GeoGebra applet (she points at the IW displaying it; inscriptions 

row - Figure 40) that information [106]. Giulia answers referring to the graph: “The curve starts 

slower and then goes higher and higher” [107]. Her claim unveils a blended language: the term 

“slower” that could be used to characterize the speed of the ball at the initial stage of motion, is 

used also to describe the trend of the curve; in this sense the ball rolling down the inclined plane 

and the distance-time curve are blended in one sentence revealing a physical interpretation of 

the graph itself (interpretative level – Figure 40).  Silvia repeats Giulia’s sentence underlining 

its correctness, but the tone of her voice reveals that she expected a different answer. Indeed, 

Fabio grasps that and raises his voice replying “From the first finite differences… equal in the 

table” [109]. Fabio’s sentence is not well formulated in the contest of that discussion, but Silvia 

catches that Fabio is on the right way and helps him to better explain himself. Posing herself as 

a springboard, Silvia initiates a sentence and invites Fabio to complete it. Thanks to the joint 

labor of the teacher and Fabio, they arrive at the conclusion that “there would be first finite 
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Figure 40 – Timeline 5 (Galileo 2019) 

differences equal if it [the ball] goes always at the same speed” [110-111]. Playing the semiotic 

game, Silvia revoices the whole sentence and then reconnects to the utterance initially 
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elaborated by Giulia [107] asking what it means that a certain point “it [the curve] drives up” 

[112]. This time Giulia replies with a physical interpretation that is an increase in velocity, “it 

goes faster” [113]. The teacher repeats her words with an approval tone [114] and nodding 

(gesture row – Figure 40). An overview of the episode in its entirety reveals that: Giulia’s 

reasoning evolves from the distance-time graph [107] to the motion of the ball [113]; Fabio’s 

approach instead evolves from the table of numerical values [109] to an interpretation of the 

physical phenomenon [111]; Silvia suggests to use a certain interpretative key of the 

phenomenon: not only the interaction flowchart again reveals the determinant role of the 

teacher in giving the right direction to the discussion, but Silvia also enhances a blended 

approach in which the graphical/numerical and kinematics aspects interlace. The level of the 

discourse is mainly analytical and becomes interpretative when students are able to connect the 

distance-time graph to the motion of the ball [107, 113]. The artefact specifically appearing in 

this episode is the GeoGebra applet and in particular the table of values contained it which are 

used by the students with a descending control that is to answer to teacher’s questions, and so 

in continuity of purpose (artefacts interactions row – Figure 40).  

11.2.7  Episode 6 (Discussion 2, 16:26 -18:38) 

During this short episode (16:26-18:38), the teacher is asking her students about the formula 

describing the motion of the ball and in particular she is enhancing second-order covariation 

inviting students to better explicate the dependence of the function on the angle of inclination. 

A student from group B, Matteo, tries to answer. During the discussion, the applet is shown on 

the interactive whiteboard (IW) and the teacher writes on the blackboard (B) the relevant 

considerations emerging from the students. 

 Timing Who Utterances Gestures 

115 00:16:26 Teacher And how did the equation 
result? 

 

116 00:16:30 MatteoB Practically it varies 
according to the angle. 

 

117 00:16:33 Teacher The function varies according 
to the angle. 

 

118 00:16:35 MatteoB The coefficient varies.  

119 00:16:38 Teacher The coefficient of the function 
in which sense? 

 

120  Teacher T suggests choosing on the 
applet another value for the 
angle, hence now the applet 
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shows two different graphs for 
two different values of the 
angle, 20° and 90°. 

121 00:17:16 Teacher What do you tell me about this 
function? 

 

122 00:17:20 MatteoB The inclination [of the graph] 
changes according to the angle 
because with a minor angle the 
inclination is minor, with a 
greater angle the function goes 
up first. […]  y is the distance, x 
is the time and the coefficient, 
to find the coefficient you have 
to divide by two the second 
finite differences 

The teacher writes the 
function on the 
blackboard. 

123 00:18:00 Teacher So, you say that according to 
you the equation is this: 
y=coefficient ∙ x2 

 

124 00:18:10 MatteoB y is the distance, the coefficient 
can be found dividing by 2 the 
second finite differences and x2 
is the time.  

 

125 00:18:18 FabioB x and y must be greater or 
equal than zero otherwise it 
doesn’t exist. 

 

After the working-group session, the teacher asks her students about the equation describing 

the motion of ball [115]. She clearly looks at Matteo inviting him to take the word (gesture row 

– Figure 41). Matteo answers that “the function varies according to the angle” [116] and with 

his left hand performs a metaphoric gesture reproducing the angle of inclination of the plane 

(gesture row – Figure 41). The teacher revoices Matteo’s words [117] playing a semiotic game 

and immediately after Matteo clarifies that in particular is the coefficient of the function that 

varies [118]. The level of the mathematical discourse is objectified (discourse level row – Figure 

41) because the student already shows to possess mastery of the function describing the law of 

the motion and he is explicating a further dependence of the coefficient of the function on the 

angle of inclination [118]. The covariational reasoning is not fully second-order but in a 

transitional phase (COV row – Figure 41) because the coefficient is treated as a varying quantity 

but not yet as a parameter within a family of function. The focus remains on the single distance-

time function. The teacher asks clarification about that dependence [119] and suggests working 

with the GeoGebra applet shown on the IW so to visualize simultaneously two different  
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Figure 41 – Timeline 6 (Galileo 2019) 
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graphs for two different values of the angle of inclination [120]. Through this proactive request 

(see interaction flowchart – Figure 41), the teacher triggers and supports second-order 

covariational reasoning, encouraging to investigate the relationship between the graph of the 

function and the angle. The teacher asks again for some considerations [121] and finally Matteo, 

while performing a metaphoric gesture (gesture row – Figure 41), makes explicit how the trend 

of the function changes according to the angle and formulates the expression of the function 

[122]. In the meanwhile, the teacher writes on the blackboard the formula (𝑦=𝑐𝑜𝑒𝑓𝑓⋅𝑥2 - 

inscriptions row – Figure 41): this gesture is for sure non-redundant with respect to speech 

since the teacher is not speaking and it has a grounding function (gesture row – Figure 41) 

because clearly reveals to her students the importance of that formula and in fact it deserves to 

be written on the blackboard, visible to the whole classroom. Matteo’s statement [122] reveals 

a second-order covariational reasoning: starting from a description of what was displayed on 

the applet (discourse level row – Figure 41), the discourse turns into objectified when he 

elaborates a formula condensing that dependence. The artefacts appearing in this episode, 

meaning the GeoGebra applet, the sought formula, the blackboard, and the interactive 

whiteboard, are all used in continuity of purpose (artefacts interactions row – Figure 41) that is 

deeply investigate the angle-graph relationship; both the modalities of control (ascending and 

descending) can be observed. 

11.2.8  Episode 7 (Discussion 2, 57:00-59:56) 

This episode locates towards the end of the discussion: the relevant mathematical elements to 

describe the phenomenon proposed have already emerged during the discussion but not all the 

groups have fully grasped it. In the following three minutes (57:00-59:56), Silvia tries to pull the 

strings of the discussion clarifying the role of the parameter and its mathematical interpretation. 

 Timing Who Utterances Gestures 

126 00:57:00 Teacher We said that 0.88 is a constant 
and then we tried to 
understand what it represents. 
Will it still be 0.88 the constant 
if we change the angle?   

 

127 00:57:30 Many 
voices 

No.  

  MatteoB It changes according to the 
angle. 

 

128 00:57:33 Teacher It changes according to the 
angle… are we sure? Let’s try 
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to change the angle… What 
could be the coefficient with an 
angle of 26°? 

129 00:58:05 MatteoB 2.21  

130 00:58:07 Teacher Why did you find it 
immediately without using the 
calculator?   

 

131 00:58:10 MatteoB Because dividing by 12 is like 
dividing by 1. 

 

132 00:58:16 Teacher Ok, so you say I can just take 
one value because I’m sure it is 
constant. 

 

   […]  

133 00:58:44 Teacher Hence what does this number 
represent? 

 

134 00:58:55 AdeleC The half of first finite 
differences… 

 

135 00:58:58 Teacher [T starts making the 
computation out loud, but they 
are incorrect] 

 

136 00:59:07 AdeleC Of second finite differences… 
yes, the half of second finite 
differences. 

 

137 00:59:16 Teacher [T makes the computation out 
loud and this time it is correct] 

 

138 00:59:56 Teacher So, this could be the half of 
second finite differences… 

 

Reacting to some student’s claim, the teacher recalls that they have concluded that “0.88 is 

constant” [126] and simultaneously points at the blackboard where it is written the formula 
𝑦

𝑥2 =

0.88 (Figure 42 – inscriptions row). Immediately after she asks if 0.88 would still be the constant 

if they “change the angle” [126] and Matteo, as done in Episode 6, replies that “it changes 

according to the angle” [127]. Despite the correctness of the answer, Silvia wants to deepen this 

point and asks to the students if they are sure. She suggests changing the angle, in particular to 

choose randomly an angle of 26°, and asks “[w]hat could be the coefficient” in this case [128]. 

While formulating her request, the teacher addresses to group E with a hand gesture (gesture 

row – Figure 42) because their computer screen is connected to the IW and so visible by the 

whole classroom (inscriptions row – Figure 42). Matteo immediately replies “2.21” [129] and 

Silvia, surprised by the rapidity of his answer, asks him how he could find that value  
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Figure 42 – Timeline 7 (Galileo 2019) 
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“immediately without using the calculator” [130]. Accompanying his words with some 

metaphoric gestures, Matteo replies that he simply divided by 1, that is equal to 12 [131]. Silvia 

tries to better explain that claim so concise implying that the computation is possible just 

because the coefficient is assumed to be constant [132] and so the ratio provides the same value 

of the time and distance traversed chosen. After having clarified how to compute the value of the 

coefficient she moves to investigate the meaning of that coefficient, what that number represents 

[133] and looks around waiting for a rection from her students (gestures row – Figure 42). Adele 

replies “the half of first f.d.” [134] and points at the table of f.d. shown on the IW; Silvia is 

conscious of the incorrectness of her answer and so starts making the computation out loud 

[135]. Adele realizes that she expressed wrongly and so corrects herself saying “the half of 

second finite differences” [136]. Silvia restarts making the computation out loud, pointing at the 

table of f.d. on the IW (gesture row – Figure 42) and this time they are correct [137]. Finally, 

with an approval tone, Silvia states that the coefficient could be the half of second f.d. [138]. The 

class is not much talkative, and the answers provided by students are often synthetic: the 

interaction flowchart reveals the ability of the teacher in enhancing the discussion and valuing 

and amplifying the content of students’ claims. The level of the discourse alternates between 

analytical and objectified: it is analytical when students refer to a specific angle of inclination 

and the related numerical coefficient [128-129-131] and becomes objectified when the 

coefficient is interpreted in terms of a general expression, the half of second finite differences 

[136-138].  Artefacts are mainly used with a descending control (artefacts interactions – Figure 

42). 

11.3 DISCUSSION 

This section contains a transversal analysis of the seven Episodes presented previously 

according to the four different layers of analysis.  

11.3.1  Layer (a): Covariational reasoning 

The intermediate order of covariational reasoning identified during the 2017 T.E. emerges 

naturally also in this T.E.: it consists in the conceptualization that the coefficient of the function 

depends on a certain magnitude, that in this case is the angle of inclination of the plane [118]. 

The term ‘parameter’ is not used by the students; they refer to it in a more intuitive way, a 

constant value that changes depending on the angle [127], adopting an antithetic expression. In 

this case finite differences constitute the pre-analytic tool that mainly enhances the 
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instrumentation of second-order covariation: they allow students to use a more mathematical 

language and to deduce the analytical and graphical property of the distance-time graph which 

is of second degree and depending on second finite differences of distance. Second-order 

covariation is achieved from two different mathematic standpoints: the elaboration of a general 

mathematical formula in which the coefficient explicitly depends on second f.d., and a level 

supported by metavariation in which students, exploiting the representations provided by the 

various technological tools, envision how the distance-time graph is affected by a change in the 

angle of inclination. Therefore, two different levels can be distinguished: a quantitative one 

(formula) and a qualitative one (metavariation).   

11.3.2  Layer (b): Linguistic analysis 

In continuity with the analysis presented in 10.3.2, we analyze the various levels and orders of 

students’ covariational reasoning according to their syntactical and lexical features.  

COV 1 Description of the level  Examples from Galileo 
2019 T.E. 

Syntactical and lexical analysis 

L2 In these examples we 
can observe a 
qualitative description 
of the covariation, also 
referring to some 
benchmark numerical 
values, of two or more 
magnitudes: the level 
of reasoning is not yet 
fully quantitative 
because students are 
not able to express 
clearly what happens 
between the limit 
values. 
Students are able to 
co-vary the two 
magnitudes 
underlining the values 
reached in limit 
situations. 

[65] Più A si avvicina a 
90°, più B aumenta.                                       
The more A comes 
closer to 90°, the more 
B increases.  

[66-67] [Raggiunge la 
massima A] nell'ultima 
B.                                            
[It reaches the 
maximum A] in the last 
B.  

[68-69] [Più A si 
avvicina a 90°, più B 
aumenta] finché B non è 
massima per quell'A.                                                                                             
[The more A comes 
closer to 90°, the more 
B increases,] until B is 
maximum for that A.  

[73] A è minimo con B= 
0,0000001.                                    
A is minimum with B = 
0,0000001. 

From the syntactical standpoint, 
the linguistic structures that can 
be identified are the following:  
The more A, the more B  
A is maximum/minimum for 
B=n.           
We can observe some binary 
relations and the use of 
comparatives. Both coordinated 
and subordinated clauses are 
used. 

From the lexical standpoint, 
language adopted is mainly 
qualitative and objective. The 
adjectives maximum and 
minimum are employed to refer 
to the limit values assumed by the 
magnitudes.  
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[74-75] A aumenta 
finché B=90°.                                              
A increases until B=90°. 

L4 
 

The use of f.d. 
displayed in students’ 
reasoning denotes a 
higher level of 
covariation since f.d. 
reveal not only how a 
magnitude varies in 
time but also its rate 
of variation. 

[77] A' erano sempre di 
1, mentre B' 
aumentavano sempre di 
più.                                                                                             
A' were always of 1 
while B' increased more 
and more. 

[79] A'' erano costanti e 
A''' erano nulle.                                 
A'' were constant and 
A''' were null. 

[110-111] Ci sarebbero 
A' uguali se va sempre 
alla stessa B.                                             
There would be A' 
equal if it always goes 
at the same B. 

The f.d. of A and B (A’ and B’ 
respectively) make their 
appearance as magnitudes: in 
[77] there is a covariation 
between A’ and B’ which 
condenses the rate of change of 
the two magnitudes; in [79] both 
second and third f.d. (A'' and A''') 
are considered and in [110-111] 
first f.d. are related to a physical 
interpretation.  

From the syntactical standpoint, 
we can identify the following 
structures:  
A' were always the same while B' 
increased. 
A' equal if B is always the same. 
A'' were constant and A''' were 
null. 
Relations are mainly binary, no 
comparatives, and both 
coordinated and subordinated 
clauses can be detected.  

From the lexical standpoint, we 
can observe a recurrent use of the 
adverb always, objective and 
quantitative sentences. 

L5 
 

In this T.E. the level of 
smooth continuous 
covariation manifests 
in the full 
conceptualization of 
the distance-time 
graph that is 
conceived as a 
multiplicative object: 
students do not refer 
anymore explicitly to 
the starting 
magnitudes but 
mainly focus on the 
description of the 
trend of the graph. 

[81] Il grafico potrebbe 
essere di secondo grado 
visto che le A'' sono 
costanti.                                     
The graph could be of 
second degree since A'' 
are constant. 

[83] La curva prima 
aveva un'inclinazione 
quasi orizzontale e poi 
diventava sempre più 
verticale.                                                                   
The curve before had an 
inclination almost 
horizontal and then 

From the lexical standpoint, a 
recurrent use of the adverb 
always [83-85-107] can be 
interpreted as an indicator of 
globality. The description of the 
trend of the graph is expressed in 
qualitative terms: in [83] and [85] 
by reasoning in terms of fixed 
intervals of time; in [107] and 
[112-113] a more global 
approach emerges, related also to 
a physical interpretation of the 
curve’s behavior. In [81] instead, 
the degree of the curve, and so its 
shape, is explained by a reference 
to second f.d., i.e., a pre-analytical 
property. 
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became always more 
vertical. 

[85] In ogni A, 
l'inclinazione [del 
grafico] era sempre più 
verticale.                                       
In each A, the 
inclination [of the 
graph] was always 
more vertical. 

[107] La curva parte più 
lenta e poi va sempre 
più in alto.                                                               
The curve starts slower 
and then goes higher 
and higher. 

[112-113] [Il grafico] 
impenna…perché va più 
veloce.                                                                                                                       
[The graph] drives 
up…because it goes 
faster. 

Horizontal and vertical are 
recurrent adjectives used to 
connote the behavior of the curve. 
In [107] we can observe the use of 
the adjective slower, a kinematic 
term attributable to the motion of 
the ball and instead used to refer 
to the graph.  

No recurring syntactical 
structures were detected.  

 

Higher 
COV 

Description of the 
level 

Examples from Galileo 
2019 T.E. 

Syntactical and lexical analysis 

Intermediate 
order 

This transitional 
order mainly 
manifests in the 
elaboration that 
the coefficient of 
the function 
depends on the 
angle of 
inclination of the 
plane. Even in this 
case, students do 
not refer to it as a 
parameter but 
more intuitively 
as a constant 
value that changes 
according to the 
angle. 

[118] Il coefficiente 
[della funzione] varia 
[a seconda 
dell'angolo].                     
The coefficient [of the 
function] varies 
[according to the 
angle].  

[127] [Il valore 
costante] cambia a 
seconda 
dell'angolo.                    
[The constant value] 
changes according to 
the angle. 

From the syntactical 
standpoint, we do not observe 
relevant structures. 
From the lexical standpoint, 
we can notice a qualitative 
approach through which 
students express the 
dependence of the coefficient 
on the angle of inclination. 
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COV 2 
(i) 

Students’ forms of 
reasoning 
revealing a full 
achievement of 
COV 2 in this T.E. 
can be actually 
divided in two 
sublevels: the first 
one is a 
covariation 
between the angle 
of inclination and 
the distance-time 
graph i.e., 
changing the 
angle which 
effects produces 
on the trend of the 
graph: this way of 
reasoning is an 
example of meta-
variation 
supported by the 
GeoGebra applet 
enabling to 
explore it. 

[87] Se l'angolo 
cambia, la salita [del 
grafico] è più rapida.                                                                
If A changes, the uphill 
[of the graph] is faster. 

[91] Più l'angolo 
aumenta, più 
l'inclinazione [del 
grafico] aumenta.                                                                                             
The more A increases, 
the more the 
inclination [of the 
graph] increases. 

[93] Il grafico è di 
secondo grado quindi 
le A'' sono il doppio del 
coefficiente.                                                                         
The graph is of second 
degree hence A'' are 
the double of the 
coefficient. 

[96] A' aumenta 
aumentando B.                                       
A' increases, 
increasing B.  

[98] Più grande è A, 
più velocemente 
crescerà la parabola.                                              
The greater is A, the 
faster the parable will 
grow. 

[99] Maggiore è A, 
maggiore è B' e la 
parabola crescerà più 
velocemente.                                                                         
The greater is A, the 
greater is B' and the 
faster the parable will 
grow.  

[100] Con l’aumentare 
dell’angolo la curva si 
avvicina sempre di più 
all’asse delle y, perché 

From the syntactical 
standpoint, we can identify the 
following recurring structures:  
If A changes, the more the 
inclination increases.  
The more A increases, the 
more the inclination [of the 
graph] increases. 
A' increases, increasing B. 
The greater is A, the greater 
is B' and the faster will grow 
the parable. 
As A increases, the curve comes 
always closer to y-axis. 
As A of the plane increases, the 
curve of the parable is more 
accentuated. 
Increasing A, the curves are 
more inclined. 
Relations are mainly binary, 
and the second magnitude is 
typically the inclination of the 
graph or the graph itself. 
Comparative structures are 
recurrent, and clauses are both 
coordinated or subordinated.  

From the lexical standpoint, 
the adverb more is extremely 
used, and the linking word as is 
also recurrent. The sentences 
are objective and show a 
qualitative approach to 
describe globally how the trend 
of the graph evolves. 
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grazie 
all’accelerazione 
percorre lo stesso 
spazio ma più 
velocemente.                                
As A increases, the 
curve comes always 
closer to y-axis, 
because thanks to 
acceleration it covers 
the same distance but 
faster. 

[101] All’aumentare 
dell’angolo del piano la 
curva della parabola è 
più accentuata a causa 
del fatto che la pallina 
percorre lo stesso 
spazio più 
velocemente, di 
quando l’angolo è 
minore.                                              
As A of the plane 
increases, the curve of 
the parable is more 
accentuated because 
the ball the same 
distance faster respect 
to when the angle is 
smaller. 

[103] Aumentando A, 
le curve sono più 
inclinate. 
Diminuendolo, le curve 
sono meno inclinate. 
Questo perché la curva 
del grafico 
rappresenta 
l’accelerazione della 
pallina all’aumentare 

di .                                                       

Increasing A, the 
curves are more 
inclined. Hence, 
decreasing it, the 
curves are less 
inclined. This because 
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the curve of the graph 
represents the 
acceleration of the ball 

as  increases. 

COV 2 
(ii) 

The second level 
seems to consist 
in the elaboration 
of a general 
formula 
containing a 
coefficient which 
sometimes is 
clearly 
interpreted in 
terms of second 
f.d.. The way in 
which the 
coefficient affects 
the graph is made 
explicit. 

[122] L'inclinazione 
[del grafico] cambia a 
seconda dell'angolo 
perché con un angolo 
minore l'inclinazione è 
minore, con un angolo 
maggiore la funzione 
sale prima. y = coeff∙ x2                                                                                                                            
The inclination [of the 
graph] changes 
according to the angle 
because with a minor 
angle the inclination is 
minor, with a greater 
angle the function 
goes up first.  y = coeff∙ 
x2 

[124] y = (A”/2) ∙ x2 

[136] [Il coefficiente] è 
la metà delle A’’.                                     
[The coefficient] is the 
half of A’’. 

From the syntactical 
standpoint, we do not observe 
relevant or recurring 
structures. 

The lexical analysis reveals 
that this second level of COV 2 
mainly lies on a quantitative 
and analytical approach rather 
than on a graphical 
interpretation, but still reveals 
a sense of globality.  

11.3.3  Layer (c): Discourse levels 

This layer of analysis is conducted thanks to a diachronic analysis of the Timeline and is focused 

on the evolution of the mathematical discourse throughout all the episodes previously 

described. We recognized the same three main levels of the mathematical discourse identified 

during the Galileo 2017 T.E. and a fourth additional level: 

- Descriptive: Episode 1 (11.2.1), at the beginning of the first classroom discussion, is the 

one in which students adopt a descriptive approach reporting and interpreting the inputs 

provided specifically by the GeoGebra applet and the video and relating them. For 

instance, Fabio describes how the angle of inclination of the plane, shown in the applet, 

affects the descent speed of the ball, deducible from the video [65-68]. 

- Analytical: the level of the discourse is analytical when students mainly refer to f.d. as in 

[77] where Valeria observes that “first finite differences of distance increased more and 

more” while “[second] were constant and the third were equal to 0” [79]; or as in 2017 
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Galileo T.E., this level manifests when they refer to the numerical value of the coefficient 

of the function for a specific angle (e.g., 2.21 for an angle of 26° [129]). This second level 

of discourse lasts less in this teaching experiment with respect to the 2017 one: the 

students possess more mathematical instruments to move from an analytical approach 

to the objectification and so to a mathematical model describing globally the 

phenomenon. 

- Objectified: this level already manifests at the end of the first discussion (11.2.2), arising 

from the contribution of group E who succeeded during the working-group session in 

envisioning and representing the distance-time graph and then reproduced it on the IW 

during the classroom discussion. Valeria, as group E spokesman, described the trend of 

the curve [83] and was also able to envision how that trend could change with a variation 

of the angle of inclination [87]. The level of the discourse is clearly objectified also during 

the second working group session (11.2.3, 11.2.4, 11.2.5) where thanks to the 

functionality of the GeoGebra applet, enabling to change the inclination of the plane, 

students could observe which changes it globally produced on the distance-time graph. 

This level manifests also in Episodes 6 and 7 (11.2.7, 11.2.8) when Silvia led students 

towards the elaboration of a general mathematical formula describing globally the 

situation. 

- Interpretative: this additional fourth level of discourse does not differ much from the 

objectified one concerning the globality of the approach and the mathematical objects 

involved, but the language adopted reveals something deeper than the mathematical 

conceptualization. The emerging narratives reveal a blend of elements related to the 

various representations (algebraic, numerical, and graphical) connected in a coherent 

sentence ( “the graph could be of second degree because second f.d. are constant and also 

because we knew the formula of acceleration is s/t2” [81], “the greater is the angle, the 

faster the parable will grow” [98], “The curve starts slower and then goes higher and 

higher” [107], “[The graph] drives up… because it goes faster” [112-113]). The words 

used by students also are detectors of a physical interpretation blended with the 

mathematical description: in [81] Valeria refers to the formula of acceleration, in [112-

113] the trend of the graph is explained by referring to the speed of the ball; in [107] the 

term “slower” used to characterize the trend of the curve is actually an adjective that 

could also be used to describe the motion of the ball at the beginning of its descent on the 

inclined plane. The graphic and kinematic aspects are blended as if the graph and the 
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phenomenon were the same thing. Looking at the mathematical discourse with the lens 

of the modelling cycle, this step could be interpreted as a return to the real phenomenon 

after having mastered the mathematical interpretation. 

11.3.4  Layer (d): Adaptive teaching strategies 

The four strategies identified in the 2017 Galileo T.E. are clearly recognizable also in this 

teaching experiment. Some examples follow:  

1 - Semiotic game: this strategy often manifests only in its oral components with the revoicing or 

readjustment of the students’ claims by the teacher [78-80]; an example of semiotic game 

involving also the gestural component can be recognized at [70], where Silvia not only repeats 

Fabio’s words [69] and uses them to formulate a new question, but also imitates the gesture 

previously performed by Fabio with her arm. 

2 - Fostering the discussion in the classroom and facilitating its flow: in this T.E. this second 

strategy emerges even more predominantly because the class is not much talkative and making 

questions is a strategy widely used by the teacher to enhance the conversation and to dig deeply 

into students’ reasoning [66-70-115-119]. Moreover, at [135] we have a typical example of the 

non-judging behavior of Silvia who instead of underlining the student’s mistake, brings it to the 

attention of the whole classroom so arousing students’ spontaneous reactions: at [135] Silvia 

shows that the coefficient of the function is not the half of first finite differences making the 

computations out loud and so leading students to realize that they are not correct; at [136] Adele 

corrects herself spontaneously. Another feature emerging from the analysis of this T.E. is the 

springboard role assumed by the teacher: her questions are often the starting point of a wider 

discussion, or she starts an open sentence leaving to students the possibility to complete it: 

“There would be equal first finite differences if…” [110]. 

3 - Exploring students’ actions and thinking: questions have often the goal to promote an 

argumentative approach: “[…] what does it mean?” [112], or to obtain a deeper explanation of 

the answer provided by the student: “Why did you find it immediately without using the 

calculator?” [130], “The coefficient of the function in which sense?” [135].  

4 - Drawing students’ attention to the information provided by the different artefacts used in the 

learning process: an example of this strategy can be observed in Episode 5 (11.2.6); at this point 

of the discussion, the teacher would like students to relate the increase in speed of the ball to the 

numerical values of f.d. At [106] the teacher directs the attention of the students to the applet 
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shown on the IW: “How do we know from here […]?” also using a pointing gesture. Giulia initially 

refers to the graph; only in a second moment thanks to Silvia’s revoicing leaking out she expected 

a different answer, Fabio moves his attention to the table of f.d. and then Silvia insists on this 

point and on its physical interpretation. 

11.4 CONCLUDING REMARKS 

One of the main conjectures formulated during the prospective analysis and confirmed by the 

data analysis is the numerous references to a physical interpretation of the real phenomenon 

given the students’ more extensive background in that field. Even when referring to the video 

reproducing the Galileo experiment, they refer to the speed of descent of the ball [65] and are 

able to envision a variation of the angle of inclination of the plane [65]. It is just the clever 

coaching of the discussion managed by the teacher that determines the direction of the 

discussion and establishes some parameters as fixed. The speed of the ball is intended as a 

magnitude itself and covaried with the angle of inclination [73-75]. The discussion does not 

reveal much insistence on the covariation between the numerical values of the magnitudes 

involved: the analytical phase of mathematical discourse lasts less and already at the end of the 

first discussion some groups reach an objectified level, that is a global view of the distance-time 

graph. They do not succeed immediately in the elaboration of a mathematical formula, but they 

conceptualize the graph as a second-degree function, deducing it from the numerical values of 

finite differences [81], and manage to represent it in a graphical form [85]. Second-order 

covariation does not emerge spontaneously, but the teacher enhances it thanks to her wise 

questioning.  

What does not emerge is the misconception between the trajectory and the law of the motion of 

the ball. Students instead refer to acceleration, a notion that they have not explored yet during 

their physics lessons and so they call it into question in an intuitive way, adopting an everyday 

language and as a generalization of the concept of velocity. Silvia does not insist much on the 

incorrect way in which students refer to it but many times during the discussion underlines that 

the formula of acceleration is their deduction and not something explicitly provided by the video 

or the applet. 

During the working group session on the second applet, the groups succeed in elaborating a 

general formula describing the situation [95] in which the coefficient depends on the second 

finite differences and the description of the graph is often related to a physical interpretation of 
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the motion of the ball [99-100]. Students describe in a qualitative way how the angle affects the 

trend of the graph [101-103] and grasp the dependence of finite differences on the angle of 

inclination [102].  

The presence of a constant reference to the real phenomenon is also made manifest in the use of 

a blended language, i.e., an interpretative level of the discourse that was absent in the 2017 T.E. 

and that denotes a wiser mastery of the steps of the modelling cycle. During the second 

discussion, the teacher leads the students in sharing with the whole classroom the different 

considerations that they have elaborated during the working-group session: even if the class is 

not very talkative and Silvia must stimulate a lot the discussion to make students intervene, the 

objectified and interpretative levels of the mathematical discourse that emerge are a clear 

symptom of the greater advance in the conceptualization of the phenomenon both from a 

mathematical and physical standpoint. 

11.4.1  Toward second-order covariation: comparing the two teaching experiments 

Comparing the two T.E.s (2017 and 2019), the following considerations can be elaborated:  

- COV 2 emerges less during the 2017 T.E. because students possess a narrower 

mathematical background: they favour an everyday language, while 10th grade 

students possess the mathematical knowledge to succeed faster in a mathematical 

formalization. Thanks to this wider background, during 2019 T.E. the analytical phase 

lasts less, and students can move faster to the level of objectification and a higher 

order of covariation;  

- In 2019 T.E., finite differences are the artefact that mainly support the 

instrumentation of covariation and allow the use of a pre-analytic language that will 

foster during schooling the introduction to the concept of incremental ratio and then 

of derivative. Finite differences are considered a magnitude themselves, even if 

encapsulating the rate of change of a magnitude in time, and they are covaried with 

both the graph [107] and the speed of the ball [111];  

- The intermediate order of covariation manifests in both the T.E.s and it can be 

interpreted as a progression toward second-order covariation: it mainly manifests as 

a conceptualization of the dependence of the coefficient of the function on something, 

in this case the angle of inclination from the physical point of view [118-127] and 

lately on second finite differences on the mathematical point of view [93-136]. A 
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provisional interpretation, requiring deeper knowledge, leads us to attribute to this 

intermediate order a cognitive connotation rather than a mathematical one: it can be 

intended as first level of COV 2 in which the student mentally envisions that one of the 

magnitude changes in a different way with respect to the others involved and 

influencing the whole mathematical scenario: at this level students can use an 

antithetic expression more than the rigorous term “parameter” to describe this 

covariation;  

- In the two classroom discussions, second-order covariation is reached with two 

different approaches: in the 9th grade classroom, COV 2 emerges from the initial 

magma of the magnitudes at stake; in the 10th grade classroom, COV 2 is often 

flattened into COV 1 between distance and time: this kind of COV 1 absorbs what 9th 

grade students couldn’t express because they had no notion of speed; moreover the 

term “acceleration” is used in an incorrect way to denote something unknown but that 

they perceive as necessary to describe the situation, i.e. a change in velocity. Hence, in 

this case physical notions support the reasoning process and allow a more compact 

way of reasoning. Using a metaphoric image, we could say that the main difference 

lays in the different initial approach to the discussion: in 2017 it is from below, 

ascending from the magma of magnitudes; in 2019 it is from above, descending from 

students’ wider mathematical background.  

11.4.2  Students’ feedback (from Task 7) 

In this paragraph, we are going to report and briefly comment on some of the answers provided 

by students to Task 7 (11.1.7). We are not going to provide a methodologically rigorous analysis, 

but reading their inputs represented for us the chance to verify if the goals of the 

experimentation and methodology proposed were achieved and to make some reflections before 

starting planning the following T.E.. Indeed, we are going to report some of their answers.  

To question 1), the totality of students agreed that obtaining the law of the inclined plane using 

different tools, “enabled to study the same topic, phenomenon in different modalities and 

standpoints” [T7-S5] or again “various aspects of the same thematic” [T7-S12]. Some students 

motivated in synthesis the peculiarities of each of the adopted tools. The video provided a 

“general framework, it showed what was the phenomenon to be observed and which aspects we 

had to pay attention to” [T7-S12]; the standpoint was that of some “observers, since the 
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experiment was conducted by another person, without many theorical connections” [T7-S22]. 

The GeoGebra applet enabled to “see all the aspects of the phenomenon” [T7-S12], “without 

showing the limits of reality” [T7-S22]. The text of Galileo allowed them to “understand the goal 

and real ideas of who created it and gave solutions to the problem” [T7-S22] and finally the 

experiment, “even if it resulted imprecise, was useful to show that what [they] had hypothesised 

and studied from the theoretical point of view was real” [T7-S12]. Other students instead, 

underlined that the experiment “was not much helpful because [they] did not succeed in fully 

proving the law of the inclined plane, but doing it, [they] realized the complexity and difficulties 

that surely Galileo had in proving his theory” [T7-S9].  

Question 2) specifically invited to focus on the potentialities of the GeoGebra applet and students 

stated that it was useful for many reasons: “using the GeoGebra applet was like doing an 

experiment and see physically the ball rolling down the plane” [T7-S5]; it “allows you to avoid 

making many calculations” [T7-S14]; it enables to “see all the diverse options derived from the 

problem all on the same plane and to compare the various values” [T7-S14]; “the possibility of 

changing easily the inclination of the plane was very beneficial” [T7-S5], and “through the data 

obtained in the applet [they] could verify if the formulas found were valid or not” [T7-S1]. 

Finally, many students filling in their questionnaire, stated that “the method of study of the 

motion of the ball on the inclined plane was efficient because interactive and satisfying (for the 

conclusions found)” [T7-S13], “the mind is more stimulated in the search for a solution” [T7-

S15], in fact, “finding a formula by analysing only videos and graphs is more satisfying than 

finding a formula already given” [T7-S7]. Concerning the use of different technological tools, “it 

made the activity more engaging and to some extent fun” [T7-S2].  
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12 DEW POINT TEACHING EXPERIMENT (2020) 

This third and last teaching experiment took place in September/October 2020: the design 

of the tasks and planning of the T.E. was conducted in summer 2020 by the teacher, Silvia, and 

me under the supervision of Prof. Arzarello. The T.E. took nearly 3 weeks of work for a total 

amount of nearly 12 hours including some hours of homework. The methodology of work was 

nearly the same of the previous T.E.: group-work sessions followed by classroom discussion 

mediated by the teacher. She always started from the different answers of the groups, 

underlining similarities and differences, and enhancing an argumentative approach to justify 

their assumptions.  

Participants 

The 11th grade classroom involved was the same of the 2019 T.E.: it was still made of 22 students 

and during the working group sessions, they worked divided in the same 5 small group-works 

of the previous experimentation. The mathematical background of these students has been 

already described in Chapter 10; moreover, students added to their background an entire 

experimentation devoted to covariation (even if this term was never explicitly used by Silvia 

with her students) and they increased their mastery in working with functions. Students had not 

studied yet the exponential functional: this teaching experiment was the pretext to introduce 

this function to her students at the end of it, but these lessons are not part of our study.  

During this T.E. concerning the investigation of the relation between temperature and humidity, 

many notions of science were required; students had already studied them in their science 

lessons in the previous years, but a general review of these concepts was planned as integral 

part of the activities during the design phase of the T.E.  

Data collection 

This teaching experiment was conducted during the period of the Coronavirus pandemic, hence 

it was held in a mixed modality: partially in presence and partially online through Google Meet 

platform. All the lessons were recorded through the recording function offered by the Meet 

platform and, the teacher, on her own, also positioned some devices within the classroom to 

record the lessons. All the materials produced were collected and shared on a Google Classroom 

platform. As a researcher, I participated to most of the lessons but connecting on the Meet 

platform, because I was not allowed to be present in the classroom.  
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The parents of the students and the school consented to the use of the multimedia material 

produced and the original version of the used consent form is contained in Appendix A. 

12.1 OVERVIEW OF THE TASKS AND PROSPECTIVE ANALYSIS 

As presented in 8.2.3, this T.E. had three main aims: (a) investigating the relationship between 

humidity and temperature; (b) reading and interpreting the psychrometric chart in order to 

explain real phenomena; (c) distinguishing the role of variables and parameters in reading 

charts. These goals were achieved through the exploitation of different representations of the 

same phenomenon: a classroom experiment, a real psychrometric chart, and two GeoGebra 

applets. This time, the classroom experiment constituted the starting point of the whole 

modelling activity and, as the data analysis revealed, it was a solid reference point throughout 

the whole T.E.: it represented the element which enabled students to interpret from a physical 

point of view the mathematical representations. In this T.E. a different competence of second-

order covariation is required. In the 2017 and 2019 T.E.s, being able to reason covariationally 

was intended as the ability to construct and interpret graphs of the type y=f(m,x) representing a 

real phenomenon. This time it is more complicated because, in a nutshell, second-order 

covariation lays in the ability to interpret a situation that mathematically is described by the 

same formula f(x,y,z)=0 in which once the parameter is y and once is z. In our specific case, y and 

z are connected to each other by the word humidity (absolute/relative). 

All the tasks of the T.E. are reported below in different worksheets: we are going to present all 

the details and the prospective analysis, merely of those tasks that we are going to analyze in the 

following. The tasks which are not object of analysis will be presented briefly, just to provide an 

overall view of the experimentation.  

12.1.1  Task 1 

As homework, students were assigned the reading of a newspaper article23 published on la 

Repubblica which dealt with the topic of hot temperature in summer and in its title contained 

the term “perceived temperature”. Then students had to answer the two following questions:  

1) Have you ever heard of relative humidity? When? On which occasions? 

2) Have you ever heard of perceived temperature? On which occasions? 

 
23 The newspaper article (in Italian) is available online at this page. 

https://www.repubblica.it/cronaca/2019/06/27/news/meteo-229750255/
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Students wrote their answers directly on the Classroom platform. The following lesson the 

teacher introduced a classroom discussion on the answers provided and then they searched on 

Internet the definitions of perceived temperature, absolute humidity, relative humidity, their 

units of measure and the definition of dew point. During the lesson, some concrete examples 

accompanying the introduced notions were quoted (condensation on the can, the steam on the 

mirror after the shower, sweating system of human body…). In the last part of the lesson, Silvia 

displayed on the IW a GeoGebra applet (Sole.ggb, see Figure 43) in which a table contained the 

values of temperature and relative humidity collected during a sunny day and two graphs 

represented those same sets of data with respect to time. The teacher explained how the data 

were collected and represented; in particular, since the magnitudes represented on x- and y-axis 

have different units of measure, some suitable translations and dilatations were introduced to 

make them more readable and comparable.  

 

Figure 43 – Screenshot of the GeoGebra applet, Sole.ggb 

12.1.2  Task 2 

After the previous lesson, students were assigned as homework to read a theoretical worksheet 

containing all the principal notions related to temperature and humidity, which had already 

been recalled, and to watch a video24  containing the same explanation provided during the 

previous lesson; after that, students were asked to answer the following question: 3) Is there a 

relation between temperature and relative humidity? 

Students uploaded their answers on the Classroom platform. The following lesson, the teacher 

started a classroom discussion commenting on their answers. At the end of the discussion, Silvia 

made the following experiment with her students: given a metal pot full of water at room 

 
24 The video (in Italian) made by the teacher is available here. 

https://www.youtube.com/watch?v=QFYLBkScWsk
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temperature, they gradually added some cubes of ice; every time they registered time passed 

and the lower temperature in the pot. When they saw the outside surface of the pot fogging, that 

temperature corresponded to the dew point. All the data were collected on the blackboard 

(Figure 44). 

Figure 44 – Data of the experiment reported on the blackboard 

As homework, students were assigned to watch a video25 made by me reproducing the dew point 

experiment, an expedient that we adopted to allow students to work in a subsequent moment 

on a common data set. The language used in the video to present the experiment, which is 

reported in the First Worksheet about Task 3 (12.1.3), is deliberately of Galilean memory, both 

to create a link with the experimentation in which the students were involved during the 

previous year and to underline the importance of sensible experiences for the experimental 

scientific method. After viewing the video, students had to replicate the experiment on their own.  

12.1.3  Task 3 

Students faced a working group session of 1-hour on Google Meet divided in the same 5 groups 

(A-B-C-D-E) of the 2019 T.E. and worked on the worksheet reported below translated into 

English. During the session, students started from the data of the experiment presented in the 

video, and they were asked for a possible relation between the starting temperature and the dew 

point temperature. Then they were guided through the reading of a real psychrometric chart 

reported in their worksheet, and subsequently using a GeoGebra applet simulating it, students 

were asked to find the coordinates of the point of intersections between the green curves 

(indicating a different percentage of relative humidity) and the horizontal line y=yDEW POINT. 

Finally, students were asked again for a possible relationship between temperature and 

humidity. The sessions were recorder through Meet, but they will not be analyzed in the 

following. The approach to this task was mainly explorative but given the complexity of the 

 
25 The video is available here. 

https://www.youtube.com/watch?v=GW541mOddnk
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psychrometric chart and the huge amount of information contained in it, it took times to the 

students to answer the questions on the worksheet.  

This task was followed by 1-hour discussion in presence (Discussion 1) led by the teacher during 

which students’ answers were shared and discussed. Moreover, guided by the teacher, students 

tried to retrace the steps of the pot experiment on the psychrometric diagram. One episode from 

this discussion will be analyzed in the following section. 

First Worksheet (Task 3) 

Rinse in class with your classmates and then take a bucket with water and ice, a pot full for 3/4 

of water, a thermometer, and a syringe with which you will gradually inject the frozen water 

into the pot, which you will mix with care. You will measure and record the temperature away. 

You will diligently observe the outside of the pot: when you see the air fogging on it, record the 

measured temperature. That will be the dew point.

 
Which is the temperature of the water at the beginning of the experiment? __________________  
Does it correspond to the temperature of the air in the room? ________________________ 

Which temperature does the dew point correspond to (see theoretical worksheet)? _________ 

Time passed (hh:mm:ss) Temperature (°C) 

0:00:00 21,6 

0:01:51 21 

0:02:25 20,5 

0:03:10 20 

0:04:33 19,5 

0:05:36 19 

0:07:04 18,5 

0:08:51 18 

0:10:18 17,5 

0:12:00 17 

0:14:56 16,5 

0:17:33 16 

0:20:03 15,5 

0:23:35 15 

0:27:11 14,5 

0:28:24 14,3 

According to you, does the pressure change during the experiment? Why? 
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Thinking about the data of the video and of your homemade experiment, do you think there 
is a relationship between the initial temperature and the dew point? 
 

We will learn to read the psychrometric chart or Carrier diagram, useful to determine the 
properties of a water-to-air mixture at constant pressure. On the x-axis the temperatures of 
the dry air are reported, while on the y-axis the absolute humidity is indicated. The graph is 
the one below but, as you can see, it’s challenging to be read. For this reason, we will proceed 
step by step.  
 

Open the file psicrometrica.ggb (Figure 45); the green curves indicate the relative humidity 
of the mixture. The 100% relative humidity curve is the saturation curve, which is the dew 
temperature curve. Move the rh (relative humidity) and temperature sliders and locate the 
point P on the saturation curve (the one with 100% relative humidity) which corresponds to 
the dew temperature obtained in the experiment. 
Write here its coordinates: P=(      ,     ) 

Draw the horizontal line y=yp and look for the curve of relative humidity that passes 
through the point Q that has ordinate equal to yp and as abscissa the room temperature, the 
initial one of the water. What is the relative humidity at this point? 

Mark points P and Q on the diagram below. 

Using the psicrometrica.ggb file again, move the temperature and rh (relative humidity) 
sliders and find the coordinates of the points of intersection between the horizontal line y=yp 
and the green curves of the relative humidity. Complete the following table. 
 

 
Temperature Absolute humidity Relative humidity 

P_1   10% 

P_2   20% 

P_3   30% 

P_4   40% 

P_5   50% 

P_6   60% 

P_7   70% 
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P_8   80% 

P_9   90% 

P   100% 

 
Read the values in the table. What do you notice?  
How do temperature and humidity vary? Can you find a relationship that describes their 
variation? 
Corresponding computer screen  

 

Figure 45 – Screenshot of the psicrometrica.ggb applet interface 

12.1.4  Task 4 

At the end of the previous lesson, the following homework was assigned to students:  

Second Worksheet (Task 4) 

What do you think will be the trend of the graph that represents the values of relative 
humidity as a function of temperature? Try to trace (freehand or with GeoGebra, you choose) 
a likely chart justifying your choices adequately. 

Students uploaded their works on Classroom the day before the lesson. At the beginning of the 

following lesson, the teacher devoted half an hour to a classroom discussion (Discussion 2) in 

which she commented on students’ answers: she showed on the IW the various answers 

provided by the students underlining in particular the different approaches in drawing the graph 

and asking them to motivate their choices. 

12.1.5  Task 5 

During the second part of the previous lesson, students divided in small groups, 2 or 3 people so 

to respect social distancing, worked on the worksheet reported below translated into English. 

The worksheet invited students to open a new GeoGebra applet, Nuovo_psicro (Figure 46), 

showing this time the relationship between relative humidity, on the y-axis, and temperature, on 
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the x-axis. A few questions guided students in observing which magnitudes were represented in 

the new reference system with respect to the old one. Then a table recalled each step of the pot 

experiment, which magnitudes varied and how, and how each step of the experiment could be 

represented on the Carrier diagram. The result was a cycle on the chart. Finally, a question asked 

to reproduce the same cycle in the new reference system. At the end of the lesson the groups 

gave their worksheets to the teacher. 

Third Worksheet (Task 5) 

Open the GeoGebra file Nuovo_psicro.ggb.  
Which are the magnitudes represented on the x-axis and y-axis of the new reference system? 
Which were the ones in the old system?  
When switching from one reference system to another, what is no longer represented by the 
coordinates? Can you identify the magnitude in question in the new reference system? How? 

Search and mark on the new graph the points P and Q, where:  
- In the old reference system, the coordinates of point P are (14.3; 12.06708). It represents 
the point on the saturation curve where the temperature coincides with the dew 
temperature;  
- In the old reference system, the coordinates of point Q are (22.1355; 12.06708). It 
represents the point with room temperature and initial specific humidity: in other words, it 
represents the initial situation regarding the specific humidity (no additional water vapor is 
inserted or removed) and initial room temperature.  

Is it correct to say that if the temperature increases by 8°C, then the relative humidity 
increases by 8%?  
Thinking back to the experiment of the pot, it is possible to describe it in this way: 
 

What happens 
How magnitudes 

change 
How to move on the graph 

Starting from a 
certain initial 
temperature and 
with a given specific 
humidity the pot gets 
cooler. 

Absolute humidity = 
constant 

Specific humidity = 
constant 

Relative humidity = 
increase  

Temperature = 
decrease 
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While continuing to 
lower the 
temperature  
in the pot, some 
drops of water form 
on the wall: water 
vapor content in the 
air condenses. 

Absolute humidity = 
decrease 

Specific humidity = 
decrease  

Relative humidity = 
constant 

Temperature = 
decrease 

 

Let us take off the 
pot with the fogging 
from the classroom 
and leave that the 
ambient 
temperature returns 
to the initial value. 

Absolute humidity = 
constant 

Specific humidity = 
constant 

Relative humidity = 
decrease 

Temperature = 
increase 

 
Can you repeat the same cycle on the new graph? 
Corresponding computer screen  

 

Figure 46 – Screenshot of the Nuovo_psicro.ggb applet interface 

This task was followed by two hours of classroom discussion, both of 1 hour and about a week 

apart. During the first of the two discussion (Discussion 3), the teacher directed students’ 

attention towards the idea that the two graphs, contained in the two GeoGebra applets, describe 

the same physical situation from two different mathematical points of view. In particular, the 
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teacher introduced a new GeoGebra applet (psicro.5, see Figure 47), displaying it on the IW, in 

which the two graphs were displayed side by side. These representations constitute two 

different descriptions of the same phenomenon from two different standpoints. Adopting the 

lens of conceptual blending, they can be interpreted as two different knowledge input spaces 

that students are required to blend in a new knowledge space so to have a global and coherent 

understanding of the phenomenon. Hence, the theoretical lens of conceptual blending will help 

us in detecting the emerging cognitive mechanisms when different mathematical 

representations are involved.  

 

Figure 47 – GeoGebra applet showing both the diagrams 

Finally, during the last 1-hour discussion, all the concepts emerged during the previous lessons 

were recalled: Silvia guided the students in doing it by posing suitable questions. In the end, the 

notion of Humidex index26, an index elaborated to measure the degree of wellness according to 

different thermodynamic conditions, was introduced and explained. This notion enabled 

students to better understand the concept of perceived temperature which they had read in the 

newspaper article at the beginning the T.E.: one of the purposes of these activities was to provide 

students with some tools to interpret and explain real phenomena.  

12.1.6  Prospective analysis  

This T.E. differs considerably from the others two. The first point to be underlined is that this 

time the initial step of the mathematical modelling process is a classroom experiment and not a 

simulation. We expect the students to largely use the physical interpretation of the described 

phenomenon to be able to read such a complicated chart as the psychrometric chart is. The 

 
26 Some information about the Humidex index can be found here.  

https://www.arpa.piemonte.it/rischinaturali/approfondimenti/effetti-sulla-salute/biometeorologia/humidex.html
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external representation that we assume will emerge the most in students’ reasoning is exactly 

the experiment and so we expect to recognize a wide presence of a blended language in which 

the mathematical and physical knowledges are merged. Concerning covariational reasoning, we 

expect it to be even harder to apply the taxonomy so far adopted; indeed, we predict that the 

instrumentation supporting this T.E. will mainly facilitate a holistic and global approach, rather 

than a more local one focused on the coordination of numerical values of the magnitudes 

involved. Hence, second-order covariation should be predominant with respect to COV 1, and it 

will probably manifest in a different form because the level of metavariation, that is present in 

the GeoGebra applet, is not the real focus of classroom discussions that privilege the ability to 

establish relations between different representations. This point is a clear example of what we 

called wide mesh a priori analysis of the activities (Section 9.2), typical of Silvia’s teaching 

method. Instead of focusing on COV 2 as it emerged in the Galileo teaching experiment, we tried 

to give space to students’ emerging conceptualizations, and this resulted in a redesign on the 

spot of the activities previously planned.  

Even if the Carrier diagram is of complicated reading, we expect students to benefit from the 

previous experimentation they participated in, specifically in the agile use of the technological 

supports and in relating the graphical representations with some mathematical properties 

(degree of the function, finite differences, and a general formula describing it). 

Silvia will presumably adopt the typical adaptive strategies that connote her teaching, but we 

expect her to play a determinant role in mediating between the several representations involved.  

12.2 DATA ANALYSIS 

In this section we are going to illustrate in detail six episodes mainly examined adopting the 

Timeline tool and the data from students’ answers to Task 2.  

- Data from Task 2 analyzed here (12.1.1) are students’ answers to the question “Is 

there a relation between temperature and relative humidity?”. Some of the most 

relevant answers revealing covariational reasoning will be commented qualitatively 

and later on analyzed from a lexical and syntactical point of view . 

- Episode 1 (12.2.2) is an excerpt from the first classroom discussion (Discussion 1) 

which was conducted after the working group session on Task 3. Students had worked 

in small groups on the data from their classroom experiment and the reading of a real 

psychrometric chart guided by some instruction provided on a worksheet. During 

that session, the students worked divided in the same five groups of the previous T.E.. 
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- Episode 2 (12.2.3) comes from the second teacher-led discussion (Discussion 2) 

conducted in presence after that, as homework, students had worked on the trend of 

the graph that represents the values of relative humidity as a function of temperature. 

This episode specifically refers to the answer provided by a student, Matteo, who tried 

to identify a precise mathematical formula. 

- Episode 3 (12.2.4), Episode 4 (12.2.5), Episode 5 (12.2.6) and Episode 6 (12.2.7) are 

four excerpts from the third teacher-led discussion (Discussion 3) which took place 

in presence after that students had worked on Task 5,  the last one, during which 

students were asked to trace the experiment cycle on the graph showing the 

relationship between relative humidity, on the y-axis, and temperature, on the x-axis.  

Throughout the whole analysis, four different artefacts will make their appearance: the 

classroom experiment (E), the GeoGebra applets (G), the formulas (F), and the interactive 

whiteboard (IW). In the Timelines students’ gestures are not reported because they were not 

visible due to the poor quality of the video recordings. 

12.2.1  Data from Task 2 (students’ answers to question 3) 

Concerning question 3 to Task 2, only 18 students (over 22) uploaded their answers on the 

Classroom platform. Here we are going to comment qualitatively on the different approaches 

adopted by students when trying to describe the relationship between temperature and relative 

humidity: students had to reflect using the data provided in Figure 43 or the same class of data 

they collected during the experiment they did on their own at home. All the 18 students replied 

affirmatively, i.e., that there is a link or a relationship between temperature and relative 

humidity even if some of them specified that the relation “varies according to different factors” 

[139 - S11] or again that they “are not totally connected to each other because even with different 

temperatures the humidity is equal” [140 - S4]. Focusing on the sentences formulated by 

students to describe this possible relationship, they claim that (we report just some examples as 

a reference, both in Italian and translated into English):  

[141 – S21] When the temperature decreases, the relative humidity increases and vice 

versa. 

Quando la temperatura diminuisce, l’umidità relativa aumenta e viceversa. 

[142 - S4]  If the temperature increases, the humidity decreases, while if the temperature 

decreases, the humidity increases. 

Se la temperatura aumenta, l’umidità diminuisce, mentre se la temperatura 

diminuisce, l’umidità aumenta. 
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[143 – S1] The piecewise line representing the temperature [red] initially has rather low 

values, while the blue one [relative humidity] has higher values. Then the 

piecewise red line begins to grow while the other begins to decrease. 

La linea spezzata rappresentante la temperatura inizialmente ha valori 

abbastanza bassi, mentre quella blu ha valori più alti. Successivamente la linea 

spezzata rossa inizia a crescere mentre l’altra comincia a decrescere. 

[144 – S19] The data, in the two open piecewise lines, are approximately inversely 

proportional, when one grows, the other decreases and vice versa. 

I dati, nelle due linee aperte spezzate, sono approssimativamente inversamente 

proporzionali, quando una cresce, l’altra diminuisce e viceversa. 

[145 – S15] The two graphs, after they have been modified to facilitate the reading, seem 

almost mirrored, that is with the increase of the temperature the relative 

humidity decreases, and at 17. 2°, the minimum temperature recorded, the 

highest is relative humidity. 

I due grafici, dopo che sono stati modificati per facilitarne la lettura, sembrano 

quasi specchiati, cioè con l’aumento della temperatura l’umidità relativa 

diminuisce, e ai 17. 2°, la temperatura minima registrata, si ha l’umidità relativa 

maggiore. 

[146 – S12] When the temperature drops, the relative humidity tends to rise and vice versa. 

This fact has, in my opinion, a simple physical explanation: when it is warmer 

the water tends to evaporate more and the air, consequently, to get drier; when 

the temperature is lower, the water vapor present in the air tends not to rise, 

and the air is consequently wetter. 

Quando la temperatura scende, l’umidità relativa tende a salire e viceversa. Questo 

fatto ha, secondo me, una semplice spiegazione fisica: quando fa più caldo l’acqua 

tende a evaporare maggiormente e l’aria, di conseguenza, a farsi più secca; 

quando la temperatura è invece più bassa il vapore acqueo presente nell’aria tende 

a non salire, e l’aria risulta, di conseguenza, più umida. 

[147 – S16]  As the temperature increases, the water vapor particles will decrease and, 

conversely, as the temperature decreases, they will be present in the air in 

greater quantity. 

All’aumentare della temperatura le particelle di vapore acqueo diminuiranno e al 

contrario queste al diminuire della temperatura, saranno presenti nell’aria in 

quantità maggiore. 

We can observe that despite the numerical values provided by the experiment, the students 

mainly express the possible temperature-relative humidity relationship in qualitative terms. The 

covariational reasoning emerging is COV 1 – L2 (coordination of values) and the syntactical 

structures recurring are the same already identified for this level of reasoning i.e., binary 

relations expressed as “A increases while B decreases” or again “when A increases, B decreases”. 

Only a few students tried to describe globally this relationship and speak of inverse 
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proportionality [144] or using an informal language, the two graphs “seem almost mirrored” 

[145]. Finally, a few students tried also to motivate that relationship from the standpoint of a 

physical interpretation. Indeed, they refer to the process of evaporation of the water vapor, 

“when it is warmer the water tends to evaporate more and the air, consequently, to get drier” 

[146] or “As the temperature increases, the water vapor particles will decrease” [147]. The level 

of the discourse emerging from students’ claims is still at a descriptive stage and the references 

to the physical domain are not blended with the mathematical knowledge but simply juxtaposed 

to it.  

12.2.2  Episode 1 (Discussion 1, 39:54-43:23)  

This is an excerpt from the 1-hour discussion in presence (Discussion 1) led by the teacher after 

the working group session on Task 3. During this episode, students, guided by the teacher, tried 

to retrace what happened during the pot experiment on the psychrometric diagram. The applet 

reproducing the psychrometric chart is shown on the IW and students have already identified 

point P (14.3; 12.06) that represents the point on the saturation line in which the temperature 

coincides with the temperature of the dew point. Point Q instead has coordinates Q (22.14; 

12.06) and represents the point that has the same ordinate as P and the ambient temperature as 

abscissa (see Figure 48).  

 

Figure 48 – Applet shown on the IW. We added the coordinates of points P and Q to facilitate 
the reading of the transcript 

 Timing Who Utterances Gestures 

P (14.3; 12.06) 

Q (22.14; 12.06) 
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148 00:39:54 Teacher On the graph, how can I read 
these passages? We said this is 
the starting point because we 
said we do not go from P to Q, 
but we start from Q. Starting 
from Q, where did we go? 

The teacher reproduces 
with a finger the cycle on 
the graph and then points 
at point Q on the IW. 

149 00:40:25 Giorgia We decreased the temperature 
hence we moved to the left. 

 

150 00:40:28 Teacher We decreased the temperature 
hence we moved to the left. In 
which way? Did you just 
decrease the temperature or 
not? We are during the moment 
in which you continued to pour 
and pour [the ice]. 

 

151 00:40:46 Emanuele Only the temperature 
decreases.  

 

152 00:40:50 Teacher Only the temperature 
decreases. And so, on the graph, 
how do you move? 

 

153 00:40:55 Emanuele Horizontally.   

154 00:40:56 Teacher Horizontally. We have point Q 
and we move horizontally to 
decrease the temperature. Until 
when do we move horizontally? 

 

155 00:41:11 Emanuele Until the dew point.  

156 00:41:13 Teacher Until the dew point that is until 
when we find on which of these 
green curves? 

 

157 00:41:24 Emanuele Until that of 100%.  

158 00:41:39 Teacher […] And then? What did we do 
after we reached the saturation 
of 100%? Did we stop 
immediately? […] 

 

159 00:42:05 Giorgia No, we waited until it 
condensed well, and, in the 
meanwhile, we continued to 
add ice. 

 

160 00:42:13 Teacher So, what did you do?  

161 00:42:14 Giorgia I continued to decrease the 
temperature.  

 

162 00:42:18 Teacher Hence on the graph, where do 
you move?  

 

163 00:42:19 Giorgia To the left.   

164 00:42:20 Teacher To the left. Horizontally?  
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165 00:42:21 Giorgia No… [not really convinced]. If 
you have reached the dew point 
yes… only the temperature 
changes. 

 

   […]  

166 00:42:50 Emanuele If we already have the dew 
point, humidity is decreasing. 

 

167 00:42:56 Teacher If we already have the dew 
point, humidity is decreasing. 
And so? 

 

168 00:43:03 Valeria It tends toward the x-axis  

169 00:43:05 Teacher Not only the temperature 
decreases, and it tends toward 
the y-axis but also toward the x-
axis. In which way do we move 
on this graph? 

 

170 00:43:23 Valeria Following the curve.  

The teacher opens the discussion underlining that the starting point of the experiment is 

represented by point Q, and not P [148], the one that has coordinates referred to the initial 

conditions of the experiment, and with her finger Silvia points at Q  on the applet displayed on 

the IW (Figure 49 – gesture row). Then, Silvia asks her students where they would move on the 

graph. Giorgia takes the word and referring to experiment states that since they “decreased the 

temperature, we moved to the left [on the graph]” [149]. The teacher revoices Giorgia’s words 

with an approval tone and accompanies her words with a horizontal movement of the hand in 

the air (Figure 49 – gesture row). Then, she asks if only temperature was decreasing and recalls 

that they are at that step of the experiment during which they continued to pour ice into the pot 

and she simulates the gesture of pouring, an iconic gesture with a narrative function (Figure 49 

– gesture row). Emanuele intervenes remarking that “only the temperature decreases” [151] and 

so they move “horizontally” [ 153]. Silvia again repeats Emanuele’s words with an approval tone, 

she retraces the shift to the left on the graph on the IW, so attributing her gesture a grounding 

function (Figure 49 – gesture row), and again asks to the whole classroom (dotted short arrow 

in the interaction flowchart – Figure 49) until when they move horizontally [154]. Emanuele 

replies “until the dew point” [155] and Silvia, after having revoiced his words, asks for the green 

curve on which they should stop [156], simulating the trend of the curve with her hand (gesture 

row – Figure 49) and Emanuele adds “until that of 100%” [157]. The teacher facilitates again 

the flow of discussion asking what happened after they reached the saturation [158] and looks 

around the classroom with a signalizing gaze looking for students’ reactions. Giorgia observes 
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that during the experiment they continued to pour ice waiting for the condensation to be more 

visible [159] and when the teacher asks her what she did [160], Giorgia adds that she “continued 

to decrease the temperature” [161]. Silvia repeats her word with an approval tone and invites to 

translate that decrease on the graph [162]. Giorgia replies that they move “to the left” [163] and 

then Silvia asks if that movement is horizontal [164]. Giorgia initially states “no”, but she is not 

confident with her answer. This uncertainty reveals her difficulty in getting into the blend. The 

tone of her voice denotes that she is making a cognitive effort to overcome the difficulty in 

amalgamating the information provided by different representations. Indeed, she changes her 

mind in a “yes” because after having reached the dew point “only the temperature changes” 

[165]. After a while, Emanuele claims that after the dew point, “humidity is decreasing” [166]. 

Silvia revoices his words and asks for more explanations [167]. Then, Valeria takes the word and 

specifies that it also “tends toward the x-axis” [168]. Hence, Silvia remarks that the movement 

on the graph is not only toward the y-axis but also toward the x-axis and reproduces the trend 

with a metaphoric gesture of the hand (gesture row – Figure 50). Then she asks in which way 

do they move on the graph [169] and Valeria adds that they move following the [green] curve 

[170].  

The teacher supports a lot towards understanding the phenomenon. Indeed, the difficulty of the 

faced topic emerges in the short interventions of the students: they answer with concise claims 

and only after a continuous stimulation by the teacher that constantly asks them how they would 

move on the graph, so inviting them to relate the experiment to GeoGebra. These artefacts, the 

experiment (E) and the GeoGebra applet (G) shown on the IW, are the two artefacts that mainly 

influence the episode and are used by both the teacher and the students with a descending 

control (artefacts interactions row – Figure 50). The teacher enhances a synergic use of the two 

artefacts that emerges with evidence in some of students’ claims such as [149] or [165]. Indeed, 

all the episode is centered on a game of displacement between the graph and the experiment 

that produces a cognitive and interpretative effort in the students and results in the blending of 

the knowledge from three different input spaces clearly revealed by the lexical analysis: (i) 

notions of change and dynamicity (decreased [149]; decreases [151]; until that of 100% [157]; 

decrease [161]; is decreasing [166]); (ii) spatial references connected to the graphical 

representation (left [149]; horizontally [153]; left [163]; it tends toward the x-axis [168]; 

following the curve [170]); (iii) physical interpretation referred to the classroom experiment (until 

it condensed [159]; continued to pour ice [159]). A strong example of blending can be recognized  
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Figure 49 – Timeline 1 – Part I (Dew point 2020) 
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Figure 50 – Timeline 1 – Part II (Dew point 2020) 

in Giorgia’s claim “If you have reached the dew point yes… only the temperature changes” [165] 

that despite its incorrectness reveals her ability to blend various information provided by 

different sources. From the discourse standpoint, we can notice the interlacing of two different 

narratives: a qualitative one, used to describe what happened during the experiment and in the 

narration the use of personal pronouns emerges predominantly (e.g., “we decreased the 

temperature” [149], “we waited until it condensed well” [159], “I continued to decrease the 

temperature” [161]); a quantitative one used to describe how the magnitudes involved are 

changing (e.g., “Only the temperature decreases” [151], “humidity is decreasing” [166]). 

Concerning covariational reasoning, in this episode it seems difficult to apply the levels 
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classification used until this moment. The students already possess the psychrometric diagram 

representing the covariation of magnitudes involved and they are moving on this 

representation: we can for sure recognize the enhancement of a global approach supported by 

the representations involved; hence, this reveals a different characterization of second-order 

covariation that still needs to be clarified in light of the analysis of the other episodes. 

12.2.3  Episode 2 (Discussion 2, 23:07-25:28) 

During Task 4 (12.1.4) students were asked to sketch individually the trend of the graph of 

relative humidity with respect to temperature. Silvia opens the lesson with a classroom 

discussion in which she comments on students’ answers. In particular, in this episode (23:07-

25:28) we analyze the excerpt during which the teacher shows on the IW the solution elaborated 

by Matteo and asks him to explain how he found it. This episode has been chosen because Matteo 

is the only students who not only sketched the graph but also looked for an algebraic expression. 

 Timing Who Utterances Gestures 

171 00:23:07 Teacher What did you do?  

172 00:23:10 Matteo  First I tried to look for a 
function… I located all the 
points and then through a 
system I tried to look for a 
function passing through all the 
points, but it came a little 
higher or a little lower. Then I 
tried to play with the sliders 
and… [unclear] 

 

173 00:24:00 Teacher What kind of function did you 
think of? 

 

174 00:24:03 Matteo I thought that relative humidity 
was a number a over b times 
the temperature plus c… […] 
but it came nothing good… 

The teacher writes the 
formula on the IW. 

175 00:24:35 Teacher In which sense nothing good?  

176 00:24:40 Matteo The function didn’t touch all the 
points… 

 

177 00:24:41 Teacher The function didn’t touch all the 
points… 

 

   […]  

178 00:25:16 Teacher And so, what can we conclude?  

179 00:25:20 Matteo [unclear]  
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180 00:25:28 Teacher The function is not that one or 
the data do not perfectly fit the 
function… but it can be that the 
function probably is not a 
hyperbole… 

 

The teacher asks Matteo to explain what he did to identify the function shown on the IW (Figure 

51) and looks at him inviting him to react (signaling gaze, gesture row – Figure 52). Matteo 

replies that he located all the points on the Cartesian plane [using GeoGebra] and then he tried 

to look for a function passing for all the points, but the function “came a little higher or a little 

lower” [172]. He adds that then he tried to play with the sliders, but the final part of his sentence 

is not understandable [172]. The teacher asks him to state which function he thought of [173] 

and Matteo describes in words a formula in which he relates relative humidity and temperature, 

and such formula contains three parameters that he calls with the letters a, b, and c [174].  

 

Figure 51 – Possible relative humidity-temperature graph proposed by Matteo  

Meanwhile he speaks, the teacher writes on the IW the formula (inscriptions row – Figure 52): 

the writing gesture has a grounding function and reveals the relevance of that algebraic 

expression. Matte concludes his intervention stating that nothing good came and the teacher 

asks him clarifications [175]. The student clarifies that “[t]he function didn’t touch all the points” 

[176]: this claim can be interpreted as a commognitive conflict: students, convinced that all the 

functions with a certain shape are hyperboles, collide with the software that instead uses a more 

advanced language and questions their conviction. Then the teacher asks what they can conclude 

from those observations [178]. Even though Matteo’s answer is not understandable, the teacher 

sums up his reasoning and presents two possibilities: the function may be wrong, or data are 

imprecise and do not perfectly fit the function, but she remarks that the sought function probably 

is not a hyperbole [180]. We just recall that students had not studied yet the exponential 

function. 
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Figure 52 – Timeline 2 (Dew point 2020) 
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The approach followed by Matteo is that of, given some points, looking for the formula of a 

function that passes for all the points and so discover the graphical-functional relationship. The 

level of the discourse is objectified because Matteo already possesses a global image of the 

function, but the formula stated at [174] is in a blended form since Matteo does not refer to some 

generic variables x and y but to the specific magnitudes involved, temperature and relative 

humidity, and the formula also contains three letters a, b, c that denote the dependence also on 

other undefined factors. Matteo explicitly states that he played with the sliders to adjust the 

trend of the function [172]. In this episode, second-order covariation fully manifests in a 

quantitative form, i.e., in the elaboration of a generic algebraic formula aiming at describing 

globally the situation. The intervention of the teacher does not reveal explicitly the reason why 

the graph does not perfectly fit the data, but Silvia helps in bringing out some possibilities and 

in addressing students on the right path [180]. 

12.2.4  Episode 3 (Discussion 3, 3:43-4:12)  

This is the first of four episodes extrapolated from Discussion 3, the classroom discussion that 

followed a working group session during which students worked on a new applet showing the 

graph of absolute humidity with respect to temperature, and relative humidity instrumented 

through a slider. Students were asked to retrace on this new graph the steps of the pot 

experiment. In this excerpt (3:43–4:12) the teacher is commenting on the algebraic expression 

of the function (Figure 53) and is guiding students in reflecting on how the slider associated to 

the numerical value of the numerator affects the graph of the function. 

𝑓(𝑥) =
10

0.6 (𝑒
0,2+𝑥
17,5 −  0,4)

 

Figure 53 – Analytic expression of the function shown in the GeoGebra applet 

This episode has been chosen because the questioning of the teacher invites to reflect globally 

on the properties of the function influenced by a specific parameter and this kind of reasoning is 

essential to develop second-order covariation. 

 Timing Who Utterances Gestures 

181 00:03:43 Teacher To have a numerator equal to 
10 or 15, what does it mean 
from the point of view of the 
function? 
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182 00:03:48 Girls  G1: It is dilatated  
G2: Exactly…   

 

183 00:03:50 Teacher We have a dilatation, for sure, 
that is we have a variation of 
our function. Do we have the 
same function? 

 

184 00:04:00 Teacher This and this are the same 
function? 

The teacher changes the 
value of the slider related 
to the absolute humidity 
and shows two different 
graphs on the IW. 

185 00:04:05 Student No  

186 00:04:06 Teacher No, but are they so much 
different? 

 

187 00:04:10 Many 
voices 

No, they are similar.  

188 00:33:02 Teacher T: No, they are not the same 
function because they have two 
different analytic expression, 
they have two different graphs 
[…], but the form, the structure 
of the function is always the 
same, it does not change much. 

The teacher changes the 
value of absolute humidity 
slider and shows the 
function with a.h.=10 and 
a.h.=15. 

At [181], the teacher asks to her students how a different value of the numerator affects the 

function. Some girls answer that the function is dilatated [182] and the teacher revoices the girls’ 

claim [183] and uses her hands to simulate the dilatation of the function (gesture row – Figure 

54). Then Silvia asks her students if they have the same function [183], but students do not react 

immediately. Hence, the teacher changes the value of the slider of absolute humidity and, 

showing consecutively two different graphs, Silvia asks if the two are the same function [184].  

A non-identifiable student whispers no [185]; the teacher remarks his answer with an approval 

tone and asks if the two functions are so much different [186]. Many students reply that they are 

similar [187], and Silvia adds that “the form, the structure of the function is always the same, it 

does not change much” [188]. While saying this, Silvia again shows on the IW the function for 

two different values of absolute humidity. The teacher uses the GeoGebra applet with a 

descending control because she is conscious that it contains information that can help students 

to answer her questions; the students use it with an ascending control because they look at it so 

to obtain suitable information (artefacts interaction row – Figure 54). Concerning covariational 

reasoning, the teacher clearly enhances COV 2 inviting students to reflect on how the parameter 

affects the trend of the function and enriches their findings, since they are not much talkative,  
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Figure 54 – Timeline 3 (Dew point 2020) 

stating that even if the two functions have different analytical expression, their form does not 

change much. The level of the discourse is objectified because students have already worked on 

the absolute humidity – temperature function and so they fully conceive it as a mathematical 

object. The linguistic analysis instead reveals the use of terms such as “dilatated” [182] and 
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“similar” [187] that are used by students to describe qualitatively the relation between the trend 

of the graphs of the function obtained for different values of the absolute humidity i.e., the 

parameter. 

12.2.5  Episode 4 (Discussion 3, 18:00-22:41) 

At this point of the discussion, the teacher is focusing on reconstructing the cycle of the pot 

experiment on the new chart, the one describing the relationship between absolute humidity 

and temperature. In this episode (18:00-22:41), the teacher is discussing about the second step, 

the one during which they continued to decrease the temperature in the pot by adding ice cubes 

and then some drops of water formed on the wall. Silvia starts a classroom discussion reacting 

to the graphs made by the students as homework and asking them to explain their choices. In 

particular, she observes that some students drew a horizontal trait and others a vertical one. 

 Timing Who Utterances Gestures 

189 00:18:00 Teacher Second trait. Will it be 
rectilinear vertical or horizontal 
like it happens here? And why? 
Let’s start from the first. Which 
are the groups that made the 
second trait rectilinear vertical? 
Why?   

 

190 00:18:30 Matteo  Because we decreased the 
absolute humidity hence the 
point went down… 

 

191 00:18:33 Teacher Ok, you have decreased the 
absolute humidity. If you go 
down vertically, does the 
absolute humidity decrease? 
Yes. Does the relative humidity 
decrease? Yes. Is there 
something that remains 
constant? 

 

192 00:18:55 Matteo The temperature.  

   […]  

193 00:20:00 Teacher What is happening instead on 
the horizontal trait?  

 

194 00:20:03 Arianna The relative humidity maintains 
constant. 

 

195 00:20:05 Teacher The relative humidity maintains 
constant. 

 

196 00:20:08 Arianna And the temperature decreases.  
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197 00:20:11 Teacher The temperature decreases. The 
absolute humidity? Does it 
decrease or remain constant? 

 

198 00:20:20 Adele Decreases.  

199 00:20:22 Teacher Decreases. Why?  

200 00:20:24 Emanuele You have the condensation.  

201 00:20:26 Teacher Ok, you have the condensation, 
and this is what happens 
practically. But on the graph 
why? […] 

 

202 00:20:36 Adele The curve changes.  

   […]  

203 00:21:16 Teacher What does the second trait tell 
us? You spoke of condensation, 
what happened during the 
second trait? 

 

204 00:21:26 Emanuele It happened that we arrived at 
the dew point.  

 

205 00:21:30 Teacher We arrived at the dew point, 
but the dew point is the 
beginning, the end, or the half of 
the second trait? 

 

206 00:21:38 
 

Emanuele The end.  

207 00:21:39 Teacher The end? Do you agree?  

208 00:21:45 Many 
voices: 

The beginning! 
 

 

209   T recalls what happened during 
the experiment, which 
magnitudes changed and which 
others remained constant. 

 

210 00:22:34 Teacher Which graph will be the correct 
one? The horizontal segment or 
the vertical segment? 

 

211 00:22:40 
 

Many 
voices: 

Horizontal!  

212 00:22:41 Teacher Horizontal, oh yeah!  

As usual, Silvia begins the discussion with a question: she asks if the second trait is linear vertical 

or horizontal and in the meanwhile colors in yellow the two traits in the solutions proposed by 

two different groups and shown on the IW (inscriptions row – Figure 57). In particular, she 
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starts asking clarification to the students of those groups who chose to represent the second trait 

of the cycle with a vertical line (Figure 55). 

 

Figure 55 – Graph of the cycle with a vertical second trait 

Matteo replies that they did so because the absolute humidity is decreasing hence the point goes 

down [190]. The teacher revoices Matteo’s words and then rhetorically asks if relative humidity 

decreases and she replies yes and then again asks if there is something that remains constant 

[191] and Matteo answers “the temperature” [192]. 

After a while, the teacher moves the attention to the other graph that she projects on the IW 

(Figure 56) and asks to describe what happens in this case [193]. 

 

Figure 56 - Graph of the cycle with a horizontal second trait 

Arianna takes the word and says that “the relative humidity remains constant” [194] and “the 

temperature decreases” [196]. The teacher revoices her words both the times and then asks 

about the absolute humidity, if it remains constant or decreases [197], and Adele again replies 

that it decreases [198]. The teacher asks to motivate why it is decreasing [199]. Initially, 

Emanuele states that it is due to condensation [200], but Silvia hopes for an explanation based 

on the graphical representation [201] and while demanding for a different interpretation she 

points at the applet on the IW (gesture row – Figure 58). Adele then replies that absolute 

humidity is decreasing because “the [blue] curve changes” [202]. After a while, Silvia relaunches 

the discussion asking for a physical interpretation of the second trait of the cycle and recalls that 

Emanuele was speaking of condensation [203] and with a hand gesture addresses him (gesture 

row – Figure 58). Hence, Emanuele adds that they arrived at the dew point [204] and Silvia 

intervenes demanding where the dew point is located on the second trait [205] and Emanuele 
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replies at the end [206]. Silvia, conscious that the answer is incorrect, asks to other students if 

they agree [207] and a chorus of voices answers “the beginning” [208]. To conclude the 

discussion and finally declare which of the two traits is the correct one, Silvia recalls which 

magnitudes changed and which remained constant during that phase of the experiment [209], 

and eventually asks which of the two traits is the correct one [210] reproducing with her hands 

the trend of the two segments (gesture row – Figure 58). The classroom replies the horizontal 

one [211] and the teacher revoices it with an exclamation of approval [212].  

We can recognize how the teacher masterly manages a synergic use of the two artefacts, the 

chart and the experiment, which helps students in reflecting on which magnitudes change and 

how they change during the different steps of the pot experiment and the traits of the chart. As 

in Episode 1 (12.2.2), the inputs from the classroom experiment and the graph shown in the 

GeoGebra applet are blended in students’ reasoning and this data strongly emerges from the 

lexical analysis of students’ claims. The same three input spaces identified in Episode 1 recur in 

this excerpt: (i) notions of change and dynamicity (decreased [190]; constant [194]; decreases 

[196]; decreases [198]; the curve changes [202]); (ii) spatial references connected to the 

graphical representation (point went down [190]; arrived [204]; horizontal [211]); (iii) physical 

interpretation referred to the classroom experiment (condensation [200]). It’s Silvia who 

enhances the blend of those information thanks to her interventions and questioning, hence the 

level of the discourse is interpretative. Moreover, even in this case we can observe the 

enhancement of a global approach supported by the representations involved. Both the teacher 

and the students use the artefacts involved with an ascending control (artefacts interactions row 

– Figure 57 and Figure 58).  
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Figure 57 – Timeline 4 – Part I (Dew point 2020) 
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Figure 58 – Timeline 4 – Part II (Dew point 2020) 

12.2.6  Episode 5 (Discussion 3, 31:45-33:03)  

This excerpt (31:45-33:03) belongs to Discussion 3 and it is analyzed just in its verbal 

component because no significant gestures or interactions were performed during this episode. 
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By the way, the episode is significant because shows the approach used by the teacher to reflect 

on the similarities and differences between the two psychrometric charts and it can be intended 

as a form of conceptualization of the different role of variables and parameters.  

 Timing Who Utterances Gestures 

213 00:31:45 Teacher Are they two different 
situations/scenarios? 

 

214 00:23:10 Matteo  No.   

215 00:31:50 Teacher No. Why do the two graphs are 
different if they are not two 
different situations? 

 

216 00:32:00 Matteo The value represented on the y-
axis is different. 

 

217 00:32:02 Teacher The value represented on the y-
axis is different. If you should 
make a comparison with 
something that is not 
mathematical but concerns real 
life… We have the same 
situation/scenario, but the 
value represented on the y-axis 
is different… If you should make 
an analogy… 

 

218 00:32:35 Giorgia From the physical point of view, 
they represent the same thing 
but from the graphical point of 
view no… because they are two 
different values. 

 

219 00:32:42 Teacher Oh! From the physical point of 
view, they represent the same 
thing but from the graphical 
point of view no because they 
are two different values. […] 
Two different situations 
depending on what? 

 

220 00:33:02 Matteo A different point of view.  

221 00:33:03 Teacher A different point of view. What 
we are doing is a different point 
of view. 
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Figure 59 – Applet containing the two charts simultaneously projected on the IW 

At this point of the discussion, the teacher projects on the IW a new applet showing 

simultaneously the relationship of absolute humidity versus temperature (green chart) and of 

relative humidity versus temperature (blue chart). The teacher asks to the classroom if the 

graphs represent two different situations or scenarios [213]. Matteo obviously replies no [214], 

so Silvia asks why the graphs are different if they are not representing different things [215]. 

Matteo adds that the value represented on the y-axis is different [216], but Silvia invites students 

to provide a holistic interpretation, an analogy with something non-strictly mathematical [217]. 

Giorgia suggests that from the physical standpoint the situation is the same, what differs is the 

graphical representation [218]. Silvia revoices Giorgia’s words with an approval tone and asks 

what the difference between the two situations depends on [219], and Matteo replies “a different 

point of view” [220] with the approval of the teacher [221]. With this interpretation, Silvia is 

suggesting that the different role assumed by variables and parameters does not determine a 

different mathematical situation but a change in standpoint that can be grasped in a different 

graphical representation. What is emerging in this episode is a kind of blending that is 

“backwards” with respect to the blending of Fauconnier and Turner: the students already 

possess the blend and what they are trying to do is to deconstruct it into its input spaces. Initially 

Matteo notices that the value represented on the y-axis is different [216], and then Giorgia adds 

that the diagrams differ only for their representational aspects but not the physical 

interpretation [218]. In the end Matteo remarks that their difference can be translated into a 

different standpoint (of representation) [220]. All these elements suggest that the level of the 

discourse is the interpretative one and the lexical analysis denotes a global and holistic 

approach. Concerning covariation, the reasoning emerging is of second-order and supported by 

the cognitive mechanism of blending.    
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12.2.7  Episode 6 (Discussion 3, 36:30-39:10) 

This episode (36:30-39:10) locates towards the end of the Discussion 3: Silvia is still showing 

the applet with the two graphs on the IW and this time she is showing also the two analytic 

representations associated to the two graphs (Figure 60) and she is asking her students how 

the passage from one formula to the other one can happen.  

 

Figure 60 – The two formulas associated to the two graphs contained in the applet 

 Timing Who Utterances Gestures 

222 00:36:30 Teacher How can I pass from this 
function to this function? What 
can I do? Try… 

 

223 00:36:55 Fabio I have to put two parameters in 
place of the value that I want to 
put on the y-axis hence I have to 
put a parameter both for 
absolute humidity and relative 
humidity 

 

   […]  

224 00:37:30 Fabio Instead of writing the value of 
the absolute humidity and 
relative humidity I put a and b… 

 

225 00:37:33 Teacher Can you dictate me what 
happens here? 

 

   […]  

226 00:37:53 Fabio In the second [case] I put… [he 
dictates the formula] 

The teacher writes the 
formula on the IW. 

227 00:38:33 Fabio And then I make that b goes in 
place of a and a in place of b... 

 

228 00:38:48 Teacher So, you say we make a times 
0,66 times the parenthesis 
equal b times 10 

The teacher writes the 
formula on the IW. 

229 00:38:56 Fabio Then I divide by 10 both sides  

230 00:39:00 Teacher Then I divide by 10 both sides The teacher writes the 
formula on the IW. 

231 00:39:10 Fabio Then I can substitute a with the 
value I want, and I find b 
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The teacher addresses the classroom asking how they can pass from one formula to the other 

one and with a supportive tone she encourages students to try to guess some passages [222]. 

Fabio replies that two parameters are needed, to be put in place of the two values represented 

on the y-axis, i.e., absolute humidity and relative humidity respectively [223]. A while later he 

adds that in place of absolute humidity and relative humidity he should put letters a and b [224]. 

Then Silvia asks him to dictate her the formula so that she can write the passages on the IW 

[225]. Indeed, referring to the second graph/function, Fabio dictates to the teacher what he is 

thinking of and Silvia writes the formula on the IW (see Figure 61 and Figure 62 – inscriptions 

row). The non-redundant gesture of writing has a grounding function and reveals to the 

classroom the relevance of that claim (gesture row – Figure 62).  

 

Figure 61 – Inscription referred to the second function 

Fabio then adds that in the other case, the role of a and b should change: a should go in place of 

b and b in place of a [227]. The teacher tries to better explicate the passages introduced by Fabio; 

she clearly states the formula exchanging the roles of a and b and writes it on the IW [228]. Then 

Fabio adds that they should divide both sides of the expression by 10 [229], Silvia repeats his 

words and does that passage on the IW [230] and finally Fabio concludes that to find b is enough 

to substitute any value of a [231]. In this episode, the level of the discourse is objectified: even if 

Fabio is referring to the algebraic expression of the function, it is already conceived as an object. 

What Fabio is trying to describe is how to pass from one analytical representation to the other 

one. He uses the term parameter, previously introduced by their teacher, to refer to both relative 

and absolute humidity, leaving untouched the independent variable that is temperature. What 

emerges from this episode, except for the correctness of the algebraic passages, is that the 

interpretation previously enhanced by their teacher that a parameter determines a certain 

representation of the mathematical situation and changing it means assuming a different 

standpoint. This time the representations involved are not graphical but analytical: Fabio shows 

the ability not only to switch from the graphical to the analytical representation, but also to 

reproduce that mechanism of change in standpoint between the analytical representations. The 

lexical analysis reveals two main input spaces: the real phenomenon with references to the 

magnitudes involved (absolute humidity and relative humidity [222]; absolute humidity and  
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Figure 62 – Timeline 5 (Dew point 2020) 
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relative humidity [224]) and the second input space is the analytical and formal representation 

(y-axis [223]; parameter [223]; a and b [224]; b goes in place of a and a in place of b [227]; divide 

by 10 both sides [229]; substitute a with the value I want, and I find b [231]). From the discourse 

point of view, we can recognize a narrative in which the presence of personal pronouns is 

predominant: I have to put [223]; I want to put [223]; I have to put [223]; I put a and b… [224]; 

I divide [229]; I can substitute [231]; I find [231]. A strong presence of verbs can be identified: 

verbs are used to describe the algebraic passages to move from one analytical representation to 

the other one. The level of the discourse is objectified because students masterly possess the 

functions as mathematical objects, they have already worked on their graphical representation 

and now they are translating them into an analytical representation. Concerning covariational 

reasoning, it seems always more evident that the episodes of these T.E. have revealed a different 

manifestation or at least shade of this second-order covariation construct and it differs from 

both the level of metavariation or the construction of a formula containing parameters 

characteristic of that specific mathematical model. This new level seems to be characterized by 

a global approach strongly supported by the mechanism of conceptual blending and that has its 

cognitive counterpart in a change in standpoint. The need of a more coherent mathematical 

interpretation is emerging. 

12.3 DISCUSSION 

12.3.1  Layer (a): Covariational reasoning27 

Which characterization does second-order covariational reasoning assume when interpreting 

charts like the psychrometric one where at least three magnitudes are involved and one of these 

can be mathematically interpreted as a parameter? If we think of some typical examples of first-

order covariational reasoning such as "A increases, while B decreases", they appear only in the 

answers to Task 2 (12.2.1), where students tried to describe qualitatively the relation between 

temperature and humidity. In the following steps of the T.E., the representations involved 

enhanced a different approach to second-order covariation. Indeed, the psychrometric chart at 

disposal of the students synthetizes in a unique diagram the relations between the magnitudes 

involved and flattens in two dimensions the relations between three different magnitudes 

 
27 The findings of this paragraph will be partially presented in a paper contribution in CERME12:  
Bagossi, S. (accepted). Second-order covariation: it is all about standpoints, In Twelfth Congress of the European 
Society for Research in Mathematics Education (CERME 12). 
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(temperature, absolute humidity, and relative humidity). The students implement reasoning 

revealing a global approach supported by the adopted representations. In particular, in the 

physical interpretation of the relations described in the chart, students are deeply supported by 

the pot experiment: all the classroom discussions develop through an interpretation of the 

diagram with respect to the various steps of the experiment. This results in the presence of 

blends in which the knowledges from the experiment, the graphical representation, and notions 

of change and dynamicity are merged. These blends can be recognized also thanks to the lexical 

analysis of the sentences from both the teacher and the students which display the adoption of 

a blended language with terms that relate to different input spaces. What the students observe 

in the last episode (12.2.7) is that considering relative humidity as a variable or a parameter 

does not change the situation, but the perspective with which you look at the situation: the 

students remark that the relationship is always the same, only expressed in different terms. In 

this perspective, second-order covariation is the construct that enables to read the same 

mathematical situation from two different standpoints: in the real psychrometric chart the 

parameter is the relative humidity, and this magnitude is the one of second order; in the blue 

graph (Figure 47) absolute humidity becomes the parameter and so it is the second order 

variable determining a different standpoint. Students succeed in elaborating this change of point 

of view not only with the graphical representations but also with the analytical ones. In 12.2.7, 

Fabio is able to condense the passage from the green graph to the blue one, elaborating a formula 

that for the first case is approximately y=a∙bx, and that in the second case becomes a=y/bx. 

Second-order covariation means being able to interpret this formula choosing to interpret one 

of the variables involved as a parameter. Cognitively, this requires blending the input spaces, 

represented by the two different representations, into a unique blend, which, on its side, allows 

to map it back onto the two paired counterparts in the two input spaces (as it happens in 12.2.6) 

and so to operate what we call a backwards blending. In both cases, it is a change in standpoint 

that sustains the cognitive mechanism of blending. This new emerging characterization of COV 

2 led us to explore the possibility of using the universal language of category theory to describe 

these mathematical processes. This issue will be object of analysis in Chapter 14. 

12.3.2  Layer (b): Linguistic analysis 

COV 1 Description of the level  Examples from Dew 
point 2020 T.E. 

Syntactical and lexical analysis 

L2 In these examples we 
can observe a 
qualitative description 

[141] Quando A 
diminuisce, B aumenta e 
viceversa.                   

From the syntactical standpoint, 
we recognize the same structures 
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of the covariation 
between the 
magnitudes: the level 
of reasoning is not yet 
fully quantitative 
because students are 
not able to express 
clearly what happens 
between the limit 
values. 
Students are able to 
covary the two 
magnitudes 
underlining the values 
reached in limit 
situations. 

When A decreases, B 
increases and vice 
versa. 

[142] Se A aumenta, B 
diminuisce, mentre se la 
A diminuisce, B 
aumenta.                             
If A increases, B 
decreases, while if A 
decreases, B increases. 

[143] A inizia a crescere 

mentre B comincia a 

decrescere.  

A begins to grow while 

B begins to decrease. 

[144] I dati […] sono 
approssimativamente 
inversamente 
proporzionali, quando 
una cresce, l’altra 
diminuisce e viceversa. 
The data […] are 
approximately 
inversely proportional, 
when A grows, B 
decreases and vice 
versa. 

[145] Con l’aumento di A, 

B diminuisce, e ai 17. 2°, 

la A minima registrata, 

si ha la B maggiore.          

With the increase of A, 

B decreases, and at 

17.2°, the minimum A 

recorded, the highest is 

B. 

already identified for this level of 
reasoning: 
When A decreases, B increases.  
If A increases, B decreases. 
A begins to grow while B begins 

to decrease. 

When A grows, B decreases. 
The minimum A, the highest B. 
Relations are predominantly 
binary, and clauses are 
subordinated. 
An example of unary relation is 
[144] Data are inversely 
proportional, whereas [145] 
displays the use of superlatives.  

From the lexical standpoint, 
language adopted is mainly 
qualitative and objective. The 
verbs to increase/to decrease 
are the most used to describe the 
behavior of the magnitudes 
involved. Recurring linking words 
are when, if, while.  
A sign of global description can be 
detected in the expression 
inversely proportional [144]. 

Concerning the sublevels of second-order covariation we could distinguish, we did not observe 

recurring or relevant structures from the syntactical point of view, hence hereafter we will 

mainly focus on the lexical analysis that provides useful findings for our research purposes. 
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Higher 

COV 

Description of the level Examples from Dew 
point 2020 T.E. 

Lexical analysis 

COV 2 
(i) 

The first sublevel of 
COV 2 in this T.E. 
consists of a 
covariation between 
the parameter and the 
graph describing the 
absolute humidity-
temperature relation: 
again, this way of 
reasoning is an 
example of meta-
variation supported 
by the GeoGebra 
applet. 

[182] È dilatata 
It is dilatated 

[187] Sono simili 
They are similar 

From the lexical standpoint, the 
sentences are objective and 
contain qualitative terms 
(dilatated, similar) used to 
describe globally how the trend of 
the graph evolves. 

 

COV 2 
(ii) 

The second level of 
COV 2 assumes a 
quantitative 
connotation: students 
look for a function 
describing the real 
phenomenon.  

[172] Cercare una 
funzione 
Look for a function 

[174] Un numero a 
fratto b per la 
temperatura più c 
A number a over b 
times the temperature 
plus c 

From the lexical standpoint, we 
can notice the references to a 
mathematical formula which 
contains more than one 
parameter: this is the result of a 
greater awareness by students in 
the use of variables and 
parameters. 

COV 2 
(iii) 

A third level of COV 2 
makes its appearance 
in this T.E. and it is 
supported by the 
cognitive mechanism 
of blending. It enables 
to switch between the 
various MERs at stake 
and to apply a change 
in standpoint within 
the same kind of 
representations. Not 
only, given the 
resulting blends, 
students succeed in 
reconstructing the 
input spaces and this 
is what we call a 
backwards blending. 

Input space 1:  
[149] diminuiva 
decreased  
[151] diminuisce 
decreases 
[157] fino a quella del 
100% 
until that of 100% 
[161] diminuisce 
decrease 
[166] sta diminuendo 
is decreasing 
[190] diminuiva 
decreased  
[194] costante 
constant 
[196] diminuisce 
decreases 
[198] diminuisce  
decreases 
[202] cambia la curva 
the curve changes 

Throughout all the episodes, the 
lexical analysis allows to identify 
four main input spaces: 

1) notions of change and 
dynamicity;  

2) spatial references 
connected to the 
graphical representation; 

3) physical interpretation 
referred to the classroom 
experiment; 

4) analytical 
representation.  

These four spaces clearly refer to 
the various MERs used in the T.E. 
(the psychrometric chart, the 
experiment, the graphs contained 
in the GeoGebra applets and the 
analytical representations). They 
constitute the input spaces used 
by students to create some blends 
that help them to switch from one 
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[222] umidità assoluta 
e umidità relativa  
absolute humidity and 
relative humidity 
[224] umidità assoluta 
e relativa  
absolute humidity and 
relative humidity 
 
Input space 2:  
[149] sinistra 
left 
[153] orizzontalmente 
horizontally 
[163] sinistra 
left 
[168] tende verso 
l’asse delle x 
it tends toward the x-
axis 
[170] seguendo la 
curva 
following the curve  
[190] il punto è sceso 
the point went down 
[204] siamo arrivati 
arrived 
[211] orizzontale 
horizontal 
 
Input space 3:  
[159] che condensasse 
until it condensed 
[159] abbiamo 
continuato ad 
aggiungere ghiaccio 
continued to add ice 
[200] condensazione 
condensation 
 
Input space 4:  
[223] asse y 
y-axis  
[223] parametro 
parameter 
[227] b va al posto di a 
e a va al posto di b 
b goes in place of a 
and a in place of b  

representation to another one. 
The terms used are mainly verbs 
and adjectives: they are often 
holistic and refer to movements 
on the psychrometric chart.  
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[229] divido per 10 
entrambi i membri 
divide by 10 both 
sides  
[231] sostituisco a con 
il valore che voglio e 
trovo b 
substitute a with the 
value I want, and I find 
b  

12.3.3  Layer (c): Discourse level 

In this T.E., we recognized three of the four levels of the mathematical discourse identified in the 

previous T.E.s. What is missing is the analytical level that does not emerge in the classroom 

discussions and various assumptions can be made about this point. First, this step of the 

modelling discourse probably emerged during the working group sessions that we chose not to 

analyze; second, the more advanced background of the students who have already been involved 

in mathematical modelling activities possess more confidence in the elaboration of a 

mathematical formula describing a certain situation and finally, the representations involved 

support a more holistic approach that overcomes the analytical interpretation. Concerning the 

other three levels:  

- Descriptive: this level can be recognized in students’ answers presented in 12.2.1. 

Students describe qualitatively the graphs referring to the trend of temperature and 

humidity. The narrative is objective and the level of covariational reasoning still low. 

The references to the physical domain are still not blended with the mathematical 

knowledge.  

- Objectified: this level is predominant in Episode 2 (12.2.3) when Matteo tries to 

elaborate a formula to describe mathematically the absolute humidity-temperature 

relation, Episode 3 (12.2.4) where students reflect on how the coefficient affects the 

trend of the graphs, and Episode 6 (12.2.7) in which Fabio is explaining how to switch 

from one analytical representation to another. At this level students already possess 

the notion of function as mathematical object and works on it both in its graphical and 

analytical representation. Narratives emerging are both subjective e.g., in Episode 6 

when Fabio describe the algebraic passages to turn one formula into another one and 

he often uses the personal pronoun I, or in [172] when Matteo tells how he tried to 

look for a suitable function, and objective as in Episode 3.  
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- Interpretative: this level is the most present in Episodes 1 (12.2.2) and 4 (12.2.5) 

where the teacher strongly enhances the interpretation of the psychrometric chart 

with the pot experiment and vice versa. This level has been highlighted also thanks to 

the lexical analysis: it has revealed the presence of several input spaces addressing 

the various MERs involved and constitute the solid ground for students’ blends such 

as “If you have reached the dew point yes… only the temperature changes” [165] or 

“You spoke of condensation, what happened during the second trait? It happened that 

we arrived at the dew point.” [203-204]. This level of the discourse also corresponds 

to a high level of second-order covariational reasoning that is strongly supported by 

the cognitive mechanism of conceptual blending, but this point needs a greater 

deepening. 

12.3.4  Layer (d): Adaptive teaching strategies 

Before moving on to analyse in detail the four recurring strategies, let us start with a general 

comment: the difficulty that working with a chart like the psychrometric one entails is evident 

and it emerges also from the classroom discussions. The students, who are not much talkative 

themselves, generally intervene with dry answers or short sentences. It is the teacher that 

dictates the rhythm of the discussion and enhances it through a tight questioning and wise 

interventions. Concerning the teaching strategies, the ones we could identify are the same of the 

other two T.E.s and in particular:  

1 - Semiotic game: given the poor quality of video recordings, we are not able to conclude much 

about the gestural component. The revoicing is a strategy widely used by Silvia as we can 

observe at [150], [152] or [199], just to quote a few examples. And in all these examples, as in 

others, the revoicing of students’ words is followed by a question to enhance the discussion.   

2 - Fostering the discussion in the classroom and facilitating its flow: this strategy is strongly used 

by the teacher in all the episodes to enhance the discussion. Some examples are: “So, what did 

you do?” [160], “And so? [167], “What happens instead on the horizontal trait?” [193]. In Episode 

4 (12.2.5) we have another example of the non-judging behavior of the teacher who leaves the 

students the possibility to explain their choices of a horizontal rather than a vertical trait and 

helps them to find the right answer reflecting on the behavior of the magnitudes involved along 

those traits. At [207], instead of reacting to the wrong answer provided by Emanuele, the teacher 

relaunches the issue to the whole classroom with a question: “The end? Do you agree?”. 
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3 - Exploring students’ actions and thinking: some examples of this strategy are: “What kind of 

function did you think of?” [173], “In which sense nothing good?” [175], “Why?” [199]. This kind 

of questions help students to better explicate their reasoning and to provide more detailed 

explanations. This approach enhances students’ argumentative skills.  

4 - Drawing students’ attention to the information provided by the different artefacts: given the 

wide variety of MERs adopted in this T.E. and their complexity of reading and interpretation, the 

role of the teacher reveals essential in mediating between the various representations and in 

directing students' attention to the relevant information provided by them. In Episode 1, Silvia 

masterly helps students to switch from the experiment to the chart and vice versa: “And so, on 

the graph, how do you move?” [152], “What did we do after we reached the saturation of 100%? 

Did we stop immediately?” [158], “This and this are the same function?” [184].  

12.4 CONCLUDING REMARKS  

As stated in the prospective analysis, this T.E. differs considerably from the others two and this 

fact is also confirmed by the diversity of the results obtained. The strong influence of the pot 

experiment is evident throughout most of the episodes analyzed. It constitutes the benchmark 

measure with which interpret the other representations also attributing a physical 

interpretation. As expected in the prospective analysis, we recognized a wide presence of a 

blended language in which the mathematical and physical knowledges are merged, and these 

linguistic markers are an externalization of the cognitive processes of the conceptual blending. 

Concerning covariational reasoning, we identified a new level of COV 2, a level characterized by 

a dynamic and holistic approach that differs from the levels of COV 2 displayed in 2017 and 2019 

T.E.s. This different connotation reveals the necessity of a more punctual investigation and 

definition of this level. The mathematical discourse does not display a consistent analytical phase 

in favor of an objectified and interpretative level, characterized by narratives that reveal a sense 

of globality and that are supported by the representations involved. The wider mathematical 

background of students is evident: a relevant example can be recognized at [174] where Matteo 

elaborates a mathematical formula containing three different parameters: his choice reflects the 

greater confidence with which they handle the analytical representations and the awareness of 

the different role of variables and parameters. The teaching strategies used by Silvia are those 

we had already identified (12.2.3).  
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13 DISCUSSION AND CONCLUSIONS 

In this chapter we are going to provide a detailed answer to our four research questions, and 

then discuss the didactical implications of our study, its limitations, and some possible future 

lines of research.  

13.1 ANSWER TO RESEARCH QUESTIONS 

13.1.1  Answer to research question 1  

How can the Thompson and Carlson’s theoretical framework about covariation be enlarged so to 

encompass second-order covariation in a unique and coherent construct?  

Enlarging the theoretical framework about covariation, first requires a general definition of 

covariational reasoning, the form of reasoning we investigated in this study, that is:  

Definition (Covariational reasoning) A person reasons covariationally when she is able to suitably 

envision the relationships between two or more mathematical objects.  

This approach considers covariational reasoning as a form of reasoning with a larger 

epistemological and cognitive value as already quoted in Arzarello (2019). To move to higher-

order covariational reasoning, students should already have conceptualized function as 

mathematical object and this entails an increased complexity in the mathematical 

conceptualization that leads us to speak of an epistemological enlargement. Not only, we can also 

speak of an ontological enlargement if we consider that the above definition addresses 

mathematical objects rather than variables as done in the framework by Thompson and Carlson. 

Before moving to a detailed description of our actual vision of the covariation construct, some 

other two definitions are required; they underline the distinction between order and level and 

will enable us to adopt a proper and coherent terminology in the following: 

Definition (Order) Form of covariational reasoning connoted by specific mathematical objects 

and their mutual relations.  

Definition (Level) Class of behaviors or characteristic of a person’s capacity to reason 

covariationally (Thompson & Carlson, 2017, p. 435) 

From these definitions emerges that while the definition of order of covariational reasoning has 

an epistemological and ontological connotation, the definition of level, the same adopted by 
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Thompson and Carlson, is purely cognitive and addresses the different steps in the process of 

conceptualization. This clarification will help us to answer to research question 2 and say 

whether the facets of COV 2 we distinguished are truly levels of COV 2 according to the definition 

previously set out. 

Within this enlarged framework and at the end of this preliminary study, the construct of 

covariation seems to assume the configuration sketched in the following diagram:  

Figure 63 – Enlarged framework about covariation. 

As stated at the beginning, in this enlarged framework mathematical objects are considered 

jointly with their mutual relations and what connotes the different orders is the increasing 

complexity of the mathematical objects involved and as a consequence of the reasoning required. 

Concerning first-order covariation (COV 1), i.e., the taxonomy of the six levels of covariational 

reasoning elaborated by Thompson and Carlson (2017), it is defined as:  

Definition (First-order covariation) The ability to envision the values of two varying quantities 

and to envision them as they vary simultaneously. 

Its mathematical objects are the variables representing varying quantities and how they can 

covary. At the higher levels of COV 1 students are able to envision the two or more magnitudes 

varying smoothly and continuously hence they succeed in conceiving the resulting function 

which cognitively is a multiplicative object. Two other orders of covariation are included. 

COV 1

First-order 
covariation

L0: No coordination

L1: Pre-coordination of 
values

L2: Gross coordination 
of values

L3: Coordination of 
values

L4: Chunky continuous 
covariation

L5: Smooth continuous 
covariation

COV 2

Second-order 
covariation

L1

Qualitative

Quantitative

Blended

COV 3

Third-order 
covariation

Covariation of 
covariation
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Second-order covariation (COV 2) is the construct deeply analyzed through the whole study and 

that we initially defined as (Chapter 5):   

Definition (Second-order covariation) The ability to suitably envision a further relationship in a 

family of invariant relations among two or more varying quantities, where this family is 

characterized by the presence of one or more parameters.  

In particular, parameters allow to represent classes of real phenomena as families of relations 

between variables characterized, from the point of view of the mathematical representation, by 

specific parameters that determine the peculiarities of the mathematical model. Furthermore, 

the label 'second-order covariation' seems particularly suitable to underline the role played by 

parameters: indeed, Bloedy-Vinner (2001) already used the expression second order function 

to address those functions whose argument is a parameter and whose output is a function or an 

equation depending on a specific parameter value. COV 2 is an order of reasoning that involves 

not only the variables but also the functions as mathematical objects and their mutual relations. 

While empirically validating the above definition throughout the data, new facets of this kind of 

reasoning emerged: how a specific variable chosen as parameter affects graphically the trend of 

the graph and analytically the family of functions; how the choice of a certain variable as 

parameter produces a specific graphical representation and how this representation changes 

when the variable elected as parameter is another one, that cognitively is a change in standpoint. 

The issue of definition and classification of these aspects of COV 2 will be deeply explored in the 

answer to research question 2. Indeed, the taxonomy of COV 1 is a cognitive one and levels are 

supposed to be developmental, whereas in our study we did not conduct a capillary investigation 

of students’ forms of reasoning; hence, the cognitive connotation of the other orders should 

deserve a deeper investigation.    

The last order included in the diagram is that of covariation of covariation, called third-order 

covariation (COV 3):  

Definition (Third-order covariation) The ability to consider functions globally and focus on how 

the changes in one graph are linked to the changes in another graph related to the first one, and 

conversely (Swidan, Sabena & Arzarello, 2020).  

Even if this order covariation has not been explored in this study, it seems a suitable extension 

of the first two orders for the following reason. Third-order covariation, COV 3, involves two or 

more functions connected by a certain relation and this order of reasoning means envisioning 

how the behavior of one function affects the trend of the other one related to it but a more in-
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depth study is required. We introduced the term third-order covariation to denote a form of 

reasoning that seems a reasonable extension of the other two orders, but it has never been 

investigated from a covariational reasoning standpoint. This interpretation leaves the door open 

to the possibility of identification of other orders of covariation 

What are these orders of covariational reasoning important for? Concerning COV 1, a huge body 

of literature shows how it supports the understanding of proportion, rate of change and linearity, 

variables, trigonometry, exponential growth, functions of one and two variables and detailed 

references for all these topics can be found in Thompson and colleagues (2017). About COV 2, 

the experimentations analyzed in this research allow us to point out the relevance of this order 

of reasoning for the modelling of classes of real phenomena, dynamic situations, and parametric 

functions. Finally, starting from the topic analyzed in Osama, Sabena and Arzarello (2020), COV 

3 seems the suitable form of reasoning to conceptualize the relation between a function and its 

derivative, a function and its antiderivative, or introducing a physical connotation a velocity-

time graph and the graph of rate of change of velocity with respect to time. These are only a few 

examples to give concreteness to this form of reasoning. 

We hope that this enlarged framework truly respects the original nature of covariational 

reasoning and the motivations that led so many researchers to study it theoretically. Once 

Thompson wrote us: 

My sense is that there is a misperception of covariational reasoning as I have always meant it —the 

misperception is that covariational reasoning is fundamentally about graphs. I’ve never meant this. I’ve 

always meant that covariational reasoning is rooted in quantitative reasoning. Graphs are convenient for 

researchers as a context for investigating covariational reasoning and a natural medium for 

learners/teachers to express it, but I’ve always thought of covariational reasoning in terms of 

conceptualizing situations. (Thompson, email, July 7th, 2020) 

In our opinion, the context of our investigation well reflects that covariation is neither about 

reading graphs nor about interpreting formulas, but it is a matter of conceptualization. 

Our research also sheds light on many other relevant factors that deeply support covariational 

reasoning in the classroom environment: we focused on the role of teachers and some possible 

strategies that can foster students’ understanding of complex mathematical concepts; in 

addition, we observed how the instrumentation of these processes through suitable tools 
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produces numerous benefits and finally the design of tasks should enable to explore different 

orders of covariation.  

Figure 64 – Didactical connotation of the covariation construct 

We do believe that all these elements strongly support the introduction of a covariational 

approach within the classroom environment, hence they constitute a characterization of the 

construct on the didactical standpoint and for this reason we retain appropriate include them in 

our theoretical framework. Finally, the data analysis of 2020 T.E. highlighted that a more 

structured and global interpretation of the theoretical construct of covariation seems to be 

required so to fully embrace all the connotations of this construct and the universal language of 

category theory could provide useful insights. This issue will be deeply explored in Chapter 14, 

but for now we include in our framework an additional dimension that aims at providing a 

mathematical interpretation of these orders of covariation.  

To conclude, we characterize the theoretical construct of covariation on three different 

dimensions: cognitive, didactical, and mathematical. Keeping into account all these elements, the 

final aspect of the covariation construct could be the one pictured in Figure 65.  
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Figure 65 – Final version of the theoretical construct of covariation 

13.1.2  Answer to research question 2  

Is it possible to identify some levels connoting second-order covariation?  

Concerning second-order covariation, the analysis of the data from the three teaching 

experiments conducted throughout this study, revealed the following different ways in which 

students conceptualize situations requiring this form of reasoning:  

• A qualitative conceptualization: students co-vary a varying quantity, mathematically a 

parameter, and a family of functions depending on it describing qualitatively how a 

change in the parameter affects the trend of the graph. This way of reasoning can strongly 

be supported by the design of suitable dynamic environments that enable that level of 

exploration that in the literature is called metavariation (Hoffkamp, 2011). 

• A quantitative conceptualization: the students succeed in the elaboration of a general 

formula describing the real phenomenon containing one or more parameters that are 

characteristic of the mathematical model; students are aware of the way in which the 

parameters affect the analytical representation of the model and which magnitudes they 

depend on.  

• A blended conceptualization: students are able to read the same mathematical situation 

from two different standpoints and to recognize a correspondence between the involved 

representations. The approach to the representations involved is global and dynamic and 

supported by the cognitive mechanism of blending. Students are able to switch between 

the various MERs at stake and to apply a change in standpoint within the same kind of 
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representation: analytically, it means being able to read a certain formula choosing to 

interpret one of the variables involved as a second-order variable, i.e., a parameter; 

graphically, it means being able to identify correspondences between the related graphs. 

Not only, given the resulting blends, students enact a backwards blending when they 

succeed in reconstructing the input spaces. This blended level seems to assume a 

qualitative connotation but on a more abstract level that concerns representations. The 

categorical discussion in the following part could shed new light on these aspects. 

Given the definitions provided in 13.1.1, these different conceptualizations can be interpreted 

neither as orders nor as levels. Hence we are going to intend them as a mathematical 

characterization of COV 2 and we are going to refer to them as facets of COV 2.  

Definition (Facet) Mathematical aspects connoting the orders of covariational reasoning.  

The choice of the term facets, between various possible choices, wants to exclude a hierarchy 

between the various aspects and include instead a possible overlap between them. We identified 

three facets of COV 2 (qualitative, quantitative and blended) which remark the complex 

epistemological nature of this form of reasoning.  

However, our research question 2 asks for some levels of this second-order construct and, 

coherently with our enlarged framework, they should be intended as cognitive levels. Our data 

analysis revealed the existence of a transition phase between COV 1 and COV 2 that we often 

referred to as intermediate order, but the entity of the object involved is the same of COV 2 and 

it consists of a cognitive meaning hence we could define it as a first level of COV 2:   

Definition (COV 2 – L1) At this level, the student would express saying that the coefficient of the 

function varies depending on a certain magnitude.  

At this level, students’ focus of reasoning remains on the covariation between the dependent and 

independent variable, but the presence of the “parameter” makes it appearance. Adopting the 

classification elaborated by Arcavi et al. (2016) that “parameter” is conceived as a varying 

quantity: it does not stand for a single unknown value but for a domain of possible values and 

introduces an underlying idea of motion and dynamicity. Depending on students’ background, 

they can refer to it without using this formal term but in a more intuitive way, e.g., a constant 

value that changes, adopting an antithetic expression. In a commognitive perspective, the use of 

oxymoronic expression could be interpreted as a commognitive conflict generated by the 

encounter of incompatible narratives. Our methodology of research did not enable us to identify 
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other levels of COV 2: a more detailed and individual investigation of students’ conceptualization 

is required. If we could advance an a-priori hypothesis or a possible evolution of the COV 2 levels 

starting from L1, we imagine them as a transition from specific to generic28. In line with Mason 

and Pimm’s interpretation (1984), the deeper conceptualization of a varying quantity as a 

parameter, a second-order variable, could be intended as the ability to see the general in the 

particular, i.e., to disclose that such function does not represent a single real phenomenon but a 

class of real phenomena with some common properties (generality) and each of them different 

depending on the specific value assumed by the characteristic parameter (specificity). This 

evolution is possible because also the way in which that varying quantity is interpreted changes.  

13.1.3  Answer to research question 3 

Which linguistic markers connote specifically each of the levels of students’ covariational reasoning? 

All the results concerning the linguistic analysis (syntactical and lexical) in relation to the various 

levels of covariational reasoning are collected in the following tables:  

COV 1 Examples from T.E.s Syntactical analysis Lexical analysis 

L1 A is always the same, B 
changes. 

Sentence about A, 
sentence about B where 
the two sentences are 
not correlated.   
 

We can observe the use of the 
adverb always, sign of a 
qualitative description. 

L2 Sentence about A 

as/while sentence 

about B.  

A begins to grow while 

B begins to decrease. 

Since more A, greater 
B.   
Since more/less A, 
more/less B to do the 
same C. [3 magnitudes] 
The more A, the more 
B  
A is maximum/ 
minimum for B=n.           
When you increase A, B 

is greater.  
When A decreases, B 
increases.  

We can observe some 
binary relations and the 
use of comparatives. 
Both coordinated and 
subordinated clauses 
are used. 

 

Language adopted is mainly 
qualitative and objective. The 
verbs to increase/to decrease 
are the most used to describe the 
behavior of the magnitudes 
involved. Recurring linking words 
are as, if, while, when 
(sometimes followed by a 
subjective sentence in which you 
is the subject). The adjectives 
maximum and minimum are 
employed to refer to the limit 
values assumed by the 
magnitudes. 
 

 
28 We would like to thank Prof. Samuele Antonini for sharing with us this interesting interpretation. 
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When A grows, B 
decreases. 
If A increases, B 
decreases. 
The minimum A, the 
highest B. 

L3 No examples in the analyzed episodes. 
L4 A' were always the 

same while B' 
increased. 
A' equal if B is always 
the same. 
A'' were constant and 
A''' were null. 
 

Relations are mainly 
binary, no 
comparatives, and both 
coordinated and 
subordinated clauses 
can be detected.  
 

We can observe a recurrent use of 
the adverb always, objective, and 
quantitative sentences. Finite 
differences are often at stake.  

L5 A is B² 
Time to second power 
gives space… hence   y= 
x² 
The graph could be of 
2nd degree since A'' are 
constant.                    
The curve before had 
an inclination almost 
horizontal and then 
became always more 
vertical. 

The continuous 
covariation between 
magnitudes A and B is 
expressed through the 
description in formal 
terms of their 
mathematical 
relationship or the use 
of a formula with an 
independent (x) and a 
dependent variable (y).  
 

Sentences are objective and 
relations expressed are true 
globally. The verb to be is used 
with the same meaning of the 
equal sign.  
A recurrent use of the adverb 
always can be interpreted as an 
indicator of globality. The 
description of the trend of the 
graph is expressed in qualitative 
terms. Horizontal and vertical 
are recurrent adjectives used to 
connote its behavior.  

 

COV 2 Examples from T.E.s Syntactical analysis Lexical analysis 

L1 y = 2,13 ∙ x² in this 
case with 25° 
The constant value 
can vary. 
The constant number 
depends on the 
angle.  
The coefficient [of 
the function] varies 
[according to the 
angle].  
[The constant value] 
changes according to 
the angle. 

We do not observe 
recurring syntactical 
structures. 
 

We can notice a quantitative 
approach with the elaboration 
of a mathematical formula for a 
fixed value of the angle or a 
qualitative approach through 
which students express the 
dependence of the coefficient 
on the angle of inclination. 
Students use some antithetic 
expressions stating that the 
value of the so-called constant 
can vary. 
 
 

Qualitative 
 

If A changes, the 
more the inclination 
increases.  

Relations are mainly 
binary, and the second 
object involved is 

The adverb more is extremely 
used, and the linking word as is 
also recurrent. The sentences 
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The more A 
increases, the more 
the inclination [of 
the graph] increases. 
A' increases, 
increasing B. 
The greater is A, the 
greater is B' and the 
faster will grow the 
parable. 
As A increases, the 
curve comes always 
closer to y-axis. 
As A of the plane 
increases, the curve 
of the parable is 
more accentuated. 
Increasing A, the 
curves are more 
inclined. 

typically the 
inclination of the 
graph or the graph 
itself.  
Comparative 
structures are 
recurrent, and clauses 
are both coordinated 
and subordinated.  

 

are objective and show a 
qualitative approach to the 
global description of how the 
trend of the graph evolves. 

 

Quantitative 
 

y = k ∙ x² where k is a 
constant varying 
with the inclination. 
The inclination [of 
the graph] changes 
according to the 
angle because with a 
minor angle the 
inclination is minor, 
with a greater angle 
the function goes up 
first.  y = coeff∙ x2       
y = (A”/2) ∙ x2      
[The coefficient] is 
the half of A’’. 

We observe the 
presence of a formula, 
i.e., an analytical 
representation, 
containing the two 
variables and a 
parameter.  

This mathematical 
characterization of COV 2 
mainly lies on a quantitative 
and analytical approach rather 
than on a graphical 
interpretation, but still reveals 
a sense of globality. The 
parameter is still identified 
with an antithetic expression 
i.e., a constant varying with the 
inclination, probably due to the 
absence of a more specific 
mathematical background.   

Blended Input spaces:  
1) notions of 

change and 
dynamicity;  

2) spatial 
references 
connected to 
the graphical 
representation; 

3) physical 
interpretation 
referred to the 
classroom 
experiment; 

No recurring 
syntactical structures.  

The lexical analysis allowed to 
identify different input spaces 
referring to the various MERs 
used in the T.E.. They 
constitute the input spaces 
used by students to create 
some blends that help them to 
switch from one 
representation to another one. 
The terms used are mainly 
verbs and adjectives: they are 
often holistic and involve 
movement in the 
psychrometric chart.  
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4) analytical 
representation. 

 

These results show that language has a role of mediator between the representations involved 

and students’ mental images that is a common element in several of the already cited studies 

such as Janvier (1978), Hoffkamp (2009, 2011) and Lisarelli (2019).  

13.1.4  Answer to research question 4 

Which levels characterizing the discourse about modelling of real phenomena can be distinguished 

and how do they relate to covariation?  

The analysis of the discourse about modelling a real phenomenon in a commognitive 

perspective, i.e., focusing on narratives, led us to distinguish four different levels of the discourse 

that can be characterized as follows:  

Level of the discourse Description  

Descriptive It consists of a description of the inputs from the different 
representations of the real phenomenon. There are explicit 
references to the artefacts and to the specific physical contest 
presented, but the latter are still not blended with the mathematical 
knowledge. The narrative is objective and levels of covariational 
reasoning are low. The language adopted is the everyday one, not yet 
scientific. 

Analytical At this level, the use of an analytical language starts making its 
appearance in the mathematical discourse. Students represent the 
magnitudes involved with a mathematical symbol, a variable, and 
reason in terms of numerical relationships or in terms of x and y in 
the Cartesian plane. The sentences are more extrapolated from the 
specific physical contest and describe some possible variations of the 
real phenomenon. The mathematical discourse shows different 
degrees of abstraction. The levels of covariational reasoning are low 
but show a quantitative approach. 

Objectified The process of modelling leads to the elaboration of a mathematical 
relationship, a formula that has a general validity and does not fit 
only with the specific physical contest presented at the beginning. 
The formula allows to describe mathematically the real situation 
with a global approach. At this level students possess the notion of 
function as mathematical object and masters it both in its graphical 
and analytical representation. Language is scientific and narratives 
encountered are both objective or subjective (presence of personal 
pronouns and verbs to describe algebraic passages). COV 1 is fully 
achieved while COV 2 emerges in its qualitative or quantitative 
characterization. 
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Interpretative This level of discourse does not differ much from the objectified one 
concerning the globality of the approach and the mathematical 
objects involved, but the language adopted reveals something deeper 
than the mathematical interpretation. The emerging narratives 
reveal a blend of elements from the various representations 
(algebraic, numerical, and graphical) connected in coherent 
sentences. The terms used by students are often detectors of a 
physical interpretation blended with the mathematical description. 
Sometimes, the graphic and kinematic aspects are blended as if the 
graph and the phenomenon were the same thing. Looking at the 
mathematical discourse with the lens of the modelling cycle, this step 
could be interpreted as a return to the real phenomenon after having 
mastered the mathematical interpretation. COV 2 mainly manifests 
in its blended characterization. 

These four levels of the mathematical discourse about the modelling of a real phenomenon could 

be interpreted with the following perspective:  

Discourse level Approach 

Observational 
Local 

Analytical 

Objectified 
Global 

Interpretative 

Table 2 – Classification of the discourse levels. 

The first two levels, the descriptive and analytical, refer to a local contraction and are prevalent 

in the 2017 T.E.; the objectified and interpretative levels instead reveal a global interpretation 

of the phenomenon proposed and higher orders of covariational reasoning; they mainly emerge 

in the 2019 T.E. and 2020 T.E.. 

13.1.5  Answer to research question 5 

Which adaptive teaching strategies does the teacher use to responsively guide the students to engage 

in covariational reasoning within classroom activities?  

In the teaching situation and in the learning processes characterizing the three teaching 

experiments, we have pointed out four main recurring strategies, through which the teacher is 

able to responsively guide the students to engage in covariational reasoning:  

1) managing the semiotic game: the teacher repeats students’ semiotic productions (words, 

gestures) to ascribe them with mathematical meanings;  
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2) fostering the discussion in the classroom and facilitating its flow, through suitable 

questioning in order to make students to deepen the problem at stake;  

3) exploring students’ actions and thinking: the teacher investigates what students are 

thinking; 

4) drawing students’ attention to the information provided by the different artefacts used 

in the learning process and mediating between the various representations. 

These strategies globally show some of the main features of adaptive instruction pointed out in 

literature:  

- The carefully designed teaching situation shows a strong pedagogical and content 

knowledge. The basic idea of covariation between quantities is introduced through a nice 

modelling experience, where mathematics is used to suitably give reason of a physical 

phenomenon, whose appeal has both a perceptual and a historical flavor. The students 

are given a variety of organized artefacts, whose productive use and interplay can trigger 

and support them towards the idea of covariation. 

- The teacher shows a deep understanding of and familiarity with her students: suitably 

alternating/coupling her strategies, she is able to tune with their processes and to 

support them towards the understanding of second-order covariation, in particular with 

an expert use of the semiotic resources produced by the artefacts. In this way the teacher 

is able to transform “the routine into full-fledged exploration” (Sfard, 2008, p. 813). She 

shows to be able to continually learn from her students and to develop on the spot 

consequent ways and strategies to teach them, gradually using the available semiotic 

resources.  

- Adaptive instruction goes somehow beyond the commognitive perspective: “discursive 

rules of the mathematics classroom […] are an evolving product of the teacher’s and 

students’ collaborative efforts” (Sfard, 2008, p. 589), but adaptive teaching requires an 

extra effort for the teacher. In order to adapt her teaching strategies, she has to do some 

extra work: first of deep understanding of her students and their strengths and 

weaknesses; second of adaptation of her teaching strategies according to the situations 

that develop within the classroom, mastery that Silvia has gained over the years with 

constant formation and experience in the classroom. It is therefore an effort made not 

only on the field, during lessons, but also before entering the classroom. Through the 

macro and micro analysis and the Timeline we have been able to illustrate and appreciate 

the work of a teacher who cleverly knows how to adapt her modality of teaching without 
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dictating the discursive rules of the mathematics classroom only through her own 

discursive actions but valuing what emerges from her students. 

13.2 DIDACTICAL IMPLICATIONS 

Our analysis can refine the general pedagogical idea of adaptive instruction pointing out how 

teacher’s content knowledge plays a crucial role in her coaching of the teaching experiments: 

without a deep knowledge of the taught topic, it would not be possible to take decisions on the 

spot to face the unexpected students’ productions. On the contrary, we have seen that in all 

moments the teacher is able to suitably manage the signs produced by the artefacts and by the 

students in order to coach an instrumentation of the mathematical content to be taught towards 

the main goal of the teaching activity. In this sense we can speak of an instrumented adaptive 

instruction. We can define it as an adaptive instruction in which the teacher develops ways and 

strategies on the spot to promote her students learning of the content to be taught through a 

suitable instrumentation supported by the available artefacts. This requires teacher’s deep 

knowledge of the affordances of the used artefacts with respect to the specific piece of 

knowledge to be taught in that moment and to her students’ competences with the used artefact.  

Theoretically, the study sheds new light on the role of teachers on how they can adapt their 

instruction to teach specific mathematic content that is covariational reasoning. Pedagogically, 

the study represents a valuable example of how an expert teacher can use her skills and 

expertise, demonstrating the specific practices that promote the covariational reasoning among 

students. 

Our research findings show evidence that certain types of instructional strategies such as 

semiotic games can be particularly effective to promote adaptive instruction and to reach high 

levels of covariational reasoning. As well, we have shown that a suitable use of instruments can 

properly foster such processes. We believe that the findings of this study can be the basis for a 

professional development course for teachers aiming at adapting their instruction and reaching 

a high level of mathematical thinking (Stein et al., 2008). Of course, both kinds of results, the 

strategies, and the semiotic analysis, may be significant for the discussion within a professional 

development course. Discussing with the teachers the strategies that have been found in this 

study may enrich their ways for teaching mathematics with digital tools and discussing the 

semiotic analysis with the teachers may help them to become aware of the multiple semiotic 

resources that a teacher can use to help students to construct mathematical meanings. Paying 
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attention to the students and the teacher semiotic resources, we hope that the communication 

between the teacher and the students moves beyond “show and tell” (Stein et al., 2008), and can 

include what the students and the teacher do and say. To trigger and foster adaptive instruction, 

we hypothesize that the results of this study can set principles to support teachers in designing 

both digital tasks and the interaction with students, to prompt productive mathematical learning 

and engage students in high order reasoning, such as: posing questions, generalizing, developing 

argumentation, and communicating their thinking processes. The professional development of 

teachers who will attend a course organized according to the principles set from this study, 

entails a further direction of research that we already started exploring (Section 13.5).  

Finally, our teacher, Silvia, is familiar with the semiotic games' principles, and the students are 

familiar with the teaching style of the teacher, who emphasizes, among other things, the 

classroom discussion and pays special attention to different kinds of signs and strategies. These 

characteristics of the teacher and the students are peculiar of this study. To extend our findings, 

especially about the instructional strategies that prompt the evolution of mathematical 

meanings, more research is needed.  

13.3 RESULTS IN SUMMARY 

In this section we would like to summarize the main results of this study about the theoretical 

framework of covariation in a concise and orderly way for the convenience of the reader.  

The term covariational reasoning is redefined as follows: 

Definition (Covariational reasoning) A person reasons covariationally when she is able to suitably 

envision the relationships between two or more mathematical objects. 

This new definition attributes to covariational reasoning a wider epistemological and cognitive 

value because, with respect to the definition by Thompson and Carlson (2017), not only 

variables are involved but more generally mathematical objects and this leads to an increased 

complexity in the mathematical conceptualization.  

Covariation is a multidimensional construct, and by its dimensions we mean the different 

aspects of covariational reasoning. In our study we focus on three different dimensions: 

cognitive, didactical, and mathematical.  

Moreover, the nature of the mathematical objects involved in the covariational reasoning 

determines the order of covariation: 
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Definition (Order) Form of covariational reasoning connoted by specific mathematical objects 

and their mutual relations. 

If we consider the entity of the mathematical objects involved in the different orders of 

covariation we can also speak of an ontological enlargement of the theoretical framework. In this 

study we could distinguish three orders of covariation: 

Definition (First-order covariation – COV 1) The ability to envision the values of two varying 

quantities and to envision them as they vary simultaneously. (Thompson & Carlson, 2017) 

Definition (Second-order covariation – COV 2) The ability to suitably envision a further 

relationship in a family of invariant relations among two or more varying quantities, where this 

family is characterized by the presence of one or more parameters.  

Definition (Third-order covariation – COV 3) The ability to consider functions globally and focus 

on how the changes in one graph are linked to the changes in another graph related to the first 

one, and conversely. (Swidan, Sabena & Arzarello, 2020) 

Cognitively, these orders can be characterized by some levels:  

Definition (Level) Class of behaviors or characteristic of a person’s capacity to reason 

covariationally (Thompson & Carlson, 2017, p. 435) 

Thompson and Carlson (2017) identified six levels of first-order covariational reasoning that are 

outlined in Section 2. In this study we identified also one level of second-order covariation:  

Definition (COV 2 – L1) At this level, the student would express saying that the coefficient of the 

function varies depending on a certain magnitude.  

At this level, students’ focus of reasoning remains on the covariation between the dependent and 

independent variable, but the presence of the “parameter” makes its appearance.  

Moreover, the orders of covariation may present various facets: 

Definition (Facet) Mathematical aspects connoting the orders of covariational reasoning.  

This term denotes an absence of hierarchy between the various aspects and include instead a 

possible overlap between them. We identified three facets of COV 2 (qualitative, quantitative, 

and blended) which remark the complex epistemological nature of this form of reasoning. 
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Definition (Qualitative facet) Students co-vary a varying quantity, mathematically a parameter, 

and a family of functions depending on it describing qualitatively how a change in the parameter 

affects the trend of the graph.  

Definition (Quantitative facet) The students succeed in the elaboration of a general formula 

describing the real phenomenon containing one or more parameters that are characteristic of the 

mathematical model; students are aware of the way in which the parameters affect the analytical 

representation of the model and from which magnitudes they depend on. 

Definition (Blended facet) Students are able to read the same mathematical situation from two 

different standpoints and to recognize a correspondence between the involved representations. 

The approach to the involved representations is global and dynamic and supported by the 

cognitive mechanism of blending. 

We remark again that this form of reasoning is essential when dealing with the conceptualization 

of mathematical situations and as, the design of our research shows, it is not merely about 

reading graphs or about interpreting formulas. 

Concerning the didactical dimension, throughout this study we explored the relevance of role of 

the teacher, instrumentation, and task design to enhance and support covariational reasoning 

processes.  

About the mathematical dimension, a deeper interpretation of the construct based on category 

theory is investigated in the following chapter.  

13.4 LIMITATIONS OF OUR STUDY 

In Section 8.1 we have already outlined some constraints of our research that are specific 

features of the design of our research. Indeed, our investigations are limited to covariational 

reasoning involved in tasks about mathematical modelling of real phenomena: this topic includes 

a wide range of activities relevant not only in mathematics, but more in general in the STEM field, 

but they are characterized by specific connotations. Many other mathematical concepts require 

covariational reasoning to be fully understood and they have not been explored in this study.     

In this section we would like to delineate some other features that constitute a limitation for our 

study and that could be interpreted as some points to which work on to improve the results or 

possible future directions of research. To start, just a small sample of students is involved in our 

teaching experiments: the participants of our study belong to the same institution hence they 
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share a common social and also mathematical background; in particular the second class, the 

one involved in 2019 and 2020 T.E., during the third experiment has greatly benefited from the 

work done during the previous academic year on the law of the inclined plane and they handle 

with greater safety and awareness various mathematical representations. Moreover, the teacher, 

always the same throughout the whole study, has a strong preparation not only concerning 

adaptiveness intended as responsive guidance of her teaching, but also about covariational 

reasoning and has been deeply involved in the design of our research. Her mathematical and 

pedagogical background has certainly facilitated the introduction in her teaching practices of 

activities on covariation. Moreover, our findings come from classroom discussions and written 

elaborates of the students but not from individual interviews of students: this methodology of 

investigation did not allow us to elaborate a complete cognitive taxonomy of the levels of COV 2 

as done by Thompson and Carlson (2017) for COV 1. A more detailed examination of this point, 

both through individual sessions with students and involving a greater number of subjects, could 

reinforce the qualitative results of our research. To conclude, the linguistic and discursive 

analysis of the classroom discussions inevitably calls into play a cultural issue: our students are 

Italian students. As a consequence, the features of the discourse and lexical and syntactical 

structures identified are strongly influenced by the cultural heritage and the translation into 

English, although as literal and faithful as possible with regard to our possibilities, necessarily 

implies that certain nuances of meaning and characteristics get lost or modified. It would be 

interesting to get data also from different cultural contexts.  

13.5 FURTHER DIRECTIONS OF RESEARCH AND OPEN QUESTIONS 

At the beginning of this research, we ventured into an uncharted ground. Despite our 

preliminary definition of second-order covariation and conscious that we were theorizing about 

others’ cognitions, that is the delicate nature of a reflexive research itself, the results we obtained 

overcome both our a priori hypotheses and our prospective analysis. Many times, we had to 

revise and enlarge our theoretical framework so to embrace in a coherent and complete way all 

the results emerging and at the end of this challenging investigation we can state that questions 

in our minds are probably more than the answers and second-order covariation revealed much 

more complicated than expected. At this point, we would like to outline some final questions and 

issues that engage our minds.  

1. Do other orders of covariation exist? 
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We started our research investigating second-order covariation and we concluded it, at least for 

now, theorizing the existence of three different orders of covariation that differ because of the 

increasing complexity of the mathematical objects involved. The question arises: do other orders 

of covariation exist? What would happen if we could explore other branches of Mathematics? 

For instance, what would happen if we focused on differential equations? The question is not 

random since in our T.E.s, students already worked with finite differences, a powerful and 

preliminary tool to the introduction of the concept of derivative, and they approached the notion 

of rate of change which includes in itself how a quantity varies in time and so are a mathematical 

concept showing a greater degree of complexity.  

2. The issue of continuity  

In Thompson and Carlson’s framework (2017) about covariation, we could recognize several 

instances that refer to the concept of continuity. Starting from the well-known bottle problem, 

the task itself states the bottle is filled with a continuous flux of water. The description of the 

highest level of first-order covariation, smooth continuous covariation, reads “the person 

envisions both variables varying smoothly and continuously” (Thompson & Carlson, 2017, p. 

435). Moreover, the authors propose a covariational definition of function that we reported in 

Chapter 3. This definition makes us wonder if somehow hides the notion of continuity which is 

an essential property of functions but does not connote neither the totality of possible functions 

nor the whole variety of real phenomena. Let us consider a variation of the Galileo experiment: 

what would have happened if the inclined plane was placed on a table and the rolling ball at the 

end of the plane fell on the floor? This is just an example of a real situation that introduces a non-

continuous function. The question that we are asking is if the covariational approach fits also for 

the introduction to the function concept in general, including those cases of non-continuity. 

Another remarkable example that came to our mind while reflecting on this issue is the Dirichlet 

function, known to be non-continuous in every point of the domain.  

3. The link between cognition and category theory 

The Dew point teaching experiment has strongly questioned our preliminary definition of 

second-order covariation and led us to introduce a new mathematical characterization of the 

COV 2 interpretation that we have clarified and condensed in the blended connotation. In 

analytical terms corresponds to the study of a function z=f(x, y) first considering z=f(x,m) with m 
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parameter (e.g., absolute humidity) and then z=f(n,y) with n parameter (e.g., relative humidity). 

These findings led us to consider the necessity of a more rigorous mathematical interpretation 

of these covariational processes supported by the cognitive mechanism of conceptual blending. 

We thought of the language of category theory that for its property of universality could help us 

to enlighten this issue. Some preliminary findings will be presented in Chapter 14.  

4. Teachers’ training on covariation  

Investigating teachers’ knowledge and practices about covariation is a new, and apparently 

necessary avenue of research in Mathematics Education and the positive findings of our study 

show that it is really worth it to introduce the students to this form of reasoning, but teachers 

need to be prepared. Recently in Italy, a preliminary survey, elaborated by a research group29 in 

Mathematics Education which I am part of, has been administered to Italian teachers to explore 

their background on covariation, their perception of its relevance and their didactical practices 

involving this kind of reasoning. The design of the survey was outlined based on the existing 

literature on covariation as a theoretical construct and the results of our teaching experiments. 

A special focus was reserved for the distinction between variables and parameters, which is 

essential to fostering second-order covariation. This questionnaire was just the prior phase of a 

teachers’ development course that aims to improve teachers’ knowledge of teachers on this 

subject and to encourage them to introduce it in their classes by providing them with 

appropriate tools. The course is entitled Varia tu che covario anch’io [You vary and I covary too] 

and the poster of the course is shown in Figure 66: it is an online course started in mid-

November to which applied about 70 teachers from the whole national territory and nearly 40 

of these have also been involved in a phase of didactic design and experimentation in class. The 

mini website of this course, where all the presentations and slides are upload is available here. 

We are looking forward to collecting and analyzing the results of this project.  

 
29 This research group which coincides with the group of trainers of the course is formed of: Prof. F. Arzarello, four 
researchers in Mathematics Education: Dr F. Ferretti, Dr C. Giberti, Dr G. Lisarelli and Dr E. Taranto, a teacher, Silvia 
Beltramino, and me.  

https://sites.google.com/view/varia-tu-che-covario-anchio/home
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Figure 66 - Poster of the teachers’ development course “Varia tu che covario anch’io”
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14 A MATHEMATICAL INTERPRETATION OF THE 

COVARIATION CONSTRUCT BASED ON CATEGORY THEORY 

AND CONCEPTUAL BLENDING 

In this chapter30 we are going to use the category theory to interpret the cognitive processes 

related to covariational reasoning that we observed in our teaching experiments. This unusual 

application of categories outside mathematics in the years has become more and more diffuse. 

Categories, and specifically the Yoneda lemma, are now employed to enter and explain different 

cognitive problems and theories. For example, the so-called integrated information theory of 

consciousness (Tononi, 2012) proposes that a certain specific conceptual structure called MICS, 

maximally irreducible conceptual structure, is identical to conscious experience (Oizumi et al., 

2014). Roughly speaking, using the mathematical formalism of category theory it is possible to 

show that exists a proper translation between the domain of conscious experience and that of 

the MICS, so that very difficult questions in the domain of consciousness can be resolved in the 

domain of mathematics (Tsuchiya et al., 2016; Phillips, 2018, 2020). The Yoneda lemma is also 

one of the basic ideas in the Synthetic Philosophy of Contemporary Mathematics (Zalamea, 2012; 

2021), from where it was transposed into Mathematics Education, in order to provide a 

categorical definition of mathematical objects specific to Mathematics Education (Asenova, 

2021). 

This chapter has been written in the spirit suggested by Spivak in the Introduction to his book: 

“to create a bridge between the vast array of mathematical concepts that are used daily by 

mathematicians to describe all manner of phenomena that arise in our studies and the models 

and frameworks of scientific disciplines such as physics, computation, and neuroscience” 

(Spivak, 2014, p. 5).  

14.1 A CATEGORICAL INTERPRETATION OF COV 2 – QUANTITATIVE 

CHARACTERIZATION 

In this section, we are going to explore a categorical definition of the first level of COV 2 and of 

its quantitative characterization. In the first paragraph we are going to introduce the categorical 

 
30 The preliminary findings presented in this chapter are the result of an ongoing study in collaboration with Dr M. 
Asenova and Prof. F. Arzarello. 
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notions that we are going to use to introduce the adjunction and in the second paragraph we are 

going to expose our categorical interpretation supporting it with some examples referred to our 

experimentations. 

14.1.1  Notions of category theory 

A category C is essentially a universe of the mathematical discourse thought in a very abstract 

way: it is determined by specifying 'objects' and 'relations' among these (Goldblatt, 1984). The 

sets themselves are an example of category (objects being the sets themselves and relations the 

usual functions among them), as well as other mathematical universes, from vector spaces to 

topos, to sheaves, etc. in which objects and relations assume specific characteristics each time. 

Definition 1 (Category) A category C generally consists of: 

- a class of C-objects denoted as Ob(C); 

- a class of C-relations, called morphisms or arrows; 

- operations assigning to each C-morphism f a C-dom(f) object, the domain of f, and a C-

cod(f) object, the codomain of f, such that f: dom(f)→cod(f); 

- an operation associating to each pair <f,g> of C-morphism with dom(g)=cod(f) a C-

morphism g◦f, the composition of f and g, with dom(g◦f)=dom(f) and cod(g◦f)=cod(g), 

such that the following properties are true: 

▪ associativity: h◦(g◦f) = (h◦g)◦f; 

▪ existence for each X  Ob(C) a C-morphism idX: X→X, the identity on X, such that: idX ◦f = 

f and g◦idX = f. 

In the examples that we will discuss in this chapter the basic category will be that of Set, whose 

objects are the sets, and the morphisms are the functions between sets. Hence, we introduce the 

following notation.  

Notation Given sets A and B, we can form in Set the collection BA of all morphisms that have 

domain A and codomain B, i.e., BA = {f: A→B}.  

Definition 2 (Evaluation function) To characterize BA by arrows we observe that associated with 

BA is a special morphism called evaluation function: ev: BA x A → B, given by the rule ev(f, x) = 

f(x). Its inputs are pairs of the form (–, x) where x  A. 

The categorical description of YX comes from the fact that ev enjoys a universal property 

amongst all set morphisms of the form g: AxX → Y. Given any such g, there is one and only one 

function g^: A → YX such that the diagram 
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commutes, where g^ x idA is the product function that for every input (c,a)  CxA gives as output 

(g(c), idA(a)) = (g(c), a). 

The idea behind the definition of g^ is that the action of g^ causes any particular c to determine 

a function A → B by fixing the first elements of arguments of g at c, and allowing the second 

elements to range over A. In other words, for a given c  C, we define gc: A → B  by the rule    

gc(a)= g(<c, a>),  for each a  A. Now g^: C → BA can be defined by g^(c) = gc  for all c  C . 

For any (c,a)  CxA we then get ev(g^(c), a)) = gc(a) = g(<c, a>) and so the above diagram 

commutes. But the requirement that the diagram commutes, i.e. that ev((g^(c), a)) = g(<c, a>), 

means that g^(c) must be the function that for input a gives output g(<c, a>), i.e. g^(c) must be 

gc as above.  By abstraction then we say that: 

Definition 3 (Exponentiation) A category C has exponentiation if it has a product for any two C-

objects, and if for any given C-objects a and b there is a C-object ba and a C-arrow ev: ba x a → b, 

called an evaluation arrow, such that for any C-object c and C-arrow g: c x a → b, there is a unique 

C-arrow g^: c → ba making the diagram 

 

commute i.e., a unique g^ such that ev ∘(g^ x ida) = g. The assignment of g^ to g establishes a 

bijection C(cxa,b) ≅ C(c,ba) where the symbol ≅ denotes an equivalence of categories (Goldblatt, 

1984). 

Two morphisms (g and g^) that correspond to each other under this bijection will be called 

exponential adjoints of each other.  

Given a function g: AxX → Y we can consider the function g^: A → YX defined as g^(a) = f, where 

f is the function in YX such that f(x) = g(a,x)  Y. The function g^ is a typical example of 

adjunction, a pervasive concept in category theory; Mac Lane (1978) writes: "[...] adjoint 
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functors occur almost everywhere in many branches of Mathematics. [...] a systematic use of all 

these adjunctions illuminates and clarifies these subjects" (p. 107).  

Definition 4 (Right adjoint) If C has exponentials, then there is a bijection C (c x a,b) → C (c, ba) 

for all objects a, b, c, indicating the presence of an adjunction. Let F: C → C  be the right product 

functor - x a  taking any c to c x a. Then F  has as right adjoint the functor ( )a : C → C taking any b 

to ba and any arrow f: c → b to f a : c a → b a, which is the exponential adjoint to the composite                                    

f ∘ ev’: c a x a → c → b, i.e. the unique arrow for which the diagram 

 

commutes. The adjoint situation is 
𝑐 → 𝑏

𝑎

𝑐 x 𝑎 → 𝑏
 . 

Thus, C has exponentials if and only if the functor - x a has a right adjoint for each C-object a. 

14.1.2  Categorical interpretation 

The processes of covariational reasoning develop in students’ mind through different steps that 

we are going to present and discuss using some examples, referring also to the mathematical 

situations proposed in our T.E.s.  

Example 1: a family of lines  

Order 1. Given a function like y = 3x, the students would say it is a straight line (passing for O) 

and they would capture the covariation between x and y according to the levels of COV 1.   

Order 2 – L1. Students consider the function y=mx: they say that IT is a generic line (for O) while 

m is a parameter, a sign that can be replaced with a number and then returns a precise line. The 

main focus is always the covariation between x and y, but the parameter appears, and the 

language extends with the addition of the generic word or similar, which marks a difference from 

the first order. 

Order 2 - Quantitative. Students consider the family of functions y=mx: it is studied with the 

variation of the parameter m; then they catch a covariation at the two orders, that between m 

and the function y=mx (COV 2 – quantitative), and considering m fixed, that between x and y (COV 

1). Language can be a marker of this phenomenon (e.g., from a generic line to a family of lines). 

The difference between COV 1 and COV 2 consists of this: 

- at the first-order, we have the function g: (m,x) ⟼ mx  for m fixed number; 
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- then at second-order – L1, m becomes a parameter and the language changes: 

generic line; 

- at the second-order - quantitative, we have the function g^: m ⟼f, where f: X→ Y 

is defined as f: x ⟼ mx: family of functions. 

Then the second-order covariation is obtained by passing from a function (g) to the new function 

g^. The category (objects and functions) in which we work is extended by considering the 

function g^ next to the function g. This second aspect is not formalized by students but can be 

grasped mainly in the way of reading the expression y=mx. 

Example 2: a family of parables 

Order 1. Given a function like y = 3x2, the students would say it is a parable or second-degree 

function and they would capture the covariation between x and y according to the taxonomy of 

COV 1.   

Order 2 – L1. Students consider the function y=ax2: they grasp the covariation between x and y, 

and they read a as a parameter, a form of sign variation that makes them consider the generic 

parable y=ax2. 

Order 2 – Quantitative. Students consider the family of functions y= ax2: it is studied with the 

variation of the parameter a; then they catch a covariation at the two orders, that between a and 

the function y= ax2 (COV 2 – quantitative level), and considering a fixed, that between x and y 

(COV 1). Language can be a marker of this phenomenon (e.g., from a generic parable to a family 

of parables). 

At the first-order, we have the function g: (a,x) ⟼ ax2 (generic line); at the second order, we 

have the function g^: a ⟼f, where f: X→ Y is defined as f: x ⟼ ax2. Even in this case this second 

aspect is not formalized by students but can be grasped mainly in the way of reading the 

expression y= ax2. 

Example 3: law of the inclined plane 

In the 2017-2019 T.E.s, the situation under investigation was a little bit more complicated: we 

have a function f that associates to an angle  and to time t the traversed distance but such 

function results in turn from the composition of function k()= ½ g sin() (where g is the 

constant of gravity) with the quadratic function that to the couple (k, t) associates the value kt2: 

k:   ⟼ ½ g sin(); 

f: (k, t) ⟼ kt2. 
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In 2017 T.E., the function k did not appear in an explicit form: the students observed just towards 

the end of the classroom discussion that the constant k that appears in the formula y = kx2 varies 

with the inclination but they do not go further. 

To better explain this case with the categorical interpretation, we simplify the situation 

neglecting at first the function k( ). We do not lose anything in substance, as we will show in a 

while. We consider a function f that associates to a couple of values k and t a value s (referring to 

the situation of the inclined plane, k is our   above, at the moment released from the angle, t is 

the time and s the space traversed on the inclined plane) and we consider f^, according to the 

definition given above. Let us now consider K the set of k, T that of the times, S that of the spaces 

(on the inclined plane). It will result f: K x T → S and f^: K → ST defined as f^(k) = h, where h is 

the function in ST such that h(t) = f(k,t)  S. 

Even in this case f  is the function that represents the covariation at order 1, while f^ represents 

the one at order 2.  

If we consider k as the explicit function of , nothing changes in the substance. It is sufficient to 

replace the f^ function to g and proceed as before as shown in the following diagram: 

 

The exponential adjunctions f: C x A → B and f^ : C → BA enable to see their mutual relations in 

two modalities: from category C (CxA,B) to the category C (C,BA) meaning, from functions like f 

to functions as f^ (right adjunction), or vice versa from f^ to f (left adjunction). COV 2 

(Quantitative) expresses a form of adjunction that enables to see the same phenomenon in two 

different ways (through f  and f^), but deeply connected. As shown in this study, didactically the 

phenomenon concerns the understanding of a formula with parameters, but it is part of a form 

of conceptualization (abstraction) that involves the whole mathematics. Indeed, “[t]he isolation 

and explication of the notion of adjointness is perhaps the most profound contribution that 

category theory has made to the history of general mathematical ideas" (Goldblatt, 1984, p. 138).  
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14.2 A CATEGORICAL INTERPRETATION OF COV 2 – BLENDED 

CHARACTERIZATION 

In this section we are going to explore a possible interpretation of the blended characterization 

of COV 2. Second-order covariation is a construct that here is interpreted and studied with a 

synthetic approach, i.e., through its relations with the context, and in this chapter the context is 

given by functions.  In the first paragraph, we are going to introduce the mathematical tools 

needed to enunciate the Yoneda lemma and then in the second paragraph to explore the how 

this lemma can be helpful in interpreting cognitive covariational processes.  

14.2.1  Notions of category theory and the Yoneda lemma 

Definition 5 (Dual category)  Given a category C, its dual category Cop is such that: 

(i) Ob(Cop) = Ob(C), 

(ii) (idX)Cop = (idX)C, 

(iii) Cop(X, Y) = C(Y, X),  

(iv) g  ◦𝐶𝑜𝑝 f = f  ◦𝐶 g.  

In category theory the so-called principle of duality applies, according to which a proposition 

formulated in the category C gives rise to a dual proposition in the dual category of C, Cop. 

Definition 6 (Functor) A functor F  is a map between two categories that sends objects into objects 

and morphisms into morphisms.   

Definition 7 (Covariant functor) If A and B are two categories, a functor F: A → B  covariant 

between A and B is a function from Ob(A) to Ob(B) such that, for each X, Y ∈ Ob(A), is defined the 

application FX;Y: A(X,Y)→B(F(X),F(Y)), that maps each morphism f: X→Y  of A  into a morphism F(f): 

F(X) → F(Y) of B and such that: F(g◦ f) = F(g)◦ F(f) and F(𝑖𝑑𝑋) = 𝑖𝑑𝐹(𝑋).  

Definition 8 (Contravariant functor) If A and B are two categories, a functor F: A → B contravariant 

between A and B  is a function from Ob(A) to Ob(B) such that, for all X, Y ∈ Ob(A) is defined the 

application FX;Y: A(X,Y) → B(F(Y),F(X)), that maps each morphism f: X → Y of A into a morphism 

F(f): F(Y) → F(X) of B and such that: F(g◦f) = F(f) ◦F(g) e F(𝑖𝑑𝑋) = 𝑖𝑑𝐹(𝑋). 

Definition 9 (Embedding) A functor F: C→D is said embedding if, given f1, f2 ∈ C(X,Y), from F(f1) 

= F(f2) follows f1 = f2. 

Definition 10 (Natural transformation) Given two functors F, G: C → D, a natural transformation 

𝜏: F ⇒G is a class N ⊆ D(X;Y) such that N={𝜏𝑋: 𝐹(𝑋)→𝐺(𝑋) | 𝑋∈𝑂𝑏(𝐶)}. 𝜏 is “natural” in the sense 

that induces a commutative diagram such that 𝜏𝑋◦𝐺(𝑓)=𝐹(𝑓)◦𝜏𝑌: 
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If ∀ X ∈ Ob(A) 𝜏𝑋 is an isomorphism in D, then 𝜏 is a natural isomorphism. Moreover 𝑖𝑑𝜏: F ⇒ F. 

The knowledge of a mathematical object can be distinguished into an analytical knowledge that 

is the study of the object itself through the analysis of its components, and a synthetic knowledge 

expressed through its knowledge in context, that is when the object is studied though its 

interactions with the environment (Zalamea, 2012). The synthetic knowledge of an object can 

be exemplified as follows: “the object A, interpreted in the analytical sense, as object itself, is 

considered as being part of a category jointly with other objects that constitute its context (C); 

expressing the relations in C in function of A through a functor hA between C and Set, the object 

intended in the analytical sense ‘disappears’ as object of knowledge (A) and leaves space to the 

morphisms that express its relations with the environment. The set of such morphisms is the 

object of knowledge intended in a synthetic way” (Asenova, 2021, pp. 406-407). 

“The concept of representable functor (hA ) allows to express the fact that a mathematical object 

can be interpreted through its relations with the context, where the context is constituted by the 

relationships with the objects of a category to which the object belongs to. Hence, let us introduce 

the definitions of covariant hom-functor and representable functor” (Asenova, 2021, p. 405).   

Definition 11 (Covariant/Contravariant hom-functor) Let C be a category. A covariant hom-

functor represented by an object A ∈ Ob(C) is the functor: C(A,–): C → Set, defined as:                         

C(A,– )(X)=C(A, X) for all X ∈ Ob(C); if f ∈ C(X, Y) we put C(A, f)=C(A,–)(f)=C(A, X)→C (A, Y) the 

application C(A, f) (g: A → X) = f◦g :A →Y. In an analogous manner, it can be defined the concept 

of contravariant hom-functor C(–, A): Cop → SetC.  

The category whose objects are the contravariant hom-functor from Cop to SetC is called category 

of presheaves on C with values in Set and such functors are called presheaves. 

Definition 12 (Representable functor) A functor F: C →Set is said representable if exists an object 

A ∈ Ob(C) and a natural isomorphism 𝜏: F⇒C(A,–). The pair (A, 𝜏) is said representation of F.  

If hA is a covariant functor representable by an object A, then the contravariant functor 

representable by A is the functor hA: Cop → SetC. 
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The synthetic knowability of an object is assured by the Yoneda Lemma and by the Yoneda 

embedding.  

Proposition 1 (Yoneda lemma) Let F :C→Set be a (covariant) functor and A ∈ Ob(C). There is a 

bijective correspondence y : Nat(hA,F)→F(A) between the set of natural transformations hA⇒F 

and the set F(A). 

In other words, Yoneda lemma states that there exists a bijective correspondence between (i) 

the set of all natural transformations between a generic functor F that originates the 

representable functor hA and the functor F  itself and (ii) the images of the object A according to 

functor F. A detailed demonstration of Yoneda lemma can be found in Mac Lane (1978, pp. 59-

62). 

Yoneda embedding is an embedding in the dual category of a small category C into the category 

SetC of the contravariant functors (presheaves) from Cop to SetC, through a contravariant 

representable functor hA that creates a copy of Cop in SetC, expressing Cop in function of an object 

A. 

The functor hA is fully faithful since the functors from Cop to SetC are both surjective and injective 

and therefore it guarantees the embedding of Cop into SetC.  

Using a suitable categorical framework (essentially the lemma of Yoneda) allows to interpret 

categorically the cognitive processes, which mark the transition from first- to second-order 

covariation and the development of the blended characterization of second-order covariation 

that we have seen in the dew point teaching experiment. Moreover, it will be possible to give 

reason also of the first cognitive level of COV 2 we already described (13.1.2). For this 

interpretation, we base on the just published Ph.D. dissertation of Dr M. Asenova (Asenova, 

2021).   

We will sketch the main ideas of this categorical interpretation, illustrating it for very simple 

situations, which however catch its main mathematical features. The situation we described for 

L1 of COV 2, requires that we start from a category, let us say M, where functions like y=mi x live 

as objects and with morphisms between them: they simply transform the coefficients mi, one 

into another. Now let us consider the category SetM, whose objects are the contravariant functors 

(presheaves). Now, we fix an object y= mi x , and, using the Yoneda lemma, embed all M into SetM 

through representable functors ℎ𝑚𝑖
 (they represent the whole M through the mi). This operation 

can be made for each y= mi x . Hence the presheaves represent M, each with respect to an mi. 
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Now in SetM there will be natural transformations between the different ℎ𝑚𝑖
: they translate the 

way how ℎ𝑚𝑖
 represents M, into the way how ℎ𝑚𝑗

 represents M. In this way, through the natural 

transformations one gets what we have called the generic function y=mx. So, this is the 

categorical counterpart of the first level of COV 2. Now something new is necessary to have fully 

COV 2. What we need is:  

(i) a non-representable functor F from M to SetM: it translates all M in SetM in a unique 

way; 

(ii) natural transformations between F and the ℎ𝑚𝑖
: these allow to connect the ‘compact’ 

representation of M through F to the previous representations ℎ𝑚𝑖
. 

In this way, the natural transformations between F  and the ℎ𝑚𝑖
 generate the family of functions 

y= mi x as a unique object, that is as described in second-order covariation: 𝑚 ⟼ y= mx. This 

situation is pictured in Figure 67. 

  

Figure 67 – Schema representing how the natural transformations between F and the 
ℎ𝑚𝑖

 generate the family of functions y= mi x as a unique object 

It is interesting to observe that the usual way in which adjunction is described, that is as a 

currying (Spivak, 2014, pp. 90-91), does not give reason of the full complex structure that can 

be behind it. The analysis of students’ cognitive processes has disclosed it, while the language of 

categories has allowed to systematize it within a rigorous mathematical frame. 

An analogous phenomenon has been detected considering another aspect of students’ cognitive 

processes while entering second-order covariation. We will sketch briefly also this part, since 



 

223 
 

we think to dedicate our future research to issues like these, which have grown up only in the 

last weeks of our reflection about covariation. 

We have seen that in the dew point experiment students enter more deeply into COV2: this more 

elaborated aspect of second-order covariation is emblematically illustrated by Matteo’s 

productions (12.2.2). Indeed, Matteo is able to manage mathematically a formula containing 

more than one parameter. In Chapter 12 we have used the blending model of Fauconnier and 

Turner (2002) to comment that. This can be done also through the above categorical framework: 

we will sketch shortly how to do it. We have just seen how the production of a family of functions 

(y=mx) is got analyzing the functorial relationships between and within the categories M and 

SetM (Figure 67). 

Now, let us adapt the situation represented in that picture to a new more general situation. Let 

0 = 𝑓(𝑚, 𝑛, 𝑥) be a function in three variables: passing from an implicit formulation to an explicit 

one, it is possible to generate a first family of functions, let us indicate it as 𝑛 =

𝑓1(�̅�, 𝑥), considering n as the dependent variable and m as a parameter; similarly we can get 

another family of functions, let us indicate it as 𝑚 = 𝑓2(𝑛ത, 𝑥), considering m as the dependent 

variable and n as a parameter. Figure 68 illustrates how to do that. 

 

Figure 68 – Schematic representation of functorial relationships between and within the 
categories M and SetM considering functions of three variables 

The representable functors indicated with ℎ, whose meaning is analogous to the ℎ𝑚𝑖
used in the 

previous discussion, allow to represent the different functions 𝑓𝑖  within the category SetM and to 

get first the generic functions 𝑓𝑖  because of the actions of natural transformations between the 

different ℎ ; and then the two distinct families of functions f1 and f2 , because of the natural 
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transformations between suitably non-representable functors F1 and F2 in SetM. A further step is 

now possible, namely because of natural transformations between F1 and F2, which relate them 

to each other and consequently we can obtain the two families of functions y1, y2. It is exactly 

this situation to picture mathematically the cognitive processes that appeared in the pot 

experiment and allowed students to go back and forth through the different parameters and 

manage the two representations of the psychrometric chart (Figure 47). 

The wider mathematical background of students is evident: a meaningful example can be 

recognized at [174], where Matteo elaborates a mathematical formula containing three different 

parameters: his choice reflects the greater confidence with which he handles the analytical 

representations and the awareness of the different role of variables and parameters.  

14.2.2  Blending and categories 

In Chapter 12, it is shown that the way COV 2 is elaborated by students in many cases reveal the 

cognitive phenomenon of conceptual blending (Fauconnier & Turner, 2002). Again, we can 

translate it into a categorical framework, and once more the categorical framework reveals as a 

mathematical counterpart of the cognitive processes of our students.  

The mathematical interpretation of the blending mechanism is longstanding in the literature, 

but we only recently learned about it through in-depth studies on the state of the art of 

conceptual blending. One of the forerunners of the modelling of conceptual blending using the 

theory of categories is Goguen (1999) who mainly applied it to computation. In this dissertation, 

we are going to follow the approach by Schorlemmer and Plaza (2021) who strongly rely on 

Goguen’s ideas and base their interpretation on the construct of amalgam. As the authors 

remark, “[b]y framing blending in category theory, we will take the focus off the mental spaces 

and its structures and put it on the mappings and the projections between spaces, and how these 

mappings relate to each other” (p. 8). This section is devoted to capture the meaning of blending 

through a categorical approach: at the end we will show how the amalgam allows to embed 

blending into some general kinds of categories, called realms.  

Roughly speaking, blending mechanism consists of two pairs of arrows from the two input 

spaces (I and J) to the blend (B), and of the two from the generic space (G) to the inputs. It is 

their combined action that produces the structure of a blending (Figure 69). 
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Figure 69 - Diagram showing the functioning of conceptual network integration 

The arrows from the generic space G to the input spaces allow to determine what part of the 

input spaces is fused in the blend B, and this happens because of the commutativity of the 

diagram of Figure 69. It is so required that all the arrows from G to B obtained by composition 

through I and J are equal. The two technical categorical tools that allow to represent this 

situation are the span and the co-cone, which in their turn base on the construct of diagram and 

cone. 

Definition 13 (Diagram) A diagram D in a category C is a functor D: J →C, where J is a directed 

graph (where nodes are C-objects and edges are C-arrows in J). The graph J is called the shape of 

D. 

In our case we will limit to consider finite diagrams (with a finite number of nodes and edges). 

To simplify, we will directly represent the structure of a diagram J upon the objects and arrows 

of the category C. We will be particularly interested in two types of shapes (Figure 70): following 

Schorlemmer and Plaza (2021), we will call them v-shapes (or spans) and w-shapes.  

 

Figure 70 – On the left a v-span or span and on the right a w-shape 

Definition 14 (Cone) Let D: J → C be a diagram of shape J in a category C. A cone to D is an object 

N of C  together with a family X: N → D(X) of morphisms indexed by the objects X of J, such that 

for every morphism f: X→Y in J, we have D(f)∘ X = Y as shown in the following diagram:  

https://en.wikipedia.org/wiki/Cone_(category_theory)
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Definition 15 (Limit)  A limit  of the diagram D : J → C is a cone (L,) for D such that any cone (N, 

) for D factors through it, that is for any cone (N,) for D, there exists, unique, a morphism 𝜆: 𝑁 →

𝐿 so that  the following equality 𝜓𝑋 ∘ 𝜆 =  𝜙𝑋 holds  — i.e., the following triangles commute for all 

X in J: 

 

The dual notion of cone is that of co-cone: 

Definition 16 (Co-cone) Let D: J →C  be a diagram of shape J in a category C. A co-cone (A, ) for 

D is a C-object A, called apex of the co-cone, together with a family of C-arrows 𝜙𝑋: D(X) →A (one 

for each object X of J) such that, for each morphism f : X→ Y in J, the equality 𝜙𝑌◦D(f) = 𝜙𝑋  holds 

— i.e., the following triangles commute: 

 

A dual consideration holds for the notion of colimits as universal co-cones.  

Definition 17 (Colimit) A co-cone (A,) for D is said to be a colimit  for D  if, for each other co-cone 

(B,) for D, there exists a unique C-arrow : A → B such that, for each object X in J, the following 

equality 𝜆 ∘  𝜓𝑋 =  𝜙𝑋 holds — i.e., the following triangles commute for all X in J: 
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When the diagram D is a span, colimits are called pushouts. 

Co-cones seem to be the natural candidates to model blends; however, as observed by 

Schorlemmer and Plaza (2021), in a blend the arrows from I and J (Figure 69) may not be defined 

for all structure (objects and arrows) of the inputs, but only for that meaningful in the blend; 

conversely some more structure might be necessary in the blend; moreover, from the same 

inputs more than one blend might be originated, while a pushout is unique up to isomorphisms.  

All this makes the categorical picture above too ‘strict’ for modelling blends. To overcome this 

difficulty, Goguen (1999) and Schorlemmer and Plaza (2021) propose two different solutions, 

which however are coherent each other. We will now sketch the one elaborated by Schorlemmer 

and Plaza. It is based on a categorical notion of partial functions and allows to define amalgams, 

which, in their turn, can model conceptual blends. 

In a categorical environment, a partial function A → B can be represented as a span of two 

arrows, one of which is a monomorphism (indicated with ↣); A0 is the subobject of A, domain of 

the function (Figure 71). 

 

Figure 71 – Representation of a partial function 

In order that partial arrows are a category, their composition must be defined (Jay, 1991). To do 

that we need preliminary the notion of pullback (p.b.).  

Definition 18 (Pullback) Let f : X → Z and g : Y → Z  two morphisms in a category C. Their pullback 

is given by an object P and two morphisms p1 : P → X and p2 : P → Y , for which the following 

diagram commutes: 
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and moreover, it is universal, that is for any other object Q and morphisms q1: Q → X 

and q2: Q → Y in C, there exists a unique morphism u: Q → P, such that the following 

diagram also commutes: 

 

For example, in case of Set the pullback of functions f : X → Z and g : Y → Z  gives 𝑋 ×𝑍 𝑌 as apex: 

𝑋 ×𝑍 𝑌 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 ∶ 𝑓(𝑥) = 𝑔(𝑦)} = ⋃ 𝑓−1({𝑧}) × 𝑔−1({𝑧})
𝑧∈𝑓[𝑋]∩𝑔[𝑌]

 

together with the restrictions of the projection maps 𝜋1 and 𝜋2 to 𝑋 ×𝑍 𝑌. 

Having defined the p.b. construct, we can now define the composition of partial arrows as span 

composition through their p.b., as indicated in Figure 72. A1, the apex of the pullback, can be 

thought of as the largest subobject of A on which f  is defined and takes values in the domain of 

g.  

 

Figure 72 – Representation of a pullback 
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In the particular case of a pullback of two monomorphisms, the apex of the pullback is also 

referred to as the intersection of the subobjects represented by the monomorphisms, and given 

two subobjects A1 and A2 of an object A, we will write A1∩ A2 for their intersection.  

Hence in order that composition of partial maps is well-defined, the class of monomorphisms 

that represents them must be closed under pullbacks. Having them, one also gets the inverse 

morphisms as pullbacks of monomorphisms, because of the universality of pullbacks.  

Schorlemmer and Plaza (2021) restrict the monomorphisms to so called realms, that is the class 

of monomorphisms that are closed under pullbacks, composition, and isomorphisms and 

moreover such that their subobjects do have finite unions (31). The corresponding subobjects 

are called admissible (Jay, 1991).  

To give the definition of amalgam it is still necessary to generalize the notion of v-diagram within 

realms (Schorlemmer & Plaza, 2021). 

Definition 18 (Generalization of a v-diagram) Let C  be a category with realm M. Let V be a v-

diagram made by the two morphisms 𝑓: 𝐺 → 𝐼 𝑎𝑛𝑑 𝑔: 𝐺 → 𝐽 in C. A generalization of V is the w-

diagram in C  

𝐼0 ←  𝑓−1(𝐼0) ↣ 𝑓−1(𝐼0) ∪ 𝑔−1(𝐽0) ↢ 𝑔−1(𝐽0) →  𝐽0 

such that 𝑚: 𝐼0 ↣ 𝐼 and 𝑛: 𝐽0 ↣ 𝐽 are monomorphisms in M (see Figure 73). 

 

Figure 73 – Representation of the generalization of a v-diagram taken from Schorlemmer and 
Plaza (2021) 

 
31 The union of a family {𝐴𝑖}𝑖∈𝐼 of subobjects of A is defined as the subobject A’ of A, denoted by ∪𝑖∈𝐼  Ai (with each 

𝐴𝑖  also subobject of A’) such that, if, for an arrow f : A → B, each Ai is carried into some subobject B’ of B by f , then 

A’ is also carried into B’ by f. 
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The generalization of a given v-diagram in a realm M that has finite unions, together with the 

pairs < 𝑣, 𝑤 >∶ < 𝑚, 𝑛 > → < 𝑚′, 𝑛′ >  of monomorphisms such that 𝑚 = 𝑣 ∘ 𝑚′ 𝑎𝑛𝑑 𝑛 = 𝑤 ∘

𝑛′, form a category, which has finite intersections. 

In Figure 73 the M-monomorphisms m and n, which represent the subobjects I0, J0 of I and J 

respectively, determine the generalization of the v-diagram; arrows �̅�, 𝑛ത are the pullbacks of m 

and n along f and g, respectively; and �̅� ∪ 𝑛ത  is the inclusion monomorphism of the union 

𝑓−1(𝐼0) ∪ 𝑔−1(𝐽0) in G.  

Now let us complete the generalization diagram adding its colimit in order to get the amalgam 

structure. 

Definition 19 (Amalgam) Let C  be a category with realm M. An amalgam (with apex A) for a v-

diagram V in C is the colimit for a generalization W of V (see Figure 74). 

 

Figure 74 – Representation of an amalgam taken from Schorlemmer and Plaza (2021) 

Comparing Figure 73 and Figure 74, one can see the relationship of the amalgam with the 

generalization diagram W:  in fact the arrows 𝜄, 𝜆, 𝜅 are the injections of colimit of W  into its apex 

A.  

Using the amalgam structure is possible to interpret properly the conceptual blend within a 

categorical context. With reference to Figure 74, I and J are the input spaces, G is the generic 

space, A is the blend, I0 and J0 are the parts (subspaces) of I and J that are used in the production 

of the blend. All the story develops with arrows in a realm M, which makes possible the 

realization of suitable technicalities: the arrows f, g from the generic subspace are total, but the 

contribution to the blend of the inputs I, J may use only a part of them, and this is possible thanks 
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to the intermediation within M of the subobjects I0 and J0, which through the inverses 𝑓−1, 𝑔−1 

can be combined into the M-object 𝑓−1(𝐼0) ∪ 𝑔−1(𝐽0). On the other side, the injection of the 

colimit through 𝜄, 𝜆, 𝜅 into A makes possible the combination of the ingredients of I0 and J0 into 

the blend A. 

In an ongoing research we are investigating the link between our previous categorical discussion 

about M, SetM and their relationships through functors in order to connect the categorical 

discussion of 14.2.1 within the amalgamation framework described above. A further line of 

investigation will concern third-order covariation through the introduction of functors between 

presheaves.  
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15 ASSESSING COVARIATION AS A FORM OF CONCEPTUAL 

UNDERSTANDING THROUGH COMPARATIVE JUDGEMENT32 

This chapter focuses on the importance of covariational reasoning within the processes of 

mathematics teaching and learning. Despite the internationally recognized relevance of 

covariation, research shows that only a small percentage of students and teachers is able to 

adopt covariational reasoning and the majority of mathematics curricula do not contain explicit 

references to covariational skills. In particular, when covariational reasoning manifests as 

conceptual knowledge, it becomes challenging to assess, and the need for innovative methods of 

assessment emerges; there is a need for suitable assessment to highlight the characteristics of 

covariation and capture the various features that characterize conceptual understanding. 

Comparative judgement, a method that does not require detailed scoring rubrics, is particularly 

appropriate for assessing complex mathematical competencies adopting a holistic approach. In 

line with these streams of thought, this study aims to investigate the way comparative judgement 

can help in the assessment of covariational reasoning skills underlying a less structured 

modelling task and, indirectly, the perception and relevance attributed by mathematics teachers 

to covariation as a theoretical construct. 

15.1 RATIONALE 

Most mathematics curricula worldwide, including Italian syllabi, highlight the relevance of 

modelling in students’ activities in order to develop up-to-date mathematical literacy. Among 

the areas of mathematical content in which mathematical literacy is applied, and which are 

particularly linked to modelling activities, PISA names Change and relationships. It claims: “Being 

more literate about change and relationships involves understanding fundamental types of 

change and recognizing when they occur in order to use suitable mathematical models to 

describe and predict change” (OECD-PISA, 2022). One of the crucial aspects in such processes is 

the ability to develop covariational forms of reasoning, which can help to model “the change and 

 
32 The results presented in this chapter come from a study in collaboration with Dr F. Ferretti and Prof. F. Arzarello. 
These findings have been presented in Incontri con la Matematica XXV and have been published in the proceedings 
of the conference:  
Bagossi, S. (2021c). Valutare la conoscenza concettuale con il Comparative Judgement [Assessing conceptual 
understanding with Comparative Judgement]. In B. D'Amore (Ed.), Atti del Convegno Nazionale "Incontri con la 
matematica" nr. 35 (pp. 173-174). Bologna: Pitagora. 
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the relationships with appropriate functions and equations, as well as creating, interpreting and 

translating among symbolic and graphical representations of relationships” (OECD-PISA, 2022). 

However, notwithstanding the didactical relevance of covariational reasoning, there are some 

obstacles in adopting it as a regular and effective practice in Italian classrooms. Firstly, 

covariational reasoning is not explicitly addressed in the Italian National Curricula; this absence 

is reflected in school practices and the majority of mathematics textbooks, so most Italian 

teachers are not aware of covariation and therefore do not foster its use in their classrooms. 

Secondly, covariational reasoning, insofar as it represents a form of conceptual understanding, 

is difficult to assess (Bisson et al., 2016). These findings, illustrating the absence of guidelines 

addressing covariational reasoning in classroom mathematical modelling activities and on its 

assessment, led us to engage in this research aimed at sowing some seeds to counteract this 

situation.  

The object of this study is the assessment of some open-ended written tasks concerning 

mathematical modelling of a real phenomenon, which required a strong conceptual 

understanding of covariation and usage of suitable related reasoning skills, aimed at exploring 

and describing interconnections between the mathematical model and the physical 

phenomenon under investigation. We identified in comparative judgement (CJ) a valuable tool 

for assessing students’ conceptual understanding involving covariational skills, and making its 

assessment easier for teachers less confident with covariation. Open-ended tests, the object of 

this study, were administered to students of a 10th grade class at the end of a teaching 

experiment conducted in 2019. Students were asked to prepare a written report on an activity 

regarding the well-known Galileo experiment (Galileo, 1638) of a ball rolling along an inclined 

plane to represent the law of motion in action.  

The specific goals of this research are twofold: firstly, they investigate how CJ can help in 

assessment of an open-ended test concerning a modelling task which requires covariational 

reasoning skills; secondly, they verify if teachers can (implicitly or explicitly) recognize features 

of covariational reasoning as important in grading students' works; as a by-product, they 

allowed to gain some insight on Italian teachers' reactions to the CJ method. Thus, in addition to 

performing a CJ session that adopts an online tool, a post-judging questionnaire was designed 

and distributed to investigate teachers’ comparative processes and the features which 

influenced them.  

This chapter is organized as follows. After a review of the literature (15.2), we highlight existing 

research gaps concerning the assessment of covariation (15.2.1). The method of CJ is introduced 
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in section 15.2.2 and all the details about the methodology and the design of our research are 

provided in section 15.3. The data obtained are reported in section 15.4 and the contribution of 

this study is discussed in section 15.5 to provide answers to the research questions. Finally, the 

limitations of this research are outlined, together with further research purposes. 

15.2 THEORETICAL BACKGROUND 

Covariational reasoning consists of cognitively demanding activities, which require the 

development of “multiple levels of sophistication” (Thompson & Carlson, 2017, p. 436). Indeed, 

it is an example of what many researchers call “conceptual knowledge” (Skemp, 1976), insofar 

as it involves not only a deep understanding of the principles and theories that govern a certain 

domain of knowledge (Rittle-Johnson et al., 2001), but also of the relationships between various 

information (Hiebert & Lefevre, 1986); above all, it does not reduce this to the mere application 

of mechanical procedures. Covariation is proved to be essential in activities concerning 

mathematical modelling (Thompson, 2011), specifically when involving motion or dynamic 

situations.  

One important didactical problem related to students’ achievement of covariation in modelling 

activities lies in its concrete assessment and this issue involves three main difficulties. 

First, covariational reasoning deals with a typical conceptual knowledge construct, which is 

more complex than a content area or a procedure to be assessed because of the variety and 

complexity of students’ reasoning. Bisson et al. (2016) highlight the difficulties of using standard 

assessment practices when conceptual understanding is under the lens because “conceptual 

understanding is an important but nebulous construct which experts can recognize examples of, 

but which is difficult to specify comprehensively and accurately in scoring rubrics” (p. 143).  

Second, this opaque situation for assessing covariation manifests also with regard to activities 

using mathematical modelling. Studies on this topic have mainly focused on the theoretical 

definition of mathematical models (Niss et al., 2007; Niss, 1989) or on a valid definition of 

mathematical modelling competence (Niss & Højgaard, 2019), but there is not usually a 

systematic exploration of the issue of its assessment which should reflect not only the aims of 

applications and appropriate modelling (Blum, 2015) but also students’ ability to reason in a 

covariational manner.  

The third issue concerns some institutional and didactical aspects. As pointed out by Thompson 

et al. (2017), covariation is not a regular feature in mathematics curricula, except for a few 

Eastern countries, and therefore is not explicitly considered in students’ assessment surveys. In 
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addition, teachers themselves struggle when teaching covariation and one of the reasons is that 

they are neither able to master the use of covariational reasoning (Thompson et al., 2017), nor 

to include it in their school practices.   

15.2.1  The assessment of covariation  

Given the peculiarity and complexity of covariation as a theoretical and cognitive construct, the 

variety of fields and topics where covariation can be applied, its occasional and only implicit 

presence in school curricula and practices, and, above all, the limited knowledge of teachers in 

this regard, any assessment of this form of reasoning turns out to be challenging, and a non-

homogeneity can be detected both in terms of achievements and assessment practices. Here we 

provide some examples of existing modalities in which covariational reasoning has been 

assessed, and we use those findings to help identify the benefits that the comparative judgement 

method can bring. 

The six-level taxonomy developed by Thompson and Carlson’s (2017), elaborated through 

individual interviews, aims at classifying the different ways in which one person can reason in a 

covariational way. Their framework levels should be interpreted as “descriptors of a class of 

behaviors” or as “characteristics of a person’s capacity to reason covariationally” (Thompson & 

Carlson, 2017, p. 435) and there are several qualitative studies that have used these descriptions 

of mental actions as a coding scheme (e.g., Carlson et al., 2002). Another significant contribution 

is the diagnostic assessment of teachers’ mathematical meanings called Mathematical Meanings 

for Teaching secondary mathematics (MMTsm; Thompson, 2015). This assessment has a very 

detailed rubric to score students' quantitative and covariational reasoning and has been used 

with both US and Korean teachers (Yoon & Thompson, 2020). In Thompson et al. (2017) on the 

other hand, the investigation of US teachers’ attitude to reason in a covariational manner was 

conducted through the development of a specific scoring rubric based on the features of graphs 

that teachers were asked to sketch. As they underline, the scoring categories were not defined 

theoretically because scorers would not have had the theoretical background to understand the 

rubric.  

What seems to be missing, and proves even more challenging, is the assessment of covariation 

intended as a form of conceptual understanding. In this sense, covariation “is defined by how it 

is perceived, understood and used by the relevant community of expert practitioners” (Bisson 

et al., 2016, p. 143), and in a strict rubric of items it risks reducing to a “rigid definition that fails 

to capture the full meaning and usage that exists in practice” (p. 143). Moreover, the limited 
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pedagogical and mathematical knowledge of teachers about this theoretical construct, makes it 

hard to elaborate suitable items of a scoring rubric whose meaning is shared by the expert 

mathematicians’ community. Finally, “conceptual understanding is best assessed using open-

ended and relatively unstructured tasks” (p. 143), but assessing open-ended tests is difficult 

because of the variety and unpredictability of students’ responses, and also the huge amount of 

time required to obtain both a valid and reliable outcome.  

In recent years, an alternative approach to the assessment and enhancement of conceptual 

understanding has been proposed (Jones & Karadeniz, 2016) based on the technique of 

comparative judgement. In this study, instead of developing a specific content-based scoring 

rubric, we use the holistic method of CJ to assess some students’ written productions involving 

covariational reasoning. Although CJ is usually adopted as a time-saving technique to assess a 

huge number of tests, we used it to assess just a small sample of tests. One first research aim can 

be the understanding of whether CJ can be valuable in  assessment of open-ended tasks involving 

a complex construct as covariation, specifically when the experts who judge students’ works are 

expert mathematicians not fully aware of the potentialities of covariational reasoning; a second 

purpose of the research is the investigation of the features considered relevant in the assessment 

of an open-ended mathematical text, in order to examine whether these characteristics 

correspond to those relevant in a covariational perspective, also gaining insight on this 

innovative assessment technique from the perspective of a varied sample of Italian teachers.  

15.2.2  Comparative judgement: an assessment method 

One explanatory factor of the difficulties that accompany assessment practices, in Italy as in 

other contexts, is linked to changes in the way of understanding the teaching and learning of 

mathematics nowadays. Teaching does not consist merely in the transmission of disciplinary 

concepts but must also enable students to autonomously build “significant learning” (in the 

sense of Ausubel, 1960). Learning becomes meaningful when it does not arise from the 

accumulation of notions and information, but when the learner becomes able to use these in 

order to tackle complex problems, identifying paths and tools that help him/her to act effectively 

and competently. Summing up, school education should enhance conceptual understanding 

rather than mere procedural knowledge, but all the issues concerning assessment are amplified 

when it comes to assessing complex forms of conceptual knowledge such as covariational 

reasoning. All this has obviously led to the need to search for new methods and tools in the 

assessment field. It is within this perspective that the use of comparative judgement in the 
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educational field was born. Its application has been successful in a various of educational 

assessment contexts (Tarricone & Newhouse, 2016) and, as we will argue in this study, it may 

be helpful also in the assessment of unstructured tasks involving covariational reasoning.  

Even though CJ may be innovative in the Italian context, internationally it has received increased 

attention in the last two decades. It constitutes an efficient alternative approach to traditional 

marking (Pollitt, 2012), works particularly well in absence of restrictive indications or scoring 

rubrics, and allows the assessment of forms of complex knowledge such as covariation, with a 

holistic approach (Jones et al., 2019). It is rooted in the psychological principle that people are 

more accurate in making a comparison between two objects rather than when expressing an 

isolated judgement (Thurstone, 1927; Laming, 1984). Some experts are asked to make pairwise 

comparisons of students’ works, choosing the one they consider better according to a global 

construct. The results are fitted to the Bradley-Terry statistical model (1952) which returns a 

unique score for each student, i.e., a scaled rank order of the works. The research literature 

supports both the validity and reliability of comparative judgement. It is proven to be even more 

reliable than traditional marking in open-ended assessment not only in mathematics (Jones & 

Alcock, 2014; Steedle & Ferrara, 2016). This assessment technique has been used with several 

mathematical topics: problem solving (Jones & Inglis, 2015), conceptual understanding (Bisson 

et al., 2016, Jones & Karadeniz, 2016; Jones & Alcock, 2014), mathematical proof (Davies, Alcock, 

& Jones, 2020) and statistical knowledge (Marshall et al., 2020, Bisson et al., 2016). As far as we 

know, CJ has never been used to assess tests requiring covariational reasoning. Typically, CJ is 

used to assess tests on a national scale in countries like the UK or New Zealand but is little-known 

in Italy. Its advantages reside in the non-problematic nature of the variety of possible students' 

responses, the non-necessity of a scoring rubric to grade the productions, and the resulting 

reduction in time required to assess a huge number of tests. 

Suitable statistical methods allow us to verify the reliability and validity of CJ outcomes. All the 

details useful for the purposes of our research are provided in section 15.4.1. 

15.3 METHODOLOGY 

15.3.1  The context of the CJ experimentation 

The written productions analyzed in this chapter refer to Task 5 presented in section 11.1.5.  

We simply recall that after the working group sessions with the video and GeoGebra applets and 

a few classroom discussions, the students were asked to write a text in which they described (to 
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students of another class) the activity completed and the law of the obtained motion, producing 

a form of theoretical support for the study. The task of the essay is integrally reported below 

translated into English:  

Task 5 

Thinking back to the work carried out on the inclined plane, write to schoolmates of another 

class to outline the work itself and, specifically, the relationship that describes and explains 

mathematically the motion of the ball along the inclined plane. This report should be a 

theoretical support for you and your schoolmates. 

The expedient of a narrative addressed to schoolmates from a different class and that of the 

theoretical support for study have been chosen to invite students to adopt a formalization 

approach and not to take details for granted. Students were accustomed to this kind of task and 

were familiar with the terminology used in the prompt.   

Participants 

The students, who are accustomed to written tasks in mathematics and physics, were involved 

in this activity without prior notice, had two hours of time to complete the task, and received no 

specific instruction on the formal structure of the essay. The texts were from two to four pages 

long; students could freely report graphs, formulas, and numerical tables in their written work. 

Judges 

The research group recruited 13 judges from pre-existing contacts. Only three of the judges were 

males and all are mathematicians and experts in the field: specifically, 2 of them were middle 

school teachers, 7 were high school teachers of mathematics and physics and 4 were university 

professors specialized in Mathematical Physics. The group of judges was heterogeneous, to 

collect different points of view on this evaluation experience. Based on informal interviews, we 

can state that none of the judges had ever heard about the CJ assessment technique and only half 

of them were aware of the meaning of the construct of covariation, having attended some 

research seminars held by the authors. The mathematical competence of the judges is sufficient 

to ensure reliability of the outcomes (Bisson et al., 2016; Jones & Alcock, 2014), particularly as 

they were asked to identify the better test from a mathematical point of view, rather than that 

which displayed more covariational reasoning. All the judges volunteered for the case study and 

received no financial compensation.  
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15.3.2  The research design 

Phase prior to comparative judgement 

A few weeks before starting the CJ session, judges were introduced to comparative judgement 

through e-mail correspondence which explained the peculiarity of this assessment approach and 

the main differences from traditional marking. On the first day of the project, the judges received 

an instruction sheet containing all the information related to the teaching experiment on the law 

of the inclined plane, how the activity was structured, its main objectives and the task given to 

the students. Moreover, the instruction sheet showed specifically how the comparisons platform 

worked. The judges could keep the instruction sheet to hand throughout the whole CJ session. 

The judges did not undergo any trial CJ session because one of the research purposes was to 

capture their first impressions when facing this new kind of assessment approach.  

Comparative judgement procedure  

The 22 open-ended tests were anonymized for a matter of privacy, scanned, and uploaded to an 

online comparative judgement platform (www.nomoremarking.com), freely available for 

research purposes. When starting comparisons, judges saw a screen recalling the main aims of 

the Galileo teaching experiment and were asked to “choose the best mathematical text”. Judges 

made 17 judgements each, for a total amount of 221 judgements, so that each text was compared 

at least 10 times according to literature standards (Jones & Alcock, 2014). The judges worked in 

their free time and had 20 days of time to complete their comparisons.  

The CJ website displayed the two tests to be compared side by side and the judges just had to 

click the left or right button to express their preference. An example of the display screen is 

shown in Figure 75. 

Figure 75 - Screen for the comparisons displayed on the online engine 

http://www.nomoremarking.com/
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Post-judging questionnaire  

One week after completing the CJ procedure, the judges received by email new instructions to 

fill in an online questionnaire. The judges were sent two texts chosen by the researchers and 

based on the following criteria: the two tests had obtained a good and close final score, but they 

also presented many dissimilarities. They were written by students of different gender, a boy 

and a girl, had different lengths, and one was clearly written but presented misspelling, while 

the other was untidier. A picture of the first page of two tests is contained in Appendix B along 

with a translation into English of the content. 

The first part of the questionnaire aimed at investigating which factors influenced the outcome 

of the CJ procedure. After asking judges to state which of the two texts they considered better in 

mathematical terms, we elaborated a four-point set of items representing an ordinal scale from 

1 (little influence) to 4 (strong influence) and the judges were presented with 10 features of 

students’ work: 

1) Presence of errors 

2) Use of formal notations  

3) Untidy presentation 

4) Structure of the presentation 

5) Use of graphics and images 

6) Ability to synthesize 

7) Use of a formal mathematical vocabulary 

8) Modelling capability 

9) Ability to describe exhaustively the relationships between distance, time, and the angle (of 

inclination of the plane) 

10) Ability to describe formally the relationships between distance, time, and the angle. 

This list of features, and also the following questions, were mainly inspired by the work on 

judgement processes by Jones and Inglis (2015): we adapted them according to the 

characteristics displayed by our written texts and added some features specifically related to the 

content of the task proposed. Feature (8), “modelling capability”, explicitly refers to the 

modelling competence stressed in National Curricula and intended as the ability to represent 

classes of real phenomena. Features (9) and (10) instead were designed to grasp specifically the 

relevance of covariation. The tasks proposed during the experimentation (see section11.1) 

allowed us not only to investigate the distance-time relationship, but also to explore in depth 

how the angle affects the distance-time graph (Arzarello, 2019). Specifically, feature (9) refers 



 

242 
 

to the ability to describe that relationship in a natural language, while feature (10) focuses on 

the ability to condense it into a suitable formula.   

The questionnaire concluded with three open-ended questions: 1. Please list any other features 

you think may have influenced your judgement when comparing texts. 2. Please comment on 

this overall experience and state your feelings during the comparative process. 3. In his theory 

of quantitative reasoning, P. Thompson states that a person reasons in a covariational manner 

when able to envision the values of two or more quantities as varying simultaneously. In which 

of the two texts do you think the presence of covariation between physical magnitudes can be 

better captured and why? 

The judges again worked in their free time and had 2 weeks to complete their task.  

15.4 DATA ANALYSIS AND RESULTS  

15.4.1  Outcome of the CJ procedure 

The CJ method allows positioning a set of complex objects on a unidimensional scale (Davies et 

al., 2020). The CJ website fitted the 221 judgements with the statistical Bradley-Terry model 

(1952) and using a maximum likelihood estimation procedure (Pollitt, 2012). It produced a final 

parameter estimate for each student (M=0, SD=1.7). The distribution of the class’s scaled scores 

is shown in Figure 76.  

 

Figure 76 - Distribution of CJ scores as per number of students reported on the vertical axis 
(N=22) 
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Reliability  

The reliability of an assessment procedure refers to the consistency of its outcomes. Internal 

consistency can be measured with the Scale Separation Reliability (SSR), analogous to 

Cronbach’s alpha. The outcome showed high internal consistency since SSR ≥ 0.7 (SSR = 0.81). 

Moreover, looking for ‘misfitting’ judges, we computed an infit statistic for every judge and 

compared these data to a threshold value, i.e., two standard deviations above the mean of the 

infit (Marshall et al., 2020; Pollitt, 2012). Only one judge resulted as misfitting because slightly 

above the threshold value (0.03 above), but we did not consider it necessary to adapt the CJ 

scores by removing the misfitting judge.  

Criterion validity 

In order to evaluate the validity of the outcome of the CJ procedure, we considered the criterion 

validity by computing the Pearson Product-Moment correlations between the parameter 

estimate of the CJ procedure and some benchmark measures. We would expect positive 

correlations, meaning that those students who are more successful on these other covariation-

related performances were also more successful in the assigned task.  

We correlated the CJ outcome with the marks assigned by their teacher to a physics test 

concerning problems on accelerated motion and the motion of bodies along the inclined plane 

(r=0.57) (Figure 77). The test was specifically designed by their teacher to enhance 

covariational reasoning. We also correlated the parameter estimate with the marks assigned by 

their mathematics teacher, who has a solid background in covariation, to her own students’ 

written productions specifically focusing on covariational skills in the assessment phase 

(r=0.51). These results, while modest, are in alignment with the results of other research in 

literature on conceptual understanding in secondary and tertiary mathematics (Bisson et al., 

2016), which reported correlation coefficients between 0.35 and 0.56. Finally, we correlated CJ 

scores with the final course scores (i.e., the evaluation obtained at the end of the school year) in 

mathematics (r=0.48): this positive and significant correlation can be interpreted as a sign that 

covariational reasoning is a transversal competence in mathematics. 
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Figure 77 - Scatter plots of the relationship between CJ scores, those on a physics test on the 
same topic, and those assigned by their teacher on the same test 

15.4.2  How much does covariation matter?  

The last open-ended question (3) of the questionnaire asked the judges to state which of the two 

tests displayed a stronger covariational reasoning and why. Seven judges preferred Test 2, 4 

preferred Test 1 but two judges expressed a preference without justifying it. Moreover, one 

explicitly stated that he didn’t know, and another said neither of the two because he considered 

“the two tests very confusing” [J4]. Globally, 10 out of 13 answers were in agreement over which 

answer was mathematically better, with 5 of these opinions expressed by judges who were 

familiar with the construct of covariational reasoning.  

Those judges who expressed a preference for Test 2 provided the following reasons:  
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- “In the supported conclusion, the covariation between the two magnitudes involved is 

perfectly grasped and the formula simply assumes the role of symbolic expression of that 

covariation, so that it is not even mentioned anymore” [J1]. In fact, the student concluded 

with a sentence summarizing her considerations: “The distances traversed by the ball are 

directly proportional to the squares of times”; 

- “In several steps the relationships of dependence of the mutual growth are underlined” 

[J2]; 

- “It expresses which magnitudes depend on the others” [J8]; 

- “Not only did they report formulas, but they also tried to explain variations. They also 

referred to dependent and independent variables” [J7]; 

- “The conclusive section summed up the different hypotheses and discussed each one in 

depth, eventually arriving at formulas in correct terms of the law of ‘falling’ bodies on an 

inclined plane (s as a function of time t) free of friction” [J11]; 

- Another answer, more difficult to interpret, attributed her decision to the “more 

schematic structure of the discourse” of the study [J6].  

Instead, the judges who preferred Test 1 justified their choice by saying:  

- It clearly expresses how “the ratio between space and time is constant and this ratio is 

equal to the half of acceleration” [J3]; 

- It “highlights a greater understanding of the subject in its overall aspect” [J10]; 

- “It addresses finite differences” [J13], referring to a table made by the student (see Figure 

78) in which he reported distances and first finite differences of distance in function of 

time and the parameter k, i.e., providing a general expression and not numerical values.  

Figure 78 - Table of finite differences present in Test 1 

The conceptual aspects of covariation are highlighted, considering the role that some judges 

award to formulas in the statements above. We will provide two examples. In the first comment, 

the judge who chose Test 2 states that “the formula just assumes the role of symbolic expression 

of that covariation” [J1] and is “condensed” into the sentence “the distances traversed by the ball 

are directly proportional to the squares of times”. So, one crucial point for the judge is that 

formulas address conceptual knowledge, but formulas alone are not always enough; this is 
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stressed also in another statement: “Not only did they report formulas, but they also tried to 

explain variations” [J7]. In another stream of thought, the judge who chose Test 1 considers 

formulas positive when judging, if they allow the formulation of “general expressions” and not 

simply numerical ones, relying on a conceptual representation such as that of finite differences. 

In this case, students use their existing knowledge (the finite differences method) to elaborate 

methods for solving the problem. In both cases, covariation is thought of as an “implicit or 

explicit understanding of the principles that govern a domain and of the interrelations between 

units of knowledge in a domain” (Rittle-Johnson et al., 2001, p. 347), namely of a key feature of 

conceptual knowledge, according to the definition provided by Rittle-Johnson and colleagues.  

15.4.3  Insights into the judging process   

Teachers are not completely objective in assessment of their students’ work and CJ is a tool that 

could help in this sense, given that judges do not know the students’ they are assessing, and the 

texts are anonymized. Parenthetically, we were interested in investigating which features could 

influence the judging process; this was the main purpose of the questionnaire. The analysis of 

the results of the post-judgement survey revealed that all the features had a positive influence 

on the judging process. The mean and standard deviation judge ratings (N=13) for each feature 

presented in the questionnaire are reported in Table 3. The table is organized into three sections 

(non-mathematical features, mathematical features, and covariational features) and then within 

each section, features are arranged by increasing mean. 

Quantitative questions (1=little influence, 4=strong influence) Mean Standard deviation 

Untidy presentation 2.69 0.91 

Structure of the presentation 2.85 0.95 

Ability to synthesize 3 0.88 

Presence of errors 2.30 1.07 

Use of graphics and images  2.46 0.84 

Use of formal notations 2.69 0.61 

Use of a formal mathematical vocabulary 2.92 0.62 

Modelling capability 3.08 0.73 

Ability to describe exhaustively the relationships between 
distance, time, and the angle 

2.92 0.73 
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Ability to describe formally the relationships between 
distance, time, and the angle 

2.92 0.83 

Table 3 - Table containing the features of the survey divided into three sections: non-
mathematical features (white), mathematical features (grey), covariational features (dark 

grey). 

The statistical results show very similar means and standard deviations, so we cannot make 

significant claims about differences, particularly considering the small sample size. Even though 

results are not generalizable from a statistical point of view, they still provide a preliminary 

overview of the features considered relevant by judges. A few comments follow. 

Since we are dealing with open-ended productions on a mathematical topic, in line with Jones 

and Karadeniz (2016), we consider it appropriate to investigate the influence of written 

communication skills on the CJ outcome. Concerning the non-mathematical features, the results 

are as follows: “untidy presentation” (M=2.69, SD=0.91), “structure of the presentation” 

(M=2.84, SD=0.25), “ability to synthesize” (M=3, SD=0.88). In the open-ended question 

concerning other factors that may have influenced the comparisons, three judges remarked how 

handwriting and misspellings strongly influenced their judging.  

The least influential features were “presence of errors” (M=2.30, SD=1.07) and “use of graphs 

and images” (M=2.46, SD=0.84).  

The other strictly mathematical features were “use of formal notation” (M=2.69, SD=0.16), “use 

of formal mathematical vocabulary” (M=2.92, SD= 0.62), and “modelling capability” (M=3.08, 

SD=0.20).  

The post-judging questionnaire also contained two features (9-10) concerning specifically the 

grasp of the relationship between the parameter and variables involved and “ability to describe 

exhaustively/formally the relationships between distance, time, and the angle” (M=2.92, 

SD=0.73 and SD=0.83 respectively) and both were quoted as relevant by the judges. Eleven 

judges attributed equal importance to both features; in the case of the other two judges, one gave 

more weight to the discursive aspect and the other to the formal aspect (this is reflected in the 

slightly different values of standard deviation).  

In the open-ended question 1, another feature emerged: the ability to formulate hypotheses and 

to justify them in a rigorous way [J11].  

An overview of the statistical results reveals all features to have quite similar averages. The non-

prevalence of a specific feature over the others can be read as a sign that when covariation 

manifests as conceptual understanding, it is difficult to isolate, and it results in an intertwining 
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of many factors. This consideration supports our point of view that in this case a holistic 

approach such as CJ is required.  

15.4.4  Opinions on CJ as an assessment technique 

The comments of the judges on this experience express different opinions. Five judges stated the 

experience was “positive” or at least “interesting”. It was defined “optimal from the point of view 

of accurate assessment because it diverts attention from the error of the single student” [J1]; 

“direct comparison between the two tests enables (from the beginning) different points of view 

without valuing or penalizing too much a single student” [J2]. Another judge said that “the 

assessment is quite fast, and the comparison facilitates the judgement” [J13]. The median time 

of judgement for the judges ranked from to 2 to 11 minutes for a median time of 297 s (nearly 5 

minutes per comparison). These time data are an overestimate because the timer of the online 

platform does not stop when judges move away from the computer leaving the screen open. The 

time required for the comparisons in our experimentation does not differ much from the 

estimate reported in Marshall and colleagues (2020) and, in our opinion, it is reasonable when 

taking into consideration the length of the texts, their nature and difficulties linked to 

deciphering the handwriting. However, the time is less than that usually required to grade a 

single test by a traditional marking method. 

A negative aspect underlined even by those judges who positively evaluated the experience, lay 

in “bad handwriting, errors of misspelling, lack of linguistic correctness and untidiness”.  

Those judges who considered the experience as “complicated” and “hard”, supported their 

statement by saying that “most of the texts presented both strengths and weaknesses and it was 

not always evident which test was the best” [J3]. The tests showed “different modalities of 

reporting” [J7], “some students used mainly natural language, others formal, but eventually 

reached the same conclusion” [J8]. The presence of “descriptive elements related to an 

experience of the students” made the assessment “challenging” compared with other forms like 

“tests in the state examination” [J10].  

Another judge stated that to “really focus on the mathematical aspects of the content”, the tests 

should be “visually comparable”. Only two judges clearly stated that they “prefer” or “need an 

evaluation grid” [J9 - J10]. 
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15.5 DISCUSSION 

Data emerging from our analysis seem to positively support the assumption that an 

unstructured test and the CJ technique may be helpful in the assessment of covariation. We 

provide arguments for this claim. The measures of correlations described in section 15.4.1 with 

other benchmark measures specifically focused on covariation provided a positive and 

significative correlation. In the post-judging survey, 77% of the judges claimed that the test 

displaying a greater ability to reason in a covariational manner was also the best mathematical 

test, at least regarding the two texts analyzed during the online survey. Moreover, the features 

to which the judges attributed greater importance are also those that better reflect the design 

principles underlying this teaching experiment. The modelling capability was definitely the most 

influential element and actually also the central core of all tasks proposed to the students, 

together with the use of formal mathematical vocabulary, followed by the ability to describe the 

relationship among time, distance and the angle of inclination of the plane. The method of CJ 

seems to have provided a reliable assessment of the task even though judges were neither 

looking for covariation nor were specifically trained in it, a fact which was facilitated by the 

global approach characterizing CJ.  

Our investigation allowed us to obtain implicitly some insights into our judges’ perception of the 

construct of covariation and the relevance attributed to it. Irrespective of the higher or lower 

level of awareness concerning covariational reasoning of the judges, they identified the 

relationship among the magnitudes involved in the physical phenomenon as strongly relevant 

for their judgements. The answers to the open-ended question clearly reveal that a full grasp of 

this relationship does not necessarily translate into elaboration of a formula condensing all 

quantities involved, but certainly results in a complete description of the relationships of 

dependence and mutual growth. One judge interestingly referred to the table of finite 

differences, a powerful tool but barely used in Italian school practices, which can be considered 

a forerunner instrument to the study of rate of change and can surely help students in grasping 

how variables vary and co-vary. 

While the validity of CJ as an assessment method in general, and specifically concerning 

conceptual understanding, is not in question, it is an unknown and rarely used tool in Italy since 

in our country there is a long tradition of the use of scoring rubrics in the assessment field. Hence, 

even though it was not a primary purpose of research, we were curious about gaining some 

insight into how Italian teachers could approach CJ. Although none of them had ever 
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experimented with CJ, no judge expressed any discomfort in using it and only two judges clearly 

referred to the lack of a scoring rubric. In most cases, the positive factors of this assessment 

method were highlighted. Most of the judges involved in our research recognized that CJ allows 

a more holistic approach to assessment of conceptual understanding. Some judges stated that CJ 

avoids awarding too much importance to single errors that are often irrelevant in mathematical 

solution processes. 

This study also presents many limitations: the sample of students involved is small, especially 

compared to other studies about CJ (e.g., 250 responses for Jones & Inglis (2015); 200 responses 

for Steedle & Ferrera (2016)). Moreover, these students were accustomed with this kind of 

unstructured tasks, which is not so common in Italy, and their teacher has a strong background 

concerning covariation, highlighting this reasoning in her lessons. Although the number of 

judges involved in this experimentation is in agreement with the standard literature on CJ (Jones 

& Alcock, 2014), it is still a small number with which to generalize the questionnaire conclusions: 

they simply provide interesting insights into which elements capture attention when reading an 

open-ended test, especially concerning a physical-mathematical topic, and offer some 

preliminary information on the attitude of Italian teachers toward covariation. We hope our 

study may act as evidence that larger investigation on the assessment of covariation in the form 

of conceptual understanding is required and of value. We chose to undertake this line of research 

adopting comparative judgement since it allows us to tackle the challenges and difficulties we 

outlined in the literature review, but this does not exclude the fact that other methods may be 

valid or that more teacher training on covariational reasoning is needed.  

 



 

251 
 

16 VARIABLES AND PARAMETERS: A COMPUTER SCIENCE 

ANALOGY 

One of the educational problems which students struggle with since the first years of upper 

secondary school is the distinction between variables and parameters. After the short excursus 

concerning the role of variables within algebraic language we already outlined in Section 3.1, in 

this chapter 33 , we are going to provide a rigorous definition of variables and parameters 

according to the logic language and to explore a computer science analogy based on C 

programming language. Finally, some proposals of ‘instrumentation’ are described, using 

Dynamic Geometry Software or Computer Algebra System: the purpose is that of a simpler 

comprehension of the distinction between variables and parameters.  

16.1 FROM A RIGOROUS DEFINITION TO A COMPUTER SCIENCE ANALOGY 

In the world of today’s research in Mathematics Education, different approaches exist trying to 

define the meaning of variables and parameters. For example, a discursive definition of these 

concepts can be found in the work by Thompson and Carlson (2017). The authors state that a 

symbol can be used to represent the values assumed by a quantity with three different meanings. 

It is used the term constant to denote the value of a quantity that never varies; if the values of a 

quantity change from scenario to scenario but they do not vary within the same scenario then it 

is a parameter; eventually, if the values of a quantity vary within the same scenario, then it 

assumes the meaning of variable. 

For sure, the concepts of variable and parameter are located on two different levels from the 

logical point of view and this distinction essentially resides in the use of the universal quantifiers.  

We report here the example present in Bernardi (1994): the writing y = mx denotes the bundle 

of lines with center the origin and adopting a formal notation it can be represented as {{(x,y) | y 

= mx} | m  }. We notice that firstly are quantified the variables x and y and in a second moment 

 
33 The content of this chapter is an adaptation of the study presented in:  
Bagossi, S. (2021). Variabili e parametri: un’analogia informatica [Variables and parameters: a computer science 
analogy], L’insegnamento della matematica e delle scienze integrate, Vol 44 B, 74–88. 
We thank Prof. F. Arzarello for overseeing the work and the colleague I. E. Stan for the valuable IT advice. 
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the parameter m. This is exactly the connoting characteristic of the parameter: it is the variables 

which is quantified last, that is the variable on which acts the more external quantifier. The same 

situation reoccurs in the case of equations or problems with a parameter: when the text of an 

exercise says “for each value of m find the values of x such that…”, x is for sure the unknown and 

m is the parameter, not because of the conventional use of the chosen letters, but because m is 

quantified more externally. This kind of formulation is defined in Bloedy-Vinner (2001) as 

dynamic or again as ordered and quantified structure because it corresponds to a potential order 

of substitutions that is typical of parametric expressions.  

The logical characterization just described offers the possibility of an interesting analogy based 

on the computer science and specifically with programming languages. In order to propose such 

analogy, we will adopt typical syntax of the programming language C, known for its generality of 

application that sometimes makes it more useful and efficient of other languages more powerful. 

The basic notions here reported are mostly taken from Kernighan and Ritchie (2007).  

A generic program in C consists of functions and variables. The functions contain the instructions 

that specify which operations have to be carried out, while the variables store the values used 

during the execution. Every program contains a principal function called main, that marks the 

beginning of the program. The function main can call other functions by their name and the 

arguments of such functions are explicated between round brackets.  

The program described in Figure 79 allows to visualize the first 10 terms of an arithmetic 

progression starting from a and with a common difference of 1. In particular, the instruction for 

is a cycle or iteration that requires three arguments: an initial value, a condition (in this case a 

superior limit) that controls the iteration of the cycle and if the condition is true the body of the 

cycle is executed and finally the increment of the index of the cycle. In our program the index of 

the cycle is i: it starts from 0 and until it is minor than 10 it is increased by 1 (i++) at the 

successive iteration. The function printf allows to “print” i.e., visualize the result; %d specifies 

that the argument of the function is an integer in decimal notation (d stands for digit), while \n 

is considered a special character in the computer science language that is interpreted as break 

lines (n stands for new line) and hence it prints the values one below the other. Finally, the 

instruction return 0 returns the value 0, an exit-code, to signal that the program was successful. 

The double slash // allows to insert comments, that is notes not read by the program, on a same 

line, while /* */ allows to insert comments on more lines.  
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Figure 79 - Example of elementary program in C 

Trying to execute the program using an online compilator, for instance OnlineGDB available at 

this link, it is obtained the progression shown in Figure 80.  

Figure 80 - Values printed by the program 

In language C, all the variables have to be declared before being used, usually at the beginning of 

the function. A declaration makes explicit the properties of the variables and it is constituted by 

a type followed by a list of variables. In our example int denotes that the variables a and I are 

integers, but other choices are possible: for example, float denotes a floating-point number with 

single precision (depending on the machine), while double stands for a floating-point number 

with double precision (depending on the machine). 

In addition to the typology of variables, there exists another distinction concerning their 

visibility. The variables are said local or internal when they are declared within the function 

using them. They are born when the function enters in execution and die at the end of the 

execution of the program, for this reason they are called automatic. Alternatively, it is possible 

 1 #include <stdio.h> //It inserts information on the standard library 

 2 int a=5; 

 3  

 4 main( )  {   /*Principal function main. The curly brackets  

 5  enclose the instruction of main*/ 

 6   int i; 

 7   for (i = 0; i < 10; i++) /*Cycle for makes slide the values of the  

 8  parameter i from 0 to 10*/ 

 9     printf (“%d\n”, i+a); /*The function printf allows to visualize 

10     the result*/ 

11  return 0;     

12 } 

https://www.onlinegdb.com/online_c_compiler
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to define variables global or external to all the functions by means of their name. Since the global 

variables have permanent duration, instead of appearing and disappearing basing on the calls of 

the functions, they maintain their values also after that the functions that have modified them 

have stopped operating. The external variables can be defined once and only once outside every 

function.  

In our program (Figure 81), a is global variable because it is external to all the functions and 

maintains a value equal to 5 for all the duration of the program. An example of local variable is i 

because it is declared within the function main and dies externally to this function.  

Figure 81 - Global and local variables in our program 

Local and global variables differ for their visibility scope, that is the part of the source text C in 

which the declaration is active. The local variables have a block scope where block means a series 

of instruction delimited by {}; the global variables have a file scope instead and hence they are 

visible from the point in which they are declared until the end of the program.  

These brief premises describing the characteristics of local and global variables in C allow us to 

explicate the analogy between variables and parameters. The parameters, as the global variables 

(a in our code), are defined more externally and their values remain unchanged for all the 

duration of the program if we refer to computer variables, for the scenario or the problem if we 

refer to mathematical parameters. The (mathematical) variables instead, exactly like local 

variables (i in our code), are defined more internally and their value changes from block to block, 

from scenario to scenario, from problem to problem.  

 1 #include <stdio.h>  

 2 int a=5;    //Global variable 

 3  

 4 main( )  {    

 5   

 6   int i;    //Local variable 

 7   for (i = 0; i < 10; i++)   

 8   

 9     printf (“%d\n”, i+a);  

10      

11  return 0;     

12 } 
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16.2 PROPOSALS OF INSTRUMENTATION 

In the previous paragraph were presented some different approaches through which it is 

possible introduce in a rigorous way the distinction between a variable and a parameter, 

nevertheless the knowledge required is not trivial. However, the concept of parameter, precisely 

for its large presence in numerous topics, needs to be faced since the first years of secondary 

school. As the study by Chiarugi et al. (1995) shows, a non-full understanding of this concept 

entails non only conceptual difficulties but also of manipulative kind in the execution of 

computations.  

A possible path, and surely declinable in various modalities according to the school level, is that 

of instrumentation (see Chapter 4). One of the DGS largely used in the Italian school is GeoGebra. 

The slider command allows the instrumentation of the concept of parameter. Introducing such 

slider, the settings allow to define its nature choosing between the options of number (possibly 

integer) or angle and to set the range in which this parameter varies.  

Figure 82 - Instrumentation of the parable on GeoGebra 

The example reported in Figure 82 shows an instrumentation of the equation of the parable. 

Each of the coefficient of the equation is represented by a slider: varying the values assumed by 

the different coefficients it is possible to observe how the graph of the parable changes. This 

exploration enables the students to conjecture how each of the three parameters is responsible 

of the properties of the resulting graph. Moreover, the students have the possibility to 
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experiment how the quantification of the parameter is antecedent that of the variables x and y. 

In fact, it is necessary to fix the value of the parameters to obtain the values of the coordinates 

in each point of the graph: these are defined for each real x, but they vary according to the chosen 

values of the parameters. 

An example of instrumentation similar to the one described above concerning the study of the 

bundles of parables, but making use of the software Derive, is presented in Reggiani (2000).  

Another form of instrumentation always inherent to the study of second-degree functions is 

described in the contribution by Arzarello contained in Hanna & de Villiers (2012). The students 

of a 9th degree classroom in a scientific-oriented school were involved in the study of functions 

using the tables of finite differences. Students had already learnt that first-degree functions have 

the first finite differences constant. The teacher asked the students to make conjectures on the 

functions whose first finite differences change linearly and to use a spreadsheet made within a 

CAS environment. As shown in Figure 83, students had at disposal a first spreadsheet showing 

the numerical values of x, f(x), of first and second finite differences and of the parameters a, b, c 

of the function y = ax2 + bx + c; the second spreadsheet contained the same data but expressed in 

an algebraic form that is in function of the step h of increment of the variable x and of the 

coefficients a, b, c.  

Figure 83 - Table (a) contains the numerical values of finite differences; table (b) contains the 
algebraic expression of finite differences 

In a certain sense, we could define this kind of instrumentation as algebraic instead of geometric: 

in fact, the table of finite differences are those which enable to deduce the properties of the 
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parable and in particular on how to make conjectures on how the parameters a, b, c are 

responsible of the specific properties of the parable.  

Finally, another form of instrumentation has been presented in teaching experiment conducted 

in 2017 (see Section 10.1). One of the tasks proposed had the purpose to obtain the law of the 

ball running along an inclined plane: specifically, through a GeoGebra applet, shown in Figure 

84, students could visualize in the central part the parabolic graph describing the s-t 

relationship; the values of time, distance and first finite differences collected in the table on the 

right and on the left could modify the inclination angle of the plane and so visualize how it 

influenced the s-t graph and the numerical values contained in the table. Hence the students had 

the chance to explore the dependence of the law of the ball motion on the inclination angle of the 

plane, dependence encapsulated in the parameter describing the law itself: s= k∙ t2. 

Figure 84 - Screen of the GeoGebra applet 

16.3 CONCLUSIONS 

The manipulation of algebraic expressions and the introduction to the algebraic language are 

topics that have engaged the researchers in Mathematics Education for a long time. This study 

proposes a computer science-based analogy, alternatively to the rigorous language of logic, so to 

explore the distinction between variables and parameters and some proposals that we define 

instrumented in order to translate them in various way on a didactical level. Remains of strong 

interest understand how Italian teachers face this theme in their school practice and which 

instruments could offer a valid support for a better approach to algebraic language. 
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Arzarello, F., Bazzini, L., & Chiappini, G.P. (1994). L’Algebra come strumento di pensiero, Analisi teoriche e 
considerazioni didattiche [Algebra as an instrument of thought, Theoretical analysis and didactical 
considerations], Quaderno n. 6 del CNR, Progetto strategico: Tecnologie e Innovazioni didattiche.   

Arzarello, F., Bazzini, L., Politano, L., & Sabena, C. (2010). Multimodal processes in teaching and learning 
mathematics: A case study in primary school. In G. Pérez-Bustamante, K. Phusavat, F. Ferreira (Eds.) Proceedings 
of the IASK International Conference (pp. 286-292). Siviglia: IASK. 

Arzarello, F., Bazzini, L., Ferrara, F., Sabena, C., Andrà, C., Merlo, D., Savioli, K., & Villa, B. (2011). Matematica: non è 
solo questione di testa [Mathematics: it is not just a matter of head]. Trento, IT: Edizioni Erickson.  

https://hal.archives-ouvertes.fr/hal-02001693/document


 

260 
 

Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri 
environments. ZDM, 34(3), 66–72. 

Arzarello, F., & Paola, D. (2007). Semiotic games: The role of the teacher. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. 
Seo (Eds.), Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics 
Education (Vol. 2). Seoul: PME. 17–24.  

Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in the mathematics classroom. 
Educational Studies in Mathematics, 70(2). 97–109.  

Arzarello, F., Robutti, O., & Thomas, M. (2015). Growth point and gestures: looking inside mathematical meanings. 
Educational Studies in Mathematics, 90(1), 19–37. 

Asenova, M. (2021). Definizione categoriale di Oggetto matematico in Didattica della matematica [Categorial 
definition of a mathematical object in Mathematics Education], Bologna: Pitagora. 

Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal material. 
Journal of educational psychology, 51(5), 267. 

Bagossi, S. (2021a, April 8-12). Toward second order covariation: Comparing two case studies on the modelling of a 
physical phenomenon, [Paper presentation]. American Educational Research Association Annual Meeting, online. 

Bagossi, S. (2021b). Variabili e parametri: un’analogia informatica, [Variables and parameters: a computer-science 
analogy]. L’insegnamento della matematica e delle scienze integrate, Vol. 44 B, 74–88. 

Bagossi, S. (2021c). Valutare la conoscenza concettuale con il Comparative Judgement [Assessing conceptual 
understanding with Comparative Judgement]. In B. D'Amore (Ed.), Atti del Convegno Nazionale "Incontri con la 
matematica" nr. 35 (pp. 173-174). Bologna: Pitagora. 

Bairral, M., & Arzarello, F. (2015). The use of hands and manipulation touchscreen in high school geometry classes. 
In CERME 9-Ninth Congress of the European Society for Research in Mathematics Education, 2460–2466. 

Bartolini Bussi, M. G., Boni, M. & Ferri F. (1995). Interazione sociale e conoscenza a scuola: la discussione matematica 
[Social interaction and knowledge at school: the mathematical discussion], Modena, Centro Documentazione 
Educativa, Comune di Modena. 

Bergamini, M., Trifone, A., & Barozzi, G. (2016). Algebra.blu con Statistica – Seconda edizione [Algebra.blue with 
Statistics – Second edition]. Ed. Zanichelli, Vol. 1. 

Bergamini, M., Barozzi, G. & Trifone, A. (2020). Manuale.blu di matematica [Handbook.blue of mathematics], Ed. 
Zanichelli, Vol. 1. 

Bernardi, C. (1994). Uso delle lettere in algebra e logica [The use of letters in algebra and logic]. L’algebra fra 
tradizione e rinnovamento, Seminario di formazione per docenti, Liceo Vallisneri – Lucca. 

Bikner-Ahsbahs, A., Knipping, C., & Presmeg, N. (2015). Approaches to Qualitative Research in Mathematics 
Education. Berlin-New York: Springer.  

Bikner-Ahsbahs, A., & Prediger, S. (Eds.). (2014). Networking of theories as a research practice in mathematics 
education. Dordrecht: Springer, 117–126. 

Bisson, M. J., Gilmore, C., Inglis, M., & Jones, I. (2016). Measuring conceptual understanding using comparative 
judgement. International Journal of Research in Undergraduate Mathematics Education, 2(2), 141–164. 

Bloedy-Vinner, H. (2001). Beyond unknowns and variables-parameters and dummy variables in high school 
algebra. The notion of parameter. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on School 
Algebra, 177–189. Dordrecht, The Netherlands: Kluwer Academic Publishers.  

Blum, W. (1996). Anwendungsbezüge im Mathematikumterricht—Trends und Perspectiven [Application 
References in Mathematics Education - Trends and Perspectives]. In G. Kadunz, H. Kautschitsch, G. Ossimitz, & 
E. Schneider (Eds.), Trends und Perspektiven (pp. 15–38). Wien: Hölder-Pichler-Tempsky. 

Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do?. In The 

proceedings of the 12th international congress on mathematical education (pp. 73–96). Springer, Cham. 



 

261 
 

Blum, W., & Ferri, R. B. (2009). Mathematical modeling: Can it be taught and learned?, Journal of Mathematical 

Modeling and Application, 1(1), 45–58. 

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other 

subjects—State, trends and issues in mathematics instruction. Educational studies in mathematics, 22(1), 37–68. 

Bourbaki, N. (1939). Éléments de mathématique. Livre I: Théorie des ensembles (fascicule de résultats) [Elements of 
mathematics: Fundamental structures of analysis. Book 1: Set theory (results leaflet)]. Hermann.  

Boyer, C. B. (1946). Proportion, equation, function: Three steps in the development of a concept. Scripta 
Mathematica, 12, 5–13. 

Bradley, R., & Terry, M. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons. 

Biometrika, 39(3), 324–345. 

Byrnes, J. P. (1992). The conceptual basis of procedural learning. Cognitive Development, 7, 235–57. 

Cañigueral, R., & Hamilton, A. F. de C. (2019). The role of eye gaze during natural social interactions in typical and 
autistic people. Frontiers in Psychology, 10(560), 1–18.  

Carlson, M. P. (1998). A cross-sectional investigation of the development of the function concept. Research in 
collegiate mathematics education. III. CBMS issues in mathematics education, 114–162. 

Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling 
dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33, 352–378. 

Caspi, S., & Sfard, A. (2012). Spontaneous meta-arithmetic as a first step toward school algebra. International Journal 
of Educational Research, 51, 45–65.  

Castillo-Garsow, C. (2012). Continuous quantitative reasoning. In R. Mayes, R. Bonillia, L.L. Hatfield, & S. Belbase 
(Eds.), Quantitative reasoning: Current state of understanding, WISDOMe Monographs, Laramie: University of 
Wyoming, 2, 55–73. 

Chesnais, A. (2018, March). Diversity of teachers' language in mathematics classrooms about line symmetry and 
potential impact on students' learning. In Proceedings of the IV ERME Topic Conference 'Classroom-based research 
on mathematics and language' (pp. 41–48). 

Chiarugi, I., Fracassina, G., Furinghetti, F., & Paola, D. (1995). Parametri, variabili e altro: un ripensamento su come 
questi concetti sono presentati in classe [Parameters, variables, and more: rethinking how these concepts are 
presented in class]. L’Insegnamento della Matematica e delle Scienze Integrate, Vol. 18B, 34–50. 

Choppin, J. (2011). The impact of professional noticing on teachers’ adaptations of challenging tasks. Mathematical 
Thinking and Learning: An International Journal, 13(3), 175–197. 

Church, R. B., & Goldin-Meadow, S. (1986). The mismatch between gesture and speech as an index of transitional 
knowledge. Cognition, 23(1), 43–71. 

Clagett, M. (1970). Nicole Oresme. Dictionary of Scientific Biography, ed. Ch. Gillispie, New York, 10, 223–230. 

Clement, J. (1985). Misconceptions in graphing. In Proceedings of the Ninth International Conference for the 
Psychology of Mathematics Education. (Vol. 1, pp. 369–375). Utrecht, The Netherlands: Utrecht University. 

Confrey, J. (1991). The concept of exponential functions: A student’s perspective. In Epistemological foundations of 

mathematical experience. (pp. 124–159). Springer, New York,  

Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies 

in Mathematics, 26, 135–164. 

Corno, L., & Snow, E. R. (1986). Adapting teaching to individual differences among learners. In M. C. Wittrock (Ed.), 
Handbook of research on teaching (3rd ed.). New York: Macmillan. 

Corno, L. (2008). On teaching adaptively. Educational Psychologist, 43(3), 161–173. 

Davies, B., Alcock, L. & Jones, I. (2020) Comparative judgement, proof summaries and proof comprehension. 

Educational studies in Mathematics, 105, 181–197. 



 

262 
 

DeMarois, P.& Tall,D. (1996). Facets and Layers of the Function Concept. Proceedings of PME 20, Valencia, 2, 297–
304. 

Dewey, J. (1902/1964). The child and the curriculum. In R. D. Archambault (Ed.), John Dewey on education: Selected 
writings. New York: Modern Library.  

Dirac, P. A. M. (1939). The Relation Between Mathematics and Physics, From Lecture delivered on presentation of 
the James Scott prize, (6 Feb 1939), printed in Proceedings of the Royal Society of Edinburgh (1938-1939), 59, 
Part 2, 124. 

Dirichlet, G. L. (1838). Sur l’usage des séries infinies dans la théorie des nombres [On the use of infinite series in 
number theory]. Journal für die reine und angewandte Mathematik (Crelles Journal), 1838(18), 259–274. 

Drijvers, P. (2019). Embodied instrumentation: combining different views on using digital technology in 
mathematics education. Eleventh Congress of the European Society for Research in Mathematics Education, 
Utrecht University, Netherlands.   

Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: instrumental 
orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–
234.  

Ellis, A. B., Ozgur, Z., Kulow, T., Dogan, M. F. & Amidon, J. (2016). An exponential growth learning trajectory: Students’ 
emerging understanding of exponential growth through covariation. Mathematical Thinking and Learning, 18(3), 
151–181. 

Faggiano, E., Montone, A., & Mariotti, M. A. (2018). Synergy between manipulative and digital artefacts: a teaching 
experiment on axial symmetry at primary school. International Journal of Mathematical Education in Science and 
Technology, 49(8), 1165–1180. 

Faggiano, E., Montone, A., & Rossi, P. (2017). The synergy between Manipulative and Digital Artefacts in a 
Mathematics Teaching Activity: a co-disciplinary perspective. Journal of e-Learning and Knowledge Society, 13(2), 
33–45. 

Fairbanks, C. M., Duffy, G. G., Faircloth, B. S., He, Y., Levin, B., Rohr, J., et al. (2010). Beyond knowledge: Exploring why 
some teachers are more thoughtfully adaptive than others. Journal of Teacher Education, 61(1-2), 161–171. 

Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind's hidden complexities. Basic 
Books. 

Frank, K. M. (2016). Students’ conceptualizations and representations of how two quantities change together. In 
Proceedings of the 19th meeting of the special interest group for research in undergraduate mathematics education 
(pp. 771–779). RUME Pittsburgh, PA. 

Furinghetti, F., & Paola, D. (1994). ‘Parameters, unknowns and variables: a little difference?’, in J. P. da Ponte & J. F. 
Matos (editors), Proceedings of PME XVIII (Lisboa), v.II, 368–375. 

Galilei, G. (1638). Discorsi e dimostrazioni matematiche intorno a due nuove scienze attinenti la meccanica e i 

movimenti locali [Discourses and Mathematical Demonstrations Relating to Two New Sciences]. Verona (IT): 

Cierre, Simeoni Arti Grafiche. ISBN 9788895351049 (Translated into English by Henry Crew and Alfonso de 

Salvio. New York: Macmillan, 1914: downloadable from https://oll.libertyfund.org/title/galilei-dialogues-

concerning-two-new-sciences). 

Gall, M. D., Borg, W. R., & Gall, J. P. (1996). Educational research: An introduction. Longman Publishing 

Gallagher, M. A., Parsons, S. A., & Vaughn, M. (2020). Adaptive teaching in mathematics: a review of the literature. 
Educational Review, 1–23. 

Goguen, J. (1999). An introduction to algebraic semiotics, with application to user interface design. In: C. Nehaniv 
(Ed.): Computation for Metaphors, Analogy, and Agents, volume 1562 of Lecture Notes in Computer Science (pp. 
242-291), Springer. 

Goldblatt, R. (1984). Topoi: the categorial analysis of logic. Elsevier. 

Goldin-Meadow, S. (2005). Hearing gesture: How our hands help us think. Cambridge, MA: Harvard University Press. 

https://www.researchgate.net/publication/journal/0020-739X_International_Journal_of_Mathematical_Education
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9788895351049
https://oll.libertyfund.org/title/galilei-dialogues-concerning-two-new-sciences
https://oll.libertyfund.org/title/galilei-dialogues-concerning-two-new-sciences


 

263 
 

Groth, R. E. (2010). Situating qualitative modes of inquiry within the discipline of statistics education 

research. Statistics Education Research Journal, 9(2), 7–21. 

Hammer, D., Goldberg, F., & Fargason, S. (2012). Responsive teaching and the beginnings of energy in a third grade 
classroom. Review of Science, Mathematics and ICT Education, 6(1), 51–72. 

Hanna, G. & de Villiers, M. (Eds.) (2012). Proof and Proving in Mathematics Education. New ICMI Study Series, Vol 
15, 105–106. 

Harlen, W. (2012). Inquiry in science education. Resources for implementing inquiry in science and mathematics at 
school. Retrieved from https://www.fondation-
lamap.org/sites/default/files/upload/media/minisites/action_internationale/inquiry_in_science_education.
pdf.  

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In 
J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 113–133). New York: 
Routledge. 

Hoffkamp, A. (2009). Enhancing functional thinking using the computer for representational transfer, Proceedings 
of CERME 6 - Lyon, France, 1201–1210. 

Hoffkamp, A. (2011). The use of interactive visualizations to foster the understanding of concepts of calculus: design 

principles and empirical results. ZDM, 43(3), 359–372.  

Hu, D., & Rebello, N. S. (2013). Using conceptual blending to describe how students use mathematical integrals in 
physics. Physical Review Special Topics-Physics Education Research, 9(2), 020118. 

Huang, R., & Li, Y. (2012). What matters most: A comparison of expert and novice teachers’ noticing of mathematics 
classroom events. School Science and Mathematics, 112(7), 420–432. 

Jacobs, V. R., & Empson, S. B. (2016). Responding to children’s mathematical thinking in the moment: an emerging 
framework of teaching moves. ZDM, 48(1-2), 185–197. 

Janvier, C. (1978). The interpretation of complex cartesian graphs representing situations. Ph.D. thesis, University of 
Nottingham, Shell Centre for Mathematical Education, Nottingham. 

Japan Ministry of Education. (2008). Japanese Mathematics Curriculum in the Course of Study (English Translation) 

(A. Takahashi, T. Watanabe & Y. Makoto, Trans.). Madison, WI: Global Education Resources. 

Javorski, B., & Potari, D. (2009). Bridging the macro- and micro-divide: Using an activity Theory model to capture 
sociocultural complexity in mathematics teaching and its development. Educational Studies in 
Mathematics, 72(2), 219–236. 

Jay, C. B. (1991). Partial functions, ordered categories, limits and cartesian closure. In IV Higher Order Workshop, 
Banff 1990 (pp. 151-161). Springer, London. 

Johnson, H. L. (2013). Designing covariation tasks to support students reasoning about quantities involved in rate 
of change. In C. Margolinas (Ed.), Task design in mathematics education. Proceedings of ICMI Study, 22(1), 213–
222. 

Johnson, H. L., McClintock, E., & Hornbein, P. (2017). Ferris wheels and filling bottles: A case of a student’s transfer 
of covariational reasoning across tasks with different backgrounds and features. ZDM, 49(6), 851–864. 

Jones, I., & Alcock, L. (2014). Peer assessment without assessment criteria. Studies in Higher Education, 39(10), 

1774–1787. 

Jones, I. & Inglis, M. (2015). The problem of assessing problem solving: can comparative judgement help?, 
Educational Studies in Mathematics, 89, 337–355. 

Jones, I. & Karadeniz, I. (2016). An alternative approach to assessing achievement, Proceedings of the 40th Conference 
of the International Group for the Psychology of Mathematics Education – Szeged, Hungary, 2016.  

Jones, I., Bisson, M., Gilmore, C., & Inglis, M. (2019). Measuring conceptual understanding in randomised controlled 
trials: Can comparative judgement help?. British Educational Research Journal, 45(3), 662–680. 

https://www.fondation-lamap.org/sites/default/files/upload/media/minisites/action_internationale/inquiry_in_science_education.pdf
https://www.fondation-lamap.org/sites/default/files/upload/media/minisites/action_internationale/inquiry_in_science_education.pdf
https://www.fondation-lamap.org/sites/default/files/upload/media/minisites/action_internationale/inquiry_in_science_education.pdf


 

264 
 

Kaput, J. (1994). Democratizing access to calculus: New routes to old roots. Mathematical thinking and problem 
solving, 77–156. 

Kendon, A. (1967). Some functions of gaze-direction in social interaction. Acta psychologica, 26, 22–63. 

Kendon, A. (2004). Gesture: Visible action as utterance. Cambridge University Press. 

Kernighan, B. W., & Ritchie, D. M. (2007). Il linguaggio C. Principi di programmazione e manuale di riferimento, [The 
C language. Programming principles and reference manual]. Seconda edizione. Pearson Paravia Bruno 
Mondadori. 

Kim, D., Ferrini-Mundy, J., & Sfard, A. (2012). How Does Language Impact the Learning of Mathematics? Comparison 
of English and Korean Speaking University Students' Discourses on Infinity. International Journal of Educational 
Research, 51, 86–108. 

Klein, F. (2016). Elementary mathematics from a higher standpoint: arithmetic, algebra, Analysis. Vol. 1. Berlin: 
Springer. Original work published in 1908. 

Kress, G. (2004). Reading images: Multimodality, representation and new media. Information Design Journal, 12(2), 
110–119. 

Küchemann, D. (1981). Algebra. Hart, KM. Children’s Understanding of Mathematics, 11–16. 

Lagrange, L. (1806). Traité de la résolution des équations numériques de tous les degrés [Treatise on the resolution 
of numerical equations of all degrees], Paris: Courcier.  

Laming, D. (1984). The relativity of ‘absolute’ judgements. British Journal of Mathematical and Statistical Psychology, 
37(2), 152–183. 

Liljedahl, P., & Andrà, C. (2014). Students’ gazes: new insights into student interactions. In: Views and beliefs in 
mathematics education - contributions of the 19th MAVI conference, 213–226. Freiburg, DE, 25-28 September 
2013. Editore: Springer.  

Lisarelli, G. (2019). A Dynamic Approach to Functions and Their Graphs: A Study of Students’ Discourse from a 
Commognitive Perspective. Ph.D. Thesis, University of Florence, University of Perugia, INdAM. Florence, Italy. 

Lotman, Y. M. (1990). Universe of the Mind. A semiotic theory of culture. London: IB Taurus. 

Mac Lane, S. (1978). Categories for the Working Mathematician. Berlin: Springer-Verlag. 

Marshall, N., Shaw, K., Hunter, J. & Jones, I. (2020) Assessment by Comparative Judgement: An Application to 
Secondary Statistics and English in New Zealand. New Zealand Journal of Educational Studies, 55, 49–71.  

Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts: the pascaline and Cabri 
Elem e-books in primary school mathematics. ZDM, 45(7), 959–971. 

Maskiewicz, A. C., & Winters, V. A. (2012). Understanding the co-construction of inquiry practices: A case study of a 
responsive teaching environment. Journal of Research in Science Teaching, 49(4), 429–464. 

Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational studies in 
mathematics, 15(3), 277-289. 

McNeill, D. (1992). Hand and mind: What gestures reveal about thought. University of Chicago press. 

MIUR (2010a). Indicazioni nazionali per i licei [National indications for high schools]. Rome: Author. Retrieved 
from: 
http://www.indire.it/lucabas/lkmw_file/licei2010/indicazioni_nuovo_impaginato/_decreto_indicazioni_nazio
nali.pdf   

MIUR (2010b). Linee guida per il passaggio al nuovo orientamento. Istituti tecnici [Guidelines for the transition to 
the new orientation. Technical institutes]. Rome: Author.  Retrieved from:  
http://www.indire.it/lucabas/lkmw_file/nuovi_tecnici/INDIC/_LINEE_GUIDA_TECNICI_.pdf    

MIUR (2010c). Linee guida per il passaggio al nuovo orientamento. Istituti professionali [Guidelines for the 
transition to new orientation. Professional institutes]. Rome: Author. Retrieved from: 

http://www.indire.it/lucabas/lkmw_file/licei2010/indicazioni_nuovo_impaginato/_decreto_indicazioni_nazionali.pdf
http://www.indire.it/lucabas/lkmw_file/licei2010/indicazioni_nuovo_impaginato/_decreto_indicazioni_nazionali.pdf
http://www.indire.it/lucabas/lkmw_file/nuovi_tecnici/INDIC/_LINEE_GUIDA_TECNICI_.pdf


 

265 
 

http://www.indire.it/lucabas/lkmw_file/nuovi_professionali/linee_guida/_LINEE_GUIDA_ISTITUTI_PROFESSI
ONALI_.pdf    

MIUR (2012). Indicazioni nazionali per il curricolo della scuola dell’infanzia e del primo ciclo d’istruzione. [National 
indications for kindergarten and first cycle of education]. Rome: Author. Retrieved from: 
http://www.indicazioninazionali.it/wp-content/uploads/2018/08/Indicazioni_Annali_Definitivo.pdf 

MIUR, UMI, & SIS (2003). Matematica 2003. La matematica per il cittadino. Downloadable from: 
http://www.matematica.it/tomasi/lab-did/pdf/matem-2003-curricolo.pdf 

Moore, K. C., Paoletti, T., & Musgrave, S. (2013). Covariational reasoning and invariance among coordinate 
systems. The Journal of Mathematical Behavior, 32(3), 461–473. 

Nathan, M. J. (2008).  An embodied cognition perspective on symbols, gesture, and grounding instruction. Manuel 
de Vega, Arthur Glenberg & Arthur Graesser (Eds.). Symbols and embodiment: Debates on meaning and cognition, 
18. Oxford University Press. 375–396. 

Newton, I. (1736). The Method of Fluxions and Infinite Series: With Its Application to the Geometry of Curve Lines . 
Nourse. 

Niss, M. (1989). Aims and scope of applications and modelling in mathematics curricula. Applications and modelling 
in learning and teaching mathematics, 22–31. 

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In: W. Blum et al. (Eds), Modelling and Applications in 
Mathematics Education. New York: Springer, 3–32. 

Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102(1), 
9–28. 

O'Connor, M. C., & Michaels, S. (1996). Shifting participant frameworks: Orchestrating thinking practices in group 
discussion. In D. Hicks (Ed.), Discourse, learning and schooling. New York, NJ: Cambridge University Press. 63–
103. 

OECD-PISA (2022). Mathematics framework (draft2). Downlodable from:  
https://pisa2022-maths.oecd.org/ca/index.html;  
https://pisa2022-maths.oecd.org/files/PISA%202022%20Mathematics%20Framework%20Draft.pdf 

Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the phenomenology to the mechanisms of consciousness: 
integrated information theory 3.0, PLoS Computational Biology, 10(5): e1003588. 

Oresme, N. (1350). Tractatus de configurationibus qualitatum et motuum [Treatise on the Configurations of Qualities 
and Motions]. 

Paola, D., & Impedovo, M. (2014). Matematica dappertutto [Mathematics everywhere]. Bologna: Zanichelli, ISBN: 
9788808263940 

Park, O., & Lee, J. (2003). Adaptive instructional systems. Educational Technology Research and Development, 25(1), 
651–684.  

Phillips, S. (2018). What underlies dual-process cognition? Adjoint and representable functors. In C. Kalish, M. Rau, 
J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society, pp. 2250–
2255. Austin, TX: Cognitive Science Society. 

Phillips, S. (2020). Sheaving—a universal construction for semantic compositionality, Philosophical Transactions of 
the Royal Society B, 375 (1791), 20190303. 

Piaget, J. (1950). Introduction à l’épistémologie génétique. Tome I: La pensée mathématique [Introduction to Genetic 
Epistemology. Volume I: Mathematical Thought]. Presses universitaires de France. 

Pollitt, A. (2012). The method of adaptive comparative judgement. Assessment in Education: principles, policy & 
practice, 19(3), 281–300. 

http://www.indire.it/lucabas/lkmw_file/nuovi_professionali/linee_guida/_LINEE_GUIDA_ISTITUTI_PROFESSIONALI_.pdf
http://www.indire.it/lucabas/lkmw_file/nuovi_professionali/linee_guida/_LINEE_GUIDA_ISTITUTI_PROFESSIONALI_.pdf
http://www.indicazioninazionali.it/wp-content/uploads/2018/08/Indicazioni_Annali_Definitivo.pdf
http://www.matematica.it/tomasi/lab-did/pdf/matem-2003-curricolo.pdf
https://pisa2022-maths.oecd.org/ca/index.html
https://pisa2022-maths.oecd.org/files/PISA%202022%20Mathematics%20Framework%20Draft.pdf


 

266 
 

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting 
theoretical approaches: First steps towards a conceptual framework. ZDM, 40(2), 165–178. 

Prediger, S., & Şahin-Gür, D. (2019). Eleventh Graders’ Increasingly Elaborate Language Use for Disentangling 
Amount and Change: A Case Study on the Epistemic Role of Syntactic Language Complexity. Journal für 
Mathematik-Didaktik, 1–37. 

Rabardel, P. (1995). Les hommes et les technologies, approche cognitive des instruments contemporains [People and 
technology: a cognitive approach to contemporary instruments]. Paris: Armand Colin.  

Radford, L. (2008). Connecting theories in mathematics education: Challenges and possibilities. ZDM, 40(2), 317–
327. 

Radford, L. (2010). The eye as a theoretician: Seeing structures in generalizing activities. For the Learning of 
Mathematics, 30(2), 2–7. 

Randi, J., & Corno, L. (2005). Teaching and learner variation. Pedagogy-learning from teaching. Monograph Series II 
(3) British Journal of Educational Psychology, 47–60. 

Reggiani, M. (2002). Variabili e parametri nell’approccio alla rappresentazione di funzioni [Variables and parameters 
in the approach to the representation of functions]. Available online at: 
http://didmat.dima.unige.it/progetti/COFIN/biblio/art_pesci/Regg_02b.pdf 

Rittle-Johnson, B., Siegler, R.S., & Alibali, M. W. (2001). Journal of Educational Psychology, 93(2), 346–362. 

Roth, W.-M. (2001). Gestures: Their role in teaching and learning. Review of Educational Research, 71, 365–392.  

Saada-Robert, M. (1989). La microgenèse de la représentation d'un problème, [Microgenesis of the representation 
of a problem]. Psychologie française, 34(2-3), 193–206. 

Sabena, C., Robutti, O., Ferrara, F., & Arzarello, F. (2012). The development of a semiotic framework to analyze 
teaching and learning processes: Examples in pre- and post-algebraic contexts, Recherches en Didactique des 
Mathématiques, Enseignement de l'algèbre élémentaire, Numéro spécial, pp. 237–251. 

Saldana, J. M. (2015). The coding manual for qualitative researchers (3rd ed.). SAGE Publications. 

Saldanha, L., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous 
continuous variation. In: Berenson, S. B. & Coulombe, W. N. (Eds.), Proceedings of the Annual Meeting of the 
Psychology of Mathematics Education – North America Vol 1, Raleigh, NC: North Carolina State University, 298–
304. 

Scherrer, J., & Stein, M. K. (2013). Effects of a coding intervention on what teachers learn to notice during whole-
group discussion. Journal of Mathematics Teacher Education, 16(2), 105–124.  

Schorlemmer, M., & Plaza, E. (2021). A uniform model of computational conceptual blending. Cognitive Systems 
Research, 65, 118-137. 

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different 
sides of the same coin. Educational studies in mathematics, 22(1), 1–36. 

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. 
Cambridge University Press.  

Sfard, A. (2020). Commognition. Encyclopedia of Mathematics Education, 95–101. 

Sfard, A., & Kieran, C. (2001). Cognition as Communication: Rethinking Learning-by-Talking Through Multi-Faceted 
Analysis of Students' Mathematical Interactions. Mind, Culture and Activity, 8(1), 42–76.  

Shein, P. P. (2012). Seeing with two eyes: A teacher's use of gestures in questioning and revoicing to engage English 
language learners in the repair of mathematical errors. Journal for Research in Mathematics Education, 43(2), 
182–222. 

Sinclair, N., & Ferrara, F. (2021). Experiencing Number in a Digital Multitouch Environment. For the Learning of 

Mathematics, 41(1), 22–29. 

http://didmat.dima.unige.it/progetti/COFIN/biblio/art_pesci/Regg_02b.pdf


 

267 
 

Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics teaching, 77(1), 20–
26. 

Slavit, D. (1997). An alternate route to the reification of function. Educational Studies in Mathematics, 33(3), 259–
281. 

Sokolowski, A. (2015). The effects of mathematical modelling on students’ achievement-meta-analysis of research. 
Journal of Education, 3(1), 93–114. 

Spivak, D. I. (2014). Category theory for the sciences. MIT Press. 

Steedle, J. T., & Ferrara, S. (2016). Evaluating comparative judgment as an approach to essay scoring. Applied 
Measurement in Education, 29, 211–223.  

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential 
elements. Handbook of research design in mathematics and science education, 267–306. 

Steier, F (1995). From universing to conversing: An ecological constructionist approach to learning and multiple 
description. In L. P. Steffe & J. Gale (Eds.), Constructivism in education (pp. 67–84). Hillsdale, NJ: Erlbaum. 

Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: 
Five practices for helping teachers move beyond show and tell. Mathematical thinking and learning, 10(4), 313–
340. 

Swan, M. (1985). A critical look at the communicative approach (1). ELT journal, 39(1), 2-12. 

Swidan, O., Sabena, C., & Arzarello, F. (2020). Disclosure of mathematical relationships with a digital tool: a three 
layer-model of meaning. Educational Studies in Mathematics, 103(1), 83–101. 

Swidan, O., Schacht, F., Sabena, C., Fried, M., El-Sana, J., & Arzarello, F. (2019). Engaging students in covariational 
reasoning within an augmented reality environment. In Augmented Reality in Educational Settings (pp. 147-167). 
Brill Sense. 

Sylla, E. (1971). Medieval quantifications of qualities: The “Merton school”. Archive for history of exact sciences, 8(1-
2), 9-39. 

Tarricone, P., & Newhouse, C. P. (2016). Using comparative judgement and online technologies in the assessment 
and measurement of creative performance and capability. International Journal of Educational Technology in 
Higher Education, 13(1), 1-11. 

Thompson, P. W. (1993). Quantitative reasoning, complexity, and additive structures, Educational Studies in 
Mathematics, 25(3), 165–208. 

Thompson, P. W. (1994a). Images of rate and operational understanding of the fundamental theorem of calculus. 
Educational Studies in Mathematics, 26(2-3), 229–274.  

Thompson, P. W. (1994b). Students, Functions, and the Undergraduate Curriculum. In E. Dubinsky, A. Schoenfeld, & 
J. Kaput (Eds.), Research In Collegiate Mathematics Education. I. Providence, RI: American Mathematical Society. 
21–44. 

Thompson, P. W. (1995). Constructivism, cybernetics, and information processing: Implications for research on 
mathematical learning. In L. P. Steffe & J. Gale (Eds.), Constructivism in education (pp. 123–134). Hillsdale, NJ: 
Erlbaum. 

Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, S. Chamberlain & S. 
Belbase (Eds.), New perspectives and directions for collaborative research in mathematics education. WISDOMe 
Monographs (Vol. 1, pp. 33–57). Laramie, WY: University of Wyoming. 

Thompson, P. W. (2015). Researching mathematical meanings for teaching. In L. D. English & D. Kirshner (Eds.), 
Third handbook of international research in mathematics education (pp. 968–1002). New York: Taylor & Francis. 

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking 
mathematically. In J. Cai (Ed.), Compendium for Research in Mathematics Education, Reston, VA: National Council 
of Teachers of Mathematics, 421–456. 



 

268 
 

Thompson, P. W., Hatfield, N. J., Yoon, H., Joshua, S., & Byerley, C. (2017). Covariational reasoning among US and 

South Korean secondary mathematics teachers. The Journal of Mathematical Behavior, 48, 95–111. 

Thompson, P. W., & Saldanha, L. A. (2003). Fractions and multiplicative reasoning. Research companion to the 
principles and standards for school mathematics, 95–113. 

Thompson, P. W., & Silverman, J. (2008). The concept of accumulation in calculus. In M. Carlson & C. Rasmussen 
(Eds.), Making the connection: Research and teaching in undergraduate mathematics (pp. 43–52). Washington, 
D.C:  Mathematical Association of America. 

Thompson, P. W., & Thompson, A. G. (1992). Images of rate. In Paper presented at the Annual Meeting of the American 

Educational Research Association (Vol. 20, p. 25). 

Thurstone, L. (1927). A law of comparative judgement. Psychology Review, 34(4), 273–286. 

Tononi, G. (2012). The integrated information theory of consciousness: an updated account. Archives italiennes de 

biologie, 150(2/3), 56-90. 

Trouche, L. (2005). An instrumental approach to mathematics learning in symbolic calculators environments, in D. 

Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: turning a computational 

device into a mathematical instrument, 137–162. N.Y. Springer. 

Tsuchiya, N., Taguchi, S., & Saigo, H. (2016). Using category theory to assess the relationship between consciousness 

and integrated information theory. Neuroscience research, 107, 1-7. 

van de Veer, R., & Valsiner, J. (Eds.) (1994). The Vygotsky reader. Oxford: Blackwell.  

van Es, E. A. (2012). Using video to collaborate around problems of practice. Teacher Education Quarterly, 39(2), 
103–116. 

van Es, E. A., & Conroy, J. (2009). Using the performance assessment for California teachers to examine pre-service 
teachers’ conceptions of teaching mathematics for understanding. Issues in Teacher Education, 18(1), 83. 

Vaughn, M., & Parsons, S. A. (2013). Adaptive teachers as innovators: Instructional adaptations opening spaces for 
enhanced literacy learning. Language Arts, 91(2), 81–93. 

Vérillon, P., & Rabardel, P. (1995). Cognition and Artifacts: A Contribution to the Study of Thought in Relation to 
Instrumented Activity, European Journal of Psychology of Education, 10, 77–101.  

Vollrath, H. J. (1989). Funktionales denken [Functional thinking]. Journal für Mathematik-Didaktik, 10(1), 3–37. 

Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes, M. Cole, V. John-Steiner, S. 
Scribner, & E. Souberman, Eds. Cambridge, MA/London: Harvard University Press.  

Vygotsky, L. S. (1986). Thought and Language (A. Kozulin, Trans.). Cambridge, Massachusetts: The MIT Press. 

Wager, A. A. (2014). Noticing children’s participation: Insights into teacher positionality toward equitable 
mathematics pedagogy. Journal for Research in Mathematics Education, 45(3), 312–350. 

Wang, M., & Lindvall, C. M. (1984). Individual differences and school learning environments. Review of Research in 
Education, 11, 161–225. 

Watson, A., & Ohtani, M. (2015). Task Design In Mathematics Education. (A. Watson & M. Ohtani, Eds.). New York: 
Springer. 

Weiland, I. S., Hudson, R. A., & Amador, J. M. (2014). Preservice formative assessment interviews: The development 
of competent questioning. International Journal of Science and Mathematics Education, 12(2), 329–352. 

Yoon, H., & Thompson, P. W. (2020). Secondary teachers’ meanings for function notation in the United States and 
South Korea. The Journal of Mathematical Behavior, 60, 100804.  

Zalamea, F. (2012). Synthetic Philosophy of Contemporary Mathematics. New York (NY): Sequence Press.  

Zalamea, F. (2021). Modelos en haces para el pensamiento matemático [Models in sheaves for mathematical 
thinking]. Bogotà: Universidad Nacional de Colombia. 



 

269 
 

Zbiek, R. M., & Conner, A. (2006). Beyond motivation: Exploring mathematical modeling as a context for deepening 
students’ understandings of curricular mathematics. Educational Studies in Mathematics, 63(1), 89–112.  

 

 

 

 

 





 

271 
 

APPENDIX A 
Original version of the consent form used during 2017 teaching experiment: 

 

Liceo Scientifico Statale aaaaaaaaaaa 

a.s. 2016 – 2017 

Ai genitori degli studenti della classe 1° BNR 

Oggetto: Richiesta di autorizzazione per effettuare audio/videoregistrazioni di alcune 
attività svolte in classe 

 

Dal mese di gennaio, come comunicato al Consiglio di Classe, interverrà in classe un dottorando in 
Didattica della Matematica attivo presso il dipartimento di Matematica dell’Università degli Studi di 

Torino, Osama Swidan. 
L’intervento del dottorando verterà sull’introduzione al concetto di funzione, proponendo alcune 

attività didattiche, pensate, organizzate e progettate dalla docente di classe insieme a Swidan e al 
Nucleo di Ricerca in Didattica della Matematica dell’Università degli Studi di Torino, coordinato dal 
professor F. Arzarello. 
Durante gli interventi in classe il dottorando, oltre ad apportare il proprio contributo, filmerà alcune 
lezioni, altre verranno registrate e altre ancora fotografate in modo che tali materiali possano 
costituire per il gruppo di ricerca didattica occasione di studio, riflessione e analisi critica delle attività 

svolte, ovviamente nell’ottica di portare un valore aggiunto anche alla didattica nella classe stessa. 
Le riprese e le fotografie costituiranno materiale di studio e di indagine per la ricerca didattica e per 
la stesura della tesi. Nelle riprese saranno preferite le mani e i gesti ai volti. 
L’insegnante e il dottorando, si impegnano a utilizzare tale materiale solamente a tal fine e a 
modificare i nomi dei ragazzi, nel caso in cui le immagini debbano essere mostrate. 
 
L’insegnante si rende disponibile per ulteriori informazioni e precisazioni.  

 
Si coglie l'occasione per porgerVi i più cordiali. 

 

L’insegnante Il Dirigente Scolastico 

Silvia AAAAAAA AAAAAAAAAA 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Il sottoscritto _________________________________________________ 

genitore di ___________________________________________ 

 autorizzo l’effettuazione di video-registrazioni durante le attività svolte nelle lezioni di 
matematica della classe 1° BNR e l’utilizzo del materiale (video e schede di lavoro) ai fini 
didattici e di ricerca 

 non autorizzo l’effettuazione di video-registrazioni durante le attività svolte nelle lezioni di 
matematica della classe 1° BNR e l’utilizzo del materiale (video e schede di lavoro) ai fini 

didattici e di ricerca. 

aaaaaaaaa,  

         In fede 
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Original version of the consent form used during 2019 teaching experiment:  

Liceo Scientifico Statale aaaaaaaaaaaaaa 

a.s. 2019 – 2020 

Ai genitori degli studenti della classe 2° ANR 

Oggetto: Richiesta di autorizzazione per effettuare audio/videoregistrazioni di alcune attività 
svolte in classe 

 

Come già comunicato ai vostri figli, nei mesi di ottobre e aprile durante le ore di Matematica e Fisica potrà 
essere presente in aula la dott.ssa Sara Bagossi, impegnata in un dottorando di ricerca in Matematica presso 
il dipartimento di Matematica dell’Università degli Studi di Modena e Reggio Emilia. 
L’intervento preparato con la dottoranda verterà sulla modellizzazione di fenomeni naturali e sul legame tra 
i vari linguaggi della matematica.  
Gli obiettivi della ricerca (e della sua tesi di dottorato) sono individuare le potenzialità didattiche di una 
specifica tecnica di insegnamento denominata “Metodo della ricerca variata” dal Gruppo di Ricerca in 

Didattica della Matematica coordinato del prof. F. Arzarello del Dipartimento di Matematica “G. Peano” 
dell’Università degli Studi di Torino di cui io faccio parte. In particolare ci si pone l’obiettivo di aumentare la 
consapevolezza negli studenti delle proprie conoscenze disciplinari e di sistematizzarle attraverso il lavoro 
in classe. 
Tutti gli interventi verranno progettati prima dalla docente di classe insieme alla dott.ssa Bagossi e al prof. 

Arzarello, impegnato da anni nella ricerca in Didattica della Matematica e relatore della tesi di dottorato. 
 

Durante gli interventi in classe la dottoranda, oltre ad apportare il proprio contributo, filmerà alcune lezioni 
e fotograferà dei momenti significativi, in modo che tali materiali possano costituire occasione di studio, 
riflessione e analisi critica delle attività svolte, ovviamente nell’ottica di portare un valore aggiunto anche 
alla didattica nella classe stessa. 
 
Tutte le riprese e le fotografie costituiranno esclusivamente materiale di studio e di indagine per la ricerca 

didattica e per la stesura della tesi. Tendenzialmente nelle riprese sarà privilegiata l’inquadratura di mani e 
gesti rispetto ai volti. A tal fine, nel caso in cui le immagini debbano essere mostrate, i nomi di battesimo 
degli studenti saranno modificati. 
Si garantisce che le immagini e le riprese saranno comunque utilizzate solo in contesti che non 

pregiudicheranno in alcun modo la dignità personale e il decoro dei minori. 
 
L’insegnante si rende disponibile per ulteriori informazioni e precisazioni.  

Si coglie l'occasione per porgerVi i più cordiali. 

 L’insegnante Il Dirigente Scolastico 

 Silvia aaaaaaaa aaaaaaaaaaaa 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Il sottoscritto _________________________________________________ 

genitore di ___________________________________________ 

□ autorizzo l’effettuazione di video-registrazioni durante le attività svolte nelle lezioni di Matematica e 
Fisica della classe 2° ANR e l’utilizzo del materiale (video e schede di lavoro) ai fini didattici e di ricerca 

□ non autorizzo l’effettuazione di video-registrazioni durante le attività svolte nelle lezioni di 
Matematica e Fisica della classe 2° ANR e l’utilizzo del materiale (video e schede di lavoro) ai fini 
didattici e di ricerca. 

aaaaaaaa,                       In fede                  
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Original version of the consent form used during 2020 teaching experiment:  

 

Liceo Scientifico Statale aaaaaaaaaaaaaa 

a.s. 2020 – 2021 

Ai genitori degli studenti della classe 3° ANR 

Oggetto: Richiesta di autorizzazione per effettuare audio/videoregistrazioni di alcune attività 
svolte in classe 

 

Come già comunicato ai vostri figli, nei mesi di settembre e ottobre durante le ore di Matematica si svolgerà 
una seconda attività di modellizzazione di fenomeni naturali, in continuità con la sperimentazione proposta 

lo scorso anno scolastico. Tale intervento si inserisce nel progetto di ricerca della dott.ssa Sara Bagossi, 
impegnata in un dottorato di ricerca in Matematica presso il dipartimento di Matematica dell’Università degli 
Studi di Modena e Reggio Emilia. 
Gli obiettivi della ricerca (e della sua tesi di dottorato) sono individuare le potenzialità didattiche di una 
specifica tecnica di insegnamento denominata “Metodo della ricerca variata” dal Gruppo di Ricerca in 

Didattica della Matematica coordinato del prof. F. Arzarello del Dipartimento di Matematica “G. Peano” 

dell’Università degli Studi di Torino di cui io faccio parte. In particolare ci si pone l’obiettivo di aumentare la 
consapevolezza negli studenti delle proprie conoscenze disciplinari e di sistematizzarle attraverso il lavoro 
in classe. 
Tutti gli interventi verranno progettati prima dalla docente di classe insieme alla dott.ssa Bagossi e al prof. 

Arzarello, impegnato da anni nella ricerca in Didattica della Matematica e relatore della tesi di dottorato. 
Inoltre, la dottoranda parteciperà alla sperimentazione collegandosi a distanza. 
 

Durante lo svolgimento della sperimentazione, la docente filmerà alcune lezioni e/o videoregistrerà le attività 
a distanza in modo che tali materiali possano costituire occasione di studio, riflessione e analisi critica delle 
attività svolte, ovviamente nell’ottica di portare un valore aggiunto anche alla didattica nella classe stessa. 
 
Tutte le riprese e le fotografie costituiranno esclusivamente materiale di studio e di indagine per la ricerca 
didattica e per la stesura della tesi. Tendenzialmente nelle riprese sarà privilegiata l’inquadratura di mani e 
gesti rispetto ai volti. A tal fine, nel caso in cui le immagini debbano essere mostrate, i nomi di battesimo 

degli studenti saranno modificati. 
Si garantisce che le immagini e le riprese saranno comunque utilizzate solo in contesti che non 
pregiudicheranno in alcun modo la dignità personale e il decoro dei minori. 

 
L’insegnante si rende disponibile per ulteriori informazioni e precisazioni.  
 

Si coglie l'occasione per porgerVi i più cordiali. 

 L’insegnante Il Dirigente Scolastico 

 Silvia aaaaaaaa aaaaaaaaaaaa 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - 

Il sottoscritto _________________________________________________ 

genitore di ___________________________________________ 

□ autorizzo l’effettuazione di video-registrazioni durante le attività svolte nelle lezioni di Matematica 

della classe 3° ANR e l’utilizzo del materiale (video e schede di lavoro) ai fini didattici e di ricerca 

□ non autorizzo l’effettuazione di video-registrazioni durante le attività svolte nelle lezioni di 
Matematica della classe 3° ANR e l’utilizzo del materiale (video e schede di lavoro) ai fini didattici e di 
ricerca. 

Aaaaaaaa,                                  In fede 
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APPENDIX B 
Original version of Test 1, page 1: 
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Original version of Test 2, page 1: 
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Translation into Italian of Test 1, page 1: 

Translation into Italian of Test 2, page 1: 
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