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Highlights 

 This paper replicates the Diebold and Yilmaz, DY, (2012) study on financial markets 

connectedness 

 The markets are the commodity and the stock, bond, FX for the US. 

 Similar to DY, we use use the Generalized Forecast Error Variance Decomposition, GEFVD 

 We compare normalization schemes to GEVD 

 We show that a scalar-based normalization is preferable to the row normalization suggested 

by DY 

 

Abstract 

This paper replicates the Diebold and Yilmaz (2012) study on the connectedness of the commodity 

market and three other financial markets: the stock market, the bond market, and the FX market, 

based on the Generalized Forecast Error Variance Decomposition, GEFVD.  We show that the net 

spillover indices (of directional connectedness), used to assess the net contribution of one market to 

overall risk in the system, are sensitive to the normalization scheme applied to the GEFVD. We show 

that, considering data generating processes characterized by different degrees of persistence and 

covariance, a scalar-based normalization of the Generalized Forecast Error Variance Decomposition is 

preferable to the row normalization suggested by Diebold and Yilmaz since it yields net spillovers free 

of sign and ranking errors. 

 

Keywords: causality; normalization schemes; generalized forecast error variance decomposition; 

spillover; simulation; Vector Autoregression Models. 

 

JEL classification: C15; C53; C58; G17. 
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1   Introduction 

 

A normalization scheme is a set of one or more constraints to be imposed on a matrix such that the 

resulting scaled version will satisfy certain conditions. Scaling a matrix such that its rows or columns 

sum to one is one of the most common normalization schemes. A normalization scheme is adopted 

either for estimation purposes or simply for interpretative purposes.  

The aim of this paper is to show how the choice of a normalization scheme affects the sign and the 

magnitude of net spillovers in the Diebold and Yilmaz (2012) framework. To this end, we first provide 

a review of the most common normalization schemes used in different financial applications, with a 

particular focus on forecast error variance decomposition. In fact, the implementation of the 

generalized forecast error variance decomposition yields a variance decomposition table that has to be 

normalized for interpretative purposes. We show that the net spillover indices (of directional 

connectedness) used to assess the net contribution of one market to systemic risk are sensitive to the 

normalization scheme of the GEFVD. Moreover, we also show that the choice of the normalization 

scheme affects the ranking of variables in terms of their relative contribution to the system and the 

assessment of the total index of connectedness. 

Second, in line with Caloia et al. (2018), we suggest a scalar-based normalization scheme overcoming 

the limits of the traditional row-normalization scheme, used in Diebold and Yilmaz (2012). In this 

paper however, the advantages and disadvantages of the most popular normalization schemes are 

assessed through examples and simulations. In particular, we study the extent to which a wrong 

normalization choice can lead to biased spillover measures, when the data generating process is 

characterized by different degrees of persistence and covariance.  

Finally, we replicate the analysis in Diebold and Yilmaz (2012) in order to show how their results 

change in terms of net spillovers as the normalization scheme changes. We analyse in particular the 

row-normalization, the alternative column normalization also suggested in Diebold and Yilmaz (2012) 

and the maximum row sum scalar normalization proposed in Caloia et al. (2018). We show that the 

bond market turns out to have received less volatility spillovers than the commodity market if the 

row-normalization scheme (or the column-normalization) is used, as in Diebold and Yilmaz (2012). 

However, if we use scalar normalization, it is evident that the result is the opposite: the bond market 

turns out to have received more volatility spillovers than the commodity market. As a result, the paper 

warns about the use of the popular row-normalization or column-normalization schemes if the aim of 

the research is to assess net spillovers. 

The results of the paper are intended to be useful not only for deriving spillover measures, but also in 

any other field where a matrix normalization scheme is adopted, such as network analysis or spatial 

econometrics.  
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The structure of the paper is as follows. In Section 2 we provide an overview of the methodology 

suggested by Diebold and Yilmaz (2012) to construct a network graph and, in particular, indices of 

connectedness.  In Section 3 we review the most common normalization schemes used in various 

fields. Section 4 highlights how persistence and covariance among the series affect the results of the 

spillover analysis based on different normalization schemes. Section 5 replicates the study by Diebold 

and Yilmaz (2012). The final section concludes. 

 

2. Networks and connectedness  

Networks are usually represented in graphs, where nodes and edges are graphically displayed. A 

weighted network is a network that allows for weights on the edges in order to represent stronger or 

weaker connections between nodes, while direct networks are networks that allow for asymmetries.  

One example of a weighted and direct network (also varying across forecast horizons) is the forecast 

error variance decomposition (FEVD) (Diebold, Yilmaz (2014)).  

Forecast error variance decomposition is a standard econometric tool used in multivariate time series 

analysis to assess the contribution in terms of forecast error variance of each variable due to a shock 

to any of the other variables. Consider a covariance stationary VAR(p) with k endogenous variables: 

 𝑥𝑡 = 𝑐 + 𝐴1𝑥𝑡−1 + ⋯+ 𝐴𝑝𝑥𝑡−𝑝 + 𝜀𝑡 (1) 

 

where 𝜀𝑡  are i.i.d. disturbances with contemporaneous covariance matrix Σ. In order to derive the 

moving average representation of the VAR(p), we rewrite (1) as a first-order system: 
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which can be written in compact form: 

_
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ttt xAx  
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where 


A  is the  kpkp companion matrix. Then, using the selection matrix 













___

0....0Ie  which has k 

rows and kp columns (and the first k rows and columns are given by the identify matrix  I ), 

 

we obtain the kk  moving average coefficient matrix Ψh : 
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Given a set of k endogenous variables, Diebold and Yilmaz (2012; 2014) use the Pesaran and Shin 

(1998) “generalized” approach (GFEVD) that allows shocks to be correlated (which is insensitive to 

variable ordering,)  to obtain the element in row i and column j of  the connectedness matrix proxied 

by FEVD. More specifically, the contribution of the j-th shock to the h step ahead forecast error 

variance of the i-th endogenous series is computed as follows: 

 
𝜃𝑖𝑗

𝑔
=

𝜎𝑗𝑗
−1 ∑ (𝑒𝑖

′𝛹𝑙Σ 𝑒𝑗)
2

ℎ−1
𝑙=0

∑ (𝑒𝑖
′𝛹𝑙Σ 𝛹𝑙′𝑒𝑖)

ℎ−1
𝑙=0

 (5) 

 

where σjj the standard deviation of the disturbance of the jth equation, and ei is the selection vector 

with one as the ith element and zeros otherwise.  

Due to the non-orthogonality of shocks, the sum of the contributions to the forecast error variance (i.e. 

the row sum) is not equal to one1. The authors therefore propose a row-normalization of the values of 

the variance decomposition in equation (5) to interpret its elements as variance shares: 

 
�̃�𝑖𝑗

𝑔
=

𝜃𝑖𝑗
𝑔

∑ 𝜃𝑖𝑗
𝑔𝐾

𝑗=1

 (6) 

They also mention the equivalence between this row-normalization scheme and the alternative 

column-normalization scheme (see Section 3).  

Lanne and Nyberg (2016) propose a new generalized forecast error variance decomposition, based on 

the generalized impulse response function, which, in the case of a linear VAR, is given by2:      

 
𝜃𝑖𝑗

𝑔
=

𝜎𝑗𝑗
−1 ∑ (𝑒𝑖

′𝛹𝑙Σ 𝑒𝑗)
2

ℎ−1
𝑙=0

∑ [𝜎𝑗𝑗
−1 ∑ (𝑒𝑖

′𝛹𝑙𝛴 𝑒𝑗)
2
]ℎ−1

𝑙=0
𝐾
𝑗=1

 (6’) 

Equations (5) and (6’) share the same numerator (the cumulative effect of the j-th shock), but they 

have a different denominator: the total forecast error variance of the i-th endogenous variable (eq. 5) 

and the aggregate cumulative effects of all the shocks (in eq. (6’)). This implies that both (6) and (6’) 

are identical and they share the property that the proportions of the impact accounted for by 

innovations in each variable sum to unity (e.g. they both lead to a row-normalized spillover matrix). 

Diebold and Yilmaz (2014) rely on the absolute value of net pairwise spillovers when drawing a graph 

of the network, which is obtained from generalized forecast error variance decomposition. Therefore 

in this case, the network graph depends on the chosen normalization scheme for the GFEVD.  

Moreover, as shown by Diebold and Yilmaz (2014), given the kk connectedness row-normalized matrix 

                                                        
1 The moving average coefficients necessary to compute the spillover indices are obtained by means of the 
estimation of a traditional VAR in Diebold and Yilmaz (2012). Cipollini et al. (2017) and Fengler et al. (2018) 
obtain the moving average coefficients through the estimation of a fractionally integrated VAR and of a 
multivariate GARCH, respectively. 
2 Lanne and Nyberg (2016) suggest a residual bootstrap approach to compute the row normalized GEFVD in case 
of a non-linear VAR model. 
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(with the row i, column j element measured by  �̃�𝑖𝑗
𝑔

  described in (6)), the summary descriptive 

statistics of the network are given by the following directional connectedness indices: 

 
𝐷𝑆→ 

𝑔 (ℎ) = ∑ �̃�𝑖𝑗
𝑔

𝐾

𝑗=1
𝑗≠𝑖

      ;       𝐷𝑆  →
𝑔 (ℎ) = ∑ �̃�𝑖𝑗

𝑔
𝐾

𝑖=1
𝑖≠𝑗

           (7) 

The directional spillover measuring the vulnerability of each market to shocks arising in all the other 

markets (FROM others, 𝐷𝑆→ 
𝑔

) is computed as the sum of the off-diagonal elements of each row of the 

variance decomposition matrix. The spillover index measuring the transmission of a shock to one market 

to all the other markets (TO others, 𝐷𝑆  →
𝑔

 is computed as the sum of the off-diagonal elements of each 

column of the connectedness matrix. A measure of net spillover (NET) of each market is obtained as the 

difference between the directional spillovers TO others and FROM others:  

 𝑁𝐸𝑇𝑔(ℎ) = 𝐷𝑆  →
𝑔 (ℎ) − 𝐷𝑆→ 

𝑔 (ℎ) (8) 

In this way, in line with Diebold and Yilmaz (2009, 2012, 2014) we are able to identify the markets 

that are net donors and those that are net receivers in terms of risk transmission.  

Consequently, not only the network graph, but also the summary statistics described by the directional 

connectedness indices depend on the chosen normalization scheme for the GFEVD. Given the critical 

role of normalization, in the next section we review the different schemes proposed in the literature.  

 

 

3.    Normalization schemes 
 

In this section, we review the most commonly used normalization schemes in GFEVD and spatial 

regression models. As an example, in financial econometrics the row normalization of the GFEVD 

yields a direct weighted graph. In spatial econometrics, on the other hand, undirected weighted graphs 

are mostly used, in order to allow for symmetric linkages (e.g. borders). More specifically, consider a 

standard generalised spatial autoregressive model of order p, or simply SAR(p) model: 

 

 
𝑢 = ∑ 𝜙ℎ𝑊ℎ𝑢 + 𝜀

𝑝

ℎ=1
 (9) 

 

where 𝑊 = (𝑤𝑖,𝑗) for 𝑖, 𝑗 = 1,… , 𝑘  is the spatial weight matrix and  𝜙ℎ  are autoregressive parameters. 

Equivalently, we can rewrite equation (9) as follows: 

 
𝑢 =  (𝐼𝑁 − ∑ 𝜙ℎ𝑊ℎ

𝑝

ℎ=1
)
−1

𝜀 (10) 

Mention should be made of the different normalization schemes of the spatial weight matrix W used in 

the literature to make (𝐼𝑁 − ∑ 𝜙ℎ𝑊ℎ
𝑝
ℎ=1 )  non-singular. These schemes can be applied also to GFEVD. 
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3.1   Row normalization 

 Given a (𝑘 × 𝑘) unscaled matrix 𝑊∗ = (𝑤𝑖𝑗
∗ ), we can obtain the corresponding row-stochastic matrix 

𝑊 = (𝑤𝑖𝑗) by row-normalizing 𝑊∗ such that: 

 
𝑤𝑖𝑗 =

𝑤𝑖𝑗
∗

∑ 𝑤𝑖𝑗
∗𝑘

𝑗=1

  (11) 

The resulting matrix W has row sums equal to one. However, row normalization is not a restrictive 

task since the same result can be achieved by constraining the parameter space of the autoregressive 

parameters 𝜙ℎ (Caporin and Paruolo (2015)). As a result, the normalization task would be absorbed 

by the AR parameter through scaling.  

Moreover, this normalization is useful in interpreting spatial weight matrices, the elements of which 

can be thought of as a fraction of all spatial influence. This interpretative advantage also applies for a 

forecast error variance decomposition that does not rely on a Cholesky factorization (or any other 

identifying scheme of structural VAR models) so that the matrix coefficients can be interpreted as 

variance shares. This is the normalization scheme proposed by Diebold and Yilmaz (2012) when using 

the generalized forecast error variance decomposition (see eq. 5 in Section 2) and this scheme 

coincides with the Lanne and Nyberg (2016) method to compute the GEFVD in case of a linear VAR 

model (see eq. 6′in Section 2).  

This scheme has an interpretative advantage. The directional spillovers received FROM others 

including own sum to one and, as a result, each element of the forecast error variance decomposition 

matrix can be interpreted as a variance share (by row), i.e. it measures the contribution of each 

variable to the 100-percentage point forecast error variance of every other variable. Since Diebold and 

Yilmaz (2012) also aim to measure the contribution of each variable to the forecast error variances of 

other variables, row normalization serves their purpose quite well. 

However, this scheme also has certain drawbacks: by scaling the elements of each row by the 

corresponding row sum, the order of magnitude among the elements of the matrix is preserved only 

by row. Therefore, the NET spillover indices are obtained  by subtracting the off-diagonal sum of each 

row from the corresponding sum in each column, that is, by subtracting two quantities measured in 

different terms (the row elements sum to one, while the column elements do not). This implies that 

NET spillovers indices may be misspecified in sign and magnitude. 

 

3.2   Column normalization 

This scheme mirrors the row-normalization scheme described above. The only difference is that the 

normalization is by column: in this case only the columns sum to one.  In the case of the column 

normalization, the focus is on the extent to which one variable affects the system: each element of the 
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forecast error variance decomposition matrix can be interpreted by column as the fraction of total 

variance transmitted by each variable to the forecast error variance of the other variables.  

The issues concerning row-normalization also apply in this case: the elements are normalized only 

along one dimension (the column) and the order of magnitude is preserved only by column. Note that 

for the variance decomposition Diebold and Yilmaz (2012) suggest this normalization scheme as an 

alternative to row normalization.   

 
 

3.3   Max row normalization 

In this normalization scheme, the normalization factor is a scalar equal to the maximum row sum of 

the unscaled matrix W*, then the scaled matrix is obtained as 𝑊 = 𝑊∗/𝑘 where: 

 𝑘 = max(𝑟1, … , 𝑟𝑘) (12) 

and: 

 
 𝑟𝑖 = ∑ 𝑤𝑖𝑗

∗
𝑘

𝑗=1
 (13) 

where 𝑤𝑖𝑗
∗   is the element in row i and column j of the unscaled matrix 𝑊∗. This scheme is 

characterized by a single normalization factor instead of the 𝑘 factors of the row normalization 

scheme (one for each row). As a result, it preserves the magnitude relation among the elements of 

rows and columns, meaning that column and row values can be safely compared. Moreover, it allows 

for a comparison between different rows and column sums, making it possible to distinguish between 

stronger or weaker influences.  Third, taking the variable that has the maximum row sum as the 

reference one, the other directional spillovers by row (FROM others) represent the degree of 

vulnerability of each variable relative to the reference one. Last, and most importantly, since NET 

spillovers indices are correctly specified in sign and magnitude, the max row normalization scheme 

can improve the interpretation of the results to a significant extent.  

As argued by Billio et al. (2016) it is also possible to normalize by the maximum row sum over time in 

order to compare spatial weight matrices in different time periods while preserving a reasonable 

magnitude of autoregressive parameters. 

 

3.4   Max column normalization 

This scheme mirrors the max row normalization described above: the only difference is that the scalar 

is equal to the maximum column sum of the unscaled matrix W*. The same advantages of the max row 

normalization apply. 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



3.5   Spectral radius normalization 

Let W* be the (𝑘 × 𝑘) positive unscaled matrix and let { 𝜆1, … , 𝜆𝑘} be the eigenvalues of W*. The 

spectral radius is the maximum eigenvalue (in modul), formally: 

 𝜏 = 𝑚𝑎𝑥{|𝜆1|, |𝜆|2, … , |𝜆|𝑘} (14) 

The scalar normalization factor is set equal to the spectral radius and the scaled matrix 𝑊 is therefore 

obtained as follows: 

 𝑊 = 𝑊∗/𝜏 (15) 

Under the Perron and Frobenius theorem, the spectral radius satisfies the following inequalities: 

 
𝑚𝑖𝑛𝑖  ∑ 𝑤𝑖𝑗 ≤ 𝜏 ≤

𝑁

𝑗=1
𝑚𝑎𝑥𝑖 ∑ 𝑤𝑖𝑗

𝑁

𝑗=1
 (16) 

As a result, some row sums and column sums exceed unity, while others can be less than one. This 

normalization scheme therefore has one main drawback: the elements can no longer be interpreted as 

fractions of the overall influence (e.g. the sum by row and by column). 

Nevertheless, this normalization scheme is widely used in spatial econometrics: in fact, following 

LeSage and Pace (2010) a matrix 𝑊∗ can be transformed to have maximum eigenvalue equal to one 

using 𝑊 = 𝑊∗ 𝑚𝑎𝑥(𝜆𝑊∗), and this is a desirable property because it constrains the autoregressive 

parameter to have maximum possible value equal to one. In particular, Keleijan and Prucha (2010) 

show that (𝐼𝑁 − ∑ 𝜙ℎ𝑊ℎ
𝑝
ℎ=1 ) is non-singular for all the values of the parameter space in the interval 

(−1 ;  1).  

 

 

4   Comparison of the normalization schemes in GFEVD  

The review of different normalization schemes in section 3 shows that row normalization has both 

interpretative advantages and limits and, in this framework, leads to misspecified spillover measures. 

In particular:  

- If the normalization is carried out by row, the column sum is not necessarily equal to one. As a 

result, while FROM directional spillovers can be interpreted as a fraction of the total variance 

received via spillovers, TO directional spillovers lack this kind of interpretation (some column 

sums are above unity, while some others are below unity). 

- Normalization by row implies that the order of magnitude of the entries of the variance 

decomposition table is preserved only row by row. As a result, it is not possible to make 

comparisons across rows in order to determine which variable is affected the least (or the 

most) FROM others.  

- NET spillovers are obtained as the difference between two that are non-comparable in 

magnitude, and as a result they may be misspecified in sign and magnitude. 

- The total connectedness index changes if normalization is carried by row or by column. 
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In this section, we show how the normalization schemes reviewed in section 3 affect the GFEVD, by 

using data generating processes characterized by different degrees of persistence and covariance.  In 

fact, as shown by Pesaran and Shin (1998), the Impulse Response Function underlying the GFEVD, 

assuming a multivariate Gaussian distribution for the shocks εt and a linear VAR model, depends on 

the persistence and the covariance structure of the multivariate process. Here, we show how the 

spillover values are sensitive to the normalization choice, thus leading to misspecifed measures of net 

contribution (NET), and we show how the likelihood of  obtaining misspecifed NET spillovers depends 

on i) the forecast horizon h ii) the degree of persistence iii) the covariance structure of the endogenous 

variables. 

We consider four cases: a) LL (Low Persistence; Low Covariance); b) LH (Low Persistence; High 

Covariance); c) HL (High Persistence; Low Covariance); d) HH (High Persistence; High Covariance), 

according to the different setups of the VAR model described in eq. (1). For each scenario, we produce 

a two-days-ahead (ℎ = 2) and a ten-days-ahead (ℎ = 10) forecast. 

We set the number of endogenous variables k, equal to five. The model configurations differ for the 

coefficient matrices in the lag operator A(L) and of the covariance matrix Σ = 𝑃 𝑃′. In particular, the 

Low Covariance case is defined by using a lower triangular matrix 𝑃 set as follows: 

 

𝑃0 =

[
 
 
 
 
0.10 0 0
0.15 0.15 0
0.20
0.25
0.30

0.20
0.25
0.30

0.20
0.25
0.30

     

0 0
0 0
0

0.25
0.30

0
0

0.30]
 
 
 
 

 (17) 

 

while for the High Covariance case, we define two subcases to disentangle the role of correlation-

driven comovements. In particular, the High Covariance case is defined by the following two lower 

triangular matrices: 

𝑃1 =

[
 
 
 
 
0.40 0 0
0.45 0.45 0
0.50
0.55
0.60

0.50
0.55
0.60

0.50
0.55
0.60

     

0 0
0 0
0

0.55
0.60

0
0

0.60]
 
 
 
 

           𝑃2 =

[
 
 
 
 
0.40 0 0
0.55 0.45 0
0.70
0.75
0.80

0.70
0.75
0.80

0.50
0.75
0.80

     

0 0
0 0
0

0.55
0.80

0
0

0.60]
 
 
 
 

      (18) 

 

It is evident that the matrix 𝑃1 keeps the same correlation structure as matrix 𝑃0, that is: 𝜌1,𝑖,𝑗 =

𝜎1; 𝑖,𝑗

√𝜎1; 𝑖𝑖
2  𝜎1; 𝑗𝑗

2
= 𝜌0,𝑖𝑗  ∀ 𝑖 ≠ 𝑗 ; where 𝜎𝑘; 𝑖,𝑗 is the 𝑖𝑗 −th element of the matrix Σ𝑘 = 𝑃𝑘𝑃𝑘′ with = {0 , 1}3 . 

                                                        
3 The covariance and correlation matrices corresponding to 𝑃0, 𝑃1 and 𝑃2   are respectively: 
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On the contrary, matrix 𝑃2 induces a higher correlation structure among the endogenous variables 

with respect to both the matrices 𝑃0 and 𝑃1.  

To ensure a stationary VAR(p) (e.g. with roots of the characteristic polynomial A(L) outside the unit 

circle) characterized by Low Persistence, we consider a VAR(2) with coefficient matrices A1 and A2 

with values equal to 0.05. A stationary VAR(p) characterized by High Persistence is a restricted 

VAR(22) given by the parsimonious Vector HAR representation with coefficient matrices 

𝐴(𝑑), 𝐴(𝑤), 𝐴(𝑚) described as follows: 𝐴(𝑑) with values equal to 0.05, 𝐴(𝑤) with values equal to -0.02 and 

𝐴(𝑚) with values equal to 0.014. 

Consequently, we compute the generalized forecast error variance decomposition as defined by 

equation (5) and we obtain the measures of NET contribution. Formally, the non-normalized NET 

spillovers for the forecast horizon ℎ, which are taken as benchmark, are obtained as follows: 

 𝑁𝐸𝑇𝑔
𝑖(ℎ) = 𝐷𝑆  →

𝑔 (ℎ) − 𝐷𝑆→ 
𝑔 (ℎ) (19) 

where: 

 
𝐷𝑆

 →
𝑔 (ℎ) = ∑ 𝜃𝑖𝑗

𝑔
𝐾

𝑖=1
𝑖≠𝑗

     ;     𝐷𝑆→ 
𝑔 (ℎ) = ∑ 𝜃𝑖𝑗

𝑔
𝐾

𝑗=1
𝑗≠𝑖

           (20) 

where 𝐷𝑆
 →
𝑔

 denotes the non-normalized directional spillover transmitted by the market 𝑖 to all other 

markets 𝑗 (named TO others), while 𝐷𝑆→ 
𝑔

 denotes the non-normalized directional spillover received 

by market 𝑖 from all the other markets 𝑗 (named FROM others). Second, we compute the  𝑁𝐸𝑇̅̅ ̅̅ ̅̅ ̅̅  

spillovers obtained from the forecast error variance decomposition normalized by the different 

schemes: 

 𝑁𝐸𝑇𝑔
𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅(ℎ) = 𝐷𝑆
 →
𝑔̅̅ ̅̅ ̅̅ ̅(ℎ) − 𝐷𝑆→ 

𝑔̅̅ ̅̅ ̅̅ ̅(ℎ) (21) 

                                                                                                                                                                                        

Σ0 =

[
 
 
 
 
0.01 0.03 0.02
0.015 0.045 0.06
0.02
0.025
0.03

0.06
0.075
0.09

0.12
0.15
0.18

     

0.02 0.03
0.07 0.09
0.15
0.25
0.3

0.18
0.30
0.45]

 
 
 
 

 𝐶0 =

[
 
 
 
 

1 0.71 0.58
0.71 1 0.82
0.58
0.50
0.45

0.82
0.71
0.63

1
0.87
0.77

     

0.50 0.45
0 0.63

0.87
1

0.89

0.77
0.89
1 ]

 
 
 
 

 

Σ1 =

[
 
 
 
 
0.16 0.18 0.20
0.18 0.405 0.45
0.20
0.22
0.24

0.45
0.495
0.54

0.75
0.825
0.90

     

0.22 0.24
0.495 0.54
0.825
1.21
1.32

0.90
1.32
1.80]

 
 
 
 

 C1 =

[
 
 
 
 

1 0.71 0.58
0.71 1 0.82
0.58
0.50
0.45

0.82
0.71
0.63

1
0.87
0.77

     

0.50 0.45
0 0.63

0.87
1

0.89

0.77
0.89
1 ]

 
 
 
 

 

Σ2 =

[
 
 
 
 
0.16 0.26 0.28
0.26 0.63 0.77
0.28
0.30
0.32

0.77
0.83
0.88

1.23
1.43
1.52

     

0.30 0.32
0.83 0.88
1.43
1.99
2.24

1.52
2.24
2.92]

 
 
 
 

 C2 =

[
 
 
 
 

1 0.82 0.63
0.82 1 0.88
0.63
0.53
0.47

0.88
0.74
0.65

1
0.91
0.80

     

0.53 0.47
0.74 0.65
0.91
1

0.93

0.80
0.93
1 ]

 
 
 
 

 

 

 

 4 In the Vector HAR model the matrices 𝐴(𝑑), 𝐴(𝑤) and 𝐴(𝑚) are coefficient matrices associated with the three 
terms of daily, weekly and monthly partial volatility components, respectively. In particular, the Vector HAR 
model can be written as follows: 

𝑥𝑡
(𝑑)

= 𝑐 + 𝜙(𝑑)𝑥𝑡−1
(𝑑)

+ 𝜙(𝑤)𝑥𝑡−1
(𝑤)

+ 𝜙(𝑚)𝑥𝑡−1
(𝑚)

+ 𝜀𝑡  

where 𝑥𝑡  are daily volatilities, while the terms representing the weekly and monthly volatilities are obtained as 
the arithmetic average of the daily volatilities recorded in the last week and the last month, respectively. 
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where the over bar denotes the normalized spillovers. These normalized measures are compared to 

the benchmark spillovers in equation (19). The comparison is intended to assess the reliability of the 

different normalization schemes both in terms of order of ranking (to assess which market is the 

largest net contributor to the total connectedness) and in terms of sign (to distinguish net donors from 

net receivers).5 

 

4.1    Results based on population parameters 

In this section we cast light on how the choice of the normalization scheme can affect the ranking and 

the sign of the NET spillovers, by means of an introductory example. Moreover, in order to show how 

the spillover tables change for different forecast horizons, two different horizons are reported: the 

two-day horizon is reported in the upper panel of every Table, while the lower panel contains the ten-

day forecast horizon. 

For this introductory example we report the results based on the population parameters for the “High 

Persistence, High Covariance” scenario, which is the most illuminating one. Table 1 shows the spillover 

table based on the non-normalized forecast error variance decomposition that is taken as a 

benchmark. Tables 2 to 6 show the same spillover table after applying the different normalization 

schemes outlined in Section 3  (Table 2 for row normalization, Table 3 for column normalization, Table 

4 for normalization by spectral radius, Table 5 for normalization by maximum row sum, Table 6 for 

normalization by maximum column sum). These Tables show the directional spillover received from 

others (FROM others), the directional spillover received from others including own (FROM others 

including own), the directional spillover transmitted to others (TO others), the directional spillover 

transmitted to others including own (TO others including own), and the net contribution (NET) 

defined as the difference between the directional spillover transmitted TO others and the directional 

spillover received FROM others for each variable 𝑉𝑖 for 𝑖 = 1,… ,5. The tables also show the sign of the 

NET spillover (NET sign): negative if the market is the net receiver and positive if the market is the net 

donor, and the ranking of the NET spillover from the highest to the lowest (NET ranking). The tables 

also show the total spillover index computed as the ratio between the sum of cross-variance shares 

and the sum of cross and own variance shares. 

In Table 2 we show the standard row-normalization scheme proposed by Diebold and Yilmaz (2012) 

which has the interpretative advantage that the directional spillovers received FROM others including 

own sum to one, and as a result each element of the forecast error variance decomposition matrix can 

be interpreted as a variance share (by row). For example, in the upper panel variable 2 receives the 

                                                        
5 In order to measure the contribution of a variable to the system, Greenwood-Nimmo et al. (2015) propose the 
computation of an Influence Index for each variable. The Influence Index for variable i is defined as the ratio 
between the NET index of variable i and the sum of the FROM and TO indices of variable i. The Influence Index is 
bounded between -1 and 1 and measures the extent to which variable i influences (if the index is positive) or is 
influenced by the system (if the index is negative). We highlight that the ranking and sign errors associated with 
the row normalization or to the column normalization would affect the computation of the Influence Index. 
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most from variable 3 (0.219 = 21.9%), and the least from variable 5 (0.140 = 14%). Moreover, variable 

1 represents the variable least affected by the others (FROM others=0.653), while variable 3 is the 

most affected by the others (FROM others=0.705). In Table 2 Panel B, variable 1 is the market most 

affected by the others (FROM others=0.729), while variable 5 is the least affected by the others (FROM 

others=0.674).  

On the contrary in Table 3 all the columns (TO others including own) sum to one: each element of the 

forecast error variance decomposition matrix can be interpreted as the fraction of total variance 

transmitted. For example, in the upper panel of Table 3 variable 2 gives the least to variable 5 (0.131), 

and the most to variable 3 (0.216). Moreover, variable 3 transmits the most to the others (TO 

others=0.714), while variable 1 transmits the least to others (TO others=0.592). In Table 3 Panel B, 

variable 4 transmits the most to the others (TO others=0.728) and variable 1 transmits the least to the 

others (TO others=0.627). Variable 3 represents the variable most affected by the others (FROM 

others=0.778), while variable 1 is the least affected by the others (FROM others=0.608).  

In the case of the column normalization, the focus is on how much one variable (market or country) 

affects the system. Despite the neat interpretation, it may be seen from the example above 

(comparison of Tables 2 and 3 Panel B) that if row-normalization is used, the variable most affected by 

the others is the first (FROM others=0.729), while variable 5 is the least affected by the others (FROM 

others=0.674). If column normalization is used, the variable most affected by the others is the third 

(FROM others=0.778), while variable 1 is the least affected by the others (FROM others=0.608). 

Therefore the use of row-normalization or column-normalization provides different results in terms of 

the variable that affects the system the most (the least), or is affected by it the most (the least). If the 

results are compared with the original non-normalized matrix (see Table 1, Panel B), we see that the 

correct ordering is variable 3 as the one that is affected the most from the system (FROM others= 

2.413) and variable 5 as the one that is affected the least from the system (FROM others=2.048). 

Most importantly, the row normalization or column normalization schemes affect the NET spillovers, 

which may have the opposite sign and the incorrect ranking if compared to the non-normalized ones. 

In fact, for both forecast horizons, the first variable in the column normalization scheme (Table 3) is 

misconceived as a net donor, while it is a net receiver in the non-normalized case (Table 1), whereas 

variables 3 and 4 are mistakenly considered as net receivers (see Table 3) instead of net donors, as 

apparent in Table 1.  The same happens in the row normalization scheme (Table 2): for example, 

variable 2 is misconceived as net donor in the two-day forecast horizon, while it is a net receiver in the 

non-normalized case (Table 1). As a result, there is also a change in the ranking of the variables 

(ranging from the one giving the most to the system, that is the major net donor and has rank 1, to the 

variable receiving the most from the system, which is the major net receiver and has rank 5). For 

example, in the non-normalized case the variable transmitting the most to the system in net terms is 

variable 5 (for both forecast horizons), but in the row-normalized case it emerges that the variable 
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transmitting the most in net terms to the system is variable 3 for the two-day forecast horizon and 

variable 4 for the ten-day horizon.  

Tables 4 to 6 show the scalar-normalization cases. The scalar factors applied are: the spectral radius 

(Table 4), the maximum row sum (Table 5) and the maximum column sum (Table 6). In the spectral 

radius normalization, it is not possible to interpret each element of the forecast error variance 

decomposition matrix as variance shares by column, or by row. In fact, the sum by row and by column 

(FROM others including own and TO others including own) can attain values higher or lower than 1, 

given the mathematical property of the maximum eigenvalue described in eq. (16). Despite the lack of 

interpretability in terms of variance shares, all the net spillovers maintain the correct sign after 

normalization and the correct ranking as in the non-normalized case.  

It may be noted that in the maximum row sum normalization scheme in Table 5 and in the maximum 

column sum normalization scheme in Table 6, the only values which sum to one are those in the row 

with the maximum sum (the third row in both Panels of Table 5) and those in the column with the 

maximum sum (column 3 for Panel A and column 4 for Panel B of in Table 6), respectively. Only for 

these values is it possible to give a percentage interpretation: in Table 5 it may be seen that for h=2 

variable 3 receives 70.5% FROM others, while variable 3 in Table 6 Panel A transmits 71.4% TO 

others.  

Moreover, the scalar-based normalization allows for a comparison between different row and column 

sums, making it possible to distinguish between stronger or weaker influences. For example, in Table 

5 Panel B, variable 3 represents the market most affected by the others (FROM others=0.710), while 

variable 5 represents the market least affected by the others (FROM others=0.603). The same ordering 

is preserved if the maximum column normalization is used (see Table 6 Panel B).  

Furthermore, in Table 5 Panel A, the entry b21=0.146 indicates that the strength of the spillover from 

variable 1 to variable 2 is 14.6% of the total maximum spillover in the system (represented by variable 

3, whose total spillover is normalized to one). The spillover from variable 2 to variable 1 (16.0%) is 

1.4% greater than the spillover from variable 1 to variable 2. It should be evident that in Table 2 (row 

normalized) the same comparison is not possible, since each row element is divided by the total of 

each row, so that the elements that belong to different rows are not comparable in magnitude. 

In the end, considering the variable that has the maximum row sum as the reference one, the total 

spillovers (FROM+own) received by all other variables show the smaller degree of vulnerability of 

these markets with respect to the reference one. For example, in Table 5 Panel A, variable 3 is the 

reference variable and we can say that the total (FROM+own) spillover received by variable 1 is 76% 

of the total spillover (FROM+own) received by variable 3. This can improve the interpretation of the 

results to a significant extent.  

 In conclusion, it may be stated that the max row sum and max col sum normalization are slightly 

better than the spectral radius since they can preserve the ranking and the sign of the spillovers and, 

at least for one variable, they can preserve the interpretation as variance share.  
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Scalar-based normalization schemes also have advantages in computing the total connectedness index, 

if compared with row- or column-normalization schemes. As the total connectedness index is obtained 

by dividing the sum of cross-variance shares (off-diagonal elements) with the sum of the total of cross 

and own variance shares, a scalar-normalization scheme ensures that comparable quantities across 

rows and columns are summed, while the popular row-normalization and column-normalization 

schemes imply that quantities that are not comparable across row and columns are summed together.  

In fact, the index of total connectedness changes when using row-normalization (equal to 0.683 for 

h=2, see Table 2) or column-normalization (equal to 0.678 for h=2, see Table 3). On the other hand, 

any scalar-based normalization provides the same value for the index of total connectedness (equal to 

0.685, for h=2 see Tables 1, 4, 5, 6). This is a clear advantage of using a scalar-normalization scheme 

over the popular row-normalization or column-normalization schemes. 

As Tables 2 to 6 focus on the normalization issue for only the high persistence, high covariance 

scenario, with same correlation (corresponding to matrix P1, and case H.H.1), in Tables 7 and 8 we 

show the results based on population parameters for all the other scenarios. By looking at the sign of 

the net spillovers (Table 7) it is clear that the row-normalization scheme performs fairly well with no 

errors in sign for the horizon h=10 and only one error in sign when covariance or correlation is higher 

for the horizon h=2. On the contrary, in each scenario, and for both horizons, the column 

normalization produces from 1 to 3 errors in sign. By looking at the ranking errors in Table 8, what 

emerges is that both the row normalization and the column normalization scheme affect the ranking in 

most cases. On the other hand, any scalar normalization scheme does not affect the ranking of net 

spillovers. 

 

4.2   Results based on simulation  

In order to account for the role played by parameter estimation on the rank and sign of net spillovers, 

we simulate a multivariate dynamic system, using the DGP given by eq. (1). The shocks 𝜀𝑡 are given by 

𝑃 𝜂𝑡, where 𝜂𝑡 are iid Gaussian and orthogonal innovations with unit variance. In order to assess the 

reliability of the different normalization schemes in preserving the order of magnitude and the sign of 

net contributions (NET spillovers) obtained from the generalized forecast error variance 

decomposition, the simulation experiment involves the following steps: 

1) Five artificial data series (where the time series dimension is equal to 500) are obtained by 

simulating either the VAR(2) (in the case of Low Persistence) or the restricted VAR(22)  (in the case of 

High Persistence) with Gaussian innovations. The coefficient matrices for the lags and the lower 

triangular matrices 𝑃 aiming at capturing the different covariance structure are those used in section 

5. 
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2) For each of the 1000 replications, we estimate the model parameters by OLS, obtaining the impulse-

responses for the forecast horizons ℎ = 2, ℎ = 10 and computing the corresponding generalized 

forecast error variance decomposition as defined in eq. (5).  

After obtaining the simulated datasets, we compare the non-normalized matrix 𝑊∗ (e.g. the non-

normalized variance decomposition table for a given forecast horizon) and the five normalized 

matrices 𝑊 (e.g. the normalized variance decomposition table for a given forecast horizon) in terms of 

sign and ranking errors. 

First, we measure the number of errors in the sign of the net spillovers. Errors are counted when the 

net spillover obtained from the normalized matrix has a sign opposite to that of the net spillover 

obtained from the non-normalized matrix. The total number of possible errors is 5000 for each 

scenario (5 variables times 1000 replications).  

Second, we measure the errors in the ranking. Errors are counted when the ranking of the net 

spillovers obtained from the normalized matrix is different from that of the non-normalized matrix. 

The total number of possible errors is 1000 for each scenario (one ranking times 1000 replications). 

Results are shown in Table 9 for sign errors and in Table 10 for ranking errors.  

Table 9 shows that over a total number of 5000 possible errors for each scenario (5 variables times 

1000 replications), the row normalization performs much better than the column normalization for 

each scenario: in fact, for h=2 (h=10) the average number of errors in sign is about 439 (217) for the 

row-normalization scheme and about 2439 (2042) for the column normalization scheme. This result is 

surprising since the row normalization and column normalization schemes should theoretically be 

equal. In both normalization schemes, the number of errors increases with the degree of covariance, in 

both cases in which correlation is kept fixed or increases. 

Moreover, as shown in Table 10, the row-normalization proposed by Diebold and Yilmaz (2012) and 

the alternative column normalization schemes affect the ranking of the spillovers more than 870  

times out of 1000 for h=2 and more than 743 times out of 1000 for h=10 (with the sole exception of 

the row normalization scheme in the high persistence scenario H.L.). 

To conclude, even if the row normalization scheme and the column normalization scheme allow for a 

useful interpretation of some directional spillover indices obtained from the generalized forecast error 

variance decomposition, there is a need to be cautious in comparing  net spillover indices to 

distinguish between markets which are net donors from those which are net receivers. On the 

contrary, any scalar normalization scheme (by maximum eigenvalue, maximum row sum or maximum 

column sum) will outperform the traditional normalization schemes, preserving the ranking and the 

sign of the NET spillovers. As a result, we suggest using a scalar normalization scheme to derive the 

correct measures of net contribution. Among the scalar normalization schemes, the maximum row 

sum or the maximum column sum are preferred to the spectral radius since they allow for a better 

interpretation of how much one variable receives or transmits in terms of percentage values.  
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5   Replication of Diebold and Yilmaz (2012)  

In order to shed further light on the normalization issue in obtaining reliable spillover measures, we 

replicate the original paper of Diebold and Yilmaz (2012) to see whether results would have changed 

if scalar normalization were applied. Therefore, we compute the 10-days-ahead generalized forecast 

error variance decomposition, on a VAR of order 4, by using the same daily data as in Diebold and 

Yilmaz (2012). The data consists of range based volatilities of the S&P 500 (stock market), the 10-year 

Treasury bond yield (bond market), the New York Board of Trade US dollar index futures (FX market) 

and the Dow Jones UBS Commodity index (commodity market), recorded from January 25, 1999 to 

January 29, 2010. Full sample results are presented in Table 11.  

Panel I corresponds to Table 2 in the Diebold and Yilmaz (2012) paper (variance decomposition by 

using row normalization), Panel III corresponds to the variance decomposition by using the 

alternative column normalization scheme suggested in Diebold and Yilmaz (2012), while Panel II 

displays the variance decomposition by using scalar normalization (the max row sum). By comparing 

the NET spillovers in Panels I and II, it may be seen that the stock market turns out to be a net donor 

while all the others variables are net receivers of volatility spillovers during the entire period. As a 

result, there are no sign errors in Diebold and Yilmaz (2012), even if the row-normalization scheme is 

used in place of the max row sum one. However, we can detect some ranking errors. If we concentrate 

on the bond market, it turns out to have received less volatility spillovers than the commodity market 

if the row-normalization scheme (or the column-normalization) is used, as in Diebold and Yilmaz 

(2012). However, if we use scalar normalization, as in Panel II, we can see that the result is the 

opposite: the bond market turns out to have received more volatility spillovers than the commodity 

market. As a result, we have a ranking error if the row-normalization scheme is used. This result is not 

surprising: since Diebold and Yilmaz (2012) consider four distinct asset classes and use a short-order 

VAR(p) model, the results of their application can be “classified” in our “low-persistence, low-

covariance” case that, in fact, recorded the lowest number of sign errors. On the contrary, from our 

simulation results, it is evident that ranking errors are frequent in data with any degree of persistence 

and covariance.  

Furthermore we notice that also pairwise net spillovers can be safely computed only in the max-row 

normalized matrix. The net pairwise spillover between stock market and bond market cannot be 

computed by = 0.0729-0.1021 (row-normalized matrix  Panel I Table 11), since the two quantities 

refer to different total values by row. The net pairwise spillover is not either 0.0730-0.0970 (column 

normalized matrix, Panel III Table 11). The correct spillover is 0.0694-0.1021 (max-row normalized 

matrix, Panel II Table 11). 
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Finally, we notice that also the index of total connectedness changes if we use row-normalization 

(equal to 0,126, see Panel I) or column normalization (equal to 0,125, see Panel III), whereas the 

correct index is equal to 0,121 (see Panel II).  

 

6   Concluding remarks 

 

In this study we replicate the full sample results of Diebold and Yilmaz (2012) applied to range based 

volatilities of the Dow Jones UBS Commodity index and of three other financial markets:  the S&P 500 

(stock market), the 10-year Treasury bond yield (bond market), the New York Board of Trade US 

dollar index futures (FX market).  Moreover, we show that the net spillover indices used to assess the 

net contribution of one market to systemic risk are sensitive to the normalization scheme.  

In particular, the row normalization scheme of the Generalized Forecast Error Variance 

Decomposition suggested by Diebold and Yilmaz (2012) is the best scheme for interpreting each row 

of the FEV as variance shares. However, it may fail to identify a) the market most (or least) affected by 

the system b) whether the market is a net risk transmitter or net risk receiver; c) the degree to which a 

single market influences all the others in net absolute terms d) the exact degree of total 

connectedness. The column normalization scheme suggested by Diebold and Yilmaz (2012) is the best 

scheme for interpreting each column of the FEV as variance shares. However, it suffers from the same 

drawbacks as the row-normalization scheme. As a result, we suggest a scalar normalization scheme 

(as in Caloia et al. 2018). In particular, the maximum row sum or the maximum column sum schemes 

are preferable to the spectral radius since they allow for a better interpretation of how much one 

variable receives or transmits in terms of percentage values. Finally, scalar-based normalization 

schemes yield a consistent total spillover index, while the total spillover index changes if row-

normalization or column-normalization schemes are used.  

The results of the paper are strongly prescriptive as regards the use of normalization for the 

computation of TOTAL and NET spillovers. Since these two indices are able (i) to describe the overall 

level of risk transmission and (ii) to distinguish between net donors and net receivers markets in 

terms of risk spillovers, we argue that our results can be particularly useful for scholars using the 

Diebold Yilmaz methodology to study risk transmission, as well as for macro-prudential regulators to 

supervise connectedness in the banking and insurance sector and for practitioners and portfolio 

managers interested in setting up hedging strategies and portfolio allocations. The evidence on the 

relation between volatility spillovers and portfolio/hedging weights is discussed in Antonakakis et al. 

(2018) and Arouri et al (2012), while connectedness in the banking sector has been studied in Diebold, 

Yilmaz (2014). 

 
Acknowledgements: The authors wish to thank the editor and three anonymous referees for their comments 
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Table 1. Spillover Table based on the non-normalized variance decomposition table (VDT). 

Panel A: h=2 

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.889 0.539 0.435 0.376 0.324 2.561 1.672 

V2 0.493 0.975 0.683 0.535 0.438 3.124 2.149 

V3 0.337 0.668 0.994 0.758 0.612 3.369 2.375 

V4 0.255 0.506 0.753 0.997 0.801 3.313 2.316 

V5 0.204 0.406 0.605 0.802 0.997 3.015 2.018 

TO others including 
own 2.178 3.094 3.470 3.467 3.172   TOTAL 

TO others 1.289 2.119 2.477 2.470 2.175 
 

0.685 

NET -0.383 -0.030 0.102 0.154 0.157 
                  

NET sign - - + + +     

NET ranking 5 4 3 2 1     

   

Panel B: h=10 
   

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.773 0.579 0.540 0.506 0.453 2.850 2.077 

V2 0.483 0.940 0.706 0.582 0.490 3.202 2.262 

V3 0.343 0.671 0.984 0.769 0.630 3.397 2.413 

V4 0.263 0.516 0.759 0.993 0.804 3.334 2.341 

V5 0.211 0.416 0.614 0.806 0.992 3.040 2.048 

TO others including 
own 2.073 3.122 3.603 3.656 3.368   TOTAL 

TO others 1.300 2.181 2.619 2.663 2.377 
 

0.704 

NET -0.777 -0.080 0.206 0.322 0.329 
                  

NET sign - - + + +     

NET ranking 5 4 3 2 1     
Note. This figure shows the spillover Table based on the non-normalized generalized forecast error 
variance decomposition, which is displayed in the central frame. Results refer to the HH scenario 
(high-persistent and high-covariance series) and to the forecast horizon h=2 (Panel A) and h=10 
(Panel B). The Table shows the directional spillover received from others (FROM others), the 
directional spillover received from others including own (FROM others (including own)) the 
directional spillover transmitted to others (TO others), the directional spillover transmitted to others 
including own (TO others (including own)) and the net contribution (NET) defined as the difference 
between the directional spillover transmitted TO others and the directional spillover received FROM 
others for variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover 
(NET sign): negative if the variable is a net receiver and positive if the variable is a net donor, and the 
ranking based on the value of the NET spillover from the highest to the lowest (NET ranking). 
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Table 2. Spillover Table based on the row-normalized variance decomposition table (VDT). 

Panel A: h=2 

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.347 0.210 0.170 0.147 0.126 1 0.653 

V2 0.158 0.312 0.219 0.171 0.140 1 0.688 

V3 0.100 0.198 0.295 0.225 0.182 1 0.705 

V4 0.077 0.153 0.227 0.301 0.242 1 0.699 

V5 0.068 0.135 0.201 0.266 0.331 1 0.669 

TO others including 
own 0.750 1.008 1.112 1.110 1.021   TOTAL 

TO others 0.403 0.696 0.817 0.809 0.690 
 

0.683 

NET -0.250 0.008 0.112 0.110 0.021 
                  

NET sign - + + + +     

NET ranking 5 4 1 2 3     

   

Panel B: h=10 
   

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.271 0.203 0.189 0.178 0.159 1 0.729 

V2 0.151 0.294 0.221 0.182 0.153 1 0.706 

V3 0.101 0.198 0.290 0.226 0.185 1 0.710 

V4 0.079 0.155 0.228 0.298 0.241 1 0.702 

V5 0.070 0.137 0.202 0.265 0.326 1 0.674 

TO others including 
own 0.671 0.986 1.129 1.149 1.065   TOTAL 

TO others 0.400 0.692 0.840 0.851 0.738 
 

0.704 

NET -0.329 -0.014 0.129 0.149 0.065 
                  

NET sign - - + + +     

NET ranking 5 4 2 1 3     
Note. This figure shows the spillover Table based on the row-normalized generalized forecast error 
variance decomposition, which is displayed in the central frame. Results refer to the HH scenario 
(high-persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and h=10 (Panel 
B). The Table shows the directional spillover received from others (FROM others), the directional 
spillover received from others including own (FROM others (including own)) the directional spillover 
transmitted to others (TO others), the directional spillover transmitted to others including own (TO 
others (including own)) and the net contribution (NET) defined as the difference between the 
directional spillover transmitted TO others and the directional spillover received FROM others for 
variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover (NET sign): 
negative if the variable is a net receiver and positive if the variable is a net donor, and the ranking 
based on the value of the NET spillover from the highest to the lowest (NET ranking). 
 
  

Jo
ur

na
l P

re
-p

ro
of



Table 3: Spillover Table based on the column-normalized variance decomposition table (VDT). 

Panel A: h=2 

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.408 0.174 0.125 0.108 0.102 0.918 0.510 

V2 0.226 0.315 0.197 0.154 0.138 1.031 0.716 

V3 0.155 0.216 0.286 0.218 0.193 1.069 0.782 

V4 0.117 0.164 0.217 0.288 0.253 1.038 0.750 

V5 0.094 0.131 0.174 0.231 0.314 0.945 0.631 

TO others 
including own 1 1 1 1 1   TOTAL 

TO others 0.592 0.685 0.714 0.712 0.686 
 

0.678 

NET 0.082 -0.031 -0.069 -0.038 0.055 
                  

NET sign + - - - +     

NET ranking 1 3 5 4 2     

   

Panel B: h=10 
   

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.373 0.185 0.150 0.138 0.134 0.981 0.608 

V2 0.233 0.301 0.196 0.159 0.146 1.035 0.734 

V3 0.166 0.215 0.273 0.210 0.187 1.051 0.778 

V4 0.127 0.165 0.211 0.272 0.239 1.013 0.741 

V5 0.102 0.133 0.170 0.220 0.294 0.921 0.626 

TO others 
including own 1 1 1 1 1   TOTAL 

TO others 0.627 0.699 0.727 0.728 0.706 
 

0.697 

NET 0.019 -0.035 -0.051 -0.013 0.079 
                  

NET sign + - - - +     

NET ranking 2 4 5 3 1     
Note. This figure shows the spillover Table based on the column-normalized generalized forecast 
error variance decomposition, which is displayed in the central frame. Results refer to the HH scenario 
(high-persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and h=10 (Panel 
B). The Table shows the directional spillover received from others (FROM others), the directional 
spillover received from others including own (FROM others (including own)) the directional spillover 
transmitted to others (TO others), the directional spillover transmitted to others including own (TO 
others (including own)) and the net contribution (NET) defined as the difference between the 
directional spillover transmitted TO others and the directional spillover received FROM others for 
variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover (NET sign): 
negative if the variable is a net receiver and positive if the variable is a net donor, and the ranking 
based on the value of the NET spillover from the highest to the lowest (NET ranking). 
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Table 4: Spillover Table based on the variance decomposition table (VDT) normalized by the 
spectral radius. 

Panel A: h=2 

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.284 0.172 0.139 0.120 0.103 0.818 0.534 

V2 0.157 0.311 0.218 0.171 0.140 0.998 0.686 

V3 0.108 0.213 0.317 0.242 0.195 1.076 0.758 

V4 0.081 0.162 0.241 0.318 0.256 1.058 0.740 

V5 0.065 0.130 0.193 0.256 0.318 0.963 0.644 

TO others including 
own 0.695 0.988 1.108 1.107 1.013   TOTAL 

TO others 0.412 0.677 0.791 0.789 0.695 
 

0.685 

NET -0.122 -0.010 0.032 0.049 0.050 
                  

NET sign - - + + +     

NET ranking 5 4 3 2 1     

   

Panel B: h=10 
   

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.241 0.181 0.169 0.158 0.141 0.890 0.649 

V2 0.151 0.294 0.221 0.182 0.153 1.000 0.706 

V3 0.107 0.210 0.307 0.240 0.197 1.061 0.754 

V4 0.082 0.161 0.237 0.310 0.251 1.041 0.731 

V5 0.066 0.130 0.192 0.252 0.310 0.949 0.639 

TO others including 
own 0.647 0.975 1.125 1.142 1.052   TOTAL 

TO others 0.406 0.681 0.818 0.832 0.742 
 

0.704 

NET -0.243 -0.025 0.064 0.100 0.103 
                  

NET sign - - + + +     

NET ranking 5 4 3 2 1     
Note. This figure shows the spillover Table based on the generalized forecast error variance 
decomposition normalized by the spectral radius, which is displayed in the central frame. Results refer 
to the HH scenario (high-persistent and high-correlated series) and to the forecast horizon h=2 (Panel 
A) and h=10 (Panel B). The Table shows the directional spillover received from others (FROM others), 
the directional spillover received from others including own (FROM others (including own)) the 
directional spillover transmitted to others (TO others), the directional spillover transmitted to others 
including own (TO others (including own)) and the net contribution (NET) defined as the difference 
between the directional spillover transmitted TO others and the directional spillover received FROM 
others for variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover 
(NET sign): negative if the variable is a net receiver and positive if the variable is a net donor, and the 
ranking based on the value of the NET spillover from the highest to the lowest (NET ranking). 
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Table 5: Spillover Table based on the variance decomposition table (VDT) normalized by the 
maximum row sum. 

Panel A: h=2 

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.264 0.160 0.129 0.111 0.096 0.760 0.496 

V2 0.146 0.289 0.203 0.159 0.130 0.927 0.638 

V3 0.100 0.198 0.295 0.225 0.182 1 0.705 

V4 0.076 0.150 0.224 0.296 0.238 0.984 0.688 

V5 0.061 0.121 0.180 0.238 0.296 0.895 0.599 

TO others including 
own 0.647 0.918 1.030 1.029 0.942   TOTAL 

TO others 0.383 0.629 0.735 0.733 0.646 
 

0.685 

NET -0.114 -0.009 0.030 0.046 0.047 
                  

NET sign - - + + +     

NET ranking 5 4 3 2 1     

   

Panel B: h=10 
   

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.227 0.170 0.159 0.149 0.133 0.839 0.612 

V2 0.142 0.277 0.208 0.171 0.144 0.943 0.666 

V3 0.101 0.198 0.290 0.226 0.185 1 0.710 

V4 0.077 0.152 0.223 0.292 0.237 0.982 0.689 

V5 0.062 0.123 0.181 0.237 0.292 0.895 0.603 

TO others including 
own 0.610 0.919 1.061 1.076 0.992   TOTAL 

TO others 0.383 0.642 0.771 0.784 0.700 
 

0.704 

NET -0.229 -0.024 0.061 0.095 0.097 
                  

NET sign - - + + +     

NET ranking 5 4 3 2 1     
Note. This figure shows the spillover Table based on the generalized forecast error variance 
decomposition normalized by the maximum row sum, which is displayed in the central frame. Results 
refer to the HH scenario (high-persistent and high-correlated series) and to the forecast horizon h=2 
(Panel A) and h=10 (Panel B). The Table shows the directional spillover received from others (FROM 
others), the directional spillover received from others including own (FROM others (including own)) 
the directional spillover transmitted to others (TO others), the directional spillover transmitted to 
others including own (TO others (including own)) and the net contribution (NET) defined as the 
difference between the directional spillover transmitted TO others and the directional spillover 
received FROM others for variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the 
NET spillover (NET sign): negative if the variable is a net receiver and positive if the variable is a net 
donor, and the ranking based on the value of the NET spillover from the highest to the lowest (NET 
ranking). 
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Table 6: Spillover Table based on the variance decomposition table (VDT) normalized by the 
maximum column sum. 

Panel A: h=2 

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.256 0.155 0.125 0.108 0.093 0.738 0.482 

V2 0.142 0.281 0.197 0.154 0.126 0.900 0.619 

V3 0.097 0.193 0.286 0.218 0.176 0.971 0.684 

V4 0.073 0.146 0.217 0.287 0.231 0.955 0.667 

V5 0.059 0.117 0.174 0.231 0.287 0.869 0.582 

TO others 
including own 0.628 0.892 1 0.999 0.914 

 
TOTAL 

TO others 0.372 0.611 0.714 0.712 0.627 
 

0.685 

NET -0.110 -0.009 0.029 0.044 0.045 
                  

NET sign - - + + +     

NET ranking 5 4 3 2 1     

   

Panel B: h=10 
   

  V1 V2 V3 V4 V5 
FROM others 

including own 
FROM others 

V1 0.211 0.158 0.148 0.138 0.124 0.779 0.568 

V2 0.132 0.257 0.193 0.159 0.134 0.876 0.619 

V3 0.094 0.184 0.269 0.210 0.172 0.929 0.660 

V4 0.072 0.141 0.208 0.272 0.220 0.912 0.640 

V5 0.058 0.114 0.168 0.220 0.271 0.831 0.560 

TO others 
including own 0.567 0.854 0.986 1 0.921 

 
TOTAL 

TO others 0.356 0.597 0.716 0.728 0.650 
 

0.704 

NET -0.212 -0.022 0.056 0.088 0.090 
                  

NET sign - - + + +     

NET ranking 5 4 3 2 1     
Note. This figure shows the spillover Table based on the generalized forecast error variance 
decomposition normalized by the maximum column sum, which is displayed in the central frame. 
Results refer to the HH scenario (high-persistent and high-correlated series) and to the forecast 
horizon h=2 (Panel A) and h=10 (Panel B). The Table shows the directional spillover received from 
others (FROM others), the directional spillover received from others including own (FROM others 
(including own)) the directional spillover transmitted to others (TO others), the directional spillover 
transmitted to others including own (TO others (including own)) and the net contribution (NET) 
defined as the difference between the directional spillover transmitted TO others and the directional 
spillover received FROM others for variable Vi, i=1,…, 5. The bottom lines report for each variable the 
sign of the NET spillover (NET sign): negative if the variable is a net receiver and positive if the 
variable is a net donor, and the ranking based on the value of the NET spillover from the highest to the 
lowest (NET ranking). 
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Table 7: Errors in sign (using population parameters). 

Panel A: h=2 

  L. L. L.H.1 L.H.2 H.L. H.H.1 H.H.2 

normalization by row 0 1 1 0 1 1 

normalization by column 3 3 2 3 3 2 

normalization by spectral radius 0 0 0 0 0 0 

normalization by max row sum 0 0 0 0 0 0 

normalization by max col sum 0 0 0 0 0 0 

Panel B: h=10 

  L. L. L.H.1 L.H.2 H.L. H.H.1 H.H.2 

normalization by row 0 0 0 0 0 0 

normalization by column 1 3 1 1 3 1 

normalization by spectral radius 0 0 0 0 0 0 

normalization by max row sum 0 0 0 0 0 0 

normalization by max col sum 0 0 0 0 0 0 
Note. The Table shows the number of errors in sign for each DGP (L.L., L.H.1, L.H.2, H.L., H.H.1, H.H.2) 
where L.L. = low persistence low covariance, L.H.=low persistence high covariance, H.L.=high 
persistence low covariance, H.H.=high persistence high covariance). The numbers 1 and 2 in the “High 
Covariance” DGPs refer to the use of the covariance matrices Σ1 and Σ2, obtained for the matrices 
𝑃1 and 𝑃2 respectively: Case 1 keeps correlation fixed, Case 2 corresponds to higher correlation.  
Errors are counted when the net spillover obtained from the normalized matrix has a sign opposite to 
the one of the net spillover obtained from the non-normalized matrix. The total number of errors can 
range from 0 to 5 in each scenario. 
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Table 8: Errors in ranking (using population parameters). 

Panel A: h=2 

  L. L. L.H.1 L.H.2 H.L. H.H.1 H.H.2 

normalization by row 1 1 1 1 1 1 

normalization by column 1 1 1 1 1 1 

normalization by spectral radius 0 0 0 0 0 0 

normalization by max row sum 0 0 0 0 0 0 

normalization by max col sum 0 0 0 0 0 0 

Panel B: h=10 

  L. L. L.H.1 L.H.2 H.L. H.H.1 H.H.2 

normalization by row 1 1 1 1 1 1 

normalization by column 0 1 1 0 1 1 

normalization by spectral radius 0 0 0 0 0 0 

normalization by max row sum 0 0 0 0 0 0 

normalization by max col sum 0 0 0 0 0 0 
Note. The Table shows the number of errors in ranking for each DGP (L.L., L.H.1, L.H.2, H.L., H.H.1, 
H.H.2) where L.L. = low persistence low covariance, L.H.=low persistence high covariance, H.L.=high 
persistence low covariance, H.H.=high persistence high covariance). The numbers 1 and 2 in the “High 
Covariance” DGPs refer to the use of the covariance matrices Σ1 and Σ2, obtained for the matrices 
𝑃1 and 𝑃2 respectively Case 1 keeps correlation fixed, Case 2 corresponds to higher correlation.  
Results refer to the forecast horizon h=2 (panel A) and h=10 (Panel B). Errors are counted when the 
ranking of the net spillovers obtained from the normalized matrix is different from that of the non-
normalized matrix. The number of errors can be either 0 (correct ranking) or 1 (incorrect ranking). 
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Table 9: Errors in sign (using simulations). 

Panel A: h=2 

  L. L. L.H.1 L.H.2 H.L. H.H.1 H.H.2 

normalization by row 118 607 1101 198 492 357 

normalization by column 2802 3226 3165 1746 2324 1899 

normalization by spectral radius 0 0 0 0 0 0 

normalization by max row sum 0 0 0 0 0 0 

normalization by max col sum 0 0 0 0 0 0 

Panel B: h=10 

  L. L. L.H.1 L.H.2 H.L. H.H.1 H.H.2 

normalization by row 28 293 565 111 243 126 

normalization by column 1368 3143 2929 1644 1833 1602 

normalization by spectral radius 0 0 0 0 0 0 

normalization by max row sum 0 0 0 0 0 0 

normalization by max col sum 0 0 0 0 0 0 
Note. The Table shows the number of errors in sign for each DGP (L.L., L.H.1, L.H.2, H.L., H.H.1, H.H.2) 
where L.L. = low persistence low covariance, L.H.=low persistence high covariance, H.L.=high 
persistence low covariance, H.H.=high persistence high covariance). The numbers 1 and 2 in the “High 
Covariance” DGPs refer to the use of the covariance matrices Σ1 and Σ2, obtained for the matrices 
𝑃1 and 𝑃2 respectively: Case 1 keeps correlation fixed, Case 2 corresponds to higher correlation. 
Results refer to the forecast horizon H=2 (panel A) and H=10 (Panel B). Errors are counted when the 
net spillover obtained from the normalized matrix has a sign opposite to the one of the net spillover 
obtained from the non-normalized matrix. The total number of errors can range from 0 to 5000 in 
each scenario (5 variables times 1000 simulations for each scenario). 
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Table 10: Errors in ranking (using simulations). 

Panel A: h=2 

  L. L. L.H.1 L.H.2 H.L. H.H.1 H.H.2 

normalization by row 1000 990 1000 870 989 999 

normalization by column 1000 1000 1000 934 949 972 

normalization by spectral radius 0 0 0 0 0 0 

normalization by max row sum 0 0 0 0 0 0 

normalization by max col sum 0 0 0 0 0 0 

Panel B: h=10 

  L. L. L.H.1 L.H.2 H.L. H.H.1 H.H.2 

normalization by row 1000 991 999 481 743 850 

normalization by column 966 1000 1000 981 977 979 

normalization by spectral radius 0 0 0 0 0 0 

normalization by max row sum 0 0 0 0 0 0 

normalization by max col sum 0 0 0 0 0 0 
Note. The Table shows the number of errors in ranking for each DGP (L.L., L.H.1, L.H.2, H.L., H.H.1, 
H.H.2) where L.L. = low persistence low covariance, L.H.=low persistence high covariance, H.L.=high 
persistence low covariance, H.H.=high persistence high covariance). The numbers 1 and 2 in the “High 
Covariance” DGPs refer to the use of the covariance matrices Σ1 and Σ2, obtained for the matrices 
𝑃1 and 𝑃2 respectively: Case 1 keeps correlation fixed, Case 2 corresponds to higher correlation. 
Results refer to the forecast horizon H=2 (panel A) and H=10 (Panel B). Errors are counted when the 
ranking of the net spillovers obtained from the normalized matrix is different from the one of the non-
normalized matrix. The number of errors can range from 0 (correct ranking in each of the 1000 
simulations) to 1000 (incorrect ranking in each of the 1000 simulations). 
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Table 11: Comparison with the results in Diebold and Yilmaz (2012)  

Panel I: Row Normalization 

  
Stocks Bonds Commodities FX 

FROM others 
(including own) 

FROM others 

Stocks 0.8876 0.0729 0.0035 0.0361 1 0.112 

Bonds 0.1021 0.8145 0.0273 0.0561 1 0.186 

Commodities 0.0047 0.037 0.9369 0.0214 1 0.063 

FX 0.0569 0.0703 0.0155 0.8573 1 0.143 

TO others 
(including own) 1.051 0.995 0.983 0.971 

  TO others  0.164 0.18 0.046 0.114 
 

TOTAL 

NET 0.051 -0.005 -0.017 -0.029   0.126 

Panel II: Max row Normalization 

 

Stocks Bonds Commodities FX 
FROM others 

(including own) 
FROM others 

Stocks 0.8444 0.0694 0.0033 0.0343 0.951 0.107 

Bonds 0.1021 0.8145 0.0273 0.0561 1 0.186 

Commodities 0.0041 0.0323 0.8194 0.0187 0.875 0.055 

FX 0.0547 0.0675 0.0149 0.8238 0.961 0.137 

TO others 
(including own) 1.005 0.984 0.865 0.933 

  TO others  0.161 0.169 0.045 0.109 
 

TOTAL 

NET 0.054 -0.016 -0.01 -0.028   0.121 

Panel III: Column normalization 

 
Stocks Bonds Commodities FX 

FROM others 
(including own) 

FROM others 

Stocks 0.845 0.073 0.004 0.037 0.959 0.114 

Bonds 0.097 0.819 0.028 0.058 1.001 0.183 

Commodities 0.004 0.037 0.953 0.022 1.017 0.064 

FX 0.054 0.071 0.016 0.883 1.023 0.141 

TO others 
(including own) 1 1 1 1     

TO others  0.156 0.181 0.047 0.117 
 

TOTAL 

NET 0.042 -0.002 -0.017 -0.024   0.125 
Note. This Table shows the spillover based on the generalized forecast error variance decomposition 
normalized by row (Panel I) as in Diebold and Yilmaz (2012), the alternative column normalization 
suggested in Diebold and Yilmaz (2012) (Panel III), and the normalization by maximum row sum 
(Panel II). Results refer to the 10-days-ahead forecast horizon.  Jo
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