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Università degli Studi di Ferrara
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Abstract

This PhD dissertation focuses on some particular problems in classical finite geom-

etry and combinatorics. Two intertwined topics have been considered. The first

one is the construction of hemysistems of the Hermitian surface and blocking sets

arising from conics. The techniques used to obtain our contribution are based on

the Natural Embedding Theorem (NET) of maximal algebraic curves on the Her-

mitian surface and the Weil theorem for the number of rational points of a cubic

surface over a finite field. The second topic is the investigation of polynomials which

permute a finite field. Again, the techniques will be of algebraic nature, involving

the theory of plane curves over finite fields and Hasse-Weil type theorems.



Sommario

Questa tesi di dottorato si concentra su alcuni problemi di geometria finita classica

e di combinatoria. Sono stati considerati due argomenti intrecciati. Il primo è la

costruzione di hemisystems della superficie Hermitiana e di blocking sets su coniche

irriducibili. Le tecniche utilizzate per ottenere il nostro contributo si basano sul

Teorema di Immersione Naturale (NET) delle curve algebriche massimali sulla su-

perficie Hermitiana e sul teorema di Weil per il numero di punti razionali di una

superficie cubica su un campo finito. Il secondo argomento è lo studio dei polinomi

che permutano un campo finito. Anche in questo caso, le tecniche saranno di natura

algebrica, e coinvolgeranno la teoria delle curve piane su campi finiti e teoremi di

tipo Hasse-Weil.

*
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Introduction

The investigation of finite projective spaces has received increasing attention both

for their links with such applied topics as coding theory and cryptography (which

are becoming more and more relevant within ICT) and for their connections to other

mathematical theories, say for example graph theory and group theory. In this thesis

we focus our attention on notions and problems of geometry over finite fields. At the

same time we constantly keep in mind possible applications (e.g. strongly regular

graphs and permutation polynomials).

In the first chapter we present the preliminaries one needs to understand most of

the original part. References are given for the proofs of the theorems, whenever

necessary. To begin with, the basic concepts of algebraic curves defined over a finite

field are explored. The original results of Chapters 4 and 5 strongly rely on this part.

Algebraic curves over finite fields have been much studied in recent years because

of their natural application to several areas of coding theory and cryptography. We

then state the Natural Embedding Theorem (NET) for maximal curves. The NET

provides a powerful method to understand the properties of a maximal curve when

embedded in a Hermitian variety. We will use those ideas in Chapter 2 to construct

new families of hemisystems of the Hermitian surface.

Showing the connections between plane algebraic curves and permutation polyno-

mials (PPs) is the last objective of this part of the chapter. This relation has been

proven useful to find conditions for a polynomial to be a PP, we will investigate

those aspects in Chapters 4 and 5.

After that, we will set the backgrounds for finite classical polar spaces. This second

part of Chapter 1 aims to introduce Chapters 2 and 3. The geometry of finite pro-

jective spaces and classical polar spaces is the main topic and it is divided into three

subsections, each of them focusing on a precise aspect: collineations of projective

spaces, classical polar spaces and geometrical point-line configurations.

Chapter 2 is about hemisystems of the Hermitian surface H3,q2 . Hemisystems are

v



interesting configurations which are connected with important combinatorial objects

such as strongly regular graphs, partial quadrangles and 4-class imprimitive comet-

ric Q-antipodal association schemes that are not metric; see [15, 6, 13]. Finding

hemisystems is a challenging problem. The first infinite family was constructed in

2005 by Cossidente and Penttila [15] who also found a new sporadic example in

H3,25. Later on, Bamberg, Giudici and Royle [4, Section 4.1] constructed more spo-

radic examples for q = 11, 17, 19, 23, 27. Recently several new infinite families of

hemisystems appeared in the literature. Bamberg, Lee, Momihara and Xiang [6]

constructed a new infinite family of hemisystems on H3,q2 for every q ≡ −1 (mod 4)

that generalize the previously known sporadic examples. Cossidente and Pavese

[14] constructed, for every odd q, a hemisystem of H3,q2 invariant under a subgroup

of PGU(4, q) of order (q + 1)q2. Our original contribution is the investigation of

the possibility of constructing hemisystems of the Hermitian surface H3,q2 by using

the Natural Embedding Theorem previously mentioned. More precisely our goal is

to extend the construction of Korchmáros et al. [34] to the case p ≡ 1 (mod 4).

Methods are of algebraic nature, involving number theory and group theory.

In Chapter 3, we focus on a combinatorial problem, related to point-line configura-

tions with respect to an irreducible conic, viewed as a symmetric polar space. In a

projective plane Π of odd order n = m2, let C be an oval, and π a Baer-subplane,

that is, a projective subplane of order m. We ask to compute, or estimate, the num-

ber Em(C) = Em(C, π) of points in π which are external to C. The trivial bound is

Em(C) ≤ |π| = n + m + 1 but the largest known example is for Em(C) = n. The

desarguesian case Π = PG(2, q2) is worked out. Another statement of the prob-

lem can be given in terms of blocking sets. Given an irreducible conic defined over

PG(2, q2), consider the set of points which are either on the conic or external to the

conic. The intersection between a Baer subplane and that set is a blocking set with

respect to the tangent lines to the conic. Our goal is to characterize the order of

this set.

The application of the theory of algebraic plane curves to PPs is the objective of the

last two chapters. In particular, in Chapter 4, we use results also known as Hasse-

Weil type theorems for PPs to give a non-existence result for permutation binomials.

Moreover, we state an equivalence relation for binomials. The reason behind that

is to give a contribution towards the systematic classification of permutation bi-

nomials. More precisely, there are in the literature numerous results concerning

permutation binomials, which use neither the same approach to the problem nor

the same notations.
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The last chapter is devoted to the proof of a recent conjecture on permutation

quadrinomials from Niho exponents in characteristic 2.

Recently Zheng et al. [50] characterized the coefficients of f(X) = X+a1X
s1(2m−1)+1+

a2X
s2(2m−1)+1+a3X

s3(2m−1)+1 over F22m that lead f(X) to be a permutation of F22m for

(s1, s2, s3) = (1
4
, 1, 3

4
). They left open the question whether their sufficient conditions

were also necessary. We will give a positive answer to that question for most cases.
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Chapter 1

Preliminaries

1.1 Curves and permutation polynomials

1.1.1 Basic properties of finite fields

Given a finite field |F| <∞ of characteristic p 6= 0 we we will write p = charF. We

recall the following results.

Theorem 1.1. Let p = charF. Then p is a prime number and Zp is a subfield of F,

where Zp := Z/pZ is the field of integers modulo p.

Proof. Define a ring homomorphism

f : Z −→ F,

n 7−→ n1F

By the first isomorphism theorem we have the field embedding Z/ ker f ↪→ F. Thus

ker f is a prime ideal of Z, namely pZ, where p is the characteristic of the field.

Therefore we have p prime and Zp ≤ F.

Given two finite fields E,F such that E ≤ F we denote with [F : E] the dimension of

F as a vector space over E, that is dimE F, and we say that F/E is a field extension.

Since the field F is finite and Zp ≤ F, we have that [F : Zp] <∞. Let n = [F : Zp],
then there is a group isomorphism F ' Znp .

Theorem 1.2 ([30, Theorem 1.2]). Let F be a finite field and p = charF. Then

|F| = pn, for some integer n ∈ Z+.

1



2 1. Preliminaries

We now investigate whether or not, given a prime number p and an integer n > 0,

there exists a field F with |F| = pn. Given a field extension K/F, we say that an

element α ∈ K is algebraic over F if it is a root of a polynomial f(X) ∈ F[X]. An

element α ∈ K which is not algebraic over F is said to be transcendental over F. A

finite set A ⊂ K is algebraically independent over F if the map vA is injective, where

vA : F[X1, . . . , Xr] −→ F[a1, . . . , ar], f 7−→ f(a1, . . . , ar).

Definition 1.3. Let K/F be a field extension. We say that K has a finite transcen-

dence degree n ≥ 0 over F, and we write trdegFK = n, if n is the maximum number

of algebraically independent elements of K over F . Furthermore, we say that K is

finitely generated over F .

Definition 1.4. Let F be a field; a field K containing F is said to be an algebraic clo-

sure of F if and only if every elements in K is algebraic over F and every polynomial

with coefficients in K splits completely over K.

There is only one algebraic closure up to isomorphism. We denote by F the algebraic

closure of F and we say that F is algebraically closed if F = F. The splitting field of

a polynomial f with coefficients in F is the field generated by the roots of f in the

algebraic closure of F.

Theorem 1.5 ([30, Theorem 1.2]). Let p be a prime and n a positive integer. The

splitting field of Xp
n − X ∈ Zp[X] has precisely pn elements.

Theorem 1.6 ([30, Theorem 1.2]). Given a prime p and an integer n > 0, all finite

fields of order pn are isomorphic.

We will denote the finite field with q = pn elements by Fq. Consequently, we have a

Zp-vector space isomorphism Fq ' Fnp . Note that Fp = Zp.

Let q = pn, for p prime and n a positive integer. We will denote with F∗q the

multiplicative group of Fq.

Theorem 1.7 ([30, Theorem 1.3]). The multiplicative group (F∗q, ·) is cyclic.

A generator of F∗q is called a primitive element of Fq. For every positive integer d,

define the map ψd:

ψd : F∗q −→ F∗q,

a 7−→ ad

The next three results are straightforward consequences of Theorem 1.7.
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Proposition 1.8. The map ψd is a group homomorphism, with kerψd = 〈α q−1
e 〉,

where α is a primitive element of Fq and e := gcd(q − 1, d).

The last proposition leads to the following.

Theorem 1.9 ([18, Teorema 1.11]). Let d be a positive integer, such that d < q and

let e = gcd(q − 1, d). The following hold:

� The set of d-th roots of unity in Fq is a cyclic group of order e.

� The number of non zero d-th powers in Fq is q−1
e

.

� If α ∈ F∗q has a d-th root in Fq, then α has exactly e different d-th roots in Fq.

Corollary 1.10. When q is odd, there are exactly half of the non-zero elements of

Fq that are squares, whereas if q is even, every element in Fq is a square.

Theorem 1.11 ([30, Theorem 1.6]). Let p be a prime. For each integer n ≥ 0, Fp
has a unique subfield of order pn.

Let K/F be a field extension. The Galois group of the extension K/F is

Aut(K/F) = {φ ∈ Aut(K) : φ(a) = a for all a ∈ F}.

Furthermore, the extension K/F is Galois if

{a ∈ K : φ(a) = a for all φ ∈ Aut(K/F)} = F.

Theorem 1.12 ([30, Theorem 1.8]). The extension Fpn/Fp is Galois and Aut(Fpn/Fp) =

〈ϕ〉, where

ϕ : Fpn −→ Fpn ,

a 7−→ ap.

More generally, if m | n, the extension Fpn/Fpm is Galois and Aut(Fpn/Fpm) = 〈ϕm〉.

We say that the automorphism ϕm ∈ Aut(Fpn/Fpm) is the Frobenius map of Fpn
over Fpm . Note that the map

Φ: Fq −→ Fq, x 7−→ xq

is the Frobenius homomorphism ϕh, if q = ph.

When q is a prime power and n is a positive integer we define the trace and the

norm of a ∈ Fqn from Fqn to Fq by
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Tr qn
q

(a) =
∑

φ∈Aut(Fqn/Fq)

φ(a) =
n−1∑
i=0

aq
i

,

and

N qn

q
(a) =

∏
φ∈Aut(Fqn/Fq)

φ(a) = a
qn−1
q−1 .

1.1.2 Affine and projective varieties

Let K be an algebraically closed field and let An(K) = {(a1, . . . , an)|ai ∈ K} denote

the affine n-dimensional space over K.

Definition 1.13. Let I be an ideal of K[X1, . . . , Xn]. We say that

V(I) := {P ∈ An(K)|F (P ) = 0 for all F ∈ I}

is the affine (algebraic) set associated to I. Furthermore if V = V(I) is an affine

set, the ideal

I(V ) := {F ∈ K[X1, . . . , Xn]|F (P ) = 0 for all P ∈ V }

is said to be the ideal of V .

Definition 1.14. An affine set V is said to be reducible if V = V1 ∪ V2, with V1,

V2 affine sets different from V . V is irreducible if it is not reducible. An irreducible

affine set is an affine variety.

Definition 1.15. Let PG(n,K) be the n-dimensional projective space defined over

the field K, that is the set of (x0, . . . , xn) ∈ An+1(K) such that at least one xi is

non-zero, modulo the following equivalence relation: (x0, . . . , xn) ∼ (y0, . . . , yn) if

there exists λ ∈ K∗ such that xi = λyi for all i = 0, . . . , n.

We will denote the set {(λa0, . . . , λan)|λ ∈ K∗} by (a0 : · · · : an), the elements of

this set are the homogeneous coordinates in PG(n,K).

Definition 1.16. Let F ∈ K[X0, . . . , Xn] and let I be an ideal of K[X0, . . . , Xn].

(a) F is said to be homogeneous of degree d if F (λX0, . . . , λXn) = λdF (X0, . . . , Xn),

for all λ ∈ K.

(b) I is said to be homogeneous if it is generated by homogeneous polynomials.
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Definition 1.17. Let I ⊂ K[X0, . . . , Xn] be an homogeneous ideal. Then

V(I) := {P ∈ PG(n,K)|F (P ) = 0 for all F ∈ I}

is the projective (algebraic) set associated to I. Furthermore, if V = V(I) is a

projective set, the homogeneous ideal

I(V ) := {F ∈ K[X0, . . . , Xn]|F homogeneous, F (P ) = 0 for all P ∈ V }

is said the ideal of V .

Definition 1.18. A projective set V is said to be reducible if V = V1 ∪ V2 with

V1, V2 ∈ PG(n,K) projective sets different from V . Otherwise V is irreducible. An

irreducible projective set is a projective variety.

Proposition 1.19. V is a projective variety if and only if I(V ) is a prime ideal.

Definition 1.20. Let V ⊂ PG(n,K) be a projective variety, the quotient ring

K[V ] := K[X0, . . . , Xn]/I(V )

is the ring of homogeneous coordinates on V . The quotient field of K[V ] is denoted

by

K(V ) :=

{
F + I(V )

G+ I(V )

∣∣∣F,G homogeneous polynomials, degF = degG, G /∈ I(V )

}
and it is said to be the field of rational functions on V .

Definition 1.21. A rational function α ∈ K(V ) is said to be regular at P ∈ V if

there are F, G ∈ K[X0, . . . Xn] homogeneous such that α = F+I(V )
G+I(V )

with G(P ) 6= 0.

Assume without loss of generality that X0 /∈ I(V ) and denote x̄i := Xi+I(V )
X0+I(V )

, for

i ∈ {1, . . . , n}. This means that, any α ∈ K(V ) can be written

α =
f(x̄1, . . . , x̄n)

g(x̄1, . . . , x̄n)
,

for f, g ∈ K[X1, . . . , Xn].

Next we define the dimension of a variety which will lead to the notion of projective

curve.
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Definition 1.22. Let V be a projective variety. The dimension of V is

dimV := degtrKK(V ),

that is the transcendence degree of the field extension K(V )/K.

Sometimes is more convenient to use the non-homogeneous coordinates. For the sake

of simplicity, we will explain how to move from an affine equation to a projective

equation (and vice-versa) only for projective varieties of dimension 1 in the projective

plane. However, one can easily generalize to higher dimensions.

Definition 1.23. Let C : F (X0, X1, X2) = 0 be a projective variety of dimension 1,

different from the line X0 = 0. The equation

F∗(X, Y ) := F (1, X, Y ) = 0 (1.1.1)

is the affine equation of C. Moreover, F∗ is called the dehomogenization of F with

respect to X0. Vice-versa, when F (X, Y) is a polynomial of degree d, the homoge-

nization of F is

F ∗(X0, X1, X2) := Xd
0F

(
X1

X0

,
X2

X0

)
. (1.1.2)

Theorem 1.24 ([18, Teorema 3.5]). The homogenization induces a bijection be-

tween the polynomials in K[X, Y] of degree d and the homogeneous polynomials in

K[X0, X1, X2] of degree d not divided by X0. Equivalently, it induces a bijection be-

tween plane projective varieties of dimension 1 (different from X0 = 0) and their

affine part.

Definition 1.25. Let V be an affine variety. The dimension of V is the dimension

of V as a projective variety.

Definition 1.26. Let P = (a1, . . . , an) be a point of an affine variety V and let

I(V ) = 〈F1, . . . , Fr〉. The tangent space to V at P is the affine subspace

TP (V ) :=
r⋂
j=1

(dPFj = 0), (1.1.3)

if dP (F ) := ∂F
∂X1

(P )(X1 − a1) + · · ·+ ∂F
∂Xn

(P )(Xn − an).

Proposition 1.27 ([19, Corollario 1.22]). Let s be the dimension of V. The dimen-

sion of the tangent space equals s at each point of V , except for a finite affine proper

subset.
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Definition 1.28. Let P ∈ V , V an affine variety. P is said to be singular if

dimTP (V ) > dimV.

Otherwise, P is simple. Moreover, when V is a projective variety, P ∈ V is singular

(simple) if and only if it is singular (simple) for the affine part with respect to the

dehomogenization above.

Theorem 1.29. The following bijection holds:

{
Projective variety

over K

}
∼−→
{

Field extension

finitely generated over K

}
V 7−→ K(V )

(1.1.4)

In this correspondence we have dimV = trdegKK(V ).

Definition 1.30. Let X ⊂ PG(n,K) be a projective variety. A rational map from

X to PG(m,K) is an element

φ := (α0 : · · · : αm) ∈ PG(m,K(X )).

We will write φ : X −→ PG(m,K).

Definition 1.31. A rational map

φ : X −→ PG(m,K), φ = (α0 : · · · : αm)

is said to be regular at a point P ∈ X if there exists λ ∈ K(X ) such that

(i) every λαi is regular at P ;

(ii) (λαj)(P ) 6= 0, for some j ∈ {1, . . . ,m}.

Definition 1.32. Let X ⊂ PG(n,K) and Y ⊂ PG(m,K) be two projective varieties,

a rational map from X to Y , in symbol φ : X → Y , is a rational map of φ : X →
PG(m,K) such that for each point P ∈ X at which φ is regular we have φ(P ) ∈ Y .

Moreover we say that φ is birational if there is a rational map ψ with φ ◦ψ = Id(Y)

and ψ ◦ φ = Id(X ).

From the definition we note that a rational map may not be defined at every point

of X .
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Definition 1.33. A rational map

φ : X → Y , φ = (α0 : · · · : αm)

which is regular at every point P ∈ X is said to be a morphism of X in Y . A

birational morphism is called an isomorphism.

1.1.3 Algebraic curves

Definition 1.34. An (algebraic) projective curve C is a projective variety of dimen-

sion 1.

Definition 1.35. Let C be an algebraic curve and P ∈ C. The local ring of C at P

is

K[C]P := {α ∈ K(C) : α is regular at P}

More generally, a local ring is a commutative ring R satisfying the following equiv-

alent conditions:

1. The set of non-invertible elements of R is an ideal;

2. There exists one and only one maximal ideal of R.

Furthermore, we say that R is Noetherian if every ideal is finitely generated. Noethe-

rian ring are of great interest in algebraic geometry, see e.g. [2].

Proposition 1.36 ([17, Sec. 3.2, Theorem 1]). K[C]P is a Noetherian local domain,

with maximal ideal

MP := {α ∈ K[V ]P : α(P ) = 0}.

Moreover, if P ∈ C is simple, then MP is principal.

Definition 1.37. We say that an integral domain O (which is not a field) is a

discrete valuation ring (DVR) if O is a Noetherian and local ring and its maximal

ideal is a principal ideal.

Definition 1.38. Let P ∈ C be a simple point of a projective curve C. A local

parameter t of C at P is a generator of MP .

Our next objective is to associate a valuation map to every simple point of a curve.

Taking this into account, from now on, C will be a non-singular, projective curve C
defined over K. That is, every point P ∈ C is a simple point.
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Proposition 1.39. Let C be a projective curve and t ∈MP be a local parameter of

C at P . For every α ∈ K[C]P , α 6= 0, there exists a unique m ∈ Z and a unique

u ∈ K[C]P \MP such that α = utm. Also, the integer m does not depend on the

choice of t.

Definition 1.40. Let P ∈ C and α ∈ K(C), α 6= 0. The valuation vP (α) of α at P

is the integer m such that α = utm for u ∈ K[C]P \MP and t be a local parameter

of C at P .

Note that

K[C]P = {α ∈ K(C) : vP (α) ≥ 0} and MP = {α ∈ K(C) : vP (α) > 0}.

The valuation map of a DVR satisfies the properties of linearity and sub-additivity.

Moreover, vP (α) = 0 if and only if α ∈ K \ {0}.

Definition 1.41. A point P ∈ C is said to be a zero of multiplicity m for α ∈ K(C)
if vP (α) = m > 0. A point P ∈ C is said to be a pole of multiplicity −m for

α ∈ K(C) if vP (α) = m < 0.

Given two curves C and D and a non constant rational map φ : C → D, φ induces

an immersion of fields φ∗ : K(D)→ K(C), which is called the pull-back of φ.

When dealing with algebraic curves we will write Gal(C/D) for the automorphism

group Gal(K(C)/K(D)) of the automorphisms of K(C) which fix K(D) elementwise,

that is

Gal(C/D) = {σ : K(C)→ K(C)|σ automorphism, σ(z) = z if z ∈ K(D)}.

Definition 1.42. Let C and D be two projective curves. A non constant rational

map φ : C → D is Galois if the field extension K(C)/K(D) is Galois.

Remark 1.43. Note that if C and D are two non-singular curves, there exists a

bijection between the points of D and the orbits of points in C under the action of

Gal(C/D).

Definition 1.44. We say that D is a quotient curve of C, or D is Galois-covered by

C, if there is a Galois map φ : C → D.

One may ask whether there is a quotient curve for each finite subgroup of Aut(K(C)),
the group of automorphism of K(C) fixing K elementwise. The following theorem
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answers that question.

Theorem 1.45 ([19, Teorema 5.16]). Let G be a finite automorphism group of K(C).

Then the fixed field

FG = {α ∈ K(C)|σ(α) = α for all σ ∈ G}

is such that K(C)/FG is Galois and G = Gal(K(C)/FG). Moreover FG is an exten-

sion of K with trdegKFG = 1.

Definition 1.46. The algebraic curve over K which corresponds to FG, for an

automorphism group G of C (with respect to (1.1.4)) will be denoted by C�G.

Corollary 1.47. The map G 7→ C�G defines a bijection between the finite subgroups

of Aut(K(C)) and the quotient curves of C.

Note that the G acts on the point of C and the point of D := C�G are in bijection

with the orbit of such action. When the base field is finite, we recall that an action

is transitive on C if there is only one G-orbit, that is there exists x ∈ C such that

xG = C. If the action is transitive and |G| = |C|, then the action is sharply transitive.

Furthermore, we say that the G-action on C is faithful if any two distinct elements

of G give two distinct permutations of C.

1.1.4 Plane curves over finite fields

In this section let K = Fq define the algebraic closure of the finite field Fq with

q elements. For every integer r the projective space PG(n,Fq) contains the finite

projective space PG(n, qi) := PG(n,Fqi) for i ≥ 1.

For the sake of simplicity, we give the definition of genus only for a non-singular

plane curve. We refer the reader to [23] for a deeper approach.

Definition 1.48. Let C : F (X0, X1, X2) = 0 be a projective and non-singular plane

curve defined over K. The genus of C is defined to be:

g :=
(degF − 1)(degF − 2)

2
.

From now on, for a plane curve we mean a projective and non-singular plane curve

defined over Fq.

Definition 1.49. A plane curve C : F (X0, X1, X2) = 0 is defined over Fq if there is

a non-zero constant c ∈ K such that cF (X0, X1, X2) ∈ Fq[X0, X1, X2]. We say that C is
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Fq-rational, if C is an (irreducible) plane curve defined over Fq.

Note that the finite field Fqn is made by all the elements that are fixed by Φn.

Lemma 1.50. A plane curve C is Fq-rational if and only if for every P = (a0 : a1 :

a2) ∈ C, we have Φ(P ) := (aq0 : aq1 : aq2) ∈ C.

Lemma 1.50 holds also for Fnq , in fact, say

Φn : C −→ C, (a0 : a1 : a2) 7−→ (Φn(a0) : Φn(a1) : Φn(a2)),

C is defined over Fnq if and only if for every P ∈ C we have Φn(P ) ∈ C.

The Frobenius homomorphism can be extended to the field of rational functions on

C by using ∑
i,j

aijx̄
i
1x̄

j
2 7−→

∑
i,j

aqijx̄
i
1x̄

j
2, (1.1.5)

and

Φ: K(C) −→ K(C), f(x̄1, x̄2)

g(x̄1, x̄2)
7−→ Φ(f(x̄1, x̄2))

Φ(g(x̄1, x̄2))
. (1.1.6)

Definition 1.51. Let C be a curve, P ∈ C and α ∈ K(C) be a rational function.

(a) P is said to be Fqn-rational if Φn(P ) = P . The set of Fqn-rational points is

denoted by C(Fqn).

(b) α is said to be Fqn-rational if Φn(α) = α. The set of all the Fqn-rational

functions is denoted by Fqn(C).

Remark 1.52. Since every projective curve is birationally isomorphic to a plane

curve, what it has been said for plane curves extends to any curves. In particular,

a curve C is Fq-rational if and only if it is birationally equivalent to an Fq-rational

plane curve, by an Fq-rational map, which is a rational map defined by Fq-rational

functions, see for example [19, Corollario 1.68].

The Hasse-Weil bound

The purpose of this section is to investigate the number of Fq-rational points of a

(non-singular and irreducible) curve defined over Fq. The key result is surely the

Hasse-Weil’s bound which provides a lower and upper bound for that number.

Definition 1.53. Let C : F = 0 be an irreducible curve over Fq. We say that C is

absolutely irreducible over Fq if F is irreducible in K = Fq.
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Theorem 1.54 (Hasse-Weil). Let C be a projective absolutely irreducible non-singular

curve of genus g defined over Fq. Then

C(Fnq ) = qn + 1−
2g∑
i=1

αni , (1.1.7)

where αi ∈ C and |αi| =
√
q.

As a corollary, one gets the famous Hasse-Weil bound.

Theorem 1.55 (Hasse-Weil bound). Let C be a projective absolutely irreducible

non-singular curve of genus g defined over Fq. Then

q + 1− 2g
√
q ≤ |C(Fq)| ≤ q + 1 + 2g

√
q. (1.1.8)

If C is a non-singular plane curve, then equation (1.1.8) reads

q + 1− (d− 1)(d− 2)
√
q ≤ |C(Fq)| ≤ q + 1 + (d− 1)(d− 2)

√
q. (HW)

Definition 1.56. A curve C is said to be Fq-maximal if it attains the upper bound

of the Hasse-Weil bound; i.e.,

|C(Fq)| = q + 1 + 2g
√
q,

where g is the genus of the curve.

When the curve C is singular, one can not easily deal with the Hasse-Weil bound.

The reason is that when a point P ∈ C is singular, there may be more than one

generator for the maximal ideal MP of the local ring K[C]P and one needs to use a

different approach to overcome this problem, namely the function field setting. We

refer the reader to [47] for a very deep and accurate description of this approach.

If a curve C is Fq2-maximal and Nn is the number of his Fq2n-rational points, then

Nn = q2n + 1 + (−1)n−12gqn, for all n ≥ 1. (1.1.9)

We conclude this section stating an important theorem concerning coverings of max-

imal curves [33].

Theorem 1.57 ([23, Theorem 9.17], Kleiman-Serre). Let D be an Fq2-rational curve

covered by an Fq2-maximal curve C, by an Fq2-rational map. Then, D is an Fq2-
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maximal curve.

We last introduce the notion of a divisor of a (non-singular) curve C.

Definition 1.58. The divisor group Div(C) of a non-singular curve C is defined as

the free abelian group generated by the points of C. An element D ∈ Div(C) is a

divisor on C. Equivalently, a divisor D ∈ Div(C) is a formal sum

D :=
∑
P∈C

nPP with nP ∈ Z,

and nP 6= 0 for as much as finitely many points P . The support of D is the set

suppD := {P ∈ C| nP 6= 0}.

Addition and subtraction of divisors are defined by summing their coefficients. The

identity is the zero divisor, namely the divisor with nP = 0 for all P ∈ C. Given a

divisor D ∈ Div(C), we define the valuation of D at a point P ∈ C as

vP (D) := nP .

Definition 1.59. We give a partial ordering to the set Div(C) by the following

relation:

D1 ≤ D2 ⇐⇒ vP (D1) ≤ vP (D2) for all P ∈ C.

A divisor D ≥ 0 is said to be effective. The degree of a divisor D is defined as

degD :=
∑
P∈C

vP (D),

which gives rise to a group homomorphism deg : Div(C)→ Z.

The next definition shows that an important class of divisors arises from rational

functions. Recall that any non-zero rational function α ∈ K(C) has at most a finite

number of zeros and poles.

Definition 1.60. Let 0 6= α ∈ K(C). Then the principal divisor of α is

(α) :=
∑
P∈C

vP (α)P.
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Moreover, if Z is the set of zeros and N the set of poles of α, we define

(α)0 :=
∑
P∈Z

vP (α)P , the divisor of the zeros of α,

(α)∞ :=
∑
P∈N

− vP (α)P , the divisor of the poles of α.

The following identity holds: (α) = (α)0 − (α)∞.

Also, recall that we have the following characterization:

x ∈ K∗ ⇐⇒ (x) = 0.

Definition 1.61. Two divisors D and D′ ∈ Div(C) are linearly equivalent if they

differs for a principal divisor, that is, there exists an element α ∈ K(C) such that

D = D′ + (α).

Being linearly equivalent is an equivalence relation, which will be denoted by D ≡
D′.

Divisors are very useful when we want to describe intersection between projective

curves. In fact, from Bézout theorem, any two plane curves C and D intersect in

exactly deg C · degD points (counted with multiplicity). Thus, we get the following

definition, which is given in a more general background.

Definition 1.62. Given an irreducible variety X and a hyperplane Π, the intersec-

tion divisor I(X ,Π) on X is defined to be the divisor with support the set of the

intersection points of X and Π. More precisely, any point that appears in I(X ,Π)

has degree equal to its intersection multiplicity.

1.1.5 Permutation polynomials

We introduce the notion of polynomial function with respect to the algebra of func-

tions with value over a finite field. This part follows [30, Section 2.3]. For any two

sets A and B, by F(A,B) we denote the set of all functions from A to B.

We aim to investigate the Fq-algebra F(Fnq ,Fq), for every n > 0. When the field is

finite, every function can be represented by a polynomial function, and vice-versa.

More precisely, let Fq[X1, . . . , Xn] be the polynomial ring in X1, . . . , Xn over Fq. Each
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element f(X1, . . . , Xn) ∈ Fq[X1, . . . , Xn] induces a function

f̄ : Fnq −→ Fq
(a1, . . . , an) 7−→ f(a1, . . . , an).

We want to investigate the map ( ) : f 7→ f̄ . Clearly it is an Fq-algebra homomor-

phism. Now define for each element (a1, . . . , an) ∈ Fnq the polynomial:

Λ(a1,...,an) =
n∏
i=1

∏
b∈Fq\{ai}

Xi − b
ai − b

(1.1.10)

The set {Λ(a1,...,an) : (a1, . . . , an) ∈ Fnq } is a basis of F(Fnq ,Fq) (see [30, Section 2.3]).

Consequently, the map ( ) : Fq[X1, . . . , Xn]→ F(Fnq ,Fq) is onto.

Theorem 1.63 ([30, Theorem 2.15]). The homomorphism ( ) : Fq[X1, . . . , Xn] →
F(Fnq ,Fq) induces an Fq-algebra isomorphism

Fq[X1, . . . , Xn]�(Xq1 − X1, . . . , X
q
n − Xn) ' F(Fnq ,Fq), (1.1.11)

where (Xq1−X1, . . . , Xqn−Xn) is the ideal of Fq[X1, . . . , Xn] generated by X
q
1−X1, . . . , Xqn−

Xn.

Note that since we are making the quotient by X
q
i − Xi, not only can we represent

each function from Fnq to Fq by using a polynomial, but also the order of every Xi in

the representative polynomial is at most q − 1.

Corollary 1.64. Every function f : Fq → Fq is uniquely represented by a polynomial

of degree at most q − 1 in Fq[X].

Definition 1.65. A polynomial f ∈ Fq[X] is called a permutation polynomial of Fq
if the function a 7→ f(a) is a permutation of Fq.

By Corollary 1.64, the number of permutation polynomials of Fq is q!. In princi-

ple, constructing permutation polynomials is simple, and it can be done by using

Lagrange interpolation. However, a main question concerning permutation polyno-

mials over Fq is how to recognize them. Below we will see some useful criteria to

address this problem. For a survey of the most recent advances on permutation

polynomials the reader is invited to see [30, 27, 8].

Theorem 1.66 (Hermite’s criterion, [30, Theorem 2.20]). A polynomial f ∈ Fq[X]

is a permutation polynomial of Fq if and only if the following two conditions are both
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satisfied.

(i) f has exactly one root in Fq.

(ii) For each integer 1 ≤ s ≤ q− 2, f s ≡ fs (mod Xq− X) for some fs ∈ Fq[X] with

deg fs ≤ q − 2.

The proof of the Hermite’s criterion makes use of the following Lemma, which is of

its own interest.

Lemma 1.67 ([30, Lemma 2.21]). Let a0, . . . , aq−1 ∈ Fq. Then the following two

conditions are equivalent.

(i) a0, . . . , aq−1 are distinct in Fq.

(ii) The following holds:

q−1∑
j=0

asj =

{
0, if 0 ≤ s ≤ q − 2,

−1, if s = q − 1.

An equivalent statement for the Hermite’s criterion is the following, which is more

useful in the applications.

Theorem 1.68 ([30, Corollary 2.22]). Let f ∈ Fq[X], then f is a permutation poly-

nomial if and only if the following holds

∑
x∈Fq

f(X)s =

{
0, if 0 ≤ s ≤ q − 2

−1, if s = q − 1.
(H)

However, computing the summation (H), that is a power sum for f , may be challeng-

ing. This is the reason why in the next section we will describe a different approach,

connected to the theory of algebraic curves defined over a finite field.

A lot of efforts have been made to find a way to construct permutation polynomials.

The following is referred in [27] as the Akbary–Ghioca–Wang (AGW) criterion.

Theorem 1.69 (The AGW criterion, [27, Theorem 2.1]). Let A, S and S̄ be finite

sets such that |S| = |S̄|, and let f : A 7→ A, f̄ : S 7→ S̄, λ : A 7→ S and λ̄ : A 7→ S̄

be a mapping such that λ and λ̄ are onto and λ̄ ◦ f = f̄ ◦ λ. Then, the following

statements are equivalent.

(i) f is a permutation of A.
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(ii) f̄ is a bijection and f is one-to-one on λ−1(s) for all s ∈ S.

The AGW criterion has been thought as a generalization of a result by Zieve [52],

which provides a powerful method to recognize permutation polynomials. This

approach involves the set of (q + 1)-th roots of unity µq+1.

Theorem 1.70 ([52, Lemma 2.1]). Let h(X) ∈ Fq2 [X]. Then f(X) = Xrh(Xq−1) is a

permutation polynomial if and only if the following conditions are satisfied:

(i) gcd(r, q − 1) = 1;

(ii) Xrh(X)q−1 permutes µq+1.

The main advantage of using Theorem 1.70 is that one can simplify by a lot the form

of f , working only out the case Xq+1 = 1, which may simplify the computations. As

a demonstration of that, a lot of results on permutation polynomials comes from it,

see for example [24, 26, 42].

Connection to algebraic curves

Given a permutation polynomial f ∈ Fq[X] we can associate to f the curve Cf defined

by

Cf :
f(X)− f(Y )

X − Y
= 0

Investigating the Fq-rational points of Cf is certainly a way to recognize whether the

polynomial f is a permutation polynomial or not. In fact, if a 6= b are two distinct

elements of Fq such that f(a) = f(b), then the Fq-rational point (a, b) belongs to

Cf and does not lie on the line X − Y = 0. On the other hand, if (a, b) is an Fq-
rational point of Cf not lying on X − Y = 0, then f(a) = f(b) and so f(X) is not a

permutation polynomial.

Proposition 1.71 ([8, Proposition 5.1]). Let f(X) ∈ Fq[X] and Cf be the associated

plane curve. Then f is a permutation polynomial if and only if there are no (affine)

Fq-rational points of Cf off the line X − Y = 0.

Taking this into account, the Hasse-Weil bound gives a strong technique to work

out this problem. Unfortunately, the Hasse-Weil bound works only for irreducible

curves (over Fq).

To show that Cf has a suitable Fq rational point we do not need to prove that the

curve Cf is absolutely irreducible over Fq, but we just need to show that Cf has an

absolutely irreducible components defined over Fq. More precisely, if f(X) ∈ Fq[X]

is such that the numerator of Cf contains an absolutely irreducible factor in Fq[X]
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(other than X − Y ), then, by the Hasse-Weil bound, f(X) is not a PP of Fq (when

q is large enough with respect to the degree of f). On the other hand, if we assume

that the numerator of Cf does not contain any absolutely irreducible factor in Fq[X],

other than possibly X − Y = 0, we get nontrivial conditions on the coefficients

of f(X), which sometimes lead to new PPs ([24, 28]). The Hasse-Weil bound is a

powerful tool for PPs when the size of the field (q) is large compared with the degree

of the polynomial function (d); the condition usually takes the form q ≥ Cd4 for

some constant C > 0.

Proposition 1.72 ([8, Proposition 5.3]). Let f(X) ∈ Fq[X], q ≥ 7, be a permutation

polynomial. Then Cf does not contain any absolutely irreducible component defined

over Fq of degree d smaller than 4
√
q + 2 and different from X − Y = 0.

1.2 Finite projective and polar spaces

This section aims to introduce basic notions of finite projective spaces and finite

classical polar spaces. Particular regard is given to their automorphism group. We

will follow outline and notation of [44, Chapter 2].

1.2.1 Collineations of finite projective spaces

Let q = ph a prime power and consider the vector space V(n + 1, q) of dimension

n + 1 defined over Fq. Any element v ∈ V is represented as a column vector. This

means that vT = [v0, . . . , vn]. In this section we denote by PG(V) the projective

space defined over V. As common we will call point, line, plane and hyperplane a

0, 1, 2 and n − 1-dimensional subspace of PG(n, q). Moreover, for a vector v ∈ V

and an automorphism σ ∈ Aut(Fq), we denote by vσ := [vσ0 , . . . , v
σ
n]. Similarly for a

point P ∈ PG(V) we denote by P θ the image of a map θ on P .

Definition 1.73. Let V1 and V2 be two vector spaces of the same dimension. A

collineation between PG(V1) and PG(V2) is a bijection which sends points to points,

lines to lines and preserves the incidence between lines.

Given a bijection θ : PG(V1) → PG(V2), then θ is a collineation if Π ⊂ Π′ implies

Πθ ⊂ Π′θ, for any two subspaces Π,Π′ ⊂ PG(V1).

Let σ ∈ Aut(Fq) and let A ∈ GL(n+ 1, q) be an invertible (n+ 1)× (n+ 1) matrix

over Fq.
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Definition 1.74. A semilinear isomorphism of V(n+ 1, q) is a map

γσ,A : V(n+ 1, q) −→ V(n+ 1, q),

v 7−→ Avσ

By ΓL(n+ 1, q) we denote the group of all semilinear isomorphisms of V(n+ 1, q).

Any γ ∈ ΓL(n + 1, q) defines a bijection on the points of PG(n, q), which is also

a collineation. More precisely we will say that γ ∈ ΓL(n + 1, q) is a projective

semilinear map. A projective semilinear map with σ = Id is a projectivity.

Definition 1.75. The set of all the projective linear (semilinear) maps of PG(n, q)

is a group called projective linear (semilinear) group and denoted by PGL(n+ 1, q)

(PΓL(n+ 1, q)).

Theorem 1.76 (Fundamental Theorem of Projective Geometry, [18, Teorema 1.25]).

Let V1 and V2 be two vector spaces of the same dimension over Fq. Every collineation

between PG(V1) and PG(V2) is induced by a semilinear map γσ,A.

In line with Chapter 1 we will use homogeneous coordinates P T = (X0 : · · · : Xn)

to describe a point of PG(n, q). Any hyperplane Π ⊂ PG(n, q) can be written as

P Tu = 0 for a vector uT = [u0, . . . , un+1] ∈ V(n + 1, q). Moreover, let γσ,A be a

projective semilinear map, then a point P ∈ PG(n, q) belongs to Πγσ,A if and only

if (AP σ)T (A−Tuσ) = P Tu = 0, which means that Πγσ,A is represented by the vector

A−Tuσ.

The last part of this section is devoted to the canonical forms of transformation in

the plane. We refer the reader to [40] for more details. The transformations of the

projective plane may be classified (up to projectivities) according to the five types

of invariant figures.

In particular the collineations in case 4 and 5 belong to the class of collineations

fixing an hyperplane.

Case 1: collineations fixing a triangle.
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Case 2: collineation fixing two points and two lines.

Case 3: collineations fixing a lineal element.

case 4 (homology): collineation fixing a line and a point off the line;

Case 5 (elation): collineation fixing a line and a point of the line.
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Definition 1.77. A collineation of PG(2, q) is called a central collineation or per-

spectivity if there exists a line Π (called the axis of the collineation) and a point z

(called the center of the collineation) such that each point of Π is a fixed point and

each line through z is a fixed line.

We will say that a (z,Π)-perspectivity is an elation or a homology according as

z ∈ Π or z /∈ Π. A homology of the plane can be written in canonical form as

(X0 : X1 : X2) 7→ (αX0 : X1 : X2), where α is different from 0 and 1. When α = −1

we will refer to them as reflection. An elation of the projective plane can be written

in canonical form as (X0 : X1 : X2) 7→ (X0 : X1 +X2 : X2). Finally, a perspectivity

π is skew if the points in which intersects sides of a triangle and their images under

π do not colline.

1.2.2 Finite classical polar spaces

The dual of V(n+ 1, q) is the set of linear functionals

V∗(n+ 1, q) := {f : V(n+ 1, q) −→ Fq | f is linear}.

From a basis B = {e0, . . . , en} of V(n+1, q) we can construct a basis for V∗(n+1, q),

that is B∗ = {e∗0, . . . , e∗n}, for e∗i (ej) := δi,j (Kronecker’s delta).

Definition 1.78. Let U be a subspace of V(n+ 1, q). The annihilator of U is

U∗ := {f ∈ V∗(n+ 1, q) | f(u) = 0, for all u ∈ U},

and it is a (n+ 1− dim(U))-subspace of V∗(n+ 1, q).

The correspondence U 7→ U∗ is a bijection between the subspaces of V(n+ 1, q) and

those of V∗(n + 1, q). In particular, U ⊂ W if and only if W ∗ ⊂ U∗. Let PG(V ∗)

or, equivalently, PG(n, q)∗ denote the dual space of PG(V ).

Theorem 1.79 ([44, Proposition 2.5]). PG(n, q) is isomorphic to PG(n, q)∗.

Definition 1.80. A collineation between PG(n, q) and its dual is called a reciprocity

of PG(n, q).

Recall that any collineation is induced by a semilinear transformation γσ,A : V(n +

1, q) → V∗(n + 1, q). A reciprocity ρ induced by γσ,A maps the point P to the

hyperplane AP σ and maps the hyperplane u to the point A−Tuσ, where A−T :=

(A−1)
T

.
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Now applying a reciprocity ρ twice one has:

P ρ2 = (P ρ)ρ = (AP σ)ρ = A−TAσP σ2

,

therefore ρ2 is a map induced by A−TAσ ∈ GL(n+ 1, q) and σ2 ∈ Aut(Fq).

Definition 1.81. A reciprocity ρ of order 2 is called a polarity of PG(n, q). More-

over, if P is a point e H a hyperplane of PG(n, q), we say that P ρ is the polar of P

and Hρ is the pole of H.

Note that for P,Q ∈ PG(n, q) the following holds:

P ∈ Qρ ⇐⇒ Q ∈ P ρ.

Two such points are called conjugate points.

Definition 1.82. Let ρ be a polarity of PG(n, q). A point P ∈ PG(n, q) is totally

isotropic w.r.t. ρ if P ∈ P ρ.

The notion of conjugates and totally isotropic points is extended to subspaces of

any dimension. A totally isotropic subspace has dimension at most
⌊
n−1
2

⌋
.

For every reciprocity ρ of PG(n, q) induced by a semilinear transformation γσ,A we

define

β : V(n+ 1, q)× V(n+ 1, q) −→ Fq, (u, v) 7−→ uTγσ,A(v) = uTAvσ. (1.2.1)

which is a σ-sesquilinear form, that is a map such that

(i) β(u+ v, w) = β(u,w) + β(v, w);

(ii) β(u, v + w) = β(u, v) + β(u,w);

(iii) β(au, bv) = aσ(b)β(u, v).

A σ-sesquilinear form is non-degenerate if β(u, v) = 0 for all v ∈ V(n+ 1, q) implies

that u = 0, and β(u, v) = 0 for all u ∈ V(n + 1, q) implies that v = 0. Moreover,

a σ-sesquilinear form is reflexive if β(u, v) = 0 if and only if β(v, u) = 0, for all

u, v ∈ V(n+ 1, q).

Theorem 1.83 ([44, Lemma 2.6]). Any reciprocity of PG(n, q) arises from a non-

degenerate σ-sesquilinear form of V(n+1, q) and vice-versa. In this correspondence,

non-degenerate reflexive sesquilinear forms correspond to polarities.



1.2. Finite projective and polar spaces 23

Theorem 1.83 justifies the following definition.

Definition 1.84. Let β be a (non-degenerate) reflexive sesquilinear form on the

vector space V(n+ 1, q). In PG(n, q), the set of totally isotropic subspaces w.r.t. β

is called a (non-degenerate) finite classical polar space.

From now on we will consider q odd.

When q is square, given a matrix A = (aij), by A
√
q we denote the matrix A

√
q =

(a
√
q

ij ). There are three types of polarity:

1. Orthogonal polarity : σ = Id and MT = M (β is a symmetric form);

2. Symplectic polarity: σ = Id and MT = −M ;

3. Hermitian polarity: σ 6= Id and MT = M
√
q (β is a Hermitian form).

Two sesquilinear forms β and β′ are equivalent if there is γσ,A ∈ ΓL(n, q) such that

β(γσ,A(u), γσ,A(v)) = β′(u, v), for all u, v ∈ V(n+ 1, q).

Let β be a symmetric form. Upon equivalences, the following are the classes of the

set of the totally isotropic points (w.r.t. β) and their canonical forms.

1. The elliptic quadric Q−(2m+ 1, q), m ≥ 1 of PG(2m+ 1, q):

X1X2 + · · ·+X2m−1X2m + f(X2m+1, X2m+2) = 0,

where f is a homogeneous irreducible polynomial of degree two over Fq.

2. The hyperbolic quadric Q+(2m+ 1, q), m ≥ 1 of PG(2m+ 1, q):

X1X2 + · · ·+X2m−1X2m +X2m+1X2m+2 = 0;

3. The parabolic quadric Q(2m, q), m ≥ 1 of PG(2m, q):

X1X2 + · · ·+X2m−1X2m +X2
2m+1 = 0.

If β is a Hermitian form of V(n+1, q2), up to projectivities, the set of all the totally

isotropic points is the Hermitian variety, that is given by

Hn,q2 : Xq+1
0 + · · ·+Xq+1

n = 0
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1.2.3 The Natural Embedding Theorem

In this section we state the Natural Embedding Theorem, a crucial theorem in the

theory of maximal curves [35]. The NET gives an important link between maximal

curves and the Hermitian variety.

Theorem 1.85 (Natural Embedding Theorem, [23, Theorem 10.22]). The follow-

ings hold.

� If C is Fq2-maximal, then it is Fq2-isomorphic to a curve D in PG(r,K), such

that D has degree q+1 and lies on a non-degenerate Hermitian variety defined

over Fq2 of PG(r,K). Furthermore, AutFq2 (C) is isomorphic to a subgroup of

the projective unitary group PGU(r + 1, q2).

� If C is Fq2-birational to a curve D embedded in PG(r,K) such that D has

degree q + 1 and lies on a non-degenerate Hermitian variety defined over Fq2
of PG(r,K), then C is Fq2-maximal and C is Fq2-isomorphic to D.

The following is a corollary to the NET, which will be used in the next part of this

thesis to construct new hemisystems arising from maximal curves embedded in the

Hermitian surface H3,q2 .

Theorem 1.86 (Corollary to the NET, [34, Result 3.1]). Any algebraic curve C
defined over Fq2 of degree q + 1 and contained in the non degenerate Hermitian

surface H3,q2 is an Fq2-maximal curve. Furthermore

� The intersection divisor D = I(H3,q2 ,ΠP ) cut out on C by the tangent hyper-

plane ΠP to H3,q2 at P is

D =

{
(q + 1)P, for P ∈ C(Fq2)

qP + Φ(P ), for P ∈ C \ C(Fq2).

� The tangent line to C at a point P ∈ C(Fq2) is also a tangent line to H3,q2 at

P , and it has no further common point with H3,q2.

1.2.4 Configurations of point-line sets

This subsection is devoted to introduce some considerable configurations of points

and lines within either a finite projective space or a finite classical polar space.
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m-ovoids and m-regular systems

Definition 1.87. A generator of a polar space P is a maximal dimension totally

isotropic subspace of P .

Any two generators have the same dimension and this common vector space dimen-

sion is called the rank of P .

Definition 1.88. A set of points O of P is an m-ovoid if each generator of P meets

O in m points.

We are interested in m-ovoids of P , when P is the polar space of elliptic quadrics

Q−(5, q). The following theorem is due to Segre [45].

Theorem 1.89. Let O be a non trivial m-ovoid of Q−(5, q). Then q is odd and

m = (q + 1)/2.

The Klein map gives a bijective correspondence between lines of PG(3, q2) and points

of Q+(5, q2). In this setting the lines of a Hermitian surface H(3, q2) of PG(3, q2)

are mapped bijectively to the points of an elliptic quadric Q−(5, q) contained in a

subgeometry Σ ' PG(5, q) such that Σ ∩Q+(5, q2) = Q−(5, q). Moreover the q + 1

generators of H(3, q2) through a point are mapped to the points of a line of Q−(5, q).

Therefore there is a bijective correspondence between points of H(3, q2) and lines of

Q−(5, q). Hence it follows that a pointset O of Q−(5, q) having the property that

every line of Q−(5, q) has m points in common with O, i.e., an m-ovoid of Q−(5, q),

is equivalent to a lineset L of H(3, q2) such that through each point of H(3, q2) there

pass m lines of L.

Definition 1.90. A set of lines L of a polar space P is an m-regular system if

through each point of P there pass m lines of L.

From Theorem 1.89 the only possible case for an m-regular system of H3,q2 is m =

(q+ 1)/2. We will call the latter set of lines a hemisystem of the Hermitian surface.

More precisely, a line of PG(3, q2) entirely contained in H3,q2 is a generator of H3,q2 .

The total number of generators of H3,q2 is (q3 + 1)(q + 1) and through any point

P ∈ H3,q2 there exists exactly q+ 1 generators and they are the intersection of H3,q2

with its tangent plane at P . Thus a hemisystem of H3,q2 consists of 1
2
(q3 + 1)(q+ 1)

generators of H3,q2 , exactly 1
2
(q + 1) for each point of H3,q2 .
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Blocking sets

For a given nonempty subset L of the lineset of PG(2, q), a blocking set w.r.t. L (or

simply, an L-blocking set) is a subset B of the pointset of PG(2, q) such that every

line of L contains at least one point of B. An L-blocking set is said to be minimal

if no proper subset of it blocks all the lines of L.

Blocking sets of PG(2, q) with respect to considerable sets of lines have been studied

by several authors. The first step in this regard has been to determine the cardinality

of a blocking set and, if possible, to describe all the blocking sets of that size.

In Chapter 3 we will study a particular blocking set involving an irreducible conic

in PG(2, q2). More precisely, given an irreducible conic C defined over PG(2, q2)

and given a Baer subplane B ⊂ PG(2, q2), we will investigate the cardinality of the

blocking set B ∩ (Eq(C)∪C), where Eq(C) is the set of external points to C. The set

B ∩ (Eq(C) ∪ C) is a blocking set w.r.t. the tangent lines to C.



Chapter 2

Hemisystems from maximal curves

In Chapter 1, we have seen that the Hermitian surface H3,q2 of PG(3, q2) is the set

of all totally isotropic points of a non-degenerate unitary polarity of PG(3, q2).

The approach introduced in [34] relies on the Fuhrmann-Torres curve over PG(3, q2)

naturally embedded in H3,q2 . Their construction provided a hemisystem of H3,q2

whenever q = p is a prime of the form p = 1 + 4a2 for an even integer a. In this

thesis we investigate the analog construction for p = 1 + 4a2 with an odd integer

a, and show that it produces a hemisystem, as well, for every such p. We mention

that a prime number p of the form p = 1 + 4a2 with an integer a is called a Landau

number. If Landau’s conjecture is true, that is there exist infinitely many Landau

numbers, then an infinite family of hemisystems is obtained.

Our main result is stated in the following theorem.

Theorem 2.1 ([43, Theorem 1.1]). Let p be a prime number where p = 1 +

4a2 for some integer a. Then there exists a hemisystem in the Hermitian surface

H3,q2 of PG(3, p2) which is left invariant by a subgroup of PGU(4, p) isomorphic to

PSL(2, p)× C p+1
2

, the cyclic group of order p+1
2

.

2.1 Hemisystems and maximal curves

In Chapter 1 we have seen that the canonical form of H3,q2 is

Xq+1
0 +Xq+1

1 +Xq+1
2 +Xq+1

3 = 0.

27
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The group of projectivities preserving H3,q2 is isomorphic to the projective unitary

group PGU(4, q) and it acts on the points H3,q2 as a 2-transitive permutation group

[23]. The number of points of H3,q2 is (q2+1)(q3+1). A hemisystem of H3,q2 consists

of 1
2
(q3 + 1)(q + 1) generators of H3,q2 , exactly 1

2
(q + 1) of them through each point

of H3,q2 . Up to a change of the projective frame in PG(3, q2), the equation of H3,q2

may also be written in the form

H3,q2 : Xq+1
1 + 2Xq+1

2 −Xq
3X0 −X3X

q
0 = 0.

Our aim is to use the Natural Embedding Theorem to construct new families of

hemisystems on H3,q2 . In PG(2,Fq) with homogeneous coordinates (X : Y : Z), the

Fuhrmann-Torres curve is the plane curve F+ of genus 1
4
(q − 1)2 with equation

F+ : Y q − Y Zq−1 = X
q+1
2 Z

q−1
2 .

The morphism

ϕ : F+ → PG(3,Fq), (X : Y : Z) 7→ (Z2 : XZ : Y Z : Y 2)

defines an embedding (called natural embedding) of F+ which is a q + 1 degree

curve X+ whose points (including those defined over Fq) are contained in H3,q2 . In

particular, F+ is an Fq2-maximal curve. The twin Fuhrmann-Torres curve is defined

by the equation

F− : Y q − Y Zq−1 = −X
q+1
2 Z

q−1
2 .

and the above claims remain valid with respect to the same morphism. For more

details see [16].

Some useful properties of the Fuhrmann-Torres curve, also valid for any Fq2-maximal

curve X naturally embedded in H3,q2 , can be found in [34, Sections 2,3,4].

In particular, X+ is a q + 1 degree curve lying in the Hermitian surface H3,q2 .

Furthermore X+(Fq2) is partitioned in Ω and X+(Fq2) \Ω = ∆+, where Ω is the set

cut out on X+ by the plane π : X1 = 0. Note that |Ω| = q+ 1 and |∆+| = 1
2
(q3− q).

Equivalently Ω is the intersection in π of the conic C with equation X0X3 −X2
2 =

0 and the Hermitian curve H(2, q2) with equation Xq
0X3 + X0X

q
3 − 2Xq+1

2 = 0.

Moreover, the above properties hold true for when + is replaced by − and X− is the

natural embedding of the plane curve F−. The curves X+ and X− are isomorphic

over Fq2 and Ω is the set of common points of X+ and X−.
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We use classical terminology regarding maximal curves. In particular, a (real) chord

of X is a line in PG(3, q2) which meets X (Fq2) in at least two distinct point, whereas

an imaginary chord of X is a line in PG(3, q2) joining a point P ∈ X (Fq4) \ X (Fq2)
to its conjugate, that is, its Frobenius image.

The key point of the construction below is the following corollary to the NET.

Lemma 2.2 ([34, Lemma 3.4]). Let C be an Fq2-maximal curve naturally embedded

in the Hermitian surface H3,q2. Then

(i) No two distinct points in C(Fq2) are conjugate under the unitary polarity as-

sociated with H3,q2.

(ii) Any imaginary chord of C is a generator of H3,q2 which is disjoint from C.

(iii) For any point P ∈ H3,q2 in PG(3, q2), if P /∈ C(Fq2) and ΠP is the tangent

plane to H3,q2 at P , then ΠP ∩C consists of q+1 pairwise distinct points which

are in C(Fq4).

2.2 The Fuhrmann-Torres construction

From now on let q be a prime p ≡ 1 (mod 4) and let X be an Fq2-maximal curve.

Denote by Nq2 the number of Fq2-rational points of X .

Let H denote the set of all imaginary chords of X . Furthermore, for a point P ∈
PG(3, q2) lying in H3,q2 \X (Fq2), let nP (X ) denote the number of generators of H3,q2

through P which contain an Fq2-rational point of X .

Definition 2.3. A set M of generators of H3,q2 is an half-hemisystem on X if the

following properties hold:

(A) Each Fq2-rational points of X is incident with exactly 1
2
(q + 1) generators in

M.

(B) For any point P ∈ H3,q2\X (Fq2) lying in PG(3, q2),M has as many as 1
2
nP (X )

generators through P which contain an Fq2-rational point of X .

Note thatM consists of 1
2
(q+ 1)Nq2 generators and H of 1

2
(q2 + q)(q2− q− 2g(X ))

generators of H3,q2 . Therefore M∪ H has exactly 1
2
(q3 + 1)(q + 1) generators of

H3,q2 .

Result 2.4 ([34, Proposition 4.1]). M∪H is a hemisystem of H3,q2.
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Let G be a subgroup of Aut(X ) and o1, . . . , or be the G-orbits on X (Fq2). Let G be

the set of all generators meeting X+. Moreover, for 1 ≤ j ≤ r, let Gj denote the set

of all generators of H3,q2 meeting oj. Note that G leaves each Gj invariant.

Result 2.5 ([34, Proposition 4.2]). With the above notation, assume that the sub-

group G fulfills the hypothesis:

(C) G has a subgroup h of index 2 such that G and h have the same orbits o1, . . . , or

on X (Fq2).

(D) For any 1 ≤ j ≤ r, G acts transitively on Gj while h has two orbits on Gj.

Let P /∈ X (Fq2) be a point lying on a generator in G, if

(E) there is an element in GP not in hP ,

then P satisfies (B).

From [34, Lemma 5.1] G is also the set of all generators meeting X−. In particular,

G splits into two subset

G = G1 ∪ G2, (2.2.1)

where G2 is the set of the (q + 1)2 generators meeting Ω, while G1 is the set of

the 1
2
(q3 − q)(q + 1) generators meeting both ∆+ and ∆−. Thus, the following

characterization of G is very useful.

Result 2.6 ([34, Lemma 5.3]). The generator set G1 consists of all the lines gu,v,s,t

spanned by the points Pu,v = (1 : u : v : v2) ∈ ∆+ and Qs,t = (1 : s : t : t2) ∈ ∆−

such that

F : F (v, t) = (v + t)q+1 − 2(vt+ (vt)q) = 0

and

u
q+1
2 = vq − v, −s

q+1
2 = tq − t, uqs = (t− vq)2.

Result 2.7 ([34, Lemma 5.4]). Aut(F) contains a subgroup Ψ ∼= PGL(2, q) that

acts faithfully on the set F(Fq2) \ F(Fq) as a sharply transitive permutation group.

2.3 Automorphisms preserving G and X+

In this subsection we recall the main results about the group-theoretic properties

involving, X+, X− and G; see [34, Section 5]. The authors showed that Ψ contains

a subgroup Γ which acts sharply transitively on G1. Furthermore, Γ has a unique
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index 2 subgroup Φ such that

Φ ∼= PSL(2, q)× C q+1
2
.

In particular, Φ has two orbits on G1, namely M1 and M2.

In terms of subgroups of PGU(4, q) we have the following characterization.

Result 2.8 ([34, Lemma 5.7]). The group PGU(4, q) has a subgroup G with the

following properties:

(i) G is an automorphism group of X+ and X−;

(ii) G preserves the point-sets ∆+, ∆−, Ω and G1;

(iii) G acts faithfully on ∆+, ∆− and G1;

(iv) the collineation group induced by G on π is G/Z(G) ∼= PGL(2, q) with Z(G) ∼=
C q+1

2
;

(v) the permutation representation of G on G1 is Γ; in particular G ∼= Γ;

(vi) G/Z(G) acts on Ω as PGL(2, q) in its 3-transitive permutation representation.

Furthermore, G has an index 2 subgroup h isomorphic to PSL(2, q)× C q+1
2

.

With the above notation, in the isomorphism G ∼= Γ, h and Φ correspond.

Result 2.9 ([34, Lemma 5.9]). The elements of order 2 in h are skew perspectivities,

while those in G \ h are homologies. Furthermore, the linear collineation w, defined

by

W :=


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 ,

interchanges X+ with X− and the linear group generated by G and w is the direct

product G× 〈w〉.

Result 2.10 ([34, Lemma 5.11]). ] G acts transitively on G2 while h has two orbits

on G2.

From the result of this section, the following theorem follows

Theorem 2.11 ([34, Theorem 5.13]). ] Conditions (C) and (D) are fulfilled for

X = X+, with Γ = G and Φ = h.
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More precisely, G = G1 ∪G2 with G1 =M1 ∪M′
1 and G2 =M2 ∪M′

2, where G1 and

G2 are the G-orbits on G whereas M1, M′
1, M2, M′

2 are the h-orbits on G1 and G2
respectively. This notation fits with [34, Section 5].

2.4 Points satisfying Condition (E)

The plane π : X1 = 0 can be seen as the projective plane PG(2, q2), with homoge-

neous coordinates (X0 : X2 : X3). Then C is the conic of equation X0X3 −X2
2 = 0

and Ω is the set of points of C lying in the (canonical Baer) subplane PG(2, q).

The points in PG(2, q2) \ PG(2, q) are of three types with respect to the lines of

PG(2, q), i.e.

(I) points of a unique line disjoint from Ω which meets C in two distinct points

both in PG(2, q2) \ PG(2, q);

(II) points of a unique line meeting Ω in two distinct points;

(III) points of a unique line which is tangent to C with tangency point of Ω.

Points of type (I) - (II) and points in PG(2, q) satisfy condition (B), as can be readily

seen in the next result.

Result 2.12 ([34, Theorem 6.1]). ] If the projection of P ∈ H3,q2 on π is a point

P ′ of type (I) - (II) or P ′ ∈ PG(2, q), then condition (E) is fulfilled for X = X+,

Γ = G and Φ = h.

2.5 Condition (B) for case (III) and p ≡ 5 (mod 8)

Condition (B) is not always satisfied in Case (III), that is, for points P whose

projection from X∞ = (0, 1, 0, 0) on π is a point P ′ lying on a tangent l to C. Our

goal is to show that [34, Theorem 7.1], proven for p ≡ 1 (mod 8), remains true for

p ≡ 5 (mod 8),

extending their results to the case p ≡ 1 (mod 4).

For this reason, from now on, we assume q be a prime p ≡ 5 (mod 8).

Theorem 2.13. Condition (B) for Case (III) is satisfied if and only if the number

Nq of Fq-rational points of the elliptic curve with affine equation Y 2 = X3−X equals
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either q − 1, or q + 3.

We need few steps before to prove Theorem 2.13. To begin with, we have to prove

the following theorem.

Theorem 2.14. Let nq be the number of ξ ∈ Fq for which f(ξ) = ξ4 − 48ξ2 + 64

is a square in Fq. Condition (B) for Case (III) is satisfied if and only if nq equals

either 1
2
(q + 1) or 1

2
(q − 3).

The proof of Theorem 2.14 is carried out by a series of lemmas.

Since q ≡ 5 (mod 8), 2 is not a square in Fq. Therefore the proof is carried out

differently.

Let h and −h be the square roots of 2 in Fq2 . In particular we have that hq + h = 0

and (±h)q+1 = −2. Moreover h is a non-square in Fq2 .

Moreover h(q−1)/2 = α, with α2 = −1. Thus, α /∈ �q and (1 + α)(1− α) = 2 /∈ �q.

Since G is transitive on Ω, the point O = (1 : 0 : 0 : 0) may be assumed to be the

tangency point of l. Then l has equation X1 = 0, X3 = 0, and P = (a0 : a1 : a2 : 0)

with a1 6= 0 and aq+1
1 +2aq+1

2 = 0. If a0 = 0 then P = (0 : d : 1 : 0) with dq+1 +2 = 0

and his projection to π : X1 = 0 is P ′ = (0 : 1 : 0), which is a point in PG(2, q). By

Result 2.12 the case a0 = 0 can be dismissed and a0 = 1 may be assumed.

Therefore, after the dehomogenization with respect to X0, consider the affine coor-

dinates (X, Y, Z) for a point in PG(3, q2).

We may limit ourselves to a point P = (a, b, 0) such that aq+1 + 2bq+1 = 0. The

latter equation holds for a = ±h2 and b = h. Then we may chose

P = (2ε, h, 0), where ε ∈ {−1, 1}

and we can carry out the case ε = 1 and ε = −1 simultaneously.

2.5.1 Case of G1

We keep up our notation Pu,v = (u, v, v2) for a point in ∆+. The following lemmas

are analogous to those in [34, section 7.1].

Lemma 2.15. Let v ∈ Fq2 \Fq. Then there exists u ∈ Fq2 such that the line joining
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P at Pu,v is a generator of H3,q2 if and only if

(v2 + 2hv)
q+1
2 = 2ε(vq − v). (2.5.1)

If (2.5.1) holds, then u is uniquely determined by v.

Proof. The line l = PPu,v is a generator if and only if Pu,v lies on the tangent plane

to H3,q2 at P . This implies

u =
v2 + 2hv

2ε
. (2.5.2)

and since Pu,v ∈ ∆+ then u
q+1
2 = vq − v and l is a generator. The converse follows

from the proof of [34, Lemma 7.4].

Lemma 2.5.1 can be extended to Qs,t ∈ ∆− provided that u, v are replaced by s, t

and Equations (2.5.1), (2.5.2) by

(t2 + 2ht)
q+1
2 = −2ε(tq − t) (2.5.3)

and

s =
t2 + 2ht

2ε
. (2.5.4)

Furthermore P, Pu,v and Qs,t are collinear if and only if{
2ε(t2 − v2) = t2u− v2s,

vt− h(v + t) = 0.
(2.5.5)

Thereefore, the following lemma holds.

Lemma 2.16. Let v, t ∈ Fq2 \ Fq with F (v, t) = 0. If the line through Pu,v ∈ ∆+

and Qs,t ∈ ∆− is a generator through P , then

vt− h(v + t) = 0 (2.5.6)

holds.

We now count the number of generator in G1 which pass through P .

Lemma 2.17. Equation (2.5.1) has exactly 1
2
(q + 1) solution in Fq2 \ Fq.
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Proof. Let r = vh−1. We obtain:

(r2 + 2r)
q+1
2 = εh(rq + r).

Hence,

(r2 + 2r)
q2−1

2 = −1

and then r2 + 2r is a non-square of Fq2 . Thus, there exists z ∈ Fq2∗ such that

r2 + 2r = hz2. Now the system is{
hz2 = r2 + 2r

αhzq+1 = εh(rq + r)
(2.5.7)

where α = h(q−1)/2. Let λ = zr−1, so that{
hλ2r = r + 2,

α(λr)q+1 = ε(rq + r).
(2.5.8)

Since r = 2/(hλ2 − 1) we obtain

4αλq+1 − 2ε(hλ2 − 1)− 2ε(hλ2 − 1)q = 0. (2.5.9)

Now if λ = λ1 + hλ2, with λ1, λ2 ∈ Fq, Equation (2.5.9) reads

αλ21 − 2αλ22 − 4ελ1λ2 + 4ε = 0. (2.5.10)

Since the determinant of the matrix of the quadratic form associated to (2.5.10) is

−8ε, that quadratic form is the equation of an irreducible conic of PG(2, q). Thus,

we have exactly q+ 1 solutions λ of (2.5.9): if λ is a solution, then −λ is too, hence

we have q+1
2

values for both r and v.

Every solution v of (2.5.1) is in Fq2 \ Fq. In fact, if (hr)q = hr then rq = −r and

λr = 0, which contradicts the first equation of (2.5.8).

Let α = h
q−1
2 . Note that α is a non-square of Fq.

Lemma 2.18. For every solution v = v1 + hv2 of (2.5.1),

εv2 +
α

2
(v1v2 + v1) /∈ �q.
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Proof. Consider System (2.5.7) and let z = z1 + hz2 and r = r1 + hr2. Then{
z21 + 2z22 = 2r1r2 + 2r2

αz21 − 2αz22 = 2εr1.
(2.5.11)

Summing the two equations we have:

αz21 = αr2(r1 + 1) + εr1.

Since α2 = −1 and q ≡ 5 (mod 8), it follows α /∈ �q and then

αr2(r1 + 1) + εr1

is a non-square of Fq. With v2 = r1 and v1 = 2r2 we obtain

εv2 +
α

2
(v1v2 + v1) /∈ �q.

Our next step is to characterize the generators of G1 through P .

To begin with, we need some notions of number theory, which would allow us to

simplify the notation we will use. Note that (2 + h)
q+1
2 = λh, where,

λ = (2 + h)
q+1
2 h−1 = [(1 + h)h]

q+1
2 h−1 = (1 + h)

q+1
2 h

q−1
2 . (2.5.12)

Since

λ2 = (1 + h)q+12
q−1
2 = (1 + h)(1− h)(−1) = 1,

we have λ = ±1. Applying the Frobenius map to (2.5.12) gives

λ = (1− h)
q+1
2 (−h)

q−1
2 .

Hence λ is independent of the choice of h as a square root of 2.

Proposition 2.19. We have

λ =

{
1, q ≡ 13 (mod 16)

−1, q ≡ 5 (mod 16)

Proof. See Appendix A.
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Let

χ :=

−1, if either ε = 1 and q ≡ 13 (mod 16) or ε = −1 and q ≡ 5 (mod 16)

1, if either ε = 1 and q ≡ 5 (mod 16) or ε = −1 and q ≡ 13 (mod 16)

Furthermore,

v0 := −2(h− 2χ), u0 :=
4

ε
(2− hχ)

and

t0 := −2(h+ 2χ), s0 :=
4

ε
(2 + hχ)

Since h = ε(2 + χh)
q+1
2 ,

vq0 − v0 = 4h = u
q+1
2

0 (2.5.13)

and

uq0s0 = 16(2− hχ)2 = (t0 − vq0)2.

Furthermore,

(v0 + t0)
q+1 = −32 = 2(t0v0 + (t0v0)

q)

Therefore, F (v0, t0) = 0. Thus, from Result 2.6, the line trough Pu0,v0 and Qs0,t0 is

a generator g0 ∈ G1. Moreover the following hold:

u0 =
v20 + 2hv0

2ε
, s0 =

t20 + 2ht0
2ε

showing that g0 pass through P .

We show how each generator g passing through P can be obtained from g0. If

g = Pu,vQs,t is a line through P , then, by Lemma 2.16, F (v, t) = 0 and vt = h(v+t).

Now for α, β, γ and δ ∈ Fq, with αδ − βγ 6= 0, write

v =
αv0 + β

γv0 + δ
, t =

αt0 + β

γt0 + δ
.

From v0t0 = −8 and v0 + t0 = −4h, we may write Equation (2.5.6) as

8αγ = 2αβ + βδ,

β2 = 8(α2 − αδ − βγ).
(2.5.14)

Our aim is to show that these equations hold if and only if α, β, γ and δ depend on
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a unique parameter ξ ∈ Fq ∪ {∞}. To begin with, let δ 6= 0. Then α 6= 0. The first

equation in (2.5.14) forces

γ =
(2α + 1)β

8α
.

Together with the other equation, we have

8α3 − 3αβ2 − 8α2 − β2 = 0.

Let ξ = βα−1. This implies α2(8α− 3αξ2 − 8− ξ2) = 0. Therefore

α =
ξ2 + 8

8− ξ2
,

and the assertion follows for δ 6= 0. For δ = 0 we may assume β = 1. If α 6= 0 then

γ = 1/4 and 8α2 = −1, which is impossible as −1 is a square in Fq while 8 is not.

When δ = α = 0 and β = 1, then γ = −1
8

.

Therefore,

v = vξ =
(ξ2 + 8)v0 + (ξ2 + 8)ξ
ξ
8
(−ξ2 + 24)v0 + 8− 3ξ2

, v∞ =
1

−1
8
v0

= −2(h+ 2χ). (2.5.15)

Let Aξ and A∞ be two matrices in GL(2,K) representing the fractional linear maps

vξ and v∞. Thus,

det(Aξ) =
(ξ2 + 8)(ξ4 − 48ξ2 + 64)

8
, det(A∞) = (8)−1. (2.5.16)

These equations remains true for t0 and t:

t = tξ =
(ξ2 + 8)t0 + (ξ2 + 8)ξ
ξ
8
(−ξ2 + 24)t0 + 8− 3ξ2

, t∞ =
1

−1
8
t0

= −2(h− 2X ). (2.5.17)

Next, we show that Lemma 2.18 imposes a condition on ξ in (2.5.15).

Lemma 2.20. ξ2 + 8 is a square in Fq.

Proof. To use Lemma 2.18 we rewrite εv2 + α
2
(v1v2 +v1) in terms of ξ. This requires

a certain amount of straightforward and tedious computations that we omit. From

(2.5.15), we have

v =
4(ξ2 + 8)

χ16− χ2ξ2 + h(8− χ8ξ + ξ2)
(2.5.18)
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and

v1 =
−4(χ16− χ2ξ2)(8 + ξ2)

k
, v2 =

−4(8 + ξ2)(8− χ8ξ + ξ2)

k
(2.5.19)

where k = 128 + χ256ξ − 224ξ2 + χ32ξ3 + 2ξ4.

Then,

εv2+
α

2
(v1v2+v1) =

2(1− χεα)(8 + ξ2)((−16 + 16α) + (8 + 32α)ξ + (6 + 10α)ξ2 + ξ3)2

(64− 128ξ − 112ξ2 − 16ξ3 + ξ4)2

(2.5.20)

Note that (1 + α)(1 − α) = 2 and that 1 + α ∈ �q if and only if q ≡ 13 (mod 16).

In fact,

1 + α = ±h
q+3
4 ∈ �q ⇐⇒ h

(q−1)(q+3)
8 = 1

and in this case 1− α is a non-square in Fq.

Since χε = 1 when q ≡ 5 (mod 16) and χε = −1 when q ≡ 13 (mod 16), we get

that 1− χεα is always a square in Fq. Hence ξ2 + 8 ∈ �q.

To state a corollary of Lemmas 2.17, 2.18 and 2.20, the partition of Fq ∪ {∞} into

two subsets Σ1 ∪ {∞} and Σ2 is useful, where x ∈ Σ1 ∪ {∞} or x ∈ Σ2 according as

x2 + 8 ∈ �q or not.

Proposition 2.21. Let P = (2ε, h, 0) ∈ H3,q2 with h2 = 2. Then the generators in

G1 through the point P which meet X+ are as many as nP = 1
2
(q + 1). They are

precisely the lines gξ joining P to Pu,v = (u, v, v2) with u, v as in equation (2.5.2)

and (2.5.15), where ξ ranges over the set Σ1 ∪ {∞}.

2.5.2 Case of G2
This case requires much less effort. The tangent plane πP at P = (2ε : h : 0) meets

π in the line r of equation 2hqY + Z = 0. Since C has equation Z = Y 2 in π, the

only common points of r and C are (0 : 0 : 0) and Q = (0 : 2h : 8), with Q /∈ Ω as

h /∈ Fq. Then we have the following result.

Proposition 2.22. Let P = (2ε, h, 0) ∈ H3,q2, with h2 = 2. Then there is a unique

generator through the point P which meets Ω, namely the line l through P and the

origin O = (0 : 0 : 0).

From now on, we denote with `+ and `− the two generators through P when ε = 1

and ε = −1 respectively.
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2.5.3 Choice of M1 and M2

In this last subsection, we are going to chooseM1 andM2 such that Condition (B)

is fulfilled.

We have two different generators g0’s, one for ε = 1, the other for ε = −1:

g+0 passing through P+(2 : h : 0)

and

g−0 passing through P−(−2 : h : 0)

Lemma 2.23. The generators g+0 and g−0 are in different orbits of Φ.

Proof. The linear collineation associated to the matrix W interchanges the two

generators.

Let r (resp. r′) be the number of generators in M1 (resp. M′
1) through the point

P+ that meet ∆+. Note that

r + r′ =
1

2
(q + 1). (2.5.21)

Similarly,

Lemma 2.24. The generators `+ and `− are in different orbits of Φ.

Proof. We use the same arguments of [34, Lemma 7.14]. Indeed, we replace (
√
−2b, b, 0)

and (−
√
−2b, b, 0) with P+ and P− and the proof follows.

We are ready to choose M1 and M2.

� M1 is the Φ-orbit containing g+0 .

� M2 is the Φ-orbit containing `+ for r < r′ and `− for r > r′.

Remark 2.25. As in [34, Proposition 7.15], r′ is obtained counting the squares in

the value set of the polynomial f(ξ), defined in Theorem 2.14. More precisely, we

obtain that the number of ξ ∈ Fq for which f(ξ) ∈ �q equals 2r′ − 1.

Therefore we have the following proposition.
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Proposition 2.26. Condition (B) for case (III) holds if and only if

r =
1

4
(q − 1), and r′ =

1

4
(q + 3)

or

r =
1

4
(q + 3), and r′ =

1

4
(q − 1)

Proof. Note that nP = 1
2
(q + 3) and that condition (B) holds if and only if half of

them is in M1 ∪M2. The choices of r and r′ are readily seen.

Thus, Theorem 2.14 follows.

Since the properties of the plane curve C4

Y 2 = X4 − 24ωX2 + 16ω2, with ω = 2

depend only on q ≡ 1 (mod 4), we also get the proof of Theorem 2.13, that is

Condition (B) in case (III) is satisfied if and only if the curve C3

Y 2 = X3 −X

has q − 1 or q + 3 points. For the details, see [34] at the end of Section 7.

2.6 Proof of Theorem 2.1

We are in the position to work out the case q = p when p ≡4 1. We write p = ππ̄,

with π ∈ Z[i]. Here, π can be chosen such that π = α1 + iα2 and α1 = 1. From [46,

Section 2.2.2], Np(C3) = q+ 1− 2α1. This implies that condition (B) in case (III) is

satisfied if and only if

p = 1 + 4a2 and Np(C3) = q − 1.

Therefore, Theorem 2.1 is a corollary of Theorem 2.11, Result 2.12 and Theorem

2.14.



42 2. Hemisystems from maximal curves

2.7 Some applications

In the last section of this chapter we will focus on some applications connected to

hemisystems.

Strongly regular graphs

A strongly regular graph with parameters (v, k, λ, µ) is a graph with v vertices, each

vertex lies on k edges, any two adjacent vertices have λ common neighbors and any

two non-adjacent vertices have µ common neighbors. A strongly regular graph Γ

with parameters ((q3 + 1)(q + 1−m), (q2 + 1)(q−m), q− 1−m, q2 + 1−m(q + 1))

may arise from any m-regular system S on the Hermitian surface H3,q2 , q odd, where

the vertices of Γ are the lines lying on the surface but not contained in S, and two

vertices are adjacent if the lines are incident. Thus, every hemisystem gives rise

to a strongly regular graph with the following parameters: v = 1
2
(q3 + 1)(q + 1),

k = 1
2
(q2 + 1)(q − 1), λ = 1

2
(q − 3), µ = 1

2
(q − 1)2. The spectrum of Γ can be

hence computed. The first eigenvalue is k, of multiplicity 1, and the other two (the

restricted eigenvalues) are:

θ1 = 1
2

[
(λ− µ) +

√
(λ− µ)2 + 4(k − µ)

]
= q − 1,

θ2 = 1
2

[
(λ− µ)−

√
(λ− µ)2 + 4(k − µ)

]
= 1

2
(−q2 + q − 2),

of multiplicity

m1 = 1
2

[
(v − 1)− 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)

]
= 1

2
(q4 − q3 + 2q2 − q + 1),

m2 = 1
2

[
(v − 1) + 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)

]
= (q2 + 1)(q − 1) = 2k,

respectively. See [44, Section 1.4].

The hemisystems on the Hermitian surface H3,p2 , for p = 1 + 4a2, constructed

in this chapter produce a strongly regular graph Γ with the above parameters for

q = p. We point out that, in the smallest case p = 5, the graph Γ has parameters

(378, 52, 1, 8) and spectrum 52, 4273,−11104. A comparison of Γ with the Cossidente-

Penttila strongly regular graph ([15]) with the same parameters, shows that they

are cospectral. It is an open question whether these two strongly regular graphs are

isomorphic.
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Two-weight codes from strongly regular graphs

An [n, k]-linear code C over the finite field Fq is a k-dimensional subspace of Fqn.

Vectors in C are called codewords, and the weight w(v) of v ∈ C is the number

of non-zero entries in v. A two-weight code is an [n, k]-linear code C such that

|{w : ∃v ∈ C \ {0} w(v) = w}| = 2

For a subset Ω of Fkq , with Ω = −Ω and 0 6∈ Ω, define G(Ω) to be the graph whose

vertices are the vectors of Fkq , and two vertices are adjacent if and only if their

difference is in Ω. Moreover, let Σ denote the set of points in PG(k − 1, q) that

correspond to the vectors in Ω, i.e. Σ = {〈v〉 : v ∈ Ω}. An useful result connecting

two-weight linear codes and strongly regular graphs is found in [11] which relies

on projective (n, k, h1, h2)-sets, i.e. a proper, non-empty set Σ of n points of the

projective space PG(k− 1, q) such that every hyperplane meets Σ in either h1 or h2

points.

Result 2.27 ( [11, Theorems 3.1 and 3.2]). Let Ω and Σ be defined as above. If

Σ = {〈vi〉 : i = 1, . . . , n} is a proper subset of PG(k− 1, q) that spans PG(k− 1, q),

then the following are equivalent:

(i) G(Ω) is a strongly regular graph;

(ii) Σ is a projective (n, k, n− w1, n− w2)-set for some w1 and w2;

(iii) the linear code C = {(x · v1,x · v2, . . . ,x · vn) : x ∈ Fkq} (here x · v is the

classical scalar product) is an [n, k]-linear two-weight code with weights w1 and

w2.

Since an m-regular system on the Hermitian surface provides an m-ovoid O on the

elliptic quadric Q−(5, q), the hemisystems constructed in the previous sections give

rise to a projective set.. Moreover, see [5, Theorem 11], an m-ovoid on the elliptic

quadric Q−(5, q) is a projective (m(qr+1 + 1), 6,m(qr + 1),m(qr + 1)− qr)-set and it

produces a strongly regular graph with parameters:

(q6,m(q − 1)(q3 + 1),m(q − 1)(3 +m(q − 1))− q2,m(q − 1)(m(q − 1) + 1)).

Since m = 1
2
(q + 1) we get a strongly regular graph with parameters (q6, 1

2
(q3 +

1)(q2 − 1), 1
4
(q4 − 5), 1

4
(q4 − 1)), and the 1

2
(q + 1)-ovoid O is a projective (1

2
(q3 +

1)(q+1), 6, 1
2
(q2 +1)(q+1), 1

2
(q3− q2 + q+1))-set, which gives a [1

2
(q3 +1)(q+1), 6]-

linear two-weight code with weights w1 = 1
2
q2(q2 − 1) and w2 = 1

2
q2(q2 + 1).



44 2. Hemisystems from maximal curves



Chapter 3

Blocking sets and conics

Combinatorial problems in finite projective planes often ask to count the number of

points in the intersection of two algebraic subsets. A typical problem of this kind,

posed in [1], is the following. The points of a projective plane PG(2, q) fall into three

classes with respect to an (absolutely) irreducible conic, namely the points lying on

two tangent lines (external), on no tangent line (internal) and the point s on the

conic. Let C and D be two distinct irreducible conics. The points of D fall into one

of three subsets, namely those points EC(D) of D that are external to C, those points

IC(D) that are internal, and C ∩D. This gives rise to the functions εC(D) = |EC(D)|
and ιC(D) = |IC(D)| defined over the set of all conics D distinct from C. The

combinatorial problem is to compute, or estimate the value sets of ε = εC(D) (or

equivalently of ι = ιC(D)). A solution is given in [1]: either ε = 0, q − 1, q, q + 1, or
1
2
(q− 1)− (

√
q− 3) ≤ ε ≤ 1

2
(q− 1)− (

√
q+ 3). Let PG(2, q) be the projective plane

defined over a finite field Fq of odd order, canonically embedded in the projective

plane PG(2, q2) over the quadratic extension Fq2 of Fq. Let C be an (absolutely)

irreducible conic of PG(2, q2) with homogeneous equation F (X0, X1, X2) = 0 where

F ∈ Fq2 [X0, X1, X2] is an irreducible quadratic form. Then the number of points

of C lying in PG(2, q) is at most 4 unless C is a conic defined over Fq, that is,

F ∈ Fq[X0, X1, X2], in which case that number equals q + 1. In this chapter we

are interested in the number Eq(C) of external points to C which lie in PG(2, q).

Since conics defined over Fq2 are not equivalent over Fq in general, Eq(C) viewed

as a function of C is not expected to be constant when C runs over all conics of

PG(2, q2). Our goal is to determine the relative value set.

The main results are stated in the following theorems.

45
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Theorem 3.1. Let C be a conic in the desarguesian plane PG(2, q2) with at least

one rational point in PG(2, q) and q ≥ 5. Then

Eq(C) = q2 if and only if C is defined over Fq.

Theorem 3.2 ([41, Theorem 1.2]). In the desarguesian plane PG(2, q2) let C be a

conic not defined over Fq with at least one Fq-rational point. Then:

� For q = 3, Eq(C) ∈ {3, 4, 5, 6, 7, 8, 9};

� for q = 5, Eq(C) ∈ {11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 25};

� for q > 5, we have

Eq(C) =
1

2
(q2 + (α− 1)q − n0),

where n0 ∈ {0, 1, 2, 3} and α ∈ {1, 2, 3, 4, 5, 7}, and α− n0 is even.

Remark 3.3. When q = 3 all the values occur, that is 7 possibilities.

When q = 5 the only values missing are {16, 22}, that is 2 out of 11.

When q > 5 we have 13 possibilities.

3.1 External points

Our notation and terminology are standard; see [12, 20, 21, 22]. In particular, for a

point (X0 : X1 : X2) of PG(2, q2) we also use the shorter notation X = (X0 : X1 :

X2). Let

F (X0, X1, X2) =
∑

0≤i,j≤2

aijXiXj.

where aij ∈ Fq2 , and det(aij) 6= 0. Then C has equation X tAX = 0, for

A =

a00
a01
2

a02
2

a01
2

a11
a12
2

a02
2

a12
2

a22


For any two distinct points P and Q in PG(2, q2), the line PQ meets C in PG(2, q2)

or in a quadratic extension PG(2, q4) of PG(2, q2), and their common points arise

from the roots (ξ, ϑ) of the homogeneous Joachimsthal equation

ξ2P tAP + 2ξϑP tAQ+ ϑ2QtAQ = 0.
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More precisely, if (ξ1, ϑ1) and (ξ2, ϑ2) are the (non necessarily distinct) non-Fq-
proportional solutions of the Joachimsthal equation, then the common points are

Ui = ξiP + ϑiQ for i = 1, 2. Joachimsthal equation is useful to distinguish between

external and internal points of C.

Lemma 3.4 ([12, Theorem 7.51]). If P runs over the set of all external points to C
then the values P tAP are all squares or all non-squares. For an external point P ,

if P tAP is a square then QtAQ is a non-square for every internal point Q to C.

Therefore, in terms of the equation X tAX = ϑ2 with ϑ ∈ Fq2 \ {0}, the problem of

determining Eq(C) asks to find its homogeneous solutions X = (X0 : X1 : X2), with

Xi ∈ Fq.

3.2 The maximal case

We start the discussion with a conic C defined over Fq. Write the equation of C as

C : aX2 + bXY + cY 2 + dXZ + eY Z + fZ2 = 0,

with a, b, c, d, e, f ∈ Fq.

Lemma 3.5. Let C be a conic defined over Fq with matrix A. For every point

P ∈ PG(2, q) we have P tAP ∈ �q2.

Proof. P tAP is an element of Fq and so a square of Fq2 .

Theorem 3.6. Let C be a conic defined over Fq. The number Eq(C) of external

points to C in PG(2, q2) which lie in PG(2, q) is q2.

Proof. Any irreducible conic defined over Fq has q+ 1 points over Fq. From Lemma

3.5 the remaining points of PG(2, q) are either all external or all internal to the conic

C. Let tP be the Fq-rational tangent to C at an Fq-rational point P . Now any other

point of tP defined over Fq is an external point to C (note that this set is non-empty

as tP is defined over Fq). In particular, this means that any point of PG(2, q) is

either on the conic or is external to the conic. Since |PG(2, q)| = q2 + q + 1 points,

this implies that there are other q2 external points.
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3.3 Conics with at least one point in PG(2, q).

Up to a change of the reference system, we may assume that C contains the point

(0 : 1 : 0). Then C has equation

C : aX2 + bXY + cXZ + dY Z + eZ2 = 0 (3.3.1)

with a, b, c, d, e ∈ Fq2 where either b 6= 0 or d 6= 0. From now on we may assume

b 6= 0. In case b = 0 we can apply the collineation (X : Y : Z) 7→ (Z : Y : X) which

swaps b and d.

Lemma 3.7. If P runs over the set of all external points to C then the values P tAP
are all squares or all non-squares according as −bcd + ad2 + b2e is a square or a

non-square in Fq2.

Proof. Since the tangent line to C at Q = (0 : 1 : 0) has equation bX + dZ = 0, the

point P = (−d/b : 0 : 1) of tQ is external to C. We have P TAP = (−bcd+ad2+b2e).

Now, Lemma 3.7 follows from Lemma 3.4 .

Remark 3.8. Without loss of generality we can always suppose−bcd+ad2+b2e ∈ �q2 .

Indeed, if −bcd+ ad2 + b2e = αγ2, with α /∈ �q2 , we only need to multiply by α the

equation of C.

Equation X tAX = ϑ2 with ϑ ∈ Fq2 can be rewritten over Fq as Fq2 is a finite

extension of Fq, that is, the elements of Fq2 are of the form z = z1 + εz2 with

z1, z2 ∈ Fq where ε ∈ Fq2 is a root of an irreducible polynomial p(X) = X2 − ω over

Fq. Since the other root of p(X) is εq, we have ε+ εq = 0. Thus, X tAX = ϑ2 reads

over Fq: {
a1X

2 + b1XY + c1XZ + d1Y Z + e1Z
2 = t21 + ωt22

a2X
2 + b2XY + c2XZ + d2Y Z + e2Z

2 = 2t1t2
(3.3.2)

where a = a1 + εa2, b = b1 + εb2, c = c1 + εc2, d = d1 + εd2, e = e1 + εe2, ϑ = t1 + εt2

and ω = ε2. Since we have b 6= 0 or d 6= 0, we can assume d2 6= 0 or b2 6= 0 without

loss of generality. From the second equation then

Y =
−e2Z2 + 2t1t2 − c2XZ − a2X2

d2Z + b2X
. (3.3.3)

Note that we lose the point (0 : 1 : 0). Substituting Y by the expression on the right
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hand side gives

2t1t2(b1X+d1Z)−(t21+ωt22)(b2X+d2Z)+AX3+BX2Z+CXZ2+DZ3 = 0, (3.3.4)

where A = −a2b1+a1b2, B = b2c1−b1c2−a2d1+a1d2, C = −c2d1+c1d2+b2e1−b1e2,
D = d2e1 − d1e2 and ω = ε2 is a non-square of Fq. Note that Equation (3.3.4) is

equivalent to:

(2t1t2−(a2X
2+c2XZ+e2Z

2))(b1X+d1Z)+(a1X
2+c1XZ+e1Z

2−t21−ωt22)(b2X+d2Z) = 0.

Remark 3.9. The number of solutions (X : Y : Z) of System (3.3.2) can be ob-

tained (but it is not necessarily equal) by counting the points over Fq lying on the

cubic surface S : F (t1, t2, X, Z) = 0 of PG(3, q) with homogeneous equation (3.3.4).

Here PG(3, q) stands for the projective space over Fq with homogeneous coordinates

(t1, t2, X, Z).

Remark 3.10. Note that the conic C of equation (3.3.1) is defined over Fq if and only

if the following hold:

a1b2 = a2b1, c1b2 = c2b1, d1b2 = d2b1, e1b2 = e2b1.

Lemma 3.11. With the notation above, if (A,B,C,D) = (0, 0, 0, 0) then C is a

singular conic.

Proof. The determinant of the matrix associated to the polynomial (3.3.4) defining

C is
1

4
(−a1 − a2ε+ (b1 + b2ε)(c1 + c2ε− (b1 + b2ε)(e1 + e2ε))),

where we write every element z of Fq2 as z = z1 + εz2 with z1, z2 ∈ Fq where ε ∈ Fq2
is a root of an irreducible polynomial p(X) = X2+β over Fq. Since d = 1 and D = 0

we have that e2 = 0. Furthermore, A = 0, C = 0 and B = 0 imply respectively:

a1 =
a2b1
b2

, c2 = b2e1 and a2 = b2c1 − b1c2. (3.3.5)

Then det(A) = 0.

Remark 3.12. Since by hypothesis the conic C is non-singular, we cannot have

(A,B,C,D) = (0, 0, 0, 0).
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Lemma 3.13. The cubic surface S, defined by the equation (3.3.4), is irreducible if

and only if b1d2 − b2d1 6= 0.

Proof. Note that we can write the equation of S as

H(t1, t2, X, Z) +G(X,Z) = 0,

with F of degree 1 in X and Z. Hence the only possibility for S to be reducible is

the following one:

(k1X + k2Z)(H1(t1, t2) +G1(X,Z)) = 0, (3.3.6)

where H1(t1, t2) +G1(X,Z) may be reducible itself.

Consider now b1d2− b2d1 = 0. Then the plane π : b1X + d1Z = 0 is a component of

the cubic surface S. Indeed, using (3.3.4), we have

(b1X+d1Z)(b2t
2
1−2b1t1t2+b2ωt

2
2+(b1a2−a1b2)X2+(b1c2−b2c1)XZ+(b1e2−b2e1)Z2) = 0.

Hence S is reducible.

On the other hand, if S is reducible, using Equation (3.3.6) and the identity principle

of polynomials, we have k1X + k2Z = h(b1X + d1Z)

k1X + k2Z = j(b2X + d2Z)

which implies h(b1X + d1Z) = j(b2X + d2Z), for some h, j ∈ F∗q and so b1d2 =

b2d1.

3.3.1 Irreducible case

For a survey on cubic surfaces see [38]. In this section we suppose S irreducible. In

particular we know that b1d2 − b2d1 6= 0 or equivalently d
b
/∈ Fq.

Remark 3.14. In this case we can set d = 1. Indeed, we can divide the equation

(3.3.1) by d, since we have d 6= 0 and b 6= 0. This also implies b2 6= 0.

We want to find a bound for the number of rational points of S. If S is a smooth

surface we have the following theorem, see [38, Theorem 27.1 and Table 1 §31].

Theorem 3.15 (Weil). Let S be a smooth cubic surface defined over a finite field
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Fq. Then

|S(Fq)| = q2 + αq + 1,

with α ∈ {−2,−1, 0, 1, 2, 3, 4, 5, 7}.

The missing case is when S is singular. We start our investigation from the possible

singularities of S.

Theorem 3.16. Let S be the cubic surface defined by equation (3.3.4). Then S has

at most one singular point P . In this case P is a double point and is defined over

Fq.

Proof. Let S : F (t1, t2, X, Z) = 0. The condition ∂F
∂t1

= ∂F
∂t2

= 0 implies

t21 − ε2t22 = 0 or X = Z = 0.

This means that t1 = t2 = 0, as ε ∈ Fq2 \ Fq, or X = Z = 0. When X = Z = 0

together with ∂F
∂X

= ∂F
∂Z

= 0 imply{
2t1t2b1 − b2(t21 + ωt22) = 0

2t1t2 = 0
(3.3.7)

Hence t1 = t2 = 0. We need to study
∂F

∂X
= 3AX2 + 2BXZ + CZ2 = 0

∂F

∂Z
= BX2 + 2CXZ + 3DZ2 = 0

(3.3.8)

If A 6= 0 then Z = 0 implies X = 0, so we can have only solutions of the form

(0 : 0 : β : 1). The system becomes
∂F

∂X
= 3AX2 + 2BX + C = 0

∂F

∂Z
= BX2 + 2CX + 3D = 0

(3.3.9)

Note that System (3.3.9) has either one or two solutions (counted with multiplicity).

The second case is only possible if either the two equations are proportional, namely

3A = kB, B = kC and C = 3kD,
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or

B = C = D = 0.

In any cases we have a double root (−1
k

and 0). Hence we can just have one singular

point, say P = (0 : 0 : β : 1). Note that this still remains true when the characteristic

of the field is 3 and B = C = 0. Furthermore, β needs to be an element of Fq,
otherwise P ′ = (0 : 0 : βq : 1) would be another singular point different from P .

Suppose now A = 0. System (3.3.8) becomes
∂F

∂X
= 2BXZ + CZ2 = 0

∂F

∂Z
= BX2 + 2CXZ + 3DZ2 = 0

If Z = 0 and B 6= 0 then we have no solutions. If Z = 0 and B = 0 we have only

the solution (0 : 0 : 1 : 0). If Z 6= 0 we can suppose Z = 1:
∂F

∂X
= 2BX + C = 0

∂F

∂Z
= BX2 + 2CX + 3D = 0

Note that B needs to be different from 0. Indeed, if B = 0 then we have C = 0 and

D = 0. Hence we can have at most one solution which is defined over Fq.
Finally, observe that P = (0 : 0 : X : Z) cannot be a triple point for S. Since both

d2 and b2 cannot be zero, the condition ∂2F
∂t21

(P ) = ∂2F
∂t22

(P ) = 0 implies −2(b2X) =

−2ω(b2X) and then ω = 1, which is a contradiction as ω is a non-square of Fq.

We are going to study the tangent cone at a singular point P to investigate the

number of points of S. See [9]. Remember that the tangent cone TP (S) is the set

of all tangent lines at a singular point P of S. When S is a cubic surface we have

four possibilities for the tangent cone TP (S):

� a quadric cone;

� a line (the intersection of two planes defined over Fq2 .);

� a couple of distinct planes;

� a repeated plane.

Theorem 3.17. With the notation above, the tangent cone TP (S) at P = (0 : 0 : 1 :

0) or P = (0 : 0 : β : 1) is a quadric cone with the exception of β = −1, 0. In these

cases it is a couple of planes either defined over Fq2 \ Fq or over Fq. In particular
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there are q + 1, 1, 2q + 1 tangent lines through P , respectively.

Proof. The point P = (0 : 0 : 1 : 0) is singular if and only if A,B = 0 (and so C 6= 0

by hypothesis). In this case the associated matrix of TP (S) is

T =


−b2 b1 0 0

b1 −b2ω 0 0

0 0 0 0

0 0 0 C


It follows that TP (S) is a quadric cone.

When P = (0 : 0 : β : 1) the tangent cone has the following associated matrix:

T =


−b2β b1β + 1 0 0

b1β + 1 −b2βω 0 0

0 0 B + 3Aβ C +Bβ

0 0 C +Bβ 3D + Cβ

 =

(
T1 0

0 T2

)
.

Note that β satisfies 3D+Cβ = −(Bβ2 +Cβ) and C +Bβ = −(3Aβ2 +Bβ). This

implies that |T | = 0. Indeed,

|T2| = −(Bβ + 3Aβ2)(Bβ + C) + (Bβ + 3Aβ2)(Bβ + C) = 0.

Furthermore the rank of T is 3 except when

1. B = C = D = 0. In this case we have β = 0.

2. B 6= 0 and β = −B
3A

. This case occurs when System (3.3.9) is reduced to the

single equation X2 + 2X + 1 = 0. Thus, β = −1.

In both situations the rank of T equals 2.

We want to study the maximum number of lines through P = (0 : 0 : β : 1) entirely

contained in S. We apply to S the invertible projectivity defined by

(t1 : t2 : X : Z) 7→ (t1 : t2 : X − βZ : Z),

so that

S ′ : Z(2(1+b1β)t1t2−(b2β)(t21+ωt
2
2)+(3Aβ+B)X2)+X(2b1t1t2−b2(t21+ωt22)+AX2) = 0
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and P ′ = (0 : 0 : 0 : 1). This means that we need to study the system{
φ2(t1, t2, X) := 2(1 + b1β)t1t2 − (b2β)(t21 + ωt22) + (3Aβ +B)X2 = 0

φ3(t1, t2, X) := X(2b1t1t2 − b2(t21 + ωt22) + AX2) = 0
(3.3.10)

In fact, each point satisfying System (3.3.10) corresponds to a line through P ′ con-

tained in S ′.

Theorem 3.18. With the notation above, if α is the number of lines through the

singular point P ′, then α ∈ {0, 2, 4}.

Proof. The homogeneous polynomial φ2 cannot be a factor of φ3. Thus, we have at

most 6 points of intersection. According whether φ2(t1, t2, 0) is irreducible or not

over Fq we lose or have two intersections and for every solution (t1 : t2 : 1) we have

also the solution (−t1 : −t2 : 1). This implies that α 6= 1. Now note that we have

at most two solutions with X = 1. They are given precisely by t1 and t2 satisfying

t1t2 = c1, where c1 ∈ Fq \ {0} depends on A,B and β.

Remark 3.19. Note that when φ2 is reducible (β = 0 or β = −1) we have α = 0

when we deal with two complex planes. In particular for β = 0 this cannot happen

and hence α = 4.

We are ready to state the main theorem.

Theorem 3.20. Let S be the irreducible cubic surface defined by Equation (3.3.4)

with a singular point, say P = (0 : 0 : β : 1), and let β1 = (1 + b1β)2 − b22β2ω. The

following are the only possibilities for Sq = |S(Fq)|.

Sq =



q2 + αq + 1, if β 6= 0,−1

q2 + 3q + 1, if β = 0

q2 + q + 1, if β1 /∈ �q, β = −1

q2 + (α− 1)q + 1, if β1 ∈ �q, β = −1

where α ∈ {0, 2, 4} if β1 /∈ �q and α ∈ {2, 4} if β1 ∈ �q.

Proof. This proof relies on the above results. In particular, since P is a double point,

every line passing through P , not in TP (S), meets S in exactly one point (different

from P ). Thus, we need to subtract from q2 + q + 1 the number of lines contained

in TP (S) through P and add q whenever one of these lines lie on S.
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We will use the following notation.

Sq is the number of points defined over PG(3, q) of S; moreover we set n0 and

n∞ to be the number of the ones with t1 = t2 = 0 and X = Z = 0 respectively.

Lemma 3.21. With the above notation, let C be a conic defined by Equation (3.3.1).

Then

Eq(C) =
1

2
(Sq − n0 − n∞)

Proof. The points of C can be obtained putting ϑ = 0 in the system (3.3.2) whereas

Eq(C) is obtained counting the points of S(Fq) with ϑ 6= 0. This means that every

point of S(Fq) with t1 = t2 = 0 is an Fq-rational point of C. Furthermore, we need

to subtract the points with X = Z = 0, since they correspond to (0 : 1 : 0) which is

on the conic. Note that for fixed X, Y, Z we have either 0 or 2 solution for (t1, t2)

defined over Fq. The discriminant of the quadratic equation (3.3.4) in t1 (or t2) is

actually different from 0. This because ω is not a square in Fq. Thus, for every

point (X : Y : Z) of C(Fq), we have two points (t1 : t2 : X : Z) of S(Fq) so, after we

subtracted the values of n0 and n∞, we need to divide by two.

Lemma 3.22. With the above notation, we have n∞ = q + 1 and n0 ∈ {0, 1, 2, 3}.

Proof. The points of S(Fq) with t1 = 0 and t2 = 0 can be obtained as follows:

� A = 0. In this case we have at least the point (0 : 0 : 1 : 0) and at most other

two points, (0 : 0 : β : 1), with β solution of

BX2 + CX +D = 0.

� A 6= 0. The points are (0 : 0 : λ : 1), with λ that runs over the solution set of

AX3 +BX2 + CX +D = 0,

that are at most three.

The computation of n∞ follows easily. Indeed, the number of points (t1 : t2 : 0 : 0),

for t1, t2 ∈ Fq, is q + 1.

Now we are ready to establish the possible values for Eq(C). The values of Sq come

from Theorems 3.15 and 3.20 , for S non-singular and singular respectively.
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Corollary 3.23. Let Sq = |S(Fq)|. With the notations above:

Eq(C) =
1

2
(Sq − n0 − q − 1).

Corollary 3.24. With the notation above, the possible values for Eq(C), when S is

non-singular are the following

� Eq(C) = 1
2
(q2 + (α− 1)q − n0), with n0 = 0, 2 and α ∈ {−2, 0, 2, 4}

� Eq(C) = 1
2
(q2 + (α− 1)q − n0), with n0 = 1, 3 and α ∈ {−1, 1, 3, 5, 7}

Proof. We just need to study the parity of q2+(α−1)q−n0 to establish the possible

values for n0 and α.

3.3.2 Reducible case

Throughout this section we will suppose b 6= 0 and d
b
∈ Fq or equivalently b1d2 =

d1b2. The case d 6= 0 is analogous.

Thus, from the proof of Lemma 3.13 we know that S splits as

S = Π ∪Q,

where Π is the plane defined by b1X + d1Z = 0 (or b2X + d2Z = 0) and Q is a is a

possibly degenerate quadric surface of PG(3, q) in t1, t2, X, Z.

The equation of S is

(b1X+d1Z)(b2t
2
1−2b1t1t2+b2ωt

2
2+(b1a2−a1b2)X2+(b1c2−b2c1)XZ+(b1e2−b2e1)Z2)

We study the two factors separately. Remember that C is defined by equation (3.3.1).

Lemma 3.25. The line of PG(2, q) defined by b1X + d1Z = 0 is the tangent line to

C at the point (0 : 1 : 0). In particular, it contains exactly q external points to C.

Proof. By a straightforward computation

d

b
=
d1b1 − ωd2b2
b21 − ωb22

=
1

b2b1

b21d2b1 − ωb22d1b2
b21 − ωb22

=
d1b2
b1b2

=
d1
b1
.

This means that the lines bX + dZ = 0 and b1X + d1Z = 0 are actually the same.

In particular this is the tangent line to C at (0 : 1 : 0).
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Remark 3.26. Lemma 3.25 implies that the plane Π is contributing with exactly q

solutions to System (3.3.2), see Remark 3.8.

From now on we focus on the quadric surface Q, defined by

b2t
2
1−2b1t1t2+b2ωt

2
2+(b1a2−a1b2)X2+(b1c2−b2c1)XZ+(b1e2−b2e1)Z2 = 0 (3.3.11)

First, note that if b1a2− a1b2 = 0, b1c2− b2c1 = 0 and b1e2− b2e1 = 0 then the conic

C is defined over Fq, so we can skip it now (see Section 3.2).

One associate matrix of Q is

M =


b2 −b1 0 0

−b1 b2ω 0 0

0 0 a′ c′

2

0 0 c′

2
e′

 ,

where a′ = b1a2 − a1b2, c′ = b1c2 − b2c1 and e′ = b1e2 − b2e1. As mentioned above,

we can assume that at least one of a′, c′ and e′ is non-zero.

Lemma 3.27. Let δ′ := c′2 − 4a′e′ and δ = b22ω − b21.

� if δ′ = 0 then Q is a quadric cone with vertex v =

(0 : 0 : −c′ : 2a′), if a′ 6= 0,

(0 : 0 : 1 : 0), if a′ = 0
.

� if δ′ 6= 0 then Q is a non-singular elliptic or hyperbolic quadric;

Proof. The determinant of M is ∆ = −1
4
δδ′ = 1

4
(b22ω − b21)(4a′e′ − c′2). Since ωis a

non-square of Fq and b 6= 0, we have ∆ = 0 only when δ′ = 0. The proof follows

from the classification of quadric surfaces. See for example [21, pg. 14].

Lemma 3.28. We have

Eq(C) =
1

2

(
|Q| − |Q0| − |Π ∩Q|+ |Q0 ∩ Π|

)
+ q,

where Q0 = {(t1, t2, X, Z) ∈ Q|t1 = t2 = 0}.

Proof. We have already seen that Π gives its contribution of q points to Eq(C). The

remaining points that contribute to Eq(C) are those on Q not in Π nor Q0 (as the

points of Q0 correspond to points of C), so the equation follows easily.
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From the previous lemma, we need to understand better the mutual position between

Π, Q, and Q0 to achieve our goal.

Lemma 3.29. Π meets Q0 if and only if κ = 0, where

κ := a′d21 − c′d1b1 + e′b21,

in which case |Π ∩ Q0| = 1. Furthermore, when δ′ = 0, Π ∩ Q0 is the vertex of the

quadric cone Q, if a′ 6= 0, and the empty set, if a′ = 0.

Proof. The plane Π meets Q0 only at one point, that is (0 : 0 : −d1 : b1). Note that

δ′ = 0 and a′ = 0 imply c′ = 0. Thus, κ needs to be different from zero otherwise

we have e′ = 0 too. The claim follows from standard computation.

Corollary 3.30. We have

|Q0 ∩ Π| =

{
0, if κ 6= 0

1, if κ = 0

Lemma 3.31.

|Q0| =


0, if δ′ /∈ �q

1, if δ′ = 0

2, if δ′ ∈ �q

Proof. This result follows from standard theory. See [21, Table 15.5] for more details.

We are ready to describe the situation for every type of Q.

Theorem 3.32. Let S = Π ∪Q, with Q quadric cone (δ′ = 0). Then

Eq(C) =



1

2
(q2 − q) + q, if κ = 0, δ ∈ �q

1

2
(q2 + q) + q, if κ = 0, δ /∈ �q

1

2
(q2 − 1) + q, if κ 6= 0

, δ = b22ω − b21.

Proof. If δ′ = 0,

� κ = 0. This means that Π is a plane either meeting Q only at the vertex

v or through two generators of Q. More precisely, it depends on whether
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δ = b22ω − b21 is in �q or not (note that δ cannot be equal to zero). Thus, we

have

|Π ∩Q| =

{
2q + 1, if δ ∈ �q

1, if δ /∈ �q

� κ 6= 0. This implies that Π intersects Q in a non-singular conic with q + 1

points, not containing v and Q0 = {v}, where v is the vertex of Q.

Finally, the contribution of Π to Eq(C) is q, as we have already seen.

Lemma 3.33. Let S = Π ∪Q. If δ′ 6= 0,

|Π ∩Q| =


1, κ = 0, δ /∈ �q

2q + 1, κ = 0, δ ∈ �q

q + 1, κ 6= 0

Proof. Note that a point P = (t1 : t2 : X,− b1
d1
X) ∈ Π ∩Q if and only if

F1(t1, t2) +X2κ = 0,

where F1(t1, t2) = b2t
2
1 + b2ωt

2
2− 2t1t2b1. Thus, if κ 6= 0 there are the q+ 1 points of

a non-singular conic. On the other hand, if κ = 0 the number of solutions depend

on whether δ ∈ �q or not. The claim follows by [21, Par. 15.3].

Theorem 3.34. Let S = Π ∪Q, with Q a non-singular quadric surface. Then

� if κ 6= 0 and δ′ ∈ �q then

Eq(C) =


1

2
(q2 − q − 2) + q, δ /∈ �q,

1

2
(q2 + q − 2) + q, δ ∈ �q;

� if κ 6= 0 and δ′ /∈ �q then

Eq(C) =


1

2
(q2 − q) + q, δ ∈ �q,

1

2
(q2 + q) + q, δ /∈ �q;

� if κ = 0 (and δ′ ∈ �q), then Eq(C) = 1
2
(q2 − 1) + q.
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Proof. The claims follows from Lemmas 3.28 and 3.33 and from [21, Tables 15.6 and

15.7] for the number of points of quadrics over Fq.

3.4 Proof of Theorems 1.1 and 1.2

We are now able to prove our main theorems. More precisely Theorem 3.1 follows

from Theorems 3.15, 3.32, 3.34 and the next result.

Theorem 3.35 ([48]). In Theorem 3.15 the bounds are best possible, except that

when q = 2, 3 or 5 the upper bound can be improved to α ≤ 5.

The proof of Theorem 3.2 requires one last step. For further details about the next

Theorem, see [3].

Theorem 3.36. Let C be an oval of a projective plane of order q2, say Πq2, with q

being odd. Let B denote a blocking set of Πq2 and E denote the set of points lying

on a tangent to C.

If C ∩ B = k, then |E ∩ B| ≥ q2+1−k
2

.

Proof. Each line of the plane, hence also the tangents to C, meets B. If t is a tangent

to C at P ∈ C, then t \ {P} ⊆ E and hence t ∩ B ⊆ (E ∩ B) ∪ {P}. Thus E ∩ B has

a point of each of the tangents to the points of C \ B. Since each point not in C is

incident with either 0 or 2 tangents to C, then |E ∩ B| ≥ q2+1−k
2

.

Corollary 3.37. Let C be an irreducible conic of PG(2, q2), q odd, and let B denote

a Baer subplane. Also, denote by E the set of external points to C.

Then |E ∩ B| ≥ q2−3
2

.

Corollary 3.37 shows that when q > 3 then in Theorem 3.24 we can exclude the

cases α = −2,−1, 0. Taking this into account, the proof of Theorem 3.2 is a direct

consequence of Theorem 3.24, 3.20, 3.32 and 3.34.

3.5 Example

Let C1 be a conic of equation

ax2 + bxy + dyz = 0,
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with b
d
/∈ Fq and a

d
∈ Fq. This means that we can rewrite the equation as

a′x2 + b′xy + yz = 0,

where a′ ∈ Fq and b′ ∈ Fq2 \ {Fq}. Thus, we have 2(−bcd+ ad2 + b2e) = a′ which is

always a square in Fq2 . We conclude that the System (3.3.2) counts the number of

external points to C1.
Lemma 3.22 can be refined. Indeed, we have a′1b

′
2X

3 = 0 admits only the root

(0 : 0 : 0 : 1). This implies that n0 = 1 and Cq = 2.

From Theorem 3.23, since S is singular with δ′ = 0, we have just one possibility for

σq:

σq =
1

2
(q2 + 2q − 1).

Using the Computational Algebra System Magma [10], we found the following values

for (q, Eq): (3, 7), (5, 17), (7, 31), (9, 49).
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Chapter 4

Permutation binomials

In this chapter we are interested in investigating permutation binomials (PBs) over

Fq2 , where p = charFq. A permutation binomial (PB) of Fq is a PP of the form

aXm + bXn, where a, b ∈ F∗q, m 6≡ 0, n 6≡ 0 and m 6≡ n (mod q − 1). Permutation

binomials are an active topic that has attracted much attention. We refer the

reader to [28] for a survey on PBs and to [27] for a survey on PPs. Permutation

binomials are complex objects; in general, one can not expect a simple criterion on

the parameters q,m, n, a, b for aXm + bXn to be a PB of Fq. In this chapter, we focus

on PBs of Fqe of the form

fq,e,n,d,a(X) = Xn(Xd(q−1) + a) ∈ Fqe [X], (4.0.1)

where n, d ∈ Z+, n 6≡ 0, d(q − 1) 6≡ 0, n + d(q − 1) 6≡ 0 (mod qe − 1), and a ∈ F∗qe .
Here is an overview of current knowledge on such PBs.

Result 4.1 ([51, Corollary 5.3]). Assume e = 2 and aq+1 = 1. Then fq,2,n,d,a =

Xn(Xd(q−1) + a) is a PB of Fq2 if and only if gcd(n, q − 1) = 1, gcd(n− d, q + 1) = 1

and (−a)(q+1)/gcd(q+1,d) 6= 1.

Result 4.2 ([26, Theorem A]). Assume e = 2, n = 1, d = 2 and aq+1 6= 1. Then

fq,2,1,2,a = X(X2(q−1) + a) is a PB of Fq2 if and only if q is odd and (−a)(q+1)/2 = 3.

Result 4.3 ([29, Theorem 1.1]). Assume e = 2, n = 1, d > 2, aq+1 6= 1, and q is

large relative to d. Then fq,2,1,d,a = X(Xd(q−1) + a) is not a PB of Fq2.

Result 4.4 ([36, 37]). Assume e = 2, n = 3, d = 2 and aq+1 6= 1. Then

fq,2,3,2,a = X3(X2(q−1) + a) is a PB of Fq2 if and only if q is odd, q ≡ −1 (mod 3) and

(−a)(q+1)/2 = 1/3.
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Result 4.5 ([49, Theorem 1]). Assume e = 2, q = 22m and d = 3. Then fq,2,n,3,a =

Xn(X3(q−1) + a) is a PB of Fq2 if and only if gcd(n, q − 1) = 1, n ≡ 3 (mod q + 1)

and aq+1 6= 1.

(Note: in the original statement of Result 4.5 in [49], it is assumed that m ≥ 2.

However, the result also holds for m = 1; see Example 4.16.)

Result 4.6 ([24, Theorem 4.2]). Assume e = 2 and d = 1. Then fq,2,n,1,a =

Xn(Xq−1 + a) is a PB of Fq2 if and only if gcd(n, q − 1) = 1, n ≡ 1 (mod q + 1) and

aq+1 6= 1.

Result 4.7 ([39]). Assume e ≥ 2, d = 1 and n < qe − q. For the special cases

(q, e) = (q, 2), (q, 3), (q, 4), (p, 5), (p, 6), where p is a prime, the following statement

is true: if fq,e,n,1,a = Xn(Xq−1 + a) is a PB of Fqe, then fq,e,n,1,a ≡ Xnq
h

+ aXn

(mod Xq
e − X) for some integer h > 0. It is conjectured that the statement is true

for all q.

(Note: in Result 4.7, when q = 2, f2,e,n,1,a = Xn(X + a) is never a PB of F2e , so the

statement is vacuously true.)

Through these results, we begin to understand the roles played by the parameters

in the PBs of the form (4.0.1). At the same time, as more results on PBs gather,

one feels a need for a properly defined notion of equivalence of PBs that allows us

to categorize existing results and channel future efforts to PBs that are new under

equivalence. Section 4.1 is included for this purpose. We define the equivalence

among all PBs (not just those of the form (4.0.1)). We show that every PB can be

brought to a canonical form which is uniquely determined by a triple of invariants.

In particular, we see that the PB in Result 4.4 is equivalent to a PB in Result 4.2

and the PB in Result 4.5 is equivalent to a PB in Result 4.6.

Regarding Result 4.5, if we assume e = 2, q = 22m+1, d = 3 and aq+1 6= 1, [49]

conjectured that fq,2,n,3,a = Xn(X3(q−1) + a) is not a PB of Fq2 and provided strong

evidence for this conjecture. Note that in this case, d | q + 1. As we will see in

Section 4.1, when the PB in (4.0.1) is brought to its canonical form, we always have

d | (qe − 1)/(q − 1).

Let us further focus on the case e = 2, and we assume d | q + 1 by the above

comment. In this case, if aq+1 = 1 or d = 1, all PBs are given by Results 4.1

and 4.6. Therefore, we assume e = 2, 2 ≤ d | q + 1 and aq+1 6= 1. Under these

assumptions and up to equivalence, the PBs in Result 4.2 form the only known class

that contains infinitely many q’s. This leads to the following question.
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Question 4.8. Fix integers n ≥ 1 and d ≥ 2. If there are infinitely many pairs

(q, a) such that d | q+ 1, a ∈ F∗q2, aq+1 6= 1, and f(X) = fq,2,n,d,a(X) = Xn(Xd(q−1) + a)

is a PB of Fq2, can we conclude that when q is sufficiently large, f is equivalent to

a PB in Result 4.2?

In this chapter, we prove two nonexistence results that support an affirmative answer

to the above question.

Theorem 4.9 ([31, Theorem 1.9]). Let q = 2m, n ≥ 1 and a ∈ F∗q2 be such that

q ≥ (2 max{n, 6 − n})4 and aq+1 6= 1. Then f(X) = fq,2,n,3,a(X) = Xn(X3(q−1) + a) is

not a PB of Fq2.

Theorem 4.9 proves the conjecture of [49] when q is large relative to n.

Theorem 4.10 ([31, Theorem 1.10]). Let n ≥ 1, d ≥ 2 and a ∈ F∗q2 be such that

d | q + 1, q ≥ (2 max{n, 2d− n})4. Then f(X) = fq,2,n,d,a(X) = Xn(Xd(q−1) + a) is not

a PB of Fq2 if one of the following conditions is satisfied.

(i) d− n > 1 and gcd(d, n+ 1) is a power of 2.

(ii) d+ 2 ≤ n < 2d and gcd(d, n− 1) is a power of 2.

(iii) n ≥ 2d, gcd(d, n− 1) is a power of 2, and gcd(n− d, q − 1) = 1.

Remark 4.11. In Theorem 4.10, one can replace the assumption that d | q + 1

with gcd(n, d) = 1. If the f in Theorem 4.10 is a PB of Fq2 , then d | q + 1 implies

gcd(n, d) = 1. However, as we will see in Section 4.3, the proof of Theorem 4.10

only uses gcd(n, d) = 1. Moreover, the assumption that gcd(n, d) = 1 causes no loss

of generality. If fq,2,n,d,a is a PB of Fq2 with gcd(n, d) = δ, then gcd(δ, q2 − 1) = 1.

Let δ′ ∈ Z+ be such that δδ′ ≡ 1 (mod q2 − 1). Then

fq,2,n,d,a(X
δ′) ≡ fq,2,n/δ,d/δ,a(X) (mod Xq

2 − X),

where gcd(n/δ, d/δ) = 1.

Result 4.3 is a special case of Theorem 4.10 (i) with n = 1. Although the conditions

in Theorem 4.10 are rather restrictive, they do cover many parameters that were

not investigated previously. For example, (i) is satisfied for all d > n + 1 with

gcd(d, n+ 1) = 1.

Theorems 4.9 and 4.10 are proved in Sections 4.2 and 4.3, respectively. The method

is similar to that in [29]. Here we recall the basic strategy.
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Let

f(X) = fq,2,n,d,a(X) = Xn(Xd(q−1) + a) ∈ Fq2 [X], (4.0.2)

where n ≥ 1, 2 ≤ d | q + 1 and a ∈ F∗q2 . From Theorem 1.70 we have to study

Xn(Xd + a)q−1 on the set µq+1. Assume that f(X) in (4.0.2) is a PB of Fq2 . Then for

x ∈ µq+1,

xn(xd + a)q−1 =
xn(xdq + aq)

xd + a
=
xn(aqxd + 1)

xd(xd + a)
= G(x),

where

G(X) =
aqXn + Xn−d

Xd + a
. (4.0.3)

Write

G(X) =
P (X)

Q(X)
,

where P (X) = aqXn + Xn−d,

Q(X) = Xd + a,
if n ≥ d,

P (X) = aqXd + 1,

Q(X) = X2d−n + aXd−n,
if n < d.

We assume that aq+1 6= 1, which implies that gcd(P,Q) = 1. Thus

degG =

n if n ≥ d,

2d− n if n < d.

Let

N(G) =
P (X)Q(Y)− P (Y)Q(X)

X− Y
∈ Fq2 [X, Y], (4.0.4)

which is the numerator of (G(X)−G(Y))/(X− Y). We have

degN(G) ≤

n+ d− 1 if n ≥ d,

3d− n− 1 if n < d.

Theorem 4.12. Assume that f(X) in (4.0.2) is a PB of Fq2, where q ≥ (2 max{n, 2d−
n})4. Then N(G) in (4.0.4) is reducible in Fq[X, Y], where Fq is the algebraic closure

of Fq.

Proof. We only give a sketch of the proof; the omitted details are given in [29, §3].
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There exist l1, l2 ∈ Fq2(X) of degree one such that H := l1 ◦G◦ l2 permutes Fq. Since

degH = degG < q, by [29, Lemma 3.2], H ∈ Fq(X). Let A(X, Y) = N(H) ∈ Fq[X, Y],

the numerator of (H(X) − H(Y))/(X − Y). Assume to the contrary that N(G) is

irreducible over Fq. Then by [29, Lemma 3.1], A(X, Y) is also irreducible over Fq.
We have

δ := degA(X, Y) ≤ 2 degH − 2 = 2 degG− 2.

By the Hasse-Weil bound, the number of zeros of A(X, Y) in the projective plane

PG(2, q) is at least

q − (δ − 1)(δ − 2)q1/2.

Excluding the zeros at infinity of PG(2, q) and on the diagonal {(x, x) : x ∈ Fq} of

the affine plane F2q, we have

|{(x, y) ∈ F2q : x 6= y, A(x, y) = 0}| ≥ q − (δ − 1)(δ − 2)q1/2 − 2δ.

The right side is positive since q ≥ δ4. Hence there exist (x, y) ∈ F2q with x 6= y such

that A(x, y) = 0. Then H(x) = H(y), which is a contradiction.

4.1 Canonical forms of permutation binomials

For our purpose, a binomial over Fq is a polynomial of the

f(X) = aXm + bXn ∈ Fq[X],

where a, b ∈ F∗q, m,n > 0, m 6≡ 0, n 6≡ 0 and m 6≡ n (mod q−1). We treat f(X) as a

function from Fq to Fq, that is, we identify f(X) with its image in the quotient ring

Fq[X]/〈Xq − X〉. Let Bq denote the set of all such binomials. Two members f, g ∈ Bq
are considered equivalent, denoted as f ∼ g, if one can be obtained from the other

through a combination of the following transformations of Bq:

αu : Bq → Bq, f(X) 7→ uf(X), u ∈ F∗q,

β : Bq → Bq, f(X) 7→ f(X)p, p = charFq,

γv,s : Bq → Bq, f(X) 7→ f(vXs), v ∈ F∗q, s ∈ Z+, gcd(s, q − 1) = 1.

(4.1.1)

If f, g ∈ Bq are equivalent, then f permutes Fq if and only if g does. It is clear that

γv,s commutes with αu and β, and β ◦ αu = αup ◦ β. Therefore, for f, g ∈ Bq, f ∼ g

if and only if

g(X) = uf(vXs)p
i

(4.1.2)
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for some u, v ∈ F∗q, i ≥ 0 and s > 0 with gcd(s, q − 1) = 1.

For d | q − 1, define

Nd = {1 ≤ n ≤ q − 1 : n = n∗}, (4.1.3)

where

n∗ = min
{

1 ≤ n′ ≤ q − 1 : n′ ≡ tn (mod q − 1) for some t ∈ Z×q−1
with t ≡ 1 (mod (q − 1)/d) or

n′ ≡ tn− d (mod q − 1) for some t ∈ Z×q−1
with t ≡ −1 (mod (q − 1)/d)

}
.

(Here Z×q−1 denotes the multiplicative group of Zq−1.) Let θ : Z×q−1 → Z×(q−1)/d be

the natural homomorphism (which is onto). Then G := θ−1({±1}) acts on Zq−1 as

follows: For t ∈ G and n ∈ Zq−1,

t(n) =

tn if θ(t) = 1,

tn− d if θ(t) = −1.

Write Zq−1 = {1, 2, . . . , q − 1}. Then for n ∈ Zq−1, n∗ is the least element in the

G-orbit of n. Therefore Nd is the set of least elements of the G-orbits in Zq−1.

Example 4.13. Let q = 24 and d = 3. We have θ : Z×15 → Z×5 , θ−1(1) =

{1, 11}, θ−1(−1) = {−1, 4} and G = {1, 11,−1, 4}. The G-orbits of Z15 are {1, 11},
{2, 7, 10, 5}, {3, 9}, {4, 14, 8, 13}, {6}, {15}. Hence Nd = {1, 2, 3, 4, 6, 15}.

For d | q − 1 and n ∈ Nd, let

Gd,n = the subgroup of Z×d generated by{p,−1} if d ≡ −2n (mod (q − 1)/d) and gcd(n, q − 1) = 1,

{p} otherwise,

(4.1.4)

Let Gd,n act on F∗q/(F∗q)d, where (F∗q)d = {xd : x ∈ F∗q}, as follows:

Gd,n × F∗q/(F∗q)d −→ F∗q/(F∗q)d

(s, a(F∗q)d) 7−→ as(F∗q)d, a ∈ F∗q.

Let Ad,n ⊂ F∗q be such that {a(F∗q)d : a ∈ Ad,n} is a system of representatives of the

Gd,n-orbits in F∗q/(F∗q)d. Equivalently, let Gd,n act on Zd through multiplication and
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let ξ be a primitive element of Fq. Then Ad,n = {ξe : e ∈ Ed,n}, where Ed,n is a

system of representatives of the Gd,n-orbits in Zd.

We now are ready to state and prove the main result of this section.

Theorem 4.14. Assume that f ∈ Bq permutes Fq. Then there is a unique triple

(d, n, a), where d | q − 1, n ∈ Nd and a ∈ Ad,n, such that

f(X) ∼ Xn(Xd + a). (4.1.5)

We call the right side of (4.1.5) the canonical form of f .

Proof. Existence of (d, n, a)

Write f(X) = a0X
m0 + b0X

n0 , where a0, b0 ∈ F∗q and m0 > n0. Let d = gcd(m0 −
n0, q − 1). Let r ∈ Z+ be such that

r
m0 − n0

d
≡ 1 (mod

q − 1

d
).

Since gcd(r, (q−1)/d) = 1, there exists integer k ≥ 0 such that s := r+k(q−1)/d is

relatively prime to q−1. (To see this, use Dirichlet’s theorem on primes in arithmetic

progression or the following simple argument: Let p1, . . . , pl be the prime divisors

of q − 1 that do not divide r and let k = p1 · · · pl.) Then

f(X) ∼ f(Xs) = Xsn0(a0X
s(m0−n0) + b0) = Xn1(a0X

d + b0),

where n1 = sn0. We now assume f(X) = Xn1(a0X
d + b0).

Let n = n∗1 ∈ Nd. We claim that

f(X) ∼ Xn(a1X
d + b1) (4.1.6)

for some a1, b1 ∈ F∗q. To prove this claim, we consider two cases.

Case 1. Assume that n ≡ tn1 (mod q− 1) for some t ∈ Z×q−1 with t ≡ 1 (mod (q−
1)/d). Then

f(X) ∼ f(Xt) = Xtn1(a0X
td + b0) = Xn(a0X

d + b0).

Case 2. Assume that n ≡ tn1 − d (mod q − 1) for some t ∈ Z×q−1 with t ≡ −1

(mod (q − 1)/d). Then

f(X) ∼ f(Xt) = Xtn1(a0X
td + b0) = a0X

tn1+td + b0X
tn1
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= a0X
n + b0X

n+d = Xn(b0X
d + a0).

Hence (4.1.6) is proved.

By (4.1.6), we may assume

f(X) = Xn(Xd + c),

where c ∈ F∗q. To prove that f(X) ∼ Xn(Xd+a) for some a ∈ Ad,n, again, we consider

two cases.

Case 1. Assume that d 6≡ −2n (mod (q − 1)/d) or gcd(n, q − 1) 6= 1. By (4.1.4),

Gd,n = 〈p〉 < Z×d . Then by the definition of Ad,n, there exist i ∈ N, a ∈ Ad,n and

b ∈ F∗q such that cp
i

= abd. Write b = bp
i

1 , where b1 ∈ F∗q. Let s ∈ Z+ be such that

spi ≡ 1 (mod q − 1). Then

f(X) ∼ f(b1X
s)p

i

= (b1X
s)np

i

((b1X
s)dp

i

+ cp
i

)

∼ Xn(bdp
i

1 Xd + cp
i

) = Xn(bdXd + cp
i

)

∼ Xn(Xd + cp
i

b−d) = Xn(Xd + a).

Case 2. Assume that d ≡ −2n (mod (q − 1)/d) and gcd(n, q − 1) = 1. Then

Gd,n = 〈p,−1〉 < Z×d . So there exist i ∈ N, a ∈ Ad,n and b ∈ F∗q such that either

cp
i

= abd or c−p
i

= abd. In the former case, the proof is identical to Case 1. In

the latter case, write b = bp
i

1 , where b1 ∈ F∗q. Let k ∈ Z+ be such that kn ≡ 1

(mod q − 1), and let s = 1 + kd. Then

sn = n+ nkd ≡ n+ d (mod q − 1)

≡ −n (mod (q − 1)/d).

Hence s ≡ −1 (mod (q − 1)/d). It follows that gcd(s, (q − 1)/d) = 1. We also have

gcd(s, d) = gcd(1 + kd, d) = 1. Therefore gcd(s, q − 1) = 1. We have

f(X) ∼ f(Xs) = Xsn(Xsd + c) = Xsn+sd + cXsn.

In the above,

sn = n+ nkd ≡ n+ d (mod q − 1)

and

sd = (1 + kd)d ≡ (1 + k(−2n))d ≡ −d (mod q − 1).



4.1. Canonical forms of permutation binomials 71

Hence

f(X) ∼ Xn + cXn+d ∼ Xn(Xd + c−1),

where (c−1)p
i

= abd. It follows from Case 1 that

Xn(Xd + c−1) ∼ Xn(Xd + a).

Uniqueness of (d, n, a)

Assume that

f(X) = Xn(Xd + a) ∼ Xn1(Xd1 + a1), (4.1.7)

where d | q − 1, n ∈ Nd, a ∈ Ad,n, d1 | q − 1, n1 ∈ Nd1 , a1 ∈ Ad1,n1 .

In general, for bXm + cXl ∈ Bq, gcd(m − l, q − 1) is invariant under equivalence.

Therefore, in (4.1.7), we have d = d1.

By (4.1.7),

Xn1(Xd + a1) = uf(vXs)p
i

(4.1.8)

for some u, v ∈ F∗q, i ≥ 0 and s > 0 with gcd(s, q − 1) = 1. Expanding (4.1.8) gives

Xn1+d + a1X
n1 = αXt(n+d) + βXtn,

where t = spi and α, β ∈ F∗q. It follows thatn1 + d ≡ t(n+ d) (mod q − 1),

n1 ≡ tn (mod q − 1),
(4.1.9)

or n1 + d ≡ tn (mod q − 1),

n1 ≡ t(n+ d) (mod q − 1).
(4.1.10)

Note that (4.1.9) is equivalent tot ≡ 1 (mod (q − 1)/d),

n1 ≡ tn (mod q − 1),
(4.1.11)
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and (4.1.10) is equivalent tot ≡ −1 (mod (q − 1)/d),

n1 ≡ tn− d (mod q − 1).
(4.1.12)

Since n ∈ Nd, it follows from (4.1.11), (4.1.12) and the definition of Nd ((4.1.3))

that n ≤ n1. By symmetry, n1 ≤ n, whence n = n1.

Now (4.1.8) becomes

Xn+d + a1X
n = u

[
(vXs)n+d + a(vXs)n

]pi
= uvp

i(n+d)Xsp
i(n+d) + uap

i

vp
inXsp

in.

Let t = spi. Then there are two possibilities.

Case 1. (4.1.11) holds with n = n1 and

(uvp
i(n+d), uap

i

vp
in) = (1, a1). (4.1.13)

Case 2. (4.1.12) holds with n = n1 and

(uap
i

vp
in, uvp

i(n+d)) = (1, a1). (4.1.14)

It suffices to show that in both cases, a and a1 are in the same Gd,n-orbit. Which

implies a = a1.

First, assume Case 1. We have

a1 =
uap

i
vp

in

uvpi(n+d)
= ap

i

v−p
id,

which is in the Gd,n-orbit of a.

Next, assume Case 2. (4.1.12) with n = n1 givest ≡ −1 (mod (q − 1)/d),

n ≡ tn− d (mod q − 1).

It follows that n ≡ tn−d ≡ −n−d (mod (q−1)/d), i.e., d ≡ −2n (mod (q−1)/d).

Since f(X) permutes Fq, we have gcd(n, d) = 1. From n ≡ tn − d (mod q − 1), we
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have (t− 1)n− d ≡ 0 (mod q − 1), whence d | t− 1 and

t− 1

d
n− 1 ≡ 0 (mod

q − 1

d
).

In particular, gcd(n, (q − 1)/d) = 1. Combining this with gcd(n, d) = 1, we have

gcd(n, q − 1) = 1. Therefore Gd,n = 〈p,−1〉. Now by (4.1.14),

a1 =
uvp

i(n+d)

uapivpin
= a−p

i

vp
id,

which is in the Gd,n-orbit of a.

Example 4.15. Assume that n, d ∈ Z+ are such that d | q + 1, n < 2d, gcd(n, q2 −
1) = 1 and gcd(2d − n, q − 1) = 1, and let a ∈ F∗q2 . Since gcd(dq − n + d, q − 1) =

gcd(2d − n, q − 1) = 1 and gcd(dq − n + d, q + 1) = gcd(n, q + 1) = 1, we have

gcd(dq − n+ d, q2 − 1) = 1. Then in Bq,

Xn(Xd(q−1) + a) = Xdq+n−d + aXn

∼ X(dq−n+d)(dq+n−d) + aX(dq−n+d)n (X 7→ Xdq−n+d)

= Xd
2q2−(n−d)2 + aX(dq−n+d)n

= Xd
2−(n−d)2 + aX(dq−n+d)n

= Xn(2d−n) + aX(dq−n+d)n

∼ X2d−n + aXdq−n+d (Xn 7→ X)

= X2d−n(1 + aXd(q−1))

∼ X2d−n(Xd(q−1) + a−1).

In particular, when n = 1, d = 2, q is odd and q 6≡ 1 (mod 3), we have

X(X2(q−1) + a) ∼ X3(X2(q−1) + a−1).

This shows that the PB in Result 4.4 is equivalent to a PB in Result 4.2.

Example 4.16. We show that the PB in Result 4.5 is equivalent to a PB in Re-

sult 4.6. Let e = 2, q = 22m, n ∈ Z+, d = 3, a ∈ F∗q2 , and consider f = fq,2,n,3,a =

Xn(X3(q−1) + a).
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Let s = (q + 2)/3 + k(q + 1), where

k =

0 if m ≡ 0, 1 (mod 3),

1 if m ≡ −1 (mod 3).

We claim that gcd(s, q2 − 1) = 1. Clearly, gcd(s, q + 1) = 1. We have

gcd(s, q − 1) = gcd
(q + 2

3
+ 2k, q − 1

)
=

1

3
gcd(q + 2 + 6k, 3q − 3)

=
1

3
gcd(q + 2 + 6k, 3(−2− 6k)− 3)

=
1

3
gcd(q + 2 + 6k, 9(2k + 1)).

In the above, 9(2k + 1) equals 32 or 33, and

q + 2 + 6k = (3− 1)2m + 2 + 6k

≡ 1− 2m · 3 + 2 + 6k (mod 32)

= 3 + 6(k −m)

6≡ 0 (mod 32).

So gcd(s, q − 1) = 1 and the claim is proved.

Now we have

f(X) ∼ f(Xs) = Xsn(Xs·3(q−1) + a) = Xsn(Xq−1 + a).

By Result 4.6, Xsn(Xq−1 + a) permutes Fq2 if and only if

gcd(sn, q − 1) = 1, sn ≡ 1 (mod q + 1), and aq+1 6= 1,

i.e.,

gcd(n, q − 1) = 1, n ≡ 3 (mod q + 1), and aq+1 6= 1,

which are precisely the conditions in Result 4.5.
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4.2 Proof of Theorem 4.9

Theorem 4.9. Let q = 2m, n ≥ 1 and a ∈ F∗q2 be such that q ≥ (2 max{n, 6− n})4

and aq+1 6= 1. Then f(X) = fq,2,n,3,a(X) = Xn(X3(q−1) + a) is not a PB of Fq2.

Assume to the contrary that f is a PB of Fq2 . If m is even, by Result 4.5, n ≥ q+ 4,

which is a contradiction. So m is odd, and 3 | q + 1. By (4.0.3),

G(X) =
aqXn + Xn−3

X3 + a
. (4.2.1)

Let

N(X, Y) := N(G) be the numerator of
G(X) +G(Y)

X + Y
.

By Theorem 4.12, N(X, Y) is reducible over Fq. However, we will show that N(X, Y)

is irreducible over Fq, hence creating a contradiction. We consider two cases, n ≥ 3

and n ≤ 2, separately.

4.2.1 Case 1. n ≥ 3

Since gcd(n, 3(q − 1)) = 1 (Theorem 1.70), we have n > 3. We have

N(X, Y) =
1

X + Y

[
(aqXn + Xn−3)(Y3 + a) + (aqYn + Yn−3)(X3 + a)

]
= a

Xn−3 + Yn−3

X + Y
+
[
aq+1X

n + Yn

X + Y
+ X3Y3

Xn−6 + Yn−6

X + Y

]
+ aqX3Y3

Xn−3 + Yn−3

X + Y
.

The homogenization of N(X, Y) is

N∗(X, Y, Z) = a
Xn−3 + Yn−3

X + Y
Z6 +

[
aq+1X

n + Yn

X + Y
+ X3Y3

Xn−6 + Yn−6

X + Y

]
Z3

+ aqX3Y3
Xn−3 + Yn−3

X + Y

=Q(Z3),

where

Q(Z) = a
Xn−3 + Yn−3

X + Y
Z2 +

[
aq+1X

n + Yn

X + Y
+ X3Y3

Xn−6 + Yn−6

X + Y

]
Z

+ aqX3Y3
Xn−3 + Yn−3

X + Y
.
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It suffices to show thatN∗(X, Y, Z) is irreducible over Fq. We first show thatN∗(X, Y, Z),

as a polynomial in Z over Fq[X, Y], is primitive, i.e., the gcd of its coefficients is 1;

that is,

gcd
(Xn−3 + Yn−3

X + Y
, aq+1X

n + Yn

X + Y
+ X3Y3

Xn−6 + Yn−6

X + Y

)
= 1. (4.2.2)

Since the polynomials in (4.2.2) are homogeneous, it suffices to prove (4.2.2) with

Y = 1, i.e.,

gcd
(Xn−3 + 1

X + 1
, aq+1X

n + 1

X + 1
+ X3

Xn−6 + 1

X + 1

)
= 1. (4.2.3)

Let ζ ∈ Fq be a root of (Xn−3 + 1)/(X + 1). If ζ 6= 1, then ζn−3 + 1 = 0. Thus

(
aq+1X

n + 1

X + 1
+ X3

Xn−6 + 1

X + 1

)∣∣∣
X=1

=
1

ζ + 1

(
aq+1(ζn + 1) + ζ3(ζn−6 + 1)

)
=

1

ζ + 1

(
aq+1(ζ3 + 1) + 1 + ζ3

)
=

1

ζ + 1
(aq+1 + 1)(ζ3 + 1) 6= 0.

(Note: ζ3 6= 1 since ζn−3 = 1 and gcd(n, 3(q − 1)) = 1.) If ζ = 1, then n must be

odd, in which case,

(
aq+1X

n + 1

X + 1
+ X3

Xn−6 + 1

X + 1

)∣∣∣
X=1

= aq+1n+ n− 6 = n(aq+1 + 1) 6= 0.

This proves (4.2.3) and hence (4.2.2).

With (4.2.2), to prove that N∗(X, Y, Z) is irreducible in Fq[X, Y, Z], it suffices to show

that it is irreducible in Fq(X, Y)[Z]. Let w be a root of N∗(X, Y, Z) ∈ Fq(X, Y)[Z] and let

z = w3. Then z is a root of Q(Z). It suffices to show that [Fq(X, Y, z) : Fq(X, Y)] = 2

and [Fq(X, Y, w) : Fq(X, Y, z)] = 3.
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Proof that [Fq(X, Y, z) : Fq(X, Y)] = 2

Assume to the contrary that Q(Z) is reducible over Fq(X, Y). Then there exists

A/B ∈ Fq(X, Y) (A,B ∈ Fq[X, Y], gcd(A,B) = 1) such that

aq+1X3Y3
(Xn−3 + Yn−3

X + Y

)2
(
aq+1X

n + Yn

X + Y
+ X3Y3

Xn−6 + Yn−6

X + Y

)2 =
(A
B

)2
+
A

B
=
A(A+B)

B2
. (4.2.4)

In Equation (4.2.4), the numerator and the denominator on the left side are relatively

prime (by (4.2.2)), so

B = aq+1X
n + Yn

X + Y
+ X3Y3

Xn−6 + Yn−6

X + Y
(4.2.5)

and

A(A+B) = aq+1X3Y3
(Xn−3 + Yn−3

X + Y

)2
.

Since gcd(A,A+B) = 1, we may assume thatA = X3U2,

A+B = Y3V 2,
(4.2.6)

for some U, V ∈ Fq[X, Y] with UV = (Xn−3 + Yn−3)/(X + Y). Therefore,

B = X3U2 + Y3V 2. (4.2.7)

By (4.2.7), the coefficient of XYn−2 in B is 0. However, by (4.2.5), the coefficient of

XYn−2 in B is either aq+1 or aq+1 + 1. We have a contradiction.

Proof that [Fq(X, Y, w) : Fq(X, Y, z)] = 3

Assume the contrary. Then z is a third power in Fq(X, Y, z), that is, there exists

A,B ∈ Fq(X, Y) such that

z = (A+Bz)3,

i.e.,

(A+BZ)3 − Z ≡ 0 (mod Q(Z)). (4.2.8)



78 4. Permutation binomials

Setting Y = 1 in (4.2.8) gives

(A1 +B1Z)3 − Z ≡ 0 (mod Q1(Z)), (4.2.9)

where A1(X) = A(X, 1), B1(X) = B(X, 1) and

Q1(Z) = Q(Z)|Y=1 =

a
Xn−3 + 1

X + 1
Z2 +

[
aq+1X

n + 1

X + 1
+ X3

Xn−6 + 1

X + 1

]
Z + aqX3

Xn−3 + 1

X + 1
.

We find that

(A1 +B1Z)3 − Z ≡ f0(X)

a2(X3 + Xn)
+

f1(X)

a2(X3 + Xn)2
Z (mod Q1(Z)),

where

f0(X) = a2A3
1X

3 + a1+qA1B
2
1X

6 + a1+2qB3
1X

6 + aqB3
1X

9 + a2A3
1X
n

+ a1+qA1B
2
1X

3+n + aqB3
1X

3+n + a1+2qB3
1X

6+n,

f1(X) = a2X6 + a2A2
1B1X

6 + a2+qA1B
2
1X

6 + a2+2qB3
1X

6 + aA1B
2
1X

9

+ a1+qB3
1X

9 +B3
1X

12 + a2X2n + a2A2
1B1X

2n + aA1B
2
1X

2n +B3
1X

2n

+ aA1B
2
1X

3+n + a2+qA1B
2
1X

3+n + aA1B
2
1X

6+n + a2+qA1B
2
1X

6+n

+ a2+qA1B
2
1X

3+2n + a1+qB3
1X

3+2n + a2+2qB3
1X

6+2n.

In particular, f0(X) = 0. From (4.2.9), B1 6= 0. Then f0(X) = 0 implies A1 6= 0. Let

C = B1/A1. Then f0(X) = 0 becomes

(a2 + a1+qX3C2)(1 + Xn−3) = aqX3(a1+q + X3 + Xn−3 + a1+qXn)C3. (4.2.10)

In Equation (4.2.10),

gcd(1 + Xn−3, a1+q + X3 + Xn−3 + a1+qXn)

= gcd(1 + Xn−3, a1+q + X3 + 1 + a1+qX3)

= gcd(1 + Xn−3, (a1+q + 1)(1 + X3))

= 1 + X.

Let C = D/E, where D,E ∈ Fq[X], E is monic and gcd(D,E) = 1. Then (4.2.10)
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becomes

(a2E3 + a1+qX3D2E)
1 + Xn−3

1 + X
= aqX3D3 a

1+q + X3 + Xn−3 + a1+qXn

1 + X
. (4.2.11)

It follows that
1 + Xn−3

1 + X

∣∣∣ D and D
∣∣∣ 1 + Xn−3

1 + X
. (4.2.12)

(4.2.11) and (4.2.12) force D ∈ F∗q and n = 4. So

a2E3 + a1+qD2X3E = aqD3X3(a1+q(1 + X)3 + X(1 + X)).

Then X | E, say E = XE1. Thus

a2E3
1 + a1+qD2XE1 = aqD3(1 + X)(a1+qX2 + X + a1+q). (4.2.13)

It follows that degE1 = 1, say E1 = X + ε, ε ∈ Fq. Comparing the coefficients of X3

and X0 in Equation (4.2.13) gives

a2 = a1+2qD3,

a2ε3 = a1+2qD3.

Hence ε3 = 1. Then (a1+qX2 + X + a1+q)|X=ε = a1+q(1 + ε2) + ε 6= 0 since a1+q 6= 1.

It follows from (4.2.13) that E1 | 1 + X, that is, E1 = X + 1. Now (4.2.13) becomes

a2(X + 1)2 + a1+qD2X = aqD3(a1+qX2 + X + a1+q).

Comparing the coefficients of X in the last equation gives a1+qD2 = aqD3, i.e., D = a.

But then (4.2.14) gives a1+q = 1, which is a contradiction.

4.2.2 Case 2. n ≤ 2

When n = 1, the absolute irreducibility of N(X, Y) follows from [29, §3]. So we

assume n = 2. The arguments are similar to those in Case 1. We have

G(X) =
aqX3 + 1

X(X3 + a)
, (4.2.14)

N(X, Y) = aqX3Y3 + aq+1XY(X + Y) + (X + Y)3 + a, (4.2.15)
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and

Q(Z) = aZ2 + (aq+1XY(X + Y) + (X + Y)3)Z + aqX3Y3. (4.2.16)

When proving [Fq(X, Y, z) : Fq(X, Y)] = 2, Equations (4.2.4), (4.2.5) and (4.2.6) are

replaced by
aq+1X3Y3

(aq+1XY(X + Y) + (X + Y)3)2
=
A(A+B)

B2
,

B = aq+1XY(X + Y) + (X + Y)3, (4.2.17)

and A = uX3,

A+B = vY3,
u, v ∈ F∗q.

Then B = uX3 + vY3, which contradicts (4.2.17) since a1+q 6= 1.

When proving [Fq(X, Y, w) : Fq(X, Y, z)] = 3, Equation (4.2.10) is replaced by

f0(X) = a2A3
1 + a1+qA1B

2
1X

3 + aqB3
1X

3 + aqB3
1X

4 + a1+2qB3
1X

4 + aqB3
1X

5

+ a1+2qB3
1X

5 + aqB3
1X

6.

Setting E = A1/B1, the equation f0(X) = 0 becomes

a2E3 + a1+qX3E + aqX3(1 + X)(1 + a1+qX + X2) = 0.

It follows that E ∈ Fq[X] and X | E. Write E = XE1. Then

a2E3
1 + a1+qXE1 + aq(1 + X)(1 + a1+qX + X2) = 0. (4.2.18)

Thus degE1 = 1, say E1 = e(X + ε), e ∈ F∗q, ε ∈ Fq. Comparing the coefficients of

X3 and X0 in Equation (4.2.18) gives

a2e3 + aq = 0,

a2e3ε3 + aq = 0.

Hence ε3 = 1. Then (1+a1+qX+X2)|X=ε 6= 0. It follows form (4.2.18) that E1 | 1+X,

whence E1 = e(X + 1). Then (4.2.18) becomes

a2e3(X + 1)2 + a1+qeX + aq(1 + a1+qX + X2) = 0.

Comparing the coefficients of X in the last equation gives e = aq. But then (4.2.19)
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gives a1+q = 1, which is a contradiction.

4.3 Proof of Theorem 4.10

Theorem 4.10. Let n ≥ 1, d ≥ 2 and a ∈ F∗q2 be such that d | q + 1, q ≥
(2 max{n, 2d − n})4. Then f(X) = fq,2,n,d,a(X) = Xn(Xd(q−1) + a) is not a PB of Fq2
if one of the following conditions is satisfied.

(i) d− n > 1 and gcd(d, n+ 1) is a power of 2.

(ii) d+ 2 ≤ n < 2d and gcd(d, n− 1) is a power of 2.

(iii) n ≥ 2d, gcd(d, n− 1) is a power of 2, and gcd(n− d, q − 1) = 1.

Assume to the contrary that f(X) is a PB of Fq2 . Recall that

G(X) =
aqXn + Xn−d

Xd + a
.

Let

N(X, Y) = the numerator of
G(X)−G(Y)

X− Y

and

N∗(X, Y, Z) = the homogenization of N(X, Y).

Our objective is to show that N∗(X, Y, Z) is irreducible over Fq under the conditions

in Theorem 4.10. We consider two cases: the case d− n > 1, which corresponds to

(i) in Theorem 4.10, and the case n − d > 1, which corresponds to (ii) and (iii) in

Theorem 4.10.

4.3.1 The Case d− n > 1

We have

G(X) =
aqXd + 1

Xd−n(Xd + a)
,

N(X, Y) = − aX
d−n − Yd−n

X− Y
+
[
aq+1Xd−nYd−n

Xn − Yn

X− Y
− X2d−n − Y2d−n

X− Y

]
− aqXdYdX

d−n − Yd−n

X− Y
,
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N∗(X, Y, Z) = Q(Zd),

where

Q(Z) = − aX
d−n − Yd−n

X− Y
Z2 +

[
aq+1Xd−nYd−n

Xn − Yn

X− Y
− X2d−n − Y2d−n

X− Y

]
Z

− aqXdYdX
d−n − Yd−n

X− Y
.

We claim that

gcd
(Xd−n − Yd−n

X− Y
, aq+1Xd−nYd−n

Xn − Yn

X− Y
− X2d−n − Y2d−n

X− Y

)
= 1. (4.3.1)

Since the polynomials in (4.3.1) are homogeneous, it suffices to prove (4.3.1) with

Y = 1, i.e.,

gcd
(Xd−n − 1

X− 1
, aq+1Xd−n

Xn − 1

X− 1
− X2d−n − 1

X− 1

)
= 1. (4.3.2)

Let ζ be a root of (Xd−n − 1)/(X− 1). If ζ 6= 1, then ζd−n = 1. It follows that

(
aq+1Xd−n

Xn − 1

X− 1
− X2d−n − 1

X− 1

)∣∣∣
X=ζ

=
1

ζ − 1

(
aq+1(ζn − 1)− (ζn − 1)

)
=

1

ζ − 1
(aq+1 − 1)(ζn − 1) 6= 0.

(Note: ζn 6= 1 since ζd−n = 1 and gcd(n, d) = 1.) If ζ = 1, then d− n ≡ 0 (mod p),

where p = charFq, whence

(
aq+1Xd−n

Xn − 1

X− 1
− X2d−n − 1

X− 1

)∣∣∣
X=1

= aq+1n− (2d− n) = (aq+1 − 1)n 6= 0.

This proves (4.3.2) and hence (4.3.1). By (4.3.1), N∗(X, Y, Z) is a primitive poly-

nomial in Z over Fq[X, Y], i.e., the gcd of its coefficients in Fq[X, Y] is 1. Thus, to

prove that N∗(X, Y, Z) is irreducible in Fq[X, Y, Z], it suffices to show that it is irre-

ducible in Fq(X, Y)[Z]. Let w be a root of N∗(X, Y, Z) for Z and let z = wd. Then

z is a root of Q(Z), and it suffices to show that [Fq(X, Y, z) : Fq(X, Y)] = 2 and

[Fq(X, Y, w) : Fq(X, Y, z)] = d.
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Proof that [Fq(X, Y, z) : Fq(X, Y)] = 2

Assume to the contrary that Q(Z) is reducible over Fq(X, Y).

First assume that q is odd. The discriminant of Q is

D =
[
aq+1Xd−nYd−n

Xn − Yn

X− Y
− X2d−n − Y2d−n

X− Y

]2
− 4aq+1XdYd

(Xd−n − Yd−n

X− Y

)2
.

By assumption, D = ∆2 for some ∆ ∈ Fq[X, Y]. Then

4aq+1XdYd
(Xd−n − Yd−n

X− Y

)2
=[

aq+1Xd−nYd−n
Xn − Yn

X− Y
− X2d−n − Y2d−n

X− Y
+ ∆

]
·
[
aq+1Xd−nYd−n

Xn − Yn

X− Y
− X2d−n − Y2d−n

X− Y
−∆

]
.

Let δ be the gcd of the two factors on the right side of (4.3.3). Then

δ
∣∣∣ (aq+1Xd−nYd−n

Xn − Yn

X− Y
− X2d−n − Y2d−n

X− Y

)
and

δ
∣∣ Xd−n − Yd−n

X− Y
.

It follows from (4.3.1) that δ = 1.

Now from (4.3.3), we have
aq+1Xd−nYd−n

Xn − Yn

X− Y
− X2d−n − Y2d−n

X− Y
+ ∆ = XdU,

aq+1Xd−nYd−n
Xn − Yn

X− Y
− X2d−n − Y2d−n

X− Y
−∆ = YdV,
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for some U, V ∈ Fq[X, Y]. It follows that

2aq+1Xd−nYd−n
Xn − Yn

X− Y
− 2

X2d−n − Y2d−n

X− Y
= XdU + YdV. (4.3.3)

The coefficient of Xd−1Yd−n on the left side of (4.3.3) is 2(aq+1 − 1) 6= 0, while the

coefficient of the same term on the right side of (4.3.3) is 0. This is a contradiction.

Next, assume that q is even. Since Q(Z) is assumed to be reducible over Fq(X, Y),

we have

aq+1XdYd
(Xd−n + Yd−n

X + Y

)2
[
aq+1Xd−nYd−n

Xn + Yn

X + Y
+

X2d−n + Y2d−n

X + Y

]2 =
(A
B

)2
+
A

B
=
A(A+B)

B2
,

where A,B ∈ Fq[X, Y], gcd(A,B) = 1. By (4.3.1), the numerator and the denomina-

tor on the left side are relatively prime. Therefore we may assume

B = aq+1Xd−nYd−n
Xn + Yn

X + Y
+

X2d−n + Y2d−n

X + Y
, (4.3.4)

A(A+B) = aq+1XdYd
(Xd−n + Yd−n

X + Y

)2
.

Since gcd(A,A+B) = 1, we haveA = XdU2,

A+B = YdV 2,

where U, V ∈ Fq[X, Y], UV = (Xd−n + Yd−n)/(X + Y). Then

B = XdU2 + YdV 2. (4.3.5)

The coefficient of Xd−1Yd−n in (4.3.4) is aq+1 + 1 6= 0. However, the coefficient of

Xd−1Yd−n in (4.3.5) is 0, which is a contradiction.

Proof that [Fq(X, Y, w) : Fq(X, Y, z)] = d

To prove this claim, it suffices to show that for each prime divisor t of d, z is not

a t-th power in Fq(X, Y, z). In (4.3.1), divide Q(Z) by its leading coefficient and set
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Y = 1, the result is

Q1(Z) = Z2 −
aq+1Xd−n

Xn − 1

X− 1
− X2d−n − 1

X− 1

a
Xd−n − 1

X− 1

Z + aq−1Xd, (4.3.6)

which is irreducible in Fq(X)[Z]. Let z1 be a root of Q1(Z). By [29, §3.3, Claim II′], it

suffices to show that for each prime divisor t of d, z1 is not a t-th power in Fq(X, z1).

Let ( ) denote the nonidentity automorphism in Aut(Fq(X, z1)/Fq(X)). We have

z1z̄1 = aq−1Xd, (4.3.7)

z1 + z̄1 =
aq+1Xd−n

Xn − 1

X− 1
− X2d−n − 1

X− 1

a
Xd−n − 1

X− 1

. (4.3.8)

Let d − n = pmd′, where p = charFq, p - d′. Let ζ ∈ Fq be a primitive d′th root

of unity. Let p be the place of the rational function field Fq(X) which is the zero of

X− ζ, and let P be a place of Fq(X, z1) such that P | p. Then P is unramified over

p ([47, III 7.3 (b) and 7.8 (b)]). From (4.3.7) and (4.3.8), we have

νp(z1z̄1) = 0, (4.3.9)

νp(z1 + z̄1) =

−pm if d′ > 1,

−pm + 1 if d′ = 1,
(4.3.10)

where νp is the valuation of Fq(X) at p. Equation (4.3.10) is derived as follows. First,

note that in (4.3.8),

νp

(Xd−n − 1

X− 1

)
=

pm if d′ > 1,

pm − 1 if d′ = 1.
(4.3.11)

Next, write

aq+1Xd−n
Xn − 1

X− 1
− X2d−n − 1

X− 1
= (aq+1Xd−n − 1)

Xn − 1

X− 1
− Xn

X2(d−n) − 1

X− 1
. (4.3.12)
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If d′ > 1, the value of (4.3.12) at X = ζ is

(aq+1 − 1)
ζn − 1

ζ − 1
6= 0.

If d′ = 1, we have m > 0 (since d− n > 1), whence d− n ≡ 0 (mod p). Then n 6≡ 0

since gcd(n, d) = 1. Therefore, the value of (4.3.12) at X = ζ (= 1) is

(aq+1 − 1)n− 2(d− n) = (aq+1 − 1)n 6= 0.

Hence we always have

νp

(
aq+1Xd−n

Xn − 1

X− 1
− X2d−n − 1

X− 1

)
= 0. (4.3.13)

Combining (4.3.8), (4.3.11) and (4.3.13) gives (4.3.10).

Write (4.3.9) and (4.3.10) as

νP(z1) + νP(z̄1) = 0,

νP(z1 + z̄1) =

−pm if d′ > 1,

−pm + 1 if d′ = 1,

where νP is the valuation of Fq(X, z1) at P. It follows that

{νP(z1), νP(z̄1)} =

{±pm} if d′ > 1,

{±(pm − 1)} if d′ = 1.
(4.3.14)

Assume to the contrary that z1 is a t-th power in Fq(X, z1). Then t | νP(z1). If

d′ > 1, the by (4.3.14), t | pm, whence t | d − n. This is impossible since t | d and

gcd(n, d) = 1. Therefore, d′ = 1 and d−n = pm. By (4.3.14), t | pm− 1 = d−n− 1.

Since t | gcd(d, d− n− 1) = gcd(d, n+ 1) and gcd(d, n+ 1) is a power of 2, we have

t = 2. It follows that p is odd.

Recall that Q1(z1) = 0, where Q1(Z) is given in (4.3.6). Using (4.3.12) and d− n =

pm, the equation Q1(z1) = 0 can be written as

u2 = δ,
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where

u = z1 − γ,

γ =
1

2

(aq+1Xp
m − 1)

Xn − 1

X− 1
− Xn(X + 1)p

m

(X− 1)p
m−1

a(X− 1)pm−1
,

and

δ = γ2 − aq−1Xpm+n.

By assumption, there exist α, β ∈ Fq(X) such that

(αu+ β)2 = u+ γ,

i.e.,

α2δ + β2 + 2αβu = u+ γ.

Since u is of degree 2 over Fq(X), we haveα2δ + β2 = γ,

2αβ = 1.

Letting τ = α/β, we have

1 + δτ 2 − 2γτ = 0 (4.3.15)

and

τ = 2α2. (4.3.16)

Fortunately, (4.3.15) has an explicit solution

τ =
1

δ
(γ ± a(q−1)/2X(pm+n)/2) =

1

γ ∓ a(q−1)/2X(pm+n)/2
. (4.3.17)

In Equation (4.3.17),

γ ∓ a(q−1)/2X(pm+n)/2 =

1

2a(X− 1)pm−1

[
(aq+1Xp

m − 1)
Xn − 1

X− 1
− Xn(X + 1)p

m

(X− 1)p
m−1

∓ 2a(q+1)/2X(p
m+n)/2(X− 1)p

m−1
]
.

Since τ is square in Fq(X) (by (4.3.16)),

h := (1− aq+1Xp
m

)
Xn − 1

X− 1
+ Xn(X + 1)p

m

(X− 1)p
m−1 + 2εX(p

m+n)/2(X− 1)p
m−1,
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where ε = ±a(q+1)/2, is a square in Fq(X), say h = g2, where g ∈ Fq[X] is monic of

degree pm + (n− 1)/2. Note that

h =
Xn − 1

X− 1
+ (Xn + Xp

m+n)
Xp

m − 1

X− 1
− aq+1Xp

m Xn − 1

X− 1
+ 2εX(p

m+n)/2X
pm − 1

X− 1

= (1 + · · ·+ X2p
m+n−1)

− aq+1(Xp
m

+ · · ·+ Xp
m+n−1)

+ 2ε(X(p
m+n)/2 + · · ·+ X(3p

m+n)/2−1),

which is self-reciprocal. Hence g∗ = ±g, where g∗ is the reciprocal polynomial of g.

(In fact, g∗ = g, but we do not need to be precise.) Let

H = (X− 1)h

= (1− aq+1Xp
m

)(Xn − 1) + Xn(X + 1)p
m

(X− 1)p
m

+ 2εX(p
m+n)/2(X− 1)p

m

.

Then

H ′ = (1− aq+1Xp
m

)nXn−1 + nXn−1(X + 1)p
m

(X− 1)p
m

+ εnX(p
m+n)/2−1(X− 1)p

m

.

(When computing H ′, we used the assumption that m > 0.) Let

K = H − n−1XH ′ = −(1− aq+1Xp
m

) + εX(p
m+n)/2(X− 1)p

m

= −1 + aq+1Xp
m − εX(pm+n)/2 + εX(p

m+n)/2+pm .

The reciprocal of K is

K∗ = ε− εXpm + aq+1X(p
m+n)/2 − X(p

m+n)/2+pm .

Since g | K and g is self-reciprocal, we also have g = ±g∗ | K∗. Thus g divides

K + εK∗ = −1 + ε2 + (−ε+ εaq+1)X(p
m+n)/2 = (aq+1 − 1)(1 + εX(p

m+n)/2).

This is a contradiction since

pm + n

2
< pm +

n− 1

2
= deg g.

4.3.2 The Case n− d > 1
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In this case,

G(X) =
aqXn + Xn−d

Xd + a
,

N(X, Y) = a
Xn−d − Yn−d

X− Y
+
[
aq+1X

n − Yn

X− Y
+ XdYd

Xn−2d − Yn−2d

X− Y

]
+ aqXdYd

Xn−d − Yn−d

X− Y
,

N∗(X, Y, Z) = Q(Zd),

where

Q(Z) = a
Xn−d − Yn−d

X− Y
Z2 +

[
aq+1X

n − Yn

X− Y
+ XdYd

Xn−2d − Yn−2d

X− Y

]
Z

+ aqXdYd
Xn−d − Yn−d

X− Y
.

We claim that

gcd
(Xn−d − Yn−d

X− Y
, aq+1X

n − Yn

X− Y
+ XdYd

Xn−2d − Yn−2d

X− Y

)
= 1, (4.3.18)

equivalently,

gcd
(Xn−d − 1

X− 1
, aq+1X

n − 1

X− 1
+ Xd

Xn−2d − 1

X− 1

)
= 1. (4.3.19)

Let ζ be a root of (Xn−d − 1)/(X− 1). If ζ 6= 1, then

(
aq+1X

n − 1

X− 1
+ Xd

Xn−2d − 1

X− 1

)∣∣
X=ζ

=
1

ζ − 1

(
aq+1(ζn − 1) + ζd(ζn−2d − 1)

)
=

1

ζ − 1
(aq+1 − 1)(ζn − 1) 6= 0.

If ζ = 1, then n− d ≡ 0 (mod p), and

(
aq+1X

n − 1

X− 1
+ Xd

Xn−2d − 1

X− 1

)∣∣∣
X=1

= aq+1n+ n− 2d = n(aq+1 − 1) 6= 0.

So (4.3.19) and (4.3.18) hold. Therefore Q(Z) is a primitive polynomial over Fq[X, Y].
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Let

Q1(Z) =
[(
a
Xn−d − Yn−d

X− Y

)−1
Q(Z)

]∣∣∣
Y=1

= Z2 +
aq+1X

n − 1

X− 1
+ Xd

Xn−2d − 1

X− 1

a
Xn−d − 1

X− 1

Z + aq−1Xd ∈ Fq(X)[Z].

(4.3.20)

Following the arguments in Section 4.3.1, we only have to prove the following two

claims:

Claim 1. Q(Z) is irreducible in Fq(X, Y)[Z].

Claim 2. Let z be a root of Q1(Z) and t be a prime divisor of d. Then z is not a

t-th power in Fq(X, z).

Proof of Claim 1

Assume to the contrary that Q(Z) is reducible in Fq(X, Y)[Z].

First, assume that q is odd. The discriminant of Q(Z) is

D =
[aq+1(Xn − Yn)

X− Y
+

XdYd(Xn−2d − Yn−2d)

X− Y

]2
− 4aq+1XdYd(Xn−d − Yn−d)2

(X− Y)2
.

By assumption, D = ∆2 for some ∆ ∈ Fq[X, Y]. Then

4aq+1XdYd
(
Xn−d − Yn−d

)2
(X− Y)2

=
(
aq+1X

n − Yn

X− Y
+ XdYd

Xn−2d − Yn−2d

X− Y
+ ∆

)
·
(
aq+1X

n − Yn

X− Y
+ XdYd

Xn−2d − Yn−2d

X− Y
−∆

)
.

The two factors on the right side are relatively prime. (This follows from (4.3.18).)

Therefore, we may assume
aq+1X

n − Yn

X− Y
+ XdYd

Xn−2d − Yn−2d

X− Y
+ ∆ = 2a(q+1)/2XdU2,

aq+1X
n − Yn

X− Y
+ XdYd

Xn−2d − Yn−2d

X− Y
−∆ = 2a(q+1)/2YdV 2,

(4.3.21)
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for some U, V ∈ Fq[X, Y] with

UV =
Xn−d − Yn−d

X− Y
. (4.3.22)

Then

aq+1 (Xn − Yn)

X− Y
+

XdYd
(
Xn−2d − Yn−2d

)
X− Y

= a(q+1)/2(XdU2 + YdV 2). (4.3.23)

Let L denote the left side of (4.3.23). We have

L = aq+1(Yn−1 + XYn−2 + · · ·+ Xn−1)

+

XdYn−d−1 + Xd+1Yn−d−2 + · · ·+ Xn−d−1Yd if n ≥ 2d,

−Xn−dYd−1 − Xn−d+1Yd−2 − · · · − Xd−1Yn−d if d+ 2 ≤ n < 2d.

If d + 2 ≤ n < 2d, the coefficient of Xd−1Yn−d in L is aq+1 − 1 6= 0, while the

coefficient of Xd−1Yn−d on the right side of (4.3.23) is 0, which is a contradiction.

Hence Theorem 4.10 (iii) holds. In particular, gcd(n− d, q − 1) = 1.

Since

∆(Y, X)2 = D(Y, X) = D(X, Y) = ∆(X, Y)2.

we have ∆(Y, X) = ±∆(X, Y). If ∆(Y, X) = ∆(X, Y), then by (4.3.21), XdU(X, Y)2 =

YdU(Y, X)2. Then Y | U(X, Y), which is a contradiction to (4.3.22). Hence ∆(Y, X) =

−∆(X, Y), and by (4.3.21),

U(Y, X)2 = V (X, Y)2. (4.3.24)

By (4.3.24) and (4.3.22), we have

U(X, Y)2 = α

(n−d−1)/2∏
i=1

(X− εiY)2, (4.3.25)

V (X, Y)2 = α−1
(n−d−1)/2∏

i=1

(X− ε−1i Y)2, (4.3.26)

where α, β ∈ Fq and εi ∈ F
∗
q are such that

Xn−d − Yn−d

X− Y
=

(n−d−1)/2∏
i=1

[
(X− εiY)(X− ε−1i Y)

]
.
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We have

α = U(1, 0)2 (by (4.3.25))

= V (0, 1)2 (by (4.3.24))

= α−1
(n−d−1)/2∏

i=1

ε−2i (by (4.3.26)).

It follows that

α2 =

(n−d−1)/2∏
i=1

ε−2i . (4.3.27)

On the other hand, comparing the coefficients of Xn−1 in (4.3.23) gives aq+1 =

a(q+1)/2 · α, i.e., α = a(q+1)/2. Since the εi’s are roots of Xn−d − 1, we have

a(q+1)(n−d) = α2(n−d) = 1 (by (4.3.27)).

This, combined with a(q+1)(q−1) = 1 and gcd(n−d, q−1) = 1, implies that aq+1 = 1,

which is a contradiction.

Next, assume that q is even. Since Q(Z) is assumed to be reducible over Fq(X, Y),

there are A,B ∈ Fq[X, Y], relatively prime, such that

aq+1XdYd
(Xn−d + Yn−d

X + Y

)2
(
aq+1X

n + Yn

X + Y
+ XdYd

Xn−2d + Yn−2d

X + Y

)2 =
(A
B

)2
+
A

B
=
A(A+B)

B2
.

The numerator and the denominator on the left side are relatively prime (by (4.3.18)).

Thus

B = aq+1X
n + Yn

X + Y
+ XdYd

Xn−2d + Yn−2d

X + Y
(4.3.28)

and

A(A+B) = aq+1XdYd
(Xn−d + Yn−d

X + Y

)2
.

We may assume that A = XdU2,

A+B = YdV 2,

for some U, V ∈ Fq[X, Y] such that UV = (Xn−d + Yn−d)/(X + Y). Then

B = XdU2 + YdV 2. (4.3.29)
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By (4.3.28),

B = aq+1(Yn−1 + XYn−2 + · · ·+ Xn−1)

+

XdYn−d−1 + Xd+1Yn−d−2 · · ·+ Xn−d−1Yd if n ≥ 2d,

Xn−dYd−1 + Xn−d+1Yd−2 + · · ·+ Xd−1Yn−d if d+ 2 ≤ n < 2d.

Since we assume d > 1 and n−d > 1, the coefficient of XYn−2 in (4.3.28) is aq+1 6= 0.

(Even if we allowed d = 1 or n− d = 1, the coefficient of XYn−2 in (4.3.28) would be

aq+1 + 1, which is still nonzero.) However, the coefficient of XYn−2 in (4.3.29) is 0,

which is a contradiction.

Proof of Claim 2

Recall that Q1(Z) is given in (4.3.20). Let z be a root of Q1(Z) and t be a prime

divisor of d. Assume to the contrary that z is a t-th power in Fq(X, z). Let ( ) be

the nonidentity automorphism in Aut(Fq(X, z)/Fq(X)). Then

zz̄ = aq−1Xd, (4.3.30)

z + z̄ = −
aq+1X

n − 1

X− 1
+ Xd

Xn−2d − 1

X− 1

a
Xn−d − 1

X− 1

= −
(aq+1 − 1)

Xd − 1

X− 1
+ (aq+1Xd + 1)

Xn−d − 1

X− 1

a
Xn−d − 1

X− 1

.

(4.3.31)

Write n− d = pmd′, where p - d′, and let ζ be a primitive d′th root of unity. Let p

be the place of the rational function field Fq(X) which is the zero of X − ζ, and let

P be a place of Fq(X, z) such that P | p. Then P is unramified over p ([47, III 7.3

(b) and 7.8 (b)]). From (4.3.30) and (4.3.31), we have

νp(zz̄) = 0, (4.3.32)

νp(z + z̄) =

−pm if d′ > 1,

−pm + 1 if d′ = 1,
(4.3.33)
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(The proof of (4.3.33) is similar to that of (4.3.10) and uses the assumption n−d > 1

in the case d′ = 1.) Therefore,

νP(z) + νP(z̄) = 0,

νP(z + z̄) =

−pm if d′ > 1,

−pm + 1 if d′ = 1,

and it follows that

{νP(z), νP(z̄)} =

{±pm} if d′ > 1,

{±(pm − 1)} if d′ = 1.

Since z is a t-th power in Fq(X, z), we have t | νP(z). If d′ > 1, then t = p. It

follows from t | d and t | n − d that gcd(n, d) 6= 1, which is a contradiction. So

we must have d′ = 1 and n − d = pm, m > 0. Then t | pm − 1 = n − d − 1.

Since t | gcd(n − d − 1, d) = gcd(n − 1, d), where gcd(n − 1, d) is a power of 2 (by

assumption), we have t = 2. Consequently, p is odd. The equation Q1(z) = 0 can

be written as

u2 = δ,

where

u = z − γ,

γ = −1

2

(aq+1 − 1)
Xd − 1

X− 1
+ (aq+1Xd + 1)(X− 1)p

m−1

a(X− 1)pm−1
,

and

δ = γ2 − aq−1Xd.

By assumption, there exist α, β ∈ Fq(X) such that

(αu+ β)2 = u+ γ,

i.e.,

α2δ + β2 + 2αβu = u+ γ.

So α2δ + β2 = γ,

2αβ = 1.
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Letting τ = α/β, we have

1 + δτ 2 − 2γτ = 0 (4.3.34)

and

τ = 2α2. (4.3.35)

Equation (4.3.34) has an explicit solution

τ =
1

δ
(γ ± a(q−1)/2Xd/2) =

1

γ ∓ a(q−1)/2Xd/2
=
−2a(X− 1)p

m−1

h(X)
,

where

h(X) = (aq+1 − 1)
Xd − 1

X− 1
+ (aq+1Xd + 1)(X− 1)p

m−1 + 2εXd/2(X− 1)p
m−1

and ε = ±a(q+1)/2. By (4.3.35), h(X) is a square in Fq[X], say h = g2 for some

g ∈ Fq[X] with deg g = (d+ pm − 1)/2. Note that

h(X) = aq+1
(Xd − 1

X− 1
+ Xd

Xp
m − 1

X− 1

)
+
(Xpm − 1

X− 1
− Xd − 1

X− 1

)
+ 2εXd/2

Xp
m − 1

X− 1

= aq+1(1 + · · ·+ Xp
m+d−1) + (Xd + · · ·+ Xp

m−1) + 2ε(Xd/2 + · · ·+ Xp
m+d/2−1),

which is self-reciprocal. It follows that g∗ = ±g, where g∗ is the reciprocal polyno-

mial of g. Let

H = (X− 1)h = (aq+1 − 1)(Xd − 1) + (aq+1Xd + 1)(X− 1)p
m

+ 2εXd/2(X− 1)p
m

.

Then

H ′ = (aq+1 − 1)dXd−1 + aq+1dXd−1(X− 1)p
m

+ εdXd/2−1(X− 1)p
m

.

Let

K = −H + d−1XH ′ = aq+1 − Xp
m

+ εXd/2 − εXpm+d/2.

The reciprocal of K is

K∗ = −ε+ εXp
m − Xd/2 + aq+1Xp

m+d/2.

Since g | K, we have g = ±g∗ | K∗. Hence g divides

εK +K∗ = (aq+1 − 1)(ε+ Xd/2).
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This is a contradiction since

d

2
<
d+ pm − 1

2
= deg g.

The proof of Theorem 4.10 is now complete.

4.4 Final Remarks

Theorem 4.10 leaves ample room for improvement, by which we mean nonexistence

results of PB under conditions that are weaker than or not covered by (i) – (iii)

in Theorem 4.10. While some improvements may be obtained by fine tuning the

techniques demonstrated in the present chapter, breakthroughs may require new

methods or substantially new elements in the current approach.

The cases d− n = ±1 appear to be special. These are the two cases not covered by

Theorem 4.10 and there are indeed infinite classes of PBs in these two cases with

e = 2 (Results 4.2 and 4.4). A natural question is this: When d−n = ±1 and e > 2,

are there infinite classes of PBs of the form fq,e,n,d,a(X) = Xn(Xd(q−1) + a) of Fqe?



Chapter 5

Permutation quadrinomials in

characteristic 2

Permutation trinomials with Niho exponents of the form f(X) = X+ a1X
s1(2m−1)+1 +

a2X
s2(2m−1)+1 + a3X

s3(2m−1)+1 ∈ Fq2 [X], have attracted much interest in recent years.

See for example [7, 25]. The parameters s1, s2 should be read modulo q + 1, for

q = 2m, since they are multiplied by q− 1 and the exponent is taken modulo q2− 1.

Given (s1, s2), finding conditions on a1, a2 that are sufficient and necessary for f to

be a permutation polynomial of Fq2 is a hard question and some progress has been

done in that direction. See [28, 26].

However, the situation for permutation quadrinomials is different. Recently, Tu

et al. investigated the case of (s1, s2, s3) = (−1, 1, 2) under some restrictive con-

ditions [49]. In [50] the authors provided more classes of permutation quadrino-

mials from Niho exponents in characteristic two for (s1, s2, s3) = ( −1
2k−1 , 1,

2k

2k−1),

(s1, s2, s3) = ( 1
2k+1

, 1, 2k

2k+1
), where k is a positive integers and (s1, s2, s3) = (1

4
, 1, 3

4
).

The fractional number on the exponent, say 1/h should be read as the inverse of h

modulo q − 1, which is well defined since gcd(h, q − 1) = 1. In the last case they

suggested that the sufficient conditions of [50, Theorem 1.4] were also necessary (for

m > 5).

In this chapter we aim to answer that question. We will use the connections be-

tween algebraic curves and permutation polynomials (see Subsection 1.1.5) to prove

necessary conditions for a polynomial to be a PP. In particular we investigate all

the cases given in [50, Theorem 1.4], showing in most cases that those conditions

are also necessary.

97
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5.1 Setting and known results

Let q = 2m be a prime power and Fq2 be the finite field of q2 elements. Let a1, a2, a3 ∈
Fq2 and denote θ1 = 1 + aq+1

1 + aq+1
2 + aq+1

3 , θ2 = aq1 + a3a
q
2, θ3 = a3 + a2a

q
1,

θ4 = aq+1
1 + aq+1

3 and θ′4 = θ1 + θ4 = 1 + aq+1
2 . Note that

θq+1
2 + θq+1

3 = θ4θ
′
4.

We now summarize the previous results we need in this chapter. See [50, B.] for

more details.

Theorem 5.1 ([50, Theorems 1.1, 1.3 and 1.4]). The following hold.

1. Let n = 2m and k < m be two positive integers such that gcd(2k − 1, 2m + 1) = 1.

Let (s1, s2, s3) = ( −1
2k−1 , 1,

2k

2k−1). Denote d = ord2(gcd(m, k)). Let a1, a2, a3 ∈ Fq2.

Then f(X) = X + a1X
s1(q−1)+1 + a2X

s2(q−1)+1 + a3X
s3(q−1)+1 is a PP of Fq2 if

θ1 6= 0,
(θ2
θ1

)2k
=
θ3
θ1

and Tr 2m

2d

(θ4
θ1

)
= 0

2. Let n = 2m and k < m be two positive integers such that gcd(2k + 1, 2m + 1) = 1.

Let (s1, s2, s3) = ( 1
2k+1

, 1, 2k

2k+1
). Denote d = ord2(gcd(m, k)). Let a1, a2, a3 ∈ Fq2.

Then f(X) = X + a1X
s1(q−1)+1 + a2X

s2(q−1)+1 + a3X
s3(q−1)+1 is a PP of Fq2 if

θ1 6= 0,
(θ2
θ1

)2k
=
θ2

k

3

θ1
and Tr 2m

2d

(θ4
θ1

)
= 0

3. Let n = 2m be a positive integer. Let (s1, s2, s3) = (1
4
, 1, 3

4
) and a1, a2, a3 ∈ Fq2.

Then f(X) = X + a1X
s1(q−1)+1 + a2X

s2(q−1)+1 + a3X
s3(q−1)+1 is a PP of Fq2 if either

θ1 6= 0, θ2 = 0 and a3 ∈ µq+1, a3 /∈ {x3|x ∈ µq+1} (5.1.1)

or

θ1 6= 0, θ2 6= 0, θ4 = 0, θ3 = θ2q−12 and x3 + x+
θ21
θq+1
2

= 0 has no solutions over Fq.

(5.1.2)

The aim of this chapter is to answer the question left open by the authors in [50,

Theorem 1.4] and prove that Condition (5.1.1) and (5.1.2) are also necessary. When

m ≥ 9 we managed to show that Condition (5.1.1) is indeed necessary, whereas
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we found Condition (5.1.2) harder to invert. However, if we limit ourselves to case

θ4 = 0, we obtain that Condition (5.1.2) is also necessary.

The main result is stated in the following theorem.

Theorem 5.2 ([42, Theorem 2.2]). Let m ≥ 9 be an integer and q = 2m. With the

notation above, if the polynomial

f(X) = X + a1X
s1(q−1)+1 + a2X

s2(q−1)+1 + a3X
s3(q−1)+1

is a PP of Fq2 then

� if θ2 = 0 then either θ1 = 0 and m is odd, or θ1 6= 0 and a3 ∈ µq+1 \ Γ, where

Γ = {x3|x ∈ µq+1};

� if θ2 6= 0 and θ4 = 0, then θ1 6= 0, θ3 = θ2q−12 and

x3 + x+
θ21
θq+1
2

= 0 (5.1.3)

has no solutions in Fq.

The only case still open is when θ2 6= 0 and θ4 6= 0. However, computer-aided

investigations seem to confirm that the conjecture is still true.

5.2 Algebraic curves and necessary conditions

In this section we use the methods presented in the first chapter to investigate the

necessary conditions for f being a PP. From Theorem 1.70 we know that f(X) =

Xh(Xq−1) permutes Fq2 if and only g(x) = xh(x)q−1 permutes the set µq+1 of the

(q + 1)-roots of unity in Fq2 . In [50] the authors showed that this is equivalent to

prove that the rational function

p(X) =
X4 + aq1X

3 + aq3X + aq2
a2X4 + a3X3 + a1X + 1

permutes µq+1. Let C be the plane curve associated to p(x), with equation:

F (X, Y ) =
(a1Y + a2Y

4 + a3Y
3 + 1) (X3a1

q + a2
q + a3

qX +X4)

X + Y
+

+
(a1X + a2X

4 + a3X
3 + 1) (Y 3a1

q + a2
q + Y a3

q + Y 4)

X + Y
= 0.
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C is a curve defined over Fq2 and p(x) permutes µq+1 if and only if there are no

points (X, Y ) ∈ C ∩ µ2
q+1 such that X 6= Y .

Choose an element e ∈ Fq2 such that eq = e + 1. Every x ∈ µq+1 different from 1

can be written as x = X+e
X+e+1

, where X runs over Fq. Following this idea we consider

the rational transformation:

φ(X, Y ) =
( X + e

X + e+ 1
,

Y + e

Y + e+ 1

)
Let X be the curve defined by H(X, Y ) = (X+ e+ 1)3(Y + e+ 1)3F (φ(X, Y )), then

the following hold.

Lemma 5.3. The curve X is Fq-rational and Fq2-birationally equivalent to C.

Proof. By direct checking, X is Fq-rational. Consider the rational transformation

defined by

ψ(X, Y ) =
(X(e+ 1) + e

X + 1
,
Y (e+ 1) + e

Y + 1

)
.

We obtain that (1 + X)3(1 + Y )3H(ψ(X, Y )) = F (X, Y ), then the two curves are

Fq2-birationally equivalent.

Since C and X are isomorphic, we can study the properties of C to obtain information

on X .

Proposition 5.4. Let q ≥ 512. If f(X) ∈ Fq2 [X] is a PP then C is not absolutely

irreducible over Fq2.

Proof. If C is absolutely irreducible over Fq2 then X is absolutely irreducible over

Fq. Since X has degree at most 6, the Hasse-Weil bound implies that X has at least

an affine rational point (a, b) with a 6= b whenever

q + 1− 20
√
q − 12 ≥ 0, (5.2.1)

where 12 is the maximum number of points belonging either to the line x = y or

to the infinity line. Equation (5.2.1) is satisfied for every integer greatest than 421.

Thus, if q = 2m ≥ 512, X has an Fq-rational point (a, b), with a 6= b. Consequently,

we obtain a point
(

a+e
a+e+1

, b+e
b+e+1

)
= (a′, b′) ∈ µ2

q+1 such that

a′ 6= b′ and p(a′) = p(b′),

which is in contrast with f(X) being a PP of Fq2 .
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Proposition 5.4 allows us to focus on C to obtain necessary conditions on f(X).

However we will see that proving the absolutely irreducibility of C is not always

possible. Thus, in some cases, we will exhibit explicitly points belonging to C∩µ2
q+1,

off the line X + Y = 0.

Understanding when C is either reducible or not may be difficult. For this reason,

one can ask for a transformation that sends C to a lower degree curve easier to study.

Along with this view, the curve C becomes

C : θq3 + θ3X
3Y 3 + θ4xY (X + Y ) + θ′4(X + Y )3+

+ θ2(XY + (X + Y )2) + θq2(X
2Y 2 +XY (X + Y )2) = 0.

(5.2.2)

In particular, the group G generated by (X, Y ) 7→ (Y,X) is a subgroup of Aut(C),
the automorphism group of C. Furthermore, let u = X + Y , v = XY and G(u, v) =

F (X, Y ). Let D be the curve defined by G(u, v) = 0, that is

D : θq3 + θ′4u
3 + θ4uv + θ3v

3 + θ2(u
2 + v) + θq2v(u2 + v) = 0, (5.2.3)

which is the quotient curve C/G. In the next sections we will study D to find

information about C.

5.3 Case θ2 = 0

We first consider the case θ1 = 0.

Proposition 5.5. Let θ2 = 0. If θ1 = 0 then the equation of C is

C : X3 + Y 3 = 0.

Proof. Since θ1 = θ2 = 0 and θq+1
2 = θq+1

3 , the equation of D is

u(u2 + v) = 0

so C has equation

(X + Y )(X2 + Y 2 +XY ) = 0,

which is exactly the claim.

Corollary 5.6. If θ1 = θ2 = 0 then f is a PP if and only if m is an odd integer.
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Proof. f is a PP of Fq2 if and only if the set C ∩ µ2
q+1 is either empty or it has

solutions lying on X + Y = 0. Since the equation of C is X3 + Y 3 = 0, f is a PP is

and only if there are no elements z ∈ Fq2 satisfying z3 = 1 and zq+1 = 1, which is

equivalent to m be odd (and hence 3|q + 1).

Now we work out the case θ1 6= 0. In the following remark, we recall some properties

from [50].

Remark 5.7. When θ2 = 0 and θ1 6= 0 the following hold

θ4 = aq+1
3 θ′4, θ3 = a3θ

′
4 and θ′4 6= 0.

Therefore C becomes F (X, Y ) = 0 with

F (X, Y ) = aq3 + a3X
3Y 3 + aq+1

3 XY (X + Y ) + (X + Y )3

and D becomes G(u, v) = 0 with

G(u, v) = aq3 + u3 + aq+1
3 uv + a3v

3.

Proposition 5.8. The curve D defined by Equation (5.2.3) is absolutely irreducible

if and only if a3 /∈ U .

Proof. If a3 = 0 then G(u, v) is not absolutely irreducible. Let a3 6= 0. Note that

every singular point of D is a double point. In fact, we have ∂uvG 6= 0 and ∂vuG 6= 0.

The system of partial derivatives is{
u2 + aq+1

3 v = 0

aq3u+ v2 = 0

and it implies that a point P = (u, v) is singular if and only if P = (a
q+2/3
3 , a

q+1/3
3 )

and P ∈ D (note that the cubic roots of a3 are not uniquely determined). More

precisely G(P ) = 0 implies that

aq3 + a3q+2
3 = 0

which proves that D is singular if and only if aq+1
3 = 1. Furthermore, since the

equation v3 = a3q+1
3 admits 3 solution in the algebraic closure Fq of Fq2 , we have
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three double points and the cubic is the union of three non concurrent lines. This

means that D is absolutely irreducible if and only if it is non-singular, namely

a3 /∈ U .

Remark 5.9. Since G is an automorphism group of C, there is only one situation in

which C is reducible whereas D is not: when C is the product of two cubics, which

form an orbit under G. In fact, in that case, D is a cubic curve, which may be

irreducible.

Proposition 5.10. The curve C is the union of two cubic curves only if a3 ∈ µq+1.

Proof. Since the action of G is exchanging the x with the y, we obtain the following

equation for C ′,

(a00 + a10X + a20X
2 + a30X

3 + a01Y + a11XY + a21X
2Y + a02Y

2 + a12XY
2 + a03Y

3)

(a00 + a01X + a02X
2 + a03X

3 + a10Y + a11XY + a12X
2Y + a20Y

2 + a21XY
2 + a30Y

3) = 0

(5.3.1)

Note that the equation of C is

aq3 +X3 + (aq+1
3 + 1)X2Y + (aq+1

3 + 1)XY 2 + Y 3 + a3X
3Y 3 = 0.

Thus, by a straightforward computation, the only possible equation for C ′ is

a200 + a00a30X
3 + a00a30Y

3 + a230X
3Y 3 = 0

This means that we need to require aq+1
3 + 1 = 0, that is a3 ∈ U .

Corollary 5.11. Let a3 /∈ U . The curve C is absolutely irreducible.

Proof. Proposition 5.8 implies that for a3 /∈ U the curve D is absolutely irreducible.

The proof follows from Remark 5.9 together with Proposition 5.10.

We consider now the case when D is not absolutely irreducible.

Lemma 5.12. Let q = 2m and let a3 be a cube in U . Then the equation x3 = a3

admits exactly 3 solutions over Fq2.

Proof. From [20, pg. 4] the equation x3 = a3 has 3 solutions if 3 | q2 − 1 and

a
q2−1

3
3 = 1. Since q2 ≡ 1 (mod 3) and a

q+1
3

3 = 1 the claim follows.
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Proposition 5.13. Let D be the curve with equation (5.2.3). Let a3 be an element

of U and D : G(u, v) = 0. Then G(u, v) is irreducible over Fq2 if and only if a3 ∈ Γ,

where Γ = {non-cubes in U}. Moreover, if a3 ∈ U \ Γ, D is the union of three

(absolutely irreducible) linear components over Fq2.

Proof. From Proposition 5.8 we know that the singular points of D are Pi =

(aq3α
2
i , a

q
3αi), for i = 1, 2, 3, where αi are the solutions in Fq of x3 = a3. From

Lemma 5.12 D has exactly three singular (double) points defined over Fq2 if and only

if a3 ∈ µq+1 \ Γ. Moreover, in that case, D is the union of three (non-concurrent)

lines passing through these points.

Corollary 5.14. When a3 ∈ U \ Γ, D decomposes as follows:

D : (u+ α1v + α−11 )(u+ α2v + α−12 )(u+ α3v + α−13 ) = 0

Proof. We just note that α1α
2
2 + α2

1α2 = a3. The claim follows since the line li : u+

αiv + α−1i = 0 is the one passing through Pj = (aq3α
2
j , a

q
3αj), with j 6= i.

After that, our next goal is to understand what happens when we go back to the

curve C : F (X, Y ) = 0, with

F (X, Y ) = aq3 + a3X
3Y 3 + aq+1

3 XY (X + Y ) + (X + Y )3

Proposition 5.15. Let a3 ∈ U \ Γ. Then the curve C splits into linear (absolutely

irreducible) components over Fq2. More precisely,

C : Π3
i=1(X + α−1i )(Y + α−1i ) = 0,

where α3
i = a3 for i = 1, 2, 3.

Proof. The proof is a consequence of Corollary 5.14 and u = X + Y , v = XY . As

a matter of fact, the quadric

X + Y + αiXY + α−1i = 0

splits as

(X + α−1i )(Y + α−1i ) = 0

for every i = 1, 2, 3.
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Corollary 5.16. Let a3 ∈ U \ Γ. Then the set C ∩ µ2
q+1 is non-empty.

Proof. The claim follows since a3 ∈ U (and hence αi).

5.4 θ2 6= 0 and θ4 = 0

Now we suppose that θ2 6= 0 and θ4 = 0. Recall that in this case

θq+1
2 + θq+1

3 = 0. (5.4.1)

The equation of C becomes

C : θq3 + θ3X
3Y 3 + θ1(X + Y )3 + θ2(XY + (X + Y )2) + θq2(X

2Y 2 +XY (X + Y )2) = 0,

(5.4.2)

while D has equation

D : θq3 + θ1u
3 + θ3v

3 + θ2(u
2 + v) + θq2v(u2 + v) = 0.

Similarly to the first case, we want to understand the relation between the irre-

ducibility of D (and so of C).

Proposition 5.17. C is absolutely irreducible if and only if D is absolutely irre-

ducible

Proof. As we have already pointed out, the only case to be checked is when C is the

product of two cubics, which form an orbit under G. The union of two such cubics

has equation F ′(X, Y ) = 0, where F ′(X, Y ) is defined as

(a00 + a10X + a20X
2 + a30X

3 + a01Y + a11XY + a21X
2Y + a02Y

2 + a12XY
2 + a03Y

3)

(a00 + a01X + a02X
2 + a03X

3 + a10Y + a11XY + a12X
2Y + a20Y

2 + a21XY
2 + a30Y

3) = 0.

(5.4.3)

By straightforward computations, we obtain
θq3 = a200

θ2 = a201 + a210

a00a01 + a00a10 = 0

Since θq+1
3 = θq+1

2 6= 0, this implies a00 6= 0 and hence a10 = a01, which contradicts

the assumption θ2 6= 0.
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The next propositions allow us to obtain information about the factorization of D
(and so C). We proceed as follows: first, we show that when θ1 = 0 the polynomial

f(x) is not a PP. After that, we work out the case θ1 6= 0 and we factorize D under

precise conditions.

Proposition 5.18. Let θ1 = 0. The followings hold:

1. if θ3 = θ2q−12 then the curve D splits as

D : (θ2 + θq2v)(θ1−q2 + u2 + θq−12 v2) = 0;

2. if θ3 6= θ2q−12 then the curve D has exactly one singular point P = (0, α), where

α is the (unique) solution of α2 = θ2
θ3

.

Proof. The equation of D becomes

u2vθq2 + v2θq2 + θq3 + θ2u
2 + θ2v + θ3v

3 = 0

and the partial derivatives system is made by the single equation

∂h

∂v
= θ2 + θq2u

2 + θ3v
2 = 0

which implies

u2 =
θ3v

2 + θ2
θq2

.

Going back to the equation of D, we obtain

v2θ2q2 + θq2θ
q
3 + θ22 + θ2θ3v

2 = 0. (5.4.4)

Therefore, if θ3 6= θ2q−12 , equation (5.4.4), together with equation (5.4.1), implies

v2 =
θq−12 θq3 + θ2

θ2q−12 + θ3
=
θ2
θ3

which means that u = 0 and D has only one singular double point P = (0, α), where

α2 = θ2
θ3

.

On the other hand, if θ3 = θ2q−12 , the equation of D becomes:

v3θ2q−12 + θ2−q2 + vθq2
(
u2 + v

)
+ θ2

(
u2 + v

)
= 0 (5.4.5)
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Note that the resultant between h(x) and the derivative with respect to v is 0. This

means that they share a common factor. Indeed, we have the following factorization

for (5.4.5):

v3θ2q−12 + θ2−q2 + vθq2
(
u2 + v

)
+ θ2

(
u2 + v

)
=

(θ2 + θq2v)(θ1−q2 + u2 + θq−12 v2) = 0

where the second factor equals θ−q2
∂h
∂v

.

Proposition 5.19. Let θ1 6= 0. The curve D has exactly one singular point P =

(0, α), where α is the (unique) solution of α2 = θ2
θ3

.

Proof. The system of partial derivatives is{
θ1u

2 = 0

θ2 + θq2u
2 + θ3v

2 = 0
(5.4.6)

This means that there is only one singular point P = (0, α) where α2 = θ2
θ3

.

Propositions 5.18 and 5.19 lead us to study what kind of singular point P = (0, α)

is. We can treat both cases together. Applying a birational transformation which

sends P to the origin, namely

Φ : (u, v) 7→ (U, V + α),

the equation for Φ(D) is

(θ2 + αθq2)U
2 + (θq2 + αθ3)V

2 + θ1U
3 + θq2U

2V + θ3V
3 = 0. (5.4.7)

Proposition 5.20. The curve D is absolutely irreducible if and only if θ3 6= θ2q−12 .

Proof. The only case in which D is absolutely irreducible is when the origin O is an

ordinary double point of Φ(D). However, when θ3 = θ2q−12 the equation becomes

θ1U
3 + θq2U

2V + θ3V
3 = 0

and O is a triple point. On the other hand, when θ3 6= θ2q−12 the equation is

(U + V )(V
θq2 + αθ3
θ2 + αθq2

+ U) + θ1U
3 + θq2U

2V + θ3V
3 = 0
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and P is an ordinary double point.

Corollary 5.21. Let θ2 6= 0 and θ4 = 0. If θ1 = 0 then C ∩ µ2
q+1 is non-empty,

whereas if θ1 6= 0 and θ2q−12 6= θ3 then C is absolutely irreducible over Fq2

Proof. The proof is obtained summing up previous propositions. More precisely, if

θ1 = 0 and θ2q−12 = θ3, from Proposition 5.18, we have

C : (θ2 + θq2XY )(θ1−q2 + (X + Y )2 + θq−12 XY 2) = 0.

This means that (1/θq−12 , 1) ∈ C ∩ µ2
q+1. On the other hand, if θ2q−12 6= θ3, the proof

follows from Proposition 5.19 and 5.20.

We now want to further investigate the remaining case θ3 = θ2q−12 and θ1 6= 0. The

equation for Φ(D) is

θ1U
3 + θq2U

2V + θ−1+2q
2 V 3 = 0.

Let Z = V
U

and z = θq2Z. Then every solution of

θ1 + z +
1

θq+1
2

z3 = 0

gives a linear component of Φ(D).

Lemma 5.22. Let θ1, θ2 6= 0 and z1, z2, z3 be the solutions of

θ1 + z +
1

θq+1
2

z3 = 0 (5.4.8)

in the algebraic closure Fq of Fq2. Only one of the following conditions holds.

� zi ∈ Fq for i = 1, 2, 3.

� There exists j such that zj ∈ Fq and zi ∈ Fq2 for i 6= j.

� zi /∈ Fq2 for i = 1, 2, 3.

Proof. Note that the coefficients of Equation (5.4.8) are in Fq. The claim is obtained

by standard theory, see for example [20, Pg. 20].

Proposition 5.23. Let θ3 = θ2q−12 . If θ1+z+ 1

θq+1
2

z3 = 0 has at least one solution in

Fq then the curve C splits as the union of three absolutely irreducible conics defined

over Fq2. In particular, C ∩ µ2
q+1 is a non-empty set.
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Proof. Every solution of Equation (5.4.8) in Fq2 gives a linear component of Φ(D)

(and D). From Lemma 5.22, without loss of generality, we can suppose that z1 ∈ Fq
and z2, z3 ∈ Fq2 are the solutions of Equation (5.4.8). Going back to the curve D
we obtain the following decomposition:

D : (z1u+ θq2v + θq2α)(z2u+ θq2v + θq2α)(z3u+ θq2v + θq2α) = 0

This means that the equation of the curve C becomes

C : (z1(X + Y ) + θq2XY + θ2)(z2(X + Y ) + θq2XY + θ2)(z3(X + Y ) + θq2XY + θ2) = 0

In fact α2 = θ2
θ2q−1
2

implies αθq2 =
θq2
θq−1
2

= θ2. We now claim that the above conics

are absolutely irreducible over Fq2 . A conic is irreducible if and only if it does not

have a singular point. Consider the conic corresponding to z1, the partial derivatives

system is {
θq2Y + z1 = 0

θq2X + z1 = 0

which means that a singular point has coordinate X = Y = z1
θq2

. Such a point belongs

to C if and only if

z21 + θq+1
2 = 0.

However, if z21 = θq+1
2 , from equation (5.4.8) we obtain

θ1 + z1 + z1 = θ1 = 0

and this is in contrast with θ1 6= 0. Similarly, it can be proven that also the other

conics are absolutely irreducible. Finally, the point ( θ2+z1
θq2+z1

, 1) ∈ C ∩ µ2
q+1.

Corollary 5.24. Let θ2 6= 0 and θ4 = 0. If either θ1 = 0 or θ3 6= θ2q−12 or θ1 + z +
1

θq+1
2

z3 = 0 has solutions z defined over Fq, then f is a PP of Fq2.

5.5 Proof of main Theorem 5.2

If θ2 = 0, the proof is obtained summing up the results of Corollary 5.6 (for θ1 = 0)

and those of Corollary 5.11 and Corollary 5.16 (for θ1 6= 0). When θ2 6= 0 and

θ4 = 0, the proof follows from Corollary 5.24, since the equation

θ1 + z +
1

θq+1
2

z3 = 0
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is equivalent to the equation (5.1.3) after substituting z = θq+1
2 x.



Appendix A

We provide a proof of Proposition 2.19. Since our proof relies on cyclotomic fields

from algebraic number theory, we present it in the form of an appendix.

Proof of Proposition 2.19. Let Q(ζm) be the m-th cyclotomic field of mth roots of

unity with ζm = e2πi/m ∈ C. In particular, the cyclotomic field Q(ζ16) contains
√

2

as an integer. Let b be a prime ideal of Q(ζ16) such that b contains p (i.e. b | p). The

extension b | 〈p〉 is unramified and Z[ζ16]/b ∼= Fp4 ; see [32, Proposition 13.2.5] and

[30, Section 4.5]. Note that h = ±
√

2 (mod b). We may assume h ≡
√

2 (mod b).

We do the computation for q ≡ 13 (mod 16), the proof for the other cases being

analogous.

(1 + h)
q+1
2 h

q−1
2 ≡ (1 +

√
2)

q+1
2 (
√

2)
q−1
2 (mod b)

= (
√

2 + 2)
q+1
2

1√
2

= (ζ8 + ζ−18 + 2)
q+1
2

1√
2

= (ζ16 + ζ−116 )q+1 1√
2

≡ (ζ16 + ζ−116 )(ζ1316 + ζ−1316 )
1√
2

(mod b)

≡ (ζ16 + ζ−116 )(ζ−316 + ζ316)
1√
2

(mod b)

= (ζ416 + ζ−216 + ζ216 + ζ−416 )
1√
2

= (ζ8 + ζ−18 )
1√
2

= 1
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[34] G. Korchmáros, G. P. Nagy, and P. Speziali, “Hemisystems of the hermitian

surface,” Journal of Combinatorial Theory, Series A, vol. 165, pp. 408–439,

2019.
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