
3326 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

Natural Language Statistical Features
of LSTM-Generated Texts

Marco Lippi , Marcelo A. Montemurro , Mirko Degli Esposti, and Giampaolo Cristadoro

Abstract— Long short-term memory (LSTM) networks have
recently shown remarkable performance in several tasks that
are dealing with natural language generation, such as image
captioning or poetry composition. Yet, only few works have
analyzed text generated by LSTMs in order to quantitatively
evaluate to which extent such artificial texts resemble those
generated by humans. We compared the statistical structure of
LSTM-generated language to that of written natural language,
and to those produced by Markov models of various orders.
In particular, we characterized the statistical structure of lan-
guage by assessing word-frequency statistics, long-range corre-
lations, and entropy measures. Our main finding is that while
both LSTM- and Markov-generated texts can exhibit features
similar to real ones in their word-frequency statistics and entropy
measures, LSTM-texts are shown to reproduce long-range corre-
lations at scales comparable to those found in natural language.
Moreover, for LSTM networks, a temperature-like parameter
controlling the generation process shows an optimal value—for
which the produced texts are closest to real language—consistent
across different statistical features investigated.

Index Terms— Authorship attribution, entropy, long short-term
memory networks, long-range correlations, natural language
generation (NLG).

I. INTRODUCTION

BUILDING artificial systems that are capable of mim-
icking human creativity has long been one of the aims

of artificial intelligence (AI) [1]. In this paper, we focus on
the problem of natural language generation (NLG), which
encompasses the capability of machines to synthesize text in
a way that resembles spoken or written language typically
employed by humans [2]. This research field has recently
experienced a period of great excitement, mostly due to the
huge development in the area of deep learning, whose methods

Manuscript received March 29, 2018; revised October 21, 2018; accepted
December 25, 2018. Date of publication April 3, 2019; date of current version
October 29, 2019. (Marco Lippi and Marcelo A. Montemurro contributed
equally to this work.) (Corresponding author: Marco Lippi.)

M. Lippi is with the Department of Sciences and Methods for Engineering,
University of Modena and Reggio Emilia, 41121 Modena, Italy (e-mail:
marco.lippi@unimore.it).

M. A. Montemurro is with the Division of Neuroscience and Experimental
Psychology, The University of Manchester, Manchester M13 9PT, U.K.
(e-mail: m.montemurro@manchester.ac.uk).

M. D. Esposti is with the Department of Computer Science and
Engineering, University of Bologna, 40126 Bologna, Italy (e-mail:
mirko.degliesposti@unibo.it).

G. Cristadoro is with the Department of Mathematics and
Applications, University of Milano - Bicocca, 20126 Milan, Italy (e-mail:
giampaolo.cristadoro@unimib.it).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2890970

and algorithms have certainly contributed to move significant
steps forward [3].

Deep learning techniques have, in fact, produced stunning
results in several different research fields and application
domains, and one of the major successes has been that of gen-
erative models [4]. In the area of NLG, many studies have been
dedicated to specific and focused applications, such as image
and video captioning [5], [6], poem synthesis [7], or lyric
generation [8]. In all these cases, the considered generated
texts are relatively short (captions, poems, and lyrics) and
correlations between words rarely span across several sen-
tences. The scenario totally changes when we consider longer
texts, such as novels. Natural language has been widely
studied within this context, and notoriously it shows statistical
properties in the distribution of terms, as well as long-range
correlations between words [9]–[11]. In comparison to short
texts such as captions, this is a much more challenging setting
to imitate for machines.

In this paper, we aim to provide an extensive empirical
evaluation of texts generated by long short-term memory
(LSTM) networks, one of the most widely used deep learning
models for NLG. Our goal is to quantitatively assess whether
LSTM texts share some similarities with natural language that
is commonly produced by humans. To this aim, we trained an
LSTM network with a corpus that consists of a collection of
novels by Charles Dickens. Such network is trained to predict
the next character of a given text, and thus it can be employed
to iteratively generate a document of any desired length. The
setting was adopted in several works (see [12] and [13] and
citations therein).

In our experimental framework, we evaluated several dif-
ferent aspects of machine-generated texts comparing them
against the statistics of real language and Markov-generated
samples. First, we analyzed fundamental linguistic properties
typically shown by texts, such as Zipf’s [14] and Heaps’ [15]
laws for words. Second, we studied whether the generated
texts presented long-range correlations, which are commonly
encountered in human-generated texts but difficult to repro-
duce for machines. As a third point, we compared the entropy
of the generated texts with the one of the original corpus.
We then moved our analysis to a higher level by carrying
out a preliminary study looking at characteristics dealing with
the style and quality of the generated texts: in particular,
we analyzed the degree of creativity and the plagiarism of
the artificial texts with respect to the data set on which
the LSTM was trained, by looking at the longest common
subsequences (LCSs). We also assessed whether an authorship

2162-237X © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9663-1071
https://orcid.org/0000-0003-0893-8530

LIPPI et al.: NATURAL LANGUAGE STATISTICAL FEATURES OF LSTM-GENERATED TEXTS 3327

attribution algorithm would capture some analogy between
the generated text and the original one, in terms of authors’
style.

Surprisingly, very few studies have been dedicated to a
thorough analysis and to a quantitative evaluation of the
similarities between texts created by machines and by humans.
Karpathy et al. [13] also provide an experimental analysis of
LSTM networks trained for character-by-character text genera-
tion, but they focused their study on a qualitative evaluation of
the cell activations within the neural architecture: for example,
they looked for open and closed parentheses or quotes that
typically span a few tens or hundreds of characters. They
claim that the LSTM model is capable of capturing long-range
dependencies and is thus only supported by such qualitative
evidence without giving a deep insight into the characteristics
of the generated documents. Lin and Tegmark [16] com-
pared natural language texts to those generated by Markov
models and LSTMs, by exploiting metrics coming from
information theory. Their analysis showed that LSTMs are
capable of capturing correlations that Markov models instead
fail to represent, yet the range of correlations they consider
is still quite limited (up to 1000 characters). Conversely,
Takahashi and Tanaka-Ishii [17] reported that LSTM language
models have limitation in reproducing such long-range correla-
tions if measured with a method based on clustering properties
of rare words; note, however, that their analysis is still limited
to a range of ∼1000 words, and the corpus they employ for
training is much smaller than the one used in our experiments.
Instead, Ghodsi and DeNero [18] analyzed some statistical
properties of text generated by a recurrent neural network
language model (RNNLM), especially focusing on the length
of sentences, the vocabulary distribution, and the distribution
of specific grammatical elements, such as pronouns. In a
complementary study, Lake and Baroni [19] focused on short-
scale structures instead of the overall statistical properties
of pseudotexts. They showed that recurrent neural networks
(RNNs) are able to exploit systematic compositionality and
thus also able to reproduce, for example, abstract grammatical
generalizations.

The remainder of this paper is organized as follows.
Section II will describe the LSTM model used in our
experiments. Section III will present the statistical methods
employed for the quantitative evaluation of the artificial text
properties. Section IV will describe the corpora that are used
to train our model, and Section V will report and discuss
the experimental results. Section VI will finally conclude this
paper, also pointing for future research directions.

II. LONG SHORT-TERM MEMORY NETWORKS

Long short-term memory networks (LSTMs) are RNNs
that have been first developed at the end of the 1990s,
achieving remarkable results in applications dealing with input
sequences [20]. Such model was specifically designed to
address the issue of vanishing gradients that greatly limited
the applicability of standard RNNs [21]. Within the “deep
learning revolution” that AI has been undergoing in the past
decade, LSTMs have regained popularity, being now widely
used in several research and industrial applications, including

Fig. 1. LSTM cell. σ f , σi , and σo are typically the sigmoid function.
Recurrent connections ht and Ct propagate information through time.

automatic machine translation, speech recognition, and text-
to-speech generation (see [22] and references therein).

A. General Framework

RNNs allow to process sequences of arbitrary lengths,
by exploiting L hidden layers h�

t , with � = {1, . . . , L}, whose
cells are functions not only of the layer input xt but also of
the hidden layer at the previous time step: h�

t = f (xt , h�
t−1).

RNNs are typically trained with backpropagation through time
(BPTT) [23], by unfolding the recurrent structure into a sort of
temporal chain through which the gradient is propagated, up to
a certain number K of time steps. Unfortunately, this method
suffers from the well-known problem of vanishing or explod-
ing gradients [20], [21], which makes plain RNNs scarcely
used in practice. LSTMs overcome this issue by exploiting
a more complex hidden cell, namely, a memory cell, and
nonlinear-gating units, which control the information flows
into and out of the cell.

Basically, the LSTM cells are capable of maintaining their
state over time, of forgetting what they have learned, and also
of allowing novel information in. An example of such a cell is
depicted in Fig. 1. The model is based on the concept of cell
status at time t , namely, Ct , which depends on three gates:
an input gate it that can let new information into the cell
state, a forget gate ft that can modulate how much information
is forgotten from the previous state, and an output gate ot

that controls how much information is transferred to the upper
layers. The following equations describe the behavior of an
LSTM layer (we drop the layer index � in order to simplify
the notation):

ft = σ f (W f xt + U f ht−1 + b f) (1)

it = σi (Wi xt + Ui ht−1 + bi) (2)

ot = σo(Woxt + Uoht−1 + bo) (3)

Ct = ft � Ct−1 + it � tanh(Wcxt + Ucht−1 + bc) (4)

ht = ot � tanh(Ct) (5)

where all σ f , σi , and σo are typically the sigmoid function;
� indicates the Hadamard (or element-wise) product; and W ,
U , and b represent the model parameters that have to be
learned. As a form of regularization, dropout is nowadays

3328 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

typically employed in deep neural networks [24]. Dropout
simply consists of randomly dropping a percentage (1 − p)
of connections between neurons during training while mul-
tiplying by p every weight in the network at testing time.
In recurrent architectures, though, this general framework does
not work well in practice, but dropout can still be successfully
employed, if applied only to interlayer connections and not to
recurrent ones [25]. This is how we employed dropout in our
model.

B. LSTM for Text Generation

The most widely employed LSTM architecture for text
generation is based on character-level sentence modeling.
Basically, the input of the network consists of M characters
that correspond to a fixed-size portion of text, whereas the
number of output neurons is the total number S of possible
symbols in the text, each neuron corresponding to one of
such characters. The output layer consists of a softmax layer,
so that each symbol has an associated probability, and all such
probabilities sum up to 1. A hard way of generating texts
is to pick the character with the highest probability as the
next one in the sequence, and to feed it back to the network
input. A soft alternative (the one used in practice) allows to
sample the next character in the sequence from the probability
distribution of the output cells. In this way, the output of
the network is not deterministic, given the same initial input
sequence. With such an iterated procedure, texts of any length
can be generated. The hidden states of the cells keep track of
the “memory” of the network, so as to exploit also information
not directly encoded in the input any more. This generation
phase can be controlled by a parameter T , usually named
as temperature. Different temperature values can be tuned in
order to obtain a smoother or sharper softmax distribution from
which characters are generated. In particular, the final softmax
layer in the LSTM computes the probability of each symbol j
as follows:

Pj = exp
(y j

T

)
∑S

i=1 exp
(yi

T

) (6)

where yi are the output values for each symbol, which are
fed into softmax. Large T values lead toward a uniform
distribution of symbol probabilities, whereas when T tends
to zero, the distribution is skewed toward the most probable
symbol.

Such a model is trained in a classic supervised learning
setting where the input training corpus is fed to the network,
using as target the true (known) next character, as it appears in
the corpus. If the cell states are not reset as subsequent input
windows are presented to the network, long-range dependen-
cies can, in principle, be captured by the model.

Note that, in principle, the same task could be modeled
at a word level, thus training the LSTM network to predict
the next word in the text rather than the next character.
Although this solution may appear to be a more appropriate
way for modeling the problem, it has two main limitations:
1) the number of possible output classes of the network would
become huge, being the total number of distinct words in the

input corpus, leading to a much more difficult optimization
problem, which would likely require a larger number of
training examples and 2) the set of possible output words
would be limited to those appearing in the training corpus,
which could be enough in many cases, but would limit the
creativity of the network.

III. METHODS

We now present the methods we employ in order to quanti-
tatively evaluate the characteristics of the artificially generated
texts with respect to the original and human-generated texts.

A. Zipf’s and Heaps’ Laws for Words

Natural languages show remarkable statistical properties
in their word statistics. The two best known examples are
Zipf’s [14] and Heaps’ [15] laws in language, which refer
to universal features related to word frequencies.

Zipf’s law states that if the word frequencies of any suf-
ficiently long text are arranged in the decreasing order, there
is a power-law relationship between the frequency and the
corresponding ranking order of each word. More explicitly, if
we denote the rank of a word by r , the Zipf’s law states the
following relationship between the rank and the frequency of
a word at that rank position f (r), as follows:

f (r) = Ar−β. (7)

This relationship is roughly the same for all human lan-
guages, the exponent β taking values close to 1.

Heaps’ law states that the number of the different words
(i.e., the size of the vocabulary) after seeing t consecu-
tive words in a text, obeys approximately the following
relationship:

n(t) = Btν (8)

with exponent ν typically taking values smaller than 1 [26].

B. Long-Range Correlations

Linguistic laws on the scaling of word frequencies, such
as Zipf’s and Heaps’, do not reveal any statistical structure
that depends directly on word order. Zipf’s rank-frequency
distribution would be unaltered after a random text shuffling,
and similarly for the average behavior predicted by Heaps’
law. Statistical measures that capture structure at the sequence
level in texts involve correlations and spectral analysis [27].

Correlations in language are known to be of the power-
law type [9]–[11], decaying as C(τ) ∝ τ−γ , where τ is
the distance between symbols, for example, words or char-
acters. It is possible to characterize the structure of long-
range correlations using the method of detrended fluctuation
analysis (DFA) [28], [29]. The first step in the method involves
the mapping of the symbol sequence onto a numerical time
series, by assigning a number to each basic symbol in the
sequence. In order to preserve the maximum of structure
from the text sources, we performed the mapping at character
level—including all punctuation signs, numbers, capital letters,
and accented forms. The procedure to assign a number to
each character followed similar lines to the method employed

LIPPI et al.: NATURAL LANGUAGE STATISTICAL FEATURES OF LSTM-GENERATED TEXTS 3329

in [10], where in the present case, each character is replaced
by its rank. Thus, the most frequent character is assigned the
number 1, the second most frequent is assigned the number 2,
and so on. For a sequence of length N , the character at
position t in the time series, with t ∈ N, can be represented
by the number x(t), and the following random walk can be
constructed:

X (t) =
t∑

i=1

(x(i) − 〈x〉) (9)

where 〈x〉 represents the mean of the times series. The time
series X (t) is then split into windows of length L, and
in each of those windows, the corresponding stretch of the
series is fitted by a straight line by means of least squares.
These linear fits represent the local trend within each of the
windows of length L. The sequence of length L trends can be
concatenated in a piecewise manner defining a piecewise linear
function YL(t). Then, we compute the average fluctuations at
scale L, which is the deviation from the trend, defined as
follows:

F(L) =
(

1

N

N∑
t=1

(X (t) − YL(t))2

) 1
2

. (10)

The nature of the correlations present in the original time
series can be evaluated by observing the dependence of F(L)
on L. In particular, the growth of fluctuation with the scale L
will be given as F(L) ∼ Lα , with 0 < α < 1. In the case
of an uncorrelated or short-range correlated time series xt ,
we have F(L) ∼ L(1/2). However, in the presence of long-
range correlations of the power-law type in the original time
series xt , the fluctuation exponent α will differ from 1/2 [29],
with α > 1/2 for persistent (positive) correlations and α < 1/2
for antipersistent (negative) correlations.

C. Entropy and KL-Divergence Estimation

The entropy of a symbolic sequence can be interpreted as a
quantification of the degree of predictability in the sequence.
A high level of predictability of consecutive values in a
sequence implies a low level of surprise about future symbols,
which is linked to a low entropy. On the other hand, a sequence
with a high degree of randomness will be characterized by a
high level of surprise in the identity of future symbols, and
result in a high value for the entropy. Therefore, the determi-
nation of the entropy of language serves as a quantification of
its degree of order. Early attempts to determine the entropy of
language were based on the close link between entropy and
predictability [30]. However, the estimation of the entropy
from long sequences of written text, requires the estimation
of block probabilities, which poses a serious computational
challenge, due to the presence of long-range correlations in
language. The required sample size needed for an accurate
estimation of the block probabilities grows exponentially
with the length of the block, thus quickly rendering any
amount of available text insufficient. This difficulty can be
overcome through the link between entropy and predictability
mentioned above. The degree of predictability in a sequence

determines how much it can be compressed by a lossless
compression method. Sequences with high predictability can
be compressed more than sequences with a higher degree of
randomness. In particular, it can be shown that under general
assumptions of stationarity and ergodicity, the entropy rate
of a stochastic source is a lower bound to the length per
symbol of any encoding of it [31]. Hence, the entropy of
symbolic sequences can be estimated by means of efficient
lossless compression algorithms [32]–[34]. We estimated the
entropy of long character sequences using an implementation
of the algorithm proposed by Lempel and Ziv [32], [35], [36],
which relies on the estimation of redundancy by looking for
matches between future and past substrings in a symbolic
sequence. Implementations of entropy estimation algorithms
based on these methods have proved to work well for symbolic
sequences even in the presence of long-range correlations as
those found in language [34], [37].

The Kullback–Leibler (KL) divergence D(P|Q) is a mea-
sure of relative entropy between two probability distribu-
tions P and Q [31]. When P ≡ Q then the KL divergence
is zero, but it takes positive values when P 	= Q. It can be
shown that D(P|Q) is a measure of the extra numbers of
bits that are required to encode typical sequences with the
distribution P , when using a code based on Q [31]. This inter-
pretation suggests that D(P|Q) can also be estimated using
compression algorithms in which one signal is compressed
using past sequences in the second signal. More specifically,
the KL divergence D(P|Q) can be written as [31]

D(P|Q) = HP(Q) − H (P) (11)

where H (P) is the entropy of the distribution P and HP(Q)
is the cross entropy between P and Q. Let us assume that
two text sequences produced by the stochastic source with the
probability distribution P are represented by X = {xt}N

t=1,
and those produced by Q as Z = {zt }N

t=1. Then, for notational
succinctness, let us write the information quantities explicitly
in terms of the generated sequences, therefore, representing
the KL divergence between P and Q as D(X |Z). With this
notation, we have D(X |Z) = HX (Z)−H (X). A compression-
based algorithm proposed in [38] permits to compute the
cross entropy HX (Z) based on the symbolic sequences X
and Z . Then, the KL divergence is obtained by subtracting
the entropy of the sequence X from the cross entropy HX(Y).
The KL divergence is a nonsymmetric quantity, and in order to
have a distance-like measure between character sequences X
and Y , we defined a symmetrized divergence as Ds(X, Y) =
(D(X |Y) + D(Y |X))/2.

Another measure that is strictly related to entropy, and
that is widely used for the evaluation of artificial texts,
is perplexity [39], which can be computed as the geometric
mean of the inverse probability for each predicted word in
the document [40], [41], where probabilities are typically
estimated on a language model trained on a larger corpus.

D. Creativity and Authorship Attribution

Providing a quantitative method that is able to address the
creativity of a given algorithm for artificial texts generation
is a complex task. In this paper, we consider two distinct but

3330 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

strictly intertwined aspects. We aim to measure at what extent
the algorithm is capable of capturing the stylistic traits of a
given author while at the same time avoiding to perform just
a plagiarism of the training corpus.

Measuring the LCS is one of the simplest ways to imple-
ment the idea of quantitatively measuring plagiarism: given
the kth character xk of the artificial text, we denote by Lk

the length of the longest subsequence starting at xk that is
also contained in (thus, plagiarized from) the training corpus.
Different statistics of the set of all Lk can be used to quantify
how various algorithms are able to reproduce some stylist
traits of a given corpus while generating innovative texts, not
written before. Here, we adopt the simplest one and consider
the maximum over the whole artificial text: L̄ = maxk Lk

(see [42] and [43]).
We now move our analysis to a higher level by exploring

how artificial texts resemble the style of the training author.
Stylistic traits are supposed to reflect subtle choices of the
author in terms of vocabulary, syntactic constructions, and
structural composition, among others. As such, a compre-
hensive quantification of the style of an author is out of
reach. On the other hand, a very simple feature such as the
frequency distribution of n-gram of letters has been success-
fully selected as a key ingredient in some of the most effective
approaches to authorship attribution [44], [45].

We use one of the state-of-the-art algorithms to test the
automatic attribution of the author of our artificial texts. The
implemented method is, in fact, one of the two methods that
have been successfully used for the attribution of Antonio
Gramsci’s papers [44]. Essentially, each method defines a kind
of similarity distance between texts. Let us briefly describe
the first method used here (see [45] for further details). The
method is based on (characters) n-grams and it is probably
one of the simplest possible measures on a text: after a first
experiment based on bigram frequencies by Bennett [46].
Kes̆elj et al. [47] published a paper in which n-gram fre-
quencies were used to define a similarity distance between
texts (see also [48]). The similarity distance was introduced
and discussed in [44]: we call ω an arbitrary n-gram, and we
denote fX (ω) and fY (ω) as the relative frequencies with which
ω occurs in text X and Y . Dn(X) is the n-gram dictionary
of text X , that is, the set of all n-grams that have nonzero
frequency in X (similarly for Y) and we define what we will
call the n-gram distance between text X and text Y as1

dn(X, Y) := 1

|Z |
∑

ω∈Dn(X)∪Dn(Y)

(
fX (ω) − fY (ω)

fX (ω) + fY (ω)

)2

(12)

where the denominator |Z | = |Dn(X)|+|Dn(Y)| is the sum of
the number of different n-grams in the two dictionaries while
the inner sum is taken over all different n-grams occurring in
the two texts.

Suppose the goal is to decide whether a given document
X has been authored by author A or not. The approach
adopted in [44] consists of first collecting m documents from

1To be more precise, dn is a pseudodistance because it does not satisfy the
triangle inequality and it is not even positive definite: two texts X, Y can be
at distance dn(X, Y) = 0 without being the same.

author A and m documents from an author B (or, in general,
from more authors). The distance of the candidate text X
to these documents is then used, with the help of a simple
probabilistic method, to produce a similarity index I (X),
−1 ≤ I (X) ≤ 1 (see [44] for more details). Values of the index
close to 1 (respectively, −1) reveal a very strong attribution to
author A (respectively, B), whereas values close to 0 indicate
a very weak attribution (see [44] and [45] for more details).

IV. CORPORA

Our aim was to train an LSTM network on a large corpus
obtained from a single author in order to also perform the
experiments on authorship attribution and to assess whether
the model was capable of capturing some stylistic features of
its “teacher.” We employed the works by Charles Dickens,
since he was a very prolific author whose bibliography is
freely available in plain text format at ProjectGutenberg.2

We collected a total of 18 works by Charles Dickens, which
resulted in a corpus of over 24 million characters.3

For the authorship attribution experiments, we also collected
a smaller corpus of texts, some still from Charles Dickens, and
some others from a different author. Clearly, these additional
texts from Dickens needed to be disjoint from those in the
larger corpus, on which the LSTM network had to be trained.4

Regarding non-Dickens documents, we collected texts by
Robert Louis Stevenson, who was also a prolific author
of the 19th century.5 For this second corpus, we collected
30 documents both for Dickens and Stevenson, each consisting
of 10 000 characters.

V. EXPERIMENTS

The experiments with LSTMs were run using the torch-
rnn package.6 We trained an LSTM network with two layers
and 1024 cells in each layer. As customary in text-generation
experiments with LSTMs [13], the training set was split into
chunks of length equal to K characters. In this way, gradients
in truncated backpropagation are propagated up to K steps
back, but the status of each LSTM cell is not reset after each
example, so that longer range correlations can, in principle,
be learned. We first present results obtained using K = 100,
later investigating the impact of such hyperparameter on the
considered evaluation metrics. To avoid overfitting, a dropout
equal to 0.7 was applied, and a validation set (4% of the whole
corpus) was exploited to monitor the loss function during
training.

2http://gutenberg.org
3We used the following works: A Tale of Two Cities, textitDavid Copper-

field, textitOliver Twist, textitBleak House, textitGreat Expectations, textitThe
Life and Adventures of Nicholas Nickleby, textitThe Old Curiosity Shop,
textitThe Pickwick Papers, textitDombey and Son, textitLittle Dorrit, textitLife
and Adventures of Martin Chuzzlewit, textitOur Mutual Friend, textitBarnaby
Rudge, textitA Christmas Carol, textitThe Uncommercial Traveller, textitHard
Times, textitLetters, textitA Child’s History of England.

4We used excerpts from the following works: Signal-Man, textitA Christ-
mas Tree, textitThe Poor Relation’s Story, textitThe Schoolboy’s Story,
textitHunted Down, textitPictures From Italy, textitThe Chimes, textitThe
Haunted Man and the Ghost’s Bargain, textitTom Tiddler’s Ground, textitThe
Wreck of the Golden Mary.

5We used excerpts from the following works: Treasure Island, The Strange
Case of Doctor Jekyll and Mister Hyde, Kidnapped, The Black Arrow.

6https://github.com/jcjohnson/torch-rnn

LIPPI et al.: NATURAL LANGUAGE STATISTICAL FEATURES OF LSTM-GENERATED TEXTS 3331

TABLE I

SOME SAMPLES GENERATED BY LSTM, AS A FUNCTION OF THE TEMPERATURE T

TABLE II

SOME SAMPLES GENERATED WITH MARKOV MODELS OF INCREASING ORDER

To compare the statistics of the LSTM texts with that of
other nontrivial models, we used a plain m-order Markov
process as a baseline. A family of m-order Markov models
were trained from our corpus, with m taking values 2, 4, 6,
8, 10, and 12. The models were used to generate artificial texts
starting from a seed taken from the original corpus.

Tables I and II show some examples of texts gener-
ated with different temperatures from the LSTM, and by
different Markov models, respectively. The whole set of
generated samples is publicly available at http://agentgroup.
unimore.it/Lippi/generated_samples_Dickens.zip.

A. Zipf’s and Heaps’ Laws

As a first test comparing the statistics of the
LSTM-generated texts to other models capable of rendering
stochastic versions of texts, we looked and the distribution
of words frequencies. We first evaluated the Zipf’s law,
by measuring the relationship between the rank in the set
of words, ordered by frequency, and word frequency itself.
Fig. 2(a) shows the rank-frequency distributions of words

in the LSTM texts for temperatures in the range 0.1–3.0.
The plot also shows, in black, the result for the original
Dickens corpus. We fitted the value of the exponent within
the region between ranks 102 and 103 to determine more
clearly the behavior with temperature, which showed a
clear power-law behavior consistently across all but the two
extreme temperatures. Fig. 2(b) shows the resulting value of
the Zipf’s exponent β as a function of temperature in the
range 0.3–2.0. LSTM texts generated with low temperatures
have a frequency rank distribution, which decays faster with
rank. On the contrary, for higher temperatures, the distribution
flattens showing a smaller exponent β. The dashed line in
the figure shows the value of the exponent estimated from
Dickens’ corpus, which intercepts the LSTM results at a
temperature approximately between 0.8 and 0.9.

A similar analysis was performed on the Markov-generated
texts. Fig. 2(c) shows the rank-frequency distribution for
texts generated with Markov models. Interestingly, there is
little variation of the distribution as a function of Markov
order. This is also corroborated by the estimation of the

3332 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

Fig. 2. Zipf’s law. (a)–(c) Zipf’s rank-frequency distribution in LSTM (respectively, Markov) texts, with temperature T in the range 0.1−−3.0 (respectively,
order m in the range 2−−12). (b)–(d) Exponent β measured in the region between ranks 102 and 103, as a function of T (LSTM) or m (Markov), with
dashed line corresponding to the exponent measured in the original corpus. For readability, (a)–(c) do not show markers for every point. Figure best seen in
colors.

exponent [Fig. 2(d)] that shows the exponent of Markov texts
with a value slightly below that of the original source.

In order to assess the validity of Heaps’ law for the artificial
language, we computed the statistics of the vocabulary growth
for the LSTM and Markov texts. Fig. 3(a) shows the results for
the LSTM texts for a range of temperatures from 0.1 to 3.0.
For comparison, the curve for the original text is shown in
black. Fig. 2(b) represents the results of fitting the power-law
behavior in the region for t > 1000, using the same range
of temperatures shown for the β exponent in Fig. 2(b) The
dashed line, representing results for the original text, cuts the
LSTM data at a point between temperatures 0.8 and 0.9.

B. Long-Range Correlations

Beyond the statistics of word frequencies, natural texts show
correlations that span hundreds or thousands of characters,
showing power-law decay. Although a direct measure of these
correlations is possible, in principle, more efficient methods
are based on spectral [27] or fluctuation [28], [29] properties
of the sequences. In particular, we tested the LSTM-generated
texts using DFA [28], [29] applied to linguistic character
sequences. By means of DFA, it is possible to estimate such
exponent α, by fitting a power law to the dependence of the

fluctuations F(L) with the scale L. We estimated the depen-
dence of F(L) with the scale L for LSTM texts generated at
different temperatures and for the Markov-generated texts for
different orders. Fig. 4(a) shows the normalized fluctuations
Fn(L) as a function of the scale L for LSTM-generated texts
together with the results for the original Dickens’ corpus and a
shuffled realization of it. In all cases, there are signs of power-
law behavior for a wide range of scales, with the exception of
the two extreme temperatures (0.1 and 3.0). Although the data
corresponding to the shuffled text seems to have a less steep
slope than the LSTM samples, a more quantitative analysis
is required to compare the extent of correlations. Fig. 4(b)
shows the estimations of the exponent α obtained by fitting
a power law to the data in (a) in the region spanned by
scales L = 102 . . . 104. For comparison, the full black line
corresponds to the result for the original Dickens’ text while
the dashed line is the result obtained from the shuffled text.
The full black circles are the average of the estimation of
the exponent from the 10 available samples, whereas small
squares show the result for each sample. It is in the region of
temperatures between 0.5 and 1.0 that the exponent α is close
to the value for the original text. Yet, although the dispersion
of individual sample measures is very broadly spread for

LIPPI et al.: NATURAL LANGUAGE STATISTICAL FEATURES OF LSTM-GENERATED TEXTS 3333

Fig. 3. Heaps’ law. (a)–(c) Heaps’ growth curve for the LSTM (respectively, Markov) texts, for temperatures in the range 0.1−−3.0 (respectively, order
in range 2−−12). (b)–(d) Exponent ν measured in the t > 1000 region of the Heaps’ curve for LSTM (respectively, Markov) texts as a function of the
temperature (respectively, order m). In panels (b) and (d), the dashed line corresponds to the exponent for the Dickens’ corpus. Figure best seen in colors.

temperatures close to 0.5, they are tightly clustered around the
mean for T = 1.0. A similar analysis was done on the Markov-
generated texts. Fig. 4(c) shows the result of the DFA for
Markov texts of orders 2–12, and a comparison to the original
and shuffled texts. Clearly, all the Markov-generated texts have
a structural correlation that resembles more the shuffled text
than the original one. This trend is corroborated in Fig. 4(d),
showing the estimated exponent α as a function of Markov
order. In all cases, such value is very close to that obtained
by the shuffled text.

C. Entropy

Our final test to probe the statistical structure of the LSTM
texts consisted in the estimation of entropy measures. The
first estimation corresponded to a symmetrized KL divergence
(see Section III) between the LSTM for different tempera-
tures and original text, estimated by means of compression
algorithms that are sensitive to the long-range structure of the
signal. Fig. 5(a) shows the divergence as a function of T .
There is a well-defined minimum at T ∼ 1, indicating at
that temperature the structure of the LSTM text is closest
to the original. Fig. 5(c) shows a similar plot for Markov
texts, which also approximate the structure of the original

texts asymptotically for larger orders. Although the previous
analyses showed the behavior of a distancelike quantity, the
entropy is a more direct estimation of the statistical structure
of a signal. Fig. 5(b) and (d) shows the value of the entropy
for the LSTM and Markov texts as a function of the tem-
perature and order, respectively. In both cases, the solid line
corresponds to the value of the entropy of the original text.
For LSTM, lower T values produce texts with small entropy,
thus easier to compress, since they show repetitive patterns.
As T grows, entropy also grows, with the texts becoming the
most similar to the original around T ∼ 0.9 (in line with our
analyses) and far more disordered for larger T values. Markov
texts, instead, show a monotonic approximation to the entropy
of the original text, slightly above even for higher orders.

To complete the analysis, we also computed the perplexity
of LSTM-generated texts, using the KenLM library.7 To do
this, we learned a bigram language model on the original
Dickens’ corpus and then we computed the perplexity both for
the artificial texts, and for the off-sample Dickens’ documents
in the test corpus used for authorship attribution. Results are
perfectly in line with those obtained with entropy computation

7https://github.com/kpu/kenlm

3334 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

Fig. 4. Long-range correlations. (a)–(c) Normalized fluctuations Fn(L) as a function of the scale L for LSTM (respectively, Markov) texts. (b)–(d) Fluctuation
exponent α obtained by fitting a power law the LSTM and Markov data in (a) and (c), in the range L = [102, 104]. Black circles: mean over 10 samples.
Small empty squares: estimations for individual samples. Full (dashed) black line: real (shuffled) text.

via compression, with values of temperature around 0.9–1.0
producing texts that are the most similar to the original.

D. Creativity and Authorship Attribution

To assess the degree of plagiarism (and, thus, of creativity)
for our models, we measured the length of the LCS between
the artificial texts and the training corpus. For Markov texts,
not surprisingly the length of the LCS rapidly grows with the
order of the model, from a value of 19 for order 2, up to
73 and 125 for orders 10 and 12, respectively. For LSTMs,
the length of the LCS instead results to be lower, with values
comprised between 40 and 60 when T is in the range between
0.4 and 1.2. For smaller and larger temperatures, the LCS
is clearly shorter, as the generated texts have a less realistic
structure, thus it is less probable to encounter patterns that
are identical to the original. As a comparison with what we
could call a sort of self-plagiarism, encountered in a subset of
the training corpus, we also computed the length of the LCS
of the novel “Oliver Twist” with respect to five other novels
by Dickens (David Copperfield, A Tale of Two Cities, Bleak
House, Great Expectations, and Hard Times): the LCS in this
case resulted to be 45 characters long.

For the experiments on authorship attribution, we used
the Dickens and Stevenson corpora described in Section IV.
For a fixed temperature of the generated text, attribution is
performed by averaging over 10 samples of artificial texts,
using n-grams from n = 1 up to n = 12. To assess the validity
of the attribution algorithm, we compare the attribution of the
generated texts with that of real texts. In particular, for each
of the 30 Dickens and Stevenson documents, we employ the
remaining 29 documents of each group to perform attribution
to either author. Fig. 6 shows the value of the index I (X)
defined in Section III-D as a function of n-grams (on the x-
axis) and either temperature for LSTM (a) or order for Markov
texts (b), respectively. The attribution of real texts performs
extremely well, with a maximum for n = 6 and n = 10 for
Dickens and Stevenson, respectively. For LSTM, although the
texts are indeed always correctly attributed to Dickens, it is
interesting to note how the best results are again achieved for
values of T around 0.8–1.0, whereas for lower temperatures,
the attribution with larger n-grams drops, as the generated texts
tend to reproduce periodic (hence, less realistic) patterns. Not
surprisingly, Markov texts with m ≥ 6 are also well attributed
to Dickens, due to the high degree of plagiarism described in
Section V-D.

LIPPI et al.: NATURAL LANGUAGE STATISTICAL FEATURES OF LSTM-GENERATED TEXTS 3335

Fig. 5. Divergence and entropy. Symmetrized KL divergence and entropy, as a function of temperature for the LSTM texts [(a) and (b)], and as a function
of the order for the Markov-generated texts [(c) and (d)]. In (b) and (D), the solid line represents the entropy of the original text.

Fig. 6. Authorship attribution for (a) LSTM and (b) Markov texts. We show the attribution index I (X) for a text X as a function of n-grams and as a function
of T (for LSTM) and m (for Markov models). Indices closer to 1 (respectively, −1) indicate stronger attributions to Dickens (respectively, Stevenson).

E. Impact of K Hyperparameter
The results presented so far consistently show that there is

a narrow range of temperatures around T = 1 for which the
texts generated by LSTM are the most similar to the original,
in terms of all the considered metrics. We finally investigated
the impact of K hyperparameter on the generated texts. Given
that K is the number of backward gradient propagation steps in

the BPTT algorithm, it directly affects the way in which long-
range information is propagated through the cells. Therefore,
we considered two additional LSTM networks, trained with
K = 10 and K = 1000, respectively, and identical to the
first network for all the other settings. For all the considered
metrics apart from long-range correlations, results are not
significantly different from those obtained for the network

3336 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

Fig. 7. Exponent of DFA as a function of T , for different values of K .

trained with K = 100 (see supplementary material for details).
Long-range correlations are instead more significantly affected
by the variation in K . In Fig. 7, we observe two different
phenomena: 1) a peak for low-level temperatures, likely due
to spurious, periodic patterns, that is visible also for K = 100
(also note the large variance across samples shown in Fig. 4)
and 2) a dramatic drop in the exponent α for K = 10 starting
from T = 0.7, whereas for K = 1000, the exponent is much
closer to that of real text.

VI. CONCLUSION

In this paper, we investigated at what degree texts generated
by an LSTM network resemble texts generated by humans.
To this aim, we presented an extensive experimental evaluation
where we compared several characteristics of artificial and
original texts, starting from statistical properties typically
shown by natural language, such as the distribution of word
frequencies and long-range correlations, up to higher-level
analyses, such as the attribution of authorship. This paper
shows that LSTM-generated texts share key statistical features
with natural language. In particular, the experimental results
highlight the crucial role of the temperature parameter in
producing texts that resemble those created by humans in their
statistical structure, with an optimal range of temperatures,
around T = 1, that induce the highest degree of similarity.
Interestingly, we also illustrated how a network trained on a
single-author corpus can produce texts that are attributed to
that author, according to authorship attribution algorithms.

The presented study suggests many interesting research
directions which we plan to investigate in future works.

First, we aim to compare the semantic information of
original and artificial texts. It is clear from the samples shown
in the experimental section that LSTM texts are still far from
human-generated texts in terms of meaningfulness, although
showing similar statistical properties. It is thus possible that
certain correlates of semantic information, such as burstiness
and clustering of keywords, are reflected in LSTM texts.
Given that even the origin of long-range correlations in natural
language is still debated, our work paves the way to deeper
future investigations in this direction.

Second, we aim to extend the analysis of these statistical
properties of the LSTM texts to different languages, in order
to assess whether there are some languages that are eas-
ier or more difficult to reproduce for a machine.

Finally, we aim to extend the study on authorship attribution
and plagiarism, for which in this paper we only presented
preliminary results. For that purpose, we plan to employ a
larger corpus, in order to compare several authors, genres and
languages, and to test different algorithms, for instance, those
based on trainable machine learning systems [49], [50].

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan X Pascal GPU used
for this research.

REFERENCES

[1] M. A. Boden, “Creativity and artificial intelligence,” Artif. Intell.,
vol. 103, nos. 1–2, pp. 347–356, 1998.

[2] E. Reiter, R. Dale, and Z. Feng, Building Natural Language Generation
Systems, vol. 33. Cambridge, MA, USA: MIT Press, 2000.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[4] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[5] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 3128–3137.

[6] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and
K. Saenko, “Sequence to sequence–video to text,” in Proc. IEEE Int.
Conf. Comput. Vis., Dec. 2015, pp. 4534–4542.

[7] X. Zhang and M. Lapata, “Chinese poetry generation with recurrent
neural networks,” in Proc. EMNLP, 2014, pp. 670–680.

[8] P. Potash, A. Romanov, and A. Rumshisky, “GhostWriter: Using an
LSTM for automatic rap lyric generation,” in Proc. EMNLP, 2015,
pp. 1919–1924.

[9] W. Ebeling and A. Neiman, “Long-range correlations between letters
and sentences in texts,” Phys. A, Stat. Mech. Appl., vol. 215, no. 3,
pp. 233–241, 1995.

[10] M. A. Montemurro and P. Pury, “Long-range fractal correlations in
literary corpora,” Fractals, vol. 10, no. 4, pp. 451–461, 2002.

[11] E. G. Altmann, G. Cristadoro, and M. D. Esposti, “On the origin of
long-range correlations in texts,” Proc. Nat. Acad. Sci., vol. 109, no. 29,
pp. 11582–11587, 2012.

[12] A. Graves. (Aug. 2013). “Generating sequences with recurrent neural
networks.” [Online]. Available: https://arxiv.org/abs/1308.0850

[13] A. Karpathy, J. Johnson, and L. Fei-Fei. (Jun. 2015). “Visual-
izing and understanding recurrent networks.” [Online]. Available:
https://arxiv.org/abs/1506.02078

[14] G. K. Zipf, The Psycho-Biology of Language—An Introduction to
Dynamic Philology. Boston, MA, USA: Houghton Mifflin Company,
1935.

[15] H. S. Heaps, Information Retrieval, Computational and Theoretical
Aspects. New York, NY, USA: Academic Press, 1978.

[16] H. W. Lin and M. Tegmark, “Critical behavior in physics and proba-
bilistic formal languages,” Entropy, vol. 19, no. 7, p. 299, 2017.

[17] S. Takahashi and K. Tanaka-Ishii, “Do neural nets learn statistical
laws behind natural language?” PLoS One, vol. 12, no. 12, 2017,
Art. no. e0189326.

[18] A. Ghodsi and J. DeNero, “An analysis of the ability of statistical
language models to capture the structural properties of language,” in
Proc. 9th Int. Natural Lang. Gener. Conf., 2016, p. 227.

[19] B. M. Lake and M. Baroni. (2017). “Generalization without system-
aticity: On the compositional skills of sequence-to-sequence recurrent
networks.” [Online]. Available: https://arxiv.org/abs/1711.00350

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[21] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

LIPPI et al.: NATURAL LANGUAGE STATISTICAL FEATURES OF LSTM-GENERATED TEXTS 3337

[22] K. Greff, R. K. Srivastava, and J. Koutník, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: A search space odyssey,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[23] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[25] W. Zaremba, I. Sutskever, and O. Vinyals. (Sep. 2014).
“Recurrent neural network regularization.” [Online]. Available:
https://arxiv.org/abs/1409.2329

[26] M. Gerlach and E. G. Altmann, “Stochastic model for the vocabulary
growth in natural languages,” Phys. Rev. X, vol. 3, no. 2, 2013,
Art. no. 021006.

[27] R. F. Voss and J. Clarke, “1/f noise in music and speech,” Nature,
vol. 258, no. 5533, pp. 317–318, 1975.

[28] C.-K. Peng et al., “Long-range correlations in nucleotide sequences,”
Nature, vol. 356, no. 6365, pp. 168–170, 1992.

[29] S. V. Buldyrev et al., “Long-range correlation properties of coding and
noncoding DNA sequences: GenBank analysis,” Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 51, no. 5, p. 5084, 1995.

[30] C. E. Shannon, “Prediction and entropy of printed English,” Bell System
Tech. J., The, vol. 30, no. 1, pp. 50–64, Jan. 1951.

[31] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ, USA: Wiley, 2006.

[32] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE
Trans. Inf. Theory, vol. 22, no. 1, pp. 75–81, Jan. 1976.

[33] A. D. Wyner and J. Ziv, “Some asymptotic properties of the entropy of
a stationary ergodic data source with applications to data compression,”
IEEE Trans. Inf. Theory, vol. 35, no. 6, pp. 1250–1258, Nov. 1989.

[34] T. Schürmann and P. Grassberger, “Entropy estimation of symbol
sequences,” Chaos, Interdiscipl. J. Nonlinear Sci., vol. 6, no. 3,
pp. 414–427, 1996.

[35] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343,
May 1977.

[36] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Trans. Inf. Theory, vol. 24, no. 5,
pp. 530–536, Sep. 1978.

[37] I. Kontoyiannis, P. H. Algoet, YU. M. Suhov, and A. J. Wyner,
“Nonparametric entropy estimation for stationary processes and random
fields, with applications to English text,” IEEE Trans. Inf. Theory,
vol. 44, no. 3, pp. 1319–1327, May 1998.

[38] J. Ziv and N. Merhav, “A measure of relative entropy between individual
sequences with application to universal classification,” IEEE Trans. Inf.
Theory, vol. 39, no. 4, pp. 1270–1279, Jul. 1993.

[39] F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker, “Perplexity—A
measure of the difficulty of speech recognition tasks,” J. Acoust. Soc.
Amer., vol. 62, no. S1, p. S63, 1977.

[40] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural proba-
bilistic language model,” J. Mach. Learn. Res., vol. 3, pp. 1137–1155,
Feb. 2003.

[41] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural
image caption generator,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3156–3164.

[42] A. Papadopoulos, F. Pachet, and P. Roy, “Generating non-plagiaristic
Markov sequences with max order sampling,” in Creativity and Univer-
sality in Language. Cham, Switzerland: Springer, 2016, pp. 85–103.

[43] F. R. P. Pachet and A. Papadopoulos, Constrained Markov Sequence
Generation: Applications to Music and Text (Computational Synthesis
and Creative Systems). Cham, Switzerland: Springer, 2018.

[44] C. Basile, D. Benedetto, E. Caglioti, and M. Degli Esposti, “An example
of mathematical authorship attribution,” J. Math. Phys., vol. 49, no. 12,
2008, Art. no. 125211.

[45] D. Benedetto, M. D. Esposti, and G. Maspero, “The puzzle of Basil’s
Epistula 38: A mathematical approach to a philological problem,”
J. Quant. Linguistics, vol. 20, no. 4, pp. 267–287, 2013.

[46] W. R. Bennett, Scientific and Engineering Problem-Solving With the
Computer. Upper Saddle River, NJ, USA: Prentice-Hall, 1976.

[47] V. Kešelj, F. Peng, N. Cercone, and C. Thomas, “N-gram-based author
profiles for authorship attribution,” in Proc. PACLING, Halifax, NS,
Canada, Aug. 2003, pp. 255–264.

[48] R. Clement and D. Sharp, “Ngram and Bayesian classification of doc-
uments for topic and authorship,” Literary Linguistic Comput., vol. 18,
no. 4, pp. 423–447, 2003.

[49] A. Neme, J. R. G. Pulido, A. Muñoz, and S. Hernández, and T. Dey,
“Stylistics analysis and authorship attribution algorithms based on self-
organizing maps,” Neurocomputing, vol. 147, pp. 147–159, Jan. 2015.

[50] M. L. Jockers and D. M. Witten, “A comparative study of machine
learning methods for authorship attribution,” Literary Linguistic Com-
put., vol. 25, no. 2, pp. 215–223, 2010.

Marco Lippi received the Ph.D. degree in computer
and automation engineering from the University of
Florence, Florence, Italy, in 2010.

He was a Post-Doctoral Fellow at the University
of Florence, the University of Siena, Siena, Italy,
and the University of Bologna, Bologna, Italy. He
was a Visiting Scholar with Pierre and Marie Curie
University (UPMC), Paris, France. He is currently an
Assistant Professor with the Department of Sciences
and Methods for Engineering, University of Modena
and Reggio Emilia, Modena, Italy, where he is

involved in machine learning and artificial intelligence, with applications in
bioinformatics, law, game playing, natural language processing, and argumen-
tation mining.

Marcelo A. Montemurro received the Ph.D. degree
in theoretical physics from the National University
of Córdoba, Cordoba, Argentina, in 2002.

He then moved to Italy to work at the Inter-
national Centre for Theoretical Physics in Trieste,
Italy, with a fellowship from UNESCO. He was
with the International Center for Theoretical Physics,
Trieste, Italy. In 2004, he was with The University
of Manchester, Manchester, U.K., where he was a
Lecturer and held a number of fellowships. His cur-
rent research interests include the statistical physics

of complex systems and computational neuroscience.

Mirko Degli Esposti received the Degree in physics
from the University of Bologna, Bologna, Italy, in
1988, and the Ph.D. degree in mathematics from
Penn State University, State College, PA, USA, in
1994.

He is currently a Full Professor of mathemat-
ical physics with the Computer Science Depart-
ment, University of Bologna. His current research
interests include applications of the theory of
dynamical systems and of information theory to
life science and human science, especially human
language.

Giampaolo Cristadoro received the Ph.D. degree
in theoretical physics from the University of Insub-
ria, Como, Italy, and the Paul Sabatier University,
Toulouse, France, in 2005.

He was a Post-Doctoral Fellow with the Max
Planck Institute for the Physics of Complex Systems,
Dresden, Germany, with the Center for Nonlinear
and Complex Systems, Como, Italy, and with the
Department of Mathematics, University of Bologna,
Bologna, Italy, where he was later appointed as
an Assistant Professor and an Associate Professor.

He is currently an Associate Professor of mathematical physics with the
Department of Mathematics and Applications, University of Milano-Bicocca,
Milan, Italy. His current research interests include dynamical systems, prob-
ability and information theory, with applications to life science and natural
language.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

