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Abstract

Recently, a novel method for developing filtering algorithms, based on the interconnection of two
Bayesian filters and called double Bayesian filtering, has been proposed. In this manuscript we show
that the same conceptual approach can be exploited to devise a new smoothing method, called double
Bayesian smoothing. A double Bayesian smoother combines a double Bayesian filter, employed in its
forward pass, with the interconnection of two backward information filters used in its backward pass.
As a specific application of our general method, a detailed derivation of double Bayesian smoothing
algorithms for conditionally linear Gaussian systems is illustrated. Numerical results for two specific
dynamic systems evidence that these algorithms can achieve a better complexity-accuracy tradeoff and
tracking capability than other smoothing techniques recently appeared in the literature.
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I. Introduction

The problem of Bayesian smoothing for a state space model (SSM) concerns the development of recursive
algorithms able to estimate the probability density function (pdf) of the model state on a given observation
interval, given a batch of noisy measurements acquired over it [1], [2]; the estimated pdf is known as a
smoothed or smoothing pdf. Two general methods are available in the literature for recursively calculating
smoothing densities; they are known as the forward filtering-backward smoothing recursion (e.g., see [3]
and [4]) and the method based on the two-filter smoothing formula (e.g., see [5] and [6]). Both methods
are based on the idea that the smoothing densities can be computed by combining the predicted and/or
filtered densities generated by a Bayesian filtering method with the statistical information produced in the
backward pass by a different filtering method; the latter method is paired with the first one and, in the
case of the two-filter smoothing formula, is known as backward information filtering (BIF). Unluckily, closed
form solutions for Bayesian smoothing are available for linear Gaussian and linear Gaussian mixture models
only [1, 2, 7]. This has motivated the development of various methods based on approximating smoothing
densities in different ways. For instance, the use of Gaussian approximations for the smoothing densities and
of sigma points techniques for solving moment matching integrals has been investigated in [8–10]. Another
class of methods (usually known as particle smoothers) is based on the exploitation of sequential Monte
Carlo techniques, i.e. on approximating smoothing densities through a set of weighted particles (e.g., see
[3, 5, 11–14] and references therein). Recently, substantial attention has been also paid to the development
of smoothing algorithms for the class of conditionally linear Gaussian SSMs [15–19]. In this case, the above
mentioned approximate methods can benefit from the so called Rao-Blackwellization technique, i.e. from the
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marginalisation of the linear substructure of any conditionally linear Gaussian model; this can significantly
reduce the overall computational complexity of both sigma-point based Gaussian smoothing [15] and particle
smoothing [16–19] (that is usually known as Rao-Blackwellized particle smoothing, RBPS, in this case).

In this manuscript, we propose a novel general method for the development of computationally efficient
particle smoothers. Our method exploits the same conceptual approach illustrated in [20] in the context of
Bayesian filtering and dubbed multiple Bayesian filtering. That approach is based on the idea of developing
new filtering algorithms by: a) interconnecting multiple heterogeneous Bayesian filters; b) representing the
processing accomplished by each Bayesian filter and the exchange of statistical information among distinct
filters as a message passing over a proper factor graph. In [20] the exploitation of this approach has been
investigated in detail for the case in which two Bayesian filters are interconnected, i.e. dual Bayesian filtering
(DBF) is employed. Moreover, it has been shown that accurate and computationally efficient DBF algorithms
can be devised if the considered SSM is conditionally linear Gaussian. In this manuscript, we show that, if
DBF is employed in the forward pass of a smoothing method, a BIF method, paired with DBF and based
on the interconnection of two backward information filters can be devised by following some simple rules.
Similarly as DBF, our derivation of such a BIF method, called double backward information filtering (DBIF),
is based on a graphical model. Such a graphical model allows us to show that: a) the pdfs computed in DBIF
can be represented as messages passed on it; b) all the expressions of the passed messages can be derived
by applying the same rule, namely the so called sum-product algorithm (SPA) [21], [22], to it; c) iterative
algorithms can be developed in a natural fashion once the cycles it contains have been identified and the
order according to which messages are passed on them (i.e., the message scheduling) has been established;
d) the statistical information generated by a DBIF algorithm in the backward pass can be easily merged
with those produced by its paired DBF technique in the forward pass in order to evaluate the required
smoothed pdfs. To exemplify the usefulness of the resulting smoothing method, based on the combination
of DBF and DBIF, and called double Bayesian smoothing (DBS), the two DBF algorithms proposed in [20]
for the class of conditionally linear Gaussian SSMs are taken into consideration, and the BITF algorithm
paired with each of them and a simplified version of it are derived. This leads to the development of four
new DBS algorithms, two generating an estimate of the joint smoothing density over the whole observation
interval, the other two an estimate of the marginal smoothing densities over the same interval. Our computer
simulations for two specific conditionally linear Gaussian SSMs evidence that, in the first case, the derived
DBS algorithms perform very closely to the RBPS technique proposed in [18] and to the particle smoothers
devised in [19], but at lower computational cost and time. In the second case, instead, two of the devised
DBS techniques represent the only technically useful options, thanks to their good tracking capability. In
fact, such techniques are able to operate reliably even when their competitors diverge in the forward pass.

It is worth stressing that the technical contribution provided by this manuscript represents a significant
advancement with respect to the application of factor graph theory to particle smoothing illustrated in
[19]. In fact, in that manuscript, we also focus on conditionally linear Gaussian models, but assume that
the forward pass is accomplished by marginalized particle filtering (MPF; also known as Rao-Blackwellized
particle filtering); in other words, Bayesian filtering is based on the interconnection of a particle filter with
a bank of Kalman filters. In this manuscript, instead, the general method we propose applies to a couple
of arbitrary interconnected Bayesian filters. Moreover, the specific smoothing algorithms we derive assume
that the forward pass is carried out by a filtering algorithm based on the interconnection of a particle filter
with a single extended Kalman filter.

The remaining part of this manuscript is organized as follows. In Section II., a general graphical model, on
which the processing accomplished in DBF, DBIF, and DBS is based, is illustrated. In Section III., a specific
instance of the graphical model illustrated in the previous section is developed under the assumptions that the
filters employed in the forward pass are an extended Kalman filter and a particle filter, and that the considered
SSM is conditionally linear Gaussian. Then, the scheduling and the computation of the messages passed
over this model are analysed in detail and new DBS algorithms are devised. The differences and similarities
between these algorithms and other known smoothing techniques are analysed in Section IV.. A comparison,
in terms of accuracy, computational complexity, and execution time, between the proposed techniques and
three smoothers recently appeared in the literature, is provided in Section V. for two conditionally linear
Gaussian SSMs. Finally, some conclusions are offered in Section VI..

Notations: The same notation as refs. [19, 20] and [23] is adopted.
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II. Graphical Model for a Couple of Interconnected Bayesian In-
formation Filters and Message Passing on it

In this manuscript, we consider a discrete-time SSM whose D−dimensional hidden state in the k−th interval
is denoted xk , [x0,k, x1,k, ..., xD−1,k]T , and whose state update and measurement models are expressed by

xk+1 = fk (xk) + wk (1)

and

yk , [y0,k, y1,k, ..., yP−1,k]T

= hk (xk) + ek, (2)

respectively, with k = 1, 2, ..., T . Here, fk (xk) (hk (xk)) is a time-varying D−dimensional (P−dimensional)
real function, T is the duration of the observation interval and wk (ek) is the k−th element of the process
(measurement) noise sequence {wk} ({ek}); this sequence consists of D−dimensional (P−dimensional) in-
dependent and identically distributed (iid) Gaussian noise vectors, each characterized by a zero mean and a
covariance matrix Cw (Ce). Moreover, statistical independence between {ek} and {wk} is assumed.

From a statistical viewpoint, a complete statistical description of the considered SSM is provided by the
pdf f(x1) of its initial state, its Markov model f(xk+1|xk) and its observation model f(yk|xk) for any k; the
first pdf is assumed to be known, whereas the last two pdfs can be easily derived from Eq. (1) and Eq. (2),
respectively.

In the following, we focus on the problem of developing novel smoothing algorithms and, in particular,
algorithms for the estimation of the joint smoothed pdf f(x1:T |y1:T ) (problem P.1) and the sequence of

marginal smoothed pdfs {f(xk|y1:T ), k = 1, 2, ..., T} (problem P.2); here, y1:T ,
[
yT1 ,y

T
2 , ...,y

T
T

]T
is a

P · T−dimensional vector. Note that, in principle, once problem P.1 is solved, problem P.2 can be easily
tackled; in fact, if the joint pdf f(x1:T |y1:T ) is known, all the posterior pdfs {f(xk|y1:T )} can be evaluated
by marginalization.

The development of our smoothing algorithms is mainly based on the graphical approach illustrated in
our previous manuscripts [19, Sec. III], [20, Sec. II] and [23, Sec. III] for Bayesian filtering and smoothing.
This approach consists in the following steps:

1. The state vector xk is partitioned in two substates, denoted x
(1)
k and x

(2)
k and having sizes D1 and

D2 = D −D1, respectively. Note that, if x̄
(i)
k represents the portion of xk not included in x

(i)
k (with i = 1

and 2), our assumptions entail that x̄
(1)
k = x

(2)
k and x̄

(2)
k = x

(1)
k .

2. A sub-graph that allows to represent both Bayesian filtering and BIF for the substate x
(i)
k (with i = 1

and 2) as message passing algorithms on it is developed, under the assumption that the complementary

substate x̄
(i)
k is statistically known. This means that filtered and predicted densities of x

(i)
k are represented as

messages passed on the edges of this sub-graph and the rules for computing them result from the application
of the SPA to it.

3. The two sub-graphs devised in the previous step (one referring to x
(1)
k , the other one to x

(2)
k ) are

interconnected, so that a single graphical model referring to the whole state xk is obtained.
4. Algorithms for Bayesian filtering and BIF for the whole state xk are derived by applying the SPA to

the graphical model obtained in the previous step.
Let us analyse now the steps 2.-4. in more detail. As far as step 2. is concerned, the sub-graph

devised for the substate x
(i)
k is based on the same principles illustrated in our manuscripts cited above (in

particular, ref. [20]) and is illustrated in Fig. 1. The k−th recursion (with k = 1, 2, ..., T ) of Bayesian

filtering for the sub-state x
(i)
k is represented as a forward message passing on this factor graph, that involves

the Markov model f(x
(i)
k+1|x

(i)
k , x̄

(i)
k ) and the observation model f(yk|x(i)

k , x̄
(i)
k ). This allows to compute the

messages ~mfe1(x
(i)
k ), ~mfe2(x

(i)
k ) and ~mfp(x

(i)
k+1), that convey the first filtered pdf of x

(i)
k , the second filtered

pdf of x
(i)
k and the predicted pdf of x

(i)
k+1, respectively, on the basis of the messages ~mfp(x

(i)
k ), mms(x

(i)
k ) and

mpm(x
(i)
k ); the last three messages represent the predicted pdf of x

(i)
k evaluated in the previous (i.e., in the

3



(k − 1)−th) recursion of Bayesian filtering, and the messages conveying the measurement and the pseudo-
measurement information, respectively, available in the k−recursion. The considered filtering algorithm

requires the availability of the messages mpm(x
(i)
k ), mmg1(x̄

(i)
k ), mmg2(x̄

(i)
k ), that are computed on the basis

of external statistical information. The presence of the messages mmg1(x̄
(i)
k ) and mmg2(x̄

(i)
k ) is due the

fact that the substate x̄
(i)
k represents a nuisance state for the considered filtering algorithm; in fact, these

messages convey filtered (or predicted) pdfs of x̄
(i)
k and are employed to integrate out the dependence of the

pdfs f(yk|x(i)
k , x̄

(i)
k ) and f(x

(i)
k+1|x

(i)
k , x̄

(i)
k ), respectively, on x̄

(i)
k . Note also that these two messages are not

necessarily equal, since more refined information about x̄
(i)
k could become available after that the message

mms(x
(i)
k ) has been computed. On the other hand, the message mpm(x

(i)
k ) conveys the statistical information

provided by a pseudo-measurement1 about x
(i)
k . In Fig. 1, following [20, Sec. II], it is assumed that the

pseudo-measurement z
(i)
k is available in the estimation of x

(i)
k and that mpm(x

(i)
k ) represents the pdf of z

(i)
k

conditioned on x
(i)
k , that is

mpm

(
x

(i)
k

)
, f

(
z

(i)
k

∣∣∣x(i)
k

)
. (3)

The computation of the messages ~mfe1(x
(i)
k ), ~mfe2(x

(i)
k ) and ~mfp(x

(i)
k+1) on the basis of the messages

~mfp(x
(i)
k ), mms(x

(i)
k ), mpm(x

(i)
k ), mmg1(x̄

(i)
k ) and mmg2(x̄

(i)
k ) is based on the two simple rules illustrated in

[23, Figs. 8-a) and 8-b), p. 1535] and can be summarized as follows. The first and second filtered pdfs (i.e.,

the first and the second forward estimates) of x
(i)
k are evaluated as

~mfe1

(
x

(i)
k

)
= ~mfp

(
x

(i)
k

)
mms

(
x

(i)
k

)
, (4)

and
~mfe2

(
x

(i)
k

)
= ~mfe1

(
x

(i)
k

)
mpm

(
x

(i)
k

)
, (5)

respectively, where

mms

(
x

(i)
k

)
,
∫
f
(
yk

∣∣∣x(i)
k , x̄

(i)
k

)
mmg1

(
x̄

(i)
k

)
dx̄

(i)
k (6)

and mpm(x
(i)
k ) is defined in Eq. (3). Equations (4)-(6) describe the processing accomplished in the measure-

ment update of the considered recursion. This is followed by the time update, in which the new predicted
pdf (i.e., the new forward prediction)

~mfp

(
x

(i)
k+1

)
=

∫ ∫
f
(
x

(i)
k+1

∣∣∣x(i)
k , x̄

(i)
k

)
~mfe2

(
x

(i)
k

)
·mmg2

(
x̄

(i)
k

)
dxk dx̄

(i)
k , (7)

is computed. The message passing procedure described above is initialised by setting ~mfp(x
(i)
1 ) = f(x

(i)
1 )

(where f(x
(i)
1 ) is the pdf resulting from the marginalization of f(x1) with respect to x̄

(i)
1 ) in the first recursion

and is run for k = 1, 2, ..., T . Once this procedure is over, BIF is executed for the substate x
(i)
k ; its (T−k)−th

recursion (with k = T −1, T −2, ..., 1) can be represented as a backward message passing on the factor graph

shown in Fig. 1. In this case, the messages ~mbp(x
(i)
k ), ~mbe1(x

(i)
k ), ~mbe2(x

(i)
k ) = ~mbe(x

(i)
k ), that convey

the backward predicted pdf of x
(i)
k , the first backward filtered pdf of x

(i)
k and the second backward filtered

pdf of x
(i)
k , respectively, are evaluated on the basis of the messages ~mbe(x

(i)
k+1), mpm(x

(i)
k ) and mms(x

(i)
k ),

respectively; note that ~mbe(x
(i)
k+1) represents the backward filtered pdf of x

(i)
k computed in the previous (i.e.,

in the (T − (k + 1))−th) recursion of BIF. Moreover, the first and second backward filtered pdfs of x
(i)
k are

evaluated as (see Fig. 1)

~mbe1

(
x

(i)
k

)
= ~mbp

(
x

(i)
k

)
mpm

(
x

(i)
k

)
, (8)

1Generally speaking, a pseudo-measurement is a fictitious measurement that is computed on the basis of statistical infor-
mation provided by a filtering algorithm different from the one benefiting from it.
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Figure 1: Factor graph involved in the k−th ((T−k)−th) recursion of Bayesian filtering (BIF) for the substate

x
(i)
k and forward (backward) message passing on it. The flow of messages in the forward (backward) pass

are indicated by red (blue) arrows, respectively; the brown vertical lines cutting each graph identify the
partitioning associated with formulas (10) (left cut), (11) (central cut) and (12) (right cut). The messages

~mfp(x
(i)
k ), ~mbp(x

(i)
k ), ~mfp(x

(i)
k+1), ~mbe(x

(i)
k+1), mms(x

(i)
k ), mmgl(x̄

(i)
k ), mpm(x

(i)
k ), ~mfel(x

(i)
k ) and ~mbel(x

(i)
k ) are

denoted FPi, BPi, FPi
′
, BEi

′
, MSi, MGli, PMi, FEli and BEli respectively, to ease reading.

and
~mbe2

(
x

(i)
k

)
= ~mbe

(
x

(i)
k

)
= ~mbe1

(
x

(i)
k

)
mms

(
x

(i)
k

)
, (9)

respectively, where mpm(x
(i)
k ) and mms(x

(i)
k ) are still expressed by Eq. (3) and Eq. (6), respectively. The

BIF message passing is initialised by setting ~mbe(x
(i)
T ) = mfe(x

(i)
T ) in its first recursion and is run for

k = T − 1, T − 2, ..., 1. Once the backward pass is over, a solution to problem P.2 becomes available for

the substate x
(i)
k , since the marginal smoothed pdf f(x

(i)
k ,y1:T , z

(i)
1:T ) (where z

(i)
1:T is the P · T−dimensional

vector resulting from the ordered concatenation of the all the observed pseudo-measurements {z(i)
k }) can be

evaluated as2

f
(
x

(i)
k ,y1:T , z

(i)
1:T

)
= ~mfp

(
x

(i)
k

)
~mbe2

(
x

(i)
k

)
(10)

= ~mfe1

(
x

(i)
k

)
~mbe1

(
x

(i)
k

)
(11)

= ~mfe2

(
x

(i)
k

)
~mbp

(
x

(i)
k

)
, (12)

with k = 1, 2, ..., T . Note that, from a graphical viewpoint, formulas (10)-(12) can be related with the three
different partitionings of the graph shown in Fig. 1 (where a specific partitioning is identified by a brown
dashed vertical line cutting the graph in two parts).

Given the graphical model represented in Fig. 1, step 3. can be accomplished by adopting the same
conceptual approach as [19, Sec. III] and [20, Par. II-B], where the factor graphs on which smoothing and
filtering, respectively, are based are obtained by merging two sub-graphs, each referring to a distinct substate.
For this reason, in this case, the graphical model for the whole state xk is obtained by interconnecting two
distinct factor graphs, each structured like the one shown in Fig. 1. In [20, Par. II-B], message passing
on the resulting graph is described in detail for the case of Bayesian filtering. In this manuscript, instead,
our analysis of message passing concerns BIF and smoothing only. The devised graph and the messages
passed on it are shown in Fig. 2. Note that, in developing our graphical model, it has been assumed that

the smoothed pdf referring to x
(i)
k (and conveyed by the message msm(x

(i)
k )) is computed on the basis of Eq.

(10), i.e. by merging the messages ~mfp(x
(i)
k ) and ~mbe(x

(i)
k ) = ~mbe2(x

(i)
k ). Moreover, the following elements

(identified by brown lines) have been added to its i−th sub-graph (with i = 1 and 2): a) two equality
nodes; b) the block BIFi→BIFj for extracting useful information from the messages computed on the i−th
sub-graph and delivered to the j−th one. The former elements allow the i−th backward information filter to

generate copies of the messages ~mbe(x
(i)
k+1) and msm(x

(i)
k ), that are made available to the other sub-graphs.

2Note that, similarly as refs. [19] and [23], a joint smoothed pdf is considered here in place of the corresponding posterior
pdf.
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Figure 2: Graphical model based on the sub-graph shown in Fig. 1 and referring to the interconnection of
two backward information filters. The message computed in the backward (forward) pass are identified by

blue (black) arrows. The message msm(x
(i)
k ) is denoted SMi to ease reading.

In the latter element, instead, the messages mpm(x
(i)
k ) (see Eq. (3)) and mmgq(x̄

(i)
k ) (with q = 1 and 2; see

Eqs. (6) and (7)) are computed; note that this block is connected to oriented edges only, i.e. to edges on
which the flow of messages is unidirectional.

Given the graphical model represented in Fig. 2, step 4. can be easily accomplished. In fact, recursive
BIF and smoothing algorithms can be derived by systematically applying the SPA to it after that a proper
scheduling has been established for message passing. In doing so, we must always keep in mind that:

1) Message passing on the i−th subgraph represents BIF/smoothing for the substate x
(i)
k ; the exchange

of messages between the sub-graphs, instead, allows us to represent the interaction of two interconnected
BIF/smoothing algorithms in a effective and rigorous way.
2) Different approximations can be used for the predicted/filtered/smoothed pdfs computed in the message
passing on each of the two sub-graphs and for the involved Markov/observation models. For this reason,
generally speaking, the two interconnected filtering/BIF/smoothing algorithms are not required to be of the
same type.

3) The k−th recursion of the overall BIF algorithm is fed by the backward estimates ~mbe(x
(1)
k+1) (BE1′) and

~mbe(x
(2)
k+1) (BE2′), and generates the new backward predictions ~mbp(x

(1)
k ) (BP1) and ~mbp(x

(2)
k ) (BP2),

and the two couples of filtered densities {( ~mbe1(x
(i)
k ), ~mbe2(x

(i)
k )), i = 1, 2} ({BE1i, BE2i, i = 1, 2}).

Moreover, merging the predicted densities computed in the forward pass (i.e., the messages {FPi}) with the
second backward filtered densities (i.e., the messages {BE2i = BEi}) allows us to generate the smoothed
pdfs for each substate according to Eq. (10). However, a joint filtered/smoothed density for the whole state
xk is unavailable.
4) Specific algorithms are employed to compute the pseudo-measurement and the nuisance substate pdfs in
the BIFi→BIFj blocks appearing in Fig. 2. These algorithms depend on the considered SSM and on the
selected message scheduling; for this reason, a general description of their structure cannot be provided.
5) The graphical model shown in Fig. 2, unlike the one illustrated in Fig. 1, is not cycle free. The presence
of cycles raises the problems of identifying all the messages that can be iteratively refined and establish-
ing the order according to which they are computed. Generally speaking, iterative message passing on the
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devised graphical model involves both the couple of measurement updates and the backward prediction ac-
complished in each of the interconnected backward information filters. In fact, this should allow each filter to
progressively refine the nuisance substate density employed in its second measurement update and backward
prediction, and improve the quality of the pseudo-measurements exploited in its first measurement update.
For this reason, if ni iterations are run, the overall computational complexity of each recursion is multiplied
by ni.

The final important issue about the graphical model devised for both Bayesian filtering and BIF concerns

the possible presence of redundancy. In all the considerations illustrated above, disjoint substates x
(1)
k and

x
(2)
k have been assumed. Actually, in ref. [20], it has been shown that our graphical approach can be also

employed if the substates x
(1)
k and x

(2)
k cover xk, but do not necessarily form a partition of it. In other words,

some overlapping between these two substates is admitted. When this occurs, the forward/backward filtering
algorithm run over the whole graphical model contains a form of redundancy, since Nd , D1+D2−D elements
of the state vector xk are independently estimated by the interconnected forward/backward filters. The
parameterNd can be considered as the degree of redundancy characterizing the filtering/smoothing algorithm.
Moreover, in ref. [20], it has been shown that the presence of redundancy in a Bayesian filtering algorithm can
significantly enhance its tracking capability (i.e., reduce its probability of divergence); however, this result is
obtained at the price of an increased complexity with respect to the case in which the interconnected filters
are run over disjoint substates.

III. Double Backward Information Filtering and Smoothing Algo-
rithms for Conditionally Linear Gaussian State Space Models

In this section we focus on the development of two new DBS algorithms for conditionally linear Gaussian
models. We first describe the graphical models on which these algorithms are based; then, we provide a
detailed description of the computed messages and their scheduling in a specific case.

A. Graphical Modelling

In this paragraph, we focus on a specific instance of the graphical model illustrated in Fig. 2, since we make
the same specific choices as ref. [20] for both the considered SSM and the two Bayesian filters employed in
the forward pass. For this reason, we assume that: a) the SSM described by eqs. (1)-(2) is conditionally

linear Gaussian [18], [23], [24], so that its state vector xk can be partitioned into its linear component x
(L)
k

and its nonlinear component x
(N)
k (having sizes DL and DN , respectively, with DN + DL = D); b) the

dual Bayesian filter employed in the forward pass results from the interconnection of an extended Kalman
filter with a particle filter3 (these filters are denoted F1 and F2, respectively), as described in detail in ref.
[20]. As far as the last point is concerned, it is also worth mentioning that, on the one hand, filter F2

estimates the nonlinear state component only (so that x
(2)
k = x

(N)
k and x̄

(2)
k = x

(L)
k ) and approximates the

predicted/filtered densities of this component through a set of Np weighted particles. On the other hand,
filter F1 employs a Gaussian approximation of all its predicted/filtered densities, and works on the whole
system state or on the linear state component. In the first case (denoted C.1 in the following), we have that

x
(1)
k = xk and x̄

(1)
k is empty, so that both F1 and F2 estimate the nonlinear state component (for this reason,

the corresponding degree of redundancy in the developed smoothing algorithm is Nd = DN ); in the second

case (denoted C.2 in the following), instead, x
(1)
k = x

(L)
k and x̄

(1)
k = x

(N)
k , so that filters F1 and F2 estimate

disjoint substates (consequently, Nd = 0).
Our selection of the forward filtering scheme has the following implications on the developed DBIF

scheme. The first backward information filter (denoted BIF1) is the backward filter associated with an
extended Kalman filter operating over on the whole system state (case C.1) or on the linear state component
(case C.2). The second backward filter (denoted BIF2), instead, is a backward filter associated with a particle
filter operating on the nonlinear state component only. In practice, following [17–19], BIF2 is employed to

3In particular, a sequential importance resampling filter is employed [25].
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update the weights of all the elements of the particle set generated by filter F2 in the forward pass. Then,
based on the graphical model shown in Fig. 2, the factor graph illustrated in Fig. 3 can be drawn for case
C.1. It is important to point out that:

1) The first backward information filter (BIF1) is based on linearised (and, consequently, approximate)
Markov/measurement models, whereas the second one (BIF2) relies on exact models, as explained in more
detail below. These models are the same as those employed in ref. [20].

2) Since the nuisance substate x̄
(1)
k is empty, no marginalization is required in BIF1; for this reason, the

messages {mmgq(x̄
(1)
k ); q = 1, 2} (i.e., MG11 and MG21) visible in Fig. 2 do not appear in Fig. 3. Moreover,

the message msm(x
(1)
k ) = msm(xk) is generated on the basis of Eq. (11), instead of Eq. (10).

3) The backward filtered pdf ~mbe(x
(2)
k+1) = ~mbe(x

(N)
k+1) and the smoothed pdf msm(x

(2)
k ) = msm(x

(N)
k )

(i.e., the messages BE2
′

and SM2, respectively) feed the BIF2→BIF1 block, where they are processed jointly

to generate the pseudo-measurement message mpm(x
(1)
k ) = mpm(xk) (PM1) feeding filter F1. Similarly, the

backward filtered pdf ~mbe(x
(1)
k+1) = ~mbe(xk+1) (BE1′) and the smoothed pdf msm(x

(1)
k ) = msm(xk) (SM1)

feed the BIF1→BIF2 block, where the pseudo-measurement message mpm(x
(2)
k ) = mpm(x

(N)
k ) (PM2) and

the messages {mmgq(x̄
(2)
k ) = mmgq(x

(L)
k ); q = 1, 2} (i.e., MG12 and MG22) are evaluated.

In the remaining part of this paragraph, we first provide various details about the backward filters BIF1

and BIF2, and the way pseudo-measurements are computed for each of them; then, we comment on how the
factor graph shown in Fig. 3 should be modified if case C.2 is considered.

BIF1 - This backward filter is based on the linearized versions of Eqs. (1) and (2), i.e. on the models
(e.g., see [1, pp. 194-195] and [20, Par. III-A])

xk+1 = Fk xk + uk + wk (13)

and
yk = HT

k xk + vk + ek, (14)

respectively; here, Fk , [∂fk (x) /∂x]x=xfe,k
, uk , fk (xfe,k) − Fk xfe,k, HT

k , [∂hk (x) /∂x]x=xfp,k
, vk ,

hk (xfp,k)−HT
k xfp,k and xfp,k (xfe,k) is the forward prediction (forward estimate) of xk computed by F1 in

its (k − 1)−th (k−th) recursion. Consequently, the approximate models

f̃ (xk+1 |xk ) = N (xk; Fk xk + uk,Cw) (15)

and
f̃ (yk |xk ) = N

(
xk; HT

k xk + vk,Ce

)
(16)

appear in the graphical model shown in Fig. 3.
BIF2 - In developing this backward filter, the state vector xk is represented as the ordered concatenation of

its linear component x
(L)
k , [x

(L)
0,k , x

(L)
1,k , ..., x

(L)
DL−1,k]T and its nonlinear component x

(N)
k , [x

(N)
0,k , x

(N)
1,k , ..., x

(N)
DN−1,k]T .

Based on [23, eq. (3)], the Markov model

x
(N)
k+1 = A

(N)
k

(
x

(N)
k

)
x

(L)
k + f

(N)
k

(
x

(N)
k

)
+ w

(N)
k (17)

is adopted for the nonlinear state component (this model corresponds to the last DN lines of Eq. (1)); here,

f
(N)
k (x

(N)
k ) (A

(N)
k (x

(N)
k )) is a time-varying DN−dimensional real function (DN ×DL real matrix) and w

(N)
k

consists of the last DN elements of the noise term wk appearing in Eq. (1) (the covariance matrix of w
(N)
k is

denoted C
(N)
w ). Moreover, it is assumed that the observation model (2) can be put in the form (see [20, eq.

(31)] or [23, eq. (4)])

yk = gk

(
x

(N)
k

)
+ Bk

(
x

(N)
k

)
x

(L)
k + ek, (18)

where gk(x
(N)
k ) (Bk(x

(N)
k )) is a time-varying P−dimensional real function (P × DL real matrix). Conse-

quently, the considered backward filter is based on the exact pdfs

f
(
x

(N)
k+1

∣∣∣x(N)
k ,x

(L)
k

)
= N

(
x

(N)
k ; A

(N)
k

(
x

(N)
k

)
x

(L)
k + f

(N)
k

(
x

(N)
k

)
,C(N)

w

)
(19)
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and

f
(
yk

∣∣∣x(N)
k ,x

(L)
k

)
= N

(
xk; gk

(
x

(N)
k

)
+ Bk

(
x

(N)
k

)
x

(L)
k ,Ce

)
, (20)

both appearing in the graphical model drawn in Fig. 3.
Computation of the pseudo-measurements for the first backward filter - Filter BIF1 is fed by pseudo-

measurement information about the whole state xk. The method for computing these information is similar
to the one illustrated in ref. [19, Sects. III-IV] and can be summarised as follows. The pseudo-measurements
about the nonlinear state component are represented by the Np particles conveyed by the smoothed pdf

msm(x
(N)
k ) (SM2). On the other hand, Np pseudo-measurements about the linear state component are

evaluated by means of the same method employed by marginalized particle filtering (MPF) for this task.
This method is based on the idea that the random vector (see Eq. (17))

z
(L)
k , x

(N)
k+1 − f

(N)
k

(
x

(N)
k

)
, (21)

depending on the nonlinear state component only, must equal the sum

A
(N)
k

(
x

(N)
k

)
x

(L)
k + w

(N)
k , (22)

that depends on the linear state component. For this reason, Np realizations of z
(L)
k (21) are computed in

the BIF2→BIF1 block on the basis of the messages ~mbe(x
(N)
k+1) (BE2

′
) and msm(x

(N)
k ), and are treated as

measurements about x
(L)
k .

Computation of the pseudo-measurements for the second backward filter - The messages ~mbe(xk+1)
(BE1′) and msm(xk) (SM1) feeding the BIF1→BIF2 block are employed for: a) generating the messages

{mmgq(x
(L)
k ); q = 1, 2} required to integrate out the dependence of the state update and measurement mod-

els (i.e., of the densities f(x
(N)
k+1|x

(N)
k , x

(L)
k ) (19) and f(yk|x(N)

k ,x
(L)
k ) (20), respectively) on the substate

x
(L)
k ; b) generating pseudo-measurement information about x

(N)
k . As far as the last point is concerned, the

approach we adopt is the same as that developed for dual marginalized particle filtering (dual MPF) in ref.
[23, Sec. V] and also adopted in particle smoothing [19, Sects. III-IV]. The approach relies on the Markov
model

x
(L)
k+1 = A

(L)
k

(
x

(N)
k

)
x

(L)
k + f

(L)
k

(
x

(N)
k

)
+ w

(L)
k , (23)

referring to the linear state component (see [19, eq. (1)] or [23, eq. (3)]); in the last expression, f
(L)
k (x

(N)
k )

(A
(L)
k (x

(N)
k )) is a time-varying DL−dimensional real function (DL ×DL real matrix), and w

(L)
k consists of

the first DL elements of the noise term wk appearing in (1) (the covariance matrix of w
(L)
k is denoted C

(L)
w ,

and independence between {w(L)
k } and {w(N)

k } is assumed for simplicity). From Eq. (23) it is easily inferred
that the random vector

z
(N)
k , x

(L)
k+1 −A

(L)
k

(
x

(N)
k

)
x

(L)
k , (24)

must equal the sum

f
(L)
k

(
x

(N)
k

)
+ w

(L)
k , (25)

that depends on x
(N)
k only ; for this reason, z

(N)
k (24) can be interpreted as a pseudo-measurement about

x
(N)
k . In this case, the pseudo-measurement information is conveyed by the message mpm(x

(N)
k ) (PM2) that

expresses the correlation between the pdf of the random vector z
(N)
k (24) (computed on the basis of the

statistical information about the linear state component made available by BIF1) and the pdf obtained for

z
(N)
k under the assumption that this vector is expressed by Eq. (25). The message mpm(x

(N)
k ) is evaluated

for each of the particles representing x
(N)
k in BIF2; this results in a set of Np particle weights employed in

the first measurement update of BIF2 and different from those computed on the basis of yk (18) in its second
measurement update.
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Figure 3: Graphical model referring to the interconnection of two backward information filters, one paired
with an extended Kalman filter, the other one with a particle filter.

A graphical model similar to the one shown in Fig. 3 can be easily derived from the general model
appearing in Fig. 2 for case C.2 too. The relevant differences with respect to case C.1 can be summarized
as follows:

1) The backward filters BIF1 and BIF2 estimate x
(1)
k = x

(L)
k and x

(2)
k = x

(N)
k , respectively; consequently,

their nuisance substates are x̄
(1)
k = x

(N)
k and x̄

(2)
k = x

(L)
k , respectively.

2) The BIF2→BIF1 block is fed by the backward predicted/smoothed pdfs computed by BIF2; such pdfs

are employed for: a) generating the messages mmg1(x
(N)
k ) (MG11) and mmg2(x

(N)
k ) (MG21) required to

integrate out the dependence of the Markov model (see Eq. (23))

f
(
x

(L)
k+1

∣∣∣x(N)
k ,x

(L)
k

)
= N

(
x

(L)
k ; A

(L)
k

(
x

(N)
k

)
x

(L)
k + f

(L)
k

(
x

(N)
k

)
,C(L)

w

)
(26)

and of the measurement model f(yk|x(N)
k ,x

(L)
k ) (20), respectively, on x

(N)
k ; b) generating pseudo-measurement

information about the substate x
(L)
k only. As far as point a) is concerned, it is also important to point out

that the model f(yk|x(N)
k ,x

(L)
k ) (f(x

(L)
k+1|x

(N)
k ,x

(L)
k )) on which BIF1 is based can be derived from Eq. (20)

(Eq. (26)) after setting x
(N)
k = x

(N)
fp,k (x

(N)
k = x

(N)
fe,k ); here, x

(N)
fp,k (x

(N)
fe,k ) denotes the prediction (the estimate)

of x
(N)
k evaluated by the filter F2 in the forward pass (further details about this can be found in ref. [20, Par.

III-A])
The derivation of specific DBS algorithms based on the graphical model illustrated in Fig. 3 requires

defining the scheduling of the messages passed on it and deriving mathematical expressions for such messages.
These issues are investigated in detail in the following paragraph.

B. Message Scheduling and Computation

In this paragraph, the scheduling of a new recursive smoothing algorithm, called double Bayesian smoothing
algorithm (DBSA) and based on the graphical model illustrated in Fig. 3, and a simplified version of it are
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described. Moreover, the expression of the messages computed by the DBSA are illustrated.
The scheduling adopted in the DBSA mimics the one employed in ref. [19] (which, in turn, has been

inspired by [17] and [18]). Moreover, in devising it, the presence of cycles in the underlying graphical model
has been accounted for by allowing multiple passes of messages over the edges which such cycles consist of;
this explains why an iterative procedure is embedded in each recursion of the DBSA. Our description of the
devised scheduling is based on Fig. 4, that refers to the (T − k)−th recursion of the backward pass of the
DBSA (with k = T − 1, T − 2, ..., 1) and to the n−th iteration accomplished within this recursion (with
n = 1, 2, ..., ni, where ni represents the overall number of iterations). Note that, in this figure, a simpler
notation is adopted for most of the considered messages to ease reading; in particular, the symbols q , q(n),

qL, qL(n), qN and qN (n) are employed to represent the messages mq(xk), m
(n)
q (xk), mq(x

(L)
k ), m

(n)
q (x

(L)
k ),

mq(x
(N)
k ), m

(n)
q (x

(N)
k ), respectively (independently of the presence of an arrow and of its direction in the

considered message), and the presence of the superscript (n) in a given message means that such a message
is computed in the n-th iteration. Moreover, each of the passed messages conveys a Gaussian pdf or a pdf
in particle form. In the first case, the pdf of a state/substate x is conveyed by the message

mG (x) = N (x; η,C), (27)

where η and C denote the mean and the covariance of x, respectively. In the second case, instead, its pdf is
conveyed by the message

mP (x) =

Np∑
j=1

mP,j (x) , (28)

where
mP,j (x) , wj δ (x− xj) (29)

is its j−th component ; this represents the contribution of the j−th particle xj and its weight wj to mP (x)
(28). The nature of each message can be easily inferred from Fig. 4, since Gaussian messages and messages
in particle form are identified by blue and red arrows, respectively.

Before analysing the adopted scheduling, we need to define the input messages feeding the considered
recursion of the DBSA and the outputs that such a recursion produces. In the considered recursion, the
DBSA input messages originate from:

1) The k-th recursion of the forward pass. These messages have been generated by the DBF technique
paired with the considered BIF scheme and, in particular, by the DBF algorithm derived in ref. [20, Par.
III-B], and have been stored (so that they are made available to the backward pass).

2) The previous recursion (i.e., the (T − k − 1)−th recursion) of the DBSA itself.
As far as the input messages computed in the forward pass are concerned, BIF1 is fed by the Gaussian

messages (see Fig. 4)
~mfp (xk) , N (xk; ηfp,k,Cfp,k) . (30)

and
~mfe1 (xk) , N (xk; ηfe1,k,Cfe1,k) , (31)

that convey the predicted pdf and the first filtered pdf, respectively, computed by F1 (in its (k− 1)−th and
in its k−th recursion, respectively). The covariance matrix Cfe1,k and the mean vector ηfe1,k are evaluated
on the basis of the associated precision matrix (see [19, Eqs. (14)-(17)])

Wfe1,k = Hk We HT
k + Wfp,k (32)

and of the associated transformed mean vector

wfe1,k = Hk We (yk − vk) + wfp,k, (33)

respectively; here, We , C−1
e , Wfp,k , (Cfp,k)−1 and wfp,k , Wfp,k ηfp,k.

The backward filter BIF2, instead, is fed by the forward messages ~mfp(x
(N)
k ) and ~mfe1(x

(N)
k ), both in

particle form (see Fig. 4); their j−th components are represented by

~mfp,j

(
x

(N)
k

)
, wp δ

(
x

(N)
k − x

(N)
k,j

)
, (34)
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and
~mfe1,j

(
x

(N)
k

)
, wfe,k,j δ

(
x

(N)
k − x

(N)
k,j

)
, (35)

respectively, with j = 1, 2, ..., Np; here, x
(N)
k,j is the j−th particle predicted by F2 in the (k − 1)-th recursion

of the forward pass (i.e., the j−th element of the particle set Sk , {x(N)
k,1 , x

(N)
k,2 , ..., x

(N)
k,Np
}), whereas

wp , 1/Np and wfe,k,j represent the (normalised) weights assigned to this particle in the messages ~mfp(x
(N)
k )

and ~mfe1(x
(N)
k ), respectively.

On the other hand, the input messages originating from the previous recursion of the backward pass are
the backward filtered Gaussian pdf

~mbe (xk+1) , N (xk+1; ηbe,k+1,Cbe,k+1) (36)

and the backward pdf

~mbe

(
x

(N)
k+1

)
, δ

(
x

(N)
k+1 − x

(N)
be,k+1

)
, (37)

that represents x
(N)
k+1 through a single particle having unit weight; these are computed by BIF1 and BIF2,

respectively. Consequently, in the considered recursion of the backward pass, all the forward/backward input

messages described above are processed to compute: 1) the new backward pdfs ~mbe(xk) and ~mbe(x
(N)
k ); 2)

the smoothed statistical information about xk (x
(N)
k ) by properly merging forward and backward messages

generated by F1 and BIF1 (F2 and BIF2). As far as the last point is concerned, the evaluation of smoothed
information is based on the same conceptual approach as [17–19]. In fact, in our work, the joint smoothing
pdf f(x1:T |y1:T ) is estimated by providing multiple (say, M) realizations of it. A single realization (i.e., a
single smoothed state trajectory) is computed in each backward pass; consequently, generating the whole
output of the DBSA requires running a single forward pass and M distinct backward passes. Moreover, the
evaluation of the smoothed information is based on the factorisation (10) or (11). In fact, these formulas are
exploited to merge the statistical information emerging from the forward pass with that computed in any of
the M backward passes.

The message passing on which the DBSA is based can be divided in the three consecutive phases listed
below.

Phase I - In the first phase, the backward predicted pdf ~m1(xk) (1) is computed on the basis of the
backward filtered pdf ~mbe(xk+1) (BE1′).

Phase II - In this phase, an iterative procedure for computing and progressively refining the first back-
ward filtered and the smoothed pdfs of the whole state (BIF1), and the second filtered and the smoothed pdfs
of the nonlinear state component (BIF2) is carried out. More specifically, in the n-th iteration of this proce-
dure (with n = 1, 2, ..., ni), the ordered computation of the following messages is accomplished in eight con-

secutive steps (see Fig. 4): 1) m
(n)
2 (xk) (2(n); pdf conveying pseudo-measurement information about xk); 2)

~m
(n)
3 (xk) (3(n); first backward filtered pdf of xk); 3) m

(n)
4 (xk) (4(n); smoothed pdf of xk); 4) m

(n)
1 (x

(L)
k ) (1L(n);

pdf for integrating out the dependence of f(x
(N)
k+1|x

(N)
k ,x

(L)
k ) and f(yk|x(N)

k ,x
(L)
k ) on x

(L)
k ), ~m

(n)
3 (x

(N)
k )

(3N (n); backward predicted pdf of x
(N)
k ); 5) m

(n)
2 (x

(N)
k ) (2N (n); pdf conveying pseudo-measurement informa-

tion about x
(N)
k ); 6) m

(n)
4 (x

(N)
k ) (4N (n); first backward filtered pdf of x

(N)
k ); 7) m

(n)
5 (x

(N)
k ) (5N (n); message

conveying measurement-based information about x
(N)
k ); 8) m

(n)
6 (x

(N)
k ) (6N (n); second backward filtered pdf

of x
(N)
k ), m

(n)
1 (x

(N)
k ) (1N (n); smoothed pdf of x

(N)
k ). Note that the message m

(n)
1 (x

(N)
k ) computed in the

last step of the n-th iteration is stored in a memory cell (identified by the label ‘D’), so that it becomes
available at the beginning of the next iteration.

Phase III - In the third phase, the final smoothed pdf m
(ni)
1 (x

(N)
k ) is exploited to compute: a) the

final backward pdf (i.e., the output message of BIF2) ~mbe(x
(N)
k ); b) the new pseudo-measurement message

m
(ni+1)
2 (xk), the final backward filtered pdf ~m

(ni+1)
3 (xk), the final smoothed pdf m

(ni+1)
4 (xk) of xk and,

finally, the final backward pdf (i.e., the output message of BIF1) mbe(xk).
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Figure 4: Representation of the message scheduling accomplished within the (T − k)−th recursion of the
backward pass of the DBSA; the circled integers 1 − 10 specify the order according to which the passed
messages are computed in the n−th iteration embedded in the considered recursion. Blue and red arrows
are employed to identify Gaussian messages and messages in particle form, respectively.

C. Message Computation

The expressions of all the messages evaluated by the DBSA, with the exception of the messages emerging from
the BIF1→BIF2 block and the BIF2→BIF1 block, can be easily derived by applying the few mathematical
rules listed in Tables I-III of ref. [23, App. A]; all such rules result from the application of the SPA to
equality nodes or nodes representing Gaussian functions. The derivation of the algorithms for computing

the pseudo-measurement messages m
(n)
2 (xk) (2(n)) and m

(n)
2 (x

(N)
k ) (2N (n)) emerging from the BIF2→BIF1

block and the BIF1→BIF2 block, respectively, is based on the same approach illustrated in refs. [19, Par.

IV-B] and [23, Sects. IV-V]. On the other hand, the message m
(n)
1 (x

(L)
k ) (1L(n)) originating from the

BIF1→BIF2 block results from marginalizing m
(n)
4 (xk) (4(n)) with respect to x

(N)
k .

In the remaining part of this paragraph, the expressions of all the messages computed in each of the three
phases described above are provided for the (T − k)−th recursion of the backward pass; the derivation of
these expressions is sketched in Appendix A.

Phase I - The computation of the backward predicted pdf

~m1 (xk) , N (xk; η1,k,C1,k) (38)

of xk involves ~mbe(xk+1) (36) and the pdf f̃(xk+1|xk) (15). Its parameters η1,k and C1,k are evaluated on
the basis of the associated precision matrix

W1,k , (C1,k)
−1

= FTk Pk+1 Wbe,k+1Fk (39)

and of the associated transformed mean vector

w1,k , W1,kη1,k = FTk [Pk+1 wbe,k+1 −Wbe,k+1 Qk+1 Ww uk],

(40)

respectively; here, Wbe,k+1 , (Cbe,k+1)−1, Pk+1 , ID −Wbe,k+1 Qk+1, Qk+1 , (Ww + Wbe,k+1)−1,

Ww , (Cw)−1 and wbe,k+1 , Wbe,k+1 ηbe,k+1.
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Phase II - In the n−th iteration of this phase, the eight consecutive steps listed below are carried out;
for each step, all the computed messages are described.

Step 1) - In this step, the message

m
(n−1)
1

(
x

(N)
k

)
=

Np∑
j=1

W
(n−1)
1,k,j δ

(
x

(N)
k − x

(N)
k,j

)
, (41)

computed in the previous iteration and conveying the smoothed pdf of x
(N)
k generated by F2 and BIF2 (see

step 8)) is processed jointly with ~mbe(x
(N)
k+1) (37) in the BIF2→BIF1 block to generate the message

m
(n)
2 (xk) = N

(
xk; η

(n)
2,k ,C

(n)
2,k

)
, (42)

that conveys the pseudo-measurement information provided to BIF1. The mean vector η
(n)
2,k and the covari-

ance matrix C
(n)
2,k are evaluated as

η
(n)
2,k =

[(
η

(n)
L,k

)T
,
(
η

(n)
N,k

)T]T
(43)

and

C
(n)
2,k =

 C
(n)
LL,k C

(n)
LN,k(

C
(n)
LN,k

)T
C

(n)
NN,k

 , (44)

respectively, where

η
(n)
X,k ,

Np∑
j=1

W
(n−1)
1,k,j ηX,k,j (45)

is a DX -dimensional mean vector (with X = L and N),

C
(n)
XY,k ,

Np∑
j=1

W
(n−1)
1,k,j rXY,k,j − ηX,k (ηY,k)

T
(46)

is a DX × DY covariance (or cross-covariance) matrix (with XY = LL, NN and LN), ηL,k,j = η̃k,j ,

ηN,k,j = x
(N)
k,j , rLL,k,j , C̃k,j+η̃k,j(η̃k,j)

T , rNN,k,j , x
(N)
k,j (x

(N)
k,j )T and rLN,k,j , η̃k,j(x

(N)
k,j )T . The covariance

matrix C̃k,j and the mean vector η̃k,j are computed on the basis of the associated precision matrix

W̃k,j ,
(
C̃k,j

)−1

=
(
A

(N)
k,j

)T
W(N)

w A
(N)
k,j (47)

and of the associated transformed mean vector

w̃k,j , W̃k,j η̃k,j =
(
A

(N)
k,j

)T
W(N)

w z
(L)
k,j , (48)

respectively; here, A
(N)
k,j , A

(N)
k (x

(N)
k,j ),

z
(L)
k,j , x

(N)
be,k+1 − f

(N)
k,j (49)

is an iteration-independent pseudo-measurement (see Eq. (21)) and f
(N)
k,j , f

(N)
k (x

(N)
k,j ). Note that, in the

first iteration,

W
(n−1)
1,k,j = W

(0)
1,k,j = wfe,k,j , (50)

for any j, i.e. m
(0)
1 (x

(N)
k ) = ~mfe1(x

(N)
k ) (see Eq. (35)) since the initial information available about the

particle set are those originating from the forward pass. For this reason, the particles {x(N)
k,j } and their

weights {wfe,k,j} are stored in the memory cell at the beginning of the first iteration.
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Step 2) - In this step, the first backward filtered pdf ~m
(n)
3 (xk) of xk is computed as (see Fig. 4)

~m
(n)
3 (xk) = ~m1(xk)m

(n)
2 (xk) (51)

= N
(
xk; η

(n)
3,k ,C

(n)
3,k

)
, (52)

where the messages ~m1(xk) and m
(n)
2 (xk) are given by Eq. (38) and Eq. (42), respectively. The covariance

matrix C
(n)
3,k and the mean vector η

(n)
3,k are computed on the basis of the associated precision matrix

W
(n)
3,k , (C

(n)
3,k)−1 = W1,k + W

(n)
2,k (53)

and the associated transformed mean vector

w
(n)
3,k , W

(n)
3,k η

(n)
3,k = w1,k + w

(n)
2,k , (54)

respectively; here, W
(n)
2,k , (C

(n)
2,k)−1, w

(n)
2,k , W

(n)
2,k η

(n)
2,k , and W1,k and w1,k are given by Eqs. (39) and (40),

respectively. From Eqs. (53)-(54) the expressions

C
(n)
3,k = W

(n)
k C

(n)
2,k (55)

and
η

(n)
3,k = W

(n)
k

[
C

(n)
2,k w1,k + η

(n)
2,k

]
(56)

can be easily inferred; here, W
(n)
k , [C

(n)
2,kW1,k + ID]−1.

Step 3) - In this step, the smoothed pdf m
(n)
4 (xk) of xk is evaluated as (see Fig. 4)

m
(n)
4 (xk) = ~mfe1 (xk) ~m

(n)
3 (xk) (57)

= N
(
xk; η

(n)
4,k ,C

(n)
4,k

)
, (58)

where the messages ~mfe1 (xk) and ~m
(n)
3 (xk) are given by Eqs. (31) and (52), respectively. The covariance

matrix C
(n)
4,k and the mean vector η

(n)
4,k are computed on the basis of the associated precision matrix

W
(n)
4,k = Wfe1,k + W

(n)
3,k (59)

and of the associated transformed mean vector

w
(n)
4,k = wfe1,k + w

(n)
3,k , (60)

respectively. Note that Eq. (57) represents an instance of Eq. (11), since ~mfe1 (xk) and ~m
(n)
3 (xk) correspond

to ~mfe1(x
(i)
k ) and ~mbe1(x

(i)
k ), respectively (x

(i)
k = x

(N)
k in this case).

Step 4) - In this step, the message

m
(n)
1

(
x

(L)
k

)
,
∫
m

(n)
4 (xk) dx

(N)
k = N (x

(L)
k ; η̃

(n)
1,k , C̃

(n)
1,k), (61)

is computed in the BIF1→BIF2 block. In practice, the mean η̃
(n)
1,k and the covariance matrix C̃

(n)
1,k are

extracted from the mean η
(n)
4,k and the covariance matrix C

(n)
4,k of m

(n)
4 (xk) (58), respectively, since x

(L)
k

consists of the first DL elements of xk.
Then, the backward predicted pdf ~m

(n)
3 (x

(N)
k ) is evaluated as (see Fig. 4)

~m
(n)
3

(
x

(N)
k

)
=

∫ ∫
f(x

(N)
k+1|x

(N)
k ,x

(L)
k ) ~mbe

(
x

(N)
k+1

)
·m(n)

1

(
x

(L)
k

)
dx

(N)
k dx

(N)
k+1. (62)
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Actually, what is really needed in our computations is the value taken on by this message (and also by

messages m
(n)
2 (x

(N)
k ) and m

(n)
5 (x

(N)
k ) evaluated in step 5) and in step 7), respectively) for x

(N)
k = x

(N)
k,j (see

Eqs. (75), (87) and (92)); such a value, denoted w
(n)
3,k,j , is computed as

w
(n)
3,k,j = D

(n)
3,k,j exp

(
−1

2
Z

(n)
3,k,j

)
, (63)

where
D

(n)
3,k,j = (2π)−DN/2(det(C

(N)
3,k,j [n]))−1/2, (64)

Z
(n)
3,k,j ,

∥∥∥x(N)
be,k+1 − η

(N)
3,k,j [n]

∥∥∥2

W
(N)
3,k,j [n]

, (65)

‖x‖2W , xTWx denotes the square of the norm of the vector x with respect to the positive definite matrix
W,

η
(N)
3,k,j [n] , A

(N)
k,j η̃

(n)
1,k + f

(N)
k,j , (66)

W
(N)
3,k,j [n] , (C

(N)
3,k,j [n])−1 and

C
(N)
3,k,j [n] , A

(N)
k,j C̃

(n)
1,k

(
A

(N)
k,j

)T
+ C(N)

w . (67)

Step 5) - In this step, the message m
(n)
2 (x

(N)
k ), conveying pseudo-measurement information about the

nonlinear state component, is computed in the BIF1→BIF2 block. The value w
(n)
2,k,j taken on by this message

for x
(N)
k = x

(N)
k,j is evaluated as

w
(n)
2,k,j = D

(n)
2,k,j exp

(
−1

2
Z

(n)
2,k,j

)
(68)

for any j; here,

Z
(n)
2,k,j ,

∥∥∥η̌(n)
z,k,j

∥∥∥2

W̌
(n)
z,k,j

−
∥∥∥f (L)
k,j

∥∥∥2

W
(L)
w

−
∥∥∥η̌(n)

2,k,j

∥∥∥2

W̌
(n)
2,k,j

, (69)

W
(L)
w , [C

(L)
w ]−1, f

(L)
k,j , f

(L)
k (x

(N)
k,j ), W̌

(n)
z,k,j , (Č

(n)
z,k,j)

−1, w̌
(n)
z,k,j , W̌

(n)
z,k,j η̌

(n)
z,k,j ,

η̌
(n)
z,k,j = η̃be,k+1 −A

(L)
k,j η̃

(n)
1,k , (70)

Č
(n)
z,k,j = C̃be,k+1 −A

(L)
k,j C̃

(n)
1,k

(
A

(L)
k,j

)T
, (71)

W̌
(n)
2,k,j ,

(
Č

(n)
2,k,j

)−1

= W̌
(n)
z,k,j + W(L)

w , (72)

D
(n)
2,k,j , (2π)−DL/2[det(Č

(n)
k,j )]−1/2 (73)

Č
(n)
k,j , Č

(n)
z,k,j+C

(L)
w , A

(L)
k,j , A

(L)
k (x

(N)
k,j ), η̌

(n)
2,k,j is evaluated on the basis of the associated transformed mean

vector
w̌

(n)
2,k,j , W̌

(n)
2,k,j η̌

(n)
2,k,j = w̌

(n)
z,k,j + W(L)

w f
(L)
k,j , (74)

and the mean η̃be,k+1 and the covariance matrix C̃be,k+1 are extracted from the mean ηbe,k+1 and the

covariance matrix Cbe,k+1 of ~mbe(xk+1) (36), since they refer to x
(L)
k only.

Step 6) - In this step, the message m
(n)
4 (x

(N)
k ), conveying the first backward filtered pdf of x

(N)
k , is

computed as (see Fig. 4)

~m
(n)
4 (x

(N)
k ) = ~m

(n)
3 (x

(N)
k )m

(n)
2 (x

(N)
k ). (75)
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The value w
(n)
4,k,j taken on by this message for x

(N)
k = x

(N)
k,j is given by (see Eqs. (63) and (68))

w
(n)
4,k,j , w

(n)
2,k,j w

(n)
3,k,j (76)

for any j.

Step 7) - In this step, the message conveying measurement-based information about x
(N)
k is computed as

(see Fig. 4)

m
(n)
5 (x

(N)
k ) =

∫
f(yk|x(N)

k , x
(L)
k )m

(n)
1 (x

(L)
k ) dx

(L)
k (77)

= N
(
yl; η̄

(n)
5,k

(
x

(N)
k

)
, C̄

(n)
5,k

(
x

(N)
k

))
(78)

where
η̄

(n)
5,k

(
x

(N)
k

)
, Bk

(
x

(N)
k

)
η̃

(n)
1,k + gk

(
x

(N)
k

)
(79)

and
C̄

(n)
5,k

(
x

(N)
k

)
, Bk

(
x

(N)
k

)
C̃

(n)
1,k BT

k

(
x

(N)
k

)
+ Ce. (80)

Consequently, the value taken on by m
(n)
5 (x

(N)
k ) for x

(N)
k = x

(N)
k,j is

w
(n)
5,k,j = N

(
yk; η̄

(n)
5,k,j , C̄

(n)
5,k,j

)
(81)

= D
(n)
5,k,j exp

(
−1

2
Z

(n)
5,k,j

)
, (82)

where
η̄

(n)
5,k,j

(
x

(N)
k

)
, η̄

(n)
5,k

(
x

(N)
k,j

)
= Bk,j η̃

(n)
1,k + gk,j , (83)

C̄
(n)
5,k,j , C̄

(n)
5,k

(
x

(N)
k,j

)
= Bk,j C̃

(n)
1,k BT

k,j + Ce, (84)

Bk,j , Bk(x
(N)
k,j ), gk,j , gl(x

(N)
k,j ),

D
(n)
5,k,j , (2π)−P/2[det(C̄

(n)
5,k,j)]

−1/2 (85)

Z
(n)
5,k,j ,

∥∥∥yk − η̄(n)
5,k,j

∥∥∥2

W̄
(n)
5,k,j

(86)

and W̄
(n)
5,k,j , (C̄

(n)
5,k,j)

−1. Then, the message ~m
(n)
6 (x

(N)
k ) is evaluated as (see Fig. 4)

~m
(n)
6

(
x

(N)
k

)
= ~m

(n)
4

(
x

(N)
k

)
m

(n)
5

(
x

(N)
k

)
. (87)

Its value for x
(N)
k = x

(N)
k,j is given by (see Eqs. (63), (68) and (82))

w
(n)
6,k,j = w

(n)
4,k,jw

(n)
5,k,j = w

(n)
2,k,j w

(n)
3,k,jw

(n)
5,k,j (88)

= D
(n)
6,k,j exp

(
−1

2
Z

(n)
6,k,j

)
(89)

where
D

(n)
6,k,j , D

(n)
2,k,j D

(n)
3,k,j D

(n)
5,k,j (90)

and
Z

(n)
6,k,j , Z

(n)
2,k,j + Z

(n)
3,k,j + Z

(n)
5,k,j . (91)
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Note that the weight w
(n)
6,k,j conveys the information provided by the backward state transition (w

(n)
3,k,j), the

pseudo-measurements (w
(n)
2,k,j) and the measurements (w

(n)
5,k,j).

Step 8) - In this step, the message m
(n)
1 (x

(N)
k ), conveying the smoothed pdf of x

(N)
k evaluated in the n-th

iteration, is computed as (see Fig. 4)

m
(n)
1

(
x

(N)
k

)
= ~mfp

(
x

(N)
k

)
~m
(n)
6

(
x

(N)
k

)
; (92)

this formula represents an instance of Eq. (10), since ~mfp1(x
(N)
k ) and ~m

(n)
6 (x

(N)
k ) correspond to ~mfp(x

(i)
k )

and ~mbe2(x
(i)
k ), respectively (x

(i)
k = x

(N)
k in this case). The j−th component of m

(n)
1 (x

(N)
k ) is evaluated as

(see Eqs. (34) and (88))

m
(n)
1,j

(
x

(N)
k

)
= ~mfp,j

(
x

(N)
k

)
w

(n)
6,k,j (93)

= w
(n)
1,k,j δ

(
x

(N)
k − x

(N)
k,j

)
, (94)

where
w

(n)
1,k,j , wp w

(n)
6,k,j . (95)

Then, the weights {w(n)
1,k,j} are normalized; the j-th normalised weight is computed as

W
(n)
1,k,j , C

(n)
k w

(n)
1,k,j , (96)

with j = 1, 2, ..., Np, where C
(n)
k , 1/

Np−1∑
j=0

w
(n)
1,k,j . Moreover, the weights {W (n)

1,k,j} are stored for the next

iteration. This concludes the n−th iteration. Then, the index n is increased by one, and a new iteration is
started by going back to step 1) if n < ni + 1; otherwise (i.e., if n = ni + 1), we proceed with the next phase.

Phase III - In this phase, ~mbe(x
(N)
k ) (i.e., the BIF2 output message) is computed first; then, steps 1) and

2) of phase II are accomplished in order to compute all the statistical information required for the evaluation
of the backward estimate ~mbe (xk) (i.e., the BIF1 output message). More specifically, we first sample the

set Sk once on the basis of the particle weights {W (ni)
1,k,j} computed in the last iteration; if the jk-th particle

(i.e., x
(N)
k,jk

) is selected, we set

x
(N)
be,k = x

(N)
k,jk

, (97)

so that the message (see Eq. (37))

~mbe

(
x

(N)
k

)
, δ

(
x

(N)
k − x

(N)
be,k

)
, (98)

can be made available at the output of BIF2. On the other hand, the evaluation of the message ~mbe (xk) is

accomplished as follows. The messages m
(ni+1)
2 (xk) and ~m

(ni+1)
3 (xk) are computed first (see Eqs. (42)-(49)

and Eqs. (51)-(54), respectively). Then, the message ~mbe (xk) is computed as (see Fig. 4)

~mbe (xk) = ~mbe2 (xk) = ~m
(ni+1)
be1 (xk) mms (xk) (99)

= N (xk; ηbe2,k,Cbe2,k) , (100)

where
mms (xk) = N (xk; ηms,k,Cms,k) (101)

is the message conveying measurement information.
Moreover, the covariance matrices Cms,k and Cbe2,k, and the mean vectors ηms,k and ηbe2,k are evaluated

on the basis of the associated precision matrices

Wms,k , (Cms,k)−1 = HkWe HT
k , (102)
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Wbe2,k , (Cbe2,k)−1 = Wms,k + W
(ni+1)
be1,k , (103)

and of the transformed mean vectors

wms,k , Wms,k ηms,k = HkWe (yk − vk) , (104)

wbe2,k , Wbe2,k ηbe2,k = wms,k + w
(ni+1)
be1,k , (105)

respectively. The k-th recursion is now over.
In the DBSA, the first recursion of the backward pass (corresponding to k = T−1) requires the knowledge

of the input messages ~mbe(xT ) and ~mbe(x
(N)
T ). Similarly as any BIF algorithm, the evaluation of these

messages in DBIF is based on the statistical information generated in the last recursion of the forward pass.
In particular, the above mentioned messages are still expressed by Eqs. (36) and (37) (with k = T − 1 in

both formulas), respectively. However, the vector x
(N)
be,T is generated by sampling the particle set ST on the

basis of the forward weights {wfe,T,j}, since backward predictions are unavailable at the final instant k = T .
Therefore, if the jT -th particle of ST is selected, we set

x
(N)
be,T = x

(N)
fe,T,jT

(106)

in the message ~mbe(x
(N)
T ) entering the BIF2 in the first recursion (see Eq. (37)). As far as BIF1 is concerned,

following [19], we choose
Wbe,T = Wfe1,T (107)

and
wbe,T = wfe1,T (108)

for the message ~mbe(xT ).
The DBSA is summarized in Algorithm 1. It generates all the statistical information required to solve

problems P.1 and P.2. Let us now discuss how this can be done in detail. As far as problem P.1 is

concerned, it is useful to point out that the DBSA produces a trajectory {x(N)
be,k, k = 1, 2, ..., T} for the

nonlinear component (see Eq. (97)). Another trajectory, representing the time evolution of the linear state

component only and denoted {x(L)
be,k, k = 1, 2, ..., T}, can be evaluated by sampling the message m

(ni)
1 (x

(L)
k )

(see Eq. (61)) or by simply setting x
(L)
be,k = η̃

(ni)
1,k (this task can be accomplished in phase III, after sampling

the particle set Sk; see also the task g- in phase III of Algorithm 1.
Since the DBSA solves problem P.1, it also solves problem P.2; in fact, once it has been run, an

approximation of the marginal smoothed pdf at any instant can be simply obtained by marginalization.
Unluckily, the last result is achieved at the price of a significant computational cost, since M backward
passes are required. However, if we are interested in solving problem P.2 only, a simpler particle smoother
can be developed following the approach illustrated in ref. [19], so that a single backward pass has to be run.

In this pass, the evaluation of the message ~mbe(x
(N)
k ) (i.e., of the particle x

(N)
be,k) involves the whole particle

set Sk and their weights {W (ni)
1,k,j} (see Eq. (96)) evaluated in the last phase of the (T − k)−th recursion.

More specifically, a new smoother is obtained by employing a different method for evaluating x
(N)
be,k (see phase

III-BIF2); it consists in computing the smoothed estimate

x
(N)
sm,k =

Np∑
j=1

W
(ni)
1,k,j x

(N)
k,j (109)

of x
(N)
k and, then, setting

x
(N)
be,k = x

(N)
sm,k. (110)

The resulting smoother is called simplified DBSA (SDBSA) in the following.
The computational complexity of the DBSA and the SDBSA can be reduced by reusing the forward

weights {wfe,k,j} in all the iterations of phase II, so that step 7) can be skipped; this means that, for any n,
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Algorithm 1: Double Bayesian Smoothing

1 Forward filtering: For k = 1 to T : Run the DBF, and store Wfe1,k (32), wfe1,k (33), Sk = {x(N)
k,j }

and {wfe,k,j}
Np

j=1.

2 Initialisation of backward filtering: compute x
(N)
be,T (106), Wbe,T (107) and wbe,T (108); then,

compute Cbe,T = (Wbe,T )−1, ηbe,T = Cbe,Twbe,T .
3 Backward filtering and smoothing:

for k = T − 1 to 1 do
a- Phase I:
- Backward prediction in BIF1: compute W1,k (39) and w1,k (40).
- Computation of iteration-independent information required in task b:For j = 1 to Np: compute

z
(L)
k,j (49), W̃k,j (47), w̃k,j (48), C̃k,j = (W̃k,j)

−1 and η̃k,j = C̃k,jw̃k,j .

- Initialisation of particle weights: Set W
(0)
1,k,j = wfe,k,j .

Phase II:
for n = 1 to ni do

b- Compute η
(n)
2,k (43) and C

(n)
2,k (44).

c- Compute C
(n)
3,k (55), η

(n)
3,k (56), W

(n)
3,k = (C

(n)
3,k)−1, w

(n)
3,k = W

(n)
3,kη

(n)
3,k , W

(n)
4,k (59), w

(n)
4,k (60),

C
(n)
4,k = (W

(n)
4,k )−1 and η

(n)
4,k = C

(n)
4,kw

(n)
4,k . Then, extract η̃

(n)
1,k (C̃

(n)
1,k) from η

(n)
4,k (C

(n)
4,k).

d- For j = 1 to Np: compute η
(N)
3,k,j [n] (66) and C

(N)
3,k,j [n] (67). Then, compute D

(n)
3,k,j (64) and

Z
(n)
3,k,j (65).

e- For j = 1 to Np: compute η̌
(n)
z,k,j (70), Č

(n)
z,k,j (71), W̌

(n)
z,k,j = (Č

(n)
z,k,j)

−1,

w̌
(n)
z,k,j = W̌

(n)
z,k,j η̌

(n)
z,k,j , W̌

(n)
2,k,j (72), w̌

(n)
2,k,j (74). Then, compute D

(n)
2,k,j (73) and Z

(n)
2,k,j (69).

f- For j = 1 to Np: Compute η̄
(n)
5,k,j (83), C̄

(n)
5,k,j (84), W̄

(n)
5,k,j = (C̄

(n)
5,k,j)

−1, D
(n)
5,k,j (85) and

Z
(n)
5,k,j (86). Then, compute D

(n)
6,k,j (90), Z

(n)
6,k,j (91), w

(n)
6,k,j (89), w

(n)
1,k,j (95) and W

(n)
1,k,j (96).

Store the weights {W (n)
1,k,j} for the next iteration.

end

g- Phase III - BIF2: Select the jk-th particle x
(N)
k,jk

by sampling the set Sk on the basis of the

weights {W (ni)
1,k,j}, set x

(N)
be,k = x

(N)
k,jk

and store x
(N)
be,k for the next recursion.

h- Phase III - BIF1: Compute η
(ni+1)
2,k , C

(ni+1)
2,k , W

(ni+1)
3,k and w

(ni+1)
3,k (see steps 1) and 2)).

Then, compute Wms,k (102), wms,k (104), Wbe2,k (103), wbe2,k (105), Cbe,k = (Wbe2,k)−1 and
ηbe,k = Cbe,kwbe2,k, and store Cbe,k and ηbe,k for the next recursion.

end
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we set w
(n)
5,k,j = wfe,k,j in the evaluation of the j−th particle weight w

(n)
6,k,j according to Eq. (88) in step 8)

of phase II. Our simulation results have evidenced that, at least for the SSMs considered in Section V., this
modification does not affect the estimation accuracy of the derived algorithms; for this reason, it is always
employed in our simulations.

The DBSA and the SDBSA refer to case C.1, i.e. to the case in which the substates estimated by the

interconnected forward/backward filters share the substate x
(N)
k . Let us focus now on case C.2, i.e. on the

case on which the filters are run on disjoint substates. A filtering technique, called simplified DBF (SDBF),
and based on the interconnection of a particle filter (F2) with a single Kalman filter (F1), is developed for this
case in ref. [20, Par. III-B]. The BIF algorithm paired with it can be easily derived following the approach
illustrated above for the DBSA; the resulting smoothing algorithm is dubbed disjoint DBSA (DDBSA) in
the following. It is important to mention that, in deriving the DBSA, the following relevant changes are
made with respect to the DBSA (see Fig. 2):

1) The iterative procedure embedded in the (T − k)−th recursion of the backward pass involves both
the computation of the backward predicted pdf (BP1) and of the message MS1 in BIF1; for this reason, it

requires marginalizing the pdfs f(x
(N)
k+1|x

(N)
k ,x

(L)
k ) and f(yk|x(N)

k ,x
(L)
k ), respectively, with respect to x

(L)
k .

This result is achieved in the first iteration by setting x
(N)
k = x

(N)
fe,k in both these pdfs, where x

(N)
fe,k denotes

the estimate of x
(N)
k computed by F2 in the forward pass. In the following iterations, we set x

(N)
k = x

(N)
sm,k,

where x
(N)
sm,k represents the estimate of x

(N)
k evaluated on the basis of the statistical information provided by

BIF2 (through the message SM2).

2) The pseudo-measurement message PM1 (corresponding to m
(n)
2 (xk) (42) in the DBSA) conveys infor-

mation about x
(L)
k only. Moreover, it is a Gaussian message, and its mean and covariance matrix are given

by η
(n)
L,k and C

(n)
LL,k (see Eqs. (45) and (46), respectively).

Finally, it is worth mentioning that a simplified version of the DDBSA (called SDDBSA) can be easily
developed by making the same modifications as those adopted in deriving the SDBSA from the DBSA.

IV. Comparison of the Developed Double Smoothing Algorithms
with Related Techniques

The DBSA and the DDBSA developed in the previous Section are conceptually related to the Rao-Blackwellised
particle smoothers proposed by Fong et al. [17] and by Lindsten et al. [18] (these algorithms are denoted
Alg-F and Alg-L respectively, in the following) and to the RBSS algorithm devised by Vitetta et al. in ref.
[19]. In fact, all these techniques share with the DBSA and the DDBSA the following important features: 1)
all of them estimate the joint smoothing density over the whole observation interval by generating multiple
realizations from it; 2) they accomplish a single forward pass and as many backward passes as the overall
number of realizations; 3) they combine Kalman filtering with particle filtering. However, Alg-F, Alg-L and
the RBSS algorithm employ, in both their forward and backward passes, as many Kalman filters as the
number of particles (Np) to generate a particle-dependent estimate of the linear state component only. On
the contrary, the DBSA (DDBSA) employs a single extended Kalman filter (a single Kalman filter), that
estimates the whole system state (the linear state component only); this substantially reduces the memory
requirements of particle smoothing and, consequently, the overall number of memory accesses accomplished
on the hardware platform on which smoothing is run. As far as the last point is concerned, the memory
requirements of a smoothing algorithm can be roughly assessed by estimating the overall number of real
quantities that need to be stored in both its forward pass and its backward pass. It can be shown that
overall number of real quantities to be stored by MPF, DBF and SDBF in the forward pass of the considered
smoothing algorithms is of order O(MMPF ), O(MDBF ), and O(MSDBF ), respectively, with4

MMPF = NpT (2D2
L + 2DL +DN + 1), (111)

MDBF = T (2D2 + 2D +NpDN +Np) (112)

4Note that the expressions (111)-(113) also account for the contributions due to measurement-based information (see Eqs.
(102) and (104)).
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and
MSDBF = T (2D2

L + 2DL +NpDN +Np ). (113)

Moreover, the overall number of real quantities to be stored by Alg-L, RBSS, the DBSA and the DDBSA is
approximately of order O(MAlg−L), O(MRBSS), O(MDBSA) and O(MDDBSA), respectively, with

MAlg−L = MMPF +D2
L +D, (114)

MRBSS = MMPF +D2
L +D, (115)

MDBSA = MDBF +Np +D2 +D +DN (116)

and
MDDBSA = MSDBF +Np +D2

L +D. (117)

The memory requirements of the SDBSA and the SDDBSA (the SPS algorithm) are the same as those of
the DBSA and the DDBSA (the RBSS algorithm), respectively. Note also that the quantities MDBSA (116)
and MDDBSA (117) are smaller than MAlg−L (114) and MRBSS (115), since MMPF is larger than MDBF

and MSDBF because of its dependence on Np.
The differences in the overall execution time measured for the simulated smoothing algorithms are related

not only to their requirements in terms of memory resources, but also to their computational complexity.
In our work, the computational cost of the smoothing algorithms derived in the previous section has been
carefully assessed in terms of number of floating point operations (flops) to be executed over the whole
observation interval. The general criteria adopted in estimating the computational cost of an algorithm are
the same as those illustrated in [26, App. A, p. 5420] and are not repeated here for space limitations.
A detailed analysis of the cost required by each of the tasks accomplished by our smoothing algorithms is
provided in Appendix B. Our analysis leads to the conclusion that the overall computational cost of the
DBSA and of the DDBSA is approximately of order O(NDBSA) and O(NDDBSA), respectively, with

NDBSA = T
{
NDBF + M

[
38D3/3 + 20D3

N/3+

niNp(2D
2
LDN + 2DLD

2
N +D3

N/3 + 5D3
L) + 6niD

3
]}
, (118)

and

NDDBSA = T
{
NSDBF +M

[
38D3

L/3 + 20D3
N/3

+niNp(2D
2
LDN + 2DLD

2
N +D3

N/3 + 5D3
L) + 6niD

3
L

]}
; (119)

here, NDBF and NSDBF represent the computational complexity of a single recursion of the DBF and SDBF,
respectively (see [20, Eqs. (97) and (98)]). Each of the expressions (118)-(119) has been derived as follows.
First, the costs of all the tasks identified in Appendix B have been summed; then, the resulting expression
has been simplified, keeping only the dominant contributions due to matrix inversions, matrix products
and Cholesky decompositions, and discarding all the contributions that originate from the evaluation of the

matrices A
(Z)
k (x

(N)
k ) (with Z = L and N), Fk, Hk and Bk and the functions f

(Z)
k (x

(N)
k ) (with Z = L and

N), fk(xk) and gk(x
(N)
k ). Moreover, the sampling of the particle set in each recursion of the backward pass

has been ignored.
From Eqs. (118)-(119) it is easily inferred that the computational complexities of the DBSA and

the DDBSA are approximately of order O(niM NpD
3
LT ). A similar approach can be followed for Alg-L

and the RBSS algorithm; this leads to the conclusion that their complexities are approximately of order
O(M NpD

3
LT ), i.e. of the same order of the complexities of the DBSA and of the DDBSA if ni = 1 is

assumed.
On the other hand, the SDBSA and the SDDBSA are conceptually related to the SPS algorithm devised

by Vitetta et al. in ref. [19]. In fact, all these algorithms aim at solving problem P.2 only (consequently,
they are unable to generate the joint smoothed pdf f(x1:T |y1:T )) and carry out a single backward pass.
This property makes them much faster than Alg-L, the RBSS algorithm, the DBSA and the DDBSA in the
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computation of marginal smoothed densities. Finally, note that, similarly as the DBSA and the DDBSA
techniques, the use of the SDBSA and the SDDBSA requires a substantially smaller number of memory
accesses than the SPS algorithm, since the last algorithm employs MPF in its forward pass. Moreover, the
computational cost of the SDBSA and the SDDBSA is approximately of order O(niNpD

3
LT ), whereas that

of the SPS algorithm is approximately of order O(NpD
3
LT ); consequently, they are all of the same order if

ni = 1 is assumed.

V. Numerical Results

In this section we first compare, in terms of accuracy and execution time, the DBSA, the SDBSA, the DDBSA
and the SDDBSA with Alg-L, the RBSS algorithm, and the SPS algorithm for a specific conditionally linear
Gaussian SSM. The considered SSM is the same as the SSM#2 defined in [19] and describes the bidimensional
motion of an agent. Its state vector in the k-th observation interval is defined as xk , [vTk ,p

T
k ]T , where

vk , [vx,k, vy,k]T and pk , [px,k, py,k]T (corresponding to x
(L)
k and x

(N)
k , respectively) represent the agent

velocity and position, respectively (their components are expressed in m/s and in m, respectively). The state
update equations are

vk+1 = ρvk + Ts ak(pk) + (1− ρ) nv,k (120)

and
pk+1 = pk + Ts vk + (T 2

s /2) ak(pk) + np,k, (121)

where ρ is a forgetting factor (with 0 < ρ < 1), Ts is the sampling interval, nv,k is an additive Gaussian
noise (AGN) vector characterized by the covariance matrix I2,

ak (pk) = −a0
pk
‖pk‖

1

1 + (‖pk‖ /d0)
2 (122)

is the acceleration due to a force applied to the agent (and pointing towards the origin of our reference
system), a0 is a scale factor (expressed in m/s2), d0 is a reference distance (expressed in m), and np,k is
an AGN vector characterized by the covariance matrix σ2

p I2 and accounting for model inaccuracy. The
measurement vector available in the k-th interval for state estimation is

yk = xk + ek, (123)

where ek , [eTv,k, e
T
p,k]T and ev,k (ep,k) is an AGN vector characterized by the covariance matrix σ2

ev I2

(σ2
ep I2).
In our computer simulations, following [19] and [23], the estimation accuracy of the considered smoothing

techniques has been assessed by evaluating two root mean square errors (RMSEs), one for the linear state
component, the other for the nonlinear one, over an observation interval lasting T = 200 Ts; these are denoted
RMSEL(alg) and RMSEN (alg), respectively, where ‘alg’ is the acronym of the algorithm these parameters
refer to. Our assessment of the computational requirements is based, instead, on evaluating the average
computation time required for processing a single block of measurements (this quantity is denoted CTB(alg)
in the following). Moreover, the following values have been selected for the parameters of the considered SSM:
ρ = 0.995, Ts = 0.01 s, σp = 5 · 10−3 m, σe,p = 2 · 10−2 m, σe,v = 2 · 10−2 m/s, a0 = 0.5 m/s2, d0 = 5 · 10−3

m and v0 = 1 m/s (the initial position p0 , [px,0, py,0]T and the initial velocity v0 , [vx,0, vy,0]T have been
set to [0.01 m, 0.01 m]T and [0.01 m/s, 0.01 m/s]T , respectively).

Some numerical results showing the dependence of RMSEL and RMSEN on the number of particles
(Np) for some of the considered smoothing algorithms are illustrated in Figs. 5 and 6, respectively (simu-
lation results are indicated by markers, whereas continuous lines are drawn to fit them, so facilitating the
interpretation of the available data). In this case, ni = 1 has been selected for all the derived particle
smoothers, M = Np has been chosen for all the smoothing algorithms generating multiple trajectories and
the range [10, 150] has been considered for Np (since no real improvement is found for Np & 150). Moreover,
RMSEL and RMSEN results are also provided for MPF and DBF, since these filtering techniques are
employed in the forward pass of Alg-L, the RBSS algorithm and the SPS algorithm, and the DBSA and

23



7

8

9

0.01

R
M

SE
N
 (

m
)

1401201008060
Number of particles, Np

 Alg-L
  RBSS
  SPS
  DBSA
  SDBSA

 MPF
  DBF

Figure 5: RMSE performance versus Np for the nonlinear component (RMSEN ) of the state of SSM #1;
five smoothing algorithms (Alg-L, the DBSA, the SDBSA, the RBSS algorithm and the SPS algorithm) and
two filtering techniques (MPF and DBF) are considered.

the SDBSA, respectively; this allows us to assess the improvement in estimation accuracy provided by the
backward pass with respect to the forward pass for each smoothing algorithm. These results show that:

1) The DBSA, the SDBSA, Alg-L and the RBSS algorithm achieve similar accuracies in the estimation
of both the linear and nonlinear state components.

2) The SPS algorithm is slightly outperformed by the other smoothing algorithms in terms of RMSEN
only; for instance, RMSEN (SPS) is about 1.11 times larger than RMSEN (SDBSA) for Np = 100.

3) Even if the RBSS algorithm and the DBSA provide by far richer statistical information than their
simplified counterparts (i.e., than the SPS algorithm and the SDBSA, respectively), they do not provide a
significant improvement in the accuracy of state estimation; for instance, RMSEN (SPS) (RMSEN (SDBSA))
is about 1.12 (1.03) time larger than RMSEN (RBSS) (RMSEN (DBSA)) for Np = 100.

4) The accuracy improvement in terms of RMSEL (RMSEN ) provided by all the smoothing algorithms
except the SPS (by Alg-L, the RBSS algorithm, the DBSA and the SDBSA) is about 24% (about 23%)
with respect to MPF and DBF, for Np = 100. Moreover, the accuracy improvement in terms of RMSEL
(RMSEN ) achieved by the SPS algorithm is about 24% (about 14%) with respect to the MPF for Np = 100.

5) In the considered scenario, DBF is slightly outperformed by (perform similarly as) MPF in the esti-
mation of the linear (nonlinear) state component; a similar result is reported in [20] for a different SSM.

Our simulations have also evidenced that the DBSA and the SDBSA perform similarly as the DDBSA
and the SDDBSA; for this reason, RSME results referring to the last two algorithms are not shown in
Figs. 5 and 6. This leads to the conclusion that, in the considered scenario, the presence of redundancy in
double Bayesian smoothing does not provide any improvement with respect to the case in which the two
interconnected filters operate on disjoint substates in the forward and in the backward passes. Note that the
same conclusion had been reached in ref. [20, Sec. IV] for DBF only.

Despite their similar accuracies, the considered smoothing algorithms require different computational
efforts; this is easily inferred from the numerical results appearing in Fig. 7 and illustrating the dependence
of the CTB on Np for all the above mentioned filtering and smoothing algorithms. In fact, these results
show that CTB(DBSA) is approximately 0.85 (0.48) times smaller than CTB(Alg-L) (CTB(RBSS)); this is
in agreement with the mathematical results illustrated in Section IV. about the complexity of Alg-L, the
RBSS algorithms and the DBSA, i.e. with the fact the complexities of all these smoothers are approximately
of order O(M NpD

3
LT ) (provided that ni = 1 is selected for the DBSA). Moreover, we have found that

a 5.5% reduction in CTB is obtained if the DDBSA is employed in place of the DBSA (i.e., if double
Bayesian smoothing is not redundant). Similar considerations hold for the SDBSA, the SDDBSA and the
SPS algorithm. In fact, CTB(SDBSA) is approximately 0.57 times smaller than CTB(SPS); moreover, the
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Figure 6: RMSE performance versus Np for the linear component (RMSEL ) of the state of SSM #1; five
smoothing algorithms (Alg-L, the DBSA, the SDBSA, the RBSS algorithm and the SPS algorithm) and two
filtering techniques (MPF and DBF) are considered.

CTB is reduced by 6.8% if the SDDBSA is employed in place of the SDBSA. It is also interesting to note
that CTB(DBF) is approximately 0.55 times smaller than CTB(MPF) for the same value of Np; once again,
this result is in agreement with the results shown in [20] for a different SSM.

All the numerical results illustrated above lead to the conclusion that, in the considered scenario, the
DDBSA and the SDDBSA achieve the best accuracy-complexity tradeoff in their categories of smoothing
techniques.

The second SSM we considered is the same as the second SSM illustrated in [20, Sec. IV] and refers to
a sensor network employing P sensors placed on the vertices of a square grid (partitioning a square area
having side equal to l m); these sensors receive the reference signals radiated, at the same power level and
at the same frequency, by N independent targets moving on a plane. Each target evolves according to the
motion model described by Eqs. (120)-(121) with ak(pk) = 0 for any k. In this case, the considered SSM
(denoted SSM#2 in the following) refers to the whole set of targets and its state vector xk results from

the ordered concatenation of the vectors {x(i)
k ; i = 1, 2, ..., N}, where x

(i)
k , [(v

(i)
k )T , (p

(i)
k )T ]T , and v

(i)
k

and p
(i)
k represent the i−th target velocity and the position, respectively. Moreover, the following additional

assumptions have been made about this SSM: 1) the process noises n
(i)
p,k and n

(i)
v,k, affecting the i−th target

position and velocity, respectively, are given by n
(i)
p,k = (T 2

s /2) n
(i)
a,k and n

(i)
v,k = Ts n

(i)
a,k, where {n(i)

a,k} is two-

dimensional AWGN, representing a random acceleration and having covariance matrix σ2
a I2 (with i = 1,

2, ..., N); 2) the measurement acquired by the q−th sensor (with q = 1, 2, ..., P ) in the k-th observation
interval is given by

yq,k = 10 log10

Ψ

N∑
i=1

d2
0∣∣∣∣∣∣sq − p

(i)
k

∣∣∣∣∣∣2
+ ek, (124)

where the measurement noise {ek} is AWGN with variance σ2
e , Ψ denotes the normalised power received by

each sensor from any target at a distance d0 from the sensor itself and sq is the position of the considered
sensor; 3) the overall measurement vector yk results from the ordered concatenation of the measurements
{yq,k; q = 1, 2, ..., P} and, consequently, provides information about the position only; 4) the initial position

p
(i)
0 , [p

(i)
x,0, p

(i)
y,0]T and the initial velocity v

(i)
0 , [v

(i)
x,0, v

(i)
y,0]T of the i−th target are randomly selected (with

i = 1, 2, ..., N). As far as the last point is concerned, it is important to mention that, in our computer
simulations, distinct targets are placed in different squares of the partitioned area in a random fashion;
moreover, the initial velocity of each target is randomly selected within the interval (vmin, vmax) in order
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Figure 7: CTB versus Np for five smoothing algorithms (Alg-L, DBSA, SDBSA, the RBSS algorithm and
the SPS algorithm) and two filtering techniques (MPF and DBF); SSM #1 is considered.

to ensure that the trajectories of distinct targets do not cross each other in the observation interval. The
following values have been selected for the parameters of SSM#2: P = 25, l = 103 m, Ts = 1 s, ρ = 1,
σ2
a = 0.1 m/s2, σ2

e = −35 dB, Ψ = 1, d0 = 1 m, vmin = 0 m/s and vmin = 0.1 m/s. Moreover, N = 3
targets have been observed over a time interval lasting T = 60 Ts s. Our computer simulations have aimed
at evaluating the accuracy achieved by the considered smoothing algorithms in tracking the position of all
the targets. In practice, such an accuracy has been assessed by estimating the average RMSE referring to

the estimates of the whole set {p(i)
k ; i = 1, 2, 3}; note that, if the i−th target is considered, its position p

(i)
k

represents the nonlinear component of the associated substate x
(i)
k , because of the nonlinear dependence

of yk on it (see Eq. (124)). Our computer simulations have evidenced that, in the considered scenario, the
MPF and the SDBF techniques diverge frequently in the observation interval (some numerical results about
the probability of divergence area available in [20, Sec. IV]); unluckily, when this occurs, all the smoothing
algorithms that employ these techniques in their forward pass (namely, Alg-L, the RBSS algorithm, the
SPS algorithm, the DDBSA and the SDDBSA) are unable to recover from this event and, consequently, are
useless. The DBF technique, instead, thanks to its inner redundancy, is still able to track all the targets.
Moreover, the two smoothing algorithms employing this technique in their forward pass (namely, the DBSA
and the SDBSA), are able to improve the accuracy of position estimates in their backward pass; this is
evidenced by Fig. 8, that shows the dependence of RMSEN on the overall number of particles (Np) for
the DBF technique, the DBSA and the SDBSA (the range [300, 600] is considered for Np). Note that
the SDBSA is outperformed by the DBSA in terms of RMSEN ; for instance, RMSEN (SDBSA) is about
1.31 times larger than RMSEN (DBSA) for Np = 500. However, this result is achieved at the price of a
significantly higher complexity; in fact, CTB(SDBSA) is approximately equal to 2 · 10−3·CTB(DBSA).

VI. Conclusions

In this manuscript, factor graph methods have been exploited to develop new smoothing algorithms based on
the interconnection of two Bayesian filters in the forward pass and of two backward information filters in the
backward pass. This has allowed us to develop a new approximate method for Bayesian smoothing, called
double Bayesian smoothing. Four double Bayesian smoothers have been derived for the class of conditionally
linear Gaussian systems and have been compared, in terms of both accuracy and execution time, with other
smoothing algorithms for two specific dynamic models. Our simulation results lead to the conclusion that
the devised algorithms can achieve a better complexity-accuracy tradeoff and a better tracking capability
than other smoothing techniques recently appeared in the literature.
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Figure 8: RMSE performance versus Np for the nonlinear component (RMSEN ) of the state of SSM #2;
two smoothing algorithms (the DBSA and the SDBSA) and one filtering technique (DBF) are considered.
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Appendix A

In this Appendix, the derivation of the expressions of various messages evaluated in each of the three phases
the DBSA consists of is sketched.

Phase I - Formulas (39) and (40), referring to the message ~m1(xk) (38), can be easily computed by
applying eqs. (IV.6)-(IV.8) of ref. [21, Table 4, p.1304] in their backward form (with A→ID, X→Fkxk,
Z→xk+1 and Y→uk + wk) and, then, eqs. (III.5)-(III.6) of [21, Table 3, p.1304] (with A →Fk, X→xk and
Y →Fkxk).

Phase II -Step 1) The message m
(n)
2 (xk) (42) results from merging, in the BIF2→BIF1 block, the

statistical information about the nonlinear state component conveyed by the message m
(n−1)
1 (x

(N)
k ) (41)

(and, consequently, by its Np components {m(n−1)
1,j (x

(N)
k ) = W

(n−1)
1,k,j δ(x

(N)
k −x

(N)
k,j )}) with those provided by

the pseudo-measurement z
(L)
k (21) about the linear state component. The method employed for processing

this pseudo-measurement is the same as that developed for MPF and can be summarised as follows (additional
mathematical details can be found in [23, Sec. IV, p. 1527]):

1) The particles x
(N)
k,j and x

(N)
be,k+1, conveyed by the messages m

(n−1)
1 (x

(N)
k ) (41) and ~mbe(x

(N)
k+1) (37),

respectively, are employed to compute the j−th realization z
(L)
k,j (49) of z

(L)
k for j = 1, 2, ..., Np.

2) The pseudo-measurement z
(L)
k,j (49) is exploited to generate the (particle-dependent) pdf

f
(n)
j

(
x

(L)
k

)
= N

(
x

(L)
k ; η̃k,j , C̃k,j

)
, (125)

that conveys pseudo-measurement information about x
(L)
k for any j; the covariance matrix C̃k,j and the

mean vector η̃k,j of this message are computed on the basis of the precision matrix W̃k,j (47) and the
transformed mean vector w̃k,j (48), respectively.

3) The messages {m(n−1)
1,j (x

(N)
k )} are merged with the pdfs {f (n)

j (x
(L)
k )} to generate the message m

(n)
2 (xk)

(42). The approach we adopt to achieve this result is based on the fact that the message m
(n−1)
1,j (x

(N)
k ) and
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the pdf f
(n)
j (x

(L)
k ) refer to the same particle (i.e., to the j−th particle x

(N)
k,j , but provide complementary

information (since they refer to the two different components of the overall state xk). This allows us to

condense the statistical information conveyed by the sets {m(n−1)
1,j (x

(N)
k )} and {f (n)

j (x
(L)
k )} in the joint pdf

f (n)(x
(L)
k ,x

(N)
k ) , wp

Np∑
j=1

m
(n−1)
1,j

(
x

(N)
k

)
f

(n)
j

(
x

(L)
k

)
. (126)

referring to the whole state xk. Then, the message m
(n)
2 (xk) (42) is computed by projecting the pdf

f (k)(x
(L)
k ,x

(N)
k ) (126) onto a single Gaussian pdf having the same mean and covariance.

Steps 2 and 3) The expression (52) of ~m
(n)
3 (xk) represents a straightforward application of formula no.

2 of ref. [23, App. A, TABLE I] (with W1→W1,k, W2→W
(n)
2,k , w1→w1,k and w2→w

(n)
2,k ). The same

considerations apply to the derivation of the expression (58) of m
(n)
4 (xk).

Step 4) The expression (63) of the weight w
(n)
3,k,j is derived as follows. First, we substitute the expression

(19) of f(x
(N)
k+1|x

(N)
k ,x

(L)
k ), and the expressions of the messages ~mbe(x

(N)
k+1) (37) and m

(n)
1 (x

(L)
k ) (61) in the

right-hand side (RHS) of Eq. (62). Then, the resulting integral is solved by applying formula no. 1 of

[23, App. A, TABLE II] in the integration with respect to x
(L)
k and the sifting property of the Dirac delta

function in the integration with respect to x
(N)
k+1.

Step 5) - The derivation of the expression (68) of the weight w
(n)
2,k,j is similar to that illustrated for the

particle weights originating from the pseudo-measurements in dual MPF and can be summarised as follows
(additional mathematical details can be found in ref. [23, Sec. V, pp. 1528-1529]). Two different Gaussian

densities are derived for the random vector z
(N)
k (24), conditioned on x

(N)
k . The expression of the first

density originates from the definition (24) and from the knowledge of the joint pdf of x
(L)
k and x

(L)
k+1; this

joint density is obtained from: a) the statistical information provided by the message m
(n)
1 (x

(L)
k ) (61) and

the pdf N (x
(L)
k+1, η̃be,k+1C̃be,k+1) (resulting from integrating out the dependence of ~mbe(xk+1) (36) on x

(N)
k );

b) the Markov model f(x
(L)
k+1|x

(N)
k ,x

(L)
k ) (26). This leads to the pdf

f
(n)
1

(
z

(N)
k

∣∣∣x(N)
k

)
= N

(
z

(N)
k ; η̌

(n)
z,k

(
x

(N)
k

)
, Č

(n)
z,k

(
x

(N)
k

))
, (127)

where
η̌

(n)
z,k

(
x

(N)
k

)
= η̃be,k+1 −A

(L)
k

(
x

(N)
k

)
η̃

(n)
1,k (128)

and

Č
(n)
z,k

(
x

(N)
k

)
= C̃be,k+1 −A

(L)
k

(
x

(N)
k

)
C̃

(n)
1,k

(
A

(L)
k

(
x

(N)
k

))T
. (129)

The second pdf of z
(N)
k , instead, results from the fact that this vector z

(N)
k must equal the sum (25);

consequently, it is given by

f2

(
z

(N)
k

∣∣∣x(N)
k

)
= N

(
z

(N)
k ; f

(L)
k

(
x

(N)
k

)
,C(N)

w

)
. (130)

Given the pdfs (127) and (130), the message ~m
(n)
3 (x

(N)
k ) is expressed by their correlation, i.e. it is computed

as

~m
(n)
3 (x

(N)
k ) =

∫
f

(n)
1

(
z

(N)
k

∣∣∣x(N)
k

)
· f2

(
z

(N)
k

∣∣∣x(N)
k

)
dz

(N)
k . (131)

Substituting Eqs. (127) and (130) in the RHS of the last expression, setting x
(N)
k = x

(N)
k,j and applying

formula no. 4 of ref. [23, Table II] to the evaluation of the resulting integral yields Eq. (68); note that η̌
(n)
z,k,j

(70) and Č
(n)
z,k,j (71) represent the values taken on by η̌

(n)
z,k (x

(N)
k ) (128) and Č

(n)
z,k(x

(N)
k ) (129), respectively,

for x
(N)
k = x

(N)
k,j .
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Step 7) The expression (82) of the weight w
(n)
5,k,j is derived as follows. First, we substitute the expressions

(61) and (20) of m
(n)
1 (x

(L)
k ) and f(yk|x(N)

k , x
(L)
k ), respectively, in the RHS of Eq. (77). Then, solving the

resulting integral (see formula no. 1 of ref. [23, App. A, TABLE II]) produces Eq. (78). Finally, setting

x
(N)
k = x

(N)
k,j in Eq. (78) yields Eq. (82).

Phase III - The expression (100) of the message ~mbe (xk) results from the application of formula no. 2
of ref. [23, App. A, TABLE I] to Eq. (99).

Appendix B Computational complexity of the devised double
Bayesian smoothers

In this appendix, the computational complexity of the tasks accomplished in a single recursion of backward
filtering and smoothing of the DBSA is assessed in terms of flops. Moreover, we comment on how the
illustrated results can be also exploited to assess the computational complexity of a single recursion of the
DDBSA. In the following, CH, CB, CF, CA(L) and CA(N) , and Cg, Cf (L) , Cf (N) and Cfkdenote the cost due to the

evaluation of the matrices Hk, Bk, Fk, A
(L)
k (x

(N)
k ) and A

(N)
k (x

(N)
k ), and of the functions gk(x

(N)
k ), f

(L)
k (x

(N)
k ),

f
(N)
k (x

(N)
k ) and fk(xk), respectively. Moreover, similarly as [26], it is assumed that the computation of the

inverse of any covariance matrix involves a Cholesky decomposition of the matrix itself and the inversion of
a lower or upper triangular matrix. Finally, it is assumed that the computation of the determinant of any
matrix involves a Cholesky decomposition of the matrix itself and the product of the diagonal entries of a
triangular matrix.

Phase I - The overall computational cost of this task is evaluated as (see Eqs. (39)-(40) and (47)-(49))

C1 = CW1,k
+ Cw1,k

+Np

(
C

z
(L)
k,j

+ CW̃k,j

+Cw̃k,j
+ CC̃k,j

+ Cη̃k,j

)
, C(1)

bp . (132)

Moreover, we have that: 1) the cost CW1,k
is equal to CF + 26D3/3−D2/2 + 5D/6 flops; 2) the cost Cw1,k

is equal to 4D3 + 4D2 − 2D flops (the cost for computing CF has been already accounted for at point 1));
3) the cost C

z
(L)
k,j

is equal to Cf (N) + DN flops; 4) the cost CW̃k,j
is equal to CA(N) + 4D3

N − 2D2
N flops; 5)

the cost Cw̃k,j
is equal to 2D3

N +D2
N −DN flops (the cost for computing CA(N) has been already accounted

for at point 4)); 6) the cost CC̃k,j
is equal to 2D3

N/3 + 3D2
N/2 + 5DN/6 flops; 7) the cost Cη̃k,j

is equal to

2D2
N − DN flops. The expressions listed at points 1)-2) can be exploited for the DDBSA too; in the last

case, however, DN = 0 and D = DL must be assumed.
Phase II - The overall computational cost of this task is evaluated as

C2 = ni
(
Cpm(1) + Cbe1(1) + Csm(1) + Cbp(2)+

Cpm(2) + Cms(2) + Cbe2(2) + Csm(2)

)
. (133)

The terms appearing in the RHS of the last equation can be computed as follows. First of all, we have that

Cpm(1) = C
η
(n)
2,k

+ C
C

(n)
2,k

, (134)

where (see Eqs. (43)-(44)): 1) the cost C
η
(n)
2,k

is equal to 2NpD − D flops; 2) the cost C
C

(n)
2,k

is equal to

5NpD
2
L + 4NpD

2
N + 4NpDLDN + D2

L + D2
N + DLDN flops. The expressions listed at points 1)-2) can be

exploited for the DDBSA too; in the last case, however, DN = 0 and D = DL must be assumed.
The second term appearing in the RHS of Eq. (133) is evaluated as

Cbe1(1) = C
C

(n)
3,k

+ C
η
(n)
3,k

+ C
W

(n)
3,k

+ C
w

(n)
3,k

, (135)

where (see Eqs. (55)-(56)): 1) the cost C
C

(n)
3,k

is equal to 14D3/3 + D2/2 + 5D/6 flops; 2) the cost C
η
(n)
3,k

is

equal to 4D2−D flops (the cost for computing C
W

(n)
k

has been already accounted for at point 1)); 3) the cost

29



C
W

(n)
3,k

is equal to 2D3/3 + 3D2/2 + 5D/6 flops; 4) the cost C
w

(n)
3,k

is equal to 2D2 −D flops. The expressions

listed at points 1)-4) can be exploited for the DDBSA too; in the last case, however, DN = 0 and D = DL

must be assumed.
The third term appearing in the RHS of Eq. (133) is computed as

Csm(1) = C
W

(n)
4,k

+ C
w

(n)
4,k

+ C
C

(n)
4,k

+ C
η
(n)
4,k

, (136)

where (see Eqs. (59)-(60)): 1) the cost C
W

(n)
4,k

is equal to D2 flops; 2) the cost C
w

(n)
4,k

is equal to D flops; 3)

the cost C
C

(n)
4,k

is equal to 2D3/3 + 3D2/2 + 5D/6 flops; 4) the cost C
η
(n)
4,k

is equal to 2D2 − D flops. The

expressions listed at points 1)-4) can be exploited for the DDBSA too; in the last case, however, DN = 0
and D = DL must be assumed.

The fourth term appearing in the RHS of Eq. (133) is given by

Cbp(2) = Np

(
C
η
(N)
3,k,j

+ C
C

(N)
3,k,j

+ C
D

(n)
3,k,j

+ C
Z

(n)
3,k,j

)
, (137)

where (see Eqs. (66)-(67) and (64)-(65)): 1) the cost C
η
(N)
3,k,j

is equal to CA(N) + Cf (N) + 2DLDN flops; 2) the

cost C
C

(N)
3,k,j

is equal to 2D2
LDN + 2DLD

2
N −DLDN flops (the cost for computing CA(N) and Cf (N) has been

already accounted for at point 1)); 3) the cost C
D

(n)
3,k,j

is equal to D3
N/3 +D2

N + 5DN/3 + 2 flops; 4) the cost

C
Z

(n)
3,k,j

is equal to 2D2
N + 2DN − 1 flops.

The fifth term appearing in the RHS of Eq. (133) is evaluated as

Cpm(2) = Np

(
C
η̌
(n)
z,k,j

+ C
Č

(n)
z,k,j

+ C
W̌

(n)
2,k,j

+ C
w̌

(n)
2,k,j

+ C
D

(n)
2,k,j

+ C
Z

(n)
2,k,j

)
, (138)

where (see Eqs. (69)-(74)): 1) the cost C
η̌
(n)
z,k,j

is equal to CA(L) + 2D2
L flops; 2) the cost C

Č
(n)
z,k,j

is equal to

4D3
L−D2

L flops (the cost for computing CA(L) has been already accounted for at point 1)); 3) the cost C
W̌

(n)
2,k,j

is equal to 2D3
L/3 + 5D2

L/2 + 5DL/6 flops; 4) the cost C
w̌

(n)
2,k,j

is equal to Cf (L) + 4D2
L −DL flops; 5) the cost

C
D

(n)
2,k,j

is equal to D3
L/3 + 2D2

L + 5DL/3 + 2 flops; 6) the cost C
Z

(n)
2,k,j

is equal to 6D2
L + 3DL − 1 flops.

The sixth term appearing in the RHS of Eq. (133) is computed as

Cms(2) = Np

(
C
η̄
(n)
5,k,j

+ C
C̄

(n)
5,k,j

+ C
D

(n)
5,k,j

+ C
Z

(n)
5,k,j

)
, (139)

where (see Eqs. (83)-(86)): 1) the cost C
η̄
(n)
5,k,j

is equal to CB +Cg + 2PDL flops; 2) the cost C
C̄

(n)
5,k,j

is equal to

2PD2
L + 2P 2DL−PDL flops (the cost for computing CB has been already accounted for at point 1)); 3) the

cost C
D

(n)
5,k,j

is equal to D3
L/3+D2

L+5DL/3+2 flops; 4) the cost C
Z

(n)
5,k,j

is equal to 2P 3/3+7P 2/2+17P/6−1

flops. It is important to note that, if the forward weights {wfe,k,j} are reused, the cost Cms(2) appearing in
Eq. (139) is equal to zero.

The seventh term appearing in the RHS of Eq. (133) is given by

Cbe2(2) = Np

(
C
D

(n)
6,k,j

+ C
Z

(n)
6,k,j

+ C
w

(n)
6,k,j

)
, (140)

where the costs C
D

(n)
6,k,j

and C
Z

(n)
6,k,j

are equal to 2 flops, and the cost C
w

(n)
6,k,j

is equal to 3 flops (see Eqs.

(89)-(91)). If the forward weights {wfe,k,j} are reused, the costs C
D

(n)
6,k,j

and C
Z

(n)
6,k,j

are equal to 1 flops,

whereas the cost C
w

(n)
6,k,j

remains unchanged.

The last term appearing in the RHS of Eq. (133) is evaluated as

Csm(2) = C
w

(n)
1,k,j

+ C
W

(n)
1,k,j

, (141)

where the costs C
w

(n)
1,k,j

and C
W

(n)
1,k,j

are equal to Np and 2Np − 1 flops, respectively (see Eqs. (95)-(96)).
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Phase III - The overall computational cost of this task is evaluated as

C3 = Cbe(2) + Cpm(1) + Cbe1(1) + Cbe(1) . (142)

Here, the cost Cbe(2) is equal to CS(Np), that represents the total cost of a sampling step that involves a
particle set of size Np; moreover, the costs Cpm(1) and Cbe1(1) are the same as those appearing in the RHS of
Eq. (133), and Cbe(1) is computed as (see Eqs. (102)-(105))

Cbe(1) = CWms,k
+ Cwms,k

+ CWbe2,k
+ (143)

Cwbe2,k
+ CCbe

+ Cηbe
.

Moreover, we have that: 1) the cost CWms,k
is equal to CH + 2P 2D + 2PD2 − D2 − PD flops; 2) the cost

Cwms,k
is equal to CB +Cg +2P 2D+3PD+2PDL−P −D flops (the cost for computing CH has been already

accounted for at point 1)); 3) the cost CWbe2,k
is equal to D2 flops; 4) the cost Cwbe2,k

is equal to D flops;
5) the cost CCbe

is equal to 2D3/3 + 3D2/2 + 5D/6 flops; 6) the cost Cηbe
is equal to 2D2 −D flops. The

expressions listed at points 1)-6) can be exploited for the DDBSA too; in the last case, however, DN = 0
and D = DL must be assumed. Note that the costs CWms,k

and Cwms,k
(see points 1) and 2)) are ignored if

the precision matrix Wms,k and the transformed mean vector wms,k are stored in the forward pass (so that
they do not need to be recomputed in the backward pass). Moreover, if the SDBSA or the SDDBSA is used,
the cost Cbe(2) in the RHS of Eq. (142) becomes DN (2Np − 1) flops.

Finally, it is worth stressing that, if the DBSA or the DDBSA (the SDBSA or the SDDBSA) is employed,
the overall computational complexity is obtained by multiplying the computational cost assessed for a single
recursion by M T (by T ), where M and T denote the overall number of accomplished backward passes and
the duration of the observation interval, respectively.
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[2] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge, U.K.: Cambridge Univ. Press, 2013.

[3] A. Doucet, S. Godsill and C. Andrieu, “On Sequential Monte Carlo Sampling Methods for Bayesian
Filtering”, Statist. Comput., vol. 10, no. 3, pp. 197-208, 2000.

[4] G. Kitagawa, “Non-Gaussian state-space modeling of nonstationary time series”, Journal of the Amer-
ican Statistical Association, vol. 82, pp. 1032-1063, 1987.

[5] G. Kitagawa, “The two-filter formula for smoothing and an implementation of the Gaussian-sum
smoother”, Annals of the Institute of Statistical Mathematics, vol. 46, pp. 605-623, 1994.

[6] Y. Bresler, “Two-filter formula for discrete-time non-linear Bayesian smoothing”, Int. Journal of Con-
trol, vol. 43, no. 2, pp. 629-641, 1986.

[7] B. N. Vo, B. T. Vo and R. P. S. Mahler, “Closed-Form Solutions to Forward–Backward Smoothing”,
IEEE Trans. Sig. Proc., vol. 60, no. 1, pp. 2-17, Jan. 2012.
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