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Abstract

The recent literature on first order methods for smooth optimization shows that significant
improvements on the practical convergence behaviour can be achieved with variable stepsize
and scaling for the gradient, making this class of algorithms attractive for a variety of relevant
applications. In this paper we introduce a variable metric in the context of the ǫ-subgradient
projection methods for nonsmooth, constrained, convex problems, in combination with two
different stepsize selection strategies. We develop the theoretical convergence analysis of the
proposed approach and we also discuss practical implementation issues, as the choice of the
scaling matrix. In order to illustrate the effectiveness of the method, we consider a specific
problem in the image restoration framework and we numerically evaluate the effects of a
variable scaling and of the steplength selection strategy on the convergence behaviour.

1 Introduction

In this paper we consider the problem
min
x∈X

f(x) (1)

where f : R
n → R ∪ {∞} is a convex, proper, lower semicontinuous function and X is a

nonempty, closed, convex subset of Rn contained in the domain of f . We denote by X∗ the
set of the solutions of (1). We are interested in the case where f is nondifferentiable and
a subgradient or an approximate subgradient of f can be easily computed. This arises for
example in duality and minimax contexts. A well-known method to solve the problem (1) is the
ǫ-subgradient method:

x(k+1) = PX

(

x(k) − αku
(k)
)

(2)

where u(k) ∈ ∂ǫkf(x
(k)) for some ǫk ≥ 0, αk is a positive stepsize and PX(·) is the Euclidean

projection operator on the set X. The choice ǫk = 0 for all k corresponds to the subgradient
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method, which has been extensively investigated (see for example the contributions collected in
[26, 32, 43, 48]).

The more general case allowing ǫk > 0 was introduced and developed in [26, 43], while more
recent convergence results under different assumptions are given in [1, 22, 35, 37, 45, 49]. A
typical assumption on the sequence {ǫk} is that

lim
k→∞

ǫk = 0 (3)

and, in this case, the subgradient and the ǫ-subgradient methods have very similar convergence
properties. In the following discussion we assume that (3) holds.

The ǫ-subgradient method is interesting in itself, since, when the projection on X is easy
to compute and an approximate subgradient is available, it can be easily implemented, but it
is also a useful tool to analyze the theoretical convergence properties of a variety of algorithms
[15, 27, 42, 45].

We can distinguish different variants of the method (2) according to the rule adopted to
select the stepsize. We list below the most studied stepsize choices for subgradient methods,
which, with minor modifications, could be applied also to the case ǫk > 0:

(R1) the constant stepsize rule αk = α > 0;

(R2) the Polyak rule

αk = ck
f(x(k))− f∗

‖u(k)‖2 or αk = ck
f(x(k))− f∗

max{1, ‖u(k)‖2} ck ∈ (0, 2)

where f∗ is the minimum of f

(R3) the Ermoliev or diminishing, divergent series stepsize rule, which includes any sequences
{αk} such that

αk > 0 lim
k→∞

αk = 0

∞
∑

k=0

αk = ∞ (4)

(R4) the diminishing, divergent series, square summable stepsize rule, which, in addition to (4),
also requires

∑∞
k=0 αk

2 < ∞.

(R5) the dynamic or adaptive stepsize rule

αk =
f(x(k))− fk

‖u(k)‖2 or αk =
f(x(k))− fk

max{1, ‖u(k)‖2} (5)

where fk is an adaptively computed estimate of f∗; several further variants of this rule,
which can be considered as an approximation of (R2) when f∗ is not known, depend on
how fk is defined.

Keeping a constant stepsize as in (R1), only the convergence of a subsequence of {f(x(k))} to
a possibly suboptimal value is established, i.e. lim infk f(x

(k)) ≤ f∗ + Cα, for some positive
constant C [10, 40]; for rules (R3) and (R5) stronger results have been proved [32, 37, 40],
showing that limk f(x

(k)) = f∗ and minx∗∈X∗ ‖x∗ − x(k)‖ → 0 (with the assumption ǫk = 0
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for the latter case). Finally, the convergence of the sequence {x(k)} to a solution of (1) can be
proved in the cases (R2), with ǫk = 0, and (R4) [1, 37].

Results about an optimal stepsize choice to obtain a suboptimal rate of convergence for the
subgradient method are reported in [41]; in [10, Sec. 6.3], a convergence analysis is performed
for different stepsize choices while in [3] analogous results are obtained with respect to non
Euclidean metrics.

The key property that the stepsize parameter has to induce on the iterates (2) which is ex-
ploited in the standard convergence analysis for subgradient methods is the quasi-Féjer mono-
tonicity with respect to the set X∗

‖x(k+1) − x∗‖2 ≤ ‖x(k) − x∗‖2 + ηk ∀x∗ ∈ X∗

for some nonnegative sequence {ηk} such that
∑

ηk < ∞ (see [7, 18]).
It is worth noticing that the stepsize in subgradient methods plays quite a different role than

in the smooth case, where an analogous parameter is employed to ensure the sufficient decrease
of the objective function, and, in some kind of schemes, also to accelerate the convergence, for
example by means of the well known Barzilai–Borwein rules [6, 23, 30] (see also [2, 29] for recent
developments in this field). Thus, these valid approaches to the stepsize selection for the smooth
case are difficult to extend to the method (2).

On the other side, recent advances in the context of gradient based methods show that
introducing a variable scaling matrix for the gradient can lead to significant improvements
on the practical performances [5, 16, 12, 34, 50], especially on large scale and ill conditioned
problems. Variable metric was introduced also in [20] in the context of monotone operators and
in [39, Chapter 5] in the subgradient methods for unconstrained optimization.

Motivated by this, we propose to introduce a variable scaling matrix for the ǫ-subgradient
vector in the iteration (2). More precisely, the contribution of this paper is to provide the
convergence analysis, under standard assumptions, of the following scaled ǫ-subgradient scheme:

x(k+1) = P
X,D−1

k

(

x(k) − αkDku
(k)
)

(6)

where Dk is a symmetric positive definite matrix with bounded eigenvalues, the projection
operator is defined as

PX,D−1
k
(x) = argminz∈X (x− z)D−1

k (x− z) (7)

and αk is chosen either as an a priori selected sequence obeying to the diminishing, divergent
series, summable squares stepsize rule (R4), or with an adaptive rule (R5) of Brännlund’s type
[17, 33, 40].

In the first case, assuming that the set X∗ is nonempty, we prove the convergence of the
sequence {x(k)}k∈N to a point x∗ ∈ X∗, while in latter one we prove the convergence of the
sequence {f(x(k))}k∈N to the minimum value f∗.

A further contribution of the paper is to introduce, as special case of (6) and also as a
generalization of the method in [15], a Scaled Primal–Dual Hybrid Gradient (SPDHG) method,
which applies to the case

min
x∈X

f0(x) + f1(Ax) (8)

where f0 and f1 are convex, proper, lower semicontinuous functions and A is a linear operator.
Many relevant problems can be modeled, as, for example, the restoration of images approached
from the Bayesian paradigm [31].
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Several methods for the solution of (8) have been developed in the recent literature: in
particular, when f0 is continuously differentiable with Lipschitz continuous gradient, suitable
splitting and forward-backward methods can be applied [20, 21, 38]. As we will show in Section
4, problem (8) can be handled also by SPDHG, even when f0 is non differentiable or its gradient
is not Lipschitz continuous on dom(f0). In particular, we provide an especially tailored imple-
mentation of SPDHG for the Total Variation (TV) restoration of images corrupted by Poisson
noise. This problem is related to several applications such as astronomical imaging, electronic
microscopy, single particle emission computed tomography (SPECT) and positron emission to-
mography (PET), and a variety of specialized methods have been proposed for its solution (see
[4, 14, 24, 25, 28, 47] and references therein). For this special case of SPDHG, we devise an
effective strategy to choose the scaling matrix, showing that significant improvements on the
practical convergence speed can be obtained.

The paper is organized as follows. In Section 2 we present a convergence analysis for the
scaled ǫ-subgradient method (6) when the stepsizes are chosen according to a diminishing, di-
vergent series, square summable stepsize rule. At the end of the section our results are also
compared to the very recent works [19, 20], where variable metrics are studied from the point
of view of more general operators.

Building on this material, in Section 3 we propose a generalization to variable scaling and
approximate subgradients of the level algorithm in [33, 40], based on a dynamic stepsize selection
rule, showing that in our more general settings the main properties still hold. Further, in Section
4 we consider problem (8) and we present the SPDHG method, proving its convergence as special
case of an ǫ-subgradient scheme. In order to illustrate a practical implementation of SPDHG,
in Section 5 we describe the problem of deblurring an image corrupted by Poisson noise via the
TV regularization. A suitable scaling for the SPDHG method is discussed and an algorithm for
its computation is detailed. In Section 6, we describe some numerical simulations concerning
the considered application, with the aim to evaluate the effectiveness of the scaling technique in
the ǫ-subgradient methods in combination with the two stepsize selection strategies analyzed in
the previous sections. The numerical experiments show that a suitable selection of the scaling
matrix can be a very effective tool to improve the convergence behaviour also in nonsmooth
methods. Finally, some concluding remarks are given in Section 7.

Notations and definitions. In the following, ‖ · ‖ denotes the Euclidean vector or matrix
norm. Given x ∈ R

n and a symmetric and positive definite matrixD of order n, ‖x‖D denotes the
energy norm, i.e. ‖x‖D =

√
xTDx, and PX,D(x) = argminy∈X‖y− x‖2D. By dom(f) we indicate

the domain of any function f : Rn → R ∪ {∞}, i.e. dom(f) = {x ∈ R
n : f(x) < ∞}, while

diam(X) denotes the diameter of the closed, convex set X ⊂ R
n, diam(X) = maxx,z∈X ‖x− z‖.

The Fenchel dual or conjugate of f is defined as f∗(y) = supx∈Rn xT y − f(x). Furthermore, we
recall that the ǫ-subdifferential of f at x ∈ dom(f) for some ǫ ∈ R, ǫ ≥ 0, is the set

∂ǫf(x) = {p ∈ R
n : f(z) ≥ f(x) + pT (z − x)− ǫ, ∀z ∈ R

n}

Any vector p ∈ ∂ǫf(x) is an ǫ-subgradient of f at x [46, §23].
If f(x) =

∑n
i=1 βifi(x), where βi ≥ 0, ui ∈ ∂ǫifi(x) and x ∈ ⋂n

i=1 dom(fi), then
∑n

i=1 βiui ∈
∂ǫf(x), where ǫ =

∑n
i=1 ǫi. The proof of this property can be found in [15, 46].
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2 Convergence analysis with square summable stepsize sequences

In this section we show that with the rule (R4) the method (6) generates a sequence of points
converging to a solution of (1), under standard assumptions on the error sequence ǫk and the
scaling matrices Dk.

Before giving the main convergence result, we prove the following two useful lemmata con-
cerning the energy norm, the corresponding projection operator and the summable sequences.

Lemma 2.1 Let D be a symmetric positive definite matrix. The following relations hold.

(i) For all a, b, c ∈ R
n, we have

‖a− b‖2D + ‖b− c‖2D − ‖a− c‖2D = 2(b− a)TD(b− c)

(ii) For any x ∈ R
n, z ∈ X we have

(PX,D−1(x)− x)TD−1(z − PX,D−1(x)) ≥ 0 (9)

(PX,D−1(x)− x)TD−1(z − x) ≥ 0 (10)

(iii) For any x, z ∈ R
n we have

‖PX,D−1(x)− PX,D−1(z)‖D−1 ≤ ‖x− z‖D−1

(iv) Let L a positive number such that ‖D‖ = λmax(D) ≤ L and ‖D−1‖ = 1
λmin(D) ≤ L, then

‖PX,D−1(x)− PX,D−1(z)‖ ≤ L‖x− z‖ (11)

Proof. Part (i) directly follows from the definition of ‖·‖D , while the optimality conditions of the
minimum problem (7) yield part (ii) (see also [11, Proposition 3.7]). Part (iii) is a consequence
of (9) and of the Cauchy–Schwartz inequality. For (iv), see [16, Lemma 2.1]. �

Lemma 2.2 Let {Lk} be a sequence of positive numbers such that L2
k = 1 + γk, γk ≥ 0, where

∑∞
k=0 γk < ∞. Let θk =

∏k
j=0 L

2
j for any k ≥ 0. Then the sequence {θk} is bounded.

Proof. We want to show that there exists a constant M > 0 such that θk ≤ M for all k ≥ 0. By
the monotonicity of the logarithm, this is true if and only if log(θk) ≤ log(M). By definition of
θk we have

log(θk) =

k
∑

j=0

log(L2
j ) ≤

∞
∑

j=0

log(L2
j ) (12)

Thus, if the series on the right hand side of (12) converges, the quantities θk are bounded for
all k. We observe that, since L2

k = 1 + γk, where γk → 0 as k diverges, by the known limit

limk→∞
log(1+γk)

γk
= 1, the series

∑∞
j=0 log(L

2
j ) and

∑∞
j=0 γj have the same behavior. Thus, since

by hypothesis the latter one is convergent, the theorem follows. �

We are now ready to present the main convergence result about the method (6) with diminishing,
divergent series, summable square stepsize sequences, whose proof is developed using similar
techniques as in [1, Lemma 1] and [37, Theorem 8].
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Theorem 2.1 Let {x(k)} ⊂ Ω be the sequence generated by iteration (6), where u(k) ∈ ∂ǫkf(x
(k)),

for a given sequence {ǫk} ⊂ R, ǫk ≥ 0. Assume that the set of the solutions of (1) X∗ is
nonempty and that there exists a positive constant ρ such that ‖u(k)‖ ≤ ρ and a sequence of
positive numbers {Lk} such that ‖Dk‖ ≤ Lk, ‖D−1

k ‖ ≤ Lk, with 1 ≤ Lk ≤ L for some positive
constant L, for all k ≥ 0. If the following conditions holds

lim
k→∞

ǫk = 0 (13)

∞
∑

k=0

αk = ∞ (14)

∞
∑

k=0

αk
2 < ∞

∞
∑

k=0

ǫkαk < ∞ (15)

L2
k = 1 + γk

∞
∑

k=0

γk < ∞ (16)

then, the sequence {x(k)} converges to a solution of (1).

Proof. For all k let us define z(k) = x(k) − αkDku
(k). By Lemma 2.1 part (iii) we have that

‖x(k+1) − x(k)‖D−1
k

≤ ‖z(k) − x(k)‖D−1
k

≤ L
1
2
k αk‖u(k)‖ ≤ L

1
2
k αkρ (17)

Then, thanks to Lemma 2.1, part (i), for any x̃ ∈ X∗ we can write

Lkαk
2ρ2 +‖x(k) − x̃‖2

D−1
k

− ‖x(k+1) − x̃‖2
D−1

k

≥

≥ ‖x(k+1) − x(k)‖2
D−1

k

+ ‖x(k) − x̃‖2
D−1

k

− ‖x(k+1) − x̃‖2
D−1

k

= 2(x(k) − x̃)TD−1
k (x(k) − x(k+1))

= 2(x(k) − x̃)TD−1
k (x(k) − z(k)) + 2(x(k) − x̃)TD−1

k (z(k) − x(k+1))

= 2αk(x
(k) − x̃)Tu(k) + 2(x(k) − z(k))TD−1

k (z(k) − x(k+1)) + 2(z(k) − x̃)TD−1
k (z(k) − x(k+1))

= 2αk(x
(k) − x̃)Tu(k) + 2(x(k) − z(k))TD−1

k (z(k) − x(k+1)) +

+2(z(k) − x̃)TD−1
k (z(k) − P

X,D−1
k
(z(k)))

≥ 2αk(x
(k) − x̃)Tu(k) + 2(x(k) − z(k))TD−1

k (z(k) − x(k+1))

= 2αk(x
(k) − x̃)Tu(k) + 2(x(k) − z(k))TD−1

k (z(k) − x(k)) + 2(x(k) − z(k))TD−1
k (x(k) − x(k+1))

= 2αk(x
(k) − x̃)Tu(k) − 2(x(k) − z(k))TD−1

k (x(k) − z(k)) + 2αk(x
(k) − x(k+1))Tu(k)

≥ 2αk(x
(k) − x̃)Tu(k) − 2αk

2‖u(k)‖2 · ‖Dk‖ − 2αk‖x(k) − x(k+1)‖ · ‖u(k)‖
≥ 2αk(x

(k) − x̃)Tu(k) − 2Lkαk
2‖u(k)‖2 − 2αk

2Lk‖u(k)‖2

≥ 2αk(x
(k) − x̃)Tu(k) − 4αk

2Lkρ
2 (18)

≥ 2αk(f(x
(k))− f(x̃)− ǫk)− 4αk

2Lkρ
2

≥ −2αkǫk − 4αk
2Lkρ

2

≥ −2Lkαkǫk − 4αk
2Lkρ

2

where the first inequality follows from (17), while we use Lemma 2.1 (ii) in the second one,
the definition of z(k) and the Cauchy–Schwartz inequality in the third one, the assumption
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‖Dk‖ ≤ Lk and (11) in the fourth one, the bound ‖u(k)‖ ≤ ρ in the fifth one, the definition
of ǫ-subgradient in the sixth one, the fact that x̃ ∈ X∗ in the seventh one and the inequality
Lk ≥ 1 in the last one.
Upon rearranging terms, this yields

‖x(k+1) − x̃‖2
D−1

k

≤ ‖x(k) − x̃‖2
D−1

k

+ 5Lkαk
2ρ2 + 2Lkαkǫk (19)

Since we have

‖x(k+1) − x̃‖2
D−1

k

≥ λmin(D
−1
k )‖x(k+1) − x̃‖2 ≥ 1

Lk

‖x(k+1) − x̃‖2

‖x(k) − x̃‖2
D−1

k

≤ λmax(D
−1
k )‖x(k) − x̃‖2 ≤ Lk‖x(k) − x̃‖2

(20)

we can also write

‖x(k+1) − x̃‖2 ≤ L2
k‖x(k) − x̃‖2 + 5L2

kαk
2ρ2 + 2L2

kαkǫk

≤ L2
k‖x(k) − x̃‖2 + σL2

kαk
2 + 2L2

kαkǫk

where σ = 5ρ2. By repeatedly applying the previous inequality we obtain

‖x(k+1) − x̃‖2 ≤ L2
k‖x(k) − x̃‖2 + σL2

kαk
2 + 2L2

kαkǫk

≤ L2
k(L

2
k−1‖x(k−1) − x̃‖2 + σL2

k−1α
2
k−1 + 2L2

k−1αk−1ǫk−1) + σL2
kαk

2 + 2L2
kαkǫk

≤ θk0‖x(0) − x̃‖2 + σ

k
∑

j=0

θkjα
2
j + 2

k
∑

j=0

θkjαjǫj (21)

where θkj =
∏k

i=j L
2
i , j ≤ k. Since L2

i ≥ 1 we have 1 ≤ θkj ≤ θkj−1 ≤ θk0 , which implies

‖x(k+1) − x̃‖2 ≤ θk0‖x(0) − x̃‖2 + σθk0

k
∑

j=0

α2
j + 2θk0

k
∑

j=0

αjǫj

≤ M



‖x(0) − x̃‖2 + σ

k
∑

j=0

α2
j + 2

k
∑

j=0

αjǫj





where the last inequality follows from Lemma 2.2. Thus, by conditions (15), the sequence
{x(k)} is bounded. In order to show that {x(k)} converges to a solution of (1), we now consider
inequality (18), which, in view of (20), results in

‖x(k+1) − x̃‖2 ≤ L2
k‖x(k) − x̃‖2 + L8

kαk
2ρ2 + 4αk

2L4
kρ

2 − 2αkLk(x
(k) − x̃)Tu(k)

≤ L2
k‖x(k) − x̃‖2 + σL2

kαk
2 + 2αkLk(x̃− x(k))Tu(k)

By repeatedly applying the previous inequality we obtain

‖x(k+1) − x̃‖2 ≤ θk0‖x(0) − x̃‖2 + σ

k
∑

j=0

θkjα
2
k + 2

k
∑

j=0

θ̃kjαj(x̃− x(j))Tu(j) (22)

where θ̃kj = θkj /Lj . Since x̃ ∈ X∗ and u(j) ∈ ∂ǫkf(x
(j)), for all j ≥ 0 we have

f(x(j)) ≥ f(x̃) ≥ f(x(j)) + (x̃− x(j))Tu(j) − ǫj (23)
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Hence, (x̃− x(j))Tu(j) ≤ ǫj for all j ≥ 0.
Now, we show that (x̃ − x(j))Tu(j) → 0 for j → ∞. To this end, assume by contradiction that
(x̃− x(j))Tu(j) < −ǫ for some ǫ > 0. Then, by inequality (22) we obtain

‖x(k+1) − x̃‖2 ≤ M‖x(0) − x̃‖2 + σM

k
∑

j=0

α2
k − 2

ǫ

L

k
∑

j=0

αj

where we applied the inequalities 1 ≤ θkj ≤ θkj−1 ≤ θk0 ≤ M , 1 ≤ Lk ≤ L. Then, taking
limits for k → ∞, by assumption (14) we have an absurdum. Thus, there exists a subsequence
{x(ki)} such that limi(x̃− x(ki))Tu(ki) = 0. Then, from (23) and the assumption (15) it follows
that limi f(x

(ki)) = f∗. Since {x(k)} is bounded, {x(ki)} is also bounded and, thus it has an
accumulation point x∞. By the continuity of f(x) and by inequality (23) we can conclude that
x∞ ∈ X∗.

Now we show that the whole sequence {x(k)} converges to x∞. Let δ > 0; since x∞ is
an accumulation point of {x(k)} and from (15), there exists a positive integer mδ such that
‖x∞ − x(mδ)‖2 ≤ δ/(3M),

∑∞
j=mδ

αk
2 < δ/(3σM) and

∑∞
j=mδ

αkǫk < δ/(6M). Then, for any
k > mδ, using the same arguments as in (21), we obtain

‖x(k) − x∞‖2 ≤ θk−1
mδ

‖x(mδ) − x∞‖2 + σ

k−1
∑

j=mδ

θk−1
j α2

j + 2

k−1
∑

j=mδ

θk−1
j αjǫj

≤ M‖x(mδ) − x∞‖2 + σM
∞
∑

j=mδ

α2
j + 2M

∞
∑

j=mδ

αjǫj

≤ δ

Since δ can be chosen arbitrarily small, then {x(k)} converges to x∞. �

We now discuss some further issues about Theorem 2.1, relating our results with the recent
literature, in particular with the papers [19, 20] and [39].

Remark 1. From equation (19), observing that

‖x(k+1) − x̃‖2
D−1

k

≥ λmin(D
−1
k )‖x(k+1) − x̃‖2

=
λmin(D

−1
k )

λmax(D
−1
k+1)

λmax(D
−1
k+1)‖x(k+1) − x̃‖2

≥ λmin(D
−1
k )λmin(Dk+1)‖x(k+1) − x̃‖2

D−1
k+1

≥ 1

LkLk+1
‖x(k+1) − x̃‖2

D−1
k+1

we obtain
‖x(k+1) − x̃‖2

D−1
k+1

≤ ζk‖x(k) − x̃‖2
D−1

k

+ ξζkαk
2 + 2Lζkαkǫk

where ζk =
√

(1 + γk)(1 + γk+1) and ξ = 5Lρ2. By the assumptions made on {γk}, the sequence
{ζk} is bounded. We can also set ζk = 1+ηk, with ηk =

√

(1 + γk)(1 + γk+1)−1, and observe that
the series

∑

ηk and
∑

γk have the same behaviour, thanks to the limit limz→0(
√
1 + z− 1)/z =

1/2. Then, since the assumption (16), we can conclude that
∑

ηk is a convergent series.
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Thus, the sequence {x(k)}k∈N is quasi-Fejér monotone with respect to X∗ relative to {D−1
k },

in the sense of [19, Definition 3.1] and we could apply Proposition 3.2 in [19] (see also [20]) to
obtain that {‖x(k) − x̃‖D−1

k
}k∈N converges and, thus, {x(k)}k∈N is bounded.

However, the techniques we used in the proof of Theorem 2.1 to show the boundedness of
{x(k)} allow to prove the convergence of the whole sequence {x(k)} to a solution of (1) and are
employed also in the following section.

Variable metric was introduced also in [39, Chapter 5] in the context of subgradient methods
for unconstrained problems (i.e. X = R

n). In this case, setting Dk = BkB
T
k , the scaling

matrices are assumed to satisfy ‖B−1
k+1Bk‖ ≥ 1 and

∏∞
k=0 ‖B−1

k+1Bk‖2 < ∞. Even if the second
condition is verified under the assumptions of Theorem 2.1, we observe that the requirement
‖B−1

k+1Bk‖ ≥ 1 restricts the choice of the scaling matrix, strictly connecting the metrics adopted
in two successive iterates.

Remark 2. One of the crucial assumptions of Theorem 2.1 concerns the boundedness of the
sequence {u(k)}, u(k) ∈ ∂ǫkf(x

(k)). This assumption is satisfied for example when diam(dom(f∗))
is finite. Indeed, it holds dom(f∗) =

⋃

x∈Rn ∂ǫf(x), for every ǫ > 0 (see Remark 2 in [51]).
Moreover, if diam(dom(f∗)) = M for some M > 0, by definition of ǫ-subdifferential we obtain
|f(x)− f(z)| ≤ M‖x− z‖+ ǫ. Since ǫ is arbitrary, it follows that f is Lipschitz continuous with
constant M .

Remark 3. The convergence analysis of Theorem 2.1 applies also to further variants of the
iteration (6), as for example the following one:

x(k+1) = PX,D−1
k

(

x(k) − αk

max(1, ‖u(k)‖Dk
)
Dku

(k)

)

(24)

The convergence of the method (24) can be analyzed as follows.

Corollary 2.1 Let {x(k)}k∈N a sequence satisfying (24) such that the assumptions of Theorem
2.1 are satisfied. Then, {x(k)}k∈N converges to a solution of problem (1).

Proof. Let us define ᾱk = αk

max(1,‖u(k)‖Dk
)
. From the inequalities

1 ≤ max(1, ‖u(k)‖Dk
) ≤ max(L

1
2ρ, 1)

it follows that
∑

ᾱk =
∑ αk

max(1, ‖u(k)‖Dk
)
≥ 1

max(L
1
2ρ, 1)

∑

αk = ∞

∑

ᾱ2
k =

∑ αk
2

max(1, ‖u(k)‖Dk
)2

≤
∑

αk
2 < ∞

∑

ᾱkǫk =
∑ αk

max(1, ‖u(k)‖Dk
)
ǫk ≤

∑

αkǫk < ∞

Then, we can invoke Theorem 2.1 to obtain the result. �

The results in this Section can be exploited for the practical implementation of the methods (6)
and (24), since they indicates how to choose the sequence {αk}, and they are employed also in
the convergence analysis of (24) equipped with an adaptive stepsize rule, as the one described
in the following.
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3 Convergence analysis with dynamic stepsize rule

A critical point for the implementation of the methods (6) and (24) is how to select the sequence
{αk}; a practical strategy to obtain good performances is still an open problem, since they are
in general quite sensitive to this choice [15]. Borrowing the ideas of [17] and [33], in this section
we describe a level algorithm that allows to adaptively compute a stepsize αk of the form (5) in
the iteration (24). In our scheme we introduce the use of the ǫ-subgradient of f at the current
iterate (instead of the subgradient) and a variable metric. The resulting algorithm is detailed in
Algorithm 1, whose underlying assumption is that, for any given ǫk ≥ 0, we are able to provide
an element u(k) of the set ∂ǫkf(x

(k)). In Algorithm 1, we have f rec
k = mini=0,...,k f(x

(i)), while

Algorithm 1 Scaled ǫ-Subgradient Level Algorithm (SSL)

Choose B > 0, ν1, ν2 ∈ (0, 1), f rec
−1 = ∞; k = 0, l = 0, k(l) = 0, δ0 > 0; choose x(0) ∈ X.

For k = 0, 1, 2, ...

Step 1. Computation of f(x(k))

Step 2. If f(x(k)) < f rec
k−1, then f rec

k = f(x(k)) else f rec
k = f rec

k−1

Step 3. If f(x(k)) < f rec
k(l) − ν1δl, then k(l + 1) = k, σk = 0, δl+1 = δl, l = l + 1 and go to

Step 5.

Step 4. If σk > B, then k(l + 1) = k, σk = 0, δl+1 = ν2δl, l = l + 1.

Step 5. Set f lev
k = f rec

k(l) − δl

Step 6. Update the stepsize and compute the new iterate

αk =
f(x(k))− f lev

k

max(1, ‖u(k)‖Dk
)

x(k+1) = PX,D−1
k

(

x(k) − αkDk
u(k)

max(1, ‖u(k)‖Dk
)

)

(25)

Step 7. σk+1 = σk + αk and go to Step 1.

End

l is the number of times that the value f lev has been updated and k(l) is the iteration where
the l-th updating occurred. Finally, σk is the cumulative path length between two successive
updates of f lev.
Steps 2-5 aim to provide in f lev

k an estimate of the optimal function value at the iterate k, which
is used as target level for the successive iterates until the objective function value is sufficiently
close to it or the iterates move through a long path without approaching it. In the first case, i.e.
when the inequality at Step 3 is satisfied, f lev

k is reduced at Step 5 by subtracting the positive
quantity δl to the best value obtained so far, f rec. In the other case, when the inequality at Step
4 is satisfied, the estimated difference from the optimal value δl is reduced and, as a consequence
of Step 5, the target level f lev

k is increased.
One of the main differences between the stepsize computed by Algorithm 1 and the square

summable sequence considered in the previous section is that the former one does not necessarily
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converge to zero.
In the rest of this section we prove that the sequence {f(x(k))}, where x(k) is computed

by Algorithm 1, converges to the minimum of f , using similar techniques as in [40]. Before
giving the main result, whose proof also exploits the results in Section 2, we recall the following
technical lemma. We omit the proof, since it runs as that of Lemma 2.2 in [40].

Lemma 3.1 Assume that the set X∗ of the solutions of (1) is nonempty. Assume that there
exists a positive constant ρ such that ‖u(k)‖ ≤ ρ, u(k) ∈ ∂ǫkf(x

(k)), and a sequence of positive
numbers {Lk} such that ‖Dk‖ ≤ Lk, ‖D−1

k ‖ ≤ Lk, with 1 ≤ Lk ≤ L for some positive constant
L, for all k ≥ 0. Given B > 0 and {ǫk} such that ǫk → 0 as k → ∞ in Algorithm 1, we have
l → ∞ and δl → 0 as l → ∞.

The following Theorem can be considered as a generalization of Proposition 2.7 in [40], which
only deals with the case Dk = I, ǫk = 0 for all k.

Theorem 3.1 Under the same assumptions of the previous Lemma, if (16) holds, for SSL we
have f̃ = infk≥0 f(x

(k)) = f(x∗), with x∗ ∈ X∗.

Proof. The first part of the proof aims to show that
∑

j αj = ∞ and runs as Proposition 2.7 in
[40]. For sake of completeness, we report below the detailed derivation of the result.
From Lemma 3.1, δl → 0 as l → ∞. Let S be given by S = {l ∈ {1, 2, ...}, δl = ν2δl−1}. Then,
from Step 4 and 6 of Algorithm 1, we obtain

σk = σk−1 + αk−1 =

k−1
∑

j=k(l)

αj

so that k(l + 1) = k and l + 1 ∈ S whenever
∑k−1

j=k(l) αj > B at Step 4. Hence

k(l)−1
∑

j=k(l−1)

αj > B ∀l ∈ S

and since the cardinality of S is infinite, we have

∞
∑

k=k(l)

αk ≥
∑

l≥l,l∈L

k(l)−1
∑

j=k(l−1)

αj >
∑

l≥l,l∈S

B = ∞ (26)

Now in order to obtain a contradiction, assume that f̃ > f(x∗), so that for some ỹ ∈ X and
some η > 0

f̃ − η ≥ f(ỹ) (27)

Since δl → 0 and ǫk → 0, there are large enough l and k such that, for all l ≥ l and k ≥ k, we
have δl < η/2 and ǫk < η/2 ; then for all k ≥ k̃ = max(k(l), k)

f lev
k − ǫk = f rec

k(l) − ǫk − δl > f̃ − η ≥ f(ỹ)
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From this inequality, by Lemma 2.1 (iii), the definition of ǫ-subgradient, the definition of αk we
obtain

‖x(k+1) − ỹ‖2
D−1

k

≤ ‖x(k) − ỹ‖2
D−1

k

− 2
αk

max(1, ‖u(k)‖Dk
)
(f(x(k))− f(ỹ)− ǫk) + α2

k

≤ ‖x(k) − ỹ‖2
D−1

k

− 2
αk

max(1, ‖u(k)‖Dk
)
(f(x(k))− f lev

k ) + α2
k

≤ ‖x(k) − ỹ‖2
D−1

k

− α2
k

In view of (20) with x̃ = ỹ and Lk ≥ 1, we can write

‖x(k+1) − ỹ‖2 ≤ L2
k‖x(k) − ỹ‖2 − α2

k (28)

By repeatedly applying the previous inequality we obtain

‖x(k+1) − ỹ‖2 ≤ θk
k̃
‖x(k̃) − ỹ‖2 −

k
∑

j=k̃

θkj+1α
2
j

where θkj = L2
j · ... · L2

k; since θkj ≤ θk0 ≤ M , where M is a positive constant (see Lemma 2.2)

and θkj ≥ 1 we have
∞
∑

k̃

α2
j ≤ M‖x(k̃) − ỹ‖2

and consequently
∑∞

k=k̃
α2
k < ∞. Then αk → 0 as k → ∞ and, from (26),

∑∞
k=k̃

αk = ∞.
Now we show that

∑

αkǫk < ∞. Indeed, since ǫk → 0 as k → ∞, there exists k̄ such that
2ǫk < η for k ≥ k̄, where η is such that (27) holds. We consider the inequality

‖x(k+1) − ỹ‖2
D−1

k

≤ ‖x(k) − ỹ‖2
D−1

k

+ α2
k − 2

αk

max(1, ‖u(k)‖Dk
)
u(k)

T
(x(k) − ỹ) (29)

For the convexity of f , the inequality (27) and inequality 2ǫk < η, we have

f(x(k)) + u(k)
T
(ỹ − x(k))− ǫk ≤ f(ỹ) ≤ f̃ − η ≤ f(x(k))− 2ǫk

Then we have
u(k)

T
(ỹ − x(k)) ≤ −ǫk

Using this inequality in (29), we obtain

‖x(k+1) − ỹ‖2
D−1

k

≤ ‖x(k) − ỹ‖2
D−1

k

+ α2
k − 2

αkǫk
max(1, ‖u(k)‖Dk

)

Using the same arguments as above, we obtain

‖x(k+1) − ỹ‖2 ≤ L2
k‖x(k) − ỹ‖2 + L2

kα
2
k − 2

αkǫk

max(1, L
1
2ρ)
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By repeatedly applying the previous inequality we have

‖x(k+1) − ỹ‖2 ≤ θk
k̄
‖x(k̄) − ỹ‖2 + θk

k̄

k
∑

j=k̄

α2
j −

2

max(1, L
1
2ρ)

k
∑

j=k̄

αjǫj

≤ M



‖x(k̄) − ỹ‖2 +
k
∑

j=k̄

α2
j



− 2

max(1, L
1
2 ρ)

k
∑

j=k̄

αjǫj

Then we have
∞
∑

j=k̄

αjǫj ≤
M

2
max(1, L

1
2C)



‖x(k̄) − ỹ‖2 +
∞
∑

j=k̄

α2
j



 < ∞

According to Corollary 2.1 we have f̃ = f∗ that contradicts (27). �

Further generalizations of Algorithm 1 could be included in the analysis of the previous
theorem following [40, p.122], where the authors suggest some modifications of Steps 2, 3 and 4
allowing a variable path bound B and different strategies to update the parameter δl. For sake
of simplicity we omit here these details.

4 A Scaled Primal–Dual Hybrid Gradient Method

The aim of this Section is to present a concrete example of the method (6) for the problem (8),
which for convenience is reproduced below,

min
x∈X

f(x) ≡ f0(x) + f1(Ax) (30)

where A ∈ R
m×n, f0(x), f1(x) are convex, proper, lower semicontinuous functions such that

diam(dom(f∗
1 )) is finite and f∗

1 (y) is the Fenchel dual of f1.
We propose the following Scaled Primal–Dual Hybrid Gradient (SPDHG) method for the

solution of (30)

y(k+1) = (I + τk∂f
∗
1 )

−1(y(k) + τkAx
(k)) (31)

x(k+1) = P
X,D−1

k
(x(k) − αkDk(w

(k) +AT y(k+1))) (32)

where w(k) ∈ ∂δkf0(x
(k)), for some δk ≥ 0, {τk}, {αk} are the dual and primal steplength

sequences respectively and (I + τk∂f
∗
1 )

−1 is the resolvent operator [46] of f∗
1 defined as

(I + τk∂f
∗
1 )

−1(x) = argmin
z

f∗
1 (z) +

1

2τk
‖z − x‖2.

The basic result allowing to consider the method (31)–(32) as a special case of a scaled ǫ-
subgradient method (6) is the following Lemma (see [15, Lemma 1]).

Lemma 4.1 Let y(k+1) defined as in (31). Then, y(k+1) ∈ dom(f∗
1 ) and, thus, AT y(k+1) ∈

∂σk
(f1 ◦A)(x(k)), where σk = f1(Ax

(k)) + f∗
1 (y

(k+1))− y(k+1)TAx(k). Moreover, if there exists a
positive number D such that diam(dom(f∗

1 )) ≤ D, then σk ≤ (2τk)
−1D2.



A SCALED ǫ-SUBGRADIENT PROJECTION METHOD 14

Thus, recalling the additivity of the ǫ-subgradient, we can conclude that u(k) = w(k)+ATy(k+1) ∈
∂ǫkf(x

(k)), where ǫk = δk + σk.
Motivated by the previous observation, building on the material developed in Sections 2 and

3, we discuss two stepsize selection strategies for the method (31)–(32), providing two different
SPDHG implementations. In the first case, we assume that {τk}, {αk}, {Lk} are prefixed
sequences. The following Corollary, which is a consequence of Lemma 4.1 and of Theorem 2.1,
gives conditions on these sequences ensuring the convergence of the sequence {x(k)} generated
by SPDHG to a point x∗ ∈ X∗.

Corollary 4.1 Let {x(k)} be the sequence generated by iteration (31)-(32). Assume that w(k) ∈
∂δkf0(x

(k)) and that there exists ρ > 0 such that ‖w(k)‖ ≤ ρ for all k. Let the steplength sequences
{τk}, {αk} and the scaling matrix bounds {Lk} satisfy

αk = O
(

1

kp

)

, τk = O(kp), Lk =

√

1 +O
(

1

kq

)

1

2
< p ≤ 1, q > 1. (33)

Moreover, assume that δk converges to zero at least as 1
τk
. If the set of the solutions of (1) is

nonempty and diam(dom(f∗
1 )) is finite, then, the sequence {x(k)} converges to a solution of (1).

Proof. As observed above, we have u(k) = w(k)+AT y(k+1) ∈ ∂ǫkf(x
(k)), where ǫk = δk+σk. Since

diam(dom(f∗
1 )) is finite, we can apply Lemma 4.1 obtaining σk ≤ (2τk)

−1D2. By the assumption
(33) on τk and on δk we obtain that ǫk = O

(

1
kp

)

and, as a consequence, αkǫk = O
(

1
k2p

)

. Since
1
2 < p ≤ 1 and q > 1, all assumptions (13)–(16) of Theorem 2.1 are satisfied and we obtain the
result. �

On the other side, the SSL procedure for dynamically computing the primal stepsize αk can
be also implemented. In this case, we have to provide a sequence {Lk =

√
1 + γk} such that

∑

γk < ∞. For sake of simplicity we assume δk = 0.

In this case the value ǫk = f1(Ax
(k)) + f∗

1 (y
(k+1)) − y(k+1)TAx(k) is controlled by the dual

stepsize τk (see Lemma 4.1).Then it is possible to compute αk by Steps 2-5 of Algorithm 1 and
the next iterate x(k+1).
Finally, Theorem 3.1 allows to conclude that the sequence {f(x(k))} generated by SPDHG
method combined with SSL algorithm converges to the minimum of f(x) in (30), as stated in
the following Corollary under the same boundedness assumptions as in Corollary 4.1.

Corollary 4.2 Let {x(k)} be the sequence generated by Algorithm 1. Here u(k) = w(k) +
AT y(k+1) in (25), w(k) ∈ ∂f0(x

(k)) and y(k+1) is computed as in (31). Assume that limk→∞ τk =

∞, Lk =
√

1 +O
(

1
kq

)

, with q > 1, and that there exists ρ > 0 such that ‖w(k)‖ ≤ ρ. If the set

of the solutions of (1) is nonempty and diam(dom(f∗
1 )) is finite, then the sequence {f(x(k))}

converges to f(x∗), with x∗ ∈ X∗.

Proof. Since w(k) ∈ ∂f0(x
(k)), by Lemma 4.1 we have u(k) ∈ ∂ǫkf(x

(k)), where ǫk =

f1(Ax
(k)) + f∗

1 (y
(k+1)) − y(k+1)TAx(k). Since diam(dom(f∗

1 )) is finite, we can apply the second
part of Lemma 4.1 obtaining ǫk ≤ (2τk)

−1D2, for a positive constantD such that diam(dom(f∗
1 )) ≤

D. Since limk→∞ τk = ∞, we have limk→∞ ǫk = 0 and by Theorem 3.1 we obtain the result. �
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5 Application: edge preserving deblurring of Poisson images

In this section we further specialize the SPDHG method, by focusing on a specific application
in the image restoration context. Our aim is to suggest a strategy to compute a suitable scaling
matrix Dk, fully defining the algorithm; as observed by several authors, this choice should be
driven according to the specific problem features, such as the structure of the constraints and
objective function [16, 36, 53].

For these reasons, we describe first some details of the image reconstruction problems which,
in the Bayesian framework, can be formulated as a constrained convex minimization problems of
the form (30). For these problems, the function f0(x) measures the data discrepancy and should
be chosen according to the noise statistics: in particular, when the data suffer from Poisson
noise, the Maximum Likelihood principle leads to the generalized Kullback–Leibler divergence

f0(x) =
n
∑

i=1

gi log
gi

(Hx)i + b
+ (Hx)i + b− gi (34)

where g ∈ R
n is the observed image, H ∈ R

n×n represents the blurring operator while b ∈ R is a
nonnegative background term. Standard assumptions on H are that it has nonnegative entries
and HT e > 0, where e ∈ R

n is the vector of all ones.
Since the entries of the unknown vector x represents the image pixels, a meaningful solution

is obtained by defining the constraint set as the nonnegative orthant, i.e. X = {x ∈ R
n : xi ≥ 0}.

On the other side, f1(Ax) plays the role of a regularization term enforcing suitable properties
on the solution of (30). Typically, to preserve the edges in the solutions of (30), f1(Ax) can be
chosen as

f1(Ax) = βTV (x), TV (x) =

n
∑

i=1

‖Aix‖, Ai ∈ R
2×n (35)

where TV (x) is the discrete, nonsmooth, Total Variation (TV) functional, β is a positive reg-
ularization parameter and Ai ∈ R

2×n is defined such that Aix represents the discrete gradi-
ent of the image x at the pixel i. In these settings, the matrix A is defined by blocks as

A =
(

AT
1 AT

2 · · · AT
n

)T ∈ R
2n×n.

In order to simplify the notation, we assume that x ∈ R
n is a N ×N image, i.e. n = N2 and we

will indicate the component xℓ, ℓ = 1, · · · , n, also as xi,j, i, j = 1, · · · , N , with the correspon-
dence j = ⌊(ℓ− 1)/N⌋+1, i = ℓ−⌊(ℓ− 1)/N⌋ ·N , where ⌊·⌋ denotes the integer quotient. With
this notation, the ℓ–th discrete gradient of the image x can be written as

Aℓx =

(

xi+1,j − xi,j
xi,j+1 − xi,j

)

where some boundary conditions are assumed.
In this case, since f0 is differentiable, we define w(k) = ∇f0(x

(k)) in (32), so that δk = 0 for
all k in Corollary 4.1. Moreover, the resolvent operator in (31) consists in a simple projection
onto the set B ×B × · · · ×B ⊂ R

2n, where B = {z ∈ R
2 : ‖z‖ ≤ 1}.

In order to devise a suitable scaling matrix Dk for SPDHG, we adapt to our case the split
gradient strategy proposed in [9, 36] for nonnegatively constrained differentiable problems, which
demonstrated to be very effective in several applications [8, 13, 44, 50, 53].

The key point of this approach consists in finding a subgradient decomposition of the form
u(k) = V (x(k)) − U(x(k)) with V (x(k)) > 0 and U(x(k)) ≥ 0 for all k and then defining Dk in
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(32) as a diagonal scaling matrix whose entries are the projection of x
(k)
i /Vi(x

(k)) onto the set
[1/Lk, Lk].

This strategy has the advantage to agree with the nonnegativity constraints and strongly
depends on the form of the subgradient u(k).

For a practical implementation of this strategy, we have to find a decomposition of the vector
u(k) = ∇f0(x

(k)) + βAT y(k+1) as the difference of two nonnegative terms.
As concerns the first term, the gradient of f0 has the natural decomposition ∇f0(x) = HT e−

HT v(x), where v(x) denotes the vector with entries vi(x) = gi/(Hx + b)i; by the assumptions
on H, we have HT e > 0 and HT v(x) ≥ 0 for all x ≥ 0.

Thus, it remains to find a decomposition of the vector AT y(k+1) in (32). To this end, we
compute the explicit expression of it as a function of x(j), j = 0, ..., k. We first observe that, if
the dual variable is partitioned as

y =











y1
y2
...
yn











, yi ∈ R
2,

the updating rule (31) can be written as

ỹ(k) = y(k) + τkβAx
(k)

y(k+1) = Skỹ
(k)

where Sk is a diagonal 2n × 2n matrix with the following diagonal entries

(Sk)2i−1,2i−1 = (Sk)2i,2i =
1

max{1, ‖ỹ(k)i ‖}
, i = 1, ..., n (36)

If the method is initialized with y(0) = 0, the dual variable can be written as

y(0) = 0

y(1) = βτ0S0Ax
(0)

y(2) = βS1(τ0S0Ax
(0) + τ1Ax

(1))

y(3) = βS2(τ0S1S0Ax
(0) + τ1S1Ax

(1) + τ2Ax
(2))

...

y(k+1) = β
k
∑

j=0

τj S̃
k
jAx

(j)

where

S̃k
j =

k
∏

i=j

Si

As a consequence, the ǫ-subgradient of f1 ◦ A employed in (32) can be expressed as

βAT y(k+1) = β2
k
∑

j=0

τjA
T S̃k

jAx
(j) (37)



A SCALED ǫ-SUBGRADIENT PROJECTION METHOD 17

The following simple lemma, which directly follows from the definition of A, indicates a possible
decomposition of each term in the summation at the right hand side of (37) as the difference
between a positive and a nonnegative term.

Lemma 5.1 Every matrix–vector product of the form ATSAx where S is a 2n × 2n diagonal
matrix with positive entries such that S2ℓ,2ℓ = S2ℓ−1,2ℓ−1 = sℓ, ℓ = 1, · · · , n, x ≥ 0, can be
decomposed as

ATSAx = VSx− USx

where

(VSx)i,j = (2si,j + si,j−1 + si−1,j)xi,j ≥ 0

(USx)i,j = si,j(xi+1,j + xi,j+1) + si,j−1xi,j−1 + si−1,jxi−1,j ≥ 0

with the correspondence sℓ ≡ si,j, j = ⌊(ℓ− 1)/N⌋ + 1, i = ℓ− ⌊(ℓ− 1)/N⌋ ·N .
The ǫ-subgradient of f in (32) can be decomposed as

u(k) = ∇f0(x
(k)) + βAT y(k+1) = V (x(k))− U(x(k))

where

V (x(k)) = HT e+ β2
k
∑

j=0

τjVS̃k
j
x(j). (38)

Even if it seems quite complicate, the term

V R(x(k)) = β2
k
∑

j=0

τjVS̃k
j
x(j)

can be easily computed in a recursive way, by introducing three auxiliary vectors, as described in
Algorithm 2. We also notice that, since the scaling matrix Dk is diagonal and the constraint set
X is the nonnegative orthant, the projection P

X,D−1
k
(·) reduces to the usual Euclidean projection

P≥0(·) (see Step 7).
By induction it can be shown that the computation of V (x(k)) in (42) actually gives (38). For
sake of simplicity, we limit ourselves to show that this is true for k = 0, 1. Indeed, from Lemma
5.1 and from (39)–(41) we have

V R(x(0))i,j = β2τ0(VS0x
(0))i,j

= β2τ0(2s
(0)
i,j + s

(0)
i−1,j + s

(0)
i,j−1)x

(0)
i,j

= 2p
(0)
i,j + q

(0)
i,j + r

(0)
i,j
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Algorithm 2 Scaled Primal–Dual Hybrid Gradient (SPDHG)

Choose the starting point x(0) ∈ X and set y(0) = 0, p(−1) = q(−1) = r(−1) = 0. Choose the
sequences {αk}, {τk}, {γk}.
For k = 0, 1, 2, ... do the following steps:

Step 1. Compute ỹ(k) = y(k) + βτkAx
(k);

Step 2. Compute s
(k)
ℓ = 1

max{1,‖ỹ
(k)
ℓ

‖}
, ℓ = 1, ..., n and define Sk as in (36);

Step 3. Dual update: y(k+1) = Skỹ
(k);

Step 4. Auxiliary vectors update for the decomposition:

p
(k)
i,j = (p

(k−1)
i,j + β2τkx

(k)
i,j )s

(k)
i,j (39)

q
(k)
i,j = (q

(k−1)
i,j + β2τkx

(k)
i,j )s

(k)
i−1,j (40)

r
(k)
i,j = (r

(k−1)
i,j + β2τkx

(k)
i,j )s

(k)
i,j−1 (41)

for i, j = 1, ..., N

Step 5. Compute the positive part of the decomposition:

V (x(k)) = HT e+ (2p(k) + q(k) + r(k)) (42)

Step 6. Compute the scaling matrix:

Lk =
√

1 + γk

(Dk)ℓ,ℓ = min

{

Lk,max

{

L−1
k ,

x
(k)
ℓ

V (x(k))ℓ

}}

Step 7. Primal update: x(k+1) = P≥0(x
(k) − αkDk(∇f0(x

(k)) + βAT y(k+1))).

End

V R(x(1))i,j = β2τ0(VS0S1x
(0))i,j + β2τ1(VS1x

(1))i,j

= β2τ0(2s
(0)
i,j s

(1)
i,j + s

(0)
i−1,js

(1)
i−1,j + s

(0)
i,j−1s

(1)
i,j−1)x

(0)
i,j +

+β2τ1(2s
(1)
i,j + s

(1)
i−1,j + s

(1)
i,j−1)x

(1)
i,j

= 2(β2τ0s
(0)
i,j x

(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i,j +

+(β2τ0s
(0)
i−1,jx

(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i−1,j +

+(β2τ0s
(0)
i,j−1x

(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i,j−1

= 2(p
(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i,j + (q

(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i−1,j + (r

(0)
i,j + β2τ1x

(1)
i,j )s

(1)
i,j−1

= 2p
(1)
i,j + q

(1)
i,j + r

(1)
i,j

Algorithm 2 can be adapted for both the stepsize selection strategies described in Sections 2 and
3. In the first case, three prefixed sequences {αk}, {τk}, and {γk} satisfying the assumptions of
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Corollary 4.1 have to be provided.
In the other case, the SSL procedure for dynamically compute the primal stepsize αk can

be included in Algorithm 2. Here, only the sequences {τk}, and {γk} should be given such that
limk→∞ τk = ∞ and

∑

γk < ∞.

6 Numerical experience

The aim of our numerical experience is twofold: first, we are interested in evaluating the effect
of the scaling on the convergence behaviour of the ǫ-subgradient method. Secondly, we compare
the two steplength selection strategies presented in Sections 2-3.

To this end we consider four different versions of the method (31)–(32):

PDHG corresponds to the choices Dk = I and αk chosen as an a priori diminishing, divergent
series, square summable sequence in (32). It actually consists in the method in [15];

SPDHG is Algorithm 2 with αk chosen as an a priori diminishing, divergent series, square
summable sequence;

SL is the ǫ-subgradient level method given in Algorithm 1 with Dk = I and u(k) = ∇f0(x
(k))+

βAT y(k+1), where y(k+1) is updated as in (31);

SSL is the same as above but with the scaling matrix Dk defined as at the Step 6 of Algorithm
2.

The numerical experiments described in this section have been performed in the MATLAB
environment (R2012b) on a PC equipped with an Intel Core i7-3517U processor 1.9 GHz, 8 GB
RAM.

In our experiments, we consider problem (30) where f0, f1 are defined in (34)-(35) and H
represents the convolution operator with a given point spread function (psf). Thus, assuming
periodic boundary conditions, the matrix–vector products involving H can be computed by
the Fast Fourier Transform (FFT) and, by a simple normalization of the psf, we also have
HT e = He = e; moreover, in our experiments, H is nonsingular, although very ill conditioned,
and g > 0, so that problem (30) has a unique solution [28].

We consider a set of three test problems generated as in [47] where the data g is obtained
with the following procedure: the selected original image x̄ is rescaled so that the maximum
pixel intensity is a specified value Imax. Then, the rescaled image is convolved with the psf and
the background b is added. Finally, Poisson noise is introduced by the Matlab imnoise function
and the simulated data g is obtained after scaling back again by Imax.

For each test problem, the regularization parameter β has been empirically selected by
computing the solution of (30) for different values of β and choosing that for which we observed
the minimum l2 relative distance with respect to x̄.

The features of each test problem are specified below.

cameraman : the 256×256 original image is the ‘cameraman’ available in the Matlab package,
while the psf is a Gaussian function, with standard deviation 1.3, truncated at the 9 × 9
central pixels. The other parameters are Imax = 1000, b = 0, β = 0.005; the l2 relative
distance between x̄ and g is 0.1209, while gi ∈ [4, 250].
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PDHG
τk αk γk

cameraman 0.9 + 10−2k (0.04 + 10−5k)−1 -
micro 0.9 + 10−3k (0.04 + 10−4k)−1 -

phantom 0.9 + 10−3k (0.2 + 10−5k)−1 -

SPDHG
τk αk γk

cameraman 0.5 + 5 · 10−3k (0.5 + 5 · 10−5k)−1 1013k−2

micro 0.4 + 10−5k (0.4 + 10−5k)−1 1013k−2

phantom 0.5 + 10−4k (0.5 + 10−5k)−1 1013k−2

SL
τk γk
0.5 + 5 · 10−2k -
0.9 + 10−1k -
0.9 + 10−2k -

SSL
τk γk
0.7 + 5 · 10−2k 1013k−2

0.9 + 10−2k 1013k−2

0.9 + 10−2k 1013k−2

Table 1: Parameter settings.

micro: the original image is the confocal microscopy phantom of size 128 × 128 described in
[52], scaled by 10; the psf is the one in [52] truncated at the 9× 9 central pixels. Here we
set Imax = 1, b = 0, β = 0.0477; the original image pixels are in the range [10, 690], the l2
relative distance between x̄ and g is 0.1442, while gi ∈ [1, 778].

phantom : the original image x̄ is the 256 × 256 Shepp-Logan phantom, generated by the
Matlab function phantom, scaled by a factor 1000, while the psf is a Gaussian function,
with standard deviation 3, truncated at the 9 × 9 central pixels. In this case we set
Imax = 1, b = 10 and β = 0.00526. The values of the original image are in the range
[0, 1000], the l2 relative distance between x̄ and g is 0.4643, while gi ∈ [1, 934].

For all test problems we compute the solution x∗ of the minimization problem (30) by running
50000 iterations of PIDSplit method [47]. Then, we evaluate the progress toward this solution at
each iteration in terms of the l2 relative error from the minimum point and the relative difference
from the optimal value

ek =
‖x(k) − x∗‖

‖x∗‖ fk =
f(x(k))− f(x∗)

f(x∗)
.

Following the assumptions of Corollaries 4.1 and 4.2, we choose the sequences of parameters as
follows

τk = t1 + t2k αk =
1

t3 + t4k
γk =

t5
k1+t6

In order to illustrate the effectiveness of the methods, the values ti have been manually optimized
for each test problem to obtain a faster decrease of ek (see Table 1).
Moreover, for the initialization of both SL and SSL, we adopt the rule

δ0 = 0.9 f(x(0))

while the other parameters are ν1 = ν2 = 0.5, B = 0.9‖u(0)‖‖D0‖
1
2
∞.

The plots in Figure 1 have been obtained by running 3000 iterations of the algorithms,
reporting the errors ek, fk with respect to the computational time in seconds.

From the numerical experience we observe that the presence of the scaling can help to
accelerate the progress towards the solution, with both stepsize selection strategies. As concerns
the scaling matrix bounds, the best results are obtained by selecting large initial values for γk
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Figure 1: Image deblurring results. Upper row: plots of the relative minimization error ek.
Lower row: plots of the relative difference from the optimal function value fk. Left column:
cameraman. Middle column: micro. Right column: phantom. All plots are with respect to the
computational time in seconds and use a logarithmic scale on the vertical axis.

(see Table 1) and, thus, for Lk, allowing more freedom to choose the scaling matrix especially
at the first iterations.

It is also interesting to observe that the adaptive computation of αk combined with the
proposed scaling technique seems to work quite well, leading to performances that are, in some
cases, close to the ‘best’ ones obtainable by manually tuning the stepsize sequence. Indeed, the
PDHG and SPDHG performances are sensitive to the choice of τk, and especially of αk, making
difficult to devise a general rule to select these sequences.

Comparing the first and the second row in Figure 1, we also observe that a faster approaching
to the solution x∗ does not always correspond to a faster decrease of the objective function: we
suppose that this phenomenon is due to the ill conditioning of problem (30). For completeness,
we experimentally observed that too large initial values of the primal stepsize αk in PDHG and
SPDHG may produce an unbounded sequence {u(k)} and, as a consequence, the algorithms fail
to converges: this indicates that the assumption on the ǫ-subgradient boundedness is crucial.

7 Conclusions

In this paper we proposed a generalization of the ǫ-subgradient projection method with variable
scaling matrix for nonsmooth, convex, constrained optimization, developing the related conver-
gence analysis when the stepsize parameters are either provided as a priori selected sequences
or dynamically computed by an adaptive procedure. Exploiting the duality principle, we de-
scribed a special case of the proposed method which applies to the minimization of the sum of
two convex functions. For a specific problem of this form in the image restoration framework,
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we fully detailed the algorithm, also suggesting a strategy to compute the scaling matrix. The
numerical experience shows that the presence of a suitable variable scaling matrix can accelerate
the progress of the iterates towards the solution. Moreover, the results obtained combining the
variable scaling with the adaptive procedure for the computation of the stepsize parameter are
encouraging.

Future work will be addressed to further investigate dynamic choices of the stepsize and of
the scaling matrix, with the aim to devise effective ‘black–box’ algorithms which are able to
handle practical applications with a minimum of user supplied parameters.
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