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Abstract (english version)

The aim of this thesis is to investigate various aspects of the application of the Energetic
Boundary Element Method (Energetic BEM) for the resolution of elastodynamic prob-
lems in bidimensional unbounded domains. The �rst part of the work is dedicated to
the introduction of the di�erential problem, rewritten in terms of di�erent Boundary In-
tegral Equations (BIEs), depending on characteristic integral operators and suitable to
solve problems equipped by Dirichlet or Neumann datum at the boundary. These BIEs
are set in a space-time weak form, based on energy arguments, and numerically solved by
means of the Energetic BEM. All the considered weak BIEs, once discretized, give rise to
linear systems with lower triangular block Toeplitz matrix, whose entries are quadruple
space-time integrals. Thus, a consistent part of the thesis discusses the quadrature for-
mulas employed to compute numerically these elements with high accuracy, taking into
account the characteristic space singularities and performing an accurate study of the in-
tegration domain, in local variables, that allows to overcome the issues of the integration
of peculiar step functions that feature all the integral kernels. A theoretical analysis of
the indirect weak form with single layer operator is also executed and numerous numerical
results are presented to con�rm the correctness and the e�ectiveness of the Energetic BEM.

A part of the thesis takes into account di�erent types of space discretization, that turn
out to be useful, for instance, to catch the asymptotic behaviour of the single layer and
the hypersingular BIEs solutions at the endpoints of open obstacles or at the corners of
polygonal closed arcs. Meshes geometrically or algebraically re�ned at these critical points
improve the convergence of the proposed methods. An in depth analysis of the error decay,
in energy norm, is shown with respect to di�erent types of re�nement (h-version, p-version
and hp-version are in particular considered). Several numerical tests, arising from the im-
plementation of the Energetic BEM, are shown, in order to validate the theoretical results
by showing the slope of the estimated error related to the presented discretization methods.

The following issue is moreover considered in this thesis work: the BEM matrices are com-
posed by time-dependent blocks that are generally fully populated, leading to considerable
computational costs and memory requirements of the energetic BEM, that can prevent its
application to large scale realistic problems. Thus, a fast technique, based on the Adaptive
Cross Approximation (ACA), is provided in order to get a low rank approximation of the
time blocks, hence reducing drastically the number of the original entries to be evaluated.
This procedure leads to a drop in the computational time, spent to assemble and solve the
linear system, as well as in the memory storage requirements, which are generally relevant.
The e�ectiveness of this strategy is theoretically and numerically proved for the single layer
weak formulation, both in the contexts of acoustic and elastic wave propagation problems.
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Abstract (versione italiana)

L'obbiettivo di questa tesi è lo studio dell'applicazione del Metodo agli Elementi di Con-
torno di tipo Energetico (Energetic BEM) per la risoluzione di problemi di elastodinamica in
domini bidimensionali illimitati. Nella prima parte del lavoro viene introdotto il problema
di�erenziale, riscritto in termini di diversi tipi di Equazioni Integrali di Contorno (BIE),
dipendenti da operatori integrali caratteristici e che risultano essere utili alla risoluzione
di problemi con dato di Dirichlet o di Neumann sull'ostacolo. Queste BIE sono ride�nite
in formulazioni deboli nel dominio del tempo, basate sull'energia del sistema, e risolte
numericamente tramite Energetic BEM. Le formulazioni deboli considerate, una volta dis-
cretizzate, danno luogo a sistemi lineari con matrici triangolari inferiori con struttura di
Toeplitz a blocchi, i cui elementi risultano essere integrali quadrupli in spazio e tempo.
Pertanto, una parte consistente di tesi è incentrata sull'analisi delle formule di quadratura
impiegate nell'approssimazione numerica, ad alta precisione, di questi integrali, tenendo
conto delle singolarità spaziali caratteristiche e eseguendo un accurato studio del dominio
di integrazione, in variabili locali, che permette di evitare l'integrazione diretta delle fun-
zioni di Heaviside comuni a tutti i tipi di nuclei integrali. Viene inoltre illustrata l'analisi
teorica della formulazione debole con operatore di strato singolo e numerosi test numerici
vengono presentati a conferma della correttezza e dell'e�cacia dell'Energetic BEM.

Parte della tesi prende in considerazione diversi tipi di discretizzazione spaziale, con l'obbiet-
tivo di approssimare correttamente le soluzioni delle BIE, associate a operatori di strato
singolo e ipersingolare, asintotiche vicino agli estremi di un ostacolo aperto o nei pressi
degli angoli di un arco poligonale chiuso. Un ra�namento di tipo geometrico o alge-
brico della mesh vicino a questi punti critici migliora la convergenza del metodo numerico:
viene mostrata pertanto un'analisi approfondita del decadimento dell'errore in norma en-
ergetica rispetto all'uso di vari metodi di ra�namento spaziale (quali la tecnica h, la
tecnica p e la tecnica hp). Anche in questo caso, diversi test numerici, ottenuti tramite
l'implementazione dell'Energetic BEM, vengono mostrati con l'obbiettivo di veri�care le
stime teoriche dell'errore relative ai vari metodi di discretizzazione discussi.

Un'ulteriore questione è argomento di questo lavoro di tesi: le matrici BEM sono composte
da blocchi temporali che diventano generalmente densi con l'avanzare del tempo, compor-
tando un considerevole dispendio di costi computazionali e di memoria per l'implementazione
dell'Energetic BEM, rendendo la sua applicazione a problemi realistici su larga scala molto
onerosa. Viene pertanto proposta una tecnica veloce, basata sull'Adaptive Cross Approx-
imation (ACA), che permette un'approssimazione a basso rango dei blocchi temporali,
riducendo drasticamente il numero degli elementi originari della matrice da valutare. Ciò
porta anche ad una riduzione della memoria richiesta e dei tempi di assemblaggio e di
risoluzione del sistema lineare. La fattibilità della strategia è dimostrata teoricamente
e numericamente nello speci�co per la formulazione debole di singolo strato, risolvendo
problemi di propagazione sia di onde acustiche che elastiche.
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Introduction

Historycal background

The XIX century was fundamental for the growing of studies in continuum mechanics.
In this period in fact, the impulse to the development of �rst practical applications came
especially from the expansion of railways and structural mechanical projects. In this thriv-
ing context for engineering and mechanical sciences, the theory of materials was perfected,
laying the foundations for the theory of elasticity [20, 60].
The fundamentals of this theory can be found in the French school of the early 1800s, mainly
in the works of Navier, Cauchy, Poisson, Lamé, Clapeyron and, successively, of Barré de
Saint-Venant. Before their studies, there wasn't a valid mathematical formalization of the
subject. The point of view developed by Cauchy in the 1820s was particularly decisive, but
in two memories presented by Navier to the Académie des Sciences of Paris (1821-1822)
for the �rst time we can �nd the equations of elasticity for an isotropic body, elaborated
by the mathematician considering a phenomenological molecular model of a medium. We
also owe to Navier his fundamental contribution to �uid dynamics and in particular to the
elaboration of the Navier-Stokes equations. A general analysis for anisotropic bodies was
developed later by Poisson (1839), who moreover established the propagation of body waves
(pressure and shear) in elastic medium. Other contributes were given by Lord Rayleigh
(1885), who discovered another type of elastic surface waves, denominated in his honour
Rayleigh waves. These theoretical studies on elastic waves propagation were con�rmed at
the end of the XIX centuries when, thanks to an earthquake recording, Oldhan recognized
the three types of characteristic waves theorized by Poisson and Rayleigh.
From the second half of 1800s the research direction followed the idea of formalizing so-
lutions of Partial Di�erential Equations (PDEs) by boundary integral formulations (for
various physical and mechanical problems, not only for elasticity). The contribution of the
Italian mathematicians Betti and Somigliana was considerable, anyway, even with integral
formulations, deriving the analytical solution only for limited class of problems depending
on the simplest geometries.
The major impetus given to the research in elasticity, and more generally to the accurate
approximation of the solutions to the PDEs of physical mathematics, came with the advent
of computers, starting from the sixties of the XX century. Implementations of powerful
methodologies for the numerical resolution of this kind of problems have been possible only
since those years.

1



2

The Finite Element Method

The Finite Element Method (FEM) is a versatile instrument for PDEs that, after a suit-
able discretization of the domain of interest, allows to approximate the solution with an
accuracy depending on the re�nement of the mesh. The advatage is the straightforward
construction of the linear system that implies the discretization of the weak formulation of
the problem. A surveys of applications of FEMs to many physical problems (such as plane
strain, heat transfer and �uid �ow) can be found in the book of Zienkiewicz et al. [78]. For
a deepening on the construction of the method and applications to linear elastodynamics
see the Andersen's book [14]. In the works of Bielak and co-authors [23] and Toshinawa
and Ohmachi [76] we can �nd an intersting case of study about a seismic event compared
with the data furnished by the application of FEM to the resulution of speci�c wave prop-
agation problems. For the time dependent case, FEM is generally used to discretize the
equation of motion in the space variables, while the remaining system in the time variable
is resolved by a time stepping scheme which does not require a further matrix factorization,
as in [1] and [49] (this last one presents also analysis on error estimates). An interesting
application for elastic problems with the emphasis on the calculation of the shear and the
pressure components of the solution and energetic considerations are presented by Burel,
Impériale and Joly in [25].
The drawback in the context of elastodynamics problems de�ned in unbounded domains is
the need to terminate the mesh imposing arbitrary conditions on the arti�cial boundary,
which may re�ect spurious waves that can invalidate the results.

The Boundary Element Method

In this scenario, elastodynamic problems can be e�ciently solved using a Boundary Ele-
ment Method (BEM), which requires, for the implementation, to express the solution over
the domain of interest by an integral representation formula where integrals are not de�ned
on the entire domain, but only on the boundary, leading to the advantage of a reduction of
the dimensional complexity w.r.t the applications of other standard methods such as FEM
and �nite di�erences. Moreover, this kind of integral formulations incorporates automati-
cally the propagation at in�nity and can be easily adapted (formulations are basically the
same with just a change in sign) to di�usion problems in unbounded medium.
First examples of use of integral formulations in elasticity can be found in the work of Cruse
and Rizzo [27] and results of reference in this �eld are reported by Manolis an Beskos in
[57]. In these papers the integral formula has a switch from the time variables to the
Laplace domain, where the problem is discretized. Then, to catch the transient behaviour
of the solution an inverse transformation is necessary. Anyway working with a time domain
approach (TD-BEM) is preferable since it allows to observe the phenomenon as it evolves
and results do not depend on the parameters of the Laplace transform.
Time domain standard BEM approach has been developed by many authors, discretizing
the boundaries (2D countour or 3D surfaces) and then collocating the Boundary Integral
Equations (BIEs) at the nodal points. Examples of applications are furnished by Frangi
in [35] and Birgisson in [24].
Alternative strategies to manage the temporal discretization, known as CQ-BEM, is to
operate with the Lubich quadrature formulas (see [54] and [55]). This technique �ts the
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nature of integration formulas, which are nothing more than convolution products both
in time and in space. Instances of implementation in elastodynamics are in the works of
Schanz and Antes [72, 73] and in the papers of Falletta and co-authors for application to
elastodynamics problems [33] and for the resolution of wave propagation problems [32].
A novelty in the discretization approach of the integral representazion formulas can be
found in the recent paper of Pölz and Schanz [69] where, in particular the time variable
is considered as an additional spatial coordinate, inducing the approximation of the BIE
unknown by shape functions that do not separate the space-time variables.
Standard implementation of TD-BEM with Galerkin and collocation may present numeri-
cal instabilities in time, as dicussed in the paper by Frangi and Novati [36], while genuine
convergence results for the acustic wave propagation can be found in the pionering works
of Bamberger, Ha-Duong and Bècache (wave propagation problems in [15, 16] and hard-
scattering in elastodynamics in [19]) that apply an energetic approach. The Energetic BEM
in case of scalar waves propagation (see the works by Aimi and collaborators [9, 8, 12])
shows a long-time stability and guarantees excellent approximation accuracy. In this the-
sis, the extension to elastodynamic problems is considered, starting from a former analysis
presented in [5].

Graded mesh and hp methods

In the application of the BEM to elastic or scalar wave di�usion we have no constraints in
the type of mesh and in the choice of the degree of accuracy we can impose to discretize
the boundary and to approximate the unknowns of the BIEs at hand. Nevertheless these
solutions, or their spatial derivatives, are characterized by a singular behaviour near the
limits or at the angular points of the obstacle. Studies and theoretical results for what
concerns the integral solution of the scalar wave equation in conical and cilindrical shape
domains are carried out by Plamenevski�i and collaborators in [50, 68]. Regarding the
singularity of the boundary unknowns in elastodynamics, from the works of Nicaise and
Grisvard [66, 44], thanks to the analysis of the singular expansion of the displacement
solution at a corner point of the arc, we discover how the amplitude of the angle a�ects
the singular behaviour. Thus, combining BEM with spatial re�nement methods, such
as graded mesh and p and hp re�nement, allows to better approximate these solutions
in order to limit the error in energy norm without augmenting the spatial DOF of the
problem. Interesting results of applications of graded mesh and hp re�nements BEM for
scalar problems can be found in the works by Gimperlein and collaborators in [38, 41],
with a priori error estimates in dependence with the parameters of the discretization. For
the case of adaptive mesh methods see also [42].

Fast BEMs

The accurate results coming from application of BEM to the above cited problems are
counterbalanced by the fact that the matrix arising from the discretization phase is full
for static problems, and analogously the time blocks in transient case, thus computation of
full BEM matrices becomes a challenge in case of large-scale problems. Methods that allow
to overcome this issue are various. First of all the panel clustering, with which sparsi�ca-
tion of BEM matrices is obtained by an algorithm that builds an indexing tree structure
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dependent on the elements of spatial discretization. For the Laplace's equation we refer to
the work [48] and for the scalar wave propagation we suggest [34].
Another technique apt to the sparsi�cation of matrices is contemplated by the hierarchi-
cal methods [47]: these algorithms exploit the low-ranking structure of the sub-blocks of
the BEM matrices, which can therefore be decomposed by Singular Value Decomposition
(SVD) or Adaptive Cross Approximation (ACA) into the product of matrices with fewer
elements. For application in 3D elastodynamics we suggest the work in [26], developed in
frequency domain.
Moreover wavelet functions for the spatial approximations of the boundary unknowns can
be employed to obtain sparse blocks, thanks to the localization and vanishing moments
properties of this kind of basis functions. For the algorithm to construct these particular
basis we refer to [13] and for combination with the CQ-BEM approach for scalar wave
problem we suggest [28, 21].

Outlines of the thesis

This thesis investigates several aspects of the Energetic BEM applied to the resolution of
elastodynamic propagation problems in a 2D domain.

In Chapter 1 we provide all the fundamental notations about the model problem we in-
tend to solve by BEM in a bidimensional domain Ω with smooth and Lipschitz boundary
∂Ω = Γ. The unknown displacement of the 2D vectorial equation governing the motion
is rewritten in terms of an integral representation formula depending on the elastodynam-
ics fundamental 2D solution Guu. Exploiting the type of condition set at the boundary
(Dirichlet, Neumann or mixed) we derive di�erent types of BIEs which can be assembled
starting from the de�nition of the single layer operator V , of the double layer potentials
K and K∗ and of the hypersingular operator D. The BIEs are successively rewritten in
terms of space-time weak formulations associated with the energy E of the elastodynamics
system and the bilinear form depending on the single layer integral operator is theoretical
analyzed in Section 1.4, in order to set up the Sobolev functional spaces where coerciveness
and continuity of the related weak problem hold.
All the considered weak BIEs, once discretized in space and time, give rise to linear systems
with lower triangular Toeplitz matrix, whose entries, after a double analytical integration
in time variables, are double integrals de�ned on the mesh elements set on the boundary Γ.
The peculiar kernels characterizing these integral elements, in relation to the corresponding
discretized integral operator, are presented in Section 1.5 and numerous numerical imple-
mentations of the energetic BEM are exposed in Section 1.6, both for the resolution of
Neumann and for Dirichlet elastodynamics problems, con�rming the correctness and the
e�ectiveness of the method.

In Chapter 2, we prove that the unknown displacement of the elastodynamics equation
and the related boundary traction are featured by a singular behaviour near the corners
of a polyhedral domain, in the 3D case, and of a polygon, in a 2D problem. We therefore
propose di�erent types of spatial discretization of the energetic weak formulations, for both
Dirichlet and Neumann constraints at the boundary, in order to catch as best as possi-
ble the asymptotic behaviour of the related weak solutions. This asymptotic behaviour
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in particular has order strictly connected to the amplitude of the considered corner, as
shown in Section 2.1. Meshes geometrically or algebraically re�ned near these of critical
points improve the convergence towards the solution and an accurate analysis of the error
committed in relation to the parameters of space discretization is provided in Section 2.3.
The numerical results exposed in Section 2.4 are related to 2D elastodynamics problems in
polygonal domains or external to open �at obstacles, and they verify the theoretical slopes
estimated for the error induced by the resolution of the related Galerkin energetic weak
formulations with Dirichlet and Neumann conditions.

In Chapter 3, we provide a remedy for the high computational costs required for the as-
sembly and the memory storage of the Toeplitz matrix representing, at a discrete level,
the energetic weak elastodynamics problem we intend to solve. This matrix in fact is
composed of temporal blocks that reveal to be fully populated as the corresponding time
index increases: this issue could prevent the application of the energetic BEM for problems
discretized by a high number of spatial and temporal degrees of freedom (DOFs).
Since we treat in this chapter both problems of acoustic and elastic waves propagation,
we introduce them in Sections 3.1-3.2 with the related implementations of the Energetic
BEM.
In Section 3.3 we prove, both for the acoustic and the elastic case, that is possible to rewrite
the matrix elements of the Galerkin weak problem in a low rank expansion, which suggests
us that each temporal block can be decomposed as the product of two low rank matrices.
This decomposition can be performed by the Adaptive Cross Approximation, which is an
algebraic tool easy to implement and that does not require a previous computation of the
entire matrix.
In Section 3.4, numerous numerical experiments are presented, showing in particular the
memory and the computational time saved in the resolution of problems with high number
of DOFs, demonstrating moreover that the quality of the results is not a�ected by the
application of the proposed compression algorithm.

Chapter 4 is dedicated to the presentation of the quadrature formulas employed to approx-
imate, with high precision, the integrals in space variables involved in the computation
of the entries of the discretized integral operators. In Section 4.1 we proceed with an ac-
curate study of the integration domains in local variables, highlighting the fact that the
shape of these integral domains depends on the mutual position of the boundary mesh
elements. The aim is to determine the regions, in local coordinates, where the peculiar
step functions characteristic of the fundamental solution Guu have positive argument. If
these domains present points where the boundaries are not di�erentiable, they are further
split into subdomains. Following this splitting technique, in Section 4.2 we take also into
consideration the characteristic space singularities: O(log(r)) for the single layer integral
operator, O(1/r) for the double layer integral operator and O(1/r2) for the hypersingular
integral operator, in order to furnish the quadrature rules that allow to overcome at best
these singularity issues.

In the Appendix we show the computational details of the exact time integration with
which we obtain the integral form of the entries of all the discretized integral operators
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V, K, K∗ and D and in the �nal Chapter, Conclusions and Future perspectives, we provide
some �nal remarks about the entire thesis work.

Notation Remarks. The elastic problems are of a vector nature and therefore, if not
otherwise speci�ed, summations are implied in case of repeated indices, in order to avoid
burdening of notations along the thesis.
All the vectorial quantities are written in bold font, as the �elds of displacements and
tractions u and p. Scalar quantities, like the components of a vectorial �eld, are indicated
with an italic font, for example ui and pi.



Chapter 1

Elastodynamics by energetic BEM

1.1 The 2D model problem

In this chapter we focus on the propagation of elastic waves into a 2D bounded domain
Ω ⊂ R2 occupied by a linear, homogeneous, elastic and isotropic medium. The set Ω is
characterized by a Lipschitz closed boundary Γ = ∂Ω, the latter acting as an obstacle for
the waves propagation. We de�ne also the unbounded complementary set Ωe = R2\Ω. We
introduce then all the fundamental notations and formulas we need to present the theory of
elasticity, starting from the physical characteristics of the medium, which are incorporated
in the mass density % and in the so called Lamè parameters λ and µ

λ =
νE

(1 + ν)(1− 2ν)
> 0, µ =

E

2(1 + ν)
> 0, (1.1)

depending on the positive Young moduls E and on the Poisson ratio ν. Since we deal
with a linear model, these physical quantities are constants independent from the space
variable x ∈ R2, which is described by its cartesian components x = (x1, x2)>. Therefore,
the time-domain evolution of the motion is governed by a system of linear PDEs, derived
by the application of the Cauchy �rst law of motion in the xi-direction:

∂σij [u]

∂xj
(x, t) + %bi(x, t) = %

∂2ui
∂t2

(x, t), i = 1, 2, (x, t) ∈ Ω× (0, T ]. (1.2)

The vector �eld b = (b1, b2)> in (1.2) represents a body force per mass unity and u =
(u1, u2)> is the unknown displacement. It is trivial to observe that equation (1.2) remains
true also in case of outer propagation, namely for x ∈ Ωe.
In equation (1.2) we recognize the components of the 2D stress tensor σσσ = (σij)i,j=1,2

σij [u](x, t) = Cklij
∂uk
∂xl

(x, t), x ∈ Ω, t ∈ (0, T ], i, j = 1, 2, (1.3)

where, as the medium is isotropic, the constants

Cklih = λδihδkl + µ(δikδhl + δilδhk), i, h, k, l = 1, 2, (1.4)

7
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are the elements of the fourth order Hooke tensor C =
(
Cklih
)
i,h,k,l=1,2

, depending only on
the Lamé parameters and on the Kronecker delta δij and for which the following symmetry
properties hold:

Cklih = Cklhi = C lkih = Cihkl . (1.5)

We observe that the stress tensor (1.3), thanks to de�nition (1.4), can be rewritten in the
form

σij [u](x, t) = λδijεkk[u](x, t) + 2µεij [u](x, t), i, j = 1, 2,

where the deformation tensor εεε acts on u as follows

εij [u](x, t) =
1

2

(
∂ui
∂xj

(x, t) +
∂uj
∂xi

(x, t)

)
, i, j = 1, 2. (1.6)

By using the de�nition of the stress tensor σσσ in (1.3) we introduce another fundamental
vectorial �eld, the traction p = (p1, p2)>:

pi(x, t) = σih[u](x, t)nh(x), x ∈ Ω, t ∈ (0, T ], i = 1, 2, (1.7)

where n(x) = (n1(x), n2(x))> is the unit normal vector associated to the �eld point x (if
Γ− and Γ+ denote respectively the lower and the upper face of the obstacle and x ∈ Γ, then
n(x) is oriented from Γ− to Γ+). Equation (1.2) can be rewritten by di�erent compact
notations: the �rst one is

∇ · σσσ[u] + %b = %ü, x ∈ Ω, t ∈ (0, T ], (1.8)

where the upper dots indicate the second time derivative, while the second one, obtained by
(1.3), has the following vectorial form, usually identi�ed in literature as Navier equation:

(λ+ µ)∇(∇ · u) + µ∆u+ %b = %ü, x ∈ Ω, t ∈ (0, T ]. (1.9)

with ∇ and ∆ being in the formula the Nabla and the Laplace operators, that act on
a scalar function f : Ω × (0, T ] → R performing the following derivatives in the space
variables x1, x2:

∇f :=

(
∂f

∂x1
,
∂f

∂x2

)>
, ∆f :=

∂2f

∂x2
1

+
∂2f

∂x2
2

,

and whose application can be naturally extended to a vectorial �eld f : Ω× (0, T ]→ R2 in
this way:

∇ · f :=
∂f1

∂x1
+
∂f2

∂x2
, ∆f = g, with gi =

∂2fi
∂x2

1

+
∂2fi
∂x2

2

, i = 1, 2.

Equation (1.8) or (1.9) has to be equipped by initial conditions for u and the velocity u̇
and by suitable boundary constrains, as discussed in the next session.

We �nally observe that the vector displacement satis�es the hypothesis of the Helmholtz
decomposition for a 2D vector �eld, depending on the scalar functions ψS(x, t) and ψP(x, t)
(for further details on the Helmholtz decomposition for a 2D vector �eld see [2, 33]):

u = uP + uS, (1.10)
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where uP = ∇ψP and uS = R∇ψS. In particular, R is the anticlockwise rotation matrix of
angle π/2:

R =

(
0 1
−1 0

)
,

and the operator R∇ applied to a scalar �eld corresponds to the operator curl de�ned
in [33]. Substituting decomposition (1.10) in the vectorial equation (1.9) and setting null
external body forces (b = 0), we obtain the following formula:

(λ+µ)∇ [∇ · (∇ψP +R∇ψS)]+µ∆ (∇ψP +R∇ψS) = %
∂2

∂t2
(∇ψP +R∇ψS) ,x ∈ Ω, t ∈ (0, T ].

It is trivial to observe that, if the scalar �eld �ts the hypothesis of the Schwarz theorem
[37], then ∇ ·R∇ψP ≡ 0, allowing to rewrite the previous equation in the form

(λ+ 2µ)∇ (∆ψP) + µR∇ (∆ψS) = %
(
∇ψ̈P +R∇ψ̈S

)
, x ∈ Ω, t ∈ (0, T ] (1.11)

since for the scalar �eld f it holds ∇ ·∇f = ∆f and ∇(∆f) = ∆(∇f). Equation (1.11) is
identically satis�ed if ψP and ψS are solution of the following scalar wave equations{

c2
P∆ψP(x, t) = ψ̈P(x, t) (x, t) ∈ Ω× (0, T ]

c2
S∆ψS(x, t) = ψ̈S(x, t) (x, t) ∈ Ω× (0, T ]

where

cP =

√
λ+ 2µ

%
> cS =

√
µ

%
(1.12)

are the propagation phase speeds of uP and uS, which can be �nally seen as the longi-
tudinal and the transversal displacement, respectively. An example of resolution of 2D
elastodynamics problems by BEM, with displacement u rewritten in terms of longitudinal
and transversal directions can be found in [33].

1.2 Representation formula and Boundary Integral Equations

From now on, for the sake of simplicity, we consider only the resolution of equation (1.9)
with null external body forces, bi = 0 for i = 1, 2, and homogeneous initial conditions

u(x, 0) = 0, u̇(x, 0) = 0, x ∈ Ω. (1.13)

Otherwise, the integral formulations we will expose in the following to identify the unknown
displacement in Ω×(0, T ] require the computation of integrals depending on the non-trivial
initial conditions and on the extrenal force, as shown in [14]. In the simple case we treat, the
type of constrains set at the boundary Γ determines the three kinds of vectorial problems
we can solve by BEM and the related behaviour of the vectorial unknown u:

• Dirichlet problem (PD):{
(λ+ µ)∇(∇ · u) + µ∆u = %ü, ∀(x, t) ∈ Ω× (0, T ],
u(x, t) = gD(x, t), ∀(x, t) ∈ Σ := Γ× (0, T ],
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• Neumann problem (PN ):{
(λ+ µ)∇(∇ · u) + µ∆u = %ü, ∀(x, t) ∈ Ω× (0, T ],
p(x, t) = gN (x, t), ∀(x, t) ∈ Σ := Γ× (0, T ],

• Mixed boundary conditions problem (PD,N ): If we de�ne with ΓD and ΓN the two
portions of boundary where the Dirichlet and the Neumann boundary data are re-
spectively given and such that Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅, then

(λ+ µ)∇(∇ · u) + µ∆u = %ü, ∀(x, t) ∈ Ω× (0, T ],
u(x, t) = gD(x, t), ∀(x, t) ∈ ΣD := ΓD × (0, T ],
p(x, t) = gN (x, t), ∀(x, t) ∈ ΣN := ΓN × (0, T ].

To approximate the displacement u by a BEM technique, we introduce the fundamental
solution tensor Guu = (Guu

ij )i,j=1,2 of (1.9), i.e. the solution of the following di�erential
problem

Cklih
∂2Guu

kj

∂xh∂xl
(x, ξξξ; t, τ) + %bij(x, ξξξ; t, τ) = %

∂2Guu
ij

∂t2
(x, ξξξ; t, τ), i, j = 1, 2, x, ξξξ ∈ R2, τ < t.

(1.14)

where a punctual body source force with components bij(x, ξξξ; t, τ) =
δij
% δ(x− ξξξ)δ(t− τ) is

applied in the propagation domain (δ(·) is the Dirac distribution).
The tensor Guu, that can be deduced by classical arguments reported in the Andersen
book [14], results to be symmetric and has the following expression:

Guu
ij (x, ξξξ; t, τ) :=

H[cP(t− τ)− r]
2π%cP

{
rirj
r4

2c2
P(t− τ)2 − r2√
c2
P(t− τ)2 − r2

− δij
r2

√
c2
P(t− τ)2 − r2

}

−H[cS(t− τ)− r]
2π%cS

{
rirj
r4

2c2
S(t− τ)2 − r2√
c2
S(t− τ)2 − r2

− δij
r2

c2
S(t− τ)2√

c2
S(t− τ)2 − r2

}
,

(1.15)

having set the vector r = (r1, r2)> = x − ξξξ = (x1 − ξ1, x2 − ξ2)>, with norm r = ‖r‖2 =√
r2

1 + r2
2 and where H[·], the Heaviside function, models the primary and the secondary

wave fronts propagation. We further observe that the tensor function (1.15) depends on the
space and time arguments only through the di�erences x−ξξξ and t−τ . The knowledge of an
explicit expression for the 2D fundamental solution allows to express the displacement by
an integral representation formula, that can be deduced making a space-time integral of the
matrix-vector product of the fundamental tensor Guu by the equation (1.2), considering
this last one as a column vector:

0 =

∫
Ω

∫ t

0

{
Guu
ij (x, ξξξ; t, τ)Ckljh

∂2uk
∂ξh∂ξl

(ξξξ, τ)−Guu
ij (x, ξξξ; t, τ)%

∂2

∂τ2
uj(ξξξ, τ)

}
dτdξξξ, i = 1, 2.

(1.16)
For the time variable we proceed integrating twice by parts: since the components of the
fundamental solution Guu

ij and of its �rst temporal derivative ∂Guuij /∂τ are null at t = τ and



Chapter 1. Elastodynamics by energetic BEM 11

considering the homogeneous initial conditions, we obtain from (1.16)

0 =

∫
Ω

∫ t

0
Guu
ij (x, ξξξ; t, τ)Ckljh

∂2uk
∂ξh∂ξl

(ξξξ, τ)dτdξξξ

−
∫

Ω
Guu
ij (x, ξξξ; t, τ)%

∂

∂τ
uj(ξξξ, τ)

∣∣∣∣t
0

dξξξ +

∫
Ω

∫ t

0

∂

∂τ
Guu
ij (x, ξξξ; t, τ)%

∂

∂τ
uj(ξξξ, τ)dτdξξξ

=

∫
Ω

∫ t

0
Guu
ij (x, ξξξ; t, τ)Ckljh

∂2uk
∂ξh∂ξl

(ξξξ, τ)dτdξξξ

−
∫

Ω
Guu
ij (x, ξξξ; t, τ)%

∂

∂τ
uj(ξξξ, τ)

∣∣∣∣t
0

dξξξ +

∫
Ω
%
∂

∂τ
Guu
ij (x, ξξξ; t, τ)uj(ξξξ, τ)

∣∣∣∣t
0

dξξξ

−
∫

Ω

∫ t

0
%
∂2

∂τ2
Guu
ij (x, ξξξ; t, τ)uj(ξξξ, τ)dτdξξξ, i = 1, 2,

and then we get∫
Ω

∫ t

0
Guu
ij (x, ξξξ; t, τ)Ckljh

∂2uk
∂ξh∂ξl

(ξξξ, τ)dtdξξξ−
∫

Ω

∫ t

0
%
∂2

∂τ2
Guu
ij (x, ξξξ; t, τ)uj(ξξξ, τ)dtdξξξ = 0, i = 1, 2.

(1.17)
Regarding the integration in space, we focus on the �rst term of (1.17). Applying the
Gauss-Green formula we write∫

Ω
Guu
ij (x, ξξξ; t, τ)Ckljh

∂2uk
∂ξh∂ξl

(ξξξ, τ)dξξξ

=

∫
Γ
Guu
ij (x, ξξξ; t, τ)Ckljh

∂uk
∂ξl

(ξξξ, τ)nh(ξξξ)dΓξξξ −
∫

Ω

∂

∂ξh
Guu
ij (x, ξξξ; t, τ)Ckljh

∂uk
∂ξl

(ξξξ, τ)dξξξ

=

∫
Γ
Guu
ij (x, ξξξ; t, τ)Ckljh

∂uk
∂ξl

(ξξξ, τ)nh(ξξξ)dΓξξξ −
∫

Γ

∂

∂ξh
Guu
ij (x, ξξξ; t, τ)Ckljhuk(ξξξ, τ)nl(ξξξ)dΓξξξ

+

∫
Ω

∂2

∂ξl∂ξh
Guu
ij (x, ξξξ; t, τ)Ckljhuk(ξξξ, τ)dξξξ, i = 1, 2. (1.18)

Considering the symmetry properties of the Hooke tensor reported in (1.5) and the traction
de�nition in (1.7), we can rewrite the terms in (1.18) as follows:∫

Γ
Guu
ij (x, ξξξ; t, τ)Ckljh

∂uk
∂ξl

(ξξξ, τ)nh(ξξξ)dΓξξξ =

∫
Γ
Guu
ij (x, ξξξ; t, τ)pj(ξξξ, τ)dΓξξξ, i = 1, 2, (1.19)∫

Γ

∂

∂ξh
Guu
ij (x, ξξξ; t, τ)Ckljhuk(ξξξ, τ)nl(ξξξ)dΓξξξ =

∫
Γ
Ckljh

∂

∂ξl
Guu
ik (x, ξξξ; t, τ)uj(ξξξ, τ)nh(ξξξ)dΓξξξ

=

∫
Γ
Gup
ij (x, ξξξ; t, τ)uj(ξξξ, τ)dΓξξξ, i = 1, 2, (1.20)∫

Ω

∂2

∂ξl∂ξh
Guu
ij (x, ξξξ; t, τ)Ckljhuk(ξξξ, τ)dξξξ =

∫
Ω
Ckljh

∂2

∂ξl∂ξh
Guu
ik (x, ξξξ; t, τ)uj(ξξξ, τ)dξξξ, i = 1, 2.

(1.21)

We observe that, by the way, we have introduced in (1.20) the fundamental tractionGup =
(Gup

ij )i,j=1,2, de�ned by

Gup
ij (x, ξξξ; t, τ) = Ckljh

∂

∂ξl
Guu
ik (x, ξξξ; t, τ)nh(ξξξ). (1.22)
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Substituting (1.19)-(1.20)-(1.21) in (1.18) and going back to (1.17), we obtain the following
identity:

−
∫

Ω

∫ t

0

{
Ckljh

∂2

∂ξl∂ξh
Guu
ik (x, ξξξ; tτ)− % ∂

2

∂τ2
Guu
ij (x, ξξξ; tτ)

}
uj(ξξξ, τ)dτdξξξ

=

∫
Γ

∫ t

0
Guu
ij (x, ξξξ; t, τ)pj(x, τ)dτdΓξξξ −

∫
Γ

∫ t

0
Gup
ij (x, ξξξ; t, τ)uj(x, τ)dτdΓξξξ, i = 1, 2.

(1.23)

Taking into account the symmetry of the fundamental solution Guu and the fact that its
components verify equation (1.14), we get to the following equality usually denominated
in literature Somigliana Identity :

ui(x, t) =

∫
Γ

∫ t

0
Guu
ij (x, ξξξ; t, τ)pj(ξξξ, τ)dτdΓξξξ −

∫
Γ

∫ t

0
Gup
ij (x, ξξξ; t, τ)uj(ξξξ, τ)dτdΓξξξ,

(x, t) ∈ Ω× (0, T ], i = 1, 2. (1.24)

Equations (1.24) furnish us a way to represent in the interior domain the components of
the unknown displacement employing two integral operators de�ned at the boundary Γ.
Formula (1.24) can be rewritten in the following compact notation:

u(x, t) = V p(x, t)−Ku(x, t), (x, t) ∈ Ω× (0, T ], (1.25)

where the integral tensor operators V and K, usually called in literature Single Layer and
Double Layer integral operators, respectively, act on the components of u and p as follows:

(V p)i (x, t) =

∫
Γ

∫ t

0
Guu
ij (x, ξξξ; t, τ)pj(ξξξ, τ)dτdΓξξξ, i = 1, 2, (1.26)

(Ku)i (x, t) =

∫
Γ

∫ t

0
Gup
ij (x, ξξξ; t, τ)uj(ξξξ, τ)dτdΓξξξ, i = 1, 2. (1.27)

We recall that, although we have presented a representation formula for interior propaga-
tion, we can pose (PD), (PN ) and (PD,N ) in the exterior domain Ωe = R2\Ω. Therefore to
obtain a representation formula for the exterior propagation, we just consider the inverse
direction of the normal vector n, which implies a change of sign for formulas (1.24) and
(1.25):

u(x, t) = −V p(x, t) +Ku(x, t), (x, t) ∈ Ωe × (0, T ] (1.28)

At this stage, considering both equations (1.28) and (1.25), we can globally determine the
propagation in Ω ∪ Ωe by means of the following integral representation formulas:

u(x, t) = V [p]Γ (x, t)−K [u]Γ (x, t), (x, t) ∈ Ω ∪ Ωe × (0, T ] (1.29)

where the square brackets [·]Γ denote the jump of the traction and of the displacement
across the boundary Γ.

The various integral representation formulas presented before can be suitably modi�ed
to solve problems with speci�c boundary conditions. For instance, if we want to solve
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problem (PD) and we consider formula (1.25), taking the limit from the space variable x
in the interior domain Ω towards a point x belonging to the boundary Γ and exploiting
the Dirichlet datum u|Γ ≡ gD, we get to the following Boundary Integral Equation, usually
indicated by the acronym BIE:

cΓ(x)gD(x, t) = V p(x, t)−KgD(x, t), (x, t) ∈ Σ = Γ× (0, T ]. (1.30)

In formula (1.30), the integral on Γ related to the double layer operator K has to be
intended as a Cauchy Principal Value integral, as indicated in Section 4.2.3.
For what concerns the function cΓ which multiplies the Dirichlet datum in (1.30), it derives
from the consequences of the limiting process related to the Double Layer operator K, in
fact

limx∈Ω→x∈ΓKu(x, t) = Ku(x, t)− (1− cΓ(x))u(x, t),

were cΓ ≡ 1/2 for di�erentiable boundaries. If instead we are dealing with non-smooth
contours, the factor cΓ(x) depends on the local geometry determined by the corner points:
in fact, cΓ(x) = ω/2π if x is an apex of the propagation domain Ω with inner angle of
amplitude ω, as indicated in [14]. Considering the introduced representation formulas, we
collect the di�erent BIEs used for the experiments with soft scattering conditions reported
in the next chapters:

representation formula BIE

(D1) u = V p−Ku, ∀(x, t) ∈ Ω× (0, T ] V p = (K + cΓ)gD, ∀(x, t) ∈ Σ

(D2) u = Ku− V p, ∀(x, t) ∈ Ωe × (0, T ] V p = (K − cΓ)gD, ∀(x, t) ∈ Σ

(D3) u = VΦΦΦ, ∀(x, t) ∈ Ω ∪ Ωe × (0, T ] VΦΦΦ = gD, ∀(x, t) ∈ Σ

The unknown ΦΦΦ of the representation formula and the BIE of type (D3) corresponds to
the jump of the traction across Γ

ΦΦΦ = [p]Γ (1.31)

and it is deduced from (1.29), in which we are assuming a continuous displacement on Γ,
namely [u]Γ ≡ 0.

To obtain boundary integral equations suitable for the resolution of problems with hard-
scattering conditions as in (PN ), we need to manipulate formula (1.24): applying the
Cauchy stress tensor (1.3) to the displacement components, in order to obtain the traction
p as de�ned in (1.7), we get to the representation formula

pi(x, t) =

∫
Γ

∫ t

0
Gpu
ij (x, ξξξ; t, τ)pj(ξξξ, τ)dtdΓξξξ −

∫
Γ

∫ t

0
Gpp
ij (x, ξξξ; t, τ)uj(ξξξ, τ)dtdΓξξξ,

(x, t) ∈ Ω× (0, T ], i = 1, 2, (1.32)

where the new introduced tensors Gpu = (Gpu
ij )i,j=1,2 and G

pp = (Gpp
ij )i,j=1,2 are de�ned

by

Gpu
ij (x, ξξξ; t, τ) =Cklih

∂

∂xl
Guu
kj (x, ξξξ; t, τ)nh(x), (1.33)

Gpp
ij (x, ξξξ; t, τ) =Cklih

∂

∂xl
Gup
kj (x, ξξξ; t, τ)nh(x) = CklihC

βγ
jα

∂2Guu
kβ

∂xl∂ξγ
(x, ξξξ; t, τ)nh(x)nα(ξξξ).

(1.34)
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Representation formula (1.32) is rewritable in the following compact notation

p(x, t) = K∗p(x, t)−Du(x, t), (x, t) ∈ Ω× (0, T ] (1.35)

where K∗ is the adjoint of the double layer operator K and D is usually known in literature
as Hypersingular integral operator. They respectively act on p and u as follows:

(K∗p)i (x, t) =

∫
Γ

∫ t

0
Gpu
ij (x, ξξξ; t, τ)pj(ξξξ, τ)dtdΓξξξ, i = 1, 2, (1.36)

(Du)i (x, t) =

∫
Γ

∫ t

0
Gpp
ij (x, ξξξ; t, τ)uj(ξξξ, τ)dtdΓξξξ, i = 1, 2. (1.37)

With similar considerations done to deduce the equation (1.30) and exploiting the Neumann
datum p|Γ ≡ gN , we get to the following BIE:

cΓ(x)gN (x, t) = K∗gN (x, t)−Du(x, t), (x, t) ∈ Σ, (1.38)

remarking that in formula (1.38) the integrals on Γ related to the double layer operator
K∗ and the hypersingular operator D have to be treated, respectively, as Cauchy Principal
Value and Hadamard Finite Part integrals, as indicated in Sections 4.2.3 and 4.2.4.
Also in this case, we can summarize the di�erent BIE for Neumann problems, mostly used
for the numerical experiments:

representation formula BIE

(N1) p = K∗p−Du, ∀(x, t) ∈ Ω× (0, T ] Du = (K∗ − cΓ)gN , ∀(x, t) ∈ Σ

(N2) p = Du−K∗p, ∀(x, t) ∈ Ωe × (0, T ] Du = (K∗ + cΓ)gN , ∀(x, t) ∈ Σ

(N3) p = DΨΨΨ, ∀(x, t) ∈ Ω ∪ Ωe × (0, T ] DΨΨΨ = gN , ∀(x, t) ∈ Σ

where in particular the unknown ΨΨΨ of the representation formula and the BIE of type (N3)
corresponds to the jump of the displacement across Γ:

ΨΨΨ = [u]Γ . (1.39)

We again observe that (N3) is deduced from formula (1.29), in which the jump of the
traction is supposed to be null and onto which the traction de�ned in (1.7) is applyed.
We recall moreover that representation formulas and BIEs de�ned in (D3) and (N3) can
be used, without modi�cations, in problems of propagation external to open Lipschitz
obstacles Γ. In this case, the representation formulas are de�ned in R2 \ Γ and, for the
continuity required by the displacement u, to solve BIE (N3) we have to impose ΨΨΨ|∂Γ

≡ 0.

Mixed boundary condition problems as in (PD,N ) can be treated by the simultaneous use
of two BIEs: one de�ned on the portion ΓD, where the Dirichlet datum is known, and one
de�ned on ΓN , where it is possible to make explicit the Neumann condition. Representation
formulas and related BIEs to solve are collected in the following table:

representation formula system of BIEs

(DN 1)
u = V p−Ku,
∀(x, t) ∈ Ω× (0, T ]

{
V (p|ΓD )−K (u|ΓN ) = fD ∀(x, t) ∈ ΣD
K∗ (p|ΓD )−D (u|ΓN ) = fN ∀(x, t) ∈ ΣN

(DN 2)
u = Ku− V p,
∀(x, t) ∈ Ωe × (0, T ]

{
−V (p|ΓD ) + K (u|ΓN ) = fD ∀(x, t) ∈ ΣD
−K∗ (p|ΓD ) + D (u|ΓN ) = fN ∀(x, t) ∈ ΣN
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where the right-hand-side of the BIE, respectively de�ned on ΣD and on ΣN , are

fD = −V gN + (K + cΓ)gD, fN = DgD − (K∗ − cΓ)gN

in case of internal propagation, type (DN 1), while for exterior propagation, type (DN 2),
it holds

fD = V gN − (K − cΓ)gD, fN = −DgD + (K∗ + cΓ)gN .

The symmetry properties of the fundamental tensors Guu,Gup,Gpu and Gpp can be
summarized as follows:

Ghk
ij (x, ξξξ; t, τ) = Gkh

ji (ξξξ,x; t, τ) h,k = u,p, i, j = 1, 2, (1.40)

and they turn out to be useful in solving the mixed boundary problems since the discretized
integral operators that occur in the related formulation can be assembled taking advantage
of the equality above cited.

Lastly, we want to focus on the importance of working with the various integral represen-
tation formulas exposed in this section: they allow to represent u in an unbounded (or
bounded) bidimensional domain just by integrals de�ned at the boundary, leading to a
reduction of the dimensional complexity of the problem and to the possibility of approxi-
mating the exterior propagation without imposing arti�cial conditions, as usual with FEM,
that can create spurious re�ections.
The next step is to concentrate on the BIEs listed above and on a proper weak formulation
that allows us to approximate the related unknowns by stable methods, in order to replace
the latter in the related representation formulas and get the approximation of the unknown
displacement u of equation (1.9).

1.3 Energetic weak problem

In this section we deduce the expression of the energy of the elastodynamics system and
we elaborate a weak formulation of the above cited BIEs linked to that positive quantity.
At �rst we consider the resolution of the Dirichlet problem (PD) by the use of the represen-
tation formula and the related integral equation of type (D3), meaning that the displace-
ment is considered continuous across the boundary Γ and the traction is characterized by
a jump discontinuity. With the additional hypothesis for which the unknown displacement
is de�ned in the union Ω ∪ Ωe, we perform a scalar product of the Navier equation (1.9)
by the time derivative u̇, exploiting the de�nition by components in (1.2):

%üi(x, t)u̇i(x, t)− Cklih
∂2uk
∂xh∂xl

(x, t)u̇i(x, t) = 0, x ∈ Ω ∪ Ωe, t ∈ (0, T ].

Integrating by parts over Ω ∪ Ωe, we obtain

1

2

∫
Ω∪Ωe

%
∂

∂t
‖u̇(x, t)‖22dx+

∫
Ω∪Ωe

Cklih
∂uk
∂xl

(x, t)
∂u̇i
∂xh

(x, t)dx

=

∫
Γ

[
Cklih

∂uk
∂xl

(x, t)nh(x)

]
Γ

u̇i(x, t)dΓx, (1.41)
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Due to the symmetry properties of the Hooke tensor de�ned in (1.4), it holds

∂

∂t

(
Cklih

∂uk
∂xl

(x, t)
∂ui
∂xh

(x, t)

)
= 2Cklih

∂uk
∂xl

(x, t)
∂u̇i
∂xh

(x, t), (1.42)

and, recalling the de�nition of the deformation tensor εεε in (1.6), we have

Cklih
∂uk
∂xl

(x, t)
∂ui
∂xh

(x, t) = Cklih
∂uk
∂xl

(x, t)
1

2

(
∂ui
∂xh

(x, t) +
∂uh
∂xi

(x, t)

)
= σσσ[u](x, t) : εεε[u](x, t), (1.43)

where the operation:

σσσ[u](x, t) : εεε[u](x, t) = σih[u](x, t)εih[u](x, t)

denotes the contraction between the stress and the deformation tensors. At this point, by
integrating equation (1.41) in the time interval [0, T ] and using the equalities (1.42) and
(1.43), we obtain the following Energy Indentity :

E(u, T ) :=
1

2

∫
Ω∪Ωe

[
%‖u̇(x, T )‖22dx+ σσσ[u](x, T ) : εεε[u](x, T )

]
dx (1.44)

=

∫ T

0

∫
Γ
u̇i(x, t)Φi(x, t)dΓxdt, (1.45)

where E(u, T ) is the energy of the system at the �nal instant T and ΦΦΦ is the �eld de�ned
in (1.31). As introduced at the beginning of this section, this quantity turns out to be
positive since it holds:

σσσ[u] : εεε[u] = λ(∇ · u)2 + µ

[
2

(
∂u1

∂x1

)2

+ 2

(
∂u2

∂x2

)2

+

(
∂u1

∂x2
+
∂u2

∂x1

)2
]
.

Then, the identity (1.45) suggests us to consider the following energetic weak formulation
of the BIE of type (D3):

�nd the solution ΦΦΦ = (Φ1,Φ2)> of the weak problem

〈 ˙(VijΦj), φi〉L2(Σ) = 〈ġD,i, φi〉L2(Σ), (1.46)

where φφφ = (φ1, φ2)> is a suitable test function belonging to the functional space of the
traction p.

If instead we solve the Neumann problem (PN ) with the representation formula and the
BIE of type (N3), we suppose to search for a displacement with jump discontinuity and
we impose a continuous traction p on Γ. Due to that, retracing passages similar to (1.41)-
(1.45), we obtain a slightly di�erent energy identity for the hard scattering problem:

E(u, T ) =

∫
Γ

∫ T

0
Ψ̇i(x, t)pi(x, t)dtdΓx, (1.47)
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where ΨΨΨ is the �eld de�ned in (1.39). Thus, by identity (1.47), we deduce the energetic
weak formulation of BIEs of type (N3):

�nd the solution ΨΨΨ = (Ψ1,Ψ2)> of the weak problem

〈(DijΨj), ψ̇i〉L2(Σ) = 〈gN ,i, ψ̇i〉L2(Σ), (1.48)

where ψψψ = (ψ1, ψ2)> is a suitable test function belonging to the functional space of the
displacement u.

Similar weak formulations can be deduced for the other integral equations introduced pre-
viously. For those of type (D1) and (D2), the related BIEs have to be derived in the time
variable and projected by a L2(Σ) product onto the functional space of the traction p.
Instead, for the Neumann BIEs (N1) and (N2), the projection has to be done employing
the time derivative of test functions belonging to the functional space of the displacement u.

For what concerns the mixed boundary condition problems, the energetic weak formula-
tions combine the projections of all the integral operator V,K,K∗ and D onto suitable
spaces, depending on the portion of arc along which the BIEs of the system of type (DN 1)
are de�ned. Therefore, the energetic weak formulation we intend to solve for the inner
problem case is the following:

calculate, for i = 1, 2, the components pi and ui solution of the following system{
〈 ˙(Vijpj), φi〉L2(ΣD) − 〈 ˙(Kijuj), φi〉L2(ΣD) = 〈 ˙fD,i, φi〉L2(ΣD)

〈Dijuj , ψ̇i〉L2(ΣN ) − 〈K∗ijpj , ψ̇i〉L2(ΣN ) = 〈fN ,i, ψ̇i〉L2(ΣN )

(1.49)

where φφφ = (φ1, φ2)>, de�ned on ΣD, and ψψψ = (ψ1, ψ2)>, de�ned on ΣN , are test
functions belonging respectively to the functional spaces of p and u.

Equivalently the weak form of (DN 2) can be obtained with a change in sign. All the above
stated energetic weak formulations are characterized by bilinear forms whose connection
with the energy (1.44) is essential to show good properties of coerciveness and continuity.
These allow to establish the spaces where the weak problem has a unique solution, depend-
ing in a continuous way on the boundary data. The related theoretical proof, that is also
reported in Author's paper [7] (currently under review), is shown in the following section
and the results are collected for the single layer and the hypersingular weak formulation
in Lemma 1.4.2.

1.4 Coercivity and continuity of the bilinear form

We introduce here space�time anisotropic Sobolev spaces, de�ned on the boundary Γ, as
a convenient functional analytic setting for the analysis of the time dependent boundary
integral operators V and D, de�ned respectively in (1.26) and (1.37). A detailed exposition
of the following arguments may be found in [46, 40]. In the case of an open arc, namely
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∂Γ 6= ∅, we �rst extend Γ to a closed, orientable Lipschitz manifold Γ̃. We recall the usual
Sobolev spaces of supported distributions, associated with Γ:

H̃s(Γ) =
{
u ∈ Hs

(
Γ̃
)

: supp(u) ⊂ Γ
}
, s ∈ R.

The Sobolev space Hs(Γ) we consider is the quotient space Hs
(

Γ̃
)
/H̃s

(
Γ̃ \ Γ

)
. For the

latter, we need to de�ne a family of Sobolev norms. To do this, we set partition of unity
{αi}i∈I subordinated to {Bi}i∈I , which represents a covering of Γ̃ by open sets, I being a
�nite set of indexes. Given, for each i ∈ I, a di�eomorphism ϕi from Bi to the unit square
in R2, Sobolev norms are induced from R2, with parameter ω ∈ C \ {0}:

||u||
s,ω,Γ̃

=

(∑
i∈I

∫
R2

(|ω|2 + |ξξξ|2)s|Fx 7→ξξξ
{

(αiu) ◦ ϕ−1
i

}
(ξξξ)|2dξξξ

) 1
2

. (1.50)

Here, Fx 7→ξξξ denotes the Fourier transform

Fx 7→ξξξϕ(ξξξ) = ϕ̂(ξξξ) =

∫
R2

e−ix·ξξξϕ(x) dx.

Di�erent values of ω in (1.50) induce equivalent norms onHs(Γ), ‖u‖s,ω,Γ = inf
v∈H̃s(Γ̃\Γ)

‖u+

v‖
s,ω,Γ̃

and on H̃s(Γ), ‖u‖s,ω,Γ,∗ = ‖e+(u)‖
s,ω,Γ̃

, with e+ extending the distribution u by

0 from Γ to Γ̃. When a speci�c ω is �xed, we write Hs
ω(Γ) for Hs(Γ), respectively H̃s

ω(Γ)
for H̃s(Γ). We moreover recall that the norm ‖u‖s,ω,Γ,∗ is stronger than ‖u‖s,ω,Γ. We can
now de�ne a family of space-time anisotropic Sobolev spaces, in order to furnish a precise
functional setting for for the next proof: given σ > 0, r, s ∈ R

Hr
σ

(
R+;Hs(Γ)

)
=
{
u ∈ D′+(Hs(Γ)) : e−σtu ∈ S ′+(Hs(Γ)) and ||u||r,s,Γ <∞

}
, (1.51)

Hr
σ

(
R+; H̃s(Γ)

)
=
{
u ∈ D′+(H̃s(Γ)) : e−σtu ∈ S ′+(H̃s(Γ)) and ||u||r,s,Γ,∗ <∞

}
. (1.52)

Here, D′+(E) denotes the space of all distributions on R with support in [0,∞), taking

values in a Hilbert space E = Hs(Γ) and E = H̃s(Γ), respectively. S ′+(E) ⊂ D′+(E)
denotes the subspace of tempered distributions. Spaces (1.51)-(1.52) are equipped with
the norms

‖u‖r,s := ‖u‖r,s,Γ =

(∫ +∞+iσ

−∞+iσ
|ω|2r ‖û(ω)‖2s,ω,Γ dω

) 1
2

,

‖u‖r,s,∗ := ‖u‖r,s,Γ,∗ =

(∫ +∞+iσ

−∞+iσ
|ω|2r ‖û(ω)‖2s,ω,Γ,∗ dω

) 1
2

and they result properly Hilbert spaces. For r = s = 0 they correspond to the weighted
L2-space with scalar product ∫ ∞

0
e−2σt

∫
Γ
uvdΓx dt.
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Since Γ is a Lipschitz boundary, these spaces are independent of the choice of αi and ϕi
when |s| ≤ 1, as for standard Sobolev spaces.
We will use the norms ‖u‖r,s,(t1,t2]×Γ and ‖u‖r,s,(t1,t2]×Γ,∗ in the proofs of Chapter 2 to
identify restrictions on the time interval (t1, t2].

Let now Γ̃ = ∂Ω be the boundary of a Lipschitz subset Ω ⊂ R2 and Γ ⊂ Γ̃ open, denoting
moreover Ωe = R2 \ Ω. In this way next proof can cover both cases of elastodynamics
problems with open or closed obstacle. For convenience of the reader, we recall basic
properties of the following bilinear form

BD(ΦΦΦ, Φ̃̃Φ̃Φ) :=

∫
R+

∫
Γ
e−2σt ∂

∂t
(VΦΦΦ(t,x)) · Φ̃̃Φ̃Φ(t,x) dΓx dt , (1.53)

that will be considered for a positive σ in the proof of the following preposition and that
corresponds to the energetic single layer bilinear form of formula (1.46) for σ = 0. We will
use in following proposition the symbol f . g, which means that exists a constant C such
that f 6 Cg.

Proposition 1.4.1. For every ΦΦΦ, Φ̃̃Φ̃Φ ∈ H1
σ

(
R+, H−

1
2 (Γ)

)2
there holds:

|BD(ΦΦΦ, Φ̃̃Φ̃Φ)| . ‖ΦΦΦ‖1,− 1
2
,Γ,∗‖Φ̃̃Φ̃Φ‖1,− 1

2
,Γ,∗ and ‖ΦΦΦ‖2

0,− 1
2
,Γ,∗ . BD(ΦΦΦ,ΦΦΦ).

Proof. For the proof we consider the elastic problem in the frequency domain:{
(λ+ µ)∇(∇ · u) + µ∆u+ %ω2u = ∇ · σσσ(u) + %ω2u = 0, x ∈ Ω ∪ Ωe,

u+ = u− = g, x ∈ Γ̃
, (1.54)

obtained applying the Fourier transform in the time variable

Ft7→ωv(ω) = v̂(ω) =

∫ +∞

0
eiωtv(t)dt (1.55)

to the equation (1.9) (or equivalently (1.8)) and assuming Im(ω) ≥ σ > 0. In problem
(1.54) u+ identi�es the limit of the displacement towards Γ̃ from the external domain Ωe

(respectively u− represents the limit from the inner set Ω). We remark that the lower ex-
treme of integration in (1.55) is 0 since the unknown u is causal in time (namely u ≡ 0 for
t < 0). To avoid burdening of notation, we will indicate only by square brackets [·], omit-
ting then the subscript Γ̃, the jump of a �eld across the boundary Γ̃. Then, the energetic
weak formulation for the single layer equation for the jump of the traction [p] = [σσσ(u)n]
in frequency domain is given by:

Find [p] ∈ H−
1
2

ω

(
Γ̃
)2

such that

BD,ω([p],ΦΦΦ) = 〈−iωVω[p],ΦΦΦ〉
Γ̃

= 〈−iωg,ΦΦΦ〉
Γ̃

(1.56)

for all ΦΦΦ ∈ H−
1
2

ω

(
Γ̃
)2
.
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It involves the single layer operator Vω obtained from V de�ned in (1.26) by Fourier
transformation. If we execute the scalar product between the conjugate of equation in
(1.54) and u and we integrate by parts over Ω ∪ Ωe, using Green's formula as in [19],
Theorem 3.1, we obtain the following equality:∫

Ω∪Ωe

(
σσσ(u) : εεε(u)− %ω2|u|2

)
dx =

∫
Γ̃
u · [σσσ(u)n]

Γ̃
dΓ̃ ≡ 〈Vω[p], [p]〉

Γ̃
.

Observing that |〈−iωVω[p], [p]〉
Γ̃
| > Re

(
iω〈Vω[p], [p]〉

Γ̃

)
we get to the estimate

Re
(
iω〈Vω[p], [p]〉

Γ̃

)
= Re

(
iω

∫
Ω+∪Ω−

σσσ(u) : εεε(u)dx

)
+Re

(
−iω

∫
Ω∪Ωe

%|ω|2|u|2dx
)

= 2Im(ω)Eω > 0, (1.57)

with

Eω =
1

2

∫
Ω∪Ωe

(
σσσ(u) : εεε(u) + %|ω|2|u|2

)
dx .

Physically, Eω is the energy of the displacement u, and (see Lemma 3.2 in [19]) it satis�es

Eω > Cσ‖u‖21,ω,Ω∪Ωe (1.58)

for a positive constant Cσ. From (1.57) and (1.58) we deduce that

|〈−iωVω[p], [p]〉
Γ̃
| > C̃σ‖u‖21,ω,Ω∪Ωe .

From the trace theorem (see [19]) there exists a positive constant Ctrace such that

2Ctrace‖u‖21,ω,Ω∪Ωe > 2‖p|
Γ̃+
‖2−1/2,ω,Γ̃

+ 2‖p|
Γ̃−
‖2−1/2,ω,Γ̃

> ‖[p]‖2−1/2,ω,Γ̃
.

Coercivity in the frequency domain follows:

|〈−iωVω[p], [p]〉
Γ̃
| > C̃σ

2Ctrace
‖[p]‖2−1/2,ω,Γ̃

. (1.59)

Concerning the continuity of Vω, we use (1.57), (1.58) and the trace theorem ‖u‖21,ω,Ω∪Ωe
>

Ĉσ‖u|Γ̃+
‖2

1/2,ω,Γ̃
as in the appendix of [40]:

Re
(
iω〈Vω[p], [p]〉

Γ̃

)
> C ′σ‖u|Γ̃+

‖2
1/2,ω,Γ̃

. (1.60)

Using the Cauchy-Schwartz inequality, we write

Re
(
iω〈Vω[p], [p]〉

Γ̃

)
6 |ω|‖[p]‖−1/2,ω,Γ̃

‖u|
Γ̃+
‖

1/2,ω,Γ̃
. (1.61)

Combining (1.60) and (1.61) we observe that

C ′σ‖u|Γ̃+
‖

1/2,ω,Γ̃
6 |ω|‖[p]‖−1/2,ω,Γ̃

,
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and therefore

‖Vω[p]‖
1/2,ω,Γ̃

6
|ω|
C ′σ
‖[p]‖−1/2,ω,Γ̃

. (1.62)

It remains to transfer the continuity (1.62) and coercivity (1.59) from the frequency domain
into the time domain. Integrating (1.56) in ω and using the Parseval identity, recalling the
property F−1

ω 7→t (ϕ̂(ω + iσ)) = ϕ(t)e−σt, we get the identity∫
R+iσ

∫
Γ̃
−iωVωΦ̂ΦΦ · Φ̂ΦΦdΓ̃dω =

∫ +∞

0

∫
Γ̃
e−2σt ∂

∂t
(VΦΦΦ) ·ΦΦΦdΓ̃dt = BD (ΦΦΦ,ΦΦΦ) .

To show continuity we use (1.62), the de�nition of the space-time Sobolev norms and the
Cauchy-Schwartz inequality:

BD

(
ΦΦΦ, Φ̃̃Φ̃Φ

)
6
∫

R+iσ

∣∣∣∣∫
Γ̃
−iωVωΦ̂ΦΦ · ̂̃Φ̃Φ̃ΦdΓ̃

∣∣∣∣ dω 6 1

C ′σ

∫
R+iσ

|ω|2‖Φ̂ΦΦ‖−1/2,ω,Γ̃
‖ ̂̃Φ̃Φ̃Φ‖−1/2,ω,Γ̃

dω

6
1

C ′σ
‖ΦΦΦ‖

1,−1/2,Γ̃
‖Φ̃̃Φ̃Φ‖

1,−1/2,Γ̃
. (1.63)

For the coerciveness, we similarly use (1.59):

Re BD (ΦΦΦ,ΦΦΦ) =

∫
R+iσ

Re iω〈VωΦ̂̂Φ̂Φ, Φ̂̂Φ̂Φ〉
Γ̃
>

C̃σ
2Ctrace

∫
R+iσ

‖Φ̂̂Φ̂Φ‖2−1/2,ω,Γ̃
dω . (1.64)

Therefore

|BD (ΦΦΦ,ΦΦΦ) | > C̃σ
2Ctrace

‖ΦΦΦ‖2
0,−1/2,Γ̃

.

Proposition 1.4.1 follows by restricting to distributions supported in Γ ⊂ Γ̃.

Proposition 1.4.1 can be generalized in the Sobolev space Hr
σ

(
R+LH−

1
2 (Γ)

)2
just recast-

ing formulas (1.63) and (1.64) with ωrΦ̂ΦΦ and ωr
̂̃
Φ̃Φ̃Φ, instead of Φ̂ΦΦ and

̂̃
Φ̃Φ̃Φ, for an exponent

r ∈ R.

Proof of Proposition 1.4.1 furnishes us a theoretical setting for the energetic weak formu-
lations depending on a single layer bilinear form as in (1.46), while for the hypersingular
operator D, and the related energetic weak formulations, we refer for the knowledge of the
reader to the proof in [19]. Therefore, Lax-Milgram hypothesis (for details see [71]) are
veri�ed in the introduced Sobolev spaces for both the energetic weak formulations (1.46)
and (1.48), allowing us to state the following Lemma:

Lemma 1.4.2. Let σ > 0, r ∈ R:
a) assume that gD ∈ Hr+1

σ (R+;H
1
2 (Γ))2. Then there exists a unique solution ΦΦΦ ∈

Hr
σ(R+; H̃−

1
2 (Γ))2 of (1.46) and

‖ΦΦΦ‖r,− 1
2
,Γ,∗ .σ ‖gD‖r+1, 1

2
,Γ, (1.65)
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b) assume that gN ∈ Hr+1
σ (R+;H−

1
2 (Γ))2. Then there exists a unique solution ΨΨΨ ∈

Hr
σ(R+; H̃

1
2 (Γ))2 of (1.48) and

‖ΨΨΨ‖r, 1
2
,Γ,∗ .σ ‖gN ‖r+1,− 1

2
,Γ, (1.66)

where the symbol f .σ g, means that exists a constant Cσ, depending on σ, such that
f 6 Cσg

Remark. Coercivity and continuity are well established in Sobolev spaces depending on
a parameter σ > 0. Anyway, the latter can be considered as small as we prefer. To be
speci�c, for the sake of simplicity of the algorithmic implementation, we will consider the
limit σ → 0+, meaning that all the formulation (1.46), (1.48) and (1.49) are reworked, in
the next section, in a discretized form independent of σ.

1.5 Space-time discretization

1.5.1 Single Layer and Hypersingular integral operators

To solve the energetic weak formulations (1.46) and (1.48) in a discretized form, we consider
a uniform decomposition of the time interval [0, T ] setting the time knots tn = n∆t,
n = 0, . . . , N , with time step ∆t = T/N . We de�ne the corresponding space V∆t,s of
piece-wise polynomial functions of degree s in time (continuous and vanishing at t = 0 if
s ≥ 1).
For the space discretization, we introduce a boundary mesh constituted by a set of straight
segments T = {e1, ..., eM} such that hi := length(ei) 6 h, ei ∩ ej = ∅ if i 6= j and
∪Mi=1ei = Γ if Γ is polygonal: otherwise, ∪Mi=1ei can be considered a �ne approximation of
Γ. We also introduce the set of the M + 1 mesh points To = {o1, . . . ,oM+1} such that
ei = oioi+1 for all i = 1, ...,M , adding the condition oM+1 = o1 for closed Γ. On T ,
once de�ned Pp as the set of polynomials of degree p, we consider the spaces of piece-wise
polynomial functions

X−1
h,p(Γ) =

{
w ∈ L2(Γ) : w|ei ∈ Pp ∀ei ∈ T

}
(1.67)

and
X0
h,q(Γ) =

{
w ∈ C0(Γ) : w|ei ∈ Pq ∀ei ∈ T , w|∂Γ

= 0 if ∂Γ 6= ∅
}
. (1.68)

After having chosen an appropriate degree p for the approximation of Φi in space, the
Galerkin approximation of (1.46) reads:

�nd Φi,h,∆t ∈ V∆t,0 ⊗X−1
h,p(Γ), i = 1, 2 such that

〈 ˙(VijΦj,h,∆t), φi,h,∆t〉L2(Σ) = 〈ġD,i, φi,h,∆t〉L2(Σ), (1.69)

for all φφφh,∆t = (φ1,h,∆t, φ2,h,∆t)
> ∈

(
V∆t,0 ⊗X−1

h,p(Γ)
)2
.
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(a) (b)

(c) (d)

Figure 1.1: Here a graphical representation of linear basis functions constructed on the elements of
a polygonal arc Γ is shown. Figures in the �rst column represent the linear basis of the functional
space X−1

h,1, for an open and a closed polygonal arc ((a) and (c)): this functional space is the
space for the approximation of the traction components, so the basis has to be split at the corners
because the normal vector cannot be uniquely determined. In the second column, the basis for the
space X0

h,1 is shown ((b) and (d)): in this case the basis has to represent the continuous of the
displacement components, namely the basis functions result continuous at the corner points, and
null at the edges of an open arc.

Setting q as the degree for the polynomials approximating Ψi in space, the Galerkin for-
mulation related to (1.48) instead reads:

�nd Ψi,h,∆t ∈ V∆t,1 ⊗X0
h,q(Γ), i = 1, 2 such that

〈DijΨj,h,∆t, ψ̇i,h,∆t〉L2(Σ) = 〈gN ,i, ψ̇i,h,∆t〉L2(Σ), (1.70)

for all ψψψh,∆t = (ψ1,h,∆t, ψ2,h,∆t)
> ∈

(
V∆t,1 ⊗X0

h,q(Γ)
)2
.

Once established these discrete weak formulations, we proceed introducing the set
{
wpm(x)

}Mp

m=1

containing the basis functions of X−1
h,p(Γ), which are piece-wise polynomials depending on

the Lagrangian functions de�ned on each element ei. Similarly, the set {wum(x)}Mu

m=1 cor-
responds to a basis of the functional space X0

h,q(Γ). For a graphical representation of the
two sets of basis in case of p = q = 1 we refer to Figure 1.1.
In time, we choose piece-wise constant functions for the approximation of ΦΦΦ:

vn(t) = H[t− tn]−H[t− tn+1], n = 0, ..., N − 1, (1.71)



Chapter 1. Elastodynamics by energetic BEM 24

and ramp functions for the approximation of ΨΨΨ:

rn(t) =
t− tn

∆t
H[t− tn]− t− tn+1

∆t
H[t− tn+1], n = 0, ..., N − 1. (1.72)

Hence, the components of the discrete BIE solutions ΦΦΦh,∆t and ΨΨΨh,∆t can be expressed as
follows

Φi,h,∆t(x, t) =
N−1∑
n=0

Mp∑
m=1

αp,inmw
p
m(x)vn(t), i = 1, 2, (1.73)

and

Ψi,h,∆t(x, t) =
N−1∑
n=0

Mu∑
m=1

αu,inmw
u
m(x)rn(t), i = 1, 2. (1.74)

For what regards the test functions, φi,h,∆t(x, t) in (1.69) is replaced by the product
wpm̃(x)vñ(t) for every m̃ = 0, ...,Mp and ñ = 0, ..., N − 1, while ψi,h,∆t(x, t) in (1.70)
is substituted by the product wum̃(x)rñ(t) for every m̃ = 0, ...,Mu and ñ = 0, ..., N − 1.
Replacing the linear combinations (1.73) in (1.69), solving the space-time Galerkin equa-
tion for the considered Dirichlet problem translates into the resolution of the linear system
EVαααp = βββD, which is featured by the following structure:

E(0)
V 0 0 · · · 0

E(1)
V E(0)

V 0 · · · 0

E(2)
V E(1)

V E(0)
V · · · 0

...
...

...
. . .

...

E(N−1)
V E(N−2)

V E(N−3)
V · · · E(0)

V





αααp(0)

αααp(1)

αααp(2)

...

αααp(N−1)


=



βββD(0)

βββD(1)

βββD(2)

...

βββD(N−1)


. (1.75)

For all l = 0, ..., N −1 the entries of the linear system are organized as below (the notation
employed is similar to the one used in [5]):

E(l)
V =

 E(l)
V,11 E(l)

V,12

E(l)
V,21 E(l)

V,22

 , αααp(l) =



αp,1l1

...

αp,1lMp

αp,2l1

...

αp,2lMp


, βββD(l) =



βD,1l1

...

βD,1lMp

βD,2l1

...

βD,2lMp


.

Solving (1.75) by backward substitution leads to a marching-on-time time stepping scheme
(MOT), i.e. at every time instant tl with l = 0, . . . , N − 1, one computes

z(l) = βD(l) −
l∑

j=1

E(j)
V αp

(l−j) (1.76)
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and then solves the reduced linear system

E(0)
V αp

(l) = z(l). (1.77)

We remarks that only the LU-factorization of the �rst block E(0)
V is required to get the

solution of the entire system. An important advantage in the implementation costs and in
the memory storage is given by the Toeplitz structure of EV , for which the construction
and storage of only the �rst column of temporal blocks is required.

To obtain the generic matrix entry of the sub-block E(l)
V , where l = ñ−n is a non negative

di�erence between two time indexes, we can perform in the bilinear form of (1.69) an
analytical integration in the time variables t and τ , as indicated in the Appendix chapter,
Section A.1, leading to the formula(

E(l)
V,ij

)
m̃,m

= −
1∑

ξ,ς=0

(−1)ξ+ς

2π%

∫
Γ

∫
Γ
wpm̃(x)wpm(ξξξ)νVij (r; ∆ñ+ξ,n+ς)dΓξξξdΓx, (1.78)

for all i, j = 1, 2, m, m̃ = 1, ...,Mp and n, ñ = 0, ..., N − 1, with the time di�erence
tñ+ξ − tn+ς = ∆ñ+ξ,n+ς > 0 and the integration kernel

νVij (r; ∆) =

(
rirj
r4
− δij

2r2

)[
H[cP∆− r]

cP
∆ϕP(r; ∆)− H[cS∆− r]

cS
∆ϕS(r; ∆)

]
+
δij
2

[
H[cP∆− r]

c2
P

ϕ̂P(r; ∆) +
H[cS∆− r]

c2
S

ϕ̂S(r; ∆)

]
. (1.79)

For each γ = P, S, the speci�c kernel functions are given by

ϕγ(r; ∆) :=
√
c2
γ∆2 − r2, (1.80)

ϕ̂γ(r; ∆) := log
(√

c2
γ∆2 − r2 + cγ∆

)
− log(r). (1.81)

If 0 < r 6 cS∆ñ+ξ,n+ς < cP∆ñ+ξ,n+ς the kernel ν
V
ij has a reduced form:

νVij (r; ∆ñ+ξ,n+ς) = hV1,ij(r; ∆ñ+ξ,n+ς) + hV2,ij(r; ∆ñ+ξ,n+ς), (1.82)

where

hV1,ij(r; ∆) =
c2
P − c2

S

cPcS

(
rirj
r2
− δij

2

)
∆

cP
√
c2
S∆

2 − r2 + cS
√
c2
P∆

2 − r2

+
δij
2

[
1

c2
P

log

(
cP∆ +

√
c2
P∆

2 − r2

)
+

1

c2
S

log

(
cS∆ +

√
c2
S∆

2 − r2

)]
,

(1.83)

hV2,ij(r; ∆) = −c
2
P + c2

S

c2
Pc

2
S

δij
2

log(r). (1.84)

In particular, the reduced form of the kernel highlights the space singularity of kind
O (log(r)) for r → 0, well-studied for boundary integral operators related to 2D ellip-
tic problems.
Instead, if cS∆ñ+ξ,n+ς < r 6 cP∆ñ+ξ,n+ς , the kernel ν

V
ij assumes the expression:

νVij (r; ∆ñ+ξ,n+ς) = hV3,ij(r; ∆ñ+ξ,n+ς) + hV4,ij(r; ∆ñ+ξ,n+ς), (1.85)
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where the functions hV3,ij and h
V
4,ij have the form

hV3,ij(r; ∆) =

(
rirj
r4
− δij

2r2

)
∆

cP

√
c2
P∆

2 − r2 +
δij
2c2

P

log

(
cP∆ +

√
c2
P∆

2 − r2

)
, (1.86)

hV4,ij(r; ∆) = − δij
2c2

P

log(r). (1.87)

Since the reduce form (1.85) is obtained speci�cally for cS∆ñ+ξ,n+ς 6 r, the kernel νVij in
this case is not a�ected by any type of singularity.
The generic component of βD, right-hand-side of the linear system (1.75), can be obtained
recalling the right-hand-side of the Galerkin weak formula (1.69) and performing a trivial
integration in the time variable t:

βD,ilm̃ =

∫ T

0

∫
Γ
ġD,i(x, t)w

p

m̃(x)vl(t)dΓxdt = −
2∑
ξ=1

(−1)ξ
∫

Γ
gD,i(x, tl+ξ)w

p

m̃(x)dΓx,

for all i = 1, 2, m̃ = 1, ...,Mp and l = 0, ..., N − 1.

The use of the discrete function ΨΨΨi,h,∆t in the weak formulation (1.70) gives rise to the
linear system EDαααu = βββN , having a structure comparable to the one obtained by the
discretization of the single layer operator V . In particular, the same Toeplitz structure is
obtained in time, and the matrix entries are computed after an analytic integration in the
time variables (computations are reported in the Appendix, Section A.3), leading to

(
E(l)
D,ij

)
m̃,m

= −
1∑

ξ,ς=0

(−1)ξ+ς

2π%∆t2

∫
Γ

∫
Γ
wum̃(x)wum(ξξξ)νDij (r; ∆ñ+ξ,n+ς)dΓξξξdΓx, (1.88)

for all i, j = 1, 2; m, m̃ = 1, ...,Mu and n, ñ = 0, ..., N − 1, with the integration kernel

νDij (r; ∆) =
H[cP∆− r]

c3
P

[(
Dij
ϕ,cP∆ +Dij

cP

∆3c2
P

r2

)
ϕP(r; ∆)

r2
+Dij

ϕ̂,cP

ϕ̂P(r; ∆)

cP

]
−H[cS∆− r]

c3
S

[(
Dij
ϕ,cS∆ +Dij

cS

∆3c2
S

r2

)
ϕS(r; ∆)

r2
+Dij

ϕ̂,cS

ϕ̂S(r; ∆)

cS

]
, (1.89)

where the coe�cientsDij
ϕ,cγ ,D

ij
cγ andD

ij
ϕ̂,cγ

are de�ned in Appendix. If 0 < r 6 cS∆ñ+ξ,n+ς <

cP∆ñ+ξ,n+ς the expression of the kernel νDij reduces to the following:

νDij (r; ∆ñ+ξ,n+ς) = hD1,ij(r; ∆ñ+ξ,n+ς) + hD2,ij(r; ∆ñ+ξ,n+ς) + hD3,ij(r; ∆ñ+ξ,n+ς) (1.90)



Chapter 1. Elastodynamics by energetic BEM 27

where the functions hD1,ij , h
D
2,ij and h

D
3,ij are expressed as

hD1,ij(r; ∆) =
1

r2

(
Dij
cP

c2
P − c2

S

cPcS

∆3

cP
√
c2
S∆

2 − r2 + cS
√
c2
P∆

2 − r2

+
Dij
ϕ,cP∆

c3
P

√
c2
P∆

2 − r2 − Dij
ϕ,cS∆

c3
S

√
c2
S∆

2 − r2

)
,

hD2,ij(r; ∆) =
Dij
ϕ̂,cP

c4
P

log

(
cP∆ +

√
c2
P∆

2 − r2

)
−
Dij
ϕ̂,cS

c4
S

log

(
cS∆ +

√
c2
S∆

2 − r2

)
,

hD3,ij(r; ∆) =

(
Dij
ϕ̂,cS

c4
S

−
Dij
ϕ̂,cP

c4
P

)
log(r).

For r → 0, the function hD1,ij presents a singularity of order O
(
r−2
)
, while hD3,ij is char-

acterized by a log weak singularity similar to the one encountered in the discretization of
single layer operator.
We also have to take into account that both kernels νVij and νDij depend on the di�erence
cγ∆ñ+ξ,n+ς − r through the Heaviside function H[cγ∆ñ+ξ,n+ς − r], which leads to a jump
at the points where the argument vanishes. To overcome this issue, we adopt suitable
quadrature strategies explained in details in Chapter 4.

1.5.2 Mixed boundary problems

For what concerns the mixed boundary value problems and the associated energetic weak
formulation (1.49), we proceed establishing a Galerkin weak problem similar to (1.46) and
(1.48). We choose to approximate the unknowns p and u respectively in the discrete space
V∆t,0 ⊗ X−1

h,p(ΓD) and V∆t,1 ⊗ X0
h,q(ΓN ), replacing their components with the following

linear combinations

pi,h,∆t(x, t) =
N−1∑
n=0

Mp∑
m=1

αp,inmw
p
m(x)vn(t), i = 1, 2, (1.91)

ui,h,∆t(x, t) =
N−1∑
n=0

Mu∑
m=1

αu,inmw
u
m(x)rn(t), i = 1, 2. (1.92)

where the basis functions in space and time are the same de�ned in Section 1.5.1. Indeed,
the consequent discretized problem is algebraically represented by the following linear
system:

E(0) 0 0 · · · 0

E(1) E(0) 0 · · · 0

E(2) E(1) E(0) · · · 0
...

...
...

. . .
...

E(N−1) E(N−2) E(N−3) · · · E(0)




ααα(0)

ααα(1)

ααα(2)
...

ααα(N−1)

 =


βββ(0)

βββ(1)

βββ(2)
...

βββ(N−1)

 , (1.93)

where the RHS and the unknown vector of the linear system have a structure comparable
with the vectors in (1.75). In particular both the unknown coe�cients of formulas (1.91)



Chapter 1. Elastodynamics by energetic BEM 28

and (1.92) are stored in ααα, representing the approximation of the traction and the displace-
ment at the nodal points of the time interval and of the boundary mesh. Regarding the
structure of matrix E, the generic l-th block is organized as below indicated:

E(l) =

(
E(l)

11 E(l)
12

E(l)
21 E(l)

22

)
, E(l)

ij =

(
E(l)
V,ij E(l)

K,ij

E(l)
K∗,ij E(l)

D,ij

)
.

The elements of the sublocks E(l)
V,ij and E(l)

D,ij have been already de�ned in (1.78) and

(1.88), while blocks E(l)
K,ij and E(l)

K∗,ij are derived by the discretization of the double layer
operators K and K∗. Due to the symmetry properties (1.40), we need just to calculate the

elements of E(l)
K,ij , that after an exact time integration (see Section A.2 in the Appendix),

is composed by entries of the form

(
E(l)
K,ij

)
m̃,m

=
1∑

ξ,ς=0

(−1)ξ+ς

π%∆t

∫
ΓD

∫
ΓN

wpm̃(x)wum(ξξξ)νKij (r; ∆ñ+ξ,n+ς)dΓξξξdΓx, (1.94)

for all i, j = 1, 2, m = 1, ...,Mu, m̃ = 1, ...,Mp and n, ñ = 0, ..., N−1. Here, the integration
kernel νKij is

νKij (r; ∆) =H[cP∆− r]
ϕP(r; ∆)

cPr

(
Kij

P

c2
P

+
∆2K̃ij

P

r2

)
−H[cS∆− r]

ϕS(r; ∆)

cSr

(
Kij

S

c2
S

+
∆2K̃ij

S

r2

)
(1.95)

with coe�cients Kij
P , K

ij
S K̃ij

P and K̃ij
S de�ned in the Appendix. The kernel (1.95) shows

a strong singularity O(1/r) for r → 0, typical of double layer integral operators. In fact,
for 0 < r 6 cS∆ñ+ξ,n+ς , it holds

νKij (r; ∆) =
1

r

(
Kij

P

c3
P

√
c2
P∆

2 − r2 − Kij
S

c3
S

√
c2
S∆

2 − r2 +
c2
P − c2

S

cPcS

∆2K̃ij
P

cP
√
c2
S∆

2 − r2 + cS
√
c2
P∆

2 − r2

)
.

(1.96)

1.6 Numerical results

To validate the correctness and the e�ectiveness of the energetic BEM approach, in this
section we present and discuss some results stemming from the application of the method to
some exterior problems de�ned on open and closed boundaries Γ. We divide the section in
two parts, the �rst devoted to the resolution of equation (1.9) with soft-scattering condition
on Γ, making a comparison between the formulations (D2) and (D3) in the study of external
propagation problems, and the second one related to the resolution of equation (1.9) with
hard-scattering datum on Γ. We recall that simulations associated with mixed boundary
value problems are not treated in this thesis, since the related code is not available yet.
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1.6.1 Dirichlet Problems

Formulation VΦΦΦ = gD

Next experiments are solved by the representation formula and the BIE of type (D3), as
exposed Section 1.2. In particular, the Galerkin problem we consider is (1.69), for which
we set piece-wise constant basis functions, p = 0, for the space approximation, if not oth-
erwise speci�ed, and a uniform decomposition of the boundary Γ in segments with length
h. The mass density everywhere is % = 1.

Experiment 1. Let us consider a �at open obstacle, i.e. Γ =
{

(x1, 0)> ∈ R2 : x1 ∈ [−0.5, 0.5]
}
.

In this case, one can observe that

r = x− ξξξ = (r1, r2)> = (x1 − ξ1, 0)>,

inducing in (1.15) a reduction of the Green's tensor components Guu
12 = Guu

21 = 0, leading
to two uncoupled scalar integral equations([

V11 0
0 V22

] [
Φ1

Φ2

])
(x, t) =

[
gD,1
gD,2

]
(x, t).

Setting the function

f(t) =

{
sin2(4πt), t ∈ [0, 1/8]
1, t > 1/8

, (1.97)

the Dirichlet condition gD,i(x, t) = H[t]f(t)x1, i = 1, 2, is applied for all x ∈ Γ. The datum
at the boundary becomes independent of time for t > 1/8, therefore, as time increases,
both components Φi(x, t) of the BIE solution tend to the stationary function

Φ∞(x) =
2c2

Pc
2
S

c2
P + c2

S

2x√
1/4− x2

1

,

representing both components of the solution of the BIE related to the reference elastostatic
problem {

(λ+ µ)∇(∆ · u)(x) + µ∆u(x) = 0, x ∈ R2 \ Γ
u(x) = gD,∞(x), x ∈ Γ

with gD,∞(x) = limt→∞ gD(x, t). In Figure 1.2, the story of the vertical and the horizontal

components Φi, i = 1, 2, calculated at the obstacle point (1/4, 0)> and for the time interval
[0, 2] is represented. The Lamè parameters are chosen as λ = 2 and µ = 1, in order to have
the peculiar velocities cS = 1 and cP = 2. The four �gures are obtained with a di�erent
re�nement of the temporal and the spatial meshes, maintaining anyhow the ratio between
spatial and temporal steps h/∆t = cS. We can observe that a halved space-time step
(Figures 1.2(b, d)) leads to a wave front reaching at the peak a higher value than the one
obtained with a coarser step (Figures 1.2(a, c)). All the results show up stability in time,
but the approximation of the wave pro�le, especially at the beginning of the motion, is not
optimal because the value of the discrete speed h/∆t prevents us from correctly capturing
the primary perturbations related to the velocity cP.
Thus, a ratio h/∆t = cP has been set for the simulations in the Figures 1.3(a,b), where
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(a) (b)

(c) (d)

Figure 1.2: Story of the components Φi, i = 1, 2 at point (1/4, 0)> ∈ Γ and for the velocities
cS = 1, cP = 2. Figures (a, c) are obtained with the space-time mesh h = ∆t = 0.05. To obtain
Figures (b, d) a halved spatial-temporal mesh has been applied: h = ∆t = 0.025.

(a) (b)

Figure 1.3: Story of the components Φ1 and Φ2 at point (1/4, 0)> ∈ Γ and for the velocities cS = 1,
cP = 2. Both simulations are obtained with the space-time mesh h = 2∆t = 0.025.

the story of Φi, i = 1, 2, is calculated for the new discrete speed. This value of the ratio in
fact leads to a better description of the initial evolution of the approximate solution.
In Figure 1.4 we have calculated again the vertical component Φ2 at the same point of Γ
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and during the same time interval set for the previous �gures. The di�erence in this test
is the velocity cP = 4 (λ = 14, µ = 1): experimenting di�erent values of the ratio h/∆t, we
observe that the choice h/∆t = cP guarantees again the best approximation of the wave
pro�le.

(a) (b) (c)

Figure 1.4: Vertical component Φ2 at point (1/4, 0)> ∈ Γ and for the velocities cS = 1, cP = 4.
The value of the ratio h/∆t is cP/4 for �gure (a), cP/2 for �gure (b) and cP for �gure (c).

We have also analyzed the convergence to the static solution Φ∞ w.r.t the degree p of
the polynomial spatial basis functions used to approximate the components Φ1 and Φ2.
In this test we have set the velocities cS = 1 and cP = 2 and we have imposed a mesh
on Γ composed by 10 segments with length h = 0.1 and a �xed time step ∆t = 0.05, in
order to maintain the optimal ratio h/∆t = cP. In Figure 1.5 we observe, for the �nal
instant T = 10, the comparison between the static solution Φ∞ and the approximated
horizontal component Φ1 along the boundary Γ: the overlapping of the two functions
improves for an increasing value of p, even at the endpoints of Γ where the stationary
solution is characterized by a high gradient.

Figure 1.5: Plot of horizontal component Φ1 calculated along the obstacle Γ, for t = 10, using
spatial basis functions with polynomial degree p = 3, 5, 7. The related analytical stationary solution
Φ∞ is also shown.

We consider moreover the decay of the error achieved approximating Φ1 and Φ2 with
spatial basis functions with an ever-increasing polynomial degree. The analysis proceeds,
as suggested in [70], calculating the energy norm between the static solution and the
transient solution, the latter obtained with spatial basis functions with polynomial degree
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p and at the time instant t = 10:

Ep,i = ‖Φ∞(·)− Φi(·, 10)‖H−1/2(Γ) =
√
< gD,∞(·),Φ∞(·)− Φi(·, 10) >L2(Γ), i = 1, 2.

Table 1.1: Convergence of Φ1(·, 10) and Φ2(·, 10) to the analytical stationary solution Φ∞

p Ep,1 ratep,1 Ep,2 ratep,2

1 1.58 · 10−01 0.55 1.60 · 10−01 0.53
2 1.08 · 10−01 0.64 1.11 · 10−01 0.60
3 8.35 · 10−02 0.68 8.71 · 10−02 0.62
4 6.86 · 10−02 0.70 7.29 · 10−02 0.61
5 5.87 · 10−02 0.70 6.37 · 10−02 0.58
6 5.16 · 10−02 0.69 5.73 · 10−02 0.55
7 4.64 · 10−02 � 5.26 · 10−02 �

In Table 1.1, for both components, a good decay of the error is shown and the rate

ratep,i = log (Ep,i/Ep+1,i) / log ((p+ 1)/p) , i = 1, 2, p = 1, ..., 6

allows to establish experimentally that the error in static energy norm, and consequently
the speed of convergence w.r.t the degree p, is O (p−η) with η equal to 0.5 ∼ 0.7. The time
dependence of the problem leads to an error decay slightly di�erent w.r.t the results shown
in [70], where, for Laplacian problems on straight obstacle, a similar boundary datum is
considered. Results more in accordance with the paper can by achieved setting a smaller
time step ∆t.

Experiment 2. We recall that from now on to the end of Subsection 1.6.1, piece-wise
constant basis functions are set for the space approximation. In particular, for the second
simulation we consider the following semicircular obstacle

Γ =
{
x ∈ R2 : x = (cosα, sinα)> , α ∈ [0, π]

}
where we impose a uniform mesh with spatial step h ' 0.08 (40 segments) and the time
step ∆t = 0.04. We discuss about two problems, for both of them the velocities are cS = 1,
cP = 2 and the datum on the arc depends on the clockwise angle α. In the �rst case the
horizontal component of the Dirichlet datum gD = (gD,1, gD,2)> is null and the vertical
component is antisymmetric w.r.t. the angle α = π

2 :{
gD,1(α, t) = 0
gD,2(α, t) = H[t]f(t) cosα

, α ∈ [0, π],

with f(t) de�ned in (1.97). In Figure 1.6, on the left, we see a schematic representation
of the arc Γ together with the antisymmetric trend in the vertical component of the vec-
torial datum gD. On the right one can observe that the story of Φ2 preserves the same
antisymmetric behaviour, while Φ1 is totally symmetric w.r.t the angle α = π

2 : in fact the
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(a) (b)

Figure 1.6: In Figure (a) we have a schematic representation of the vectorial Dirichlet datum at
the Γ points with α = π

4 and α = 3π
4 . Figure (b) shows the story of Φ1 and Φ2 at the same points

of the arc.

(a) (b)

Figure 1.7: Horizontal component Φ1 and vertical component Φ2 calculated at t = 10 and for all
α ∈ [0, π]. Each component, for a large t, preserves respectively a symmetric and an antisymmetric
trend.

story graph of Φ1 in π
4 overlaps the one obtained for α = 3π

4 . Both components evolve in
time without instabilities and, due to the particular datum employed on Γ, they tend for
t → +∞ to stationary solutions, represented in Figure 1.7. We observe that Φ1 and Φ2

both preserve the behaviour depending on the clockwise angle α.

For the second simulation on the semicircular obstacle, we employ a vectorial datum gD
at the boundary with oblique direction w.r.t the axis of symmetry of the semicircular arc:{

gD,1(α, t) = H[t]f(t) cosα
gD,2(α, t) = H[t]f(t)| cosα| , α ∈ [0, π].
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The schematic representation of the arc Γ and the new vectorial datum gD are illustrated

(a) (b)

Figure 1.8: In Figure (a) we have a schematic representation of the vectorial Dirichlet datum at
the Γ points with α = π

4 and α = 3π
4 . Figure (b) shows the story of Φ1 and Φ2 at the same points

of the arc.

(a) (b)

Figure 1.9: Horizontal component Φ1 and vertical component Φ2 calculated at t = 10 and for
all α ∈ [0, 2π]. Each component, for a large t, preserves respectively an antisymmetric and a
symmetric trend.

in Figure 1.8, on the left, allowing us to detect the direction w.r.t. to the axis of symmetry
of the obstacle. We observe once again that the stories of the horizontal component Φ1 and
of the vertical one Φ2 preserve the same symmetry behaviour of the Dirichlet datum. Also
in this simulation, Φ1 and Φ2 tend for t→ +∞ to the stationary solutions, represented in
Figure 1.9, without showing instability e�ects.

Experiment 3. Until now, in all simulations we have looked just at the approximation,
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by energetic BEM, of the unknown ΦΦΦ of BIE (D3): thus, in the following, we will focus on
the computation of the external displacement u by the use of the representation formula
(D3). We want also to remark that in the next experiments we will refer to the theory of
plane waves propagation (for references see [14, 31]). A generic plane wave spreading with
direction k ∈ R2 is de�ned as

u(x, t) = vγ(ct− k · x), x ∈ R2, t ∈ R

where c is the velocity phase and γ(·) is an arbitrary scalar function. The vector v deter-
mines how u perturbs the propagation domain: for v = k the resulting displacement u is
a pressure wave, namely the external medium is perturbed in the direction of the propaga-
tion, while, for v = k⊥, u is a shear waves and the displacement takes place transversely
w.r.t the direction of propagation.

g(t) =



t− 1
2 , t ∈ [0.5, 0.6]

−30t+19
10 , t ∈ [0.6, 0.7]

40t−30
10 , t ∈ [0.7, 0.8]

−30t+26
10 , t ∈ [0.8, 0.9]

t− 1, t ∈ [0.9, 1]

0, otherwise

.

Figure 1.10: Function g(t).

Γ

0−10 10

(a) (b)

Figure 1.11: Figure (a) represents the square domain [−10, 10]2 containing the obstacle Γ: along
the dash black line, orthogonal to the segment at its middle point, we reproduce the vertical
component u2 at the time instant t = 2, 3, 4 (Figure (b)).

We work again on the arc Γ =
{

(x1, 0)> ∈ R2 : x1 ∈ [−0.5, 0.5]
}
, re�ned with a uniform

mesh of 10 segments (h = 0.1), and we set the time step ∆t = 0.05. We assign a Dirichlet
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datum gD = (gD,1, gD,2)> such that gD,1(x, t) = 0 and gD,2(x, t) = g(t) is independent of
the space variable, in accordance to the de�nition in Figure 1.10.
This Dirichlet datum corresponds to an incident plane wave of pressure type propagating
in the vertical direction k = (0, 1)>, orthogonal to the obstacle. The vertical component
of the displacement has been plotted, for three time instants (Figure 1.11(b)), along a
segment of length 10 and orthogonal to the obstacle Γ in its middle point (Figure 1.11(a)).
We recognize in each simulation the pro�le of the secondary wave that follows the primary
one, which is faster. We remark that a pressure or a shear wave that impacts orthogonally
on an in�nite �at obstacle generally produces the re�ection of a pure pressure or shear
wave respectively having the same direction: for a crack, instead, circular perturbations
with phase velocities cS and cP are generated at the endpoints and a�ect the propagation
of the pressure wave. The secondary wave we observe in Figure 1.11(b) is precisely due to
these phenomena.

In Figure 1.12 we set a new obstacle Γ =
{

(x, 0)> ∈ R2 : x ∈ [−6, 6]
}
and a new boundary

datum gD,1(x, t) = gD,2(x, t) = g(t), which datum can be considered as the sum of a pres-

Figure 1.12: In this simulation we have set Γ =
{

(x1, 0)> ∈ R2 | x1 ∈ [−6, 6]
}
and a Dirichlet datum

g1(x, t) = g2(x, t) = γ(t). For the time instants t = 0.75, 1.25, 1.75, the horizontal displacement
x+ (u1(x, t), 0)> and the vertical displacement x+ (0, u2(x, t))> are represented at some the grid
points x ∈ [−2, 2]2.

sure wave and a shear wave propagating again in a direction orthogonal to the obstacle,
since gD = (gD,1, 0)> + (0, gD,2)>. In particular we observe the perturbation caused by
the horizontal and the vertical displacement, separately, over all the square [−2, 2]2 (which
contains a portion of segment Γ). We remark that the horizontal displacement behaves like
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a shear wave, spreading with velocity cS = 1. Instead, the vertical displacement is a pres-
sure wave of velocity cP = 2 and creates, during the time interval, a series of compressions
and distensions of the propagation domain. In the considered time interval, the circular
waves generated at the crack tips do not perturb the points of the square [−2, 2]2.

Experiment 4. In the next pages we will consider problems of elastic wave propagations in
a open domain Ωe exterior to a regular closed boundary Γ, set as a unit radius circumference
centred at the origin of the reference system and the domain Ωe in which we explore the

(a) (b)

Figure 1.13: Incident pressure wave: in Figure (a) some snapshots at the time instants t =
0.75, 1.25, 1.75 of a portion of the external domain Ωe are shown: the grid points x are perturbed
by the total displacement x + uc(x, t). In Figure (b), at the same time instants the intensity of
the module ‖uc(x, t)‖2 is represented.

dynamics is

Ωe =
{

(x1, x2)> ∈ R2 : x2
1 + x2

2 > 1
}
.
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We �rstly consider an incident plane pressure wave uinc, that propagates along the hori-
zontal direction k = (1, 0)> with phase velocity cP and impacts on the left side of Γ at the
time instant t = 0.25:

uinc(x, t) = −kg(cPt− k · x),

with g(·) de�ned in Figure 1.10 and the peculiar velocities set with the value cP = 2
and cS = 1. To study the response of the closed boundary to this perturbation we have to

(a) (b)

Figure 1.14: Incident shear wave: in Figure (a) some snapshots at the time instants t =
1.00, 1.75, 2.50 of a portion of the external domain Ωe are shown: the grid points x are perturbed
by the total displacement x + uc(x, t). In Figure (b), at the same time instants the intensity of
the module ‖uc(x, t)‖2 is represented.

impose the Dirichlet datum gD(x, t) = −uinc(x, t), x ∈ Γ, t > 0. Therefore, to get the com-
plete displacement uc in the post-processing phase we sum up the incident wave uinc with
the �eld u obtained from the representation formula (D3), since the latter only reproduces
the displacement caused by the di�racted waves. In the simulations we have calculated
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the complete displacement on the set Ω+
e =

{
(x1, x2)> ∈ Ωe : x2 > 0

}
since the problem

is symmetric w.r.t the axis x2 = 0. We have discretized the circular boundary with 320
segments with length h ' 0.02 and we have imposed the time step ∆t = 0.01. In Figure
1.13(a), the points of a portion of Ω+

e , perturbed by the total displacement uc = u+ uinc,
are represented considering a square grid of spatial step equal to 0.04: at each time instants,
it is easy to observe that the impact of the incident wave produces the re�ection of a pres-
sure and a shear wave, spreading outside the circumference respectively with the peculiar
velocities cP and cS. We remark that the points (x1, 0)> with abscissas x1 < −1 are per-
turbed only by the re�ected pressure wave: the direction of the incident wave is orthogonal
w.r.t the tangent to the arc Γ at the boundary point (−1, 0)> and this particular con�gu-
ration leads to the re�ection of a pure pressure wave along the horizontal axis x2 = 0. It
is possible to catch this behaviour also in Figure 1.13(b) where, at the same time instants
considered previously, the magnitude of the module ‖uc(x, t)‖2 =

√
uc1(x, t)2 + uc2(x, t)2 is

represented by a coloured scale chart.

We have also considered the case of an incident wave of shear kind: therefore, to study the
response of the obstacle, we set

uinc(x, t) = −vg(cst− k · x),

with v = k⊥ = (0, 1)>, cS = 1 and cP = 2. The incident wave once again spreads in
the external domain along the horizontal direction and impacts on the left side of Γ at
the time instant t = 0.25. The results of this experiment are collected in Figure 1.14(a):
here we observe how the external grid points are perturbed at various time instants. The
impact of the incident wave produces the re�ection of both a shear and a pressure wave,
having respectively the peculiar velocities cS and cP. The re�ected pressure wave is faster
than the incident one and that is why we observe an overlapping of the two waves as the
time goes on. Also in this case the points (x1, 0)> with x1 < −1 are perturbed only by
the re�ected shear wave and that is because the direction of propagation is orthogonal
w.r.t the tangent of Γ at (−1, 0)>. The re�ection along the axis of a pure shear wave is
visible also in Figure 1.14(b) in which the intensity of the module ‖uc(x, t)‖2 of the total
displacement is represented with a coloured scale.

Experiment 5. Lastly, we consider again the di�usion domain Ωe external to the same
circular boundary Γ, but we impose a Dirichlet datum gD that models a sort of explosive
impulse generated at a unique source point, located at the centre of circumference:

gD(x, t) =
cP
2π

H[cP(t+ 1/cP)− 1]√
c2
P(t+ 1/cP)2 − 1

x+
cS
2π

H[cS(t+ 1/cS)− 1]√
c2
S(t+ 1/cS)2 − 1

(
0 1
−1 0

)
x, x ∈ Γ, t > 0.

This condition generates two impulses propagating both in radial direction w.r.t the centre
of Γ. One impulse is the primary wave, with phase speed cP = 2 and behaving like a pres-
sure wave which creates a displacement of the point parallel to the propagation direction,
while the other is the secondary wave with phase speed cS = 1 and behaving like a shear
wave which moves the points orthogonally w.r.t the propagation direction. We remark that
a radial boundary condition creates an external perturbation which is equal at the points
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Figure 1.15: Snapshots of the radial perturbation at the time instants t = 2, 3, 4 in{
(x1, x2)> ∈ Ω | x1 > 0, x2 > 0

}
: the grid points x, set along radial direction, are perturbed by

the displacement x + u(x, t).

Figure 1.16: Snapshots of the radial and tangential perturbations at the time instants t = 2, 3, 4
in
{

(x1, x2)> ∈ R2 | x1 ≥ 1, x2 = 0
}
: in this set the horizontal displacement corresponds to the

primary wave, with velocity phase cP, while the vertical displacement corresponds to the secondary
wave, with velocity phase cS.

having the same distance from the origin: that is why in Figure 1.15 we have considered
only the solution of the problem in the set

{
(x1, x2)> ∈ Ω : x1 > 0, x2 > 0

}
, calculating

the displacement along radial axis and not in a square grid. For this simulation, we have
imposed the spatial and temporal steps h ' 0.04 and ∆t = 0.02 and, as one can observe,
for each considered time instant, the primary wave moves the points along the radial di-
rection, while the secondary wave generates a distortion orthogonal w.r.t the direction of
propagation. In Figure 1.16 we focus on the axis

{
(x1, x2)> ∈ Ω : x1 > 1, x2 = 0

}
and we

observe that the horizontal displacement corresponds to the primary wave while the vertical
one corresponds to the secondary wave and for both the peak decreases as the time goes on.

Remark. All the numerical results presented above are collected in Author's paper [6],
written in collaboration with Professors Alessandra Aimi, Chiara Guardasoni and Mauro
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Diligenti (University of Parma). The paper, submitted to Journal of Computational and
Applied Mathematics, was recently accepted.

Comparison between BIEs VΦΦΦ = gD and V p = (K − 1/2)gD

In the following we present two numerical examples, presented in the recent paper by the
author [29], regarding the resolution of problem (PD) by the use of both the representation
formulas indicated in (D2) and (D3). Although they depend on di�erent unknowns to be
calculated on the boundary, they will show a numerically comparable approximation of the
external displacement u.
We remark that the Galerkin weak formulation of BIE in (D2), which will be indicated in
this section as direct BIE, is the following: :

�nd pi,h,∆t ∈ V∆t,0 ⊗X−1
h,p(Γ), i = 1, 2 such that

〈 ˙(Vijpj,h,∆t), φi,h,∆t〉L2(Σ) = 〈 ˙(Kij − 1/2δij))gD,j , φi,h,∆t〉L2(Σ), i = 1, 2, (1.98)

for all φφφh,∆t = (φ1,h,∆t, φ2,h,∆t)
> ∈

(
V∆t,0 ⊗X−1

h,p(Γ)
)2
.

with pi,h,∆t, for i = 1, 2, discretized components of the unknown traction vector p. Follow-
ing the fundamentals of discretization reported at the beginning of Section 1.5, we choose
to approximate both in space and time the unknowns ΦΦΦ and p with piece-wise constant
functions, subordinated to a uniform decomposition of Γ with segments of length h. We
specify that, in the right-hand-side of (1.98), the product 〈 ˙KijgD,j , φi,h,∆t〉L2(Σ) is evalu-
ated by an approximation of the two components of the boundary datum with a linear
combination of space�time basis functions:

gD,i(x, t) ' ĝD,i(x, t) =
N−1∑
n=0

Mp∑
m=1

βinmw
p
m(x)rn(t), i = 1, 2, (x, t) ∈ Σ.

where rn(t) are the temporal ramp basis de�ned in (1.72) and wpm are the piece-wise con-
stant basis modeling both the unknown traction p and the datum in space. To have a
correct interpolation of the boundary datum, the condition gD,i(xm, tk) ' ĝD,i(xm, tk), for
all m = 1, ...,M and k = 0, ...N − 1, is imposed: tk are the temporal knots while the
spatial nodes xm are the middle points of the mesh elements em. With this substitution,
the evaluation of 〈 ˙KijgD,j , φi,h,∆t〉L2(Σ) becomes the computation of a matrix-vector prod-
uct involving the double layer matrix EK , whose elements are the double space integrals
de�ned in (1.94).
If we indicate instead that we are solving the Dirichlet problem by indirect formulation,
we refer at the resolution of the energetic weak problem (1.46) and its Galerkin form (1.69).

In the next experiments, the following elastic parameters are set: λ = 2, µ = 1 and % = 1,
namely cP = 2 and cS = 1.

Experiment 1. We �rstly consider the �at crack Γ =
{

(x1, 0)> : x1 ∈ [−0.5, 0.5]
}
on

which we impose the Dirichlet condition gD such that gD,1(x1, t) = 0 and gD,2(x1, t) =
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g(t + 0.45), where the temporal pro�le g(t) is the same introduced in (1.97). We set the
�nal instant T = 4 and we impose on Γ a uniform decomposition with step h = 0.025 (40
segments) and a time step of size ∆t = 0.0125. As shown in a very similar experiment of

(a) (b)

Figure 1.17: Horizontal and vertical components of the vector solutions p and ΦΦΦ of the weak
problems (1.98) and (1.69) calculated at point (−1/4, 0)> ∈ Γ and during the time interval [0, 4].

the previous subsection (see Figure 1.11), this kind of boundary datum models a uniform
scattering by the obstacle with vertical direction. In particular, in Figures 1.17(a) and
1.17(b) the solution vectors p and ΦΦΦ of the energetic weak formulations are shown: in
particular there is the time history of the horizontal and the vertical components of p and
ΦΦΦ at the point (−1/4, 0) ∈ Γ. It is possible to observe that Φ1 is trivial. This is due to
the fact that the condition gD is completely vertical and, on a �at horizontal obstacle, the
Green tensor de�ned in formula (1.15) has null components for i 6= j. This leads to a re-
duction of the indirect BIE in (D3), which is decoupled in two scalar equations: V11Φ1 = 0
and V22Φ2 = gD,2. The right-hand-side of the direct weak form instead depends also on
the double layer operator, meaning that the components of (K − 1/2)gD in formula (1.98)
are both active. Anyway, both approaches let us to calculate approximate results showing
long time stability.
Solutions of the energetic weak formulations have then been employed in the respective
integral representation formulas u = VΦΦΦ and u = Ku − V p, in order to compute the
displacement u in the points of the axis (0, x2) with x2 ∈ [0, 6.5]. Snapshots of the vertical
displacement at the time instants 1, 2 and 3 are shown in Figure (1.18): in Figure (1.18)(a)
the component u2 is calculated replacing the approximate traction p in the representation
formula (D2), while Figure (1.18)(b) have been obtained by the indirect in (D3), leading
to a comparable results for the external propagation.
Lastly, a numerical comparison is reported in Table 1.2, where the numbers represent the
di�erence in L2 norm between the external displacements obtained by the two di�erent
formulations evaluated at di�erent time instants. We take into account only the vertical
displacement u2, since the horizontal one is null in the considered axes. The estimated
errors are O(10−3), as expected considering the magnitude of the imposed spatial and
temporal discretization steps h and ∆t.
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(a) (b)

Figure 1.18: External displacement calculated, for di�erent time instants, along the vertical axes
(0, x2) with x2 ∈ [0, 6.5]. Solutions have been obtained by the discretization of the weak form
(1.98) (a) and the indirect weak form (1.69) (b).

Table 1.2: L2-error for x2 ∈ [0, 6.5] of the vertical components u2 for some time instants.

‖u2,p(·, t)− u2,ΦΦΦ(·, t)‖L2([0,6.5])
t = 1 t = 2 t = 3

6.96 10−3 8.15 10−4 6.64 10−4

Experiment 2. We now consider the circular arc Γ =
{

(x1, x2)> : x2
1 + x2

2 = 1
}
and

the Dirichlet condition gD(x, t) on Γ such that gi,D(x, t) = γ(t)xi for i = 1, 2, where the
function γ(t) = 0.2 sin2(40t)H[π/40 − t] is the temporal pro�le. We set the �nal instant

(a) (b)

Figure 1.19: Vertical components of the vector solutions p and ΦΦΦ of the weak problems (1.69) and
(1.98) calculated at point (0, 1)> ∈ Γ (corresponding to the clockwise angle π/2) and during the
time interval [0, 4].

T = 4 and we impose on Γ a uniform decomposition with step h ' 0.02 (320 segments) and
we choose a time step of size ∆t = 0.01. We recall that with this problem geometry, the
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boundary datum models a uniform scattering by the obstacle with radial direction with
respect to the centre of Γ. In Figure 1.19 we represent the time history of the vertical
components of p and ΦΦΦ, obtained respectively by the discretized weak form (1.98) and
(1.69), at the point (0, 1) ∈ Γ. Since we are solving an external problem, the traction
p on Γ presents just an initial perturbation of length π/40, e�ect of the pulse generated
by the Dirichlet boundary condition (see Figure 1.19(a)). Di�erently, the density ΦΦΦ in
Figure 1.19(b) presents a series of pulsations since it depends also on the interior wave
re�ections against Γ. In Figure 1.20, three snapshots of the vertical external displacement
u are represented, obtained respectively solving the discretized weak form of equations
V p = (K − 1/2)gD and VΦΦΦ = gD (Figure 1.20(a) and Figure 1.20(b)), along the vertical
axis (0, x2) with x2 ∈ [1, 8]. Externally we have the di�usion of a pure radial perturbation
with the peculiar velocity cP. There are no crack tips perturbations since the arc is closed.
Also for the circular obstacle, we have a numerical comparison in Table 1.3, where the

(a) (b)

Figure 1.20: External displacement calculated, for di�erent time instants, at the points (0, x2) with
x2 ∈ [1, 8]. Solutions have been obtained by the discretization of the weak form (1.98) (a) and the
indirect weak form (1.69) (b).

di�erence in L2-norm between the external displacements obtained by the two di�erent
formulations is reported. Also in this case the horizontal component u1 is trivial along
the considered axes and the errors are consistent with the �xed discretization space-time
steps.

Table 1.3: L2-error for x2 ∈ [1, 8] of the vertical components u2 for some time instants.

‖u2,p(·, t)− u2,ΦΦΦ(·, t)‖L2([1,8])
t = 1 t = 2 t = 3

5.32 10−4 1.36 10−3 2.07 10−3

As a �nal remark, we want to highlight that both formulations VΦΦΦ = gD and V p =
(K − 1/2)gD, rewritten in a weak energetic mode, lead to comparable and stable results
for the external propagation, and they generate approximation errors in accord with the
spatial and temporal level of discretization. This is owed to the accurate quadrature
strategies applied to compute the spatial singular integrals deriving by the operators V
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and K and discussed in Chapter 4. However, the direct formulation V p = (K − 1/2)gD
inevitably requires higher computational costs: nevertheless, its implementation and the
comparison with the indirect formulation represent a necessary starting point for the future
application of the energetic method to the resolution of more realistic problems. Indeed,
the implementation of the double layer operator K is essential to the extension of the
Energetic BEM to elastodynamic problems with mixed boundary conditions, as shown in
Subsection 1.5.2.

1.6.2 Neumann Problems

Formulation DΨΨΨ = gN

In this subsection we deal with the resolution of problems equipped with Neumann con-
ditions prescribed at the boundary Γ, as stated in (PN ). To treat them we employ the
indirect representation formula in (N3) and we reformulate the related BIE in the ener-
getic Galerkin weak form (1.70). For all the following experiments we choose piece-wise
linear basis for the space approximation (namely q = 1 in (1.70)) and we concentrate in
particular on problems with condition gN (x, t) that becomes static as the time t grows: in
this case, the related BIE unknown ΨΨΨ(x, t) tends in time to a static density ΨΨΨ∞(x), the
latter related to the elastostatic problem{

(λ+ µ)∇(∆ · u)(x) + µ∆u(x) = 0, x ∈ R2 \ Γ
p(x) = gN ,∞(x), x ∈ Γ

where gN ,∞(x) = limt→∞ gN (x, t). In case of reference static condition uniform in space,
namely gN ,∞(x) = ηηη with ηηη non null 2D vector, then the components of reference static

solution ΨΨΨ∞(x) can be calculated exactly on the crack Γ =
{

(x1, 0)> : x1 ∈ [−0.5, 0.5]
}
:

Ψi,∞(x) = η̃i

√
1/4− x2

1, η̃i = − c2
P

%c2
S

(
c2
P − c2

S

)ηi, i = 1, 2. (1.99)

Experiment 1. In the following problem we consider the above cited obstacle Γ and the
elastic parameters λ = 2, µ = 1 and ρ = 1, namely cP = 2 and cS = 1. We set the space
and time discretization step h = 0.025 and ∆t = 0.0125 and we impose the Neumann
datum with components

gN ,i(x, t) = σih[u](x, t)nh(x), x ∈ Ω, t ∈ (0, T ], i = 1, 2, (1.100)

where the stress tensor σσσ de�ned in (1.3) is applied to the pressure plane wave

u(x, t) = γ

(
t− t0 −

x · k
cP

)
k, γ(t) = tH[t], t0 = 0.15, k =

(
1√
2
,

1√
2

)>
. (1.101)

This transient datum corresponds to a plane wave impacting on the crack Γ with an angle
of 45◦ and it tends to the static solution (1.99) with coe�cients η̃1 = 2/3 and η̃2 = 2. In
Figure 1.21, the horizontal and the vertical components of the unknown density ΨΨΨ are re-
ported, approximated by the Galerkin formulation (1.70), at the �nal time instant T = 7.5
and for all the points of the crack. Together with the transient components, the static
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Figure 1.21: Vertical and horizontal components of the unknown density ΨΨΨ calculated at the �nal
instant T = 7.5, together with the reference static solutions (1.99).

reference solutions Ψ1,∞ and Ψ2,∞ are shown, proving a good overlapping with the graphs
of the corresponding time-dependent components of the density ΨΨΨ. Since the datum cor-
responds to a plane wave propagating not orthogonally towards the obstacle Γ, the points
of the arc are perturbed with a certain delay respect to the left extreme (−0.5, 0)>, which
is the �rst point met by the pressure wave.

Figure 1.22: Time history of Ψ1 and Ψ2 in the points of the crack Γ corresponding to the abscissas
x = −0.25, 0, 0.125, 0.375.

This delay is well visible in Figure 1.22, reporting the time history of Ψ1 and Ψ2, calculated
both at di�erent points of Γ. Despite the delay in the starting of the initial perturbation,
both components show to become static in time in a stable way.

Experiment 2. In the second Neumann experiment we consider the resolution of a prob-

lem on the arc Γ =
{
x ∈ R2 : x = (cosα, sinα)> , α ∈ [0, π]

}
. The arc is in particular

discretized with 20 segments, namely h ' 0.15, while the time step is equal to ∆t ' 0.078,
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namely 128 time knots in the interval [0, 10]. The datum is again the stress tensor applied

Figure 1.23: Horizontal and vertical and component Ψ1(α, t) and Ψ2(α, t) represented for α ∈ [0, π]
and t ∈ [0, 10].

to the pressure wave as in (1.101), with direction k = (0, 1)> and t0 = 0. This datum
becomes constant on the arc just after the plane wave has invested all the points of Γ,
inducing two components solution of (1.70) reaching a stable behaviour in time. In Figure
1.23, the vertical density Ψ2 has a "bell shape" similar to the reference solution that can
be calculated for the �at obstacle, while Ψ1 results to be antisymmetric with respect to the
middle point of the arc. In Figure 1.24 instead we focus on the computation of the vertical
components Ψ2 at some points of Γ: it is evident that the dynamics starts in di�erent
instants for all of them since the plane wave, which has vertical direction, covers the arc
from the extremes to the apex of Γ in (0, 1)>.

Figure 1.24: Time history of Ψ2 at the points of the arc Γ corresponding to the clockwise angles
α = 3π/20, π/4, , 7π/20, π/2.



Chapter 2

Graded meshes and hp method for

energetic BEM in elastodynamics

The solution u of the 2D elastodynamic equation (1.9) is featured by components with
a high gradient in the neighborhood of a corner of a polygonal domain Ω and at the ex-
tremes of open obstacles Γ. This naturally translates into a singular behaviour of the
traction �eld p at the same critical points. The 3D solution exhibits similar characteristics
at the exterior corner of a polyhedral domain or at the edges of a screen. Thus, the focus
of the chapter is to provide a detailed expansion of the singularities that allows to get
quasi-optimal estimates for piece-wise polynomial approximations of the traces of u and p
at the boundary Γ.
To get a accurate numerical approximation by Finite or Boundary Element Methods, it
is convenient to take into account the non-smooth behaviour and to use local mesh re-
�nements or high polynomial degrees to recover optimal convergence rates. Plamenevski�i
and collaborators [50, 52, 58, 68] provided from the late 1990's a detailed investigation
about the singular behaviour of solutions of hyperbolic problems on conical or wedge do-
mains. Many authors then, thank to similar explicit asymptotic expansions, estimated the
convergence rate of the approximated solution obtained by FEM (like Müller and Schwab
for scalar and elastic wave problems [64, 65]) or by BEM (see the works of Gimperlein
and collaborators [38, 41, 42]). In particular, the convergence rate is studied in relation
to the application of particular meshes for the spatial discretization: these strategies are
known in literature as h, p and hp methods, which have been studied for several decades.
A compendium of application in conjunction with FEM and BEM can be moreover found
respectively in [74] and [45].

Here in particular we will explore the application of the time-domain Boundary Elements
Method for Dirichlet and Neumann elastodynamics problems, employing the theoretical
results and the algorithmic details presented in Chapter 1, considering a spatial discretiza-
tion as introduced in Section 1.5 and reformulated with the h, p and hp methods. To do
that we will consider both 2D an 3D geometries and we will rewrite, in a neighbourhood
of a corner of a polygon or near the angle of a wedge, the unknown displacement through
a singular expansion, for which the order of singularity depends on the amplitude of the
considered corner and that can be deduced by the study of the time independent elastic

48
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equation. By the reformulation of u, and consequently by its trace at these critical points,
we will prove estimates of the error in energetic norm committed approximating the un-
known by a BEM combined with the proposed discretization methods.
In the end we will present several results of BEM for the resolution of elastodynamics
problems in combination with the h, p and hp discretization methods, in order to asses the
theoretical error estimates.

Remark. The following results are based on the Autor's work [7], made in collaboration
with Professors Alessandra Aimi, Heiko Gimperlein and Ernst P. Stephan (respectively
from University of Parma, Heriot-Watt University of Edinburgh and Leibniz Universität of
Hannover) and recently submitted to the journal Numerische Matematik. In particular in
this paper, in which is reported also the theoretical analysis of Section 1.4, 3D geometries
are investigated, like the apex of a cone or the wedge part of polyhedron, and for them the
singular expansion of the time-domain solution of the elastodynamics equation is derived,
yielding to accurate error estimates depending on the type of employed spatial mesh re-
�nement. The 3D geometry of a wedge can be considered the natural extension of an angle
point of a two-dimensional arc, then in the following we will report only the theoretical
results that can be verbatim applied to the case of elastodynamics 2D problems in polyg-
onal domains. Numerical results at the end of the chapter will deal only with experiments
of energetic BEM applied to 2D elastodynamics Dirichlet and Neumann problems.

2.1 Regularity of solutions to the Dirichlet and Neumann
problem

We brie�y reintroduce the elastodynamics problem we intend to investigate, considering
both the 2D and the 3D dynamics. Let us consider Ω ⊂ Rn, n = 2, 3, a bounded polyedral
domain with boundary ∂Ω = Γ and let be Ωe its complementary exterior region, thus
Ωe = Rn \Ω (the limit case of propagation in Ωe = Rn \Γ with Γ polygonal open obstacle
for n = 2 and 3D screed for n = 3 can be also taken into account). We recall that much
of the notation of Chapter 1 is suited for the 3D case as well. We rewrite then the Navier
equation that describes, during the time interval (0, T ], the dynamics of elastic waves
propagating in bounded domain Ω of Rn, the latter identi�ed by the generic cartesian
coordinates x = (x1, ..., xn)>:

(λ+ µ)∇(∇ · u) + µ∆u+ ρb = %ü, x ∈ Ω, t ∈ (0, T ]. (2.1)

The vector b = (b1, ..., bn)> is an external forcing per unity of mass and, as stated in
Chapter 1, the unknown u = (u1, ..., un)> represents the displacement and λ, µ and ρ
are the physical parameters on which the velocities cP > cS depend, according to formula
(1.12). Equation (2.1) is equipped with null initial conditions as in (1.13) and we moreover
consider two types of boundary constraint. The �rst is of Dirichlet type and it holds
directly for u on Σ = Γ× (0, T ]:

u(x, t) = gD(x, t), (x, t) ∈ Σ, (2.2)

while, for the second, we set a condition for the traction p, de�ned by components in (1.7):

p(x, t) = gN (x, t), (x, t) ∈ Σ. (2.3)
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To implement the Boundary Element Method we employ the integral formulations (D1)
and (N1), respectively suitable for Dirichlet and Neumann boundary problems with homo-
geneous force b ≡ 0. For n = 3, the mentioned representation formulas and BIEs can be
derived with the identical passages reported in Section 1.2, with the only exception that
for 3D case the integral operators V, K, K∗ and D are based on a di�erent de�nition of
the fundamental Green's function:

Guu
ij (x, ξξξ; t, τ) :=

t

4π%r2

(
3rirj
r3
− δij

r

)
(t− τ)(H[cP(t− τ)− r]−H[cS(t− τ)− r])

+
rirj

4π%r3

(
c−2
P δ(cP(t− τ)− r)− c−2

S δ(cS(t− τ)− r)
)

+
δij

4π%rc2S
δ(cS(t− τ)− r), i, j = 1, 2, 3.

In the following, we indicate the unknown traces p|Γ and u|Γ respectively with the symbols
ΦΦΦ and ΨΨΨ, and we identify the entire right-hand-sides of the BIEs in (D1) and (N1) with
the symbols g̃D,i and g̃N ,i. Thus, we rewrite the related energetic weak formulations of the
BIEs as follows:

�nd ΦΦΦ = (Φ1, ...,Φn)> ∈ H1
σ(R+; H̃−

1
2 (Γ))n that solves

〈 ˙(VijΦj), φi〉L2(Σ) = 〈 ˙̃gD,i, φi〉L2(Σ), (2.4)

where φφφ = (φ1, ..., φn)> is a suitable test function belonging to the functional space of
the trace ΦΦΦ,

for the Dirichlet problem, while for the Neumann one we solve the following:

�nd ΨΨΨ = (Ψ1, ...,Ψn)> ∈ H1
σ(R+; H̃

1
2 (Γ))n that solves

〈(DijΨj), ψ̇i〉L2(Σ) = 〈g̃N ,i, ψ̇i〉L2(Σ), (2.5)

where ψψψ = (ψ1, ..., ψn)> is a suitable test function belonging to the functional space of
the trace ΨΨΨ.

Lemma 1.4.2 can be verbatim extended also for n = 3 with a similar proof and guarantees
that weak problems (2.4) and (2.5) are well-posed in the indicated functional spaces.

In the next section precise results for the singular behaviour of the solution of the original
initial-boundary value problem, with Dirichlet or Neumann conditions, considering region
near corner points will be enunciated. This behaviour in particular can be analysed con-
sidering the singular expansion of solutions of equation (2.1), reformulated through polar
coordinates, leading to decompositions also for the solutions of the integral weak problems
in singular terms and more regular remainders.

2.1.1 Behavior of solutions in a 2D sector and in a wedge

We consider equation (2.1) for n = 2 and we introduce a new system of spatial coordinates
r and φ, in order to describe the region near a corner point of Ω with amplitude ω.
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Reformulating the related stress tensor (1.3) in cilindrical variables, as indicated in [75], it
is possible to rewrite vectorial equation (2.1) as follows:

(2µ+ λ)

(
∂2
rur +

1

r
∂rur −

ur
r2

)
+
µ

r2
∂2
φur +

λ+ µ

r
∂rφuφ −

λ+ 3µ

r2
∂φuφ + %br = %∂2

t ur,

λ+ µ

r
∂rφur +

λ+ 3µ

r2
∂φur + µ∂2

ruφ + µ
1

r
∂ruφ − µ

uφ
r2

+
2µ+ λ

r2
∂2
φuφ + %bφ = %∂2

t uφ,

with ∂r, ∂φ, ∂
2
r , ∂

2
φ and ∂

2
φr being the derivatives in the new system of variables. Therefore,

searching for a solution u whose radial and tangential components near the considered
vertex behave as ur = rν

∗
ϕr(φ, t) and uφ = rν

∗
ϕφ(φ, t), the dynamics can be described by

the following system:

rν
∗−2

[
µ∂2

φϕr + (λ+ 2µ)((ν∗)2 − 1)ϕr + ((λ+ µ)ν∗ − (λ+ 3µ))∂φϕφ
]

+ %br = %rν
∗
∂2
t ϕr,

(2.6)

rν
∗−2

[
(λ+ 2µ)∂2

φϕφ + µ((ν∗)2 − 1)ϕφ + ((λ+ µ)ν∗ + (λ+ 3µ))∂φϕr
]

+ %bφ = %rν
∗
∂2
t ϕφ.

(2.7)

The time independent solutions of (2.6)-(2.7), for (br, bφ) = (0, 0), are given by

(cos(1 + ν∗)φ,− sin(1 + ν∗)φ)>, (sin(1 + ν∗)φ, cos(1 + ν∗)φ)>,

(cos(1− ν∗)φ,−ν2 sin(1− ν∗)φ)>, (sin(1− ν∗)φ, ν2 cos(1− ν∗)φ)>,

with

ν2 =
3 + ν∗ − 4ν

3− ν∗ − 4ν
, ν =

λ

2(λ+ µ)
.

We brie�y examine the time independent problem with Dirichlet conditions ur(±ω/2) =
uϕ(±ω/2) = 0. Setting arbitrary constants A,B,C,D we obtain the generic solutions

ϕr(φ) = A cos(1 + ν∗)ω/2±B sin(1 + ν∗)ω/2 +C cos(1− ν∗)ω/2±D sin(1− ν∗)ω/2 = 0,

ϕφ(φ) = ∓A sin(1+ν∗)ω/2+B cos(1+ν∗)ω/2∓ν2C sin(1−ν∗)ω/2+ν2D cos(1−ν∗)ω/2 = 0,

from which we deduce the condition

sin ν∗ω = ±ν2 − 1

ν2 + 1
sinω with

ν2 − 1

ν2 + 1
=

ν∗

3− 4ν
. (2.8)

Since we can proceed analogously for Neumann boundary conditions, the following propo-
sition for the time-independent problem holds [66].

Proposition 2.1.1. Let b ∈ Hs−1(Ω)2 and s > 0, s /∈ Re(ν∗jk) with ν∗jk as in (2.11),

(2.12). Then the weak solution u ∈ H1(Ω)2 of the time-independent equations (2.6), (2.7)
admits with C∞ cut-o� functions χj near the vertex tj with interior opening angle ωj the
decomposition

u = u0 +
∑

Re(ν∗jk)<s

a∗jkS
∗
jk(r, φ)χj(r) (2.9)
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with a regular part u0 ∈ H1+s(Ω)2, ajk ∈ C and the singularity functions

S∗jk(r, φ) =

{
rν
∗
jkϕϕϕ∗jk(φ) for ν∗jk /∈ N,

rν
∗
jk ln r ϕϕϕ∗jk(φ) + rν

∗
jkϕ̃̃ϕ̃ϕ∗jk(φ) for ν∗jk ∈ N.

(2.10)

Here the singular exponents ν∗jk ∈ C with Re(ν∗jk) > 0 are solutions of the following
equations depending on the kind of boundary conditions at the two sides meeting at the
corner tj

Dirichlet : sin ν∗jkωj = ±ν∗jkk∗−1 sinωj (2.11)

Neumann : sin ν∗jkωj = ±ν∗jk sinωj (2.12)

The functions ϕϕϕ∗jk with the components (ϕ∗jk)r in r-direction and (ϕ∗jk)φ in φ-direction are

ϕ∗jk,r(φ) = A cos(1 + ν∗jk)φ+B sin(1 + ν∗jk)φ+ C cos(1− ν∗jk)φ+D sin(1− ν∗jk)φ,

ϕ∗jk,φ(φ) = −A sin(1 + ν∗jk)φ+B cos(1 + ν∗jk)φ− γjkC sin(1− ν∗jk)φ+ γjkD cos(1− ν∗jk)φ,

with constants A,B, C, D ∈ C depending on the type of boundary conditions at the corner.
For what regards the constants γjk, k

∗, they are de�ned as follows

γjk =
3 + ν∗jk − 4ν

3− ν∗jk − 4ν
, k∗ = 3− 4ν. (2.13)

As remarked in [43], p. 73, for Dirichlet boundary conditions there exist two leading real
roots ν∗jk of the equation (2.11) in (0, 1).

Remark. For a crack, i.e. ωj = 2π, and for Dirichlet and Neumann boundary conditions,
ν∗j1 = 1/2 is solution of (2.11) and (2.12). More generally, we can use (2.11) to study the
singular exponents for the solution of the Dirichlet problem near an angle ω when ω → 0,
respectively ω → 2π. We obtain

sin ν∗ω = ν∗k∗−1 sinω =
ν∗ω

k∗
+ o(ω) (2.14)

for ω → 0, or
sin ν∗ω

ν∗ω
→ 1

k∗
.

We conclude ν∗ = c
ω +O(1), where c satis�es sin c

c = 1
k∗ .

For the corresponding exterior angle, ω = 2π − ε with ε→ 0, we set ν∗ = 1
2 + ν̃(ε). Then

sin ν∗ω = sin
(
(1

2 + ν̃(ε))(2π − ε)
)
, and Taylor expanding for ε, ν̃(ε)→ 0 leads to

sin ν∗ω = −2πν̃(ε) +
ε

2
+ o(ε) .

On the other hand, from equation (2.11) sin ν∗ω = ν∗

k∗ sinω = −ν∗

k∗ ε + o(ε), so that
−2πν̃(ε) + ε

2 = − 1
2k∗ ε+ o(ε), or ν̃(ε) = ε

4π

(
1 + 1

k∗

)
+ o(ε) and

ν∗ =
1

2
+

ε

4π

(
1 +

1

k∗

)
+ o(ε) .
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Figure 2.8 numerically illustrates ν∗ as a function of ω, when λ = 2, µ = 1 and ρ = 1. It
con�rms the above analysis.

A time-dependent expansion for the displacement solution u can be also provided for the
3D geometry in Figure 2.1, where it is well represented the exterior of a circular wedge
with opening angle ω and edge {(x1, x2, 0) ∈ R3 : x2

1 + x2
2 = 1}. The 3D coordinates

x1, x2, x3, which the vectorial solution u depends on, in a neighborhood of the edge are
reformulated by means of local cylindrical coordinates (r, φ, z): the distance to the edge is
given by r = |1−

√
x2

1 + x2
2|, φ is the polar angle in spherical coordinates, while the edge

variable z is the azimuthal angle in the x1 − x2-plane, tan(z) = x2
x1
.

In particular, combining the results on the wedge obtained in [7] (Section 3.1) and in
Proposition 2.1.1 for the expansion in a 2D sector, we cite the following Theorem, in which
we furnish the expression of the singular expansion of u solution of the time dependent
problem (2.1)-(2.2).

Figure 2.1: An example of 3D wedge.

Theorem 2.1.2. Let γ > 0, q ∈ N0, β ∈ (βr+1, βr) with 0 < βr − β < 1, (b,gD) ∈
RVβ,q(Ω×R+, γ) and assume the orthogonality condition in Theorem 9.9 of [7] holds for
all νk, ν

∗
k with Re(νk),Re(ν∗k) ∈ [1− βr, 1− β1]. Then in the neighborhood of a vertex with

interior opening angle ω the solution to (2.1) - (2.2) admits the expansion

u(x, y, z, t) = u0(x, y, z, t) +
∑

Re(νk)<s

∑
06p<s−Re(νk)

(Xck,p)(y, z, t)Sk,p(r, φ)

+
∑

Re(ν∗k)<s

∑
06p<s−Re(ν∗k)

(Xc∗k,p)(y, z, t)S
∗
k,p(r, φ). (2.15)

where s < min{Re νk,Re ν∗k}+ p+ 1 + β for all k and u0 ∈ DVβ,q(Q, γ).

The expansion of u in the 2D case naturally follows from (2.15) considering functions
independent of the variable z. Note that the sum in k in (2.15) implicitly includes multi-
plicities of the eigenvalues. A correct de�nition of the functional spaces RVβ,q(Ω×R+, γ)
and DVβ,q(Ω×R+, γ) can be found in the Appendix of [7] and also in [64, 65, 51, 58] and
we �nally recall embedding results DVβ,q(Ω×R+, γ) ⊂ Hr

σ(R+;Hs(Ω))n [64].

Remark. Theorem 2.1.2 states that, for given parameters β, γ, the solution can be
written as the sum of a remainder term u0 ∈ DVβ,q(Ω ×R+, γ) ⊂ Hr

σ(R+;Hs(Ω))n and,
depending on the order s, a �nite number of singular functions S∗k,p, Sk,p (these functions
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are identically de�ned as in (2.10) but the latter depends on singular exponents of type
νk = kω/π). This con�rms that, with exception for the terms (Xc∗k,p)(t), smooth in time,
the singular expansion of the unknown displacement u in (2.15) for the time-dependent
case depends, by the factors S∗k,p, on the singular functions reported in (2.10) and on the
singular exponents that can be calculated as solutions of (2.11).

2.2 Space discretization with geometrically and algebraically
graded meshes

To solve the energetic weak formulations (2.4) and (2.5) in a discretized form, we refer
to the spatial and temporal decomposition exposed in Section 1.5 for the 2D case. Here
we set a generic degree s for the approximation of ΦΦΦ and ΨΨΨ by piece-wise polynomials in
time. We recall the de�nition of the discreet functional spaces X−1

h,p(Γ) and X0
h,q(Γ) in

(1.67) and (1.68), that for n = 2 are subordinated to a decomposition of Γ with a set
of non-intersecting straight segments T = {e1, ..., eM} such that hi := length(ei) 6 h.
For n = 3, we assume that Γ is triangulated by a set of patches T = {e1, · · · , eM}, with
diam(ei) 6 h, ei ∩ ej = ∅ if i 6= j and if ei ∩ ej 6= ∅, the intersection is either an edge or a
vertex of both triangles.
The Galerkin weak formulation of the Dirichlet problem (2.1)-(2.2) and of the Neumann
problem (2.1)-(2.3) respectively reads

�nd Φi,h,∆t ∈ V∆t,s ⊗X−1
h,p(Γ), i = 1, ..., n such that

〈 ˙(VijΦj,h,∆t), φi,h,∆t〉L2(Σ) = 〈 ˙̃gD,i, φi,h,∆t〉L2(Σ), (2.16)

for all φφφh,∆t = (φ1,h,∆t, ..., φn,h,∆t)
> ∈

(
V∆t,s ⊗X−1

h,p(Γ)
)n

.

for the Dirichlet problem, while for the Neumann condition we solve:

�nd Ψi,h,∆t ∈ V∆t,s ⊗X0
h,q(Γ), i = 1, ..., n such that

〈DijΨj,h,∆t, ψ̇i,h,∆t〉L2(Σ) = 〈g̃N ,i, ψ̇i,h,∆t〉L2(Σ), (2.17)

for all ψψψh,∆t = (ψ1,h,∆t, ..., ψn,h,∆t)
> ∈

(
V∆t,s ⊗X0

h,q(Γ)
)n

.

We recall that the Galerkin weak problems above stated are equivalent to the linear sys-

tems EVαααp = β̃ββ
D
and EDαααu = β̃ββ

N
, where the matrix elements of EV and ED are reported

respectively for the case s = 0 and s = 1, for the 2D problem, in (1.78) and (1.88) respec-
tively.

Unlike what we did with the numerical experiments in Chapter 1, where we only considered
uniform decompositions of the boundary, in the numerical Section 2.4 we work with the
approximation on quasiuniform and β̃-graded meshes, for a constant β̃ > 0.
To introduce them for the discretization of boundaries of 2D polygonal domains, it is
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(a) (b)

Figure 2.2: β̃-graded meshes on 1D boundaries with β̃ = 3 (a) and β̃-graded meshes for square
and circular screens with β̃ = 2 (b).

su�cient to de�ne β̃-graded meshes on the interval [−1, 1]. The position of the nodes in
the left interval [−1, 0] are de�ned with the following sequence

xk = −1 +

(
k

Nl

)β̃
, k = 1, ..., Nl. (2.18)

With formula (2.18) we impose a set of knots tending to be gradually accumulated near
the left extreme −1. The graded mesh on the right interval [0, 1] can be simply calculated
by symmetry. We remark that for β̃ = 1, we simply obtain a uniform decomposition of
the interval. A graphical representation of 3-graded meshes on an equilateral triangle and
on a crack are shown in Figure 2.2(a).
On the circular screen of radius 1, for β = 1 we take a uniform mesh with nodes on con-
centric circles of radius rk = 1− k

Nl
for k = 0, . . . , Nl− 1. For the β̃-graded mesh, the radii

are moved to rk = 1− ( k
Nl

)β̃ for k = 0, . . . , Nl−1. While the triangles become increasingly

�at near the boundary, their total number remains proportional to N2
l . It is possible to

proceed analogously on the square. Examples of 2-graded meshes on the square and the
circular screens are depicted in Figure 2.2(b).
The global mesh size h in case of graded mesh, both for the 2D and the 3D case, represents
the diameter of the largest element. Therefore, the diameter of the smallest one is of order
hβ̃ .

We also consider geometrically graded meshes for 2D problems with a crack obstacle Γ. We
just de�ne them on the reference interval [−1, 1]: for a re�nement parameter σ ∈ (0, 1/2],
in [−1, 0] we let x0 = −1, and

xk = σNl+1−k − 1, k = 1, . . . , Nl. (2.19)

In case of geometric mesh, the diameter of the smallest elements is equal to σNl and the
nodes in [0, 1] are again determined by symmetry.

In Sections 2.3-2.4 we will consider as spatial discretization techniques the so called h, p
and hp versions (or methods) that allow us to study how the discretization errors a�ect
Φh,∆ and Ψh,∆, solutions of the Galerkin problems (2.16) and (2.17), in relation of the
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re�nements of the spatial mesh or the increasing of the polynomial degree with which we
compute these discrete solutions in space:

� with h version, or method, we intend the study of the solution of the weak Galerkin
problem for a �xed polynomial degree p (or q) in space and re�ning the mesh in-
creasing the value of the number Nl of the spatial nodes in formula (2.18);

� The p version, or method, corresponds to the study of Galerkin weak solution for
�xed spatial mesh (in the Section (2.4) there are only uniform discretizations) and
increasing uniformly the polynomial degree p (or q) of the spatial shape functions;

� for the hp version, or method, the polynomial degree p increases linearly, at every
iteration of the spatial discretization with geometrically graded meshes, from ∂Γ:
p = µk in [xk, xk+1] for a given µ > 0.

Remark. Due to the continuity and coercivity of the bilinear forms (2.4) and (2.5), the
discretized equations (2.16) and (2.17), admit a unique solution. Stability and a priori
error estimates for the numerical error can be deduced as in [15].

2.3 Theorems on a priori error estimates

To proceed on the error estimates, depending on the h, p and hp discretization proposed
above, we report from [7] the following propositions:

Proposition 2.3.1. Let be γ > 0, q ∈ N0.

a) Let be ν∗ the leading singular exponent, the minimum of π
ω and the minimal root of

(2.12). Assume that iλ = ν∗ is the only eigenvalue in the strip β − 1 6 Im λ 6 0.
Let (b,gN ) ∈ RVβ,q−1(Ω × R+, γ) and assume that the orthogonality condition in
Theorem 9.9 of [7] holds. Then the Dirichlet trace of the solution u of the Neu-
mann problem (2.1)-(2.3) with right-hand-side b, Neumann data gN and initial null
conditions satis�es

ui(r, φ, z, t)|Γ = ai(φ, z, t)r
ν∗ + ui,0(r, φ, z, t) . (2.20)

Here, ai is smooth for smooth data and ui,0 a less singular remainder.

b) Let be ν∗ the leading singular exponent, the minimum of π
ω and the minimal root

of (2.11). Let (b,gD) ∈ RVβ,q(Ω ×R+, γ) and assume that the orthogonality con-
dition in Theorem 9.9 of [7] holds. Then the Neumann trace of the solution u of
the Dirichlet problem (2.1)-(2.2) with right-hand-side b, Dirichlet data gD and null
initial conditions satis�es

pi(r, φ, z, t)|Γ = bi(φ, z, t)r
ν∗−1 + φi,0(r, φ, z, t) . (2.21)

Here, bi is smooth for smooth data and φi,0 a less singular remainder.

Also from Proposition 2.3.1, the expansion of u|Γ and p|Γ in the 2D case yields just not
considering the z variable. The proposition con�rms that the singular expansion (2.15)
naturally translates in a singular expansion for the traces of the displacement u and the
traction p on Γ. This also means that the boundary singularities are characteristic also of
the solutions of the weak problems (2.4) and (2.5).
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2.3.1 Approximation on graded meshes

At this point we proceed with the announcement and the demonstration of the following
theorems on a priori error estimate in case of β̃-graded meshes:

Theorem 2.3.2. Let r > 0 and ε > 0.

a) Let u be a strong solution to the elastodynamic equation (2.1) with b ≡ 0 and
inhomogeneous Neumann boundary conditions p|Γ = gN , with gN smooth. Fur-

ther, let ΨΨΨβ̃
h,∆t ∈

(
V∆t,q ⊗X0

h,1

)n
be the best approximation to u|Γ in the norm of

Hr
σ(R+, H̃

1
2
−s(Γ))n on a β̃-graded spatial mesh with ∆t . h1. Then

‖u|Γ −ΨΨΨβ̃
h,∆t‖r, 12−s,Γ,∗ 6 Cβ̃,εh

min{β̃(Re(ν∗)+s), 3
2

+s}−ε,

where s ∈ [0, 1
2 ].

b) Let u be a strong solution to the elastodynamic equation (2.1) with b ≡ 0 and with
inhomogeneous Dirichlet boundary conditions u|Γ = gD, with gD smooth. Fur-

ther, let ΦΦΦβ̃
h,∆t ∈

(
V∆t,q ⊗X−1

h,0

)n
be the best approximation to p in the norm of

Hr
σ(R+; H̃−

1
2 (Γ))n on a β̃-graded spatial mesh with ∆t . h1. Then

‖p|Γ −ΦΦΦβ̃
h,∆t‖r,− 1

2
,Γ,∗ 6 Cβ̃,εh

min{β̃Re(ν∗), 3
2
}−ε.

We recall that ‖ · ‖r,± 1
2
,Γ,∗ denotes the norm on Hr

σ(R+, H̃±
1
2 (Γ))n, as stated in Section

1.4, and that h is the diameter of the largest element in the graded mesh. Theorem 2.3.2
implies a corresponding result for the solutions of the single layer and hypersingular integral
equations:

Corollary 2.3.3. Let r > 0 and ε > 0.

a) Let ΨΨΨ be the solution to the hypersingular integral equation (2.5) and ΨΨΨβ̃
h,∆t ∈

(
V∆t,q ⊗X0

h,1

)n
the best approximation to ΨΨΨ in the norm of Hr

σ(R+, H̃
1
2
−s(Γ))n on a β̃-graded spatial

mesh with ∆t . h1. Then

‖ΨΨΨ−ΨΨΨβ̃
h,∆t‖r, 12−s,Γ,∗ 6 Cβ̃,εh

min{β̃(Re(ν∗)+s), 3
2

+s}−ε,

where s ∈ [0, 1
2 ].

b) Let ΦΦΦ be the solution to the single layer integral equation (2.4) and ΦΦΦβ̃
h,∆t ∈

(
V∆t,q ⊗X−1

h,0

)n
the best approximation to ΦΦΦ in the norm of Hr

σ(R+; H̃−
1
2 (Γ))n on a β̃-graded spatial

mesh with ∆t . h1. Then

‖ΦΦΦ−ΦΦΦβ̃
h,∆t‖r,− 1

2
,Γ,∗ 6 Cβ̃,εh

min{β̃Re(ν∗), 3
2
}−ε.
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Indeed, the solutions to the integral equations are given by ΨΨΨ = u|Γ in terms of the solution
u whose related traction satis�es the condition p|Γ = gN , respectively ΦΦΦ = p|Γ in terms of
the solution u which satis�es Dirichlet condition u|Γ = gD.

The proof is an extension of the arguments that can be found for the wave equation in
[38], where ν∗ = 1

2 . It relies on the following approximation properties in 1D [67].

Lemma 2.3.4. For a > 0 and s ∈ [−1,−a + 1
2) there holds with the piece-wise constant

interpolant Π0
rr
−a of r−a on a β̃-graded mesh

‖r−a −Π0
rr
−a‖

H̃s([0,1])
. hmin{β̃(−a−s+ 1

2
),1−s}−ε.

Proof of Theorem 2.3.2. (b), wedge singularity: Approximating p on a rectangular mesh
Γ =

⋃
j Γj with diam(Γj) < h for each j, we obtain with the triangle inequality and the

approximation properties in the time variable:

‖p−ΠxΠtp‖r,− 1
2
,Γ,∗

6
∑
k

‖p−Πtp‖r,− 1
2
,(tk,tk+1]×Γ,∗ +

∑
k,j

‖Πtp−ΠxΠtp‖r,− 1
2
,(tk,tk+1]×Γj ,∗

6
∑
k

(∆t)a‖p‖r+a,− 1
2
,(tk,tk+1]×Γ +

∑
k,j

‖Πtp−ΠxΠtp‖r,− 1
2
,(tk,tk+1]×Γj ,∗,

where Πt, Πx are generic interpolants respectively in the temporal and in the spatial
variables. Now, we use the decomposition (2.21) for p and consider the singular and regular
parts separately. For the second sum, we use the singular expansion of each component,

‖Πtpi −ΠxΠtpi‖r,− 1
2
,(tk,tk+1]×Γj ,∗ 6 ‖Πtbi(φ, z, t)r

ν∗−1 −ΠtΠxbi(φ, z, t)r
ν∗−1‖r,− 1

2
,(tk,tk+1]×Γj ,∗

+ ‖Πtφi,0 −ΠxΠtφi,0‖r,− 1
2
,(tk,tk+1]×Γj ,∗ .

For the �rst term deduce from Lemma 8 in [38]

‖Πtbi(φ, z, t)r
ν∗−1 −ΠtΠxbi(φ, z, t)r

ν∗−1‖r,− 1
2
,(tk,tk+1]×Γj ,∗

6 ‖Πtbi(φ, z, t)−ΠtΠzbi(φ, z, t)‖r,ε− 1
2
‖rν∗−1‖−ε + ‖ΠtΠzbi(φ, z, t)‖r,0‖rν

∗−1 −Πrr
ν∗−1‖− 1

2
.

From Lemma 2.3.4 we have ‖rν∗−1 −Πrr
ν∗−1‖− 1

2
. hmin{β̃Re(ν∗), 3

2
}−ε and ‖Πtbi(φ, z, t)−

ΠtΠzbi(φ, z, t)‖r,ε− 1
2
. h3/2−ε‖Πtbi‖r,H1 , by the approximation properties in z.

Finally, with Lemma 3 and Lemma 10 of [38], in the anisotropic rectangle R with side-
lengths h1, h2 in the directions x1 and x2, respectively:

‖Πtφ0,i −ΠxΠtφ0,i‖r,− 1
2
,(tk,tk+1]×R,∗

. (∆t)ρ−r‖∂ρt φ0,i‖L2([tk,tk+1]×R)

+ max{h1, h2,∆t}
1
2

(
h1‖φ0,i,x1‖L2([tk,tk+1]×R) + h2‖φ0,i,x2‖L2([tk,tk+1]×R)

)
.

Note that the approximation error for the smooth term is of higher order. By summing
over all rectangles Γj of the mesh of the screen and all components, we conclude that

‖p−ΠxΠtp‖r,− 1
2
,Γ,∗ . h

min{β̃Re(ν∗), 3
2
}−ε if ∆t 6 min{h1, h2}.
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For sake of symplicity Proof of part a) of Theorem 2.3.2 is not reported in this thesis but
can be found in our article [7]. We moreover observe that the demonstration extends from
rectangular to triangular boundary mesh elements following similar arguments as in [67].
In Figure 2.4 we observe the predicted rates for β̃ = 1, 2, 3, when ν∗ = 1

2 , and in Figure
2.10 for ν∗ = 0.5451. .

2.3.2 Approximation by hp method

For the error estimates related to the hp discretization, we prove the following proposition,
based again on the singular expansion of the traces, reported in Proposition 2.3.1, and
taking into account the degree p set for their spatial approximation:

Theorem 2.3.5. Let r > 0 and ε > 0.

a) Let u be a strong solution to the elastodynamic equation (2.1) with b ≡ 0 and with in-
homogeneous Neumann boundary conditions p|Γ = gN , with gN smooth. Further, let

ΨΨΨh,∆t ∈
(
V∆t,p ⊗X0

h,p

)n
be the best approximation in the norm of Hr

σ(R+; H̃
1
2
−s(Γ))n

to the Dirichlet trace u|Γ on a quasiuniform spatial mesh with ∆t . h. Then for
p = 1, 2, 3, . . .

‖u|Γ −ΨΨΨh,∆t‖r, 1
2
−s,Γ,∗ .

(
h

p2

)Re(ν∗)+s−ε
+

(
∆t

p

)p−r
+

(
h

p

)− 1
2

+s+η

,

where r ∈ [0, p) and u0 ∈ Hp
σ(R+; H̃η(Γ))n is the regular part of the singular expan-

sion of u.

b) Let u be a strong solution to the elastodynamic equation (2.1) with b ≡ 0 and with
inhomogeneous Dirichlet boundary conditions u|Γ = gD, with gD smooth. Further, let

ΦΦΦh,∆t ∈
(
V∆t,p ⊗X−1

h,p

)n
be the best approximation in the norm of Hr

σ(R+; H̃−
1
2 (Γ))n

to the traction p|Γ on a quasiuniform spatial mesh with ∆t . h. Then for p =
0, 1, 2, . . .

‖p|Γ −ΦΦΦh,∆t‖r,− 1
2
,Γ,∗ .

(
h

(p+ 1)2

)Re(ν∗)−ε
+

(
∆t

p+ 1

)p+1−r
+

(
h

p+ 1

) 1
2

+η

,

where r ∈ [0, p + 1) and φφφ0 ∈ Hp+1
σ (R+; H̃η(Γ))n is the regular part of the singular

expansion of the traction p.

Theorem 2.3.5 implies a corresponding result for the solutions of the single layer and
hypersingular integral equations (2.16) and (2.17):

Corollary 2.3.6. Let r > 0 and ε > 0. a) Let ΨΨΨ be the solution to the hypersingular

integral equation (2.5) and ΨΨΨh,∆t ∈
(
V∆t,p ⊗X0

h,p

)n
the best approximation in the norm

of Hr
σ(R+; H̃

1
2
−s(Γ))n to ΨΨΨ on a quasiuniform spatial mesh with ∆t . h. Then for p =

1, 2, 3, . . .

‖ΨΨΨ−ΨΨΨh,∆t‖r, 1
2
−s,Γ,∗ .

(
h

p2

)Re(ν∗)+s−ε
+

(
∆t

p

)p+1−r
+

(
h

p

)− 1
2

+s+η

,
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where r ∈ [0, p), s ∈ [0, 1
2 ] and u0 ∈ Hp+1

σ (R+; H̃η(Γ))n is the regular part of the singular
expansion of ΨΨΨ = u|Γ .

b) Let ΦΦΦ be the solution to the single layer integral equation (2.4) and ΦΦΦh,∆t ∈
(
V∆t,p ⊗X−1

h,p

)n
the best approximation in the norm of Hr

σ(R+; H̃−
1
2 (Γ))n to ΦΦΦ on a quasiuniform spatial

mesh with ∆t . h. Then for p = 0, 1, 2, . . .

‖ΦΦΦ−ΦΦΦh,∆t‖r,− 1
2
,Γ,∗ .

(
h

(p+ 1)2

)Re(ν∗)−ε
+

(
∆t

p+ 1

)p+1−r
+

(
h

p+ 1

) 1
2

+η

,

where r ∈ [0, p+1) and φφφ0 ∈ Hp+1
σ (R+; H̃η(Γ))n is the regular part of the singular expansion

of ΦΦΦ = p|Γ.

For the proof, we recall the following lemma (see [22], Theorem 3.1):

Lemma 2.3.7. For ε > 0, a < 1 and s ∈ [−1,min{−a + 1
2 , 0}) there holds with the

piece-wise polynomial interpolant of degree p, Πp
rr−a, of r−a

‖r−a −Πp
rr
−a‖s,[0,1],∗ .

(
h

(p+ 1)2

)−a−s+ 1
2
−ε
.

Proof of Theorem 2.3.5. (b), wedge singularity: We choose ΦΦΦh,∆t = Πp
xΠp

tp. Using the de-
composition (2.21) for p, we can separate the singular and regular parts on the rectangular
mesh:

‖pi −Πp
xΠp

t pi‖r,− 1
2
,Γ,∗ 6 ‖bi(φ, z, t)r

ν∗−1 −Πp
tΠ

p
xbi(φ, z, t)r

ν∗−1‖r,− 1
2
,Γ,∗ + ‖φi,0 −Πp

tΠ
p
xφi,0‖r,− 1

2
,Γ,∗

6 ‖bi(φ, z, t)rν
∗−1 −Πp

t bi(φ, z, t)r
ν∗−1‖r,− 1

2
,Γ,∗ + ‖Πp

t bi(φ, z, t)r
ν∗−1 −Πp

tΠ
p
xbi(φ, z, t)r

ν∗−1‖r,− 1
2
,Γ,∗

+ ‖φi,0 −Πp
tΠ

p
xφi,0‖r,− 1

2
,Γ,∗

6 ‖bi(φ, z, t)−Πp
t bi(φ, z, t)‖r,ε− 1

2
‖rν∗−1‖−ε,I,∗ + ‖Πp

t bi(φ, z, t)r
ν∗−1 −Πp

tΠ
p
zbi(φ, z, t)r

ν∗−1‖r,− 1
2
,Γ,∗

+ ‖Πp
tΠ

p
zbi(φ, z, t)r

ν∗−1 −Πp
tΠ

p
zbi(φ, z, t)Π

p
yr
ν∗−1‖r,− 1

2
,Γ,∗ + ‖φi,0 −Πp

tΠ
p
xφi,0‖r,− 1

2
,Γ,∗ .

In the second term we used Πp
x = Πp

zΠ
p
r . The �rst term was estimated using Lemma 8 of

[38], and the result is now bounded by

‖bi(φ, z, t)−Πp
t bi(φ, z, t)‖r,ε− 1

2
.

(
∆t

p+ 1

)p+1−r
‖bi(φ, z, t)‖p+1,ε− 1

2
.

Using Lemma 8 of [38], we obtain for the second and third terms:

‖Πp
t bi(φ, z, t)r

ν∗−1 −Πp
tΠ

p
zbi(φ, z, t)r

ν∗−1‖r,− 1
2
,Γ,∗

+ ‖Πp
tΠ

p
zbi(φ, z, t)r

ν∗−1 −Πp
tΠ

p
zbi(φ, z, t)Π

p
yr
ν∗−1‖r,− 1

2
,Γ,∗

. ‖Πp
t bi(φ, z, t)−Πp

tΠ
p
zbi(φ, z, t)‖r,ε− 1

2
‖rν∗−1‖−ε,I,∗

+ ‖Πp
tΠ

p
zbi(φ, z, t)‖r,0‖rν

∗−1 −Πp
rr
ν∗−1‖− 1

2
,I,∗ .
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We �nally note that

‖rν∗−1 −Πp
rr
ν∗−1‖ 1

2
,I,∗ .

(
h

(p+ 1)2

)Re(ν∗)−ε
from Lemma 2.3.7, as well as

‖Πp
t bi(φ, z, t)−Πp

tΠ
p
zbi(φ, z, t)‖r,ε− 1

2
.

(
h

p+ 1

) 1
2

+k−ε
‖bi(φ, z, t)‖r,k .

When the regular part φφφ0 in (2.21) is Hη in space, we obtain from the approximation
properties [41]:

‖φi,0 −Πp
tΠ

p
xφi,0‖r,− 1

2
,Γ,∗ .σ

(( ∆t

p+ 1

)p+1−r
+

(
h

p+ 1

)1/2+η )
‖φi,0‖p+1,η,Γ .

Combining these estimates, the asserted estimate follows for ∆t . h

‖p−Πp
xΠp

tp‖r,− 1
2
,Γ,∗ .

(
h

(p+ 1)2

)Re(ν∗)−ε
+
(( ∆t

p+ 1

)p+1−r
+

(
h

p+ 1

)1/2+η )
‖φi,0‖p+1,η,Γ .

The approximation of the Dirichlet trace u|Γ to prove part a) follows the above arguments.

A similar estimate is obtained for V∆t,1, with (∆t)p replaced by ∆t.

Remark. In the following tests we will estimate empirically, for the 2D case, the errors
reported in Corollaries 2.3.3 and 2.3.3, in norms ‖ · ‖r,− 1

2
,Γ,∗ and ‖ · ‖r, 1

2
,Γ,∗, by the use of

the following weaker measures for the unknowns ΦΦΦh,∆t and ΨΨΨh,∆t of the weak BIEs (2.16)
and (2.17):

‖ΦΦΦh,∆t‖2−1/2,E = (αααp)> EVαααp, ‖ΨΨΨh,∆t‖21/2,E = (αααu)> EDαααu. (2.22)

The introduced energetic norms depend on the discretization of the single layer and the
hypersingular operators V and D and they are weaker or comparable, respectively, to

the square of the norms in the spaces H0
σ

(
R+, H−1/2(Γ)

)2
and H0

σ

(
R+, H1/2(Γ)

)2
. In

particular, the squared errors committed approximating the exact solutions ΦΦΦ, ΨΨΨ of the
weak problems (2.4),(2.5) with the discrete solutions ΦΦΦh,∆t,ΨΨΨh,∆t can be calculated as
follows

Err2
−1/2,E = ‖ΦΦΦh,∆t‖2−1/2,E − ‖ΦΦΦ‖

2
−1/2,E ,

Err2
1/2,E = ‖ΨΨΨh,∆t‖21/2,E − ‖ΨΨΨ‖

2
1/2,E .

(2.23)

In the numerical section we will con�rm what theoretically stated in the previous theorems
considering the energy errors (2.23), where the norms of the exact solutions ‖ΦΦΦ‖2−1/2,E and

‖ΨΨΨ‖21/2,E are empirically extrapolated as indicated in [30].
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2.4 Numerical results

The numerical experiments in this section consider h, p and hp methods for the resolution
by energetic BEM of the homogeneous soft scattering problem (2.1)-(2.2) (Sections 2.4.1-
2.4.2) and the homogeneous hard scattering problem (2.1)-(2.3) (Section 2.4.3) in the 2D
case. They illustrate the singular behavior of the solution near the crack tips and the cor-
ners of the obstacle, con�rming the convergence rates theoretically expected in Section 2.3.

Unless otherwise stated, for the h version on uniform or β̃-graded meshes, piece-wise con-
stant basis functions in space and time are chosen to approximate the solution of the
Dirichlet energetic weak problem (2.16). Piece-wise linear functions are instead used in
case of Neumann weak problem (2.17) for the spatial and the temporal discretization in
case of uniform or β̃-graded meshes set on Γ. The p and hp versions are implemented with
higher polynomial degrees in space, up to p = 7. The Lamé parameters and the mass
density, where it is not otherwise speci�ed, are set to be λ = 2, µ = 1 and % = 1 for all the
results presented in this section.

Remark. For sake of simplicity, all the numerical results related to Dirichlet problems
are computed without assigning the datum gD on Γ × (0, T ] to compute the term g̃D =
(K + cΓ)gD in (2.16), but prescribing directly a function de�ned on Γ× (0, T ] to compute
the term g̃D. Similar consideration is done for the implementation of the Galerkin weak
form (2.17) in the resolution of Neumann problems.

2.4.1 Soft scattering problems on �at obstacle

Experiment 1. Here we consider the discrete weakly singular integral equation (2.16)
on a �at obstacle Γ = {(x, 0) ∈ R : x ∈ [−0.5, 0.5]} up to time T = 1. The boundary
datum imposed is g̃D,i(x, t) = H[t]f(t)x4, i = 1, 2, where the function f is the one already
introduced in (1.97). In Figure 2.3, the horizontal component of the discrete approximation

Figure 2.3: Approximation of the horizontal component of ΦΦΦ, calculated on the obstacle Γ at the
time instant T = 1. This plot is obtained imposing on Γ a 3-graded mesh with 81 nodes and
∆t = 0.00625.

of solution ΦΦΦ of (2.4), by energetic BEM, is represented on the obstacle Γ at the �nal
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instant: as we can observe from the plot, the behavior of the solution is singular near
the crack tips. Tables 2.1, 2.2 and 2.3 contain the values of ‖ΦΦΦh,∆t‖2−1/2,E , namely the

squared energy norm of the Galerkin solution as de�ned in (2.22), in relation with the
increasing number of spatial and temporal degrees of freedom (DOFs). For simplicity,
in the following tables the number of DOFs is indicated only for one component of the
vector-valued solution. The values reported in 2.1 are obtained by the application of a p
version in space: the boundary is uniformly discretized with segments of length h = 0.1,
while the degree p of the space basis function is increased. For p = 1 we set the time step
∆t = 0.025 and we halve it whenever p increases. The energy values reported in Table

Table 2.1: Squared energy norm of the approximated solution for T = 1 (p version)

degree p DOF ∆t ‖ΦΦΦh,∆t‖2−1/2,E

1 11 2.50000 · 10−2 3.4108 · 10−2

2 21 1.25000 · 10−2 3.6257 · 10−2

3 31 6.25000 · 10−3 3.7012 · 10−2

4 41 3.12500 · 10−3 3.7338 · 10−2

5 51 1.56250 · 10−3 3.7511 · 10−2

6 61 7.81250 · 10−4 3.7615 · 10−2

7 71 3.90625 · 10−4 3.7684 · 10−2

2.2 refer to the solution of the problem with the h version: we �x an algebraically graded
mesh on the arc as in (2.18), for given grading parameter β̃ = 1, 2, 3 and number of mesh
points 2N + 1.

Table 2.2: Squared energy norm of the approximated solution for T = 1 (h version with alge-
braically graded mesh)

∆t DOF ‖ΦΦΦh,∆t‖2−1/2,E , β̃ = 1 ‖ΦΦΦh,∆t‖2−1/2,E , β̃ = 2 ‖ΦΦΦh,∆t‖2−1/2,E , β̃ = 3

1.2500 · 10−2 10 3.0143 · 10−2 3.6212 · 10−2 3.7315 · 10−2

6.2500 · 10−3 20 3.3906 · 10−2 3.7501 · 10−2 3.7835 · 10−2

3.1250 · 10−3 40 3.5933 · 10−2 3.7813 · 10−2 3.7903 · 10−2

1.5625 · 10−3 80 3.6943 · 10−2 3.7890 · 10−2 3.7914 · 10−2

In Table 2.3 the discretization method used is the hp version. On Γ, the geometrically
graded points, with parameter σ ∈ (0, 1/2], are de�ned distinguishing the N+1 nodes xL,j
in the left interval [−1/2, 0] and the N nodes xR,j in the right interval (0, 1/2]:{

x0,L = −1
2 , xL,j = 1

2

(
σN+1−j − 1

)
j = 1, . . . , N + 1

xR,N+1 = 1
2 , xR,j = 1

2

(
1− σj

)
, j = 1, . . . , N

. (2.24)

In particular, the two geometrically graded meshes of type (2.24) are characterized by the
values σ = 0.2, 0.5 and, for ease of programming, at each re�nement of the mesh the
degree p increases uniformly on all the space elements. The parameter Lσ in the table
represents the length of the smallest segment of the mesh.
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Table 2.3: Squared energy norm of the approximated solution for T = 1 (hp version geometrically
graded)

p L0.5 L0.2 DOF ∆t ΦΦΦh,∆t‖2−1/2,E
σ = 0.5

ΦΦΦh,∆t‖2−1/2,E
σ = 0.2

0 5.00000 · 10−1 5.0 · 10−1 2 2.500000 · 10−1 4.0730 · 10−3 4.0730 · 10−3

1 2.50000 · 10−1 1.0 · 10−1 5 1.250000 · 10−1 2.7847 · 10−2 3.4521 · 10−2

2 1.25000 · 10−1 2.0 · 10−2 13 6.250000 · 10−2 3.2960 · 10−2 3.4581 · 10−2

3 6.25000 · 10−2 4.0 · 10−3 25 3.125000 · 10−2 3.6745 · 10−2 3.7256 · 10−2

4 3.12500 · 10−2 8.0 · 10−4 41 1.562500 · 10−2 3.7618 · 10−2 3.7783 · 10−2

5 1.56250 · 10−2 1.6 · 10−4 61 7.812500 · 10−3 3.7828 · 10−2 3.7890 · 10−2

6 7.81250 · 10−3 3.2 · 10−5 85 3.906250 · 10−3 3.7888 · 10−2 3.7911 · 10−2

7 3.90625 · 10−3 6.4 · 10−6 113 1.953125 · 10−3 3.7906 · 10−2 3.7915 · 10−2

Figure 2.4: Squared error of the energy norm for various discretization methods.

The squared energy value ‖ΦΦΦh,∆t‖2−1/2,E presented in the tables increases towards the

squared norm ‖ΦΦΦ‖2−1/2,E , which is empirically extrapolated, with the augmentation of the
DOFs for the tested discretization methods: as shown in Figure 2.4, where the slope of
the squared error in energy norm Err2

−1/2,E , de�ned in (2.23), is illustrated for the various
methods. We observe that the decay of the error follows a straight line in the logarithmic
plots for both the p version on uniform mesh and the h version with β̃ = 1, corresponding to
algebraic convergence with rate 2 (p version), respectively 1 (h version) in terms of DOFs.
This means that the error tends to 0 like p−1, respectively h1/2. This convergence rate
is expected from Corollary 2.3.6. Indeed, by Proposition 1.4.1 the energy ‖ΦΦΦh,∆t‖2−1/2,E
is bounded by the Sobolev norm considered in Corollary 2.3.6. Analogous results are ob-
tained for the h version with polynomial degrees p = 1, 2 in space. On algebraically graded
meshes with β̃ = 2 and 3 the squared error Err2

−1/2,E similarly decays along a straight line,

but with slope −β̃ with the increasing of DOFs. In particular, the BEM on the graded
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Figure 2.5: Asymptotic behaviour towards the left end of Γ

mesh (2.18) with β̃ = 3, recovers the optimal convergence order h3/2 expected in the energy
norm for smooth solutions, as in Corollary 2.3.3. The fastest convergence in Figure 2.4
is obtained by the hp version, for which the squared error Err2

−1/2,E decays faster than a
straight line for both σ = 0.2 and 0.5. The graph of the squared error indicates exponen-
tial decay. Convergence is faster for σ = 0.2, which is close to the theoretically optimal
σ ' 0.17, since the nodes in this case are more densely clustered near the endpoints of Γ
than for σ = 0.5.

The discretization methods illustrated above are useful to better catch the singular behav-
ior of the solution at the tips. In particular this trend is illustrated in Figure 2.5, where
the horizontal and the vertical components of the approximated ΦΦΦ are represented with
respect to the distance r towards the left end of the segment (−0.5, 0) for various time
instants: one observes that the singular behavior is independent of time, and the compo-
nents increase as O(r−1/2) for r → 0. This con�rms the discussion in Section 2.1.1. To
be speci�c, the solution in this �gure is obtained from the h version on a 3-graded mesh
with 81 nodes on Γ. We moreover remark that, in the left plot of Figure 2.5, the points
corresponding to the horizontal component Φ2, calculated at time t = 0.25, still describe
the transient phase of the dynamics. This means that the behaviour of Φ2, far from the
end-points of Γ, can be subject to perturbations that lead to the positive values of the
vertical component near the centre of the crack, indicated in particular by the dots in blue
corresponding to the abscissas r in the range [10−1, 100].

Experiment 2. Similar results as in Example 1 are obtained also for other boundary
data on the same �at obstacle Γ = {(x, 0) ∈ R : x ∈ [−0.5, 0.5]}. We here set g̃D,i(x, t) =
H[t]f(t)x, i = 1, 2, where the function f has the temporal pro�le de�ned in (1.97). The
solution of the weak problem (2.4) is again singular at the end points of the segment and,
as observed in the previous experiment, the components of ΦΦΦ increase as O(r−1/2) when
the distance r tends to zero (see Figure 2.6).
We again study the decay of the squared error in energy norm for this new Dirichlet
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Figure 2.6: Behaviour of the horizontal component Φ1 on Γ and w.r.t the distance towards the
right endpoint at T = 1. Both plots are obtained imposing on Γ an algebraically 3-graded mesh of
81 mesh points.

condition, leading to similar considerations for the rate of convergence of the di�erent
discretization methods. The spatial and temporal discretization parameters for the h, p
and hp version are chosen as in the previous experiment, and all the results are collected in

Figure 2.7. The squared error Err2
−1/2,E for the h version is O

(
hβ̃
)
on the algebraically β̃-

graded mesh, as in Corollary 2.3.3. The corresponding result for the p version is O
(
p−2
)
,

in agreement with Corollary 2.3.6. The convergence achieved by the hp version on a
geometrically graded mesh is faster than the one obtained with the algebraic mesh.

Figure 2.7: Squared error of the energy norm for various discretization methods

2.4.2 Soft scattering problems on polygonal obstacles

In the following we consider the weakly singular integral equation (2.4) on the di�erent
obstacle geometries Γ represented in Figure 2.8(b). From Section 2.1.1 we know that the
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solution u calculated closely to a corner point of Γ locally behaves like a power of the
distance r to the corner:

ui ≈ Ci,ωj (t)rν
∗(ωj), r → 0, i = 1, 2, j = ext, int,

where ωext or ωint is the exterior and, respectively, the interior corner angle in which we
decide to evaluate the displacement, while the exponent ν∗(ωj) is the smallest solution of
the equation

sin2(ωjν
∗) =

(
k−1ν∗ sinωj

)2
, (2.25)

with positive real part, where k = 3 − 2λ/(λ + µ). The prefactor Ci,ωj (t) is a smooth
function in t, independent of r, so the leading singular behavior does not change with
time. Since the solution ΦΦΦ of the boundary integral equation (2.4) depends on the trace
of the traction p on the obstacle, its asymptotic behavior depends on the solution on both
the amplitudes of the interior and exterior angle. It can be written as

Φi ≈ C̃i,ωext(t)rν
∗(ωext)−1 − C̃i,ωint(t)rν

∗(ωint)−1 ≈ Ci(t)rν
∗−1, r → 0,

with ν∗ = min {ν∗(ωext), ν∗(ωint)}.
For Lamé parameters λ = 2, µ = 1 and mass density % = 1, Figure 2.8(a) shows the interior
and exterior exponents, ν∗(ωint) and ν

∗(ωext) = ν∗(2π−ωint), as a function of ωint. Their
minimum gives the exponent ν∗ of the solution ΦΦΦ. Red crosses indicate the exponents ν∗

corresponding to the red corners of the polygons depicted on the right of Figure 2.8(b), for
interior angles 7π

24 (ν∗ = 0.5372), π3 (ν∗ = 0.5451), 3π
8 (ν∗ = 0.5542) and 3π

5 (ν∗ = 0.6306).

Experiment 3. We consider the Galerkin solution of the weakly singular integral equation
(2.16) on the polygons represented in Figure 2.8(b) up to time T = 1. In all cases the
right-hand-side imposed is g̃D,1(x, t) = 0, g̃D,2(x, t) = H[t]f(t)100|x|9.5.
The mesh on each side of polygons Γi, i = 1, . . . , 4, is algebraically graded towards the
corners following (2.18), for grading parameter β̃ = 3. The polygons Γ1 and Γ4, which
are both equilateral, are discretized with 80 segments per side, while for Γ2 and Γ3 we use
80 segments on the two sides which are of equal length and 75 and 87 segments on the
basis, respectively, in order to have mesh elements with equal size that delimit the basis
corners of these isosceles triangles. The time step is chosen as ∆t = 0.00625 for all the
next experiments of this subsection.
In Figure 2.9, for each geometry the Euclidean norm of ΦΦΦ, approximated by energetic
BEM, is plotted with respect to the distance r towards the corner indicated in Figure 2.8.
We observe that the solution follows the expected behavior O(r−(1−ν∗)). In particular, the
asymptotic behavior for acute corners leads to stronger singularities (1 − ν∗ ≈ 0.5) than
for the obtuse angle of the pentagon (1− ν∗ ≈ 0.37), con�rming what theoretically stated
in Section 2.1.1.

We �nally consider the convergence in energy norm on the polygonal obstacles. In partic-
ular, we examine the equilateral triangle Γ1, discretized by meaning of di�erent h versions
with grading parameters b̃ = 1, 2, 3. In Table 2.4 the value of the squared energy norm
‖ΦΦΦh,∆t‖2−1/2,E is reported for each level of the space discretization. The squared energy

norm tends to a benchmark value with increasing number of DOFs (also in this case the
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Figure 2.8: Expected exponent with dependence on ωint and on its complementary (k = 5/3) ,
�gure (a). Pictures of the four considered polygonal boundaries, all discretized by 3-graded meshes
set on each side, �gure (b)

Figure 2.9: Asymptotic behavior towards the vertices

Table 2.4: Squared energy norm of the approximated solution for T = 1

∆t DOF ‖ΦΦΦh,∆t‖2−1/2,E , β̃ = 1 ‖ΦΦΦh,∆t‖2−1/2,E , β̃ = 2 ‖ΦΦΦh,∆t‖2−1/2,E , β̃ = 3

5.00 · 10−2 30 5.7394 · 10−2 7.4875 · 10−2 7.6829 · 10−2

2.50 · 10−2 60 6.8490 · 10−2 7.6828 · 10−2 7.7460 · 10−2

1.25 · 10−2 120 7.3821 · 10−2 7.7448 · 10−2 7.7566 · 10−2

6.25 · 10−3 240 7.5989 · 10−2 7.7558 · 10−2 7.7582 · 10−2

number refers to one component of the vector solution), and the related squared error
Err2

−1/2,E is shown in Figure 2.10. The decay of the squared error in a log scale plot is
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linear, corresponding to O(DOF−2ν∗β̃), proving how the amplitude of the corner in�uences
the decay of the error.

Figure 2.10: Squared error of the energy norm with h version on Γ1, β̃-graded mesh

Experiment 4. In this example we show numerically that the singular behavior at
the corners and the decay of the energy error do not depend on the boundary data
imposed at the obstacle. We speci�cally consider the triangular obstacle Γ2 in Figure
2.8(b). The approximated solution ΦΦΦ is calculated for a right-hand-side with null hori-
zontal component g̃D,1(x, t) = 0 and di�erent vertical components g̃D,2(x, t) = H[t]f(t),
g̃D,2(x, t) = H[t]f(t)x4 and g̃D,2(x, t) = 100H[t]f(t)|x|9.5. In Figure 2.11(a), we consider

(a) (b)

Figure 2.11: Asymptotic behavior towards the vertices in Γ2 for di�erent boundary conditions (a)
and plot of the vertical component of ΦΦΦ on the base of Γ2 for the indicated boundary condition
(b).
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the behavior of the Euclidean norm of ΦΦΦ for these di�erent boundary data, plotted as a
function of the distance r to the vertex which is highlighted in red (Figure 2.8(b), geom-
etry Γ2). The singular exponent is expected to be ν∗ ' 0.542 for an angle at the base of
amplitude 3π/8. Indeed, we can detect that, in log scale, the slope of the norm for r → 0 is
parallel to the dashed line corresponding to O

(
r−(1−0.542)

)
for each of the tested boundary

data. In Figure 2.11(b) the vertical component of ΦΦΦ is shown on the base of Γ2 at time
T = 1, highlighting the singular behavior at the corners.

Figure 2.12: Squared error of the energy norm with h version on Γ1, β̃-graded mesh, g̃D,2(x, t) =
H[t]f(t)x4

In Figure 2.12 we consider the equilateral triangle Γ1 of 2.8(b) and study the decay of the
error for increasing degrees of freedom for the h version. The number of mesh elements
and the time step are the same considered in Table 2.4. The right-hand-side is here given
by g̃D,1(x, t) = 0, g̃D,2(x, t) = H[t]f(t)x4. An algebraically β̃-graded mesh is used on each
side, where β̃ = 1, 2. The energy tends to a benchmark value as the number of degrees
of freedom increases, and the squared error Err2

−1/2,E in energy norm in a log scale plot

decays linearly as O(DOF−2ν∗β̃), in agreement with Corollary 2.3.3.

2.4.3 Hard scattering problems on �at obstacle

In the following we consider a Neumann elastodynamics problem on the obstacle Γ =
{(x, 0) ∈ R : x ∈ [−0.5, 0.5]}. We focus, in particular, on the solution of the discrete
weak formulation (2.17) using h, p and hp versions.

Experiment 5. We set the Neumann data g̃N ,i(x, t) = 1 for i = 1, 2. The datum at the
boundary is independent of time. Therefore, as time increases, the components Ψi(x, t) of
the solution of the weak problem (2.5) tend to have stationary behaviour. Two di�erent
couples of velocities are considered, cS = 1, cP = 2 and cS = 1, cP = 3.
Figure 2.13 shows the time history of Ψ1 and Ψ2, calculated at the midpoint (0, 0) of Γ, for
both the couples of velocities on the time interval [0, 7.5]. We observe that, after an initial
transient phase, the solution approaches a stationary behaviour. For these plots, equation
(2.17) is solved on a uniform space-time mesh with mesh size h = 0.025 and ∆t = 0.0125,
respectively.
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Figure 2.13: Time history of Ψ1 and Ψ2 calculated at the middle point of Γ for the couples of
velocities cS = 1, cP = 2 and cS = 1, cP = 3.

To illustrate the behaviour of the solution near ∂Γ, Figure 2.14 shows the components of
−ΨΨΨ, for cS = 1, cP = 2, with respect to the distance r towards the right end point of
the segment (0.5, 0)> for various time instants: one observes that the singular behavior is
independent of time, and the numerical solutions decrease like r1/2 for r tending to zero.
Figure 2.14 has been obtained using in particular the h version on a β̃-graded mesh with
81 nodes, with time step ∆t = 0.00625 and β̃ = 2.

10-4 10-3 10-2 10-1 100
10-2

10-1

100

10-4 10-3 10-2 10-1 100
10-2

10-1

100

Figure 2.14: Asymptotic behaviour of −Ψ1 and −Ψ2 towards the right end of Γ for various time
instants (cS = 1, cP = 2). The arc is discretized by a β̃-graded mesh with β̃ = 2 and 81 mesh
points.

For the case cS = 1, cP = 2, we study the decay of the squared error in energy norm Err2
1/2,E ,

as de�ned in (2.23), for the approximate solution of (2.17) up to time T = 2 analysing the
squared energetic norm ‖ΨΨΨh,∆t‖21/2,E of the approximate solution, which increases towards
a common benchmark value for all tested discretization methods. The number of spatial
DOFs in the following refers, as previously, to one component of the vector solution. For
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Figure 2.15: Squared error of the energy norm calculated up to time instant T = 2

the h version we choose a β̃-graded mesh on Γ with β̃ = 1, 2 and 10, 20, 40, respectively
80 segments. The time step ∆t = 0.05 is set for 10 segments and it is halved at each
re�nement of the spatial mesh. The log scale plot in Figure 2.15(a) shows a linear decay

of the error for the h version, parallel to the lines O(DOF−β̃). The results con�rm the
prediction in Corollary 2.3.3. For the p version we consider a uniform discretization of the
obstacle with h = 0.1 and a uniform time step ∆t = 1/(2·DOF). The log scale plot shows
a linear decay of the error parallel to the expected line O(DOF−2). The hp version with
a geometrically graded mesh with σ = 1/2 is considered for meshes on Γ with 4, 6, 8, 10
and 12 segments. At each re�nement of the mesh the degree p, starting from 2, increases
uniformly on all the space elements. The time step is chosen as ∆t = 0.125 for 4 segments
and halved at each iteration. Similarly to the soft scattering problems presented above the
hp method shows the fastest decay of the error with respect to increasing spatial DOFs.



Chapter 3

ACA Compression

Theory and experiments discussed in the previous chapters concretely prove the e�cacy
and the validity of the energetic BEM for di�erent types of elastodynamics problems in
R2. Unfortunately, the method presents a consistent drawback. This is not related to the
quality and the stability of the approximated solution of the various discretized BIEs or
to the calculation of u through the associated representation formula, rather in the overall
cost required to compute the mentioned solutions. It is well known that indeed, if the
space approximation is performed by means of shape functions wp or wu deriving from
the Lagrangian polynomials de�ned over each segment of Γ discretization (see Figure 1.1
for instance in the linear case), the matrices EV , EK and ED (having Toeplitz structures

comparable to the matrix in (1.75) have temporal blocks E(l)
V , E(l)

K and E(l)
D that become

fully populated for growing values of the index l. This can prevent the application of the
energetic BEM to large scale problems, since the memory required to store, for instance,
matrix (1.75) is O(M2

pN), Mp and N identifying the spatial and the temporal degrees
of freedom. In this chapter we propose a compression technique, based on algebraic ma-
nipulations of the temporal blocks, that allows to rewrite them in a compressed format,
in order to reduce the number of the original entries to be computed. The theory and
the application of this strategy reveal to be very e�cient in the resolution of problems
depending on a high number of degrees of freedom and in the following this strategy is
proposed to solve both acoustic and elastic wave propagation soft scattering problems by
energetic BEM.

Remark. The following theoretical and numerical results are presented and discussed
in Author's paper [3], written in collaboration with Professors Alessandra Aimi and Luca
Desiderio (University of Parma) and recently submitted to Computers & Mathematics with
Applications.

3.1 The acoustic and the elastic models

As announced in the introduction of the chapter, in the following we are interested in the
resolution of two vectorial problems, both modelled by a partial di�erential equation with
a speci�c di�usive term ∇ · σ, di�erent for each problem. We introduce then a common
notation for both acoustic and elastic propagation, since the application of the energetic

73
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BEM to solve them retraces comparable steps.
Here again we suppose that propagation occurs outside a bounded domain Ω ⊂ R2 with a
su�ciently smooth closed boundary Γ := ∂Ω, and we denote by Ωe := R2 \Ω the exterior
unbounded domain. The soft scattering di�erential problem is identi�ed as follows:

∇ · σ[u](x, t)− %ü(x, t) = 0 (x, t) ∈ Ωe × [0, T ]
u(x, t) = gD(x, t) (x, t) ∈ ΣT := Γ× [0, T ]
u(x, 0) = u̇(x, 0) = 0 x ∈ Ωe,

(3.1)

with u = (u1, u2)> denoting the unknown displacements with Dirichlet condition gD =
(gD,1, gD,2)> assigned at the boundary. In the general problem (3.1), homogeneous initial
conditions are assumed at the �rst time of interest t = 0. As widely discussed in the
previous chapters, implementation of the Boundary Element method requires to rewrite
the unknown u by boundary integral reformulation of the problem (3.1). This can be done
by using the arguments listed in Section 1.2 for the elastodynamics problems and that
can be verbatim repeated for the acoustic model with the knowledge of the corresponding
fundamental Green's tensor Guu = (Guu

ij )i,j=1,2. For the resolution of (3.1) we adopt an
indirect single layer potential representation, written by components as:

ui(x, t) =

∫ t

0

∫
Γ
Guu
ij (x, ξξξ; t, τ)Φj(ξξξ, τ)dΓξξξdτ, x ∈ Ωe, t ∈ [0, T ], i = 1, 2. (3.2)

whereΦΦΦ = (Φ1,Φ2)> is a suitable density �eld to be determined according to the di�erential
problem we aim at solving. From the above formula, with a limiting process that makes
a point x ∈ Ωe tending to a point x ∈ Γ and exploiting the Dirichlet boundary condition,
we can obtain a system of two TD-BIEs:

gD,i(x, t) =

∫ t

0

∫
Γ
Guu
ij (x, ξξξ; t, τ)Φj(ξξξ, τ)dΓξξξdτ =: (VijΦj) (x, t), (x, t) ∈ ΣT , i = 1, 2

(3.3)
rewritable in the following vectorial form:([

V11 V12

V21 V22

] [
Φ1

Φ2

])
(x, t) =

[
gD,1
gD,2

]
(x, t). (3.4)

The energetic weak formulation of the BIEs (3.4), which can be calculated applying a time
derivative to the entire BIE and projecting this last one onto the space of the unknown
density ΦΦΦ = (Φ1,Φ2)>, reads as follows:

�nd ΦΦΦ = (Φ1,Φ2)> solution of the weak problem

< ˙(VijΦj), φi >L2(ΣT )=< ġD,i, φi >L2(ΣT ) . (3.5)

for each test function φφφ = (φ1, φ2)> belonging to the same functional space of the unknown
density ΦΦΦ.
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Acoustics

Let us �rstly consider the acoustic wave propagation problem identifying the corresponding
Cauchy stress tensor :

σ(x, t) := %c2∇u(x, t), (3.6)

where c > 0 denotes the speed of the wave propagation. In this case, simplifying the
density %, equation in (3.1) can be written as the vector acoustic wave equation:

c2∆u(x, t)− ü(x, t) = 0 (x, t) ∈ Ωe × [0, T ]. (3.7)

The components of the tensor Guu
ij (x, ξξξ; t, τ) are given by:

Guu
ij (x, ξξξ; t, τ) :=

c

2π

H(c(t− τ)− r)√
c2(t− τ)2 − r2

δij , with r := ‖r‖2 := ‖x− ξξξ‖2, i, j = 1, 2.

(3.8)
Consequently, the components of the unknown densityΦΦΦ decouple because of the Kronecker
delta symbol δij , leading to a recasting of the BIE (3.4) in the following form:([

V 0
0 V

] [
Φ1

Φ2

])
(x, t) =

[
gD,1
gD,2

]
(x, t) with V := V11 = V22. (3.9)

Thus, we can retrieve the vector �eld ΦΦΦ by solving one scalar BIE with two di�erent
right-hand-sides. by introducing the energy of the wave equation (3.7) as follows (see [9])

E(u, t) :=
1

2

(∫
Ω∩Ωe

‖u̇(x, t)‖22 (x, t)dx + c2

∫
Ω∩Ωe

[
‖∇u1(x, t)‖22 + ‖∇u2(x, t)‖22

]
dx

)
,

(3.10)
it turns out that the quadratic form related to the left-hand side of the energetic weak
problem (3.5) satis�es the following energy identity

E(u, T ) =

∫
Γ

∫ T

0

˙(V Φi)(x, t)Φi(x, t)dtdΓx, i = 1, 2. (3.11)

Elastodynamics

For what concerns the propagation of an elastic wave, all the fundamental notations have
been already introduced in Chapter 1 and, therefore, we brie�y list them in the following. In
particular, the Cauchy stress tensor for elastodynamics is de�ned by components in (1.3),
leading to a recast of the equation (3.1) in the form (1.9). The fundamental elastodynamic
solution Guu is written, again by components, in (1.15), where it is immediate to observe
the dependence the tensor on two di�erent wave fronts, characterized by the peculiar
velocities cS and cP. Additionally, when Poisson's relation is satis�ed, i.e. λ = µ, we have
cP =

√
3cS. In the elastodynamic case, the de�nition of the components Guu

ij for i 6= j
is not trivial in general: as a consequence, the components of the unknown density ΦΦΦ
do not decouple and equation (3.4) still represents a system of two BIEs, with the only
simpli�cation of the integral operator given by the identity Vij = Vji. The energy of the
elastodynamic system, and the consequent energy identity for the elastodynamic case with
Dirichlet condition, are provided in (1.44) and (1.45).



Chapter 3. ACA Compression 76

3.2 Galerkin discretization

For the discretization phase we can retrace the same steps taken for discretization of the
indirect weak form of the Dirichlet elastodynamics problem in (1.46): then we choose to
approximate the components of density ΦΦΦ in the functional spaces V∆t,0 and X−1

h,0(Γ) (for
details see Subsection 1.5.1), for the time and the space approximation respectively. In
particular, since we chose piece-wise constant functions wp for the space approximation
(degree p = 0), it is easy to observe that the number Mp of polynomial basis corresponds
to M , namely the number of mesh elements imposed on Γ. For the time approximation,
the de�nition of the basis function can be found in (1.71). Thus, the unknown approximate
solution of problem (3.5) is expressed as:

Φi(x, t) '
N−1∑
n=0

M∑
m=1

αp,inmvn(t)wpm(x) i = 1, 2, (3.12)

and the test function are replaced by φi(x, t) = vñ(t)wpm̃(x) for each m̃ = 1, ...,M ,
ñ = 0, ..., N − 1. As consequence of the approximation in (3.12), the energetic BEM
discretization produces the linear system

EV αp = βD, (3.13)

with structure identical to the one presented in (1.75). Here in particular we report the

structure of the temporal blocks E(l)
V , with l = ñ − n corresponding to the non-negative

di�erence between two time indexes:

E(l)
V =

 E(l)
V,11 E(l)

V,12

E(l)
V,21 E(l)

V,22

 with E(l)
V,12 = E(l)

V,21. (3.14)

We recall that, with the choice of piece-wise constant basis for the space discretization,

the generic sub-block E(l)
V,ij is an M -by-M matrix. The solution of (3.13) is obtained by a

block forward substitution, as indicated in (1.76) and (1.77). Block E(0)
V is the only one to

be inverted, while all the other blocks E(l)
V for l > 0 are used to update at each time step

the right-hand side. In the following we focus on this latter type of blocks and on how
the de�nition of their entries, in terms of double space integrals, allows for compression
algorithm and, hence, for a memory requirement reduction for the storage of these matrices.

Acoustics

For what concerns the discretization of the energetic weak problem related to the acoustic

model, we remark that the block E(l)
V inherits the structure of the space-time integral

operator V so that, due to (3.9), we have:

E(l)
V =

(
E(l) 0

0 E(l)

)
with E(l)

V,11 := E(l)
V,22 = E(l). (3.15)
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After performing a double analytic integration in the time variables, the entries of the
M -by-M matrix E(l) are of the form:

E(l)
m̃,m = − 1

2π

1∑
ξ,ζ=0

(−1)ξ+ζ
∫

Γ
wpm̃(x)

∫
Γ
wpm(ξξξ)νV (r; ∆ñ+ξ,n+ζ)dΓξξξdΓx, (3.16)

where l = ñ− n, ∆ñ+ξ,n+ζ = tñ+ξ − tn+ζ > 0 and

νV (r; t) = H(ct− r)
[
log
(
ct+

√
c2t2 − r2

)
− log (r)

]
, r = ‖x− ξξξ‖2. (3.17)

In (3.17), the Heaviside function models the wave front propagation with velocity c. The
space singularity of type O(log (r)), as r → 0, is typical of the weakly singular kernels
related to 2D elliptic problems and it is immediately visible in the de�nition of the acoustic
kernel (3.17).

Elastodynamics

When we deal with elastic problems, all the four sub-blocks in (3.14) are non-zero and,
after a double analytical integration in time variables, their generic entry for i, j = 1, 2 and
l = ñ− n has the form

(
E(l)
V,ij

)
m̃,m

= − 1

2π%

1∑
ξ,ζ=0

(−1)ξ+ζ
∫

Γ
wpm̃(x)

∫
Γ
wpm(ξξξ)νVij (r; ∆ñ+ξ,n+ζ)dΓξξξdΓx, (3.18)

where the elastodynamic kernel νVij is de�ned in (1.79). We remark that if 0 6 r =
‖x − ξξξ‖2 6 cS∆ñ+ξ,n+ζ < cP∆ñ+ξ,n+ζ the kernel assumes the reduced form reported in
formula (1.82), in which the space singularity of kind O(log (r)) is revealed.

3.3 Basic theory and ACA algorithm

Unfortunately, for growing l the blocks E(l)
V in (3.14) are more and more populated until

they become full matrices. This phenomenon, once �xed a time step ∆t, depends on
the speed of wave propagation. An example of the matrix �lling process with respect to
di�erent value of the velocity c, associated to the acoustic model, can be found in Figure
3.1. Consequently, the memory storage requirement for the matrix EV in (3.13) is of
order O(M2N), making the application of the energetic BEM ine�cient in case of a large
number of spatial and temporal DOFs. In the following, we propose a procedure to reduce

the computational time and cost for the generation of the blocks E(l)
V , based on a subtler

analysis of their entries. For simplicity of representation, we focus our attention on the
acoustic problem, but the analysis we are going to propose can be easily extended to the
elastic case.
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Figure 3.1: Structure of the acoustic sub-block E(l) in (3.15) for l = 1, 41, 82, 163 and for the
corresponding growing time instants t = l∆t. For the calculation of the matrix entries (3.16) we
consider a circumference Γ with unitary radius, approximated uniformly by M = 512 segments,
so that E(l) is a 512-by-512 matrix. The problems evolves in the time interval [0, 8π], decomposed
uniformly by N = 2048 instants and characterized by the velocities c = 1 (�rst row plots) and
c = 343 (second row plots).

Acoustics

For growing times, the inequality c tl−1 > r becomes true, then, thanks to the summation
in matrix entry (3.16), the latter reduces to

E(l)
m̃,m = − 1

2π

∫
Γ
wpm̃(x)

∫
Γ
wpm(ξξξ)ν̃(r; tl)ΓξξξdΓx (3.19)

where

ν̃(r; t) = log


(
ct+

√
c2t2 − r2

)2(
c(t−∆t) +

√
c2(t−∆t)2 − r2

)(
c(t+ ∆t) +

√
c2(t+ ∆t)2 − r2

)
.

(3.20)

We remark that the quantity diam(Γ) is the maximum value that the distance r can
assume on Γ. Thus, when ctl−1 > diam(Γ), we do not observe any space singularity in all
the matrix elements and the kernel function ν̃(r(x, ξξξ); tl) reveals to be smooth for r → 0;
further, we note that it is symmetric in space variables and in the limit for t→∞ it tends
to become identically zero.
The reduction of the memory storage for the fully populated blocks E(l), generated by the
energetic BEM, is based on the property that the kernel ν̃(r(x, ξξξ); t) admits a low-rank or
degenerate expansion, i.e. it can be decomposed as follows:

ν̃(r(x, ξξξ); t) =

k∗l∑
k=0

χk(x, t)ωk(ξξξ; t) +Rk∗l (x, ξξξ; t) := Sk∗l (x, ξξξ; t) +Rk∗l (x, ξξξ; t), (3.21)

where k∗l represents the rank of the decomposition and the residuum Rk∗l (x, ξξξ; t) tends to
zero for k∗l →∞. Going back to the de�nition (3.20) and to the properties of smoothness
and symmetry of ν̃(r(x, ξξξ); t), for a �xed t and ∆t, it is well known (see [77]) that such
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kind of kernels can be represented by a bilinear expansion in terms of eigenvalues and
eigenfunctions in space variables. However, it is not easy to determine this representation
in closed form, so, since we are interested in the estimation of k∗l w.r.t the value of the
residuum Rk∗l (x, ξξξ; t), it is better to work in the r variable. Here, we moreover stress that
the following theoretical study is not necessary for the implementation of the method, since
we will employ a rank revealing algorithm for the computation of the low-rank approxima-
tion of the matrices E(l).
Taking into account the de�nition of the reduced integral kernel (3.20) and the fact that
the shape functions in (3.19) are piece-wise constant, a generic matrix element can be
approximated as follows:

E(l)
m̃,m ' −

∆x2

2π
ν̃(r; tl) (3.22)

since the function ν̃(r; tl) is almost �at in r for a large time instant tl. We proceed then
in the estimate by applying to this smooth kernel a Taylor expansion in the r variable,
centred in r = 0:

E(l)
m̃,m '

+∞∑
k=0

Ck(tl)r
2k = Sk∗l (r; tl) +Rk∗l (r; tl), (3.23)

where Sk∗l (r; tl) and Rk∗l (r; tl) represent the summation over the �rst k∗l + 1 terms of the
series and the related reminder, respectively. In particular, the coe�cients Ck(t) can be
approximated, up to negligible terms for large t, as follows:

Ck(t) ' C̃k(t) := −(c∆x∆t)2

2π

(2k + 1)!

(k!)24k
1

(ct)2k+2
. (3.24)

Now, we introduce the function

S̃k∗l (r; t) :=

k∗l∑
k=0

C̃k(t)r
2k (3.25)

and we observe that, since for each k > 0 it holds

(2k + 1)(2k + 1)

2k + 1

r2k

(ct)2k+2
= − 1

c(2k + 1)

∂2

∂t∂r

(
r2k+1

(ct)2k+1

)
,

we obtain:

S̃k∗l (r; t) =
c(∆x∆t)2

2π

k∗
l∑

k=0

(2k)!

(2k + 1)(k!)24k
∂2

∂t∂r

(
r2k+1

(ct)2k+1

)

=
c(∆x∆t)2

2π

∂2

∂t∂r

 k∗
l∑

k=0

(2k)!

(2k + 1)(k!)24k

( r
ct

)2k+1

 . (3.26)

The argument of the double derivative in formula (3.26) is the general term, calculated
in x = r/(ct), of the expansion centred in x = 0 of the function arcsin(x). Therefore, we
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approximate the generic block element in (3.23) by a series of terms (3.26), having as limit
for k∗l → +∞ the following function:

S̃∞(r; t) =
c(∆x∆t)2

2π

[
∂2

∂t∂r
arcsin

( r
ct

)]
= −c(∆x∆t)2

2π

(
1

t
√
c2t2 − r2

+
r2

t 3/2
√
c2t2 − r2

)
.

Consequently, we can estimate the reminder Rk∗l (r; t) at a �xed k∗l with the di�erence

Rk∗l (r; t) ' S̃∞(r; t)− S̃k∗l (r; t). (3.27)

Thus, we can conclude that, for a chosen accuracy ε > 0, it is possible to obtain a low-rank
approximation of the matrix E(l), k∗l being the rank required to satisfy∣∣∣Rk∗l (r; tl)

∣∣∣ ' ∣∣∣S̃∞(r; tl)− S̃k∗l (r; tl)
∣∣∣ 6 ε ∣∣∣S̃∞(r; tl)

∣∣∣ . (3.28)

The decomposition (3.23) can be written as a matrix decomposition

E(l) = Sk∗l + Rk∗l with Sk∗l := Q ·W>, (3.29)

where Q and W are both M -by-k∗l matrices and the residuum Rk∗l is such that∥∥∥Rk∗l ∥∥∥
F

=
∥∥∥E(l) − Sk∗l

∥∥∥
F

=
∥∥∥E(l) −Q ·W>

∥∥∥
F

6 ε
∥∥∥E(l)

∥∥∥
F

,

where ‖ · ‖F denotes the Frobenius norm of a real matrix and ε > 0 is a parameter repre-
senting the accuracy required to the approximation.

Such low-rank approximation can be computed by di�erent algorithms: the best represen-
tation, up to a given accuracy, can be generated by Singular Value Decomposition (SVD)
but it is an unattractive technique for the computational complexity, since it leads to slow
procedures for large-scale computations. On the other hand, a purely algebraic algorithm
as the partially pivoted Adaptive Cross Approximation (ACA) (see [17, 18]) appears to
be very e�cient for the application to the energetic BEM matrices, because it allows to
attain the low-rank representation of the blocks E(l) by computing adaptively just some
selected rows and columns of the original matrix, until a stopping criterion related to the
set accuracy εACA > 0 is satis�ed.

The starting point of ACA is the property that each matrix of rank k can be obtained as
the sum of k matrices of rank 1. Thus, the idea at the basis of ACA algorithm is to improve
the accuracy of the approximation by adding iteratively rank-1 matrices. At iteration k,
the matrix Sk is constituted by k rows qi and k columns wi, i.e.

Sk :=

k∑
i=1

qiw
>
i = Q ·W>. (3.30)

The information is shifted iteratively from the residual to the approximant. More precisely,
at iteration k, given Sk and assuming the row index m̃∗ is known, the algorithm is given
by the following six steps:
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1. generate the rows a := E(l)>em̃∗ and R>k em̃∗ := a−
k∑
i=1

(qi)m̃∗ wi;

2. �nd the column index m∗ := argmaxm
∣∣(Rk)m̃∗,m∣∣ and compute γk+1 := (Rk)−1

m̃∗,m∗ ;

3. generate of the columns b := E(l)em∗ and Rkem∗ := b−
k∑
i=1

qi (wi)m∗ ;

4. �nd the next row index m̃∗ := argmaxm̃
∣∣(Rk)m̃,m∗∣∣;

5. compute vectors qk+1 := γk+1E(l)em∗ and wk+1 := E(l)>em̃∗ ;

6. update the approximation Sk+1 = Sk + qk+1w
>
k+1.

The algorithm then stops when the new rank-1 approximation does not improve the ac-
curacy of the approximation. Since at each iteration k it holds Sk − Sk−1 = qkw

>
k , the

stopping criteria reads
‖qk‖2‖wk‖2 6 εACA‖Sk‖F. (3.31)

As we can see, ACA provides a purely algebraic and easy to implement tool for the ap-
proximation of the energetic BEM blocks, without requiring any a priori kernel expansion.

Remark. Citing the work of Bebendorf (see [17, 18]), the ACA algorithm was origi-
nally developed for asymptotic smooth kernels and for this class of operators its conver-
gence and performances were theoretically investigated and assessed. Smooth kernels, like
ν̃(r(x, ξξξ); t), do not formally �t into the de�nition of asymptotic smoothness of a function.
However, in this case the ACA algorithm can be interpreted as a rank-revealing decompo-
sition applicable to kernels that admit degenerate approximations, as (3.21). As far as we
know, one of the �rst application to smooth kernels can be found in [56].

Remark. Since the success of the proposed ACA based acceleration of the energetic
BEM relies on the possibility of obtaining low-rank approximations of the blocks E(l) we
investigate such a property for a benchmark example. We take into account a problem on
a circumference Γ with unitary radius, approximated by M = 512 segments with length
h = π/256, so that E(l) is a 512-by-512 matrix. The problems evolves in the time interval
[0, 8π], the latter decomposed uniformly by N = 2048 instants and characterized by the
velocity c = 1. In the �rst row of Table 3.1, we report the evaluation of the ranks kl
of some time blocks obtained by the execution of the ACA compression with threshold
εACA = 1.0e − 04 in the stopping criteria (3.31). Then a comparison is made considering
the rank k∗l obtained by the estimate of the reminder, calculated for r = 2, i.e. the
diameter of Γ, and by setting the threshold ε = 1.0e − 04 in (3.28). The results con�rm
how the estimate of the rank by the study of the reminder of the decomposition (3.23)
is qualitatively signi�cant and they give us an idea of how low the rank of the blocks
behaves as the time increases. We note that kl is bigger than k∗l but this phenomenon
is not surprising since the ACA does not provide the best numerical rank, rather a good
approximation of it. However, we note that the two numerical ranks are of the same order.
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l 256 512 768 1024 1280 1536 1792 2048

kl 13 7 7 7 5 4 4 4
k∗l 11 4 3 2 2 2 2 1

Table 3.1: Comparison between the estimates of the ranks of E(l) given by the execution of the
ACA algorithm with threshold εACA = 1.0e− 04 in (3.31), and by the evaluation of the reminder
Rk∗l (r; tl) with threshold ε = 1.0e− 04 in (3.28).

Elastodynamics

Similar remarks as those made for the acoustic integration kernel are proposed below for
the elastic problem. We start by observing that, for growing time, also the matrix element
de�ned in (3.18) can be rewritten in a reduced form(

E(l)
V,ij

)
m̃,m

= − 1

2π%

∫
Γ
wm̃(x)

∫
Γ
wm(ξξξ)ν̃ij(r; tl)dΓξξξdΓx (3.32)

where the kernel

ν̃ij(r; t) =
δij
2

 1

c2
P

log


(
cPt+

√
c2
Pt

2 − r2
)2(

cP(t−∆t) +
√
c2
P(t−∆t)2 − r2

)(
cP(t+ ∆t) +

√
c2
P(t+ ∆t)2 − r2

)


+
1

c2
S

log


(
cSt+

√
c2
St

2 − r2
)2(

cS(t−∆t) +
√
c2
S(t−∆t)2 − r2

)(
cS(t+ ∆t) +

√
c2
S(t+ ∆t)2 − r2

)



+
c2
P − c2

S

cPcS

(
rirj
r2
− δij

2

)[
2t

cP
√
c2
St

2 − r2 + cS
√
c2
Pt

2 − r2

− t+ ∆t

cP
√
c2
S(t+ ∆t)2 − r2 + cS

√
c2
P(t+ ∆t)2 − r2

− t−∆t

cP
√
c2
S(t−∆t)2 − r2 + cS

√
c2
P(t−∆t)2 − r2

]
is obtained considering that, for cStl−1 > diam(Γ), the single layer elastodynamics kernel
de�ned in (1.79) is always expressed by its reduced form (1.82). The elastic kernel ν̃ij has
the same properties of the reduced acoustic kernel ν̃(r; t), i.e. it is smooth for r → 0 and
symmetric w.r.t to the space variables. Moreover, for a �xed r, in the limit for t → ∞ it
tends to become identically zero. Therefore the generic matrix entry de�ned in (3.32) can
be approximated as follows (

E(l)
V,ij

)
m̃,m
' −∆x2

2π%
ν̃ij(r; tl), (3.33)

which allows us to proceed with a generalised Taylor expansion in the vectorial variable
r = (r1, r2)> of the right-hand-side of the previous relation. Then we can rewrite the
element as a series of even terms:(

E(l)
V,ij

)
m̃,m
'

∞∑
k=0
|α|=2k

Cα,ij(tl)r
α, (3.34)
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where the argument of the summation depends on a multi-index α := (α1, α2) with
|α| = α1 + α2, and Cα(t) = (Cα,ij(t))i,j=1,2 is a fourth-order tensor whose entries have

a behaviour in time as O(1/(cSt)
|α|+2). Consequently, we can conclude that the reduced

elastodynamic kernels ν̃ij(r; t) admit a low-rank expansion and that the ACA algorithm is

applicable for the computation of each sub-block E(l)
V,ij , i, j = 1, 2, in (3.14).

Remark. We recall that a "straightforward generalization of the scalar-value ACA to the
matrix-valued version is not possible", since the research of a suitable pivot could fail for
the reasons listed by Messner and Schanz in [59]. Therefore, in the elastic case we apply the

ACA following their approach, namely considering the partition of the matrix E(l)
V into a

2×2 block matrix, as indicated in (3.14), and applying the proposed compression strategy
to each of the four sub-blocks. This leads to the implementation of four distinct iterative
pivoting-algorithms that can be e�ciently executed with parallel processes.

3.4 Numerical results

This section contains two main parts: the �rst deals with the numerical study of the
e�ciency of the proposed method, in terms of accuracy, memory saving and CPU time
reduction and the application is in particular consider for both acoustic and elastodynam-
ics benchmark cases. The second part presents the application of the scheme to some soft
scattering problems.

3.4.1 Example 1. Numerical study of the e�ciency of the proposed

method.

Let Ω be the unit disk centered at (0, 0), so that Γ = {x ∈ R2 : x = (cosα, sinα)>, α ∈
(−π, π]}. We consider the Problem (3.1) with the �nal time instant T = 4π.

Here, we aim at testing the accuracy and the e�ciency of the approximations we obtain
by using the energetic approach combined with the ACA technique. Since, to the best
of our knowledge, for both the acoustic and the elastodynamic problems it is not possi-
ble to choose a Dirichlet datum gD(x, t) such that an analytical expression of the exact
solution of the problem is known, we construct the corresponding reference solution by
solving the problem with the standard energetic BEM, by using Me degrees of freedom
for the space discretization and Ne sub-intervals for the time interval [0, 4π]. We refer
to the reference solution as Φ∗Me,Ne

(x, t) and to the corresponding reference displacement
solution as u∗Me,Ne

(x, t), obtained replacing Φ∗Me,Ne
(x, t) in the integral representation for-

mula (3.2). Moreover, we denote by ΦM,N (x, t) and uM,N (x, t) the approximate solution
and the corresponding displacement obtained with the proposed ACA algorithm applied
to compress the temporal blocks, choosing the space and time discretization parameters
M and N , respectively.
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To test the accuracy of our method, we introduce the absolute error

EΦ
M,N := max

t∈(0,T ]

∥∥Φ∗Me,Ne(·, t)−ΦM,N (·, t)
∥∥
L2(Γ)

, (3.35)

associated to the approximate solution ΦM,N (x, t), the error made on the calculation of
the external solution at a �xed point x0 = (0, 2)>

Eu
M,N := max

t∈(0,T ]

∣∣u∗Me,Ne(x0, t)− uM,N (x0, t)
∣∣. (3.36)

To test how the error decreases with respect to a doubling of the degrees of freedom,
we compute the corresponding Estimated Order of Convergence (EOC), by means of the
following standard formula:

EOC := log2

∣∣∣∣∣ E∗M,N

E∗2M,2N

∣∣∣∣∣ with ∗ = Φ,u. (3.37)

Moreover, we focus our attention on the percentage of the memory saved, de�ned as

mem(%) := 100 ·

(
1− 1

N

N−1∑
l=0

kl
M

)
, (3.38)

where kl/M denotes the ratio between the size of the compressed block E(l) and the size
of its complete (not compressed) form.

Acoustics

For the acoustic problem, we consider the Dirichlet boundary datum

gD,1(x, t) = t4e−2t cos
(
x2

1 + 2x2
2

)
, gD,2(x, t) = 0.

We observe that, since the acoustic BIE (3.9) is decoupled, with this boundary datum the
vertical density Φ2(x, t) is identically null. In the sequel, we report the numerical results
corresponding to the reference parameters Me = 4096 and Ne = 8192. Although to the
previous underlined limitations of the standard energetic BEM, this choice ofMe and Ne is
possible, because the considered geometry of Γ allows us to take advantage of the Toeplitz
structure of the blocks E(l) in (3.15), for l = 0, 1, . . . , Ne − 1. Therefore, in this test we
need to construct and store only the �rst row of each block. In Figures 3.2 and 3.3, we
show the behaviour of the horizontal components of Φ∗Me,Ne

(x, t) and u∗Me,Ne
(x0; t), for

two values of the speed of wave propagation, i.e. c = 1 and c = 343.
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(a) (b)

Figure 3.2: Acoustic. Horizontal component of the reference density solution Φ∗Me,Ne
(x, t) for

x = (cosα, sinα)>, with α ∈ (−π, π], and t ∈ (0, 4π]. Two values of the speed propagation are
considered: c = 1 (a) and c = 343 (b).

(a) (b)

Figure 3.3: Acoustics. Horizontal component of the reference displacement u∗Me,Ne
((0, 2)>, t) for

t ∈ (0, 4π]. Two values of the speed propagation are considered: c = 1 (a) and c = 343 (b).

In Tables 3.2 and 3.3, we report the errors EΦ
M,N and Eu

M,N , the corresponding EOCs
and the percentages of memory saved, obtained by setting in (3.31) εACA = 1.0e − 03,
εACA = 1.0e − 04 and εACA = 1.0e − 05 for the value of the speed of wave propagation
c = 1, and εACA = 1.0e − 04, εACA = 1.0e − 05 and εACA = 1.0e − 06 when we consider
c = 343.
We remark that we have obtained the same accuracy (at least up to the second signi�cant
digit) for all the considered choices of the threshold parameters, as well as for the standard
(without ACA based compression) energetic BEM. This phenomenon is due to the fact that
the highest value of the error is associated to the �rst time instants, whose corresponding
blocks are stored in the standard (not compressed) format. On the other hand, as time
passes, the blocks tends to become identically zero with decreasing rank and so their
compression does not change the maximum error of the method, rather they are necessary
for the stability of the global procedure.
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As expected, since we use constant shape functions in space and in time, we observe a
linear convergence rate for the approximate density ΦM,N and a quadratic convergence
rate for the approximated potential uM,N .
In Tables 3.2 and 3.3, the high memory saving obtained with the proposed compression
technique is visible, too. In particular, we underline that the memory saving improves
when we increase the problem size. In particular, when we consider the speed of wave
propagation c = 343 and for the values M = 512 and N = 1024, approximatively at most
only 1.7% entries of the original matrices are needed for all the three considered parameters
εACA.

M N EΦ
M,N EOC Eu

M,N EOC
mem mem mem

εACA = 1.0e− 03 εACA = 1.0e− 04 εACA = 1.0e− 05

8 16 2.67e− 01 3.42e− 02 0.0% 0.0% 0.0%
0.6 1.8

16 32 1.77e− 01 9.87e− 03 12.5% 0.0% 0.0%
1.0 1.9

32 64 8.47e− 02 2.56e− 03 47.9% 39.0% 31.6%
1.0 2.0

64 128 4.22e− 02 6.28e− 04 66.1% 60.9% 57.6%
1.0 1.7

128 256 2.03e− 02 1.92e− 04 74.4% 72.1% 70.2%
1.1 2.1

256 512 9.44e− 03 4.41e− 05 78.4% 77.3% 76.4%
1.2 2.0

512 1024 4.04e− 03 1.09e− 05 80.3% 79.7% 79.4%

Table 3.2: Acoustics. Energetic BEM combined with the partially pivoted ACA. Absolute errors
in L2-norm of the boundary solution ΦM,N and absolute error of the external solution uM,N , with
corresponding EOCs (speed of wave propagation c = 1).

M N EΦ
M,N EOC Eu

M,N EOC
mem mem mem

εACA = 1.0e− 04 εACA = 1.0e− 05 εACA = 1.0e− 06

8 16 5.94e− 01 8.54e− 03 37.5% 34.4% 25.0%
0.7 0.4

16 32 3.54e− 01 1.13e− 02 67.2% 65.6% 59.4%
1.0 2.0

32 64 1.78e− 01 2.83e− 03 84.6% 83.6% 83.6%
1.0 2.0

64 128 8.95e− 02 7.04e− 04 92.1% 91.5% 91.0%
1.0 2.0

128 256 4.41e− 02 1.78e− 04 96.0% 95.7% 95.0%
1.0 2.0

256 512 2.13e− 02 4.33e− 05 97.6% 97.5% 97.1%
1.1 2.0

512 1024 9.93e− 03 1.06e− 05 98.3% 98.2% 98.0%

Table 3.3: Acoustics. Energetic BEM combined with the partially pivoted ACA. Absolute errors
in L2-norm of the boundary solution ΦM,N and absolute error of the external solution uM,N , with
corresponding EOCs (speed of wave propagation c = 343).

The reduction of the memory requirement for the energetic BEM gives rise to an acceler-
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ation of the method even in terms of computation time, since with the ACA compression
we do not have to compute all the elements of the temporal blocks. In the plots of Figure
3.4, we compare the CPU time needed by the standard energetic BEM and its ACA based
acceleration for the computation of the M -by-M blocks E(l) for l = 0, ..., N . The reported
results are relative to the same discretization parameters M and N and thresholds consid-
ered in Tables 3.2 and 3.3. For both the speeds of wave propagation c = 1 (left plot) and
c = 343 (right plot), we underline that the growth of the CPU time (measured in seconds)
is optimal, i.e. O(NM).

(a) (b)

Figure 3.4: Acoustics. CPU time required to assemble the BEM system by the standard ener-
getic BEM and its ACA based acceleration with di�erent values of εACA, for the speeds of wave
propagation c = 1 (a) and c = 343 (b).

(a) (b)

Figure 3.5: Acoustics. Time history of the error in L2 norm on the solution of the BEM system.
In (a) the errors refers to the benchamarck problem with velocity c = 1, while in (b) the velocity
considered is c = 343.
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Finally, in the plots of Figure 3.5 we show the behaviour in time of the absolute error

EΦ(t) :=
∥∥Φ∗Me,Ne(·, t)−ΦM,N (·, t)

∥∥
L2(Γ)

t ∈ [0, 4π], (3.39)

where the reference and the approximate solutions are obtained by choosing the same
discretization parameters Me = M = 4096 and Ne = N = 8192. In the left graph, the
transient phase, where the blocks are stored in standard (not compressed) format, is cleary
visible. For both the considered speeds of the wave propagation, we observe that, as time
passes, the level of error introduced by the ACA can be controlled by the parameter εACA,
since the former is at most of the same order of magnitude of the latter.

Elastodynamics

Now, we consider an exterior Dirichlet elastic problem with the velocities cS = 1 and cP = 2
and the datum gD(x, t) = (gD,1, gD,2)> (x, t), where

gD,1(x, t) = t4e−2tx1 and gD,2(x, t) = t4e−2tx2 x ∈ Γ, t ∈ [0, 4π].

Unfortunately the blocks of the energetic BEM in the elastodynamics case do not have the
special Toeplitz structure thalt helped us, in the acoustic case, to construct a reference
solution depending on an high level of mesh re�nement in space and time. Therefore, to
calculate a reference elastodynamics solution we have to compute and store all the entries
of the BEM matrices, and due to that we are limited in the choice of the parameters
Me = 512 and Ne = 2048. In Figure 3.6, we plot the two components of the reference
solution Φ∗Me,Ne

(x, t) on Γ, while in Figure 3.7 we show only the vertical component of the

reconstructed �eld u∗Me,Ne
(x0; t) at the point x0 = (0, 2)>, because the horizontal ones is

null.

(a) (b)

Figure 3.6: Elastodynamics. Horizontal (a) and vertical (b) components of the reference density
solution Φ∗Me,Ne

(x, t) for x = (cosα, sinα)>, with α ∈ (−π, π], and t ∈ (0, 4π]. The two peculiar
elastodynamics velocities are set to be cS = 1 and cP = 2.
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Figure 3.7: Elastodynamics. Time history of the vertical component of the reference potential
solution u∗Me,Ne

((0, 2)>, t) for t ∈ (0, 4π] and for the two speeds of wave propagation cS = 1 and
cP = 2.

In Table 3.4 we report the errors EΦ
M,N and Eu

M,N , the corresponding estimated order
of convergence (EOC) and the memory saving for three di�erent values of the threshold
parameter in (3.31), i.e. εACA = 1.0e− 03, εACA = 1.0e− 04 and εACA = 1.0e− 05.

M N EΦ
M,N EOC Eu

M,N EOC
mem mem mem

εACA = 1.0e− 03 εACA = 1.0e− 04 εACA = 1.0e− 05

8 32 6.29e− 01 1.81e− 02 0.0% 0.0% 0.0%
1.0 1.9

16 64 3.11e− 01 4.81e− 03 13.8% 0.0% 0.0%
1.1 2.2

32 128 1.49e− 01 1.07e− 03 48.4% 38.7% 30.5%
1.2 1.9

64 256 6.44e− 02 2.88e− 04 65.0% 60.2% 55.9%
1.5 2.4

128 512 2.15e− 02 5.35e− 05 73.2% 71.0% 68.3%

Table 3.4: Elastodynamics. Energetic BEM combined with the partially pivoted ACA. Absolute
errors in L2-norm of the boundary solution ΦM,N and absolute error of the external solution uM,N ,
with corresponding EOCs (speeds of wave propagation cS = 1 and cP = 2).

As in the acoustic case, the choice of the parameter εACA does not in�uence the errors but
only the memory saving. Furthermore, the EOCs reported in the above table con�rm the
�rst order convergence rate for the density function Φ and the second order convergence
rate for the solution u. By comparing the results reported in Tables 3.2 and 3.4 we note
the same level of accuracy and memory saving of the method for both the acoustic and
the elastic models. As a consequence of the reduction of the memory requirement for the
energetic BEM, we have an acceleration of the construction of the time blocks. In Figure
3.8 we show that the CPU time (measured in second) needed to assemble the energetic
BEM system is proportional to NM , where the values of the discretization parameters are
the same of the ones in Table 3.4.
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Figure 3.8: Elastodynamics. CPU time required to assemble the BEM system by the standard
energetic BEM and its ACA based acceleration with di�erent values of εACA, for the speeds of
wave propagation cS = 1 and cP = 2.

Finally, in Figure 3.9 we show the time history of the absolute L2-error, calculated as in
(3.39), between the approximate solution Φ∗Me,Ne

(x, t) obtained with the standard energetic
BEM, and the approximate solution ΦM,N (x, t) obtained with the proposed ACA based
acceleration, for the choice of the discretization parameters Me = M = 512 and Ne =
N = 2048. We have considered three di�erent values of the threshold εACA and, as in the
acoustic case, the order of the error on the solution of the BEM system turns out to be
controlled by the �xed parameter.
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Figure 3.9: Elastodynamics. Time history of the error in L2 norm on the solution of the BEM
system.
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3.4.2 Example 2. Application to scattering problems.

Let us consider, as example of application, the scattering of acoustic and elastic waves
in homogeneous materials. The boundary we consider for these silmualtions is again the
circumference of radius 1 centred in (0, 0)>. The total wave �eld uc is given by the sum of
the incident wave uinc and the scattered one u, where the latter is the solution of problem
(3.1) with the Dirichlet datum gD(x, t) = −uinc(x, t) on the boundary Γ.

Acoustics

In the acoustic case, the incident �eld is composed by four subsequent plane waves propa-
gating from the right to the left:

uinc(x, t) =

(
4∑
i=1

e−2(x1−ξi+c(t+t0))2

, 0

)>
with t0 = 0.13 and ξi = 50, 55, 60, 65.

The four plane waves propagate with velocity c = 343, which is also the value of the
peculiar velocity of the acoustic problem we want to solve. We solve the problem in the
time interval [0, 0.15] by means of the ACA based acceleration of the energetic BEM. For
the space discretization we set the parameter M = 128, while the time interval of interest
is subdivided into N = 1049 subintervals. In this numerical test the ACA threshold is
εACA = 1.0e− 04 with a consequently memory saving of 87.3%.

Figure 3.10: Acoustic scattering problem. Snapshots of the reconstructed horizontal component of
the total �eld uc around the obstacle at di�erent time instants.
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As observed previously, the boundary datum is purely horizontal, meaning that, for the
acoustic case, the vertical components of the total wave �eld is trivial. Due to that, in
Figure 3.10, we show the snapshots of the horizontal total �eld at di�erent instants and
in the points belonging to the square domain [−4, 4] × [−4, 4] and external also to the
circumference.

Elastodynamics

We consider the total scatterer generated by the incident pressure plane wave

uinc(x, t) =
(
e−20(x1−2+cPt−0.475)2

, 0
)>

,

impinging on the obstacle from the right. Since in many elastic materials the Poisson's
relation holds, i.e. λ = µ, we assume cS = 1 and cP =

√
3. The spatial discretization

parameter used to compute the approximate solution isM = 128 and we �x N = 426 equi-
spaced time instants within the interval [0, 12]. The threshold parameter is εACA = 1.0e−04
that gives rise to a memory saving of 71.1%.
In Figures 3.11 and 3.12 we present several snapshots related to the horizontal and the
vertical components of the total wave �eld, respectively, reconstructed in a square domain
external to the obstacle for di�erent time instants. As expected, the vertical component
appears once the solution in horizontal direction, generated by the given Dirichlet datum,
bumps against the obstacle and is re�ected back.

Figure 3.11: Elastodynamic scattering problem. Snapshots of the component in the horizontal
direction of the reconstructed total �eld uc around the obstacle at di�erent time instants.
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Figure 3.12: Elastodynamic scattering problem. Snapshots of the component in the vertical direc-
tion of the reconstructed total �eld uc around the obstacle at di�erent time instants.



Chapter 4

Quadrature strategies

The quadrature schemes adopted to compute, with high precision, the space integrals re-
quired to calculate the matrix entries de�ned in (1.78), (1.88) and (1.94) are the core of
the entire chapter.
An explicit integration in the spatial variables, as done in time in Appendix A, is not
adequate because of the dependence of the integrand on shape functions with generic poly-
nomial degree. It is indeed necessary to employ quadrature formulas to perform as best as
possible the spatial integration, and the choice of a correct numerical strategy is based on
the peculiarity of the kernels νVij , ν

D
ij and νKij .

These are characterized by the discontinuous step functions H[cP∆ − r] and H[cS∆ − r],
modeling the wave fronts propagating with the fundamental velocities cP and cS. It is worth
to point out that the numerical approximation of the matrix entries by means of classical
Gaussian integration formulas applied straightforward to the whole interval of integration
could require a lot of quadrature nodes just to achieve the single precision accuracy. To
overcome this drawback, in the following we propose an accurate study of suitable domain
splittings that allows us to determine a priori the value of the step functions and to avoid
their explicit expression in programming phase.
Moreover in the following, for what concerns the type of spatial singularities we can en-
counter in the computation of matrix entries, such as O(log(r)), O(1/r), O(1/r2) and the
mild singularities of the square roots

√
c2
S∆

2 − r2 and
√
c2
P∆

2 − r2, we will localize pre-
cisely the regions of the integration domain where they appear and we will propose ad hoc
numerical techniques to treat them.

Remark. The dissertation in Section 4.1 is presented also in the Author's paper [6].

4.1 Mutual position of the integration segments and splitting
of the integration domain

The space time-discretiziation described in Section 1.5 provides a decomposition of the
obstacle Γ in a set of straight line segments T = {e1, . . . , eM}, so that the value of the
matrix elements (1.78), (1.88) and (1.94) can be reduced to the sum of contributions

94
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integrated over two generic segments em̃ and em belonging to the spatial mesh T :∫
em̃

∫
em

wm̃(x)wm(ξξξ)Bij(r; ∆)dΓξξξdΓx (4.1)

where the function Bij assumes the role of one of the peculiar kernels νVij , ν
D
ij or ν

K
ij , ∆ is a

positive time di�erence and em̃, em belong to the supports of wm̃, wm respectively. Upper
apexes p and/or u are dropped out since the type of shape functions can be understood
by the choice of the integral kernel Bij . Moreover, with the notation EB, we will refer to
the Toeplitz matrix corresponding to the integral kernel Bij .
If we consider the following linear parametrization of the mesh segments

x ∈ em̃ � s ∈ [0, hm̃], ξξξ ∈ em � z ∈ [0, hm],

where hm̃ and hm are the lengths of em̃ and em respectively, the contribution (4.1) corre-
sponds to the integral in the local variables s and z∫ hm̃

0

∫ hm

0
w

(dm̃)
η̃ (s)w(dm)

η (z)Bij(r(s, z); ∆)dzds, (4.2)

where w
(dm̃)
η̃ and w

(dm)
η , with η̃ = 1, ..., dm̃ and η = 1, ..., dm, denote the Lagrangian

polynomials of degree dm̃ and dm that determine the spatial basis functions wm̃ and wm,
respectively, over the mesh elements em̃ and em. Also the degrees dm̃ and dm are related
to the type of integration kernel we consider in (4.2). The de�nitions of the vectorial
components r1 and r2 and of the distance r between the �eld and the source point x and
ξξξ, introduced in (1.15), are closely related to the local geometry of the mesh elements and
this leads to a di�erent treatments of the domain subdivision schemes, based on the mutual
position of the mesh elements em̃ and em.

4.1.1 Coincident boundary elements

Figure 4.1: Parametrization of em.

If em̃ ≡ em the expression of r corresponds to the mod-
ule |s − z|. The vectorial components r1 and r2 re-
spectively read (s− z) cos θ and (s− z) sin θ, where the
angle θ represents the inclination of the em element in
the reference system where Γ is de�ned, represented in
Figure 4.1 with the two red dashed lines.
Setting

ES =
{

(s, z) ∈ R2 : 0 6 r(s, z) 6 cS∆
}
, (4.3)

ES,P =
{

(s, z) ∈ R2 : cS∆ < r(s, z) 6 cP∆
}
, (4.4)

and identifying their intersections with the local square domain respectively with

ÊS := ES ∩ [0, hm]2, ÊS,P := ES,P ∩ [0, hm]2,
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the double integral (4.2) assumes the form∫ hm

0

∫ hm

0
w

(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds

=

∫
ÊS

w
(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds+

∫
ÊS,P

w
(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds

=:I1 + I2.

The time di�erence ∆ is related to the index l of the speci�c temporal block of E(l)
B we

intend to compute, meaning that its value increases as time evolves. In particular, if
cS∆ > hm then ÊS = [0, hm]2, as indicated in Figure 4.2 (d), and ÊS,P = ∅, so we do not
need to split (4.2), because the argument of the Heaviside functions in Bij (we remember
that this can corresponds to one of the integral kernels de�ned in (1.79), (1.89) or (1.95))
is always positive.
Instead, for cS∆ < hm, the splitting is not trivial. In this case, we �rstly focus on the
integration domain of the addend I1: a point (s, z) belongs to ES if and only if s− cS∆ <
z < s+ cS∆. The two straight lines of equation z = s± cS∆ compose the boundary of ES

and determine the inner extremes of integration. Hence we can rewrite integral I1 as

I1 =

∫ hm

0
w

(dm̃)
η̃ (s)

∫ ms

Ms

w(dm)
η (z)Bij(r; ∆)dzds,

where
Ms = max {0, s− cS∆} , ms = min {hm, s+ cS∆} .

Outer integration requires an additional subdivision since Ms and ms have discontinuous
derivatives respectively for s = cS∆ and s = hm − cS∆, where z = s ± cS∆ intersect the
axes z = 0 and z = hm. The position of the corner points can assume three di�erent
con�gurations, as shown in Figures 4.2 (a,b,c), and it can determine di�erent types of
subdivision of ÊS, telling us that integral I1 can be further rewritten as the sum of at most
three contributions:

I1 =

∫ a

0
w

(dm̃)
η̃ (s)

∫ s+cS∆

0
w(dm)
η (z)Bij(r; ∆)dzds+

∫ b

a
w

(dm̃)
η̃ (s)

∫ ms

Ms

w(dm)
η (z)Bij(r; ∆)dzds

+

∫ hm

b
w

(dm̃)
η̃ (s)

∫ hm

s−cS∆
w(dm)
η (z)Bij(r; ∆)dzds, (4.5)

with a = min {cS∆, hm − cS∆} and b = max {cS∆, hm − cS∆}. Trivially, the second term
in (4.5) results null if a = b.
Let us now consider I2: a point (s, z) belongs to ES,P if and only if s− cP∆ < z < s− cS∆
or s+ cS∆ < z < s+ cP∆, de�ning then two strips intersecting [0, hm]2. If cP∆ > hm then
the lines z = s± cP∆ lie outside the square (see Figure 4.3), so the unique splitting points
on the s-axis are still cS∆ and hm − cS∆ and we can therefore rewrite the double integral
I2 as follows:

I2 =

∫ hm−cS∆

0

w
(dm̃)
η̃ (s)

∫ hm

s+cS∆

w(dm)
η (z)Bij(r; ∆)dzds+

∫ hm

cS∆

w
(dm̃)
η̃ (s)

∫ s−cS∆

0

w(dm)
η (z)Bij(r; ∆)dzds.
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(a) (b)

(c) (d)

Figure 4.2: Shapes of domain ÊS in relation to the position of the splitting points s = cS∆ and
s = hm − cS∆ on the s-axis. The symbols × and o indicate the points with local coordinates
(0, hm) and (hm, 0), respectively.

Figure 4.3: Example of two-dimensional integration domain (coincident elements) for two di�erent
values of cP∆: dashed lines inside the square [0, hm]2 represent the boundaries of the polygonal
regions where we have to divide the domain. Black lines circumscribing ÊS and ÊS,P have equations
z = s ± cS∆ and z = s ± cP∆ while the red line indicates the equation z = s, along which the
kernel Bij is singular.

If 0 < cP∆ < hm then the splitting points cP∆ and hm− cP∆ are considered together with
the previous ones, because they lie in the interval [0, hm]. Hence, we can rewrite I2 as the
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sum of four integrals

I2 =

∫ hm−cP∆

0

w
(dm̃)
η̃ (s)

∫ s+cP∆

s+cS∆

w(dm)
η (z)Bij(r; ∆)dzds+

∫ hm−cS∆

hm−cP∆
w

(dm̃)
η̃ (s)

∫ hm

s+cS∆

w(dm)
η (z)Bij(r; ∆)dzds

+

∫ cP∆

cS∆

w
(dm̃)
η̃ (s)

∫ s−cS∆

0

w(dm)
η (z)Bij(r; ∆)dzds+

∫ hm

cP∆

w
(dm̃)
η̃ (s)

∫ s−cS∆

s−cP∆
w(dm)
η (z)Bij(r; ∆)dzds.

If we keep focusing on Figure 4.3, we observe that the red line representing the axis s = z
lies totally inside the ES domain, meaning that the singular behaviour of the kernel Bij
arises only in the integration domains typical of the splitting schemes of integral I1.
If the splitting scheme of (4.2) is not trivial (cS∆ < hm and, possibly, cP∆ < hm) we have
also to pay attention to the square root functions

√
c2
S∆

2 − r2 and
√
c2
P∆

2 − r2, which are
characterized by mild singularities in the �rst derivative on the lines delimiting ES,P and
ES, respectively.

4.1.2 Consecutive boundary elements

Figure 4.4: Parametrization of the
two consecutive segments em and
em̃.

For this con�guration we consider at �rst two elements
em and em̃ such that om+1 ≡ om̃. In addition we suppose
that the convex angle α between them (see Figure 4.4)
belongs to the interval

[
π
2 , π

]
, hence analysis of aligned

elements case is included. After the parametrization of
the elements, the distance r in local coordinates (s, z) ∈
[0, hm̃]× [0, hm] is given by

r =
√

(hm − z)2 + s2 − 2(hm − z)s cosα. (4.6)

and the components of the vector r = x− ξξξ are

r1 = (hm − z)τ11 + sτ12, (4.7)

r2 = (hm − z)τ21 + sτ22, (4.8)

where τ1i = cos θi and τ2i = sin θi for i = 1, 2. We remark
in addition that the angles θ1 and θ2 depend on the reference system as shown in Figure
4.4. Also for this con�guration it is necessary to rewrite the double integral (4.2) as the
sum of the two integrals I1 and I2 calculated over the intersection between the rectangle
[0, hm̃]× [0, hm] and the domains ES and ES,P, de�ned in (4.3)-(4.4). Also for consecutive
elements we identify the mentioned intersections as

ÊS := ES ∩ [0, hm̃]× [0, hm], ÊS,P := ES,P ∩ [0, hm̃]× [0, hm],

from which we deduce the �rst splitting of integral (4.2):∫ hm̃

0

∫ hm

0
w

(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds

=

∫
ÊS

w
(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds+

∫
ÊS,P

w
(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds

=:I1 + I2.
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Let us consider ES. Due to the de�nition (4.6), for consecutive elements the boundary of
this domain is characterized by the points satisfying the equation

(hm − z)2 + s2 − 2(hm − z)s cosα− c2
S∆

2 = 0. (4.9)

If α 6= π the equation (4.9) describes an ellipse having center in the unique singular point
(0, hm). Due to the range of α, the major semiaxis has direction (1, 1). If α = π, the
elements result aligned and the elliptic region ES becomes a domain bounded by two
parallel lines, symmetric w.r.t. the line z = hm + s. In any case, the ES boundary can be
seen as the union of the graphs of the functions:

z+
S (s) = hm− s cosα+

√
−s2 sin2 α+ c2

S∆
2, z−S (s) = hm− s cosα−

√
−s2 sin2 α+ c2

S∆
2,

(4.10)

with s ∈
[
− cS∆
| sinα| ,

cS∆
| sinα|

]
. If α = π the s variable belongs to the whole R and the functions

z±S (s) in (4.10) describe the superior and the inferior lines delimiting ES. In Figure 4.5 one
can see a graphical representation of all the possible con�gurations for ES.

Figure 4.5: The domain ES, the rectangle [0, hm̃]× [0, hm], the points ∗= (hm̃, 0), ∗ = (0, hm) and
the functions z±S (s) for di�erent values of α. We observe that, if α = π

2 ,
2π
3 then ES is a circular

region and if α = π then ES is a strip.

To analyze the intersection ÊS we also need to solve the equation (4.9) with respect to
s, setting z = 0, hm in particular. Intersections with the axis z = 0 exist if and only if
the discriminant DS = −h2

m sin2 α + c2
S∆

2 is non negative, and they correspond to the
s-coordinates

s
(1)
S = hm cosα−

√
DS, s

(2)
S = hm cosα+

√
DS.

The intersections with the axis z = hm always exist and have abscissas s = ±cS∆. In case
of not aligned elements, i.e. α 6= π, we have z+

S (s) = z−S (s) at points

(s, z) =

(
∓ cS∆

| sinα|
, hm ± cS∆

cosα

| sinα|

)
.

Now we consider the domain ES,P de�ned in (4.4), which, due to its de�nition, contains
the points of the elliptic annulus determined by the boundary of the ellipse (4.9) and the
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closed curve
(hm − z)2 + s2 − 2(hm − z)s cosα− c2

P∆
2 = 0. (4.11)

Equation (4.11) once again describes an ellipse with the same characteristics discovered
for (4.9) and it can be de�ned as the union of the graphs of the functions

z+
P (s) = hm− s cosα+

√
−s2 sin2 α+ c2

P∆
2, z−P (s) = hm− s cosα−

√
−s2 sin2 α+ c2

P∆
2,

with s ∈
[
− cP∆
| sinα| ,

cP∆
| sinα|

]
. Then we can see the domain ES,P as an elliptic annulus like in

Figure 4.6(a) and in Figures 4.7-4.8. The intersections of the ellipse (4.11) with the axis
z = 0 exist if and only if the discriminant DP = c2

P∆
2 − h2

m sin2 α is non-negative with
s−coordinates

s
(1)
P = hm cosα−

√
DP, s

(2)
P = hm cosα+

√
DP.

For α = π the elliptic annulus ES,P degenerates into the union of two strips, as shown in
Figure 4.6(b).
Now we examine in depth all the possible regions into which we divide ÊS and ÊS,P,
remarking that the conformation of the ellipse that delimit ES and ES,P depends only on
the half-length lm (with which we determine the centre) and not on lm̃. In order to execute
the splitting of the integration domain we also take into account that:

� the edges of the rectangle [0, hm̃]× [0, hm] do not intersect the graphs of z+
S and z+

P ,

� if all the roots s
(1,2)
S and s

(1,2)
P exist, then it holds

s
(1)
P < s

(1)
S 6 s

(2)
S < s

(2)
P ,

� if the roots s
(2)
S and s

(2)
P exist, then

s
(2)
P < cP∆, s

(2)
S < cS∆

� for the considered values of α we have s
(1)
P < s

(1)
S < 0 (if these roots exist), i.e. they

are not splitting points in the outer integration,

� for γ = S, P we set the rule: if Dγ < 0 then s
(2)
γ = 0.

In the following we identify with the symbol (·)∗ the minimum between the argument of
the round brackets and the length hm̃, to exclude in the outer integration the points that
not do belong to the interval [0, hm̃]. The subdivision of the integration domain depends

on the existence and on the position of the roots s
(2)
γ , γ = S, P, leading to the following

kinds of splitting for the integral (4.2):

case 1: if s
(2)
P 6 0 (s

(2)
S 6 0 or DS < 0) then

I1 =

∫
ÊS

w
(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds =

∫ (cS∆)∗

0

w
(dm̃)
η̃ (s)

∫ hm

z−S

w(dm)
η (z)Bij(r; ∆)dzds, (4.12)

I2 =

∫
ÊS,P

w
(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds

=

∫ (cS∆)∗

0

w
(dm̃)
η̃ (s)

∫ z−S

z−P

w(dm)
η (z)Bij(r; ∆)dzds+

∫ (cP∆)∗

(cS∆)∗
w

(dm̃)
η̃ (s)

∫ hm

z−P

w(dm)
η (z)Bij(r; ∆)dzds.
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For this kind of splitting points, the corresponding integration domains ÊS and ÊS,P are
shown in Figure 4.6.

(a) (b)

Figure 4.6: Shape of the domains ÊS and ÊS,P and related splitting points for s(2)
P 6 0. In Figure

(a) α 6= π while in Figure (b) α = π (∗= (hm̃, 0) and ∗ = (0, hm)).

The other two cases are obtained setting a = min
{
s

(2)
P , cS∆

}
and b = max

{
s

(2)
P , cS∆

}
.

Also in this case the symbol (·)∗ means the minimum between the argument of the round
brackets and the length hm̃, therefore:

case 2: if s
(2)
S 6 0 < s

(2)
P then

I1 =

∫
ÊS

w
(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds =

∫ (cS∆)∗

0

w
(dm̃)
η̃ (s)

∫ hm

z−S

w(dm)
η (z)Bij(r; ∆)dzds, (4.13)

I2 =

∫
ÊS,P

w
(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds

=

∫ (a)∗

0

w
(dm̃)
η̃ (s)

∫ z−S

0

w(dm)
η (z)Bij(r; ∆)dzds+

∫ (cS∆)∗

(a)∗
w

(dm̃)
η̃ (s)

∫ z−S

z−P

w(dm)
η (z)Bij(r; ∆)dzds

+

∫ (b)∗

(cS∆)∗
w

(dm̃)
η̃ (s)

∫ hm

0

w(dm)
η (z)Bij(r; ∆)dzds+

∫ (cP∆)∗

(b)∗
w

(dm̃)
η̃ (s)

∫ hm

z−P

w(dm)
η (z)Bij(r; ∆)dzds.

The integration domains generated by this position of the splitting points are shown in

Figure 4.7: Figure 4.7(a) refers to the case a = s
(2)
P , while Figure 4.7(b) refers to the case

a = cS∆.
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(a) (b)

Figure 4.7: Shape of the elliptic domains ES and ES,P and related splitting points for s
(2)
S 6 0 < s

(2)
P

(∗= (hm̃, 0) and ∗ = (0, hm)).

case 3: if s
(2)
P > s

(2)
S > 0 then

I1 =

∫
ÊS

w
(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds

=

∫ (
s
(2)
S

)∗
0

w
(dm̃)
η̃ (s)

∫ hm

0

w(dm)
η (z)Bij(r; ∆)dzds+

∫ (cS∆)∗(
s
(2)
S

)∗ w(dm̃)
η̃ (s)

∫ hm

z−S

w(dm)
η (z)Bij(r; ∆)dzds,

(4.14)

I2 =

∫
ÊS,P

w
(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds

=

∫ (a)∗(
s
(2)
S

)∗ w(dm̃)
η̃ (s)

∫ z−S

0

w(dm)
η (z)Bij(r; ∆)dzds+

∫ (cS∆)∗

(a)∗
w

(dm̃)
η̃ (s)

∫ z−S

z−P

w(dm)
η (z)Bij(r; ∆)dzds

+

∫ (b)∗

(cS∆)∗
w

(dm̃)
η̃ (s)

∫ hm

0

w(dm)
η (z)Bij(r; ∆)dzds+

∫ (cP∆)∗

(b)∗
w

(dm̃)
η̃ (s)

∫ hm

z−P

w(dm)
η (z)Bij(r; ∆)dzds.

The last con�guration of the splitting leads to the integration domains shown in Figure

4.8: Figure 4.8(a) refers to the case a = s
(2)
P , while Figure 4.8(b) refers to the case a = cS∆.

We remark that, for consecutive elements, there only exists one point returning a null value
for the distance r, and it corresponds to the centre (0, hm) of the elliptic region ES. This
point is always contained in the domain of the �rst integral determined by the splitting of
I1.
Lastly, we remember that this analysis concerns only the case om+1 ≡ om̃, but the om̃+1 ≡
om con�guration is comparable since r = (hm̃ − s)2 + z2 − 2(hm̃ − s)z cos(α) and the
study of the elliptic domains ES and ES,P is quite similar to what done previously. For the
sake of simplicity we do not treat integrals depending on consecutive elements with angle
α ∈ [0, π/2], but we observe that for this range local integration domains with similar
elliptic boundaries are generated. Due to that the analysis of the domains splitting needs
a procedure comparable to the one done before.
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(a) (b)

Figure 4.8: Shape of the elliptic domains ES and ES,P and related splitting points for s
(2)
P > s

(2)
S > 0

(∗= (hm̃, 0) and ∗ = (0, hm)).

4.1.3 Disjoint boundary elements

Figure 4.9: Parametrization of two dis-
joint segments em and em̃.

In the last con�guration we consider two segments
em and em̃ such that em ∩ em̃ = ∅, as shown in Fig-
ure 4.9. In this case the distance r can never vanish,
which means that integral (4.2) can be approximated
without taking care about the behaviour of the ker-
nel when r = 0. However, the presence of Heaviside
and square root functions in the kernel has to be
carefully taken into account.
Let us �rstly explicit the dependence of the two vari-
ables x, ξξξ on the local coordinates s, z:

x = (x1, x2)>

=

(
om̃,1 +

s

hm̃
(om̃+1,1 − om̃,1), om̃,2 +

s

hm̃
(om̃+1,2 − om̃,2)

)>
,

ξξξ = (ξ1, ξ2)>

=

(
om,1 +

z

hm
(om+1,1 − om,1), om,2 +

z

hm
(om+1,2 − om,2)

)>
.

Consequently we can express r as

r = x− ξξξ = (A+Bs− Cz,D + Es− Fz)>

with

A = om̃,1 − om,1, B =
om̃+1,1 − om̃,1

hm̃
, C =

om+1,1 − om,1
hm

,

D = om̃,2 − om,2, E =
om̃+1,2 − om̃,2

hm̃
, F =

om+1,2 − om,2
hm
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and r = ‖r‖2 =
√

(A+Bs− Cz)2 + (D + Es− Fz)2. We remark that B,C,E and F
correspond to the normalized components of the vectors −−−−−→omom+1 and −−−−−→om̃om̃+1 and thanks
to that the equality C2 + F 2 = B2 + E2 = 1 holds.
We exploit a particular expression of the kernel Bij , in which the di�erences between the
functions depending on the velocities cS and cP are highlighted:

Bij(r; ∆) = H[cS∆− r]B(S)
ij (r; ∆) +H[cP∆− r]B(P)

ij (r; ∆).

Due to the absence of any kind of singularity for kernel Bij , when elements are disjoint
the �rst split for integral (4.2) is∫ hm̃

0

∫ hm

0
w

(dm̃)
η̃ (s)w(dm)

η (z)Bij(r; ∆)dzds =

∫
ÊS

w
(dm̃)
η̃ (s)w(dm)

η (z)B
(S)
ij (r; ∆)dzds

+

∫
ÊP

w
(dm̃)
η̃ (s)w(dm)

η (z)B
(P )
ij (r; ∆)dzds

where we have set the domains

Eγ =
{

(s, z) ∈ R2 : r ∈ [0, cγ∆]
}
, γ = S, P

and
Êγ := Eγ ∩ [0, hm̃]× [0, hm].

For each γ = S, P, points belonging to Eγ satisfy the inequality: (A + Bs − Cz)2 + (D +
Es − Fz)2 6 c2

γ∆2, while the boundary can be described by a second degree equation in
the z variable

(C2+F 2)z2−2[(BC+EF )s+AC+DF ]z+(A2+D2)+(B2+E2)s2+2(AB+DE)s−c2
γ∆2 = 0.

The related discriminant, depending on the s variable, can be obtained after simple calcu-
lations:

D(1)
γ = 4[−(BF −EC)2s2 + 2(BF −EC)(CD − FA)s− (CD − FA)2 + (C2 + F 2)c2

γ∆2].
(4.15)

If D(1)
γ is positive, we de�ne by z+

γ (s) and z−γ (s) the two equations describing the boundary

of Eγ . We remark that the value of the discriminant D(1)
γ depends on the mutual position

of the integration segments through the coe�cients A,B,C,D,E and F . To study (4.15)
as an equation in the s variable we need to know the values of the quantities

F

C
=
om+1,2 − om,2
om+1,1 − om,1

,
E

B
=
om̃+1,2 − om̃,2
om̃+1,1 − om̃,1

,
D

A
=
om̃,2 − om,2
om̃,1 − om,1

whose geometric meaning is explained in Figure 4.10. If em, em̃ and the segment of end
points om and om̃ are aligned, then the equalities F

C = E
B = D

A hold (the case F
C = E

B =
D
A = ±∞, arising if C = B = A = 0, is also considered); therefore we have BF − EC =
DC − FA = 0 and the discriminant (4.15) is positive for all s ∈ R, its value being

D(1)
γ = 4c2

γ∆2 > 0. For this special alignment, Eγ boundary is composed by two straight
lines having equations

z+
γ (s) = (BC + FE)s+ (AC +DF ) + cγ∆, z−γ (s) = (BC + FE)s+ (AC +DF )− cγ∆
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(a) aligned elements (b) parallel elements (c) generic con�guration

Figure 4.10: Ratio F/C is the tangent value of the angle between em and the reference x1-axis
where the arc Γ is set, while ratios E/B and D/A respectively are the tangent values of the two
angles formed by em̃ and the segment of end points om and om̃ w.r.t to the reference x1-axis.

and whose intersections with the axis z = 0 and z = hm always exist and have abscissas,
respectively,

s(1,2)
γ = −(AB +DE)∓ cγ∆, q(1,2)

γ = −(AB +DE) + hm(BC + EF )∓ cγ∆.

If em and em̃ are parallel but not aligned then F
C = E

B 6=
D
A and

BF − EC = 0, DC − FA 6= 0, BD − EA 6= 0.

The discriminant (4.15) has the value D(1)
γ = 4[c2

γ∆2 − (CD − FA)2] and it is positive if
and only if c2

γ∆2 − (CD − FA)2 > 0. In case it is positive Eγ is not empty and it is the
strip delimited by the straight lines

z+
γ (s) = (BC+FE)s+(AC+DF )+

√
D(1)
γ

2
, z−γ (s) = (BC+FE)s+(AC+DF )−

√
D(1)
γ

2
,

which intersect the axis z = 0 and z = hm respectively at points with abscissas

s(1,2)
γ = −(AB +DE)∓

√
D(2)
γ , q(1,2)

γ = −(AB +DE) + hm(BC + EF )∓
√
D(2)
γ ,

where D(2)
γ = c2

γ∆2 − (BD − EA)2. These intersections always exist since the relation

D(2)
γ > 0⇔ D(1)

γ > 0 holds true.

The last case occurs when em and em̃ are neither aligned nor parallel. In this con�guration
F
C 6=

E
B , hence BF − EC 6= 0 and the discriminant D(1)

γ de�ned in (4.15) preserves its

dependence on s, becoming positive if only if s belongs to the interval
(
p

(1)
γ , p

(2)
γ

)
, with

p(1)
γ = min

{
FA− CD ± cγ∆

EC −BF

}
, p(2)

γ = max

{
FA− CD ± cγ∆

EC −BF

}
.
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For D(1)
γ > 0 the set Eγ is not empty and has an elliptic shape composed by the union of

the curves

z+
γ (s) =

2[(BC + FE)s+ (AC +DF )] +

√
D(1)
γ

2
,

z−γ (s) =
2[(BC + FE)s+ (AC +DF )]−

√
D(1)
γ

2

The intersections with the axis z = 0 exist if and only if D(2)
γ = c2

γ∆2 − (BD − EA)2 > 0
and the intersection points have abscissas

s(1)
γ = −(AB +DE)−

√
D(2)
γ , s(2)

γ = −(AB +DE) +

√
D(2)
γ .

Instead the intersections with axis z = hm exist if an only if D(3)
γ = 4[−(BD − EA)2 −

h2
m(BF − EC)2 + 2hm(BD − EA)(BF − EC) + c2

γ∆2] > 0 and the points at which the
intersection occurs have abscissas

q(1)
γ =

2[−(AB +DE) + hm(BC + EF )]−
√
D(3)
γ

2
,

q(2)
γ =

2[−(AB +DE) + hm(BC + EF )] +

√
D(3)
γ

2
.

Now we proceed with the computation of the integrals∫
Êγ

w
(dm̃)
η̃ (s)w(dm)

η (z)B
(γ)
ij (r; ∆)dzds, γ = S, P, (4.16)

whose sum returns the integral (4.2) when em and em̃ are disjoint. To calculate (4.16) we
need to de�ne the outer integration splitting points generated by the intersection between
the rectangle [0, hm̃]× [0, hm] and Eγ , when the latter is not empty.

� For em and em̃ aligned or parallel, each point (s, z) ∈ Eγ has coordinate s without

limitations in R because D(1)
γ does not depend on this variable. In this case we set

p(1)
γ = min

{
s(1)
γ , s(2)

γ , q(1)
γ , q(2)

γ

}
, p(2)

γ = max
{
s(1)
γ , s(2)

γ , q(1)
γ , q(2)

γ

}
� Otherwise p

(1)
γ and p

(2)
γ are well de�ned but intersections of Eγ border with the axis

z = 0 or z = hm could not exist (it depends on the value of D(2)
γ and D(3)

γ as explained
before). Hence we use the following notation to de�ne these splitting points:

D(2)
γ > 0⇒ s(1,2)

γ =− (AB +DE)∓
√
D(2)
γ , D(2)

γ 6 0⇒ s(1,2)
γ = p(1,2)

γ

D(3)
γ > 0⇒ q(1,2)

γ =
2[−(AB +DE) + hm(BC + EF )]±

√
D(3)
γ

2
, D(3)

γ 6 0⇒ q(1,2)
γ = p(1,2)

γ .
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With this convention, for each con�guration we can de�ne the set
{
k

(1)
γ , ..., k

(6)
γ

}
made

by the points p
(1)
γ , p

(2)
γ , s

(1)
γ , s

(2)
γ , q

(1)
γ , q

(2)
γ sorted in ascending order. Afterwards we set

Kγ =
{
k̂

(1)
γ , ..., k̂

(6)
γ

}
where

k̂(i)
γ =


k

(i)
γ 0 < k

(i)
γ < hm̃

0 k
(i)
γ 6 0

hm̃ k
(i)
γ > hm̃

, i = 1, ..., 6.

This new set has the purpose to exclude the s-variable splitting points that are outside the
outer integration interval [0, hm̃]. Consequently, we set the inner integration bounds as

mγ(s) = max
{
z−γ (s), 0

}
, Mγ(s) = min

{
z+
γ (s), hm

}
,

and we observe that

mγ |[
k̂
(i)
γ ,k̂

(i+1)
γ

] ≡ 0 or mγ |[
k̂
(i)
γ ,k̂

(i+1)
γ

] ≡ z−γ , i = 1, ..., 5,

Mγ |[
k̂
(i)
γ ,k̂

(i+1)
γ

] ≡ hm or Mγ |[
k̂
(i)
γ ,k̂

(i+1)
γ

] ≡ z+
γ , i = 1, ..., 5,

which means that, in the generic interval
[
k̂

(i)
γ , k̂

(i+1)
γ

]
de�ned by two consecutive splitting

points, the inner bounds have no change of behaviour. We also observe that the integral
(4.16) is null if Mγ < mγ in one of the intervals de�ned by two consecutive outer splitting
points. To catch this situation we de�ne speci�c integrand function depending on the outer
integration interval:

A(l)
γ (s, z) =

 w
(dm̃)
η̃ (s)w

(dm)
η (z)B

(γ)
ij (r; ∆), ifMγ(s) > mγ(s), ∀s ∈

[
k̂

(l)
γ , k̂

(l+1)
γ

]
0, ifMγ(s) < mγ(s), ∀s ∈

[
k̂

(l)
γ , k̂

(l+1)
γ

] .

At this stage we can write integral (4.16) as the sum of �ve contributions:∫
Êγ

w
(dm̃)
η̃ (s)w(dm)

η (z)B
(γ)
ij (r; ∆)dzds =

5∑
l=1

∫ k̂
(l+1)
γ

k̂
(l)
γ

∫ Mγ(s)

mγ(s)
A(l)
γ (s, z)dzds. (4.17)

Each addend can be calculated by the Gauss-Legendre quadrature rule but the irregular

behaviour of the spatial derivative of the square root
√
c2
γ∆2 − r2 at the boundary of Eγ ,

where in fact r = cγ∆, still remains. The quadrature strategy for this irregular integrand
will be exposed in the next session.

4.2 Treatment of the kernels issues

In the following we describe the numerical quadrature formulas apt to integrate, with
high precision, the di�erent parts of the integration kernels νVij , ν

D
ij and νKij , possibly

characterized by di�erent types of singularities. The integration domains we refer in the
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next section are in particular the regions in local variables determined by the splitting
technique introduced in Section 4.1.
We remark that, whenever we cite in this section the Gauss-Legendre quadrature formula,
we consider the following quadrature rule for function f at least belonging to C0([−1, 1]):∫ 1

−1
f(z)dz =

n∑
k=0

ωG,kf(zk) +RG,n(f), (4.18)

where the nodes in {zk}k=0,...,n are the n + 1 roots of the Legendre polynomial of degree
n+ 1 and ωG,k are the quadrature weights, whose de�nition can be found in [71]. It is well
known that the Gauss-Legendre formula is of interpolatory kind, with degree of accuracy
equal to 2n+ 1, and that the following convergence theorem holds:

Theorem 4.2.1 (see [71]). If we consider a function f ∈ Hm([−1, 1]) with m > 1, then it
holds that

RG,n(f) = O
(
n−m

)
.

Lastly, we remark that the Gauss-Legendre formula (4.18) is applied in the following to
integrals de�ned in generic intervals [a, b], after performing a suitable change of variable.

4.2.1 Functions with irregular behaviour at the boundary

We focus here on the square roots functions
√
c2
γ∆2 − r2, with γ = S, P, which appear

in the expression of all the integral kernels νVij , ν
D
ij and νKij . We propose in what follows

a common strategy to integrate them. Although this square roots are continuous in the
domain de�ned by the step function H[cγ∆−r], their derivatives in r present an asymptote
in r = cγ∆; in fact

∂

∂r

√
c2
γ∆2 − r2 = − r√

c2
γ∆2 − r2

and this causes a non accurate approximation by formula (4.18) if the extremes of inte-
gration correspond to the points, in local coordinates, for which r(s, z) = cγ∆. Indeed it
is known that the Gaussian quadrature looses e�ciency in presence of points of the inte-
grand function charachterized by a high gradient. This situations frequently occurs in the
construction of the �rst temporal blocks of EB, characterized by a time step ∆ su�ciently
small to make some portions of the boundary of ES and ES,P, de�ned in (4.3) and (4.4),
part of the boundary of the integration domain of integral (4.2). To overcome this issue
without increasing the number of quadrature nodes of the Gaussian formula (4.18), we
combine the latter with the smoothing transformation Θp,q:

Θp,q(t) =
(p+ q − 1)!

(p− 1)!(q − 1)!

∫ t

0
up−1(1− u)q−1du, t ∈ [0, 1], p, q ≥ 1. (4.19)

This regularization procedure, discussed in the work by Monegato and Scuderi [63] and
analised by the convergence point of view in [61], allows to suitably thicken the nodes
towards the integration endpoints, according to the values of the positive parameters p
and q as shown in �gure 4.11. It is worth noting that for p = q = 1 the transformation
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Figure 4.11: Application of the smoothing transformation Θp,q to the 20 nodes of the Gauss-
Legendre formula for several values of p and q.

Θp,q corresponds to the identity.

To give an example on the use of this technique, let suppose to be in the case of coincident
elements, whose splitting rules of the integration domain are reported in subsection 4.1.1.
We consider the integral contribution∫ b

a

∫ B(s)

A(s)
w

(dm̃)
η̃ (s)w(dm)

η (z)f(s, z; ∆)dzds, (4.20)

where a = cS∆, b = hm − cS∆, A(s) = s − cS∆ and B(s) = s + cS∆, with in partic-
ular cS∆ < hm − cS∆. We take into account the integral kernel function f(s, z; ∆) =

log
(
cS∆ +

√
c2
S∆

2 − |s− z|2
)
, which occurs in the de�nition of the single layer and the

hypersingular kernels, respectively presented in (1.79) and in (1.89). The geometrical
con�guration of the integration domain is the same described in Figure 4.2(a); therefore,
the integrand function is mildly singular in both the inner integration endpoints. We set
p = q > 1 for the transformation Θp,q and we proceed with the following change of variable
for the inner integration

z = g(z̃) = [B(s)−A(s)]Θp,q(z̃) +A(s), z̃ ∈ [0, 1]

in order to write∫ B(s)

A(s)
w(dm)
η (z)f(s, z; ∆)dz =

∫ 1

0
w(dm)
η

(
h(z̃)

)
f
(
s, g(z̃); ∆

)
g′(z̃)dz̃.

To apply the Gauss-Legendre quadrature we have to switch to a variable in [−1, 1], then
if we set z̃ = (zG + 1)/2 with zG ∈ [−1, 1] we obtain∫ 1

0
w(dm)
η

(
g(z̃)

)
f
(
s, g(z̃); ∆

)
g′(z̃)dz̃ =

1

2

∫ 1

−1
F (zG)dzG '

1

2

n∑
k=0

ωG,kF (zk)
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with

F (zG) = w(dm)
η

(
g

(
zG + 1

2

))
f

(
s, g

(
zG + 1

2

)
; ∆

)
g′
(
zG + 1

2

)
.

The approximation of the last form of the inner integral is obtained applying formula
(4.18), zk and ωG,k being the nodes and the roots of the mentioned quadrature. The com-
putation of integral (4.20) can completed applying the Gauss-Legendre formula again in
the outer variable s.
This kind of procedure can be easily adapted to regularize the parts of all the integral
kernels with mild boundary singularities and for all the typologies of shape of the integral
domain, for instance it can be employed to integrate functions depending on

√
c2
P∆

2 − r2

over domains with part of the boundary coincident with the contour of the set ES,P.

In order to test the e�cacy of this formula we have performed several numerical tests:
the following Tables show the numerical approximation of integral (4.20), calculated for
di�erent functions f(s, z; ∆) and considering coincident elements em ≡ em̃ with angle of

inclination θ = 0. For all the tables the following data have been set: m = m̃, w
(dm)
η (z) =

w
(dm̃)
η̃ (s) with degree dm = dm̃ = 0, ∆ = 0.1, hm = 0.2, cS = 0.4, cP = 0.7. The values

of the parameters p = q = 1 means that transformation (4.19) is reduced to the standard
Gauss-Legendre rule and the symbol '�' indicates that the overall single precision accuracy
is reached.

Table 4.1: Value of integral (4.20) with f = hV1,11 (de�ned in (1.83)): a = cS∆, b = hm − cS∆,
A(s) = s − cS∆, B(s) = s + cS∆. Outer integration: Gauss-Legendre formula; Inner integration:
smoothing transformation Θp,q and Gauss-Legendre formula.

] outer and
inner nodes p = 1, q = 1 p = 2, q = 2 p = 3, q = 3

4 −8.6902154 · 10−02 −8.6895507 · 10−02 −8.7032076 · 10−02

8 −8.6913640 · 10−02 −8.6914195 · 10−02 −8.6914193 · 10−02

16 −8.6914180 · 10−02 −8.6914201 · 10−02 −8.6914201 · 10−02

32 −8.6914200 · 10−02 � �

Table 4.2: Value of integral (4.20) with f = hV3,11 (de�ned in (1.86)): a = 0, b = hm − cP∆,
A(s) = s + cS∆, B(s) = s + cP∆. Outer integration: Gauss-Legendre formula; Inner integration:
smoothing transformation Θp,q and Gauss-Legendre formula.

] outer and
inner nodes p = 1, q = 1 p = 1, q = 2 p = 1, q = 3

4 −4.3977874 · 10−03 −4.4084188 · 10−03 −4.4244785 · 10−03

8 −4.4049310 · 10−03 −4.4061694 · 10−03 −4.4061753 · 10−03

16 −4.4060003 · 10−03 −4.4061693 · 10−03 −4.4061693 · 10−03

32 −4.4061472 · 10−03 � �

In Table 4.1 we show the results of the double integral once again in the subset of ÊS

with geometry of reference in Figure 4.2(a). The integral kernel depends on the square
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root
√
c2
S∆

2 − r2, that is non regular along the lines z = s± cS∆. Hence in the smoothing
transformation for the inner integration it is necessary to increase both p and q. The single
precision accuracy is achieved with 16 nodes and p = q = 2.
Table 4.2 shows the results of the double integral on a subset of ÊS,P and with kernel

depending on the square root
√
c2
P∆

2 − r2, irregular along the line z = s + cP∆. Here
the geometry of reference is on the left in Figure 4.3, left plot. Hence, using the same
smoothing transformation in the inner integral, it is enough to increase only the parameter
q. The single precision accuracy is achieved with 16 nodes and q = 2. Using q = 3 we
obtain similar.

4.2.2 The functions O(log(r))

The logarithmic singularity is the main characteristic of the single layer integral kernel νVij
but it is also a feature of the hypersingular kernel νDij . An accurate computation of integral
of functions in a domain containing, in local coordinates, points in which the argument of
the log vanishes, is an issue from the numerical point of view that we overcome employing
a suitable quadrature rule that allows to absorb the singular function in the weights:∫ 1

−1
log (|z − y|) f(z)dz =

n∑
k=0

ωlog,k(y)f(zk) +Rlog,n(f ; y) (4.21)

where, the set of nodes {zk}nk=0 are, also in this case, the roots of the Legendre polynomial
of degree n + 1 and the weights ωlog,k(y), for k = 0, ..., n, depending on y ∈ (−1, 1) and
on the log kernel, can be computed by the recursive relation reported in [10]. The related
theorem of convergence for formula (4.21) is the following:

Theorem 4.2.2 (see [11]). Let be Hµ the space of Hölder continuous functions of order
µ. If f ∈ Cp([−1, 1]) with p > 1 and f (p) ∈ Hµ([−1, 1]) for some 0 < µ < 1, then

Rlog,n(f ; y) = O
(
n−p−µ

)
Theorem 4.2.2 can be found in [11], with a generalized formulation for integral kernels of
type log

[
(z − a(y))2 + b(y)2

]
, with b(y) 6= 0, or de�ned as a rational function with factors

of type (z − a(y)) and divisors of the type (z − a(y)) and
[
(z − a(y))2 + b(y)2

]
.

Formula (4.21) is of interpolatory kind, therefore consistent with our purposes since the
integral kernels we considered are always multiplied by shape functions which are poly-
nomials in local variables. As example of the use of (4.21) we consider again the case
of coincident elements (see subsection 4.1.1) and we suppose to compute the following
integral: ∫ b

a

∫ B(s)

A(s)
w

(dm̃)
η̃ (s)w(dm)

η (z)Clog log (|s− z|) dzds, (4.22)

a and b being two splitting points determined by the subdivision schemes for the set ÊS in
Figure 4.2, and A(s) and B(s) the related inner boundaries (each portion of the integration
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domain contains the singular line s = z). The factor Clog is a non zero constant. For the
inner integration we consider the change of variable

z = aszG + bs, as =
B(s)−A(s)

2
, bs =

B(s) +A(s)

2
, zG ∈ [−1, 1]

and we write∫ B(s)

A(s)
w(dm)
η (z) log (|s− z|) dz = as

∫ 1

−1
w(dm)
η (aszG + bs) log (|s− aszG − bs|) dzG

=as

∫ 1

−1
w(dm)
η (aszG + bs) log (|as|) dzG + as

∫ 1

−1
w(dm)
η (aszG + bs) log

(∣∣∣∣zG − s− bs
as

∣∣∣∣) dzG.
(4.23)

The �rst addend of equality (4.23) can be calculated exactly, since the integrand function
is reduced to a simple polynomial in the variable zG, while the second addend can be
performed analytically by formula (4.21), setting precisely y = (s − bs)/as and n = dm.
Going back to integral (4.22), for the outer integration in the s variable we can proceed
applying the Gauss-Legendre formula (4.18), however the integrand function, could still
present a mild singularity of kind s log(s) or (hm− s) log(hm− s), if the outer extremes of
integration a and b correspond to 0 or to hm, respectively. In this case, the combination
of the gaussian formula with the smoothing transformation in (4.19), with an opportune
setting of the smoothing parameters, can improve the precision of the outer integration.
We observe that formula (4.21), with suitable manipulations of the log argument, is useful
also for integration on consecutive and aligned elements, for which the argument r =
hm − z + s is linear in the local variable, if the integration domain contains the singular
point with local coordinates (s, z) = (0, hm). The alternative formula for consecutive and
not aligned elements, for which the distance r is quadratic in the local integration variables
s and z, is furnished by the following interpolatory quadrature rule.∫ 1

−1
log
(
(z − ay)2 + b2y

)
f(z)dz =

n∑
k=0

ωlog,k(y)f(zk) +Rlog,n(f ; y), (4.24)

where the peculiar weights can be calculated by the recursive formula reported in [10]. For
the related convergence result we refer again to paper [11].

Table 4.3: Value of integral (4.22): a = 0, b = cS∆, A(s) = 0, B(s) = s + cS∆ and Clog =
−(c2P+c2S)/(2c2Pc

2
S). Outer integration: smoothing transformation Θp,q and Gauss-Legendre formula;

Inner integration: interpolatory formula for log kernel (4.21).

] outer nodes p = 1, q = 1 p = 2, q = 1 p = 3, q = 1

4 4.3635979 · 10−02 4.3631882 · 10−02 4.3631767 · 10−02

8 4.3631997 · 10−02 4.3631674 · 10−02 4.3631673 · 10−02

16 4.3631695 · 10−02 4.3631673 · 10−02 �
32 4.3631674 · 10−02 � �

Also for the calculation of the log singularity, we propose, in Table 4.3, the use of the
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interpolatory formula (4.21) in case of integration on a particular subset of ÊS. The
following discretization and elastic parameters have been considered: dm = dm̃ = 0, ∆ =
0.1, hm = 0.2, cS = 0.4 and cP = 0.7. With the indicated value of Clog, the integral kernel
Clog log (|s− z|) corresponds to the function hV2,11, reported in (1.84). The integration
domain, to which the simulations refer, intersects the line s = z, where log(|s − z|) is
weakly singular: due to that, inner integration has been performed with the interpolatory

formula (4.21) (using only one node because we set w
(dm)
η (z) as the unique Lagrangian base

with degree dm = 0). Outer integrand function has a weak singularity of kind s log(s) at the
lower boundary s = 0. This behaviour has been treated with the smoothing transformation
Θp,q and the results are obtained by changing the parameter p. We remark that the single
precision accuracy is reached for p = 2 and 16 quadrature nodes. For p = 3 there is a
slight improvement in the results.

4.2.3 The functions O(1/r)

Here we consider the singular behaviour which characterizes the double layer kernel de�ned
in (1.95). As remarked at the beginning of the chapter, to evaluate the elements of the
corresponding matrix EK , we need to calculate integrals of type (4.1), where the function
Bij corresponds to the double layer kernel ν

K
ij . For the splitting criteria exposed in Section

4.1 for integration on coincident and on consecutive elements em, em̃, to compute integral
(4.1) is necessary to distinguish, and integrate separately, the portion of integration domain
containing the points in local coordinates giving possibly r = 0. This means that, taking
into account the reduced form (1.96) of the double layer kernel for 0 6 r 6 cS∆, we need
to calculate contributions of type:∫

em̃×em∩{06r6cS∆}
wm̃(x)wm(ξξξ)

r,if(r; ∆)

r
dΓξξξdΓx, i = 1, 2, (4.25)∫

em̃×em∩{06r6cS∆}
wm̃(x)wm(ξξξ)

r,ir,jr,kf(r; ∆)

r
dΓξξξdΓx i, j, k = 1, 2, (4.26)

where f(r; ∆) can correspond, without loss of generality, to the following functions√
c2
S∆

2 − r2,
√
c2
P∆

2 − r2,
1

cP
√
c2
S∆

2 − r2 + cS
√
c2
P∆

2 − r2
, (4.27)

and the factors r,i for i = 1, 2 are the normalized components of the vector r = x − ξξξ, as
indicated in the Appendix in formula (A.1). We observe that the elements of the double
layer matrix, introduced in (1.94) for problems with mixed boundary conditions, are de-
�ned as double space integrals on ΓN and ΓD, which compose a partition of the boundary
with ΓN ∩ ΓD = ∅. This means that, for this con�guration, the unique case for which
it is necessary to evaluate strongly singular integral elements happens when em̃ and em
are consecutive, since the mesh elements cannot belong to the same set of Γ partition.
Nevertheless, here we expose also the case of integration on coincident element, namely
em̃ ≡ em, because the discretized double layer operator K can be employed for BIEs of
type (D1), (D2), (N1) and (N2), whose energetic weak formulations can be performed with
a discretized double layer operator EK whose elements are double space integrals de�ned
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on the entire boundary Γ. This approach has been in particular employed to obtain the
numerical results for Dirichlet problems in Subsection 1.6.1.

As previously discussed, the de�nitions in local variables of the distance r and the normal-
ized components r,i are strictly connected to the local geometry determined by em and em̃.
Thus, if we consider the parametrization in local variables introduced in the subsections
4.1.1-4.1.2 (see Figures 4.1-4.4), we can observe that in case of coincident elements

r,i
r

=
σi

s− z
,

r,ir,jr,k
r

=
σiσjσk
s− z

, with σ1 = cos(θ), σ2 = sin(θ), (4.28)

where θ is the angle detected by the element em w.r.t. the horizontal cartesian axis. The
situation is analogous for consecutive and aligned elements:

r,i
r

=
σi

s+ hm − z
,

r,ir,jr,k
r

=
σiσjσk

s+ hm − z

while for consecutive and not aligned elements these peculiar ratios assume less trivial
de�nitions:

r,i
r

=
k1(hm − z) + k2s

s2 + (hm − z)2 − 2(hm − z)s cos(α)
,

r,ir,jr,k
r

=
k̃1(hm − z)3 + k̃2(hm − z)2s+ k̃3(hm − z)s2 + k̃4s

3

s2 + (hm − z)2 − 2(hm − z)s cos(α)
,

where α is the angle between the elements em and em̃. The coe�cients in the formulas
depend on the projections of the elements onto the cartesian axis; in fact, by exploring the
de�nition of ri and rj in (4.7)-(4.8), we have

k1 =τi1, k2 = τi2, k̃1 = τi1τj1τk1, k̃2 = τk1(τi1τj2 + τi2τj1) + τi1τj1τk2,

k̃3 =τk2(τi1τj2 + τi2τj1) + τi2τj2τk1, k̃4 = τi2τj2τk2.

A discussion of the integration techniques for strongly singular integrals needs therefore to
be based on the mutual position of the integration segments.

Coincident elements

In case of coincident elements we can treat in the same way the contributions (4.25) and
(4.26), since both basically depend only on the factor 1/(s− z). Due to that, we consider
the integral

I =

∫ b

a

∫ B(s)

A(s)
w

(dm̃)
η̃ (s)w(dm)

η (z)
f(r(s, z); ∆)

s− z
dsdz

with the outer extremes a, b forming a couple of splitting nodes typical of the domain
subdivision schemes for coincident elements, as shown in Figure 4.2. As indicated in

(4.2), the polynomials w
(dm̃)
η̃ and w

(dm)
η are, in local variables, the restriction of the shape

functions wm̃ and wm to the elements em and em̃. The integration domain intersects the
axis s = z, along which the integrand function is strongly singular. Therefore, we can
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operate a Taylor expansion in the inner variable, centred in z = s, in order to rewrite I as
the sum of the following integrals:

I =

∫ b

a
w

(dm̃)
η̃ (s)

∫ B(s)

A(s)

w
(dm)
η (z)f(r(s, z); ∆)− w(dm)

η (s)f(r(s, s); ∆)

s− z
dsdz

−
∫ b

a
w

(dm̃)
η̃ (s)w(dm)

η (s)f(r(s, s); ∆)−
∫ B(s)

A(s)

1

z − s
dzds = I1 + I2.

Integral I1 is no more singular, because the numerator of the integrand function is a
O(s − z) for z → s, and the inner integration can be performed by the use of the Gauss-
Legendre formula (4.18), possibly combined with the smoothing transformation (4.19) if
one or both of the inner extremes of integration coincides with one of the solutions in z of
|s− z| = cS∆. For what concerns integral I2, it has to be de�ned in the Cauchy Principal
Value sense, identi�ed by the symbol −

∫
, in the inner variable z, and properly computed as

follows:

I2 =−
∫ b

a
w

(dm̃)
η̃ (s)w(dm)

η (s)f(r(s, z); ∆)−
∫ B(s)

A(s)

1

z − s
dzds

=−
∫ b

a
w

(dm̃)
η̃ (s)w(dm)

η (s)f(r(s, s); ∆) [log(B(s)− s)− log(s−A(s))] ds.

The last integral now is characterized at most by a weak log singularity if a = A(s) = 0
or b = B(s) = hm. In this case, to improve the numerical evaluation of I2, we can employ
the transformation in (4.19) in order to thicken the outer quadrature nodes towards the
extreme a, b or both.

Consecutive elements

The case of consecutive and aligned elements, that appears if the angle α between the
elements is equal to π, results very similar to the previous one, since r is linear w.r.t. the
local variable s and z. Computations become more complicate instead if α 6= π and this
forces us to treat integrals (4.25) and (4.26) with slightly di�erent approaches. Let us
consider �rst the contribution (4.25): to evaluate it in case of consecutive generic segments
we have to calculate contributions of type

Is =

∫ b

0

∫ hm

A(s)
w

(dm̃)
η̃ (s)w(dm)

η (z)
f(r(s, z); ∆)s

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dzds

and

Iz =

∫ b

0

∫ hm

A(s)
w

(dm̃)
η̃ (s)w(dm)

η (z)
f(r(s, z); ∆)(hm − z)

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dzds.

As stated in Subsection 4.1.2, the portion of local integration domain containing the sin-
gular point with coordinates (s, z) = (0, hm) is determined, in the integral, always by
the inner upper extreme z = hm and the lower outer extreme s = 0. This is in partic-
ular visible in the �rst integrals of (4.12), (4.13) and (4.14), generated by the splitting
schemes for consecutive elements. Thus we concentrate only on that kind of portion of
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integral domain, and, as done previously, we proceed with a Taylor expansion of the factor

w
(dm)
η (z)f(r(s, z); ∆) at the denominator, centred in z = hm and calculated at s = 0. The

number of terms depends on the presence of the factor s or (hm − z), in fact:

Is =

∫ b

0

w
(dm̃)
η̃ (s)s

∫ hm

A(s)

w
(dm)
η (z)f(r(s, z); ∆)− w(dm)

η (hm)f(0; ∆)− ∂
∂z

(
w

(dm)
η (z)f(r(s, z); ∆)

)
|z=hm, s=0

(z − hm)

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dzds

+

∫ b

0

w
(dm̃)
η̃ (s)sw(dm)

η (hm)f(0; ∆)

∫ hm

A(s)

1

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dzds

+

∫ b

0

w
(dm̃)
η̃ (s)s

∂

∂z

(
w(dm)
η (z)f(r(s, z); ∆)

)
|z=hm, s=0

∫ hm

A(s)

(z − hm)

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dzds

= Is,1 + Is,2 + Is,3,

and

Iz =

∫ b

0

w
(dm̃)
η̃ (s)

∫ hm

A(s)

(hm − z)
(
w

(dm)
η (z)f(r(s, z); ∆)− w(dm)

η (hm)f(0; ∆)
)

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dzds

+

∫ b

0

w
(dm̃)
η̃ (s)w(dm)

η (hm)f(0; ∆)

∫ hm

A(s)

hm − z
s2 + (hm − z)2 − 2(hm − z)s cos(α)

dzds

= Iz,1 + Iz,2.

At this stage, in both integrals Is,1 and Iz,1 the Taylor expansion has allowed to numeri-
cally avoid the singularity of the denominator s2 + (hm− z)2− 2(hm− z)s cos(α) for s = 0
and z = hm. The additive integrals Is,2, Is,3 and Iz,2 can be computed exactly in the
inner integration variable, in fact∫

1

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dz = − 1

sin(α)s
arctan

(
hm − z − cos(α)s

sin(α)s

)
(4.29)

and ∫
z − hm

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dz

=
1

2
log
(
s2 + (hm − z)2 − 2(hm − z)s cos(α)

)
+

cos(α)

sin(α)
arctan

(
hm − z − cos(α)s

sin(α)s

)
.

(4.30)

Exploiting then the last two integrals in the de�nition of Is,2, Is,3 and Iz,2 we obtain

Is,2 =

∫ b

0

w
(dm̃)
η̃ (s)w

(dm)
η (hm)f(0; ∆)

sin(α)
w

(dm̃)
η̃ (s)w(dm)

η (hm)f(0; ∆)·[
arctan

(
hm −A(s)− cos(α)s

sin(α)s

)
− arctan

(
−cos(α)

sin(α)

)]
ds,
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Is,3 =

∫ b

0
w

(dm̃)
η̃ (s)s

∂

∂z

(
w(dm)
η (z)f(r(s, z); ∆)

)
|z=hm, s=0

·[
1

2
log

(
s2

s2 + (hm −A(s))2 − 2(hm −A(s))s cos(α)

)
+

cos(α)

sin(α)

(
arctan

(
−cos(α)

sin(α)

)
− arctan

(
hm −A(s)− cos(α)s

sin(α)s

))]
ds,

and

Iz,2 =

∫ b

0
w

(dm̃)
η̃ (s)w(dm)

η (hm)f(0; ∆)·[
1

2
log

(
s2

s2 + (hm −A(s))2 − 2(hm −A(s))s cos(α)

)
+

cos(α)

sin(α)

(
arctan

(
−cos(α)

sin(α)

)
− arctan

(
hm −A(s)− cos(α)s

sin(α)s

))]
ds.

Last computations reveal that the main characteristic of Is,2, Is,3 and Iz,2 is a mild sin-
gularity in s = 0 that can be overcome approximating them again by the use of the
transformation (4.19) combined with the Gaussian quadrature formula presented in (4.18).
In the end, the correct procedure to approximate the integral contribution (4.26) follows
exactly what has been done so far for the term (4.25): the integrand function needs to be
expressed as the sum of addends depending respectively on the polynomials s3, s2(hm−z),
s(hm − z)2 and (hm − z)3 and then, for each addend, we can apply a Taylor expansion of
order depending on the degree of the factor (hm − z) at the numerator. The expansion
gives rise to some additional integrals that can be computed exactly in the z variable and
that at most present mild boundary singularities in the outer integration.

4.2.4 The functions O(1/r2)

Here we expose the numerical approach to approximate the integral depending on the
hypersingular kernel νKij , having behaviour O(1/r2) for r → 0 (the mesh elements em̃ and
em are coincident or at most consecutive). Also in this case, we consider the reduced form
of the kernel (1.90), de�ned for 0 6 r 6 cS∆. Evaluating the elements of the corresponding
matrix ED means that we have to deal with the following integral contributions:∫

em̃×em∩{r<cS∆}
wm̃(x)wm(ξξξ)

f(r; ∆)

r2
dΓξξξdΓx, i = 1, 2, (4.31)∫

em̃×em∩{r<cS∆}
wm̃(x)wm(ξξξ)

r,ir,jf(r; ∆)

r2
dΓξξξdΓx, i, j = 1, 2, (4.32)∫

em̃×em∩{r<cS∆}
wm̃(x)wm(ξξξ)

r,ir,jr,kr,lf(r; ∆)

r2
dΓξξξdΓx, i, j, k, l = 1, 2, (4.33)

where f(r; ∆) corresponds to one of the functions introduced in (4.27). Also in this case it
is useful to express the normalized component r,i making explicit the dependence on the
local integration variable s and z. This, in case of coincident elements, allows us to write
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the following ratios as

r,ir,j
r2

=
σiσj

(s− z)2
,

r,ir,jr,kr,l
r2

=
σiσjσkσl
(s− z)2

,

where σi for i = 1, 2 are de�ned in (4.28). For consecutive and aligned elements it holds

r,ir,j
r2

=
σiσj

(s+ hm − z)2
,

r,ir,jr,kr,l
r2

=
σiσjσkσl

(s+ hm − z)2
,

and, at last, for consecutive and not aligned elements, remembering the de�nition of the
components ri and rj in (4.7)-(4.8), the ratios have the following expression:

r,ir,j
r2

=
k1(hm − z)2 + k2(hm − z)s+ k3s

2

(s2 + (hm − z)2 − 2(hm − z)s cos(α))2 ,

r,ir,jr,kr,l
r2

=
k̃1(hm − z)4 + k̃2(hm − z)3s+ k̃3(hm − z)2s2 + k̃4(hm − z)s3 + k̃5s

4

(s2 + (hm − z)2 − 2(hm − z)s cos(α))3 ,

with
k1 = τi1τj1, k2 = (τi1τj2 + τi2τj1), k3 = τi2τj2,

and

k̃1 =τi1τj1τk1τl1,

k̃2 =τl1(τk1(τi1τj2 + τi2τj1) + τi1τj1τk2) + τi1τj1τk1τl2,

k̃3 =τl2(τk1(τi1τj2 + τi2τj1) + τi1τj1τk2) + τl1(τk2(τi1τj2 + τi2τj1) + τi2τj2τk1),

k̃4 =τl2(τk2(τi1τj2 + τi2τj1) + τi2τj2τk1) + τi2τj2τk2τl1,

k̃5 =τi2τj2τk2τl2.

This again compels us to de�ne di�erent integration approaches to integrate the hypersin-
gularity in (4.31), (4.32) and (4.33) based on the position of the mesh elements.

Coincident elements

This is the simplest geometrical con�guration for the integration of mesh elements, for
which all the integrals (4.31), (4.32) and (4.33) depend only on the factor 1/(s − z)2.
Thanks to that, it is enough to furnish the procedure to compute numerically the integral

I =

∫ b

a

∫ B(s)

A(s)
w

(dm̃)
η̃ (s)w(dm)

η (z)
f(r(s, z); ∆)

(s− z)2
dsdz.
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A Taylor expansion in the inner variable, centred in z = s, still represents an e�ective
strategy to manage the singular behaviour of the integrand function:

I =

∫ b

a

w
(dm̃)
η̃ (s)

∫ B(s)

A(s)

w
(dm)
η (z)f(r(s, z); ∆)− w(dm)

η (s)f(r(s, s); ∆)− ∂
∂z

(
w

(dm)
η (z)f(r(s, z); ∆)

)
|z=s

(z − s)

(s− z)2
dzds

+

∫ b

a

w
(dm̃)
η̃ (s)w(dm)

η (s)f(r(s, s); ∆)

∫ B(s)

A(s)

1

(s− z)2
dzds

−
∫ b

a

w
(dm̃)
η̃ (s)

∂

∂z

(
w(dm)
η (z)f(r(s, z); ∆)

)
|z=s
−
∫ B(s)

A(s)

1

(s− z)
dzds

= I1 + I2 + I3.

The addend I1 can be treated again combining, for the appropriate con�guration of the
integration domain, the smoothing transformation (4.19) with the Gauss-Legendre formula.
Instead, for what concerns I2 and I3, the inner integration can be performed analytically
(the second one as a Cauchy Principal Value), leading to the results:

I2 = =

∫ b

a
w

(dm̃)
η̃ (s)w(dm)

η (s)f(r(s, s); ∆)

[
1

s−B(s)
− 1

s−A(s)

]
ds,

and

I3 =

∫ b

a
w

(dm̃)
η̃ (s)

∂

∂z

(
w(dm)
η (z)f(r(s, z); ∆)

)
|z=s

[log(B(s)− s)− log(s−A(s))] ds,

Integral I2 could still save a hypersingular behaviour of kind O(1/s) if a = A(s) = 0 or
of kind O(1/(hm − s)) if b = B(s) = hm, meaning that, up to the value of the integration
extremes, the outer integral requires to be calculated as Hadamard Finite Part integral,
denoted by the symbol =

∫
and indicated in the text with the acronym HFP. Numerically,

we make use of the following interpolatory quadrature rule of Gauss-Radau type

=

∫ 1

0

f(s)

s
ds = ωGR,0f(0) +

n∑
k=1

ωGR,kf(sk) +RGR,n(f) (4.34)

where the nodes and the weights, de�ned in the following

sk =
1 + zk

2
, ωGR,k =

λk
2sk

, k = 1, ..., n, ωGR,0 = −
n∑
k=1

ωGR,k,

depend on the set of the Legendre zeros {zk}. We report here, for convenience of the
reader, the convergence theorem related to quadrature formula (4.34)

Theorem 4.2.3. (see [62]) If f ∈ Cp([0, 1]) with p > 1 and f (p) ∈ Hµ([0, 1]) for some
0 < µ < 1, with Hµ the space of Hölder continuous functions of order µ, then

RGR,n(f) = O
(
n−p−µ

)
The proof of Theorem 4.2.3 can be found in [62], together with more results about the
properties of formula (4.34). In particular, the latter can be employed in the computation
of I2 after the change of variable s ∈ [a, b]→ s̃ ∈ [0, 1].
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Consecutive elements

The case of consecutive and aligned elements, namely α = π, results very similar to the
case of coincident ones, since r is linear in the local variables s, z. Thus, also here we
discuss only the case of integration for not aligned elements, namely α 6= π. Let us focus
on the integral contributions (4.31) and (4.32) (the procedure to approximate (4.33) is
analogous): to calculate these integrals we basically have to take into account the terms

I =

∫ b

0

∫ hm

A(s)
w

(dm̃)
η̃ (s)w(dm)

η (z)
f(r(s, z); ∆)

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dzds,

Is2 =

∫ b

0

∫ hm

A(s)
w

(dm̃)
η̃ (s)w(dm)

η (z)
f(r(s, z); ∆)s2

(s2 + (hm − z)2 − 2(hm − z)s cos(α))2dzds,

Isz =

∫ b

0

∫ hm

A(s)
w

(dm̃)
η̃ (s)w(dm)

η (z)
f(r(s, z); ∆)(hm − z)s

(s2 + (hm − z)2 − 2(hm − z)s cos(α))2dzds,

Iz2 =

∫ b

0

∫ hm

A(s)
w

(dm̃)
η̃ (s)w(dm)

η (z)
f(r(s, z); ∆)(hm − z)2

(s2 + (hm − z)2 − 2(hm − z)s cos(α))2dzds.

Computation of I is necessary to obtain integral (4.31), while Is2 , Isz and Iz2 arise from
making explicit the de�nition of the factor r,ir,j/r

2 in (4.32). Here again we calculate the
integrals on the portion of the local domain containing the singular point (s, z) = (0, hm).
To elaborate I we proceed as always with the Taylor expansion of the numerator of the
integrand function:

I =

∫ b

0

w
(dm̃)
η̃ (s)

∫ hm

A(s)

w
(dm)
η (z)f(r(s, z); ∆)− w(dm)

η (hm)f(0; ∆)− ∂
∂z

(
w

(dm)
η (z)f(r(s, z); ∆)

)
|z=hm, s=0

(z − hm)

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dzds

+

∫ b

0

w
(dm̃)
η̃ (s)w(dm)

η (hm)f(0; ∆)

∫ hm

A(s)

1

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dzds

+

∫ b

0

w
(dm̃)
η̃ (s)

∂

∂z

(
w(dm)
η (z)f(r(s, z); ∆)

)
|z=hm, s=0

∫ hm

A(s)

(z − hm)

s2 + (hm − z)2 − 2(hm − z)s cos(α)
dzds

= I1 + I2 + I3.

The inner integrals of I2 an I3 have been already analytically computed in (4.29) and
(4.30), therefore we rewrite them as

I2 =

∫ b

0

w
(dm̃)
η̃ (s)w

(dm)
η (hm)f(0; ∆)

sin(α)
w

(dm̃)
η̃ (s)w(dm)

η (hm)f(0; ∆)·

1

s

[
arctan

(
hm −A(s)− cos(α)s

sin(α)s

)
− arctan

(
−cos(α)

sin(α)

)]
ds,
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I3 =

∫ b

0
w

(dm̃)
η̃ (s)

∂

∂z

(
w(dm)
η (z)f(r(s, z); ∆)

)
|z=hm, s=0

·[
1

2
log

(
s2

s2 + (hm −A(s))2 − 2(hm −A(s))s cos(α)

)
+

cos(α)

sin(α)

(
arctan

(
−cos(α)

sin(α)

)
− arctan

(
hm −A(s)− cos(α)s

sin(α)s

))]
ds.

The only contribution that shows up a singularity for s = 0 is I2 because of the presence of
the factor 1/s. To treat this singular behaviour we employ, following a suitable change of
the integration variable, the interpolatory formula for HFP integrals introduced in (4.34).
Let us focus instead on the less trivial integrals Is2 . To overcome the hypersingularity we
need to perform a Taylor expansion of the third order, leading to the following reformulation
of the integral:

Is2 =

∫ b

0
w

(dm̃)
η̃ (s)s2

∫ hm

A(s)

T (s, z; ∆)

(s2 + (hm − z)2 − 2(hm − z)s cos(α))2dzds

+

∫ b

0
w

(dm̃)
η̃ (s)s2T1(∆)

∫ hm

A(s)

1

(s2 + (hm − z)2 − 2(hm − z)s cos(α))2dzds

+

∫ b

0
w

(dm̃)
η̃ (s)s2T2(∆)

∫ hm

A(s)

z − hm
(s2 + (hm − z)2 − 2(hm − z)s cos(α))2dzds

+

∫ b

0
w

(dm̃)
η̃ (s)s2T3(∆)

∫ hm

A(s)

(z − hm)2

(s2 + (hm − z)2 − 2(hm − z)s cos(α))2dzds

+

∫ b

0
w

(dm̃)
η̃ (s)s2T4(∆)

∫ hm

A(s)

(z − hm)3

(s2 + (hm − z)2 − 2(hm − z)s cos(α))2dzds

=Is2,1 + Is2,2 + Is2,3 + Is2,4 + Is2,5.

The numerator

T (s, z; ∆) =w(dm)
η (z)f(r(s, z); ∆)− w(dm)

η (hm)f(0; ∆)− ∂

∂z

(
w(dm)
η (z)f(r(s, z); ∆)

)
|z=hm, s=0

(z − hm)

− ∂2

∂z2
( w(dm)

η (z)f(r(s, z); ∆)
)
|z=hm, s=0

(z − hm)2 − ∂3

∂z3

(
w(dm)
η (z)f(r(s, z); ∆)

)
|z=hm, s=0

(z − hm)3

contains the terms of the Taylor expansion of the factor w(dm)
η (z)f(r(s, z); ∆) and we observe

again that the additional integrals Is2,2, Is2,3, Is2,4 and Is2,5 can be computed analytically in the
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inner variable z, since in fact it holds∫
1

(s2 + (hm − z)2 − 2(hm − z)s cos(α))
2 dz

=− 1

2 sin(α)3s3
arctan

(
hm − z − cos(α)s

sin(α)s

)
− 1

2 sin(α)2s2

hm − z − cos(α)s

s2 + (hm − z)2 − 2(hm − z)s cos(α)
,

(4.35)∫
z − hm

(s2 + (hm − z)2 − 2(hm − z)s cos(α))
2 dz

=
cos(α)

2 sin(α)3s2
arctan

(
hm − z − cos(α)s

sin(α)s

)
− 1

2 sin(α)2s

− cos(α)(hm − z) + s

s2 + (hm − z)2 − 2(hm − z)s cos(α)
,

(4.36)∫
(z − hm)2

(s2 + (hm − z)2 − 2(hm − z)s cos(α))
2 dz

=− 1

2 sin(α)3s
arctan

(
hm − z − cos(α)s

sin(α)s

)
− 1

2 sin(α)2

(cos(α)2 − sin(α)2)(hm − z)− cos(α)s

s2 + (hm − z)2 − 2(hm − z)s cos(α)
,

(4.37)∫
(z − hm)3

(s2 + (hm − z)2 − 2(hm − z)s cos(α))
2 dz

=
cos(α)(6− 4 cos(α)2)

4 sin(α)3
arctan

(
hm − z − cos(α)s

sin(α)s

)
+

1

2
log
(
s2 + (hm − z)2 − 2(hm − z)s cos(α)

)
+

s

2 sin(α)2

− cos(α)(3− 4 cos(α)2)(hm − z) + (1− 2 cos(α)2)s

s2 + (hm − z)2 − 2(hm − z)s cos(α)
. (4.38)

Substituting the explicit integration performed above in integrals Is2,2, Is2,3, Is2,4 and Is2,5, It
turns out that only integral Is2,2 still has a singularity of kind O(1/s), in fact

Is2,2 =

∫ b

0

w
(dm̃)
η̃ (s)T1(∆)

{
− 1

2 sin(α)3s
arctan

(
−cos(α)

sin(α)

)
+

1

2 sin(α)2

cos(α)

s
+

+
1

2 sin(α)3s
arctan

(
hm −A(s)− cos(α)s

sin(α)s

)
+

1

2 sin(α)2

hm −A(s)− cos(α)s

s2 + (hm −A(s))2 − 2(hm −A(s))s cos(α)

}
ds.

Due to that, Is2,2 can be computed by the HFP formula (4.34) and the other terms can be
again treated with the Gauss-Legendre quadrature (4.18), possibly combined with the smoothing
transformation (4.19) in case of mild boundary singularities.
We do not treat explicitly contributions Is,z and Iz2 : they just require respectively a Taylor
expansion of the second and of the �rst order from which additionally contributions Is,z,2, Is,z,3,
Is,z,4, Iz2,2 and Iz2,3 arise. These latter can be calculated exactly in the inner variable exploiting
the integration already done in (4.35), (4.36), (4.37) and (4.38): integrals Is,z,2 and Iz2,2, both
generated by the �rst term of the Taylor expansion, reveal to be a�ected by a O(1/s) singularity,
that can be treated again with the HFP formula (4.34).



Appendix

In this section we present the time integration method to derive the kernels de�ned in (1.79),
(1.95) and (1.89). We will frequently use the following notations for the calculation of the spatial
derivatives of the Green's function. In particular the distance r is de�ned as

r := ‖x− ξξξ‖2 =
√

(x1 − ξ1)2 + (x2 − ξ2)2 =
√
r2
1 + r2

2

and the normalized components of the vector r = x− ξξξ can be written as a partial derivative

r,i :=
∂r

∂xi
=
ri
r
. (A.1)

Moreover we observe that the following properties hold:

∂ri
∂xj

= δij = −(−δij) = −∂ri
∂ξj

, (A.2)

r,ij :=
∂2r

∂xi∂xj
=

1

r
(δij − r,ir,j), (A.3)

r2
,1 + r2

,2 = 1, (A.4)

∂

∂xi
f(r) = r,if

′(r) ⇒ ∂

∂xi

(
1

r2

)
= − 2

r3
r,i. (A.5)

We consider the de�nition of the fundamental tensor components Guu

ij reported in (1.15). After
simple manipulations we can rewrite it as a sum of additional fundamental kernels:

Guu

ij (x, ξξξ; t, τ) =
1

%c2P

[
r,ir,jG

uu

0 (x, ξξξ; t, τ ; cP) +

(
2
r,ir,j
r2
− δij
r2

)
Kuu

0 (x, ξξξ; t, τ ; cP)

]
− 1

%c2S

[
(r,ir,j − δij)Guu

0 (x, ξξξ; t, τ ; cS) +

(
2
r,ir,j
r2
− δij
r2

)
Kuu

0 (x, ξξξ; t, τ ; cS)

]
(A.6)

where the �rst kernel

Guu

0 (x, ξξξ; t, τ ; c) :=
c

2π

H[c(t− τ)− r]√
c2(t− τ)2 − r2

(A.7)

is the fundamental solution of the scalar wave di�usion problem and the auxiliary kernel Kuu

0 is
de�ned as follows

Kuu

0 (x, ξξξ; t, τ ; c) :=
c

2π
H[c(t− τ)− r]

√
c2(t− τ)2 − r2. (A.8)

In the following we denote by the symbol ∆ñ,n the positive time di�erence tñ − tn.

123



124

A.1 Computation of the single layer kernel νVij

The discrete weak formulation de�ned in (1.69) is characterized by the single layer operator V ,
depending directly on the fundamental solutionGuu as reported in formula (1.26). If we substitute
in the bilinear form of (1.69) the related unknown approximation (1.73) and we consider as a test
function wpm̃(x)vñ(t), we can derive the expression of the generic entry of the temporal block E(l)

V ,
which reads, for l = n− ñ, as(

E(l)
V,ij

)
m̃,m

=

∫ T

0

∫
Γ

∂

∂t

(∫ t

0

∫
Γ

Guu

ij (x, ξξξ; t, τ)wpm(ξξξ)vn(τ)dτdΓξξξ

)
wpm̃(x)vñ(t)dtdΓx,

i, j = 1, 2, m, m̃ = 1, ...,Mp

Integration in space is totally independent of the time variable, thus, to perform the last integral,
we have to compute the following contribute depending on t and τ . Trough an integration by parts
we obtain the following equality, that holds since vñ(T ) = 0 for ñ = 0, ..., N − 2:∫ T

0

∂

∂t

(∫ t

0

Guu

ij (x, ξξξ; t, τ)vn(τ)dτ

)
vñ(t)dt = −

∫ T

0

∫ t

0

Guu

ij (x, ξξξ; t, τ)vn(τ)
∂

∂t
(vñ(t)) dτdt;

the computations in case ñ = N−1 can be performed in a similar way, leading to analogous results.
Taking into account the de�nition of the piece-wise constant temporal basis functions in (1.71), we
write

−
∫ T

0

∫ t

0

Guu

ij (x, ξξξ; t, τ)vn(τ)
∂

∂t
(vñ(t)) dτdt

=−
1∑

ξ,ς=0

(−1)ξ+ς
∫ T

0

∫ t

0

Guu

ij (x, ξξξ; t, τ)H[τ − tn+ς ]
∂

∂t
(H[t− tñ+ξ]) dτdt

=−
1∑

ξ,ς=0

(−1)ξ+ς
∫ tñ+ξ

0

Guu

ij (x, ξξξ; tñ+ξ, τ)H[τ − tn+ς ]dτ,

since in the sense of distribution, the derivative of the Heaviside function H[t] corresponds to the
Dirac distribution δ(t). Therefore the �nal integral we have to calculate is the following:∫ tñ

0

Guu

ij (x, ξξξ; tñ, τ)H[τ − tn]dτ. (A.9)

Contribute (A.9) can be computed considering the integration of the auxiliary kernels (A.7) and
(A.8), reported in the following computations:∫ tñ

0

Guu

0 (x, ξξξ; tñ, τ ; c)H[τ − tn]dτ

=
c

2π

∫ tñ

0

H[c(tñ − τ)− r]√
c2(tñ − τ)2 − r2

H[τ − tn]dτ =
c

2π
H[c∆ñ,n − r]

∫ tñ−r/c

tn

1√
c2(tñ − τ)2 − r2

dτ

=
1

2π
H[c∆ñ,n − r]

∫ c∆ñ,n

r

1√
z2 − r2

dz =
1

2π
H[c∆ñ,n − r]

[
log
(
z +

√
z2 − r2

)]c∆ñ,n

r

=
1

2π
H[c∆ñ,n − r]

[
log
(
c∆ñ,n +

√
c2∆2

ñ,n − r2
)
− log(r)

]
, (A.10)
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∫ tñ

0

Kuu

0 (x, ξξξ; tñ, τ ; c)H[τ − tn]dτ

=
c

2π

∫ tñ

0

H[c(tñ − τ)− r]
√
c2(tñ − τ)2 − r2H[τ − tn]dτ

=
c

2π
H[c∆ñ,n − r]

∫ tñ−r/c

tn

√
c2(tñ − τ)2 − r2dτ

=
1

2π
H[c∆ñ,n − r]

∫ c∆ñ,n

r

√
z2 − r2dz

=
1

4π
H[c∆ñ,n − r]

[
z
√
z2 − r2 − r2 log

(
z +

√
z2 − r2

)]c∆ñ,n

r

=
1

4π
H[c∆ñ,n − r]

[
c∆ñ,n

√
c2∆2

ñ,n − r2 − r2 log
(
c∆ñ,n +

√
c2∆2

ñ,n − r2
)

+ r2 log(r)
]
. (A.11)

Combining formula (A.9) with (A.10) and (A.11) we obtain the following equalities:∫ tñ

0

Guu

ij (x, ξξξ; tñ, τ)H[τ − tn]dτ

=
H[cP∆ñ,n − r]

%c2P

[
r,ir,j

1

2π
ϕ̂P(r; ∆ñ,n) +

(
2
r,ir,j
r2
− δij
r2

)
1

4π

(
cP∆ñ,nϕP(r; ∆ñ,n)− r2ϕ̂P(r; ∆ñ,n)

)]
−
H[cS∆ñ,n − r]

%c2S

[
(r,ir,j − δij)

1

2π
ϕ̂S(r; ∆ñ,n) +

(
2
r,ir,j
r2
− δij
r2

)
1

4π

(
cS∆ñ,nϕS(r; ∆ñ,n)− r2ϕ̂S(r; ∆ñ,n)

)]
=

1

2π%

{(
rirj
r4
− δij

2r2

)[
H[cP∆ñ,n − r]

cP
∆ñ,nϕP(r; ∆ñ,n)−

H[cS∆ñ,n − r]
cS

∆ñ,nϕS(r; ∆ñ,n)

]
+
δij
2

[
H[cP∆ñ,n − r]

c2P
ϕ̂P(r; ∆ñ,n) +

H[cS∆ñ,n − r]
c2S

ϕ̂S(r; ∆ñ,n)

]}
where the functions ϕγ and ϕ̂γ are de�ned in (1.80) and (1.81). This leads to the de�nition of the
matrix elements of the discretized single layer operator V as reported in (1.79).

A.2 Computation of the double layer kernel νKij

To derive the de�nition of the double layer kernel νKij , and consequently the de�nition of the entries

of matrix E(l)
K (1.94) we have to perform passages similar to those done for the single layer kernel.

To be speci�c, the generic matrix entry of the block E(l)
K , for l = ñ−m, reads as

(
E(l)
K,ij

)
m̃,m

=

∫ T

0

∫
ΓD

∂

∂t

(∫ t

0

∫
ΓN

Gup

ij (x, ξξξ; t, τ)wum(ξξξ)rn(τ)dτdΓξξξ

)
wpm̃(x)vñ(t)dtdΓx,

i, j = 1, 2, m = 1, ...,Mu m̃ = 1, ...,Mp

Also in this case, space integration is totally independent from the time variables, meaning that
we can proceed, with an integration by parts, considering exclusively the temporal variables t
and τ . If we take into account the de�nition of the fundamental traction Gup

ij in (1.22) and the
expression of the piece-wise linear temporal basis in (1.72), to calculate the double layer matrix
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element
(
E(l)
K,ij

)
m̃,m

we need to analytically compute the following term:

∫ T

0

∂

∂t

(∫ t

0

Gup

ij (x, ξξξ; t, τ)rn(τ)dτ

)
vñ(t)dt

=−
∫ T

0

∫ t

0

Gup

ij (x, ξξξ; t, τ)rn(τ)
∂

∂t
(vñ(t)) dτdt

=−
1∑

ξ,ς=0

(−1)ξ+ς
∫ tñ+ξ

0

Ckljh
∂Guu

ki

∂ξl
(x, ξξξ; tñ+ξ, τ)nh(ξξξ)H[τ − tn+ς ]

τ − tn+ς

∆t
dτ

=

1∑
ξ,ς=0

(−1)ξ+ς
∫ tñ+ξ

0

Ckljh
∂Guu

ki

∂xl
(x, ξξξ; tñ+ξ, τ)nh(ξξξ)H[τ − tn+ς ]

τ − tn+ς

∆t
dτ. (A.12)

Last equality in (A.12) holds because the fundamental solutionGuu depends on the spatial variables
x and ξξξ trough the vector components r1 and r2, as stated in de�nition (A.6). Thank to that and
remembering property (A.2), we can write

∂Guu

ki

∂ξl
=
∂Guu

ki

∂rq

∂rq
∂ξl

= −∂G
uu

ki

∂rq

∂rq
∂xl

= −∂G
uu

ki

∂xl
, (A.13)

meaning in particular that we need to calculate exactly the contribute∫ tñ

0

∂Guu

ki

∂xl
(x, ξξξ; tñ, τ)H[τ − tn](τ − tn)dτ. (A.14)

First of all we have to compute a generic partial derivative of the fundamental tensor. Thanks to
formulas (A.1)-(A.5) we can write

∂Guu

ki

∂xl
(x, ξξξ; t, τ) =

1

%c2P

[
(r,klr,i + r,kr,il)G

uu

0 (x, ξξξ; t, τ ; cP) + r,kr,ir,l
∂Guu

0

∂r
(x, ξξξ; t, τ ; cP)

]
+

1

%c2P

[(
2
r,klr,i
r2

+ 2
r,kr,il
r2

− 4
r,kr,ir,l
r3

+ 2δki
r,l
r3

)
Kuu

0 (x, ξξξ; t, τ ; cP)

+
(

2
r,kr,ir,l
r2

− δki
r,l
r2

) ∂Kuu

0

∂r
(x, ξξξ; t, τ ; cP)

]
− 1

%c2S

[
(r,klr,i + r,kr,il)G

uu

0 (x, ξξξ; t, τ ; cS) + (r,kr,ir,l − δkir,l)
∂Guu

0

∂r
(x, ξξξ; t, τ ; cS)

]
− 1

%c2S

[(
2
r,klr,i
r2

+ 2
r,kr,il
r2

− 4
r,kr,ir,l
r3

+ 2δki
r,l
r3

)
Kuu

0 (x, ξξξ; t, τ ; cS)

+
(

2
r,kr,ir,l
r2

− δki
r,l
r2

) ∂Kuu

0

∂r
(x, ξξξ; t, τ ; cS)

]
,

and thanks to relation (A.3) we get

∂Guu

ki

∂xl
(x, ξξξ; t, τ) =

1

%c2P

[
1

r
AkliG

uu

0 (x, ξξξ; t, τ ; cP) +Bkli
∂Guu

0

∂r
(x, ξξξ; t, τ ; cP)

]
+

1

%c2P

[
2

r3
CkliK

uu

0 (x, ξξξ; t, τ ; cP) +
1

r2
Dkli

∂Kuu

0

∂r
(x, ξξξ; t, τ ; cP)

]
− 1

%c2S

[
1

r
AkliG

uu

0 (x, ξξξ; t, τ ; cS) + B̃kli
∂Guu

0

∂r
(x, ξξξ; t, τ ; cS)

]
− 1

%c2S

[
2

r3
CkliK

uu

0 (x, ξξξ; t, τ ; cS) +
1

r2
Dkli

∂Kuu

0

∂r
(x, ξξξ; t, τ ; cS)

]
, (A.15)
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where

Akli =δklr,i + δilr,k − 2r,kr,ir,l, Bkli = r,kr,ir,l, B̃kli = r,kr,ir,l − δkir,l
Ckli =δklr,i + δilr,k + δkir,l − 4r,kr,ir,l, Dkli = 2r,kr,ir,l − δkir,l. (A.16)

We proceed calculating the time integral of the auxiliary kernels Guu

0 and Kuu

0 . In the �rst case,∫ tñ

0

Guu

0 (x, ξξξ; tñ, τ ; c)H[τ − tn](τ − tn)dτ

=
1

2π

∫ tñ

tn

(cτ − ctn)
H[c(tñ − τ)− r]√
c2(tñ − τ)2 − r2

dτ =
1

2π
H[c∆ñ,n − r]

∫ tñ− rc

tn

cτ − ctn√
c2(tñ − τ)2 − r2

dτ

=
1

2π
H[c∆ñ,n − r]

∫ tñ− rc

tn

c∆ñ,n − c(tñ − τ)√
c2(tñ − τ)2 − r2

dτ =
1

2πc
H[c∆ñ,n − r]

∫ c∆ñ,n

r

c∆ñ,n − ξ√
ξ2 − r2

dξ,

and calculating the last integral in dξ leads us to the following result:∫ tñ

0

Guu

0 (x, ξξξ; tñ, τ ; c)H[τ − tn](τ − tn)dτ

=
1

2πc
H[c∆ñ,n − r]

[
c∆ñ,n log

(
ξ +

√
ξ2 − r2

)
−
√
ξ2 − r2

]c∆ñ,n

r

=
1

2πc
H[c∆ñ,n − r]

{
c∆ñ,n

[
log
(
c∆ñ,n +

√
c∆2

ñ,n − r2
)
− log(r)

]
−
√
c2∆2

ñ,n − r2
}
. (A.17)

We proceed similarly with the calculation of the integral depending on the auxiliary kernel Kuu

0 :∫ tñ

0

Kuu

0 (x, ξξξ; tñ, τ ; c)χuñ(τ)dτ

=
1

2π

∫ tñ

tn

(cτ − ctn)H[c(tñ − τ)− r]
√
c2(tñ − τ)2 − r2dτ

=
1

2π
H[c∆ñ,n − r]

∫ tñ− rc

tn

(cτ − ctn)
√
c2(tñ − τ)2 − r2dτ

=
1

2π
H[c∆ñ,n − r]

∫ tñ− rc

tn

[c∆ñ,n − (ctñ − cτ)]
√
c2(tñ − τ)2 − r2dτ

=
1

2πc
H[c∆ñ,n − r]

∫ c∆ñ,n

r

(c∆ñ,n − ξ)
√
ξ2 − r2dξ

=
1

12πc
H[c∆ñ,n − r]

[
(2r2 + ξ(3c∆ñ,n − 2ξ))

√
ξ2 − r2 − 3r2c∆ñ,n log

(
ξ +

√
ξ2 − r2

)]c∆ñ,n

r

=
1

12πc
H[c∆ñ,n − r]

{
(2r2 + c2∆2

ñ,n)
√
c2∆2

ñ,n − r2 − 3r2c∆ñ,n

(
log
(
c∆ñ,n +

√
c2∆2

ñ,n − r2
)
− log(r)

)}
.

(A.18)

Regarding the time integrals depending on the derivatives ∂Guu

0 /∂r and ∂Kuu

0 /∂r we observe that,
since the integration in (A.14) is totally independent from the space variable r, we can move the
derivative operator outside the integral:∫ tñ

0

∂

∂r
Guu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτ =
∂

∂r

(∫ tñ

0

Guu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτ

)
,∫ tñ

0

∂

∂r
Kuu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτ =
∂

∂r

(∫ tñ

0

Kuu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτ

)
,
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meaning that we can quickly compute the integral contributes applying a derivative in the r variable
to the results in (A.17) and (A.18). Here we stress the fact that the derivative applied to (A.17)
and (A.18) may generate an addend with the factor δ (c∆ñ,n − r). Anyway we do not consider this
additive term since does not give any contribution in the double space integral that determines the
elements in (1.94). Thus we can write

∫ tñ

0

∂

∂r
Guu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτ = − 1

2πc
H[c∆ñ,n − r]

√
c2∆2

ñ,n − r2

r
, (A.19)∫ tñ

0

∂

∂r
Kuu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτ

=
1

2πc
H[c∆ñ,n − r]

{
r
√
c2∆2

ñ,n − r2 − rc∆ñ,n

[
log
(
c∆ñ,n +

√
c2∆2

ñ,n − r2
)
− log(r)

]}
. (A.20)

The Hooke tensor in (A.12) acts directly on the coe�cients Akli, Bkli, B̃kli, Ckli, Dkli. Therefore
we execute the following sums over the indexes k, l, i, getting to these equalities:

CkljhAklinh(ξξξ) = (2µ+ λ)r,inj(ξξξ) + µr,jni(ξξξ) + µδij(r,hnh(ξξξ))− 4µr,ir,j(r,hnh(ξξξ)),

CkljhBklinh(ξξξ) = λr,inj(ξξξ) + 2µr,ir,j(r,hnh(ξξξ)),

CkljhB̃klinh(ξξξ) = −µr,jni(ξξξ)− µδij(r,hnh(ξξξ)) + 2µr,ir,j(r,hnh(ξξξ)),

CkljhCklinh(ξξξ) = 2µr,inj(ξξξ) + 2µr,jni(ξξξ) + 2µδij(r,hnh(ξξξ))− 8µr,ir,j(r,hnh(ξξξ)),

CkljhDklinh(ξξξ) = λr,inj(ξξξ)− µr,jni(ξξξ)− µδij(r,hnh(ξξξ)) + 4µr,ir,j(r,hnh(ξξξ)).

Therefore, combining the results (A.19),(A.20), (A.17) and (A.18), we observe that the last integral
in formula (A.12) corresponds to∫ tñ+ξ

0

Ckljh
∂Guu

ki

∂xl
(x, ξξξ; tñ+ξ, τ)nh(ξξξ)H[τ − tn+ς ]

τ − tn+ς

∆t
dτdt

=
H[cP∆ñ+ξ,n+ς − r]

2π%∆tc3P
·{

1

r
CkljhAklinh(ξξξ) [cP∆ñ+ξ,n+ς ϕ̂P(r; ∆ñ+ξ,n+ς)− ϕP(r; ∆ñ+ξ,n+ς)]−

1

r
CkljhBklinh(ξξξ)ϕP(r; ∆ñ+ξ,n+ς)

+
1

3r3
CkljhCklinh(ξξξ)

[
(2r2 + c2P∆2

ñ+ξ,n+ς)ϕP(r; ∆ñ+ξ,n+ς)− 3r2cP∆ñ+ξ,n+ς ϕ̂P(r; ∆ñ+ξ,n+ς)
]

+
1

r2
CkljhDklinh(ξξξ) [rϕP(r; ∆ñ+ξ,n+ς)− rcP∆ñ+ξ,n+ς ϕ̂P(r; ∆ñ+ξ,n+ς)]

}
−
H[cS∆ñ+ξ,n+ς − r]

2π%∆tc3S
·{

1

r
CkljhAklinh(ξξξ) [cS∆ñ+ξ,n+ς ϕ̂S(r; ∆ñ+ξ,n+ς)− ϕS(r; ∆ñ+ξ,n+ς)]−

1

r
CkljhB̃klinh(ξξξ)ϕS(r; ∆ñ+ξ,n+ς)

+
1

3r3
CkljhCklinh(ξξξ)

[
(2r2 + c2S∆2

ñ+ξ,n+ς)ϕS(r; ∆ñ+ξ,n+ς)− 3r2cS∆ñ+ξ,n+ς ϕ̂S(r; ∆ñ+ξ,n+ς)
]

+
1

r2
CkljhDklinh(ξξξ) [rϕS(r; ∆ñ+ξ,n+ς)− rcS∆ñ+ξ,n+ς ϕ̂S(r; ∆ñ+ξ,n+ς)]

}
,
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and with the explicit de�nition of the coe�cients after the application of the Hooke tensor we
obtain ∫ tñ+ξ

0

Ckljh
∂Guu

ki

∂xl
(x, ξξξ; tñ+ξ, τ)nh(ξξξ)H[τ − tn+ς ]

τ − tn+ς

∆t
dτdt

=
1

π%∆t

[
H[cP∆ñ+ξ,n+ς − r]

ϕP(r; ∆ñ+ξ,n+ς)

cPr

(
Kij

P

c2P
+

∆2
ñ+ξ,n+ςK̃

ij
P

r2

)

− H[cS∆ñ+ξ,n+ς − r]
ϕS(r; ∆ñ+ξ,n+ς)

cSr

(
Kij

S

c2S
+

∆2
ñ+ξ,n+ςK̃

ij
S

r2

)]

where coe�cients Kij
P , K

ij
S K̃ij

P and K̃ij
S are de�ned as follows:

Kij
P =

(
−1

2
λ− 1

3
µ

)
r,inj(ξξξ)−

1

3
µr,jni(ξξξ)−

1

3
µδij(r,hnh(ξξξ)) +

1

3
µr,ir,j(r,hnh(ξξξ)),

Kij
S =− 1

3
µr,inj(ξξξ) +

1

6
µr,jni(ξξξ) +

1

6
µδij(r,hnh(ξξξ)) +

1

3
µr,ir,j(r,hnh(ξξξ)),

K̃ij
P =K̃ij

S =
1

3
µr,inj(ξξξ) +

1

3
µr,jni(ξξξ) +

1

3
µδij(r,hnh(ξξξ))− 4

3
µr,ir,j(r,hnh(ξξξ)).

This con�rms the de�nition of the double layer kernels νKij reported in (1.95) and the de�nition of
the related generic matrix element.

A.3 Computation of the hypersingular kernel νDij

To get the de�nition of the hypersingular kernel νKij , we have to study the elements of the generic

temporal block E(l)
D , with l = ñ − n. These can be derived substituting in the bilinear form

(1.70) the discretized unknown (1.74) and the test function wum̃(x)rñ(t), leading to the following
expression of the entry(

E(l)
D,ij

)
m̃,m

=

∫ T

0

∫
Γ

(∫ t

0

∫
Γ

Gpp

ij (x, ξξξ; t, τ)wum(ξξξ)rn(τ)dτdΓξξξ

)
∂

∂t
(wum̃(x)rñ(t)) dtdΓx,

i, j = 1, 2, m, m̃ = 1, ...,Mu.

From the de�nition of the hypersingular matrix elements we deduce that, to compute the kernel
function νDij , as de�ned in (1.89), we need to perform the following double time integral, remem-
bering the de�nition of the tensor function Gpp

ij in (1.34) and the equality (A.13)∫ T

0

∫ t

0

Gpp

ij (x, ξξξ; t, τ)rn(τ)
∂

∂t
(rñ(t)) dτdt

=

1∑
ξ,ς=0

(−1)ξ+ς
∫ T

tñ+ξ

∫ t

0

CklihC
βγ
jα

∂2Guu

kβ

∂xl∂ξγ
(x, ξξξ; t, τ)

τ − tn+ς

∆t2
H[τ − tn+ς ]nh(x)nα(ξξξ)dτdt

=−
1∑

ξ,ς=0

(−1)ξ+ς
∫ T

tñ+ξ

∫ t

0

CklihC
βγ
jα

∂2Guu

kβ

∂xl∂xγ
(x, ξξξ; t, τ)

τ − tn+ς

∆t2
H[τ − tn+ς ]nh(x)nα(ξξξ)dτdt, (A.21)

meaning that we are interested in computing exactly the contribute∫ T

tñ

∫ t

0

∂2Guu

kβ

∂xl∂xγ
(x, ξξξ; t, τ)(τ − tn)H[τ − tn]dτdt. (A.22)
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First of all, we need to compute a double spatial derivative of the fundamental function Guu

kβ . To
do that, we proceed with our computation on the basis of the results of formula (A.15):

∂2Guu

kβ

∂xl∂xγ
(x, ξξξ; t, τ)

=
1

%c2P

[(
−r,l
r2
Akγβ +

1

r

∂Akγβ
∂xl

)
Guu

0 (x, ξξξ; t, τ ; cP) +

(
r,l
r
Akγβ +

∂Bkγβ
∂xl

)
∂Guu

0

∂r
(x, ξξξ; t, τ ; cP)

+Bkγβr,l
∂2Guu

0

∂r2
(x, ξξξ; t, τ ; cP) +

(
−6r,l
r4

Ckγβ +
2

r3

∂Ckγβ
∂xl

)
Kuu

0 (x, ξξξ; t, τ ; cP)

+

(
2r,l
r3

Ckγβ −
2r,l
r3

Dkγβ +
1

r2

∂Dkγβ

∂xl

)
∂Kuu

0

∂r
(x, ξξξ; t, τ ; cP) +

Dkγβr,l
r2

∂2Kuu

0

∂r2
(x, ξξξ; t, τ ; cP)

]
− 1

%c2S

[(
−r,l
r2
Akγβ +

1

r

∂Akγβ
∂xl

)
Guu

0 (x, ξξξ; t, τ ; cS) +

(
r,l
r
Akγβ +

∂B′kγβ
∂xl

)
∂Guu

0

∂r
(x, ξξξ; t, τ ; cS)

+B′kγβr,l
∂2Guu

0

∂r2
(x, ξξξ; t, τ ; cS)

(
−6r,l
r4

Ckγβ +
2

r3

∂Ckγβ
∂xl

)
Kuu

0 (x, ξξξ; t, τ ; cS)

+

(
2r,l
r3

Ckγβ −
2r,l
r3

Dkγβ +
1

r2

∂Dkγβ

∂xl

)
∂Kuu

0

∂r
(x, ξξξ; t, τ ; cS) +

Dkγβr,l
r2

∂2Kuu

0

∂r2
(x, ξξξ; t, τ ; cS)

]
(A.23)

where the coe�cients Akγβ , Bkγβ , B′kγβ , Ckγβ and Dkγβ are the same de�ned in (A.16). Let us
proceed with the computation of the integral contributes of the auxiliary kernels and their spatial
derivative:∫ T

ñ

∫ t

0

Guu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτdt

=
c

2π

∫ T

tñ

∫ t

0

H[c(t− τ)− r]√
c2(t− τ)2 − r2

(τ − tn)H[τ − tn]dτdt

=
1

2π

∫ T

tñ

H[t− tn]

∫ t

tn

H[c(t− τ)− r]√
c2(t− τ)2 − r2

(cτ − ctn)dτdt

=
1

2π

∫ T

tñ

H[c(t− tn)− r]
∫ t− rc

tn

cτ − ctn√
c2(t− τ)2 − r2

dτdt

=
1

2πc

∫ T

tñ

H[c(t− τ)− r]
∫ c(t−tn)

r

c(t− tn)− ξ√
ξ2 − r2

dξdt

=
1

2πc

∫ T

tñ

H[c(t− tn)− r]
{
c(t− tn) log

(
c(t− tn) +

√
c2(t− tn)2 − r2

)
− c(t− tn) log (r)

−
√
c2(t− tn)2 − r2

}
dt

focusing on the last integral we observe that∫ T

tñ

H[c(t−tn)−r] {. . .} dt = H[c(T −tn)−r]
∫ T

tn+ r
c

{. . .} dt−H[c∆ñ,n−r]
∫ tñ

tn+ r
c

{. . .} dt. (A.24)
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The �rst addend of the right-hand-side gives null contribution in the summation over ξ index in
the integral (A.21), meaning that we can ignore this term and write∫ T

tñ

∫ t

0

Guu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

=− 1

2πc
H[c∆ñ,n − r]

∫ tñ

tn+ r
c

{
c(t− tn) log

(
c(t− tn) +

√
c2(t− tn)2 − r2

)
− c(t− tn) log (r)

−
√
c2(t− tn)2 − r2

}
dt

=− 1

2πc
H[c∆ñ,n − r]

{
c(t− tn)2

2
log
(
c(t− tn) +

√
c2(t− tn)2 − r2

)
− 1

4c

[
c(t− tn)

√
c2(t− tn)2 − r2 + r2 log

(
c(t− tn) +

√
c2(t− tn)2 − r2

)]
−c(t− tn)2

2
log(r)− 1

2c

[
c(t− tn)

√
c2(t− tn)2 − r2 − r2 log

(
c(t− tn) +

√
c2(t− tn)2 − r2

)]}tñ
tn+ r

c

=− 1

2πc
H[c∆ñ,n − r]

{(
c∆2

ñ,n

2
+
r2

4c

)[
log
(
c∆ñ,n +

√
c2∆2

ñ,n − r2
)
− log(r)

]
− 3

4
∆ñ,n

√
c2∆2

ñ,n − r2

}
(A.25)

For what regards the auxiliary kernel Kuu

0 we write∫ T

tñ

∫ t

0

Kuu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

=
c

2π

∫ T

tñ

∫ t

0

H[c(t− τ)− r]
√
c2(t− τ)2 − r2(τ − tn)H[τ − tn]dτdt

=
1

2π

∫ T

tñ

H[t− tn]

∫ t

tn

H[c(t− τ)− r]
√
c2(t− τ)2 − r2(cτ − ctn)dτdt

=
1

2π

∫ T

tñ

H[c(t− tn)− r]
∫ t− rc

tn

√
c2(t− τ)2 − r2(cτ − ctn)dτdt

=
1

2πc

∫ T

tñ

H[c(t− tn)− r]
∫ c(t−tn)

r

(c(t− tn)− ξ)
√
ξ2 − r2dξdt

=
1

2πc

∫ T

tñ

H[c(t− tn)− r]
6

{
−3r2c(t− tn)

[
log
(
c(t− tn) +

√
c2(t− tn)2 − r2

)
− log(r)

]
(
2r2 + c2(t− tn)2

)√
c2(t− tn)2 − r2

}
dt.
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With the same argument used in (A.24) we continue the computations as follows∫ T

tñ

∫ t

0

Kuu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

=− 1

12πc
H[c∆ñ,n − r]

∫ tñ

tn+ r
c

{
−3r2c(t− tn)

[
log
(
c(t− tn) +

√
c2(t− tn)2 − r2

)
− log(r)

]
(
2r2 + c2(t− tn)2

)√
c2(t− tn)2 − r2

}
dt

=− 1

12πc2
H[c∆ñ,n − r]

{
r2
(
z
√
z2 − r2 − r2 log

(
z +

√
z2 − r2

))
+

√
z2 − r2

4

(
z3 − r2z

2

)
−r

4

8
log
(
z +

√
z2 − r2

)
− 3r2 z

2

2

[
log
(
z +

√
z2 − r2

)
− log(r)

]
+

3r2

4

[
z
√
z2 − r2 + r2 log

(
z +

√
z2 − r2

)]}c∆ñ,n

r

=
1

12πc
H[c∆ñ,n − r]

{(
3

8c
r2 +

3c∆2
ñ,n

2

)
r2
[
log
(
c∆ñ,n +

√
c2∆2

ñ,n − r2
)
− log(r)

]
−

(
13

8
r2 +

c2∆2
ñ,n

4

)
∆ñ,n

√
c2∆2

ñ,n − r2

}
. (A.26)

As observed previously for the computations of the double layer kernel, we remark that the global
integral (A.22) is independent from the space variables, meaning that the integral contributes
depending on the derivatives ∂Guu

0 /∂r, ∂2Guu

0 /∂r2, ∂Kuu

0 /∂r and ∂2Kuu

0 /∂r2 can be easily cal-
culated applying a space derivatives to (A.25) and (A.26):∫ T

tñ

∫ t

0

∂

∂r
Guu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

=
∂

∂r

(∫ T

tñ

∫ t

0

Guu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

)
,

∫ T

tñ

∫ t

0

∂

∂r
Kuu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

=
∂

∂r

(∫ T

tñ

∫ t

0

Kuu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

)
,

and ∫ T

tñ

∫ t

0

∂2

∂r2
Guu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

=
∂

∂r

(∫ T

tñ

∫ t

0

∂

∂r
Guu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

)
,

∫ T

tñ

∫ t

0

∂2

∂r2
Kuu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

=
∂

∂r

(∫ T

tñ

∫ t

0

∂

∂r
Kuu

0 (x, ξξξ; t, τ ; c)(τ − tn)H[τ − tn]dτdt

)
.
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Therefore, exploiting the previous formulas we write:∫ T

tñ

∫ t

0

∂

∂r
Guu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτdt

=
1

2πc
H[c∆ñ,n − r]

{
1

2r
∆ñ,n

√
c2∆2

ñ,n − r2 − r

2c

[
log
(
c∆ñ,n +

√
c2∆2

ñ,n − r2
)
− log(r)

]}
,

(A.27)∫ T

tñ

∫ t

0

∂2

∂r2
Guu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτdt

=
1

2πc
H[c∆ñ,n − r]

{
− 1

2r2
∆ñ,n

√
c2∆2

ñ,n − r2 − 1

2c

[
log
(
c∆ñ,n +

√
c2∆2

ñ,n − r2
)
− log(r)

]}
,

(A.28)∫ T

tñ

∫ t

0

∂

∂r
Kuu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτdt

=− 1

2πc
H[c∆ñ,n − r]

{
−

(
cr∆2

ñ,n

2
+
r3

4c

)[
log
(
c∆ñ,n +

√
c2∆2

ñ,n − r2
)
− log(r)

]
+

3r

4
∆ñ,n

√
c2∆2

ñ,n − r2

}
, (A.29)∫ T

tñ

∫ t

0

∂2

∂r2
Kuu

0 (x, ξξξ; tñ, τ ; c)(τ − tn)H[τ − tn]dτdt

=
1

2πc
H[c∆ñ,n − r]

{(
c∆2

ñ,n

2
+

3r2

4c

)[
log
(
c∆ñ,n +

√
c2∆2

ñ,n − r2
)
− log(r)

]
−5

4
∆ñ,n

√
c2∆2

ñ,n − r2

}
. (A.30)

Taking into account the explicit expressions of the contributes (A.25), (A.26), (A.27), (A.28),
(A.29) and (A.30) and the de�nition of the second derivative of the fundamental tensor in (A.23)
we can rewrite the integral in (A.21) as

−
1∑

ξ,ς=0

(−1)ξ+ς
∫ T

tñ+ξ

∫ t

0

CklihC
βγ
jα

∂2Guu

kβ

∂xl∂xγ
(x, ξξξ; t, τ)

τ − tn+ς

∆t2
H[τ − tn+ς ]nh(x)nα(ξξξ)dτdt

=−
1∑

ξ,ς=0

(−1)ξ+ς
[

1

2π%∆t2

(
fP (r; ∆ñ+ξ,n+ς)

c3P
−
fS (r; ∆ñ+ξ,n+ς)

c3S

)]
(A.31)
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where the expressions of the functions fP (r; ∆) and fS (r; ∆) are

fP (r; ∆) = H[cP∆− r]{
CklihC

βγ
jα

(
−r,l
r2
Akγβ +

1

r

∂Akγβ
∂xl

)
nh(x)nα(ξξξ)

[
−
(
cP∆

2

2
+

r2

4cP

)
ϕ̂P(r; ∆) +

3

4
∆ϕP(r; ∆)

]
+ CklihC

βγ
jα

(
r,l
r
Akγβ +

∂Bkγβ
∂xl

)
nh(x)nα(ξξξ)

[
− r

2cP
ϕ̂P(r; ∆) +

∆

2r
ϕP(r; ∆)

]
− CklihC

βγ
jαBkγβr,lnh(x)nα(ξξξ)

[
1

2cP
ϕ̂P(r; ∆) +

∆

2r2
ϕP(r; ∆)

]
+ CklihC

βγ
jα

(
−6r,l
r4

Ckγβ +
2

r3

∂Ckγβ
∂xl

)
nh(x)nα(ξξξ)

[
1

6

(
3r4

8cP
+

3r2cP∆
2

2

)
ϕ̂P(r; ∆)

−1

6

(
13r2

8
+
c2P∆2

4

)
∆ϕP(r; ∆)

]
+ CklihC

βγ
jα

(
2r,l
r3

Ckγβ −
2r,l
r3

Dkγβ +
1

r2

∂Dkγβ

∂xl

)
nh(x)nα(ξξξ)

[(
r3

4cP
+
rcP∆

2

2

)
ϕ̂P(r; ∆)

−3r

4
∆ϕP(r; ∆)

]
− CklihC

βγ
jα

Dkγβr,l
r2

nh(x)nα(ξξξ)

[
−
(

3r2

4cP
+
cP∆

2

2

)
ϕ̂P(r; ∆) +

5

4
∆ϕP(r; ∆)

]}
,

and

fS (r; ∆) = H[cS∆− r]{
CklihC

βγ
jα

(
−r,l
r2
Akγβ +

1

r

∂Akγβ
∂xl

)
nh(x)nα(ξξξ)

[
−
(
cS∆

2

2
+

r2

4cS

)
ϕ̂S(r; ∆) +

3

4
∆ϕS(r; ∆)

]
+ CklihC

βγ
jα

(
r,l
r
Akγβ +

∂B′kγβ
∂xl

)
nh(x)nα(ξξξ)

[
− r

2cS
ϕ̂S(r; ∆) +

∆

2r
ϕS(r; ∆)

]
− CklihC

βγ
jαB

′
kγβr,lnh(x)nα(ξξξ)

[
1

2cS
ϕ̂S(r; ∆) +

∆

2r2
ϕS(r; ∆)

]
+ CklihC

βγ
jα

(
−6r,l
r4

Ckγβ +
2

r3

∂Ckγβ
∂xl

)
nh(x)nα(ξξξ)

[
1

6

(
3r4

8cS
+

3r2cS∆
2

2

)
ϕ̂S(r; ∆)

−1

6

(
13r2

8
+
c2S∆2

4

)
∆ϕS(r; ∆)

]
+ CklihC

βγ
jα

(
2r,l
r3

Ckγβ −
2r,l
r3

Dkγβ +
1

r2

∂Dkγβ

∂xl

)
nh(x)nα(ξξξ)

[(
r3

4cS
+
rcS∆

2

2

)
ϕ̂S(r; ∆)

−3r

4
∆ϕS(r; ∆)

]
− CklihC

βγ
jα

Dkγβr,l
r2

nh(x)nα(ξξξ)

[
−
(

3r2

4cS
+
cS∆

2

2

)
ϕ̂S(r; ∆) +

5

4
∆ϕS(r; ∆)

]}
.
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We calculate then the coe�cients in fP (r; ∆) and fS (r; ∆) involving the derivatives of the terms
de�ned in (A.16):

1

r

∂Akγβ
∂xl

− r,l
r2
Akγβ

=
1

r2
(−2δkγr,βr,l − 2δβγr,kr,l + 8r,kr,βr,γr,l + δkγδβl + δβγδkl − 2δklr,βr,γ − 2δβlr,kr,γ

−2δγlr,kr,β) ,

r,l
r
Akγβ +

∂Bkγβ
∂xl

=
1

r
(−5r,kr,βr,γr,l + δkγr,βr,l + δβγr,kr,l + δklr,βr,γ + δβlr,kr,γ + δγlr,kr,β) ,

r,l
r
Akγβ +

∂B′kγβ
∂xl

=
1

r
(−5r,kr,βr,γr,l + δkγr,βr,l + δβγr,kr,l + δklr,βr,γ + δβlr,kr,γ + δγlr,kr,β + δkβr,γr,l

−δkβδγl) ,
2

r3

∂Ckγβ
∂xl

− 6r,l
r4

Ckγβ

=
1

r4
(48r,kr,βr,γr,l − 8δkγr,βr,l − 8δβγr,kr,l − 8δklr,βr,γ − 8δβlr,kr,γ − 8δγlr,kr,β

−8δkβr,γr,l + 2δkβδγl + 2δβγδkl + 2δkγδβl) ,

2r,l
r3

Ckγβ −
2r,l
r3

Dkγβ +
1

r2

∂Dkγβ

∂xl

=
1

r3
(−18r,kr,βr,γr,l + 2δkγr,βr,l + 2δβγr,kr,l + 2δklr,βr,γ + 2δβlr,kr,γ + 2δγlr,kr,β

+5δkβr,γr,l − δkβδγl) ,

and we proceed with the double application of the Hooke tensors, summing up over the indexes
h, k, l, α, β, γ:

CklihC
βγ
jα r,kr,βr,γr,lnα(ξξξ)nh(x) = λ2e+ 2µλf + 2µλa+ 4µ2c,

CklihC
βγ
jα δkγr,βr,lnα(ξξξ)nh(x) = λ2e+ 2µλf + 2µλa+ µ2g + µ2d+ µ2o+ µ2b,

CklihC
βγ
jα δβγr,kr,lnα(ξξξ)nh(x) = λ(2λ+ 2µ)e+ 2µ(2λ+ 2µ)f,

CklihC
βγ
jα δklr,βr,γnα(ξξξ)nh(x) = λ(2λ+ 2µ)e+ 2µ(2λ+ 2µ)a,

CklihC
βγ
jα δkβδγlnα(ξξξ)nh(x) = (2λ2 + 4µλ)e+ 2µ2s+ 2µ2m,

CklihC
βγ
jα δβγδklnα(ξξξ)nh(x) = (2λ+ 2µ)2e

where we have de�ned

a = r,jni(x)(r,knk(ξξξ)), b = r,jni(ξξξ)(r,knk(x)), c = r,jr,i(r,knk(ξξξ))(r,hnh(x)),

d = r,jr,i(nk(ξξξ)nk(x)), e = nj(ξξξ)ni(x), f = r,inj(ξξξ)(r,knk(x)),

g = δij(r,knk(ξξξ))(r,hnh(x)), o = r,inj(x)(r,knk(ξξξ)), m = ni(ξξξ)nj(x),

s = δij(nk(ξξξ)nk(x)).

(A.32)

Moreover, taking into account the symmetry properties in (1.5), from the previous computations
it is possible to derive the results of the double application of the Hooke tensor to the terms
δβlr,kr,γ , δγlr,kr,β , δkβr,γr,l and δkγδβl. Therefore, making explicit the coe�cients of the functions
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fP (r; ∆) and fS (r; ∆) and collecting all the contribute of the peculiar kernels ϕγ(r; ∆) and ϕ̂γ(r; ∆)
we obtain the de�nitive form of the integral contribute (A.21):

−
1∑

ξ,ς=0

(−1)ξ+ς
∫ T

tñ+ξ

∫ t

0

CklihC
βγ
jα

∂2Guu

kβ

∂xl∂xγ
(x, ξξξ; t, τ)

τ − tn+ς

∆t2
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=−
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(−1)ξ+ς

{
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[(
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2
P
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)
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r2

+ Dij
ϕ̂,cP

ϕ̂P(r,∆ñ+ξ,n+ς)

cP

]
−
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[(
Dij
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2
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]}
,

(A.33)

where the coe�cients Dij
ψ,cγ

, D̃ij
ψ,cγ

and Dij
ϕ,cγ are de�ned as follows:

Dij
ϕ,cP =− 2µ

3
(3λ+ 2µ) a− 4

3
µ2b+ 4µ2c− 4

3
µ2d+

µ

6
(12λ+ 5µ) e− 2

3
µ (3λ+ 2µ) f − 4

3
µ2g,

− 4

3
µ2o+

5

6
µ2m+

5

6
µ2s,

Dij
ϕ,cS =− 4

3
µ2a− µ2

3
b+ 4µ2c− µ2

3
d+

5

6
µ2e− 4

3
µ2f − µ2

3
g − µ2

3
o− µ2

6
m− µ2

6
s,

Dij
ϕ̂,cP

=− 2λ2 + 4λµ+ µ2

2
e− µ2

2
m− µ2

2
s,

Dij
ϕ̂,cS

=− µ2

2
e+

µ2

2
m+

µ2

2
s,

Dij
cP =Dij

cS =
4

3
µ2a+

4

3
µ2b− 8µ2c+

4

3
µ2d− µ2

3
e+

4

3
µ2(f + g + o)− µ2

3
(m+ s),

with a, b, c, d, e, f, g, o, m and s de�ned in (A.32).



Conclusions and future perspectives

Final considerations

In this thesis we have investigated and implemented the Energetic Boundary Element Method for
the resolution of 2D elastic wave propagation problems, external to a bounded domain Ω or to an
open obstacle Γ. In particular, we have considered a time domain approach, which is preferable to
the frequency domain ones because allows to observe the phenomena as they evolve.
The application of energetic BEM has been investigated in depth by a theoretical point of view, ex-
ploring several integral representation formulas, fundamental for the implementation of the method
itself, and demonstrating, following a Fouruier transform approach similar to the one used in [19],
the existence of peculiar Sobolev spaces which guarantee the well posedness of energetic weak
problems depending on the single layer integral elastodynamics operator V .
The link with the energy of the elastodynamics system is a fundamental tool that allows to over-
come the instabilities typical of the implementation of classical BEMs, as stated in numerous works
by Aimi and collaborators, where the energetic BEM has been implemented for the resolution of
scalar waves propagation problems [9, 8, 12]. Based on the extensive numerical testing presented
throughout the thesis, we can con�rm that energetic BEM can be successfully applied in the elas-
todynamics context.

After an exact double integration in the time variables, reported for all the elastodynamic inte-
gral operators V, K, K∗ and D in the Appendix of the thesis, the space-time discretization of
the weak boundary integral problems we considered leads to the construction of peculiar linear
systems with matrices EV , EK , EK∗ and ED of Toeplitz structure. The related entries can be ob-
tained by the computation, with suitable quadrature formulas, of double integrals de�ned on the
elements of the mesh imposed on the boundary Γ. The e�cacy of the method relies on the precise
numerical computation of the peculiar integral elements, which presents irregularities determined
by the Heaviside function of the fundamental elastodynamic tensor Guu and space singularities of
order log(r), O(1/r) and O(1/r2), for r tending to zero, respectively for the elements of EV , EK ,
and ED. in Chapter 4, the detailed explanation of the quadrature strategies applied to overcome
these issues has been fundamental for the correct execution of the several numerical simulations
presented and discussed. The resolved 2D elastodynamic problems, characterized by Dirichlet or
Neumnann datum at the boundary, con�rm the stability of the energetic method for application
on long-time experiments. Moreover, it has been possible to check the correctness of the results
resolving benchmark problems whose solutions tend to static functions analytically calculated.

In Chapter 2 we have successfully caught the singularities that characterize the traction p and the
unknown displacement u in a neighborhood of corner points of a polygonal domain Ω or near the
extremes of an open obstacle Γ. The order of the singular behaviour can be determined, thanks
to the singular expansions carried out for these functions, by the amplitude of the corner we are
considering. We have also proved that this value, together with the parameters of the employed
algebraically or geometrically graded meshes in space, in�uences the error committed in the ap-
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proximation of the solution of the energetic weak problems we solved, both in case of Dirichlet
and Neumann boundary constraints. The numerical results presented have con�rmed what the-
oretically stated, and they moreover con�rmed that the accuracy of the energetic method is not
a�ected by the use of non-uniform spatial meshes.

In Chapter 3 we presented a simple and e�ective resolution of the problem of computation of the
temporal blocks of the Toeplitz matrix arising from the discretization of the single layer integral
operator V , which become fully populated as the time index goes on. These blocks can be repre-
sented with a low rank representation obtained by Adaptive Cross Approximation, a method that
does not require a previous storage of the blocks we intend to compress. The feasibility of the
proposed compression technique is theoretically proved for the single layer blocks of both acoustic
and elastic wave propagation problems and numerous experiments have shown a remarkable saving
in computational time and memory storage, without a�ecting the quality of the results carried out
in combination with the energetic BEM.

In the end we recall that all the numerical experiments in this thesis have been executed by means
of parallel FORTRAN® codes, used principally to assemble the �rst column of temporal blocks
related to the discretized elastodynamics integral operators V, K, K∗ and D.

Future perspectives

The points of the outgoing research related to this work are di�erent and interesting. First of all
it is possible to proceed with the investigation of elastodynamics problems with mixed boundary
conditions. The scheme of the space time-discretization of a possible energetic weak formulation
for this kind of boundary conditions is presented in Chapter 1 and can be applied for the resolution
of realistic benchmark problems such us the study of the stress of a thin bar subjected to both
traction from one or two opposite sides (for further benchmark examples see [53]).

It is possible moreover to combine energetic BEM with the Finite Element Method to study the
propagation of elastic waves, in time-domain, trough sections of the media characterized by di�erent
elasticity parameters (a proposal of this approach for scalar waves propagation in 2D multidomains
can be found in [4]). The coupling of techniques require an easy implementation of the interface
conditions, allowing to take advantage of both methodologies, such as the implicit accomplishment
of the radiation conditions at in�nity for BEM and the fact that classical schemes like FEM helpful
to treat possible nonlinear parts of the problems in bounded domains.

Physical situations that can be modelled by an elastodynamics problem with particular interfaces
conditions are the Contact Problems, which �nd numerous applications in mechanics, from fracture
dynamics and crash tests to rolling car tires (see [39] for application in the context of scalar wave
propagation problems). The energetic Boundary Element Method applied to solve problems in this
context is an easy to implement tool, since it basically requires, at the discrete level, the Toeplitz
blocks EV , EK , EK∗ and ED, implemented in this thesis, in order to assemble the Poincarè-Steklov
operator, which depends in its symmetric formulation on all the integral operators.

In the end, a 3D extension of the Energetic BEM for the resolution of elastodynamics problems
is surely one of the main goals of the future research. This can be performed retracing some of
the algorithmic details proposed in the thesis for the simpler case of the 2D propagation. However
this extension is not trivial for two reasons: the increasing of the dimensional complexity and
the fact that the 3D integral operators V, K, K∗ and D generate discretized matrices character-
ized respectively by integral elements with singularities of di�erent order (O(1/r), O(1/r2) and
O(1/r3), for r tending to zero). These features required a di�erent approach in the computation
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of the matrix elements, especially for what regards the study of the splitting domains in relation
to the two typical elastodynamics wave fronts propagation in the 3D space. The computational
costs related to the construction of the discretized operators could represent moreover a challenge
for the implementation of the 3D Energetic BEM, but a possible solution, at least for the single
layer weak formulations, can be an adaptation of the compression technique reported in Chapter
3 of the thesis. With these expedients the resolution by Energetic BEM of more complex 3D
problems becomes feasible and it leads to other possible scenarios, such as the implementation of
the coupling BEM-FEM for the study of seismic waves propagation trough layers of medium with
di�erent physical characteristics, in order to treat more realistic geological problems.
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