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Abstract

We analyse veering of Rayleigh-Lamb waves in a thin orthotropic plate. We

demonstrate that veering results from interference of partial waves in a similar

manner as it occurs in systems composed of 1D structures, such as beams or strings.

Indeed, in the neighbourhood of a veering point, the system may be approximated

by a pair of interacting tout strings whose wave speed is the geometric average

of the phase and group velocity of the relevant partial wave at the veering point.

This complementary pair of partial waves provides the coupling terms in a form

compatible with a action-reaction principle. We prove that veering of symmetric

waves near the longitudinal bulk wave speed repeats itself indefinitely with the

same structure. However, the dispersion behaviour of Rayleigh-Lamb waves is richer

than that of 1D systems and this reflects also on the veering pattern. In fact, the

interacting tout string model fails whenever the dispersion branch is not guided by

either partial wave. This often occurs when neighbouring veering points interact

and partial waves no longer provide guiding curves.
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Introduction1

Rayleigh-Lamb (RL) waves in thin plates have long attracted great attention2

in view of their theoretical and practical importance. They encompass a large3

array of important phenomena such as dispersion, localization and interference.4

Despite their apparent simplicity, a satisfactory understanding of the underlying5

physics has only been gained in fairly recent times [4]. This understanding is6

especially valuable because it provides, among many assets, the foundation for7

consistent asymptotic reduced theories for shell, plates and beams [8, 14, 19, 11].8

Consideration of anisotropic features adds considerable complications and yet9

it possesses relevant practical importance, as well illustrated in the classical10

monograph [2]. As an example of such complications, following [20] we mention11

that Kirchhoff-Love and Timoshenko-Reissner plate models fail to be consistent12

with the outcomes of the 3D theory for a strongly orthotropic material. The13

recent review paper [9] accounts for the many contributions appearing in the14

literature that investigate specific features of RL propagation. For example, in15

[5] it is pointed out that orthotropy is attached to special points possessing zero-16

group velocity, which pave the way to anomalous dispersion, i.e. situations where17

the energy flows in the direction opposite to that of propagation for the wave18

train. Equally, [21] illustrate the effect of curvature on the waveguide properties.19

Wave coupling occurs in multiple instances, such as in reduced models, e.g.20

strings, beams and rods [18, 7] or between different propagation modes, as it21

is the case for torsional and bending waves [3]. Coupling of waves takes up22

many different forms (for instance through mode conversion and localization23

[13]), among which veering is especially remarkable, because it is associated24

with rapid divergence of the propagation branches in the neighbourhood of the25

veering point, alongside eigenvector inversion. This peculiar behaviour may be26

most easily explained in coupled oscillators, where tuning the coupling device27

brings the specific propagation features of either in a veering condition. In [10, 1],28
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Figure 1. A free infinite orthotropic thin plate in plane strain

Manconi and Mace study veering in discrete conservative elastic systems under29

a framework for the analysis thereof. They distinguish between weak and strong30

coupling and introduce the concept of uncoupled block system.31

In this paper, we investigate veering in a continuous system, namely for RL32

waves. In this situation, matter is complicated by the presence of multiple wave33

modes (branches) and internal coupling. Nonetheless, we can show that the34

concept of partial waves still work as a building block for both the dispersion35

pattern and the interference thereof. After developing the classical governing36

equations and travelling wave solution for orthorhombic media, respectively in37

Sec. and , partial waves are introduced and analysed in Sec.. In Sec., they are38

shown to guide RL modes and their intersection defines the veering points and39

the form of the interacting systems (Sec.). Finally, conclusions are drawn in40

Sec..41

Governing equations42

Let us consider an infinite thin plate of thickness 2h, made of linear elastic43

homogeneous material with orthorhombic material symmetry (Fig.1). The strip44

lower/upper boundaries are located, respectively, at x2 = ±h. We consider the45

situation when x3 is a direct axis of even order (i.e. the plane (x1, x2) is a46

mirror plane) and x1 is directed along a symmetry axis for the material, as in47

[15]. For convenience, Voigt’s (or matrix) notation is adopted throughout [16,48

p.134], according to which49

(11)↔ 1, (22)↔ 2, (33)↔ 3, (23) = (32)↔ 4, (13) = (31)↔ 5, (12) = (21)↔ 6.
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Therefore, as an example, c11 = c1111, c12 = c1122 = c2211 and c66 = c1212 =50

c2112 = c2121 = c1221. The elastic constants are gathered in the stiffness matrix51

[15, Eq.(3.64)]52

C =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


. (1)

It is important to emphasize that C is not a rank-2 tensor, for it lacks the53

transformation property thereof. The off-diagonal coefficients c12, c13 and c23 are54

sometimes referred to as coupling stiffnesses and they may be positive, negative55

or zero. Cubic symmetry, that is considered in [17], may be retrieved upon56

taking c12 = c13 = c23, c11 = c22 = c33 and c44 = c55 = c66. Isotropic materials57

are a special case of cubic symmetry with58

c11 = λ+ 2µ, c12 = λ, c66 = µ, (2)

where µ > 0 and λ > − 2
3µ are Lamé elastic constants. The plane (x1, x2)59

is named the sagittal plane of wave propagation, because it contains the60

surface normal and the propagation direction (wave vector) [16, §5.1]. Under61

such conditions, it is well known that the Christoffel matrix governing wave62

propagation has block form and the corresponding linear system breaks up into63

two independent subsystems: one accounting for longitudinal (P) and shear64

vertical (SV) propagation (for such motions the polarization vector lies in the65

sagittal plane) and the other for shear horizontal (SH) propagation, see [16,66

§5.1.1(a)] and [17]. We recall that positiveness of the strain energy density67

demands68

c11, c22, c66 > 0, c11c22 − c212 > 0, (3)

so thus we may define the generalized Young modulus69

Ec = c11 −
c212

c22
.

It should be emphasized that Ec may be written in terms of the technical (or70

engineering) moduli [6]71

Ec =
E1

1− ν13ν31
,
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and, in an isotropic material, it reduces to the Young modulus in plane strain72

Ec = E/(1− ν2). We note that, in an anisotropic plate, the bending stiffness73

within the Kirchhoff theory is given by Dx = EcI and Dy = ν31Dx/ν13, wherein74

I = 2h3/3 is the second moment of inertia, see, for example, [14].75

In an orthorhombic material, several bulk wave speeds are defined, see [16],76

c1 =

√
c11

ρ
, c2 =

√
c22

ρ
, cSV =

√
c66

ρ
, cSH =

√
c55

ρ
, (4)

respectively bulk longitudinal along x1 and along x2 and transverse shear77

vertical (SV) and shear horizontal (SH) wave speed. To such speeds, in analogy78

to the longitudinal wave speed for beams, we add the combination [12]79

cc =

√
Ec
ρ
< c1. (5)

Strain ε is small and it is related to the displacement field u = [u1, u2, u3]80

through the linear relations81

εij = 1
2 (ui,j + uj,i), i, j ∈ {1, 2, 3},

where a suffix comma denotes differentiation with respect to the relevant space82

variable, e.g. u1,1 = ∂u1/∂x1, and summation over twice repeated subscripts is83

assumed. We recall that γij = 2εij , i 6= j is the engineering shear strain. The84

stress σ is related to strain through Hook’s constitutive law85

σ = Cε. (6)

The equilibrium equations, in the absence of body forces, read

σij,j = ρüi,

and they take on the expanded form (superposed dots denote time

differentiation) valid for orthorhombic materials

c11u1,11 + c55u1,33 + c66u1,22 + (c12 + c66)u2,12 + (c13 + c55)u3,13 = ρü1, (7a)

c66u2,11 + c44u2,33 + c22u2,22 + (c12 + c66)u1,12 + (c23 + c44)u3,23 = ρü2, (7b)

c55u3,11 + c44u3,22 + c33u3,33 + (c13 + c55)u1,13 + (c23 + c44)u2,23 = ρü3. (7c)
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Waves in unbounded media86

Christoffel equations are obtained plugged into the equilibrium equations (7)87

travelling wave solutions in the form88

ui(x1, x2, x3, t) = Ai exp [ı(k1x1 + k2x2 + k3x3 − ωt)] , (8)

where A = [Ai] is the polarization vector, k = [ki] the wave vector, ω the wave89

frequency and ı the imaginary unit, i.e. ı2 = −1. Since we restrict attention90

to waves propagating in the sagittal plane (x1, x2), we have k3 = 0 and no91

dependence on x3 (i.e. plane strain). We introduce the ratio Λ = k2/k1, which92

corresponds to the tangent of the angle of wave propagation to the x1-axis.93

The general solution of the Rayleigh-Lamb dispersion problem may be94

constructed from a superposition of simple waves, named partial waves [4, 17].95

Partial waves travel along the plate (along x1) with the same wavenumber96

k1 = k > 0, while bouncing back and forth at the plate boundaries. Their97

interaction is generally induced by the boundary conditions and determine the98

dispersion pattern. Here, v = ω/k is the phase velocity along x1.99

The determination of the wave vector (eigenvalues) for the Christoffel100

equations leads to a sixth degree real-coefficient polynomial equation in λ, which101

may be factored into the product of a second degree polynomial, governing102

SH waves for which A = [0, 0, 1], with a fourth degree polynomial, governing103

partial waves polarized in the sagittal plane, i.e. A = [A1, A2, 0]. Indeed, the104

corresponding eigenvectors correspond to the wave polarization.105

In order to determine the wave vectors we introduce the dimensionless space106

and time co-ordinates107

{ξ1, ξ2, τ} = {h−1x1, h
−1x2, T

−1t}, (9)

having let the reference time T in terms of the body shear wave speed cSV

T =
h

cSV
.

In this framework, we define the dimensionless velocities

V1 = c1/cSV , V2 = c2/cSV , V5 = cSH/cSV , Vc = cc/cSV < V1.
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From now on, with a slight abuse of notation, a subscript comma indicates

partial differentiation with respect to the relevant dimensionless variables, i.e.

u3,1 = ∂u3/∂ξ1. Besides, for the sake of compactness, we may sometimes drop

the explicit indication of functional dependence, e.g. we may write ui instead of

ui(ξ1, ξ2, τ). The equilibrium equations for plane motions (7) become (cfr.[5])

c11

c66
u1,11 + u1,22 +

(
c12

c66
+ 1

)
u2,12 = u1,ττ , (10a)

u2,11 +
c22

c66
u2,22 +

(
c12

c66
+ 1

)
u1,12 = u2,ττ , (10b)

while antiplane motion is governed by108

c55

c66
u3,11 +

c44

c66
u3,22 = u3,ττ . (11)

We shall look for solutions in the form of plane harmonic waves

ui(ξ1, ξ2, τ) = Ui(ξ2) exp ı(Kξ1 − Ωτ), i ∈ {1, 2, 3},

where K = k1h and Ω = ωT > 0 are the dimensionless wavenumber and angular109

frequency. With these definitions, V = Ω/K = v/cSV . Antiplane motions give110

immediately the characteristic equation for λSH111

λ2
SH =

c66

c44
K2
(
V 2

5 − V 2
)
, (12)

whence we can write the general solution112

U3(ξ2) = a1λ
−1
SH sinh(λSHξ2) + a2 cosh(λSHξ2), (13)

where a1 and a2 are arbitrary constants and the solution has been written in a113

form independent of the sign chosen for λSH .114

The equilibrium equations for the in-plane motion (10) may be cast in terms

of a single fourth order ODE in either U1(ξ2) or U2(ξ2), say

a2U
′′′′
1 (ξ2) + a1U

′′
1 (ξ2) + a0U1(ξ2) = 0,

which lends the bi-quadratic characteristic equation for λ115

a2λ
4 − a1K

2λ2 + a0K
4 = 0, (14)
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where (cfr.[12] with c66V
2 = ρc2R)

a2 = c22c66,

a1 = c11c22

(
1− V 2

V 2
1

)
+ c266(1− V 2)− (c12 + c66)2

a0 = c11c66

(
1− V 2

)(
1− V 2

V 2
1

)
.

The coefficient a1 is the generalization to orthorhombic materials of the116

coefficient B of [17]. Clearly, the sign of λ is immaterial and therefore, without117

loss of generality, we restrict attention to the pair of solutions of Eq.(14) with118

positive real part119

λ1,2 = KΛ1,2, <(Λ1,2) ≥ 0, (15)

being120

Λ2
1,2 =

a1 ∓
√

∆

2a2
, ∆ = a2

1 − 4a0a2. (16)

With this restriction, a branch cut for the square root is selected. With121

such definitions, Λ1,2 = Λ1,2(V 2) are functions of the phase velocity squared122

V 2. Physically, Λ1,2 represent the ratio between longitudinal and transversal123

wavenumbers, i.e. tanβ, where β is the angle of wave propagation to the x-124

axis. In particular, whenever Λ1,2 = 0 an infinite plane wave-front propagating125

indefinitely is possible, that is a bulk wave. In the isotropic case, we have126

that the discriminant ∆ = µ2(λ+ µ)2K2V 2 is always positive and, as expected,127

Λ1,2(0) = 1 for standing waves propagate equally in either direction. When128

∆ < 0, Λ2
1,2 becomes a complex conjugated pair describing evanescent waves.129

The expressions for λ1,2 represent a generalization to orthothropic materials of130

Eq.(17) of [17]. Similarly to there, the smallest solution (in terms of absolute131

value) of (16) corresponds to quasi-longitudinal waves (QP), while the largest132

gives quasi-shear waves (QSV)∗. We observe that Eq.(14) is also the secular133

equation for the attenuation index of Rayleigh waves, see [15, Eq.(10)] and [16,134

Eq.(5.54)], with a1/a2 = S and a0/a2 = P . For large values of V we get135

Λ1 = −V 2, Λ2 = −V 2/V 2
2 . (17)

∗In [17] reference is made to the minus and to the plus solutions, which however correspond
to the smallest and to the largest only inasmuch as a1 > 0.
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Figure 2. Λ1,2 vs. V

It is expedient to introduce the auxiliary quantity136

V 2
∗ =

(
1 + V −2

2

)−1
(
V 2
c − 2

c12

c22

)
, (18)

such that the sign of a1 may be easily determined from137

a1 = c266

(
1 + V 2

2

)
(V 2
∗ − V 2).

We observe that, in general, V 2
∗ may be positive, negative or zero. Assuming138

the condition139

c66 ≤
√
c11c22 − c12, (19)

warrants that V 2
∗ ≥ 0. Besides, if c12 ≥ 0, we have 0 < V 2

∗ < V 2
c < V 2

1 and a1 ≷ 0140

provided that V 2 ≶ V 2
∗ . In the isotropic case, the inequality (19) is strickly141

satisfied and we have142

V 2
∗ = 2

(
1− 1

1 + V 2
1

)
. (20)

We observe that, according to Eq.(20), we have 1 < V∗ < V1. With the usual143

restriction on the Lamé constants, it is further seen that 2
√

2/7 < V∗ <
√

2.144

Hereinafter, to fix ideas, we shall assume that145

1 < V∗ < Vc < V1 (21)

holds also in the orthorhombic case, which is usually the case for real146

orthorhombic materials.147
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Speed Steel Carbon-epoxy
V∗ 1.24 1.92
Vc 1.69 2.45
V1 1.87 2.48
V2 1.87 1.43
VR 0.93 0.96

Table 1. Dimensionless wave speeds for steel (22) and carbon-epoxy (23)

In the following, when giving numerical results, we shall consider steel as a148

prototype for isotropic materials149

λ = 115 GPa µ = 77 GPa, (22)

and carbon-epoxy composite for orthorombic materials150

c11 = 55.15 GPa, c22 = 18.38 GPa, c66 = 9.00 GPa, c12 = 4.60 GPa.

(23)

Tab.1 gathers the dimensionless speeds for both materials. Fig.2 shows that151

Λ2
1,2 are monotonic decreasing functions of V that are concave downwards,152

i.e. d2Λ1,2/dV
2 < 0. They possess the simple zero Λ2

1(1) = Λ2
2(V1) = 0 and,153

consequently, V = 1 and V = V1 are branch points for the square root in Λ1,2,154

respectively. It follows that the relevant derivatives dΛ1/dV (1) and dΛ2/dV (V1)155

turn unbounded. Obviously, Λ1,2 are both real for V < 1, respectively purely156

imaginary and real for 1 < V < V1 and both purely imaginary for V > V1. For157

future purposes, we determine158

Λ2
1(V1) = −

(
1 + V −2

2

) (
V 2

1 − V 2
∗
)
. (24)

The solution of the equilibrium equations (10) is159 [
U1(ξ2)

U2(ξ2)

]
= Gϕ (25)

where ϕ = [e1, e2, o1, o2] and160

G =

[
cosh (λ1ξ2) cosh (λ2ξ2) λ−1

1 sinh (λ1ξ2) λ−1
2 sinh (λ2ξ2)

ıα1 sinh (λ1ξ2) ıα2 sinh (λ2ξ2) ıλ−1
1 α1 cosh (λ1ξ2) ıλ−1

2 α2 cosh (λ2ξ2)

]
.
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The vector ϕ will be separated in the first and in the second pair of161

components, namely ϕ = [ϕe,ϕo]. The matrix G is arranged thus to show that162

the displacement is indeed independent on the sign of the lambdas. In Eq.(25),163

we have let the dimensionless functions of V 2 (cfr.[12, Eq.(17)])164

α1,2(V ) =
c66

c12 + c66

(
Λ1,2 +

V 2 − V 2
1

Λ1,2

)
. (26)

It is worth noticing that α1(V ) blows up for V → 1, for then Λ1(V )→ 0 as165

√
V − 1. Conversely, as V → V1, it is Λ2(V1)→ 0 and yet α2(V1)→ 0, while166

α1(V1) =

(
1 +

c12

c66

)−1

Λ1(V1) (27)

is purely imaginary in view of (24) and of the inequalities (21). We observe that

the Rayleigh function may be written in a symmetric form in terms of αi and

Λi, i ∈ {1, 2}, as [12]

R(V 2) =

∣∣∣∣∣ ıζ11 ıζ12

−ıζ21 −ıζ22

∣∣∣∣∣ = s1 − s2,

having let

ζ11(V ) = 1 +
c22

c12
α1Λ1, ζ12(V ) = 1 +

c22

c12
α2Λ2,

ζ21(V ) = ı (Λ1 − α1) , ζ22(V ) = ı (Λ2 − α2) ,

and, clearly,

s1 = ζ11ζ22, s2 = ζ12ζ21.

Therefore, we can determine the Rayleigh wave speed VR as the single real167

solution of the equation168

s1(VR)− s2(VR) = 0. (28)

Partial waves169

Rayleigh-Lamb waves emerge from consideration of the plate boundary170

conditions (BCs). In particular, when Mindlin’s BCs are considered, either the171

micro-chain (MC) conditions,172

σ22 = 0 and u1 = 0, (29)
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or the lubricated rigid support (LRS) conditions173

σ12 = 0 and u2 = 0, (30)

Rayleigh-Lamb waves collapse into partial waves. In standard practice,

symmetric and antisymmetric (flexural) Rayleigh-Lamb waves are discussed

separately: they are obtained splitting the problem in its even and odd part

with respect to ξ2, see [4, 17]. This separation holds also for partial waves. For

symmetric LRS and antisymmetric MC we have

(α2λ1 − α1λ2) sinhλ1 sinhλ2 = 0,

while for symmetric MC and antisymmetric LRS it is

(α2λ1 − α1λ2) coshλ1 coshλ2 = 0.

The first set of solutions satisfying either dispersion relation is174

λ2 = ı 12mπ, m ∈ {0, 1, 2, . . . }, (31)

and it corresponds to a family of P modes. Therefore, P modes bounce back and175

forth at the plate boundaries with an integer number, m, of half wavelengths176

occurring in between. Accordingly, they appear in the same (opposite) fashion at177

the plate boundaries, i.e. they are symmetric (antisymmetric), when m is even178

(odd). Antisymmetric waves repeat periodically every two thickness cycles. In179

particular, the P mode m = 0 describes a plane wave with speed V = V1, i.e. it180

gives bulk longitudinal waves. Symmetric and antisymmetric P modes possess181

the eigenforms φeP = (0, 1) and φoP = (0, 1), respectively. Similarly, the second182

set of solutions183

λ1 = ı 12nπ, n ∈ {0, 1, 2, . . . }, (32)

provides a family of SV modes, which may equally be even or odd according to184

the parity of n. Symmetric and antisymmetric SV modes possess the eigenforms185

φeSV = (1, 0) and φoSV = (1, 0), respectively. In the terminology of [1], partial186

waves describe the uncoupled-blocked systems and their spectra (31,32) form187

the skeleton of the eigenvalues, wherein the wavenumber K acts as variable188

parameter.189
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Figure 3. Partial waves for steel: even (odd) P modes (dotted, black) and odd (even) SV
modes (dashed, red), respectively left and right panel. The Rayleigh wave line-spectrum
is also shown (dash-dotted, blue)

The definition (15) together with Eqs.(31) and (32) show that P and SV190

modes may be written as a function of K2 and V 2. The dimensionless group191

velocity of such partial waves is given by192

Vg1,2(V ) =
dΩ

dK
= V − Λ1,2

dΛ1,2/dV
(V ) (33)

wherein the last term is the reciprocal of the logarithmic derivative. In particular193

Vg1(1) = 1, Vg1(V1) = V1

1− 1− V 2
∗ /V

2
1

1− V 2
2 (V 2

1 −1)

(1+V 2
2 )2(V 2

1 −V 2
∗ )

 < V1, (34)

and clearly Vg2(V1) = V1. In the isotropic case, it is Vg1(V1) = V −1
1 . In light of194

the fact that Λ2
1,2 are decreasing functions of V and observing that Eq.(33) may195

be rewritten as196

Vg1,2(V ) = V − 2
Λ2

1,2

dΛ2
1,2/dV

,

it is easily proved that, for V < 1, we have Vg > V , that is waves move slower197

than the wave packet as ripples in a pond. However, there are no partial wave198

branches in that region. For 1 < V < V1, there are only SV wave branches199

describing SV waves moving faster than the wave packet, i.e. V > Vg1. Finally,200

for V > V1, both P and SV waves move faster than the wave packet.201
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P and SV modes frequency spectra for a steel plate are plotted in Fig.3. It202

clearly appears that P modes with m ≥ 1 asymptote bulk longitudinal waves203

from above and similarly SV modes asymptote bulk SV waves from above.204

Indeed, writing λ2 = KΛ2 and considering the limit K → +∞ along any curve205

(31), demands that Λ2 → ı0, which in turn requires V → V +
1 , for the product206

KΛ2 to yield a finite purely imaginary number. A similar argument shows that207

V → 1+ in the limit K → +∞ for SV modes (32).208

Rayleigh-Lamb waves209

For a free plate, we have the BCs

σ22 = σ12 = σ32 = 0, at x2 = ±h,

that, introducing the constitutive law (6), become210

c12

c66
u1,1 +

c22

c66
u2,2 = 0, u1,2 + u2,1 = 0, and u3,2 = 0, at ξ2 = ±1. (35)

SH waves211

As already pointed out, in orthorhombic materials SH waves are decoupled from212

SV and P waves. Enforcing the last of the BCs (35) on the general solution (13)213

lends the dispersion relation214

sinh(2λ3) = 0,

whose solutions are215

λ2
3 = −p2π2/4, p = {1, 2, 3, . . . }. (36)

Besides, we have that a1 = 0 whence U3(ξ2) is an even function of ξ2. The216

frequency spectrum for SH waves is plotted in Fig.4. It is worth observing that,217

for large values of K, the spectrum curves tend to the SH bulk wave velocity218

V = V5.219
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Figure 4. Frequency spectrum (36) for SH waves in a carbon epoxy plate
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Figure 5. Frequency spectrum for symmetric waves in a free carbon epoxy-resin
composite plate superposed onto even P (dotted, black) and odd SV (dashed, red)
modes. A veering point (black dot) and the Rayleigh wave line spectrum (dash-dotted,
blue) are also presented

Symmetric waves220

Consideration of symmetric waves lends the homogeneous algebraic system221

S(K,Ω)

[
e1

e2

]
=

[
0

0

]
, (37)

where we have let the matrix

S(K,Ω) =

[
ζ11 coshλ1 ζ12 coshλ2

−ıζ21 sinhλ1 −ıζ22 sinhλ2

]
.
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This matrix may be rewritten in hermitian form222

Sh(K,Ω) =

[
ıζ11ζ21

coshλ1

coshλ2
ıs2

−ıs2 −ıζ12ζ22
sinhλ2

sinhλ1

]
. (38)

Demanding that non-trivial solutions of the system (37) exist provides the

dispersion relation (cfr.[4, Eq.(8.1.54)])

ds(K
2,Ω2) = 0,

with223

ds(K
2,Ω2) = s1 cothλ1 − s2 cothλ2. (39)

The frequency spectrum of a plate made of carbon-epoxy composite is plotted224

in Fig.5. We observe that odd SV modes are obtained through setting S11 = 0225

and even P modes through putting S22 = 0, where Sij denotes the (i, j)-element226

of the matrix S of Eq.(37).227

We observe that the first branch of the spectrum rests in the sector V < 1,228

where λ1,2 are real numbers, and therefore, for large values of K, we have229

cothλ1,2 → 1 and the solution of (39) tends to the Rayleigh wave speed equation230

(28). Consequently, for this branch, SV modes cannot act as guiding curves, i.e.231

the spectrum branches do not follow any of the SV modes (32) (see [17, §4] for232

a different take on the concept of guiding curve). In contrast, for all the other233

branches of the Rayleigh-Lamb frequency spectrum, SV modes are guidelines234

in the short-wave high-frequency (SWHF) regime. This occurs because such235

branches rest in the sector 1 < V < V1 where λ1 is purely imaginary and λ2 real;236

as K grows larger, cothλ1 oscillates wildly unless (32) holds, while cothλ2 → 1.237

Then, Eq.(39) is satisfied provided that s2 → 0, which occurs for V → 1+. We238

thus proved that a definite SWHF limit exists provided that the spectrum239

branches follow odd SV modes and their phase velocity asymptotes the shear240

bulk wave speed from above. A similar analysis reveals that, in the sector241

V > V1, P modes act as guiding curves.242

We conclude that, when the wavelength becomes very small compared to the243

plate thickness, only the first spectrum branch is independent of the boundary244

pair and behaves like only one existed. We can then interpret SV (P) modes as245

the perturbation of shear (longitudinal) bulk waves which take into account the246

pair of boundaries.247
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Figure 6. Frequency spectrum for antisymmetric waves (42) in a carbon epoxy-resin
composite plate (solid black curves) superposed onto even SV (dashed, red) and odd P
(dotted, black) mode spectra. A veering point (black dot) and the Rayleigh wave line
spectrum (dash-dotted, blue) are also presented

We further emphasize that the concept of guiding curve is strictly related to248

the idea of weak coupling in the sense developed in [1]. Indeed, for a weakly249

coupled system, the spectrum branches quickly collapse onto partial waves250

outside the close neighbourhood of the veering points.251

The long-wave low-frequency (LWLF) approximation of the first symmetric252

spectrum branch reveals that the system behaviour is equivalent to longitudinal253

vibrations of a beam-plate with young modulus Ec254

Eck
2 = ρω2.

Antisymmetric waves255

Consideration of antisymmetric (flexural) waves demands taking the odd part256

for σyy and the even part for σxy in Eqs.(35) and it gives the homogeneous257

algebraic system258

A(K2,Ω2)

[
o1

o2

]
=

[
0

0

]
, (40)

where

A(K2,Ω2) =

[
ζ11 sinhλ1 ζ12 sinhλ2

−ıζ21 coshλ1 −ıζ22 coshλ2

]
.
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This matrix may be rewritten in hermitian form259

Ah(K2,Ω2) =

[
ıζ11ζ21

sinhλ1

sinhλ2
ıs2

−ıs2 −ıζ12ζ22
coshλ2

coshλ1

]
. (41)

The corresponding dispersion relation do = 0 is (cfr.[4, Eq.(8.1.59)])260

do(K
2,Ω2) = s1 tanhλ1 − s2 tanhλ2. (42)

The frequency spectrum for flexural waves in a carbon-epoxy plate is shown in261

Fig.6. We observe that even SV modes are obtained through setting A11 = 0262

and odd P modes through putting A22 = 0. Once again, the first branch rests263

in the sector V < 1 and therefore it asymptotes Rayleigh waves in the SWHF264

approximation. Branches in the sector 1 < V < V1 are guided by SV modes in265

the SWHF limit and their phase speed tends to the shear bulk wave speed from266

above; the argument going as in the symmetric case.267

The long-wave low-frequency (LWLF) approximation of the first flexural

spectrum branch is given by

D11k
4 − 2hρω2 = 0, D11 = EcI11, I11 = 2

3h
3,

corresponding to flexural vibrations of an orthotropic Kirchhoff beam-plate with268

flexural rigidity D11 and second moment of inertia I11.269

Internal veering270

In classical veering, as illustrated in [10], the dispersion relation emerges setting271

to zero the determinant of an hermitian matrix whose off-diagonal terms272

are small. Indeed, diagonal terms represent the dispersion relation of some273

mechanically well-defined 1D systems, while off-diagonal terms are expression of274

the coupling among these. The hermitian nature of the matrix comes from the275

action-reaction principle. In classical veering, therefore, each system is clearly276

identifiable at the beginning and likewise are its dispersion modes. Besides,277

the position of each mechanical system is defined by its own displacement278

degree of freedom. Veering brings a rotation of the polarization vector from279

one system to the other. Rayleigh-Lamb dispersion curves exhibit a different280

form of veering, which we name internal after the observation that it originates281

from the interaction of SV and P partial waves. In case of internal veering, the282
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definition of the interacting modes is not so straightforward. Also, polarization283

rotation occurs differently.284

Symmetric waves285

We now describe the essential features of internal veering with respect to286

symmetric modes for a free plate. Veering occurs when even P and odd SV modes287

intersect, that is veering points are located by solving the pair of transcendental288

equations289

S11 = S22 = 0. (43)

This amounts to letting in turn e2 = 0 and then e1 = 0. With respect to290

the terminology developed in [10], this has no correspondence to either the291

uncoupled blocked system or to the uncoupled disconnected system. Indeed, as292

already pointed out, P and SV modes emerge from considering Mindlin’s mico-293

chain or lubricated wall boundary conditions. Therefore, the interacting systems294

share the same kinematical description but differ by the boundary conditions.295

The off-diagonal entries are coupling terms and they correspond to odd P and296

even SV modes. In the hermitian writing of Eq.(38), a form of action-reaction297

principle is preserved.298

Let (K0,Ω0) define the position of a veering point, i.e. it is a solution of

(43). To fix ideas, we consider veering points on the line Ω0 = V1K0 as in Fig.5,

which arise from the interaction between odd SV modes and the first P mode

(i.e. bulk longitudinal waves m = 0). We observe that this choice appears most

unfavourable, for we are right at the branch point for λ2. K0 may be simply

obtained by solving Eq.(32) with V = V1 (for bulk longitudinal waves we have

Λ2(V1) = 0)

K0Λ1(V1) = ı 12 (1 + 2n)π, n ∈ N,

and making use of Eq.(24), we get299

K2
0 =

( 1
2 + n)2π2

4(1 + V −2
2 )(V 2

1 − V 2
∗ )
. (44)

We observe that K0 is real provided that V∗ < V1, as we already assumed in300

(21). Besides, it is easy to see that301

dV =
dΩ

K
− Ω

K2
dK, (45)
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and when (K,Ω) lies on a curve V = const we get302

dV = 0⇔ V = Vg, (46)

that is the phase velocity equals the group velocity. Expanding in Taylor series303

the matrix Sh about the veering point is possible, despite the branch point304

singularity for the square root in Λ2(V1), because, as already mentioned, the305

dependence on the lambdas is really through their square, which is the reason306

by which the sign of the lambdas is immaterial. Indeed we find, at leading order,307

(Sh0 + dSh) [K,Ω,K0,Ω0] =

[
q11dK + r11dΩ p12

p21 q22dK + r22dΩ

]
, (47)

where, after tedious manipulations,

r11 = −(−1)nζ11(V1)ζ21(V1)
dΛ1

dV
(V1), (48a)

r22 = −(−1)n
c12

c12 + c66
ζ12(V1)

(
dΛ2

2

dV
(V1)− 2

c66

c12
V1

)
, (48b)

and308

p12 = −p21 = ıs2(V1). (49)

In (48b), the derivative of Λ2
2 appears that is bounded. Making use of

Eqs.(24,27,32), we see that

ζ11(V1) = 1− c66

c12

c22 + c66

c12 + c66
(V 2

1 − V 2
∗ ),

ζ12(V1) = 1,

ζ21(V1) = − c12

c12 + c66

√(
1 + V −2

2

)
(V 2

1 − V 2
∗ ) = − c12

c12 + c66

( 1
2 + n)π

K0
,

which are functions of V1 alone.309

In general, dK and dΩ are arbitrary quantities, however, when moving along310

a SV/P partial wave, we have, respectively,311

d(KΛ1,2) = 0, (50)
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whence we get the connection dΩ = Vg1,2dK that, substituted into the312

expansion for dS11 (dS22), yields the result313

qii
rii

= −Vgi, i ∈ {1, 2}.

We observe that dK2 = 2KdK and dΩ2 = 2ΩdΩ, thus dΩ2/dK2 = V Vg is the314

product of the phase and group velocities. Then, recalling that the dispersion315

relation is a transcendental function of K2 and Ω2, we prefer to write (cfr.[10,316

Eq.(16)])317

(Sh0 + dSh)
[
K2,Ω2, V1

]
=

[
r11
2Ω0

(
dΩ2 − c21dK2

)
ıs2(V1)

−ıs2(V1) r22
2Ω0

(
dΩ2 − c22dK2

)] , (51)

where, making use of Eq.(46) for c2,318

c1 =
√
V1Vg1, c2 =

√
V1Vg2 = V1. (52)

Consequently, we deduce that, in the neighbourhood of a veering point and319

within a leading term Taylor approximation, the system behaves like a pair of320

interacting tout strings, whose wave speeds c1 and c2 are the geometric mean321

of the relevant phase and group velocities. In particular, for all the countable322

infinite number of veering points on the line V = V1, the tout strings wave speeds323

are the same and therefore veering repeats itself periodically. In general, we can324

say that the frequency spectra of the even P and odd SV partial waves define325

the envelope of the wave speed field for a pair of tout strings whose properties326

are frequency dependent.327

Letting

∆K = K2 −K2
0 , ∆Ω = Ω2 − Ω2

0,

we write the approximate dispersion relation (cfr.[10, Eq.(14)])328

∆Ω2 − (c21 + c22)∆K∆Ω + c21c
2
2∆K2 − 4Ω2

0η
2 = 0, (53)

with329

η2 =
s2(V1)2

r11r22
. (54)

The approximation (53) may be obtained directly operating a Taylor expansion330

of the dispersion relation (39) up to second order terms. The solution of Eq.(53)331
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provides two branches, named upper and lower,332

∆Ω = 1
2 (c21 + c22)∆K

(
1±

√
1− 4

c21c
2
2 − 4Ω2

0η
2/∆K2

(c21 + c22)2

)
. (55)

It should be emphasized that the string model expansion (51) is consistent333

inasmuch as Ω− Ω0 andK −K0 are small, so that a leading term approximation334

is meaningful. Assuming Ω− Ω0 ∼ K −K0 ∼ ε� 1, we have, for the solution335

set of Eq.(53),336

4Ω2
0η

2 ∼ 4Ω2
0

[
1− (c21 + c22)V −1

1 + c21c
2
2V
−2
1

]
ε,

where ∼ stands for ”same order as”. Whence, using (52), we demand337

η2 ∼
(
Vg1 − 1

)
(V1 − 1) ε,

which is independent of the veering point under consideration, i.e. independent338

of n. Therefore, here we require η2 to be small while 4Ω2
0η

2 may be, and generally339

is, large. This approach is at variance with that developed in [10]. As an example,340

for steel we have η2 ≈ 0.28125 and for carbon-epoxy η2 ≈ 0.0163. The smallness341

of η2 sets the size of neighbourhood where the tout string approximation is342

meaningful, regardless of the veering point under scrutiny.343

Numerical results344

Fig.7 plots the simple approximation (55) for a carbon epoxy composite plate at345

the veering point corresponding to the SV mode n = 1. The same approximation346

is repeated in Fig.8 for the SV mode n = 3 and, as anticipated, the same347

behaviour is matched. In general, consideration of the leading term alone348

(string model) appears surprisingly accurate, even in the large, inasmuch as the349

spectrum branches are well represented (guided) by the corresponding partial350

waves. For instance, moving along the lower branch in Fig.7, we veer from351

longitudinal bulk waves (P mode m = 0) to the SV mode n = 1. In contrast,352

the upper branch is generally not well described by either partial wave until the353

close neighbourhood of veering is reached. For this reason, the Taylor expansion354

method, as here described, is doomed to provide poor accuracy there, no matter355

how many terms in the expansion. The reason by which the spectrum is not356

guided by the SV mode on reaching the veering point along the upper branch357
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Figure 7. Approximation (55) near the veering point n = 1 for a plate made of carbon
epoxy composite (dashed, red) superposed onto the frequency spectrum of symmetric
waves (solid, black)
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Figure 8. Approximation (55) near the veering point n = 3 for a plate made of carbon
epoxy composite (dashed, red) superposed onto the frequency spectrum of symmetric
waves (solid, black)

may be ascribed to the presence of yet another veering point, so that the two358

interact (see Fig.5). In fact, moving along the upper branch in Fig.7, we see that359

the spectrum behaves in between a P and a SV mode until a point P̄ is reached360

where S11 = S12 = 0. Beyond this point, the spectrum approaches the even P361

mode m = 0 and the approximation is excellent again. It should be emphasized362

that this departure from the guiding curve is not possible in systems of 1D363

elements, wherein dispersion is bound to a number of dispersion curves.364

Prepared using sagej.cls



24 Journal Title XX(X)

Conclusions365

We analyse Rayleigh-Lamb (RL) modes in an orthorhombic layer with special366

emphasis on veering, that is a coupling phenomenon by which wave branches367

exchange their role in close proximity to their intersection point (the veering368

point). Physically, this amounts to destructive wave interference taking place369

at the veering point (that is a point of no propagation) and constructive370

interference occurring in its close neighbourhood. Interference occurs in such a371

way that the ”emerging” wavemodes are swapped compared to the ”incoming”372

modes. We first recall that RL modes are themselves originating from373

interference of partial waves (here named P and SV modes), which express waves374

complying with special boundary conditions allowing for no mode conversion.375

In this sense, partial waves appear ”more fundamental” than RL modes, for it is376

precisely their combination through the boundary conditions which originates377

the latter. Indeed, this mechanism is apparent in the frequency spectrum of378

RL waves, wherein partial waves take up the role of guiding waves, in the379

sense that they bound the propagation curves. We show here that the same380

mechanism stands at the ground of veering. Indeed, veering points for symmetric381

(antisymmetric) RL modes corresponds to intersection points for even P/odd382

SV (odd P/even SV) partial waves. This situation can be compared with383

veering in two dimensional systems, wherein eigenmodes pertaining to either384

mechanical system (considered indipendent or uncoupled) interact by means385

of the coupling device. In the case of RL modes, asymptotic analysis reveals386

that interaction occurs in the form of a pair of tout strings whose wave speed387

are the geometric mean of the relevant wave phase and group velocities. An388

approximation dispersion relation is obtained whose range of validity depends389

on the strength of the coupling. Numerical results show that the quality of390

the approximation is good inasmuch as interaction among neighboring veering391

points does not occur. Indeed, this interaction weakens the role of partial waves392

as guiding waves.393
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