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Abstract

We give a sharply-vertex-transitive solution of each of the nine Hamilton-Waterloo prob-
lems left open by Danziger, Quattrocchi and Stevens.
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1 Introduction
A cycle decomposition of a simple graph Γ = (V,E) is a set D of cycles whose edges
partition E. A partition F of D into classes (2-factors) each of which covers all V exactly
once is said to be a 2-factorization of Γ. The type of a 2-factor F is the partition π =
[`n1

1 , . . . , `nt
t ] (written in exponential notation) of the integer |V | into the lengths of the

cycles of F .
A 2-factorization F ofKv (the complete graph of order v) orKv−I (the cocktail party

graph of order v) whose 2-factors are all of the same type π is a solution of the so-called
Oberwolfach Problem OP(v;π). If instead the 2-factors of F are of two different types π
and ψ, thenF is a solution of the so-called Hamilton-Waterloo Problem HWP(v;π, ψ; r, s)
where r and s denote the number of 2-factors of F of type π and ψ, respectively.

A complete solution of the OPs whose 2-factors are uniform, namely of the form
OP(`n; [`n]), has been given in [1] and [12]. Other important classes of OPs has been
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solved in [4, 15]. For the time being, to look for a solution to all possible OPs and, above
all, HWPs is too ambitious. Anyway it is reasonable to believe that we are not so far
from a complete solution of the HWPs whose 2-factors are uniform, namely of the form
HWP(v; [hv/h], [wv/w]; r, s). We can say this especially because of the big progress re-
cently done in [10].

Danziger, Quattrocchi and Stevens [11] treated the HWPs whose 2-factors are either
triangle-factors or quadrangle-factors, they namely studied HWP(12n; [34n], [43n]; r, s). In
the following such an HWP will be denoted, more simply, by HWP(12n; 3, 4; r, s). They
solved this problem for all possible triples (n, r, s) except the following ones:

(i) (4, r, 23− r) with r ∈ {5, 7, 9, 13, 15, 17};
(ii) (2, r, 11− r) with r ∈ {5, 7, 9}.

Six of the nine above problems have been recently solved in [14] where it was pointed
out that all nine problems were also solved in a work still in preparation [2] by the authors
of the present paper. Meanwhile, a solution for each of the remaining three problems not
considered in [14] have been given in [16]. Notwithstanding, in the present paper we want
to present our solutions to the nine HWPs left open by Danziger, Quattrocchi and Stevens
in detail. These solutions, differently from those of [14, 16], are full of symmetries since
they are G-regular for a suitable group G. We recall that a cycle decomposition (or 2-
factorization) of a graph Γ is said to be G-regular when it admits G as an automorphism
group acting sharply transitively on all vertices. Here is explicitly our main result:

Theorem 1.1. There exists a O-regular 2-factorization of K48 − I having r triangle-
factors and 23 − r quadrangle-factors where O is the binary octahedral group and r ∈
{5, 7, 9, 13, 15, 17}.

There exists a Q24-regular 2-factorization of K24 − I having r triangle-factors and
11− r quadrangle-factors where Q24 is the dicyclic group of order 24 and r ∈ {7, 9}.

There exists a SL2(3)-regular 2-factorization of K24 − I having six triangle-factors
and five quadrangle-factors where SL2(3) is the 2-dimensional special linear group over
Z3.

2 Some preliminaries
The use of the classic method of differences allowed to get cyclic (namely Zv-regular)
solutions of some HWPs in [8, 9, 13]. Now we summarize, in the shortest possible way,
the method of partial differences. This method, explained in [7] and successfully applied
in many papers (see, especially, [6]), has been also useful for the investigation of G-regular
2-factorizations of a complete graph of odd order [9]. The G-regular 2-factorizations of a
cocktail party graph can be treated similarly.

Throughout this paper any group G will be assumed to be written multiplicatively and
its identity element will be denoted by 1. Let Ω be a symmetric subset of a group G;
this means that 1 /∈ Ω and that ω ∈ Ω if and only if ω−1 ∈ Ω. The Cayley graph on
G with connection-set Ω, denoted by Cay[G : Ω], is the simple graph whose vertices
are the elements of G and whose edges are all 2-subsets of G of the form {g, ωg} with
(g, ω) ∈ G× Ω.

Remark 2.1. If λ is an involution of a group G, then Cay[G : G \ {1, λ}] is isomorphic
to K|G| − I . So, in the following, such a Cayley graph will be always identified with the
cocktail party graph of order |G|.
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Let Cycle(G) be the set of all cycles with vertices in G and consider the natural right
action of G on Cycle(G) defined by (c1, c2, . . . , cn)g = (c1g, c2g, . . . , cng) for every
C = (c1, c2, . . . , cn) ∈ Cycle(G) and every g ∈ G. The stabilizer and the orbit of any
C ∈ Cycle(G) under this action will be denoted by Stab(C) and Orb(C), respectively.
The list of differences of C ∈ Cycle(G) is the multiset ∆C of all possible quotients xy−1

with (x, y) an ordered pair of adjacent vertices of C. One can see that the multiplicity
m∆C(g) of any element g ∈ G in ∆C is a multiple of the order of Stab(C). Thus it makes
sense to speak of the list of partial differences of C as the multiset ∂C on G in which the
multiplicity of any g ∈ G is defined by

m∂C(g) :=
m∆C(g)

|Stab(C)|
.

We underline the fact that ∂C is, in general, a multiset. Note that if ∂C is a set, namely
without repeated elements, then it is symmetric so that it makes sense to speak of the Cayley
graph Cay[G : ∂C]. The following elementary but crucial result holds.

Lemma 2.2. If C ∈ Cycle(G) and ∂C does not have repeated elements, then Orb(C) is
a G-regular cycle-decomposition of Cay[G : ∂C].

By Remark 2.1, as an immediate consequence of the above lemma we can state the
following result.

Theorem 2.3. Let λ be an involution of a groupG. If {C1, . . . , Ct} is a subset ofCycle(G)
such that

⋃t
i=1 ∂Ci = G \ {1, λ}, then

⋃t
i=1Orb(Ci) is a G-regular cycle-decomposition

of K|G| − I .

We need, as last ingredient, the following easy remarks.

Remark 2.4. If C ∈ Cycle(G) and V (C) is a subgroup of G, then Orb(C) is a 2-factor
of the complete graph on G whose stabilizer is the whole G.

If C1, . . . , Ct are cycles of Cycle(G) and
⋃t

i=1 V (Ci) is a complete system of repre-
sentatives for the left cosets of a subgroup S of G, then

⋃t
i=1OrbS(Ci) is a 2-factor of the

complete graph on G whose stabilizer is S.

3 Octahedral solutions of six Hamilton-Waterloo problems
Throughout this section G will denote the so-called binary octahedral group which is usu-
ally denoted by O. This group, up to isomorphism, can be viewed as a group of units of the
skew-field H of quaternions introduced by Hamilton, that is an extension of the complex
field C. We recall the basic facts regarding H. Its elements are all real linear combinations
of 1, i, j and k. The sum and the product of two quaternions are defined in the natural way
under the rules that

i2 = j2 = k2 = ijk = −1.

If q = a+ bi+ cj + dk 6= 0, then the inverse of q is given by

q−1 =
a− bi− cj − dk
a2 + b2 + c2 + d2

.
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The 48 elements of the multiplicative group G are the following:

±1,±i,±j,±k;
1
2 (±1± i± j ± k);
1√
2
(±x± y), {x, y} ∈

({1,i,j,k}
2

)
.

The use of the octahedral groupGwas crucial in [3] to get a Steiner triple system of any
order v = 96n+ 49 with an automorphism group acting sharply transitively an all but one
point. HereGwill be used to get aG-regular solution of each of the six Hamilton-Waterloo
problems of order 48 left open in [11]. We will need to consider the following subgroups
of G of order 16 and 12, respectively:

• K = 〈k, 1√
2
(j − k)〉;

• L = 〈 1√
2
(j − k), 1

2 (−1− i+ j + k)〉.

3.1 An octahedral solution of HWP(48; 3, 4; 5, 18)

Consider the nine cycles of Cycle(G) defined as follows.

C1 =
(
1, − 1√

2
(1− k), 1

2 (1− i− j − k)
)

C2 =
(
1, 1

2 (−1− i+ j + k), 1
2 (−1 + i− j − k)

)
C3 =

(
1, 1

2 (−1 + i+ j − k), 1
2 (−1− i− j + k)

)
C4 =

(
1, k, −1, −k

)
C5 =

(
1, j, −1, −j

)
C6 =

(
1, 1√

2
(−i+ k), − 1

2 (1 + i+ j + k), − 1√
2
(j + k)

)
C7 =

(
1, 1√

2
(i− j), 1√

2
(1 + i), 1

2 (1− i− j + k)
)

C8 =
(
1, 1

2 (1− i+ j − k), k, − 1√
2
(1 + j)

)
C9 =

(
1, 1√

2
(1− i), − 1√

2
(1 + i), 1

2 (−1− i+ j − k)
)

We note that Stab(Ci) = V (Ci) for 2 ≤ i ≤ 5 while all other Ci’s have trivial
stabilizer. Thus, by Lemma 2.2, one can check that Orb(Ci) is a `i-cycle decomposition
of Cay[G : Ωi] where `i is the length of Ci and where the Ωi’s are the symmetric subsets
of G listed below.

Ω1 = {− 1√
2
(1− k), 1

2 (1− i− j − k),− 1√
2
(1 + i)}±1

Ω2 = { 1
2 (−1− i+ j + k)}±1

Ω3 = { 1
2 (−1 + i+ j − k)}±1

Ω4 = {k}±1

Ω5 = {j}±1

Ω6 = { 1√
2
(−i+ k), 1√

2
(j − k), 1√

2
(1− k),− 1√

2
(j + k)}±1
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Ω7 = { 1√
2
(i− j), 1

2 (1 + i− j − k), 1√
2
(i+ j), 1

2 (1− i− j + k)}±1

Ω8 = { 1
2 (1− i+ j − k),− 1

2 (1 + i+ j + k),− 1√
2
(i+ k),− 1√

2
(1 + j)}±1

Ω9 = { 1√
2
(1− i), i, 1√

2
(1 + j), 1

2 (−1− i+ j − k)}±1

One can see that the Ωi’s partition G \ {1,−1}. Thus, by Theorem 2.3 we can say
that C :=

⋃9
i=1OrbG(Ci) is a G-regular cycle-decomposition of K48 − I . Now set Fi =

OrbSi
(Ci) where

Si =


K for i = 1;
G for 2 ≤ i ≤ 5;
L for 6 ≤ i ≤ 9.

By Remark 2.4, each Fi is a 2-factor of K48 − I with Stab(Fi) = Si, hence Orb(Fi) has
length 3 or 1 or 4 according to whether i = 1, or 2 ≤ i ≤ 5, or 6 ≤ i ≤ 9, respectively. The
cycles of Fi are triangles or quadrangles according to whether or not i ≤ 3. Thus, recalling
that C is a cycle-decomposition of K48 − I , we conclude that F :=

⋃9
i=1Orb(Fi) is a

G-regular 2-factorization of K48 − I with 5 triangle-factors and 18 quadrangle-factors,
namely a G-regular solution of HWP(48; 3, 4; 5, 18).

3.2 An octahedral solution of HWP(48; 3, 4; 7, 16)

Consider the seven cycles of Cycle(G) defined as follows.

C1 =
(
1, − 1√

2
(i+ j), 1

2 (1− i+ j + k)
)

C2 =
(
1, 1

2 (−1− i+ j + k), 1
2 (1− i− j − k)

)
C3 =

(
1, 1

2 (−1 + i+ j − k), 1
2 (−1− i− j + k)

)
C4 =

(
1, 1√

2
(−i+ k), 1

2 (1 + i+ j − k), − 1√
2
(j + k)

)
C5 =

(
1, 1√

2
(i− j), 1√

2
(1− k), 1√

2
(1 + i)

)
C6 =

(
1, 1√

2
(1 + k), − 1

2 (1 + i+ j + k), 1√
2
(1 + j)

)
C7 =

(
1, − 1

2 (1 + i+ j + k), 1
2 (1− i+ j − k), 1

2 (1− i− j + k)
)

We note that Stab(C3) = V (C3) while all other Ci’s have trivial stabilizer. Thus, by
Lemma 2.2, one can check that Orb(Ci) is a `i-cycle decomposition of Cay[G : Ωi] where
`i is the length of Ci and where the Ωi’s are the symmetric subsets of G listed below.

Ω1 = {− 1√
2
(i+ j), 1

2 (1− i+ j + k), 1√
2
(−j + k)}±1

Ω2 = { 1
2 (−1− i+ j + k), 1

2 (1− i− j − k), 1
2 (−1− i+ j − k)}±1

Ω3 = { 1
2 (−1 + i+ j − k)}±1

Ω4 = { 1√
2
(−i+ k),− 1√

2
(1− k), 1√

2
(i+ k),− 1√

2
(j + k)}±1

Ω5 = { 1√
2
(i− j),−j, 1

2 (1− i+ j − k), 1√
2
(1 + i)}±1

Ω6 = { 1√
2
(1 + k), 1√

2
(−1 + j),− 1√

2
(1 + i), 1√

2
(1 + j)}±1

Ω7 = {− 1
2 (1 + i+ j + k),−i,−k, 1

2 (1− i− j + k)}±1
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One can see that the Ωi’s partition G \ {1,−1}. Thus, by Theorem 2.3 we can say
that C :=

⋃7
i=1OrbG(Ci) is a G-regular cycle-decomposition of K48 − I . Now set Fi =

OrbSi
(Ci) where

Si =


K for i = 1, 2;
G for i = 3;
L for 4 ≤ i ≤ 7.

By Remark 2.4, each Fi is a 2-factor of K48 − I with StabG(Fi) = Si, hence OrbG(Fi)
has length 3 or 1 or 4 according to whether i = 1, 2 or i = 3 or 4 ≤ i ≤ 7, respectively.

The cycles of Fi are triangles or quadrangles according to whether or not i ≤ 3.
Thus, recalling that C is a cycle-decomposition of K48 − I , we conclude that F :=⋃7

i=1OrbG(Fi) is a G-regular 2-factorization of K48 − I with 7 triangle-factors and 16
quadrangle-factors, namely a G-regular solution of HWP(48; 3, 4; 7, 16).

3.3 An octahedral solution of HWP(48; 3, 4; 9, 14)

Consider the eight cycles of Cycle(G) defined as follows.

C1 =
(
1, 1√

2
(i+ j), 1

2 (1− i− j − k)
)

C2 =
(
1, − 1√

2
(1− k), 1√

2
(1 + j)

)
C3 =

(
1, 1

2 (−1− i+ j + k), 1
2 (1 + i− j + k)

)
C4 =

(
1, 1√

2
(−i+ k), 1√

2
(1− i), 1

2 (−1− i+ j − k)
)

C5 =
(
1, 1√

2
(i− j), 1

2 (−1 + i+ j + k), − 1√
2
(j + k)

)
C6 =

(
1, 1√

2
(1 + i), 1√

2
(1− i), 1

2 (1− i− j + k)
)

C7 =
(
1, k, −1, −k

)
C8 =

(
1, j, −1, −j

)
We note that Stab(Ci) = V (Ci) for i = 7, 8 while all other Ci’s have trivial stabilizer.

By Lemma 2.2, one can check that Orb(Ci) is a `i-cycle decomposition of Cay[G : Ωi]
where `i is the length of Ci and where the Ωi’s are the symmetric subsets ofG listed below.

Ω1 = { 1√
2
(i+ j), 1

2 (1− i− j − k), 1√
2
(−1 + i)}±1

Ω2 = {− 1√
2
(1− k), 1√

2
(1 + j), 1

2 (−1 + i+ j + k)}±1

Ω3 = { 1
2 (−1− i+ j + k), 1

2 (1 + i− j + k), 1
2 (−1− i− j + k)}±1

Ω4 = { 1√
2
(−i+ k), 1

2 (1− i+ j + k), 1√
2
(i+ k), 1

2 (−1− i+ j − k)}±1

Ω5 = { 1√
2
(i− j), 1√

2
(j − k),− 1√

2
(1 + j),− 1√

2
(j + k)}±1

Ω6 = { 1√
2
(1 + i), i, 1√

2
(1− k), 1

2 (1− i− j + k)}±1

Ω7 = {k}±1

Ω8 = {j}±1

Now note that the Ωi’s partitionG\{1,−1}. Thus, by Theorem 2.3 we can say that C :=⋃8
i=1Orb(Ci) is a G-regular cycle-decomposition of K48 − I . Now set Fi = OrbSi

(Ci)
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where

Si =


K for 1 ≤ i ≤ 3;
L for 4 ≤ i ≤ 6;
G for i = 7, 8.

By Remark 2.4, each Fi is a 2-factor of K48 − I with StabG(Fi) = Si, hence OrbG(Fi)
has length 3 or 4 or 1 according to whether 1 ≤ i ≤ 3 or 4 ≤ i ≤ 6 or i = 7, 8,
respectively. The cycles of Fi are triangles or quadrangles according to whether or not
i ≤ 3. Thus, recalling that C is a cycle-decomposition of K48 − I , we conclude that
F :=

⋃8
i=1OrbG(Fi) is a G-regular 2-factorization of K48− I with 9 triangle-factors and

14 quadrangle-factors, namely a G-regular solution of HWP(48; 3, 4; 9, 14).

3.4 An octahedral solution of HWP(48; 3, 4; 13, 10)

Consider the nine cycles of Cycle(G) defined as follows.

C1 =
(
1, − 1√

2
(i+ j), − 1√

2
(1 + j)

)
C2 =

(
1, 1

2 (1− i+ j − k), − 1√
2
(i+ k)

)
C3 =

(
1, 1√

2
(−i+ j), 1

2 (1− i− j − k)
)

C4 =
(
1, 1

2 (−1 + i− j + k), 1√
2
(i− k)

)
C5 =

(
1, 1

2 (−1− i+ j + k), 1
2 (−1 + i− j − k)

)
C6 =

(
1, k, −1, −k

)
C7 =

(
1, j, −1, −j

)
C8 =

(
1, − 1

2 (1 + i+ j + k), 1
2 (−1 + i− j + k), 1√

2
(1 + j)

)
C9 =

(
1, − 1√

2
(1 + k), −k, 1

2 (−1 + i+ j − k)
)

We note that Stab(Ci) = V (Ci) for 5 ≤ i ≤ 7 while all other Ci’s have trivial G-
stabilizer. Thus, by Lemma 2.2, one can check that Orb(Ci) is a `i-cycle decomposition
of Cay[G : Ωi] where `i is the length of Ci and where the Ωi’s are the symmetric subsets
of G listed below.

Ω1 = {− 1√
2
(i+ j),− 1√

2
(1 + j), 1

2 (1 + i+ j − k)}±1

Ω2 = { 1
2 (1− i+ j − k),− 1√

2
(i+ k), 1√

2
(1 + i)}±1

Ω3 = { 1√
2
(−i+ j), 1

2 (1− i− j − k), 1√
2
(j − k)}±1

Ω4 = { 1
2 (−1 + i− j + k), 1√

2
(i− k),− 1√

2
(j + k)}±1

Ω5 = { 1
2 (−1− i+ j + k)}±1

Ω6 = {k}±1

Ω7 = {j}±1

Ω8 = {− 1
2 (1 + i+ j + k), i, 1√

2
(−1 + i), 1√

2
(1 + j)}±1

Ω9 = {− 1√
2
(1 + k), 1√

2
(1− k), 1

2 (1− i+ j + k), 1
2 (−1 + i+ j − k)}±1
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Now note that the Ωi’s partitionG\{1,−1}. Thus, by Theorem 2.3 we can say that C :=⋃9
i=1Orb(Ci) is a G-regular cycle-decomposition of K48 − I . Now set Fi = OrbSi

(Ci)
where

Si =


K for 1 ≤ i ≤ 4;
G for 5 ≤ i ≤ 7;
L for i = 8, 9.

By Remark 2.4, each Fi is a 2-factor of K48 − I with StabG(Fi) = Si, hence OrbG(Fi)
has length 3 or 1 or 4 according to whether 1 ≤ i ≤ 4 or 5 ≤ i ≤ 7 or i = 8, 9, respectively.

The cycles of Fi are triangles or quadrangles according to whether or not i ≤ 5.
Thus, recalling that C is a cycle-decomposition of K48 − I , we conclude that F :=⋃9

i=1OrbG(Fi) is a G-regular 2-factorization of K48 − I with 13 triangle-factors and
10 quadrangle-factors, namely a G-regular solution of HWP(48; 3, 4; 13, 10).

3.5 An octahedral solution of HWP(48; 3, 4; 15, 8)

Consider the seven cycles of Cycle(G) defined as follows.

C1 =
(
1, 1

2 (−1− i+ j + k), 1√
2
(i+ k)

)
C2 =

(
1, − 1√

2
(i+ j), − 1√

2
(1 + j)

)
C3 =

(
1, 1

2 (−1 + i+ j − k), 1
2 (1− i+ j + k)

)
C4 =

(
1, 1

2 (1 + i+ j + k), 1√
2
(1 + j)

)
C5 =

(
1, 1

2 (1− i+ j − k), 1√
2
(i− k)

)
C6 =

(
1, −j, k, − 1√

2
(1− k)

)
C7 =

(
1, 1√

2
(i− j), 1

2 (−1− i+ j − k), 1
2 (−1 + i+ j + k)

)
Here, every Ci has trivial stabilizer. Thus, by Lemma 2.2, one can check that Orb(Ci)

is a `i-cycle decomposition of Cay[G : Ωi] where `i is the length of Ci and where the Ωi’s
are the symmetric subsets of G listed below.

Ω1 = { 1
2 (−1− i+ j + k), 1√

2
(i+ k), 1√

2
(−j + k)}±1

Ω2 = {− 1√
2
(i+ j),− 1√

2
(1 + j), 1

2 (1 + i+ j − k)}±1

Ω3 = { 1
2 (−1 + i+ j − k), 1

2 (1− i+ j + k), 1
2 (−1− i+ j − k)}±1

Ω4 = { 1
2 (1 + i+ j + k), 1√

2
(1 + j), 1√

2
(1 + i)}±1

Ω5 = { 1
2 (1− i+ j − k), 1√

2
(i− k), 1√

2
(j + k)}±1

Ω6 = {−j,+i, 1√
2
(1− k),− 1√

2
(1− k)}±1

Ω7 = { 1√
2
(i− j),− 1√

2
(1 + i),+k, 1

2 (−1 + i+ j + k)}±1

Now note that the Ωi’s partition G \ {1,−1}. Thus, by Theorem 2.3 we can say that
C :=

⋃7
i=1Orb(Ci) is a G-regular cycle-decomposition of K48 − I . Set Fi = OrbSi(Ci)

where

Si =

{
K for 1 ≤ i ≤ 5;
L for i = 6, 7.
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By Remark 2.4, each Fi is a 2-factor of K48 − I with StabG(Fi) = Si, hence OrbG(Fi)
has length 3 or 4 according to whether 1 ≤ i ≤ 5 or i = 6, 7, respectively. The cycles of
Fi are triangles or quadrangles according to whether or not i ≤ 5. Thus, recalling that C is
a cycle-decomposition of K48 − I , we conclude that F :=

⋃7
i=1OrbG(Fi) is a G-regular

2-factorization of K48 − I with 15 triangle-factors and 8 quadrangle-factors, namely a
G-regular solution of HWP(48; 3, 4; 15, 8).

3.6 An octahedral solution of HWP(48; 3, 4; 17, 6)

Consider the ten cycles of Cycle(G) defined as follows.

C1 =
(
1, − 1√

2
(1− k), − 1√

2
(i+ k)

)
C2 =

(
1, − 1√

2
(i+ j), 1

2 (−1 + i+ j + k)
)

C3 =
(
1, 1

2 (1 + i− j − k), − 1√
2
(1 + j)

)
C4 =

(
1, 1√

2
(−i+ j), 1√

2
(−i+ k)

)
C5 =

(
1, 1

2 (1− i+ j − k), 1√
2
(1− j)

)
C6 =

(
1, 1

2 (−1− i+ j + k), 1
2 (−1 + i− j − k)

)
C7 =

(
1, 1

2 (−1 + i+ j − k), 1
2 (−1− i− j + k)

)
C8 =

(
1, k, −1, −k

)
C9 =

(
1, j, −1, −j

)
C10 =

(
1, 1√

2
(1 + i), 1√

2
(1− i), 1

2 (1− i− j + k)
)

We note that Stab(Ci) = V (Ci) for 6 ≤ i ≤ 9 while all other Ci’s have trivial
stabilizer. Thus, by Lemma 2.2, one can check that Orb(Ci) is a `i-cycle decomposition
of Cay[G : Ωi] where `i is the length of Ci and where the Ωi’s are the symmetric subsets
of G listed below.

Ω1 = {− 1√
2
(1− k),− 1√

2
(i+ k), 1

2 (−1− i+ j − k)}±1

Ω2 = {− 1√
2
(i+ j), 1

2 (−1 + i+ j + k), 1√
2
(−1 + i)}±1

Ω3 = { 1
2 (1 + i− j − k),− 1√

2
(1 + j), 1√

2
(j + k)}±1

Ω4 = { 1√
2
(−i+ j), 1√

2
(−i+ k), 1

2 (1− i− j − k)}±1

Ω5 = { 1
2 (1− i+ j − k), 1√

2
(1− j), 1√

2
(j − k)}±1

Ω6 = { 1
2 (−1− i+ j + k)}±1

Ω7 = { 1
2 (−1 + i+ j − k)}±1

Ω8 = {k}±1

Ω9 = {j}±1

Ω10 = { 1√
2
(1 + i), i, 1√

2
(1− k), 1

2 (1− i− j + k)}±1

Now note that the Ωi’s partition G \ {1,−1}. Thus, by Lemma 2.2 we can say that
C :=

⋃10
i=1Orb(Ci) is a G-regular cycle-decomposition of K48 − I . Set Fi = OrbSi

(Ci)
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where

Si =


K for 1 ≤ i ≤ 5;
G for 6 ≤ i ≤ 9;
L for i = 10.

By Remark 2.4, each Fi is a 2-factor of K48 with StabG(Fi) = Si, hence OrbG(Fi) has
length 3 or 1 or 4 according to whether 1 ≤ i ≤ 5 or 6 ≤ i ≤ 9 or i = 10, respectively. The
cycles of Fi are triangles or quadrangles according to whether or not i ≤ 7. Thus, recalling
that C is a cycle-decomposition of K48 − I , we conclude that F :=

⋃10
i=1OrbG(Fi) is

a G-regular 2-factorization of K48 − I with 17 triangle-factors and 6 quadrangle-factors,
namely a G-regular solution of HWP(48; 3, 4; 17, 6).

4 Dicyclic solutions of two Hamilton-Waterloo problems
In this section G will denote the dicyclic group of order 24 which is usually denoted by
Q24. Thus G has the following presentation:

G = 〈a, b | a12 = 1, b2 = a6, b−1ab = a−1〉

Note that the elements of G can be written in the form aibj with 0 ≤ i ≤ 11 and
j = 0, 1. The group G has a unique involution which is a6 and we will need to consider
the following subgroups of G:

• H = 〈b〉 = {1, b, a6, a6b};
• K = 〈a2〉 = {1, a2, a4, a6, a8, a10};
• L = 〈a2b, a3〉 = {1, a3, a6, a9, a2b, a8b, a5b, a11b}.

4.1 A dicyclic solution of HWP(24; 3, 4; 7, 4)

Consider the four cycles of Cycle(G) defined as follows.

C1 =
(
1, a3b, a5

)
C2 =

(
1, a10, a7b

)
C3 =

(
1, a4, a8

)
C4 =

(
1, b, a3b, a

)
We note that the Stab(C3) = V (C3) while all other Ci’s have trivial stabilizer. Thus,

by Lemma 2.2, one can check that Orb(Ci) is a `i-cycle decomposition of Cay[G : Ωi]
where `i is the length of Ci and where the Ωi’s are the symmetric subsets ofG listed below.

Ω1 = {a3b, a5, a2b}±1

Ω2 = {a2, ab, a5b}±1

Ω3 = {a4}±1

Ω4 = {b, a3, a4b, a}±1

Now note that the Ωi’s partitionG\{1, a6}. Thus, by Theorem 2.3 we can say that C :=⋃4
i=1Orb(Ci) is a G-regular cycle-decomposition of K24 − I . Now set Fi = OrbSi

(Ci)
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where

Si =


L for i = 1, 2;
G for i = 3;
K for i = 4.

By Remark 2.4, each Fi is a 2-factor of K24 − I with StabG(Fi) = Si, hence OrbG(Fi)
has length 3 or 1 or 4 according to whether i = 1, 2 or i = 3 or i = 4, respectively.

The cycles of Fi are triangles or quadrangles according to whether or not i ≤ 3.
Thus, recalling that C is a cycle-decomposition of K48 − I , we conclude that F :=⋃4

i=1OrbG(Fi) is a G-regular 2-factorization of K24 − I with 7 triangle-factors and 4
quadrangle-factors, namely a G-regular solution of HWP(24; 3, 4; 7, 4).

4.2 A dicyclic solution of HWP(24; 3, 4; 9, 2)

Consider the four cycles of Cycle(G) defined as follows.

C1 =
(
1, b, a6, a6b

)
C2 =

(
1, a4b, a6, a10b

)
C3 =

(
1, a4, a7b

)
C4 =

(
1, a3b, a8b

)
C5 =

(
a4, a7, a5

)
We note that Stab(Ci) = V (Ci) for i = 1, 2 while all other Ci’s have trivial stabilizer.

By Lemma 2.2, one can check that Orb(Ci) is a `i-cycle decomposition of Cay[G : Ωi]
where `i is the length of Ci and where the Ωi’s are the symmetric subsets ofG listed below.

Ω1 = {b}±1

Ω2 = {a4b}±1

Ω3 = {a4, ab, a5b}±1

Ω4 = {a3b, a2b, a5}±1

Ω5 = {a1, a2, a3}±1

Also here the Ωi’s partition G \ {1, a6}, hence C :=
⋃5

i=1OrbG(Ci) is a G-regular
cycle-decomposition of K24 − I by Theorem 2.3. Now set:

F1 = OrbG(C1), F2 = OrbG(C2),

F3 = OrbL(C3), F4 = OrbH(C4) ∪ OrbH(C5).

By Remark 2.4, each Fi is a 2-factor of K24 − I and we have

StabG(F1) = StabG(F2) = G; StabG(F3) = L; StabG(F4) = H

so that the lengths of the G-orbits of F1, . . . , F4 are 1, 1, 3 and 6, respectively. The cycles
of Fi are triangles or quadrangles according to whether or not i ≥ 3. Thus, recalling that
C is a cycle-decomposition of K48 − I , we conclude that F :=

⋃5
i=1OrbG(Fi) is a G-

regular 2-factorization of K24− I with 9 triangle-factors and 2 quadrangle-factors, namely
a G-regular solution of HWP(24; 3, 4; 9, 2).



12 Ars Math. Contemp. 14 (2018) 1–14

5 A special linear solution of HWP(24; 3, 4; 5, 6)
In this section G will denote the 2-dimensional special linear group over Z3, usually de-
noted by SL2(3), namely the group of 2× 2 matrices with elements in Z3 and determinant
one. The only involution of G is 2E where E is the identity matrix of G. The 2-Sylow
subgroup Q of G, isomorphic to the group of quaternions, is the following:

Q =

{[
1 0
0 1

]
,

[
2 0
0 2

]
,

[
1 1
1 2

]
,

[
2 2
2 1

]
,

[
0 2
1 0

]
,

[
0 1
2 0

]
,

[
1 2
2 2

]
,

[
2 1
1 1

]}
.

We will also need to consider the subgroup H of G of order 6 generated by the matrix[
0 1
2 1

]
. Hence we have:

H =

{[
1 0
0 1

]
,

[
0 1
2 1

]
,

[
2 1
2 0

]
,

[
2 0
0 2

]
,

[
0 2
1 2

]
,

[
1 2
1 0

]}
.

The use of the special linear group G was crucial in [5] to get a Steiner triple system of
any order v = 144n+25 with an automorphism group acting sharply transitively an all but
one point. Here G will be used to get a G-regular solution of the last Hamilton-Waterloo
problem left open in [11].

Consider the six cycles of Cycle(G) defined as follows.

C1 =

([
1 0
0 1

]
,

[
2 0
2 2

]
,

[
1 2
1 0

])
C2 =

([
1 0
0 1

]
,

[
0 2
1 2

]
,

[
2 1
2 0

])
C3 =

([
1 0
0 1

]
,

[
0 1
2 2

]
,

[
2 2
1 0

])
C4 =

([
1 0
0 1

]
,

[
0 1
2 0

]
,

[
2 0
0 2

]
,

[
0 2
1 0

])
C5 =

([
1 0
0 1

]
,

[
1 1
1 2

]
,

[
2 0
0 2

]
,

[
2 2
2 1

])
C6 =

([
1 0
0 1

]
,

[
2 1
1 1

]
,

[
2 1
0 2

]
,

[
1 1
0 1

])
Here the stabilizer of Ci is trivial for i = 1, 6 while it coincides with V (Ci) for 2 ≤ i ≤ 5.
By Lemma 2.2, one can check that Orb(Ci) is a `i-cycle decomposition of Cay[G : Ωi]
where `i is the length of Ci and where the Ωi’s are the symmetric subsets ofG listed below.

Ω1 =

{[
2 0
2 2

]
,

[
1 2
1 0

]
,

[
0 2
1 1

]}±1

Ω2 =

{[
0 2
1 2

]}±1

Ω3 =

{[
0 1
2 2

]}±1

Ω4 =

{[
0 1
2 0

]}±1

Ω5 =

{[
1 1
1 2

]}±1

Ω6 =

{[
2 1
1 1

]
,

[
1 0
2 1

]
,

[
2 2
0 2

]
,

[
1 1
0 1

]}±1
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Once again we see that the Ωi’s partition G \ {E, 2E}, therefore C :=
⋃6

i=1Orb(Ci)
is a G-regular cycle-decomposition of K24 − I . Now set Fi = OrbSi

(Ci) with

Si =


Q for i = 1;
G for 2 ≤ i ≤ 5;
H for i = 6.

By Remark 2.4, each Fi is a 2-factor of K24 − I and we have StabG(Fi) = Si so that the
lengths of the G-orbits of F1, . . . , F6 are 3, 1, 1, 1, 1 and 4, respectively.

The cycles of Fi have length 3 or 4 according to whether or not i ≤ 3. Thus, recalling
that C is a cycle-decomposition of K24 − I , we conclude that F :=

⋃6
i=1OrbG(Fi) is

a G-regular 2-factorization of K24 − I with 5 triangle-factors and 6 quadrangle-factors,
namely a G-regular solution of HWP(24; 3, 4; 5, 6).
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