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Abstract

Equilibrium and non-equilibrium molecular dynamics simulations are combined to

compute the full set of coefficients that appear in the phenomenological equations

describing thermal transport in a binary mixture subject to a constant thermal gra-

dient. The Dynamical Non-Equilibrium Molecular Dynamics approach (D-NEMD) is

employed to obtain the microscopic time evolution of the density and temperature

fields, together with that of the mass and energy fluxes. D-NEMD enables to study
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not only the steady state, but also the evolution of the fields during the transient that

follows the onset of the thermal gradient, up to the establishment of the steady state.

This makes it possible to ensure that the system has indeed reached a stationary condi-

tion, and to analyze the transient mechanisms and time scales of the mass and energy

transport. A local time averaging procedure is applied to each trajectory contributing

to the calculation to improve the signal to noise ratio in the estimation of the fluxes

and to obtain a clear signal with the, relatively limited, statistics available.

Introduction

Thermal transport in simple dense fluids is an interesting phenomenon whose description in

the framework of classical statistical mechanics has been elegantly reviewed, in particular,

in a vintage chapter by K. E. Gubbins1. In this paper, we shall focus on the coupled

mass and energy diffusion in a binary mixture subject to a constant thermal gradient and

consider the evaluation of the thermal transport coefficients via computer simulation. It

is well known2–4 that a system subjected to a constant thermal gradient will be driven to

a non-equilibrium steady state such that energy (heat) flows at a constant rate through

it, while the mass flux stops and a constant concentration gradient is established. This

thermal diffusion process, known as the Ludwig-Soret effect, was first observed in 1856 in

sulfur-solfate solutions and has since been identified experimentally in a broad range of

systems, ranging from gases to polymer mixtures5–7. The experimental characterization of

the Ludwig-Soret effect is, however, challenging8. In mutual diffusion, in fact, thermally

driven flows are considerably smaller than, for example, density driven flows and therefore

difficult to measure accurately. Molecular Dynamics (MD) based simulations have then

been used4,9–21, together with purely theoretical work, to investigate thermal transport

and compute, in particular, the Soret coefficient. Important technical issues, such as the

proper definition of the microscopic estimator for the heat flux, have been clarified by these

calculations12, but they are limited to the steady state. As discussed more in detail in the
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following, the approach that we employ, the D-NEMD method22, makes it possible to study

also the onset of the transport phenomena and the evolution of hydrodynamic fields towards

the steady state, if the latter exists. We shall exploit this feature to study the Ludwig-

Soret effect focusing at first on the transient response of the system as described by the

relaxation of the time dependent number and temperature density fields and the mass and

energy currents. Following this relaxation in time, the transient transport mechanisms and

the time scales for the different fluxes will be investigated in some detail. Calculations in

the steady state will then be combined with the evaluation, from the time autocorrelation

function of the mass current at equilibrium, of the mutual diffusion coefficient to compute

the Onsager thermal transport coefficients23,24 that characterize the Ludwig-Soret effect.

The paper is organized as follows. We begin by summarizing the key phenomenological

equations, indicating the relevant transport coefficients and how they will be calculated

from simulations. This is followed by a description of the D-NEMD approach and the

definition of the estimators for the microscopic fields and fluxes studied. A smoothing scheme

adopted to reduce the noise on the estimated currents is also discussed. We conclude the

Methods and Model section providing details on the adopted model (an equimolar mixture

of Lennard-Jones Argon and Krypton) and on the set-up chosen to simulate the constant

thermal gradient. Results are then discussed, followed by some conclusions.

Methods and Model

Macroscopic model and relevant coefficients

To set the stage and introduce some notation, let us recall that the key fields for describing

thermal diffusion in a binary mixture are Je, the energy current density, and J1 the diffusion

current density of species 1 relative to the center of mass frame of reference. For a binary

mixture J2 = −J1, where the subscripts 1, 2 are the indexes of the species. In the following

1 will refer to Kr and 2 to Ar. Adopting a hydrodynamic point of view, the divergence
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of the energy current and species diffusion current drives the time evolution of the energy

and species mass density fields, respectively (the other continuity equations relating the

time derivatives of the total mass density to the divergence of the total momentum, and

the time derivative of the momentum density to the divergence of the stress tensor are not

relevant in this work). In 1971, Trimble and Deutch25, derived the linearized hydrodynamic

equations for a two-component mixture starting from a microscopic description based on

Kubo’s linear response theory. They showed, in particular, that the currents of interest here

can be expressed as

J1 = −
[

DT

T
∇T +DT ∇(

µ

T
)

]

(1)

Je = −
[

κ∇T +DT T∇(
µ

T
)
]

where κ is the coefficient of thermal conductivity (as in the Fourier law), D is the mutual

diffusion coefficient (as in Fick’s law) and DT the coefficient of thermal diffusion (as in Soret’s

effect). The equations above refer to the case, considered in the following, of an isotropic

system. In the more general case, e.g. liquid crystals, the thermal conductivity is in fact a

tensor. Note that here and in the following we adopt the notation of Trimble and Deutch

to identify the thermal transport coefficients and the relevant fields (see, for example, the

discussion in the Appendix of Trimble and Deutch25 for a review of possible alternative

definitions). In the same paper25, expressions for the transport coefficients in terms of time

correlation functions were obtained.

The connection between the coefficients computed via time correlation functions at equi-

librium and quantities directly accessible to experiments, however, is problematic for mix-

tures because it requires auxiliary calculations of thermodynamic quantities such as partial

enthalpies and derivatives of the chemical potential26,27. The exception is the mutual dif-

fusion coefficient D for which a straightforward Green-Kubo expression is established25.

Moreover, useful relationships exist for the thermal transport coefficients and energy current
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densities in the, non-equilibrium, stationary states25. When combined, as discussed below,

these relationships make it possible to compute the thermal conductivity and diffusion coeffi-

cients more straightforwardly. In this work, we propose to take advantage of this observation

to define a suitable computational approach. To see how, we recall that for a system subject

to a temperature gradient the stationary state is such that

J1 = 0 (2)

Je = −
[

κ− D2
T

DT

]

∇T ≡ −λT∇T

where the coefficient λT is defined implicitly in the last equation. The thermal and mutual

diffusion coefficients are related, in the definition of the Soret coefficient of the mixture6,

by ST = DT/D. This coefficient, accessible also in experiments, provides a measure of the

relative strength of thermally induced and concentration driven diffusion. In the following,

we shall consider an equimolar mixture in which the thermal gradient is directed along the

z axis. In this case, the Soret coefficient can be measured directly, in stationary conditions,

as4

ST = −4

(

∂χ1

∂z

)(

∂T

∂z

)−1

(3)

where χ1 is the mole fraction of species 1.

Based on the observations above, all the thermal transport coefficients can be computed

from atomistic simulations by combining equilibrium and non-equilibrium molecular dynam-

ics simulations. Our approach can be summarized as follows. Equilibrium MD will be used

to obtain the mutual diffusion coefficient D by computing the time correlation function of

the mass current of species 1 in the system. Non-equilibrium MD will instead be used to

simulate the binary mixture under the constant thermal gradient and access quantities in

the steady state. D-NEMD will be employed to characterize the transient and to verify the

establishment of the steady state by following the evolution of the density and temperature

fields, and of the associated currents, from the appearance of the thermal gradient to sta-
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tionarity. In the stationary condition, a direct measurement of the energy flux at a known

value of the thermal gradient will provide us with an estimate of the thermal coefficient

λT =

[

κ− D2
T

DT

]

, while the ratio of the slope of the density (related to the mole fraction)

and temperature fields will measure the Soret coefficient. From these calculations we can

obtain

DT = DST (4)

κ = λT +
DS2

T

T

Simulation methods and microscopic expressions of observables

As mentioned in the Introduction, the non-equilibrium molecular dynamics simulation will

be performed using the D-NEMD approach22. This method implements numerically the

Onsager principle on the regression of fluctuations23,24 and has been applied to a variety

of problems28–35, including a preliminary investigation of the Ludwig-Soret effect20. In this

approach, the binary mixture is described at a microscopic level as a system of Nα particles

of each species (α = 1, 2 is the species index) in the phase space Γ ≡ {ri1 ,pi1 , ri2 ,pi2 , i1 =

1, . . . , N1, i2 = 1, . . . , N2}, where riα ,piα are the positions and momenta of particle i of

species α. The time evolution of the system is governed, at equilibrium, by the (time-

independent) Hamiltonian H0(Γ), and time evolution operator S0(t) such that Γt = S0(t)Γ,

where we have indicated with Γt the phase space point at time t, and for convenience of

notation, we assume that the initial time of the evolution is t0 = 0, using the notation

Γt0 = Γ.

According to the prescriptions of statistical mechanics, a generic macroscopic field, in-

dicated as O(r, t), can be obtained as the ensemble average of the corresponding micro-

scopic observable over phase space. If we indicate this microscopic observable as Ô(r,Γ) ≡

6
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N
∑

k=1

Ok(Γ)δ(r− rk), we then have

O(r, t) =

∫

dΓÔ(r,Γ)f(Γ, t) (5)

where f(Γ, t) is the, normalized, phase space probability density of a time dependent en-

semble. The expression above can be re-expressed identically by first observing that the

evolution of the probability density under a time dependent dynamics from time t0 = 0 can

be written, due to the Liouville equation, as f(Γ, t) = S†(t)f(Γ, 0), while for an observable

the evolution operator is the adjoint, i.e. Ô(r,Γt) = S(t)Ô(r,Γ). Here we indicate with

S(t) the evolution operator of the time-dependent dynamics. Using the definition of the

scalar product in Hilbert space to transfer the evolution from the probability density to the

microscopic observable, we have

O(r, t) =

∫

dΓÔ(r,Γ)
[

S†(t)f(Γ, 0)
]

(6)

=

∫

dΓ
[

S(t)Ô(r,Γ)
]

f(Γ, 0)

=

∫

dΓÔ(r,Γt)f(Γ, 0)

The last equation, known as the Kubo-Onsager relationship, provides the formal basis for

D-NEMD36,37. It states that the time evolution of a macroscopic field can be obtained as

the average over the ensemble at the initial time of the time evolved microscopic observable.

The time evolution of the microscopic observable can be obtained via MD for quite general

dynamical systems. If the probability density f(Γ, 0) can be sampled by simulation (e.g.

when it corresponds either to equilibrium or to stationary conditions) then, the relationship

above generates the D-NEMD algorithm to calculate the fields.

This algorithm can be summarized in three steps (see also figure 1):

(1) sample a set of initial conditions from f(Γ, 0) (e.g. at equilibrium using Monte Carlo

or molecular dynamics driven by H0);

7
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t

t
t

t

ta sample of states  

obtainable from 

     D-NEMD trajectory
from τ = 0 to τ = t

f(Γ, 0)

Figure 1: Scheme of the D-NEMD algorithm: A set of individual trajectories (segments),
started from initial conditions sampled from f(Γ, 0) is propagated for a time t based on
the non-equilibrium dynamics to which the system is subjected. The time-dependent non-
equilibrium average is then obtained as the mean of the values of the observable Ô(r,Γt)
computed along each segment.

(2) evolve these initial configurations under the non-equilibrium dynamics of the system

and compute the microscopic observable along each trajectory;

(3) compute the macroscopic field as the average of the microscopic observable over the

trajectories.

As mentioned in the previous subsection, we shall study the Ludwig-Soret effect in an equimo-

lar Ar-Kr mixture, with constant thermal gradient directed along the z axis of the system.

The macroscopic fields relevant for this phenomenon are the number density field of the

species and the temperature field. The corresponding microscopic observables are defined as

(in all equations below α = 1, 2)

n̂α(r, t) =
Nα
∑

iα=1

δ(riα(t)− r) (7)

and

T̂ (r, t) =
1

3kB

∑

α

Nα
∑

iα=1

p̃2
iα(t)

mα

δ(riα(t)− r)

/(

V
∑

α

〈n̂α(r, t)〉 − 1

)

(8)

In the equation above, p̃iα(t) is the momentum in the center of mass reference, i.e. p̃iα(t) =

piα(t)−mαvcm, where vcm is the center of mass velocity, V the volume of the system, and

kB is the Boltzmann constant. In all calculations discussed in the following, vcm = 0 and so

we drop the tilde on the momenta to simplify the notation. The brackets in eq. (8) indicate

8
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an average with respect to the initial ensemble at t0 = 0 while, consistent with eq. (6), the

time evolution is that of the system subject to the thermal gradient. A detailed description

of the equilibrium sampling and non-equilibrium dynamics are given in sections Simulation

set-up and Results and Discussion. To the density and temperature fields are associated the

mass current for each species

Ĵα(r, t) =
Nα
∑

iα=1

piα(t) δ(riα(t)− r) , (9)

and the energy current13,38

Ĵe(r, t) =
2
∑

α=1

Nα
∑

iα=1

eiα(t)
piα(t)

mα

δ(riα(t)− r)

+
1

2

2
∑

α=1

2
∑

β=1

Nα
∑

iα=1

N ′

β
∑

jβ=1

[

(riα(t)− rjβ(t)) · Fiαjβ(t)
] piα(t)

mα

δ(riα(t)− r) (10)

where

eiα(t) =
p2
iα(t)

2mα

+
1

2

2
∑

β=1

N ′

β
∑

jβ=1

φ(riα(t), rjβ(t)) (11)

where φ(riα , rjβ) is the (pair) potential between particle i of species α and particle j of

species β, and the prime indicates that self interactions must not be considered. Fiαjβ =

−∇iαφ(riα , rjβ) is the force on particle i of species α due to particle j of species β.

As mentioned above, see eq. (3), given the symmetry used in our simulation, the ratio of the

slopes of n1(r, t) (which can be related to the mole fraction) and T (r, t) in the steady state

will allow us to measure the Soret coefficient, while the ratio of the constant energy flux over

the imposed constant thermal gradient, see second line of eq. (2), will provide an estimate

of λT . Finally, the mutual diffusion coefficient (to be computed from equilibrium molecular

dynamics simulations) is defined as25

D = lim
t→∞

1

3kBTV

∫ t

0

ds〈Ĵ1(s) · Ĵ1(0)〉 (12)

9
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The estimate of the thermal transport coefficients outlined above requires a precise mea-

surement of the currents. The averages of these quantities, however, present a significant

level of noise that hides the behavior of the system both in the transient and in the steady

state, and prevents converging the D-NEMD calculation with reasonable computational ef-

fort20 . The problem affects all the currents, but, as shown in the following, it is particularly

critical for the mass current Ĵ1 of species 1. It is, however, possible to mitigate this difficulty

by observing that the typical time scales over which the currents show significant changes

are considerably longer than those corresponding to the natural microscopic evolution of the

system. One can then take advantage of this fact to smooth the, slow varying, noisy signal

by averaging it over short time segments on each D-NEMD trajectory. The final signal is

then constructed as the mean of the short time averages on the ensemble of trajectories. By

indicating with X(t) the noisy signal in the time interval [t0, tf ], the smoothed estimator on

each trajectory is given by

µ̂(τ) =
1

τw

∫ τw/2

−τw/2

X(τ + s)ds (13)

where τw is the time width of the averaging window (nb. in the time intervals τ ∈ [t0, t0+τw]

and τ ∈ [tf − τw, tf ], the limits of integration and the normalization are adjusted accordingly

to the available window, centered around τ). The stability of this smoothing procedure

can be verified by varying the width of time window over which the average is taken along

each trajectory. Note that this approach still preserves the full average over the whole set

of non-equilibrium initial conditions and is therefore very different from attempts to obtain

non-equilibrium properties from long time averaging along a single trajectory.

Simulation set-up

We study an equimolar Kr-Ar mixture in which the atomic interactions are described by

Lennard-Jones potentials. Lennard-Jones units σ = 1, ǫ = 1, m = 1 referred to Argon are

10
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adopted throughout, with potential parameters for Krypton equal to σ1 = 1.07 σ, ǫ1 = 1.39 ǫ

and m1 = 2.1m. Pair interactions between particles of different species follow the Lorentz-

Berthelot convention, σ12 = σ21 = (σ1 + σ2)/2 and ǫ12 = ǫ21 =
√
ǫ1ǫ2.

All simulations are carried out at the reference (total) number density n∗ = 0.7256 σ−3

and reference (mean) temperature T ∗ = 1.0 ǫ/kB. The simulation boxes (see also figure 2),

are rectangular prisms whose linear dimensions are taken as integer multiple of the potential

cut-off distance rc. This choice makes it possible to optimize, using the cell index method39,

adopted in the simulations, the calculation of pair interactions with orthorombic periodic

boundary conditions enforced in all directions. The macroscopic fields are estimated by

discretizing the space only along the z axis, i.e the direction of the temperature gradient,

since the fields remain uniform in the orthogonal directions, as checked in our preliminary

study20 (see also Results section). The simulation box was divided into parallel slabs of

width ∆z = σ1, each identified by its middle point along the z−axis: zM = (M − 1
2
)σ1 with

M = 1, 2, . . . ,Mmax. A cut-off distance rc = 3 σ1, i.e. equal to three times the discretization

spacing ∆z, was used for all interactions in all simulations. This value, somewhat larger

than the 2.5σ cut-off usually adopted with Lennard-Jones interactions, suits better the space

discretization and helps reducing the truncation noise in the calculation of the energy current,

eq.(10), without a significant increase of the cost of the calculation.

The equilibrium simulations are performed on a box of dimensions (6rc × 6rc × 6rc)

containing 5184 particles (i.e. N
(eq)
1 = 2592). The non-equilibrium runs are performed on a

larger system of 11760 particles (i.e. N
(ne)
1 = 5880) and box dimensions (7rc × 7rc × 10rc),

the largest dimension referring to the z−axis. In these simulations Mmax = 30 slabs were

employed, each containing, on average, 392 atoms. To drive the systems to the desired

temperature and to establish the thermal gradient, we employ a scheme in which the velocity

rescaling is applied to the particles within selected regions of the simulation box to match

a prescribed average target temperature. The position of the thermostatted regions can

be arbitrarily chosen and particles are free to move in and out of them. In the set-up

11
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adopted in this work, these regions correspond to three consecutive slabs located one at

the left (M = 1, 2, 3) and the other at the right boundary (M = 28, 29, 30) along the

z−direction of the simulation box. With this set-up the thermostatted regions share a

common interface due to the periodic boundary conditions and there is a unique region of

interest in the central part of the box (M = 4, ..., 27) over which a single uniform thermal

gradient is established. Only particles in this region contribute to the calculated signals.

Note that, since the thermostatting regions have a width at least equal to rc, particles in the

physically relevant central part of the box can interact at most with particles in one of the

two thermostatted regions regardless of periodic boundary conditions. This simulation set-up

differs from the one adopted to compute the Soret coefficient, for example, in the so-called

reverse perturbation nonequilibrium molecular dynamics (RPNMD) approach40. In this

alternative set-up, imposed mainly by the practical implementation of the specific scheme

enforced to establish stationary non-equilibrium currents4, the cold and hot thermostats

are placed at one of the edges and at the center of the simulation box. Due to periodic

boundaries, this results in two separate regions of interest in the box where thermal gradients

of equal magnitude but opposite sign are established. In preliminary calculations, we have

experimented with these two different set-ups and verified that results for the stationary

gradients and transport properties, in particular for the Soret coefficient, are the same. The

simulation scheme adopted in the following was chosen because it maximises the number of

independent samples obtained, at equal computational effort, for the transient behavior by

avoiding dynamical correlations in the evolution of the fields which are present when using

the RPNMD set-up. The thermostatted regions, identified with the letters C (cold) and

H (hot) are kept at the temperature TC and at the temperature TH , respectively. When

thermostatting the system to sample initial conditions from the ‘equilibrium’ distribution

the two values are equal to the assigned target temperature TH = TC = T ∗, while to

establish a ∆T thermal gradient around the mean value T ∗, the two temperatures values

TC = T ∗ − ∆T/2 and TH = T ∗ + ∆T/2 are imposed. The dynamics of the particles
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is integrated using the standard velocity-Verlet algorithm, with an additional step, which

implements the local temperature control, for the dynamics of the particles inside the two

thermostatted regions. After their dynamics is propagated with the usual velocity-Verlet

scheme, the (local) kinetic energy and (local) momentum are computed within each slab.

Then particle velocities are rescaled in such a way that, within each slab, the (local) kinetic

energy matches the target temperature while the (local) momentum does not change. More

in detail, velocity rescaling is performed as follows. At each timestep, the center of mass

velocity of the particles in the slab is computed as

vM(t) =
∑

α

∑

jα∈M

pjα(t)/
∑

α

∑

jα∈M

mα (14)

where the index M can refer either to a slab in the cold region, i.e. M = 1, 2 or 3 or to a slab

in the hot region, i.e M = 28, 29 or 30 . The (local) instantaneous kinetic energy, excluding

the center of mass motion, in the M -th slab is then calculated as

KM(t) =
∑

α

∑

jα∈M

(pjα(t)−mαvM(t))2

2mα

(15)

and used to obtain the scaling factor

γM =

√

2KM(t)

3(NM(t)− 1)kBTM

(16)

where NM(t) =
∑

α

∑

iα∈M
1 is the total number of particles in the M -th slab at the time t

and TM the target temperature. The particles are finally assigned new momenta defined as

p̄jα(t) = γM(pjα(t)−mαvM(t)) +mαvM(t) (17)

As mentioned above, this procedure ensures that, layer by layer, the thermostat does not

influence the momentum density and, as a consequence, the total momentum of the whole

13
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Results and discussion

The results presented in the following were obtained via the D-NEMD scheme, implemented

by considering an ensemble of initial conditions sampled from an equilibrium MD trajec-

tory in which the system has a homogeneous temperature equal to T ∗ = 1ǫ/kB . A non-

equilibrium trajectory is started from each initial condition by imposing, at t0 = 0, the

thermal gradient along the z direction. The gradient is generated by changing the tempera-

tures at the boundaries of the simulation box as described in the previous section, resulting

in a temperature difference between the cold and hot boundary equal to ∆T = 0.1ǫ/kB.

The non-equilibrium trajectories are propagated using a timestep δt = 0.005 in reduced

Lennard-Jones units.

Results for the fields and fluxes are presented as a function of the z coordinate alone, (i.e.

in the direction of the thermal gradient) since the components along the x and y directions

of the currents vanish on average. Correspondingly, the density and temperature fields are

constant along the x and y directions. We denote the z component of the mass current of

Kr as J1(z, t) (no boldface), with analogous notation for the other quantities , (dropping the

z−component suffix to simplify the notation). For each trajectory, the estimators for the

fields in the M -th slab are obtained by discretizing the sum over the Dirac delta-functions.

In correspondence of the field position r −→ zM , one has
∑

iα

δ(riα − r) −→ 1

VM

∑

iα∈M

where

the sum runs over the particles of species α in slab M . For example, the estimator for the

density ñα(zM , t) is defined as

ñα(zM , t) =
Nα

M(t)

VM

(18)

where Nα
M(t) =

∑

iα∈m
1 is the number of particles of species α in the M−th slab at time

t and VM is the volume of the M−th slab (equal for all of them). The estimator for the

momentum density field G(zM , t) is defined as

G̃(zM , t) =

(

∑

α

∑

jα∈M

mα

)

vM(t) (19)
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and, for the equimolar mixture under consideration, the estimators of the partial temperature

fields T̃α(zM , t) in each slab, are given by

T̃α(zM , t) =
2K̃α(zM , t)

3kB

/

〈Nα
M(t)−mα/

∑

β

mβ)〉 (20)

where

K̃α(zM , t) =
∑

jα∈M

[pjα(t)−mαvM(t)]2

2mα

(21)

is the kinetic energy of the particles of species α in the M−th slab calculated excluding the

corresponding fraction of the degrees of freedom for the center of mass motion vM . The

correction to the number of degrees of freedom in eq.(20) is distributed proportionally to the

mass of each species. The discretized estimators for the current fields J̃e(zM , t) in eq. (9) and

J̃1(zM , t) eq. (10) are defined in analogy with those for the number and momentum densities

and for the temperature fields.

The macroscopic fields are computed by averaging the microscopic estimators over an

ensemble of 2000 D-NEMD non-equilibrium trajectories. When necessary, in particular for

the currents, the smoothing scheme described in the previous section was implemented to

regularize the final average. Details on the width of the averaging window are given in the

text and in the appropriate figure captions.

The transient regime

Figures 3 and 4 show the short, t ∈ [0, 100], and long, t ∈ [100, 2000], time behavior of the

temperature field T (z, t) (left panel) and of the number density n(z, t) = (n1(z, t)+n2(z, t))

(right panel), as functions of the z coordinate. Figure 3 indicates that switching on the

thermal gradient rapidly induces an intermediate state in which these fields (and thus the

total temperature and density fields) change from their equilibrium values, constant along z

in the non thermostatted part of the box, (red curves in the figure) to a linear profile which

is reached by t = 40 (blue curve) and remains essentially constant thereafter (purple, t = 50,
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The different relaxation times for the total and single particle fields originate from the

behavior of the currents, as verified by our simulations. To begin with, the onset of station-

arity for the temperature and average density fields on a short time scale is confirmed by the

behavior of the associated currents. In figure 7, we show the time evolution of the z− com-

ponent of the total momentum of the non-thermostatted particles, G(t) =
[∫

V ′
drG(r, t)

]

z
,

i.e. the mass current, see eq. (19), integrated over the volume V ′ of the non-thermostatted

part of the simulation box i.e. summing the discretized z-components of the estimator, see

eq. (19), over the slabs with indices M = 4, 5, . . . , 27. This value can be different from zero,

and it is at any time equal to minus the same quantity calculated for the thermostatted parts

of the simulation box, as the system total momentum is set to zero initially and remains so

within machine precision. In this and in the other figures for the currents we report both the

raw data, i.e. the simple average over the non equilibrium trajectories from the simulations,

and the results obtained after time averaging over a window of width τw. In figures 7 and 8

the raw data is shown as black dots while the smoothed results are shown as red curves. The

contribution from the z-component of the divergence of G(r, t) drives the time evolution of

the total density. As expected, the integral of the momentum density G(t) goes, quickly, to

its stationary value, equal to zero. This value is in fact reached at about t = 40 in corre-

spondence with the onset of stationarity for the total density. The relaxation shows clear

oscillations on a time scale of about 7 Lennard-Jones time units, which is close to the time

∆τ = 6.25 that a longitudinal sound wave would need to cross the MD periodic cell along

the z direction (10rc distance) with the sound velocity c = 808 m/s reported in ref.42 for

a equimolar mixture at T = 0.975. These oscillations probably originate from competing

effects due to the time and space evolution of temperature and density fields: as the tem-

perature wave propagates in the system, the resulting density wave creates a compression in

the fluid in its direction of propagation. Particles then recoil due to the average effect of this

compression front, before being pushed again by the temperature gradient. This is reflected

in the momentum density, with the recoil effect probably amplified by the large temperature
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gradients. Indeed The typical values of G(t) show an oscillation range spanning about 100

Lennard-Jones units at short time. This results in a good signal to noise ratio with the

ensemble size adopted in our calculations, and enables to obtain a well converged signal by

‘brute force’, i.e. by simple averaging over non equilibrium trajectories. In this case, then,

the (mild) time averaging performed over a time window τw = 1, shown in red in the figure,

results only in a minor smoothing effect on the curve.

t/
√

mσ2/ǫ

G(t)

Figure 7: Momentum density, short time behavior: black dots represent the raw data while
the red line is obtained by time averaging over a window of width τw = 1 in Lennard-Jones
time units (σ and ǫ in the axis label refer to Ar parameters). Beyond t = 50 the signal shows
only statistical noise around zero, the stationary value, as shown in the inset.

Similar to the integral of the momentum density, Je(t), the energy current integrated

over V ′ and reported in figure 8, shows a rapid decay for t ∈ [0, 50], corresponding to the

propagation of the thermal wave starting from the boundaries, penetrating and progressively

reducing the plateau in the bulk as shown in the left panel of figure 3. For t > 100, the

energy current becomes constant, consistent with eq. (2). Although this qualitative behavior

is visible in the raw data (black points), the noise (average fluctuation) to signal ratio is equal

to about 60%. In this case, the additional time averaging over a slightly larger time window,
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τw = 4, has a more pronounced effect in reducing the high frequency noise, as shown by the

red curve in figure 8, enabling a more precise estimate of the thermal diffusion coefficient.

The time needed to reach the overall steady state of the system is, however, much longer

than the one indicated by the energy current and this is reflected, as mentioned above, in

the long time scale of the relaxation of the densities of the individual species. This can

t/
√

mσ2/ǫ

Je(t)

Figure 8: Short and long (inset) time behavior of the energy current Je(t). In the plots,
the black dots represents the raw data and the red line is obtained by time averaging over a
window of width τw = 4 time units, given in Lennard-Jones units.

be appreciated also by considering the time evolution of the integrated mass current for

Kr, shown in figure 9. Let us focus first on the bottom panel of the figure, showing the

smoothed result. The plot indicates that there is an initial, relatively, fast increase in the

current that at about t ≈ 100 is followed by a slower relaxation towards the, stationary, zero

value. Consistent with the evolution of the Kr density profile, the current becomes essentially

null for t > 1000, showing fluctuations around zero for longer times as the profiles of both

species stabilize around their final linear shape. The need for the time averaging procedure

is clearly demonstrated by the top panel of figure 9 where we show as black dots the raw

signal obtained by simple averaging over 2000 D-NEMD trajectories. The fluctuations of
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t/
√

mσ2/ǫ

J1(t)

J1(t)

Figure 9: Kr mass current. In the top panel, black points show the raw data, while the blue
and red curves present the smoothed results, with values of the time window width over
which the average is taken equal to τw = 5 (blue) and τw = 50 (red) Lennard-Jones time
units. The bottom panel reports the smoothed red curve for clarity of discussion.
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Let us begin by summarizing, for convenience, the situation for the temperature and

number density fields in the steady state. The results for these fields are presented in

figure 11. In the top panel, we show in black, red and blue the temperature estimated from

the total, Kr, and Ar kinetic energies, respectively, as a function of z (see eq. (8)). The

dots correspond to averages over the kinetic energy of particles in each slab, with position

indicated in units of ∆z ≡ σ1 in the abscissa. The bottom panel shows the stationary density

profiles with the same color convention. From these curves, the slopes of the temperature and

of the number density gradients were estimated. We obtained:
∂T

∂z
= 0.003603±0.000016 and

∂n

∂z
= −0.000918± 0.000008,

∂n1

∂z
= −0.001575± 0.000010 and

∂n2

∂z
= 0.000657± 0.000012.

Converting the number density in mole fraction, and using eq.(3) we get: ST = 2.41±0.02 =

(20. ± 0.2) 10−3K−1. This result is consistent with data for similar systems4,20, though a

direct comparison is delicate given the sensitivity of the Soret coefficient to small variations

in the imposed temperature and density. For comparison, the average value of the Soret

coefficient given by the model fitted with eq. (3) of Longree et al5 is < ST >= 31 ×10−3K−1

for an equimolar Ar-Kr mixture.

The value of the thermal conductivity can also be estimated from the steady state results,

when J̄1 = 0 and Ḡ = 0. Figure 8 shows that the energy current reaches a stationary, non

vanishing, state with an asymptotic value J̄e = −90.2 from which we calculate, eq. 2, the

“thermal conductivity”25 λT =
J̄e

V∇T
= 1.93±0.01, both values in Lennard-Jones units. This

value cannot be compared with similarly named quantities obtained via direct Green-Kubo

formulas9, or by response theory results obtained in non-equilibrium molecular dynamics

by mechanical perturbations10,11 since for a mixture the energy current cannot be identified

with the heat flux nor immediately the mechanical perturbation with the thermal gradient.

The final input needed to compute the direct and cross Onsager coefficients is the mutual

diffusion coefficient, D. As mentioned in the Methods, this quantity can be calculated from

the equilibrium simulation of the system25, since it is proportional to the time integral

of the equilibrium autocorrelation function of the mass current of species 1. To compute
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R(t)

t/
√

mσ2/ǫ

< Ĵ1(t) · Ĵ1(0) >

< Ĵ2

1
(0) >

Figure 12: Autocorrelation (normalized) of Ĵ1 and its running integral R(t) = 1
3

t
∫

0

〈Ĵ1(s) ·

Ĵ1(0)〉ds from equilibrium calculation.
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it and the associated error, we propagated 16 independent NVE trajectories, each of 250

thousand steps (same timestep as in the non-equilibrium simulations). Initial conditions

for these trajectories were sampled from an equilibrated NVT simulation, to ensure that

the temperature was set to T ∗ = 1ǫ/kB. Figure 12 shows the mass current autocorrelation

function, inset, and its integral, main figure. Both the shape and the decay times of the

time correlation function are in good agreement with previous calculations13. Estimating

the infinite time limit of the integral from the value of the plateau in the main figure, we get

D = lim
t→∞

R(t)

kBTV
= 0.0166± 0.0001 in Lennard-Jones units.

The value of the mutual diffusion coefficient can now be combined with our non-equilibrium

measure of the Soret coefficient to obtain the thermal diffusion coefficient DT = DST =

0.0400± 0.0006 in Lennard-Jones units. Finally, from κ = λT +DS2
T/T , eq. 2, we estimate

the coefficient of thermal conductivity25 κ = 2.03 in Lennard-Jones units. Comparison with

experimental values in the literature is delicate, given the strong dependence on the thermo-

dynamic point and only for the sake of completeness we report here the value χ = 4.43 for the

thermal conductivity measured by Mikhailenko et al. in similar conditions for temperatures

but not for densities43. Results are summarized in Table 1.

Table 1: Summary of results for this calculation transport coefficients. All values are in
Lennard-Jones units.

n∗ T ∗ ∆T 102D ST λT 102DT κ
0.7256 1.0 0.1 1.66 ± 0.01 2.41± 0.02 1.93 ± 0.01 4.00 ± 0.06 2.03 ± 0.02

Conclusions

In this paper, we have combined equilibrium and non-equilibrium simulations to obtain the

full set of phenomenological coefficients appearing in the Onsager description of thermal

transport. The transient behavior of the system was investigated in detail, to the best of our

knowledge for the first time, using the D-NEMD approach to non-equilibrium simulations.
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It presents a picture with a clear time scale separation between a fast regime, t ≈ 50 in

which the mixture behaves like a single component fluid, reaching a steady state for the

temperature and overall density profiles, and a slow regime in which the behavior of the

species differentiates and the Ludwig-Soret effect builds up. The time evolution of the Ar

(lighter species in our mixture), in particular, is non trivial, following the profile of the

average density for short times, building a definite oscillation and then inverting its overall

slope to relax to its linear stationary profile on the longer time scale. In the stationary

regime the momentum current of the fluid vanishes while a steady heat flux from the hot to

the cold thermostat is established, as illustrated by the asymptotic behavior of the energy

current.

Our calculations confirmed that a brute force evaluation of the currents at the level of

accuracy necessary to determine the transport coefficients requires a number of D-NEMD

trajectories that is too large for practical purposes. In particular, the single species mass

currents showed fluctuations too large to distinguish the signal from the noise with the

employed ensemble of 2000 trajectories. To circumvent this problem, we have used a time

averaging procedure that smooths out the high frequency fluctuations in the signal coming

from each D-NEMD trajectory. From the smoothed results, a clear picture could be extracted

for all currents.
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Lösungen. Sitz. Ber. Akad. Wiss. Wien Math-Naturw. Kl. 1856, 20, 539.

(3) Soret, C. Influence de la température sur la distribution des sels dans leurs solutions.

C. R. Acad. Sci. 1880, 91, 289.

(4) Reith, D. M.; Müller-Plathe, F. On the nature of thermal diffusion in binary Lennard-

Jones liquids. J. Chem. Phys. 2000, 112, 2436–2443.

(5) Longree, D.; Legros, J. C.; Thomaes, G. Measured Soret Coefficients for Simple Liqui-

fied Gas Mixtures at Low Temperatures. J. Phys. Chem. 1980, 84, 3480–3483.

(6) Platten, J. K. The Soret effect: A review of recent experimental results. J. Appl. Mech.

2006, 73, 5–15.
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