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Abstract

Neurofibromatosis type I, a genetic condition due to pathogenic variants in the NF1

gene, is burdened by a high rate of complications, including neoplasms, which

increase morbidity and mortality for the disease. We retrospectively re-evaluated the

NF1 gene variants found in the period 2000–2019 and we studied for genotype/

phenotype correlations of disease complications and neoplasms 34 variants, which

were shared by at least two unrelated families (range 2–11) for a total 141 of pro-

bands and 21 relatives affected by Neurofibromatosis type I. Recurrent variants

could be ascribed to the most common mutational mechanisms (C to T transition,

microsatellite slippage, non-homologous recombination). In genotype/phenotype cor-

relations, the variants p.Arg440*, p.Tyr489Cys, and p.Arg1947*, together with the

gross gene deletions, displayed the highest rates of complications. When considering

neoplasms, carriers of variants falling in the extradomain region at the 50 end of NF1

had a lower age-related cancer frequency than the rest of the gene sequence, show-

ing a borderline significance (p = 0.045), which was not conserved after correction

with covariates. We conclude that (1) hotspots in NF1 occur via different mutational

mechanisms, (2) several variants are associated with high rates of complications and

cancers, and (3) there is an initial evidence toward a lower cancer risk for carriers of

variants in the 50 end of the NF1 gene although not significant at the multivariate

analysis.
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1 | INTRODUCTION

Neurofibromatosis type I (MIM#162200), a genetic condition featured

by various combinations of multiple café-au-lait spots, axillary and

inguinal freckling, multiple cutaneous and subcutaneous neurofi-

bromas, and iris Lisch nodules, is burdened by a high rate of complica-

tions, such as optic pathway gliomas, plexiform neurofibromas,

osseous dysplasias, and cancers, which can severely impair the quality

of life of the affected patients and finally increase the morbidity and

mortality for the disease.1,2 In Neurofibromatosis type I, malignancies

reduce the average life expectancy of the affected patients by

10–15 years and represent the main cause of death for the disease.2

The responsible gene, Neurofibromin 1 (NF1, MIM *613113), an

oncosuppressor acting as a negative regulator of the Rat sarcoma

(Ras) cascade, is characterized by a high rate of de novo pathogenic

variants (about 50% of the affected patients harbor novel alleles) and

by the substantial absence of hot spots, which have built up our

knowledge of the disease as a combination of individual clinical histo-

ries with a high inter- and intra-familial phenotypic variability.3,4 Our

understanding of the genotype/phenotype correlations for Neurofi-

bromatosis type I has also been hampered by technical and clinical

issues, which have reduced the number of patients undergoing to the

genetic test for the disease.5,6 In fact, both the large size of the gene,

composed of 61 coding exons, and a selective indication to perform

the genetic testing have brought to a little use of the genetic informa-

tion, which is not needed to confirm often obvious phenotypes and is

not able to predict the clinical outcome for most of the NF1 genetic

variants, with few exceptions, such as large deletions having a severe

phenotype and other missense and inframe deletions (p.Arg1809, p.

Met1149, and p.Met992del) associated with the absence of cutane-

ous neurofibromas.7–12 All these reasons have confined the molecular

analysis to a minority of the affected patients and to the diagnostic

dilemmas, mostly children with a discrete number of café-au-lait (CAL)

spots with no other associated feature, with few possibilities to per-

form correlations for degenerative disorders, like cancer, related to

the type and site of NF1 variant.13 In recent years, instead, the advent

of the next-generation sequencing (NGS) and the raising demand for

pre-implantation diagnosis have increased the access to the genetic

test, which is revealing new aspects of the disease, like the features of

the novel variants,14 the presence of selected hotspots (i.e., p.

Met992del, p.Met1149, p.Arg1809, p.Arg1276, and p.Lys1423), and

the genotype/phenotype correlations for specific codons, like the

844–848.7–9,15–18 A positive genetic testing with the finding of a

heterozygous pathogenic NF1 variant has been recently incorporated

in the revised International Consensus Criteria for the diagnosis of

Neurofibromatosis type I.19

The issue of genotype/phenotype correlations in Neurofibroma-

tosis type I is further complicated by the mechanism of action of the

NF1 gene, which acts as an oncosuppressor through the combination

of a constitutional variant (inherited or de novo) and a somatic,

acquired inactivation of the other allele for the initiation of the molec-

ular cascade in most of the affected tissues.20,21 The randomness and

variety of the second hit (loss of heterozygosity, point mutations,

epigenetic inactivations) have for long time made the phenotype

unpredictable based on the constitutional variant alone, making the

genotype/phenotype correlations difficult.22,23

To reduce the impact of the constitutional variability and to

address the issue of the recurrence of variants in the NF1 gene, in the

present study we analyzed the genotype/phenotype correlations of

patients bearing the same constitutional pathogenic variant, by

selecting from our large record of 1007 patients 34 NF1 recurrent var-

iants (those carried by at least two unrelated patients) and by correlat-

ing them with the Neurofibromatosis type I phenotype, in particular

with the onset of complications and cancers.

2 | METHODS

2.1 | Patients

The analysis is based on the records of Parma University Hospital's

Unit of Medical Genetics, covering the period January 2000 to

December 2019. The laboratory functions as hub for the entire Emilia

Romagna Region (4.5 million inhabitants) and attracts patients also

from other Italian regions. Genetic testing was performed on patients

having a clinical suspicion of Neurofibromatosis type I based on the

presence of at least two of the clinical manifestations proposed by the

National Institute of Health Consensus Development Conference,

that is, the presence of six or more CALs > 15 mm in adults and >

5 mm in children, two or more cutaneous/subcutaneous neurofi-

bromas or one or more plexiform neurofibromas, axillary/inguinal

freckling, two or more Lisch nodules, optic pathway gliomas, a distinc-

tive osseous lesion such as sphenoidal dysplasia or long-bone dyspla-

sia, and a first-degree relative with Neurofibromatosis type

1 diagnosed by the above criteria (NIH Consensus Development Con-

ference, 1988). Phenotypes of segmentary Neurofibromatosis type I

were not included in the study. Each sample sent to our Laboratory

was accompanied by a chart in which a clinical description of the

patient by the referring physician was reported, with special reference

to the presence/absence of the typical phenotypic features of the dis-

ease and their age of diagnosis. Patient's clinical records, genealogical

trees and genetic test results were all collected, anonymized, and

archived in a dedicated Excel file in which the clinical data are updated

to the last follow-up control. In the period 2000–2019, 1077 subjects

with a clinical suspicion of Neurofibromatosis type I were subjected

to genetic testing as part of their diagnostic process.

2.2 | NF1 genetic test

NF1 genetic test has been previously described.14 Briefly, from April

2000 to June 2016, genetic analyses on genomic DNA were con-

ducted using denaturing high pressure liquid chromatography

(DHPLC) and sequencing of samples with a profile difference from a

wild-type control, whereas, starting from June 2016, the laboratory

has switched to NGS using the Illumina MiSeq platform (TruSeq
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Custom Amplicon v.1.5) according to standard protocols.14 Starting

from 2005, the negative samples at the sequencing analysis have been

subjected to Multiplex Ligation-dependent Probe Amplification

(MLPA, MRC Holland) for the detection of deletions or duplications

spanning one or more exons. The combined approach of NGS and

MLPA has a reported detection rate of 88%,23 higher than the 72% of

the previously used DHPLC technique,24 reflecting the technical

changes over the years but not substantially affecting the results of

the study, which is based on the mutation-positive cases.

The description and nomenclature of sequence variations at DNA

and protein level have been done according to the Mutalyzer25 soft-

ware version 2.0.32 with the NM_000267.3 reference sequence.

Classification of the genetic variants has been performed through the

classical 5-tiered system, based on standard criteria.26

2.3 | The database

The recurrent NF1 gene variants were extracted from the diagnostic

records and included in an anonymized file together with the

genetic information (type, effect, amino acid change, exon involved,

protein domain, segregation -de novo/familial-). The studied gene

variants have been submitted to ClinVar27 (Accession numbers:

SCV001218909 to SCV001218931) and Leiden open variant data-

base (LOVD).28 In addition, the main clinical features of the patients

with recurrent pathogenic variants were recorded according to the

human phenotype ontology29 (HPO), after reanalyzing the original

documents and, when incomplete, by consulting the referring physi-

cian. All the features requiring specific follow-up and/or therapy were

recorded as complications, as follows: cognitive impairment, epilepsy,

short stature, symptomatic glioma (including optic nerve and other

central nervous system), scoliosis (requiring orthesis or surgical treat-

ment), sphenoidal or long bone dysplasia, spinal neurofibroma, severe

plexiform neurofibroma (> 3 cm), cardiovascular complications, includ-

ing congenital septal and valvular defects, cardiomyopathies, and

hypertension, both essential or nephrovascular. The age of onset of

complication is recorded both prospectively (when the complication is

diagnosed during follow-up) and retrospectively, through the analysis

of previous clinical records of the patient. In the presence of multiple

complications, the age of onset refers to the earliest manifestation.

Neoplastic complications were recorded according to the site of onset

of the primary tumor.

The statistical analysis has been carried out with the R30 and with

the IBM SPSS Statistics for Windows, Version 22 (IBM Corp., Armonk,

NY) software, using the chi-squared test for comparisons among

groups and the log-rank test for ascertaining differences in age-

related frequency of complications or neoplasms. When multiple tests

were performed, the significance of the p-values was adjusted

according to the Benjamini–Hochberg procedure. Logistic regression

analysis to evaluate the independent contribution of the clinical and

genetic features to cancer onset was performed according to the

Cox's model. The study has been approved by the local ethical com-

mittee (Prot. N. 29627/2019).

3 | RESULTS

3.1 | Recurrent variants

The analysis of our records including 1077 gene variants revealed

141 unrelated NF1 affected probands who shared 34 variants, each

of them recurring at least 2 times in apparently unrelated families.

Table 1 shows their frequency distribution, ranging from 2 (12 variants,

24 probands) to 11 (whole gene deletions, shared by 11 probands),

their type, and the demographic features of the patients. All the vari-

ants are listed in Table 2 and their distribution along the gene is

shown in Figure 1: of note, 12 variants out of 34 reside in the 50

extradomain region (35%, 95% confidence interval [CI] 21.5–52.1),

13 out of the 17 single-base changes (nonsense and missense) are

C>T transitions (76%, 95% CI 52.7–90.4), 3 out the 11 indels

are 2-,4-,6-basepair microsatellite deletions (27%, 95% CI 9.7–56.6).

3.2 | NF1 gene variants and disease complications

A genotype/phenotype analysis was performed for the 141 probands

under study and their 21 family members for investigating the specific

rates of complications for each of the NF1 gene recurrent variants,

dividing the patients into two age categories (< 18 and ≥ 18 years)

(Tables 2 and S1). Besides the high frequency of complications for the

young patients carrying whole NF1 gene deletions (4 out of 6, 67%,

95% CI 30–90.3), there were other variants with a high frequency of

disease complications: 67% of the adult cases (4 out of 6, 95% CI

30–90.3) and both the young patients with the c.1318C>T (p.Arg440*),

80% (95% CI 37.5–96.4) (4 out of 5) of the adults and 50% (3 out of

6, 95% CI 18.8–81.2) of the young with the c.1466A>G (p.Tyr489Cys)

and 57% (95% CI 25.0–84.2) (4 out of 7) of the adult patients with the

c.5839C>T (p.Arg1947*) presented complications related to the Neuro-

fibromatosis type I (Tables 2 and S1). Two variants instead, shared by

seven patients, were not associated with any complication: the c.1185

+1G>A (three unrelated patients of 12, 15, and 27 years of age) and

the c.4267A>G (p.Lys1423Glu) (four unrelated patients of 1, 2, 3, and

37 years of age). By grouping the recurrent variants according to their

localization in the NF1 sequence (for this purpose, the NF1 protein

domains were used, see Figure 1), no significant differences (χ2 9.5,

p = 0.2) emerged among the groups for the overall rate of complica-

tions (Table 3). When the age-dependent penetrance of complications

was analyzed, the known higher frequency of complications for the

copy number variants (CNVs) of the NF1 gene was confirmed, when

compared with the variants in the extradomain region at the 50 end or

to the rest of the gene sequence (log-rank = 4.93, p = 0.026 and log-

rank = 9.97, p = 0.0016, respectively, Figure 2).

3.3 | NF1 gene variants and cancer

As far as the neoplastic complications of the disease are concerned, a

high frequency of cancer complications was observed for two
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variants: the c.5844_5845delAA (p.Arg1949Serfs*6) with three cases

of cancer out of four unrelated adult patients and the

c.3457_3460delCTCA (p.Leu1153Metfs*4) with three cases of cancer

in six unrelated patients (Table 2). Multiple tumors were present in

five unrelated patients, one of whom had a concurrent diagnosis of

Lynch syndrome and showed breast, endometrial, and colon cancers

(the two latter neoplasms, typical of the Lynch syndrome, were

excluded from further analysis).

No significant differences in the frequency of cancer occurrence

were found after grouping the recurrent variants according to their

localization into domains (χ2 11.47, p = 0.08), but a significantly lower

age-related cancer frequency was observed for the variants located in

the extradomain region at the 50 end, compared to the rest of the

gene sequence (log-rank = 4.00, p = 0.045) (Figure 3). However, cor-

rection with covariates (age, sex) in Cox's regression yielded no signifi-

cant result.

4 | DISCUSSION

Neurofibromatosis type I is a long-standing model of clinical and

genetic variability, which is due to the pleiotropic expression and to

the mutational pattern of the NF1 gene13,15 and is characterized by

the frequent occurrence of de novo variants and their dispersion

through the whole gene, with only few preferential locations or mech-

anisms.1,4 The present study, which analyses the recurrence of the

gene variants, confirms that there is not a unique mutational hotspot

in the NF1 gene, although some variants occur with higher frequency,

like the c.1466A>G,31 which we have found in nine unrelated families

and is otherwise one of the most common variant in the LOVD28

(43 reports by August 2021) and ClinVar (16 reports) databases. With

reference to the origin of the NF1 recurrent variants, the full pene-

trance of Neurofibromatosis I argues against the hypothesis of the

segregation of a founder mutation, common to several diseases in

humans32 and points to the presence of universal mutational mecha-

nisms. In fact, 13 out of the 34 recurrences in our study are C to T

transitions, which are among the most frequent causes of human

genetic disease phenotypes and account for a substantial fraction of

the polymorphic variability of the human genome through the

methylation–deamination of cytosines.33 Moreover, the universality

of this mutational mechanism is indicated by the finding that 8 of our

recurrent nonsense variants (including codons 192, 304, 440, 816,

1241, 1362, 1513, and 2429) have been previously reported not only

as germline but also as somatic variations.34,35 On the other hand,

when analyzing the recurrent variants with an underlying insertion/

deletion mechanism, 3 out of 11 are featured by gains or losses of

nucleotides from microsatellite tracts (of 2-, 4-, and 6-bp repeats)

through another ubiquitary mutational mechanism subtended by the

misalignment and slippage during the DNA replication.36 Finally, also

the other large group of recurrences, that is, the NF1 gene

rearrangements (whole gene and exon 1 deletions for a total of

13 families), can be ascribed to one of the most common mechanisms

of variability of the human genome, which is mediated by the homolo-

gous non allelic recombination during meiosis causing a DNA CNV.37

More in general, the whole mutational landscape of the Neurofibro-

matosis type I patients appears related to the gene context and

length, differently from other examples of constitutional variability,

like FGFR3 or FGFR2, which show hotspots, a single mutational

TABLE 1 Descriptive table of the number and type of recurring NF1 variants and demographic characteristics of the carrier patients

Frequency of recurrence

2 3 4 5 6 7 8 9 11 Total

Number of variants 12 5 5 4 2 2 1 2 1 34

Type of variant

Gross deletion 1 0 0 0 0 0 0 0 1 2

Indels 4 1 1 2 2 1 0 0 0 11

Splice site 2 3 2 0 0 0 0 1 0 8

Nonsense 5 1 1 2 0 1 1 1 0 12

Missense 0 0 1 0 0 0 0 0 0 1

Familiar/sporadic (probands and family members)

Familiar 2 7 7 4 0 4 0 13 0 37

Sporadic 23 12 17 18 12 12 8 12 11 125

Family members (excluding probands) 1 4 4 2 0 2 0 8 0 21

Sex (total no. of probands and family members)

Male 7 6 12 9 4 6 5 9 7 65

Female 18 13 12 13 8 10 3 16 4 97

Age (total no. of probands and family members)

<18 years 10 8 9 9 6 6 2 13 6 69

≥18 years 15 11 15 13 6 10 6 12 5 93
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TABLE 2 List of the recurrent mutations and the phenotypic features referred to as complications and cancers

Probands Family members Total points Complications* Cancers

n n n n (%) n (%)

c.(?_-1)_(*1_?)del (p.0?) 11 - 11 7 -

<18 6 - 6 4 (66.7) -

≥18 5 - 5 3 (60) -

c.(?_-1)_(60+1_61-1)del (p.0?) 2 - 2 2 -

<18 1 - 1 1 (100) -

≥18 1 - 1 1 (100) -

c.499_502delTGTT(p.Cys167Glnfs*10) 5 2 7 4 1

<18 3 - 3 2 (66.7) -

≥18 2 2 4 2 (50) 1 (25)

c.574C>T(p.Arg192*) 5 - 5 1 1

<18 3 - 3 - -

≥18 2 - 2 1 (50) 1 (50)

c.889-1G>A (p.?) 3 - 3 2 -

<18 1 - 1 - -

≥18 2 - 2 2 (100) -

c.910C>T(p.Arg304*) 3 1 4 2 -

<18 1 1 2 1 (50) -

≥18 2 - 2 1 (50) -

c.1019_1020delCT(p.Ser340Cysfs*12) 2 - 2 1 1

<18 1 - 1 - -

≥18 1 - 1 1 (100) 1 (100)

c.1185+1G>A (p.Asn355_Lys395del) 3 - 3 - -

<18 2 - 2 - -

≥18 1 - 1 - -

c.1260+1604A>G (p.Asn420_Ser421insLeuThrThr*) 2 - 2 1 1

<18 - - - - -

≥18 2 - 2 1 (50) 1 (50)

c.1318C>T (p.Arg440*) 8 - 8 6 1

<18 2 - 2 2 (100) -

≥18 6 - 6 4 (66.7) 1 (16.7)

c.1381C>T (p.Arg461*) 5 - 5 2 1

<18 2 - 2 1 (50) -

≥18 3 - 3 1 (33.3) 1 (33.3)

c.1466A>G (p.Tyr489Cys) 9 2 11 7 -

<18 4 2 6 3 (50) -

≥18 5 - 5 4 (80) -

c.1541_1542delAG (p.Gln514Argfs*43) 7 1 8 4 -

<18 3 - 3 1 (33.3) -

≥18 4 1 5 3 (60) -

c.1756_1759delACTA (p.Thr586Valfs*18) 6 - 6 3 1

<18 3 - 3 2 (66.7) -

≥18 3 - 3 1 (33.3) 1 (33.3)

c.1885G>A (p.Gly629Arg) 2 - 2 - 1

<18 1 - 1 - -

≥18 1 - 1 - 1 (100)

14 RIVA ET AL.



TABLE 2 (Continued)

Probands Family members Total points Complications* Cancers

n n n n (%) n (%)

c.2033dupC (p.Ile679Aspfs*21) 5 - 5 3 -

<18 1 - 1 - -

≥18 4 - 4 3 (75) -

c.2446C>T(p.Arg816*) 2 - 2 - 1

<18 1 - 1 - -

≥18 1 - 1 - 1 (100)

c.2970_2972delAAT (p.Met992del) 2 - 2 - 1

<18 1 - 1 - -

≥18 1 - 1 - 1 (100)

c.3457_3460delCTCA (p.Leu1153Metfs*4) 6 - 6 4 3

<18 3 - 3 2 (66.7) 1 (33.3)

≥18 3 - 3 2 (66.7) 2 (66.7)

c.3665delC (p.Pro1222Leufs*2) 2 - 2 - 1

<18 2 - 2 - 1 (50)

≥18 - - - - -

c.3721C>T (p.Arg1241*) 2 - 2 2 -

<18 1 - 1 1 (100) -

≥18 1 - 1 1 (100) -

c.3826C>T (p.Arg1276*) 4 2 6 3 2

<18 2 - 2 1 (50) -

≥18 2 2 4 2 (50) 2 (50)

c.4084C>T (p.Arg1362*) 2 - 2 2 -

<18 - - - - -

≥18 2 - 2 2 (100) -

c.4267A>G (p.Lys1423Glu) 4 - 4 1 -

<18 3 - 3 1 (33.3) -

≥18 1 - 1 - -

c.4537C>T (p.Arg1513*) 7 1 8 6 1

<18 3 - 3 2 (66.7) -

≥18 4 1 5 4 (80) 1 (20)

c.5839C>T (p.Arg1947*) 8 6 14 6 2

<18 3 4 7 2 (25) 1 (12.5)

≥18 5 2 7 4 (57.1) 1 (14.3)

c.5844_5845delAA (p.Arg1949Serfs*6) 4 - 4 2 3

<18 - - - - -

≥18 4 - 4 2 (50) 3 (75)

c.6579+1G>T (p.Glu2193_Ala2194insVal*) 4 2 6 2 -

<18 2 1 3 1 (33.3) -

≥18 2 1 3 1 (33.3) -

c.6709C>T (p.Arg2237*) 2 - 2 1 -

<18 - - - - -

≥18 2 - 2 1 (50) -

c.6789_6792delTTAC (p.Tyr2264Thrfs*5) 3 1 4 2 1

<18 - - - - -

≥18 3 1 4 2 (50) 1 (25)

(Continues)
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TABLE 2 (Continued)

Probands Family members Total points Complications* Cancers

n n n n (%) n (%)

c.6792C>A(p.Tyr2264*) 4 - 4 1 1

<18 1 - 1 - -

≥18 3 - 3 1 (33.3) 1 (33.3)

c.7096_7101delAACTTT(p.Asn2366_Phe2367del) 2 - 2 - 1

<18 1 - 1 - -

≥18 1 - 1 - 1 (100)

c.7285C>Tp.(Arg2429*) 3 2 5 2 0

<18 2 1 3 2 (66.7) -

≥18 1 1 2 - -

c.7846C>Tp.(Arg2616*) 2 1 3 - 1

<18 - 1 1 - -

≥18 2 - 2 - 1 (50)

Total 141 21 162 79 26

Note: Patients are divided into two age categories (<18 and ≥18).

F IGURE 1 Diagram representing the NF1 gene with colors varying according to the protein domains (in white the extradomain regions). The
numbers into the circles refer to the probands sharing the same constitutional variant; the color of the circle is specific for the type of variant
(copy number variant [CNV], truncating, splice site, missense)
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TABLE 3 Number and percentage of patients with complications and neoplasm, grouped by the protein domain of the NF1 gene (gross
deletions represent a separate group)

Gross

deletions

50

extradomain

CSRD

domain

Intagenic

extradomain

TBD

domain

GRD

domain

HLR

domain

CTD

domain

p-

value

No. of patients 13 58 15 2 6 24 26 18

No. of variants 2 11 4 1 1 6 4 5

Median age (range) 13 (1–50) 25 (6 mo-

73)

33 (1–
65)

19 (3–35) 32.5 (2–
69)

18.5 (8

mo-65)

21 (1–70) 31.5 (1–71)

Complications (%)

Scoliosis (HP:0002650) 1 (7.7) 2 (3.4) - - 1 (16.7) - - -

Bone dysplasia

(HP:0010734)

- 4 (6.9) - - 1 (16.7) 1 (4.2) - -

Cognitive impairment

(HP:0100543)

4 (30.8) 11 (19) 2 (13.3) - 1 (16.7) 5 (20.8) 4 (14.8) 2 (11.1)

Short stature

(HP:0004322)

1 (7.7) - - - - 1 (4.2) - -

Symptomatic gliomaa

(HP:0009734)

- 3 (5.2) 1 (6.7) - - 1 (4.2) - -

Cardiovascularb 2 (15.4) 3 (5.2) - - - 4 (16.7) 2 (7.4) -

Spinal neurofibroma

(HP:0009735)

- 1 (1.7) 1 (6.7) - - - 2 (7.4) -

Plexiform neurofibroma

(HP:0009732)

1 (7.7) 5 (8.6) 2 (13.3) - 1 (16.7) 2 (8.3) 3 (11.1) 3 (16.7)

Epilepsy (HP:0001250) - 1 (1.7) - - - - - -

Total (%; 95% CI) 9 (69.2;

42.4–
87.3)

30 (53.4;

39.2–
64.1)

6 (40;

19.8–
64.2)

- 4 (66.8;

30–
90.3)

14 (62.6;

42.7–
78.9)

11 (40.7;

24.5–
59.3)

5(27.8;
12.5–
50.9)

0.201

Cancer (%)

GIST (HP:0100723) - 2 (3.4) - - - 1 (4.2) - -

Breast cancer

(HP:0003002)

- 2 (3.4) - 1 (50) - - - 1 (5.6)

MPNST (HP:0100697) - 1 (1.7) - - - - - -

Astrocytoma

(HP:0009592)

- - - - - 1 (4.2) 2 (7.4) -

Pheochromocytoma

(HP:0002666)

- - - - 1 (16.7) - - -

Meningioma

(HP:0002858)

- - 1 (6.7) - - - 1 (3.7) -

Colon cancer

(HP:0003003)

- 1 (1.7) - - - - - -

Duodenal cancer

(HP:0006771)

- - 1 (6.7) - - - - -

Juvenile

myelomonocytic

leukemia

(HP:0012209)

- - - - - 1 (4.2) - -

Malignant glioma

(HP:0009733)

- - - - - 1 (4.2) - -

Multiple myeloma

(HP:0006775)

- - - - - - - 1 (5.6)

Myxofibrosarcoma

(HP:0030448)

- - - - - - - 1 (5.6)

Neuroblastoma

(HP:0003006)

- - - - 1 (16.7) - - -

(Continues)
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mechanism causing a gain-of-function and a clear correlation to the

paternal age, consistent with the increased number of cell divisions

occurring in aging spermatogonia.38 In NF1, a correlation with the

paternal age has been proposed, but not confirmed by all the studies

by our group and others,14,39–42 possibly due to the still low number

of observations.

Concerning the specific genotype/phenotype correlation, apart

from the whole-gene deletions, which show the known high fre-

quency of cognitive impairment (Figure 2),16 the rate of complications

or neoplasms presents a wide range (Table 2), regardless of the type

of variant (truncating or non-truncating): for example, the p.

Met992del in-frame deletion, which is expected to generate a milder

phenotype,7 resulted in our study in a breast cancer at 35 years of

age. Although breast cancer is part of the neoplastic spectrum of the

Neurofibromatosis I disease,43 the high genetic heterogeneity of this

neoplasm does not rule out in the specific case the possible

TABLE 3 (Continued)

Gross

deletions

50

extradomain

CSRD

domain

Intagenic

extradomain

TBD

domain

GRD

domain

HLR

domain

CTD

domain

p-

value

Lung cancer

(HP:0100526)

- - - - - - 1 (3.7) -

Rhabdomyosarcoma

(HP:0002859)

- - - - - - 1 (3.7) -

Rectal adenocarcinoma

(HP:0100743)

- - - - 1 (16.7) - - -

Sarcoma (HP:0100242) - - - - - - - 1 (5.6)

Vater's ampulla

carcinoid

(HP:0006722)

- - 1 (6.7) - - - - -

Total (%; 95% CI) - 6 (10.3; 4.8–
20.8)

3 (20;

7.0–
45.2)

1 (50; 9.4–
90.5)

3 (50;

18.8–
81.2)

4 (16.7;

6.7–
35.9)

5 (18.5;

8.2–
36.7)

4 (22.2;

9.0–
45.2)

0.083

Note: For patients with multiple complications and/or cancers, the table reports only the most clinically relevant manifestation and the earliest neoplasm,

respectively.
aInclude optic nerve glioma (HP:0009734) and other CNS glioma (HP:0009733).
bInclude patency of foramen ovale (HP:0001655), diastolic dysfunction (HP:0005117), venous malformation (HP:0012721) of brain, aneurysm

(HP:0002617) of vertebral artery, cardiac malformation (HP:0001627), cardiac fibroma (HP:0010617), hypertrophic cardiomyopathy (HP:0001639),

pulmonic valve stenosis (HP:0001642), mitral valve prolapse (HP:0001634), pulmonary stenosis (HP:0004415), and essential hypertension (HP:0000822).

F IGURE 2 Penetrance curves showing the cumulative probability
of developing complications (any site) for patients with NF1 variants
divided according to the variant region (copy number variants [CNVs],
50 extradomain region vs. all the other domains of the gene). p-values,
set at < 0.034 after adjustment for multiple test according to the
Benjamini–Hochberg procedure, refer to the log-rank results using
CNVs as reference category versus those in the 50 extradomain region
(blue line, p = 0.026) and versus all the other domains of the gene
(red line, p = 0.002). The shaded areas indicate the 95% confidence
intervals

F IGURE 3 Penetrance curves showing the cumulative probability
of developing cancer (any site) for patients with NF1 variants divided
according to the mutation region (50 extradomain region vs. all the
other domains of the gene). Coy number variants are not reported,
due to the absence of incident cases in the study population. The
shaded areas indicate the 95% confidence intervals
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contribution of different genetic predisposition factors or the role of

other modifier genes in the phenotypic expression of the disease.44

Also the data on the p.Arg1947*, which is reported with a milder

phenotype,45 are only partly confirmed, since we have found 2 tumors

(one rhabdomyosarcoma at 19 year of age and one hypothalamic

astrocytoma at 12) out of the 14 patients harboring the variant.

Finally, our data support the association with cardiovascular anomalies

of the p.Lys1423Glu variant,9 which was found in one child with pul-

monary valve stenosis (Table 2).

When the variants were grouped according to their NF1 gene

region, those located in the 50 end preceding the first protein domain

(Figure 1) showed a significantly lower age-specific tumor burden

compared to all the other domains together (Figure 3), consistent with

the model of other oncosuppressors like the APC gene, which causes

an attenuated polyposis in carriers of pathogenic variants at the 50

end.46 A cautious interpretation of this finding is of course mandatory,

due to the lack of significance for the role of that gene region on can-

cer onset at the multivariate analysis, to the possibility of a type 1 sta-

tistical error for multiple testing and to the obvious need of

confirmation by larger, independent series, taking into account all the

NF1 gene mutation burden and not limiting the analysis to the recur-

rent variants only, like in the present study. As to the tumor spectrum,

there was no specific association among variants and tumor sites

and most of the diagnosed neoplasms belong to the typical spec-

trum of Neurofibromatosis type I, involving malignancies of the

nervous system (central, peripheral, and autonomic), in particular

MPNSTs, soft tissues tumors, hematopoietic cancers, pheochro-

mocytoma, and breast cancers. Only in two cases, lung and rectal

adenocarcinomas,34,47–49 the tumor site is not typical, although

the association of both neoplasms with Neurofibromatosis type I

has been reported in specific case-reports.50,51

In conclusion, our study on recurrent NF1 variants shows that the

features of recurrence in the NF1 gene are not univocal but involve

the most common mutational mechanisms in humans; furthermore,

the genotype/phenotype correlation indicates that several variants

are associated with a very high risk of disease complications and sug-

gests an initial link between variants in the 50 end of the gene and a

lower risk of cancer complications of the disease, although not signifi-

cant at the multivariate analysis.
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