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ABSTRACT 14 

Due to the differences in terms of both price and quality, the availability of effective 15 

instrumentation to discriminate between Arabica and Robusta coffee is extremely important. To this 16 

aim, the use of multispectral imaging systems could provide reliable and accurate real-time 17 

monitoring at relatively low costs. However, in practice the implementation of multispectral 18 

imaging systems is not straightforward: the present work investigates this issue, starting from the 19 

outcome of variable selection performed using a hyperspectral system. Multispectral data were 20 

simulated considering four commercially available filters matching the selected spectral regions, 21 

and used to calculate multivariate classification models with Partial Least Squares-Discriminant 22 

Analysis (PLS-DA) and sparse PLS-DA. Proper strategies for the definition of the training set and 23 
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the selection of the most effective combinations of spectral channels led to satisfactory 1 

classification performances (100% classification efficiency in prediction of the test set). 2 

 3 

KEYWORDS 4 

Green coffee; Multivariate classification; Hyperspectral imaging; Multispectral imaging; Sparse 5 

methods. 6 
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1. INTRODUCTION  1 

Hyperspectral imaging (HSI) systems have showed a great potential for their application in food 2 

control processes, being a fast and non-destructive technique able to handle different issues related 3 

to quality evaluation and safety inspection of agricultural and food products [1 – 3]. The main 4 

advantage of HSI is the possibility of coupling classical point-wise spectroscopy with imaging 5 

techniques, in order to obtain simultaneously spatial and spectral information from a sample. In this 6 

manner, a huge amount of spectral information is achieved from the surface of a sample in a 7 

relatively short time and it is possible to provide a reliable and accurate real-time monitoring at 8 

different stages of the food processing chain [4]. 9 

Despite the advantages of this technique, two main drawbacks currently limit the direct 10 

implementation of HSI into real-time systems for food control: the high costs of HSI systems and 11 

the extremely large amount of data that are acquired in short times, implying high computational 12 

loads which complicate the development of efficient and fast applications [5, 6]. For these reasons, 13 

most of the food related HSI research works have been directed towards the identification of 14 

wavelengths relevant to the problem at hand, for further development of multispectral imaging 15 

systems suitable for on line or portable devices [3, 4, 7]. The advantages of multispectral imaging 16 

systems over hyperspectral ones include the faster acquisition times and the lower costs of 17 

hyperspectral cameras [8]. Furthermore, multispectral technology is easier to implement for on-line 18 

applications, due to the higher resistance and stability of the optical components. 19 

Starting from variable selection performed on hyperspectral image data, a multispectral imaging 20 

system can be implemented, at least in principle, by using the selected spectral regions [9 – 12]. 21 

However, adapting the outcomes of variable selection performed on hyperspectral data to a filter-22 

based imaging system is not straightforward, and it is not easy to maintain acceptable performances 23 

after transferring results from a hyperspectral imaging system to a multispectral imaging one [10]. 24 

In fact, position and width of actually available filters generally do not perfectly match the selected 25 
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spectral regions. Moreover, in multispectral systems only a single “average” intensity value can be 1 

measured for each selected spectral region, which implies that the useful information related to 2 

spectral shape within the selected intervals is lost. On the other hand, the limited number of 3 

multispectral channels allows to easily expand the number of potentially useful descriptors by 4 

calculating quantities derived from the single channel intensities, i.e., by introducing nonlinear and 5 

interaction terms derived from the intensity values in order to improve the results [13]. In this 6 

manner, it is possible to evaluate linear and non-linear relationships between the different channels 7 

and thus to emphasize small variations in the spectral signature which could be useful for the 8 

problem at hand [14]. 9 

In this context, the present work is aimed at showing the feasibility of implementing a simulated 10 

multispectral filter-based classification model for the discrimination of green coffee samples 11 

belonging to Arabica (Coffea arabica) and Robusta (Coffea canephora) coffee species. Arabica and 12 

Robusta coffee differ each other from chemical and organoleptic properties. Chemical analysis 13 

based on chromatography showed that Arabica and Robusta coffee have differences in their content 14 

in caffeine, cholorogenic acid, trigonelline, sterols and amino acids [15, 16]. Furthermore, Arabica 15 

coffee is considered of higher quality because of its better taste and aroma and, therefore, it is 16 

generally preferred by the consumers. On the other hand, Arabica coffee can be two to ten times 17 

more expensive than Robusta coffee, which is less appreciated and mainly used as filler in coffee 18 

blends or in instant coffee production [17, 18]. Due to the significant differences in terms of both 19 

price and quality, it is therefore important to correctly discriminate between the two coffee coffee 20 

species in order to prevent the adulteration of high quality Arabica coffee with cheaper and lower 21 

quality Robusta coffee [19 - 22]. Therefore, the correct classification of green coffee beans of the 22 

two species could allow to identify possible adulterations or mislabelling at an early stage of the 23 

processing chain. 24 

Many different analytical techniques have been investigated in order to discriminate Arabica and 25 

Robusta coffee species, including 1H-Nuclear Magnetic Resonance (NMR) [23], 13C-NMR [24], 2-26 
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D electrophoresis [25], electronic nose and electronic tongue [26] among others. The use of so 1 

many different analytical methods suggest that a reliable discrimination between Arabica and 2 

Robusta species is a crucial aspect for coffee industry. 3 

However, the above mentioned methods are not suitable for fast characterization of large amounts 4 

of products, e.g., by rapid in-line or on-line monitoring [19]; conversely, spectroscopic methods 5 

represent a fast and non-destructive alternative to other more complex analytical techniques for 6 

facing food authentication problems, being at the same time simple, fast, non-destructive and 7 

reliable [27]. In particular, classical point-wise NIR spectroscopy has been widely used to 8 

discriminate Arabica and Robusta species, both on green coffee [28, 29] and on roasted coffee [30, 9 

31]. More recently, some research works have been also reported where hyperspectral imaging 10 

(HSI) is used to characterize these coffee species [32, 33]. 11 

The main aim of the present study is to investigate the issues related to the implementation of a 12 

multispectral imaging system starting from the outcome of a variable selection/classification model 13 

calculated on hyperspectral data [7]. In particular, a multispectral detection system was simulated 14 

by considering four commercially available filters, chosen as those showing the best match with the 15 

selected spectral regions. Then, Partial Least Squares Discriminant Analysis (PLS-DA) [6, 34, 35] 16 

classification models were built considering as descriptors both the four channels alone and the four 17 

channels together with their squared values and sums, differences, products and ratios between 18 

couples of channels. Moreover, variable selection by Sparse Partial Least Squares Discriminant 19 

Analysis (sPLS-DA) [7, 36] was also employed in order to identify the most relevant descriptors 20 

and to further increase the performances of the classification models. 21 

 22 
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2. MATERIALS AND METHODS  1 

2.1 Coffee samples 2 

The green coffee samples of Arabica and Robusta species considered in this study came from 3 

different geographical areas and were provided by a local roasting company during a period of 6 4 

months. In particular, each sample belonged to a different batch and the samples were subjected to 5 

different processing methods to separate the seed form the fruit. Despite the different properties of 6 

the samples, we focused on the discrimination between Arabica and Robusta coffee species, 7 

regardless of processing method or of geographical origin. 8 

On the whole, 33 batches were considered in the industrial plant: 18 of Robusta and 15 of Arabica. 9 

From each batch about 500 g of beans, sampled in order to be as representative as possible of the 10 

corresponding batch, were collected and stored in a sealed package. From each package, three 11 

aliquots of 70 g of randomly selected beans were taken, and for each aliquot two repeated images 12 

were acquired, shuffling the beans between the two acquisitions. The same procedure was repeated 13 

in a different day in order to check the day-to-day variability. All the batches were acquired in 14 

random order and the packages were sealed again and stored at room temperature between the 15 

different acquisition days. Therefore, for each batch 12 hyperspectral images (= 2 measurement 16 

sessions × 3 aliquots × 2 repeated acquisitions) were acquired, obtaining a dataset composed by 396 17 

hyperspectral images (33 batches × 12 images). 18 

 19 

2.2 Image acquisition 20 

The hyperspectral images were acquired using a desktop NIR Spectral Scanner (DV Optic) 21 

embedding a reflectance imaging based spectrometer Specim N17E, coupled to a Xenics XEVA 22 

2608 camera (320 × 256 pixels) and working in the 955-1700 nm spectral range with a spectral 23 

resolution of 5 nm, with a total of 150 spectral channels. The images were acquired using a black 24 

silicon carbide sandpaper sheet as background, which is characterized by a very low and constant 25 
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reflectance spectrum [37], and in addition a 99% white ceramic tile reflectance standard and two 1 

ceramic tiles with intermediate reflectance values were included in the area of the images. 2 

The raw data were converted into reflectance values using an instrumental calibration based on the 3 

high reflectance standard reference and on dark current [38]. Furthermore, in order to reduce the 4 

variability among images over time, an additional internal calibration was performed [6, 39], based 5 

on the average reflectance values of the reflectance standard, of the two ceramic tiles and of the 6 

black silicon carbide sandpaper. 7 

Before further analysis, the pixels related to the black sandpaper background were removed from 8 

each image using the following thresholding procedure: a preliminary evaluation of some sample 9 

images allowed to identify the most discriminant wavelength by maximizing the Fisher ratio 10 

between background spectra and sample spectra. In this manner, at 1050 nm, all the pixels below 11 

the threshold value of 0.1 reflectance units were identified as background and removed. 12 

 13 

2.3 Data analysis 14 

2.3.1 Data arrangement 15 

The acquired hyperspectral images were used to create different hyperspectral datasets, which in 16 

turn were converted into the corresponding multispectral datasets and then used for calculation and 17 

validation of the classification models. 18 

In particular, the 33 coffee batches were randomly split in 24 training batches (corresponding to 288 19 

training set images), including 11 Arabica and 13 Robusta coffee batches, and in 9 test batches (108 20 

images), including 4 Arabica and 5 Robusta coffee batches. 21 

Two different strategies were then considered for the definition of the training set:  22 

- Average Spectra (AS): the average spectrum was calculated for each training set image, 23 

obtaining an AS training set including 288 spectra; 24 

- Random spectra (RS): 50 spectra were randomly selected from each training set image, 25 

obtaining a RS training set including 14400 spectra (= 288 images × 50 spectra). 26 
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Since each hyperspectral image is composed by tens of thousands of single-pixel spectra, AS 1 

training set and RS training set represent two different approaches to build a reduced (but still 2 

representative) training set from the huge amount of data contained in the original images. 3 

On one hand, computing the average spectra from each hyperspectral image allows to drastically 4 

reduce the number of objects, under the assumption that an average spectrum is representative of 5 

the image as a whole. On the other hand, averaging all the pixel-spectra contained in each image 6 

implies loosing the information about the spatial variability within each image. Therefore, keeping a 7 

relatively limited number of randomly selected spectra for each image was considered as a valid 8 

compromise between reducing data size and (at least partly) maintaining spatial variability related 9 

information. 10 

The classification performances of the two approaches were evaluated in prediction both at the 11 

image-level, i.e., considering each image on the whole, and at the pixel-level, i.e., evaluating the 12 

class assignment of each single image pixel. In particular, an external test set consisting of the 13 

average spectra of each image of the test samples was used to validate the classification models at 14 

the image-level. Moreover, in order to validate the classification models also at the pixel-level and 15 

to visually evaluate the classification performances, two different test images (test image 1 and test 16 

image 2) with different arrangement of the beans were considered. The test images were obtained 17 

by merging together one image of Arabica coffee and one of Robusta coffee taken from the test 18 

samples. In this manner, since each test image contains one image for each class, it was possible to 19 

obtain a quantitative evaluation of the predictive ability of the models at the pixel-level. 20 

The hyperspectral datasets (AS training set, RS training set, test set and the two test images) 21 

mentioned in this section were then converted into multispectral data following the procedure 22 

described in below. 23 

 24 
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2.3.2 From HSI selected spectral regions to multispectral data 1 

Number and position of the channels to be considered for the multispectral system were defined on 2 

the basis of feature selection made by applying sparse classification methods to the AS training set 3 

described in the previous section, as reported in Calvini et al., 2015 [7]. Briefly, sparse methods 4 

allow performing variable selection by forcing the model coefficients related to noisy or 5 

uninformative variables to be equal to zero, in a way that it is possible to calculate a classification 6 

model and to perform variable selection in a one-step procedure [40]. For the classification of 7 

Arabica and Robusta green coffee two different sparse-based algorithms, i.e., sparse Principal 8 

Component Analysis [41] coupled with k-Nearest Neighbour [42] (sPCA+kNN) and sparse Partial 9 

Least Squares Discriminant Analysis (sPLS-DA) [36], were applied to the average spectra of the 10 

hyperspectral images. The relevance of the selected wavelengths, which are reported in Figure 1.a, 11 

was confirmed by the fact that both sparse classification methods converged to the selection of the 12 

same narrow spectral regions. The evaluation of these regions showed that they essentially reflect 13 

chemical composition differences between the two coffee varieties, rather than physical effects. In 14 

particular, the selected spectral regions were related to the C-H aromatic second overtone (1143 15 

nm), to the C-H aliphatic second overtone (1195-1225 nm), and to the O-H first overtone of 16 

aliphatic (1410 nm) and aromatic alcohol (1420 nm) [43]. In order to better evaluate the spectral 17 

differences between Arabica and Robusta green coffee, Figure S-1 reports two sample spectra 18 

belonging to the two coffee species and the corresponding difference spectrum. 19 

Starting from the outcome of variable selection performed on hyperspectral data, the commercial 20 

filters showing the best match with the selected spectral regions were then identified [44]; in 21 

particular, four bandpass filters were selected, whose center wavelength (CWL), filter width at half 22 

maximum (FWHM) and peak transmission (PT) values listed below: 23 

- Filter 1: CWL=1150 nm, FWHM=10 nm, PT=40% 24 

- Filter 2: CWL=1200 nm, FWHM=10 nm, PT=40% 25 

- Filter 3: CWL=1250 nm, FWHM=10 nm, PT=40% 26 
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- Filter 4: CWL=1400 nm, FWHM=12 nm, PT=35%. 1 

In order to mimic the output of a filter-based multispectral system, each reflectance spectrum of the 2 

hyperspectral datasets (AS training set, RS training set, test set and the two test images) was then 3 

used to estimate the reflectance values that would be obtained by using the considered filters. 4 

To this purpose, the Gaussian-shaped transmission profile of each filter was calculated from the 5 

corresponding filter properties as: 6 

 ���� = ��	
	


√�
	��

��������

���  (1) 7 

where Z(λ) is the Gaussian transmission profile of the filter as a function of the wavelength λ, and σ 8 

is the standard deviation of the Gaussian distribution, which is related to FWHM according to the 9 

equation [45]: 10 

 � =
����

�√� ���
 (2) 11 

For each filter, the corresponding reflectance value of each object i belonging to the hyperspectral 12 

datasets was then calculated according to the equation: 13 

 �� = ∑ ��λ�	!��λ�
λ"#$
λ"%&

 (3) 14 

where Si(λ) is the HSI spectrum of object i, while λmin and λmax are the extreme values of the 15 

spectral rage acquired with the hyperspectral camera (in our case, λmin = 955 nm and λmax = 1700 16 

nm). 17 

This procedure is schematically represented in Figure 1, where Figure 1.a reports the spectra of AS 18 

training set together with the selected spectral regions, Figure 1.b shows the Gaussian profiles 19 

calculated by equation (1), and Figure 1.c reports the 4 discrete reflectance values calculated by 20 

equation (3) for each spectrum of the AS training set. 21 

 22 
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 1 

Figure 1. Average spectra calculated from each image of the training samples with selected 2 

regions highlighted (a), Gaussian profiles of the 4 considered filters (b) and resulting reflectance 3 

values obtained from the average training spectra (c). 4 

 5 

Therefore, from the original hyperspectral datasets containing 150 spectral variables, the 6 

corresponding multispectral datasets containing 4 variables were obtained, where each variable is 7 

the reflectance value of a given multispectral channel. As an example, Figure S-2 (Supplementary 8 

material) shows the pseudocolor images obtained from the four considered channels for both test 9 

image 1 and test image 2. 10 

 11 
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2.3.3 Filter-based simulations 1 

Starting from the multispectral datasets composed of 4 variables, three different simulations were 2 

performed: 3 

• In Filter Simulation 1 only the 4 reflectance values of the filters were considered for PLS-4 

DA classification. 5 

• In Filter Simulation 2, since the low number of multispectral channels allows expanding the 6 

number of potentially useful descriptors by calculating quantities derived from the outputs 7 

of the different channels, PLS-DA classification models were calculated including also 8 

additional descriptors derived from the four reflectance values. In particular, the squared 9 

reflectance value of each channel and differences, ratios, products and sums between 10 

couples of channels were calculated, obtaining datasets with the 32 descriptors listed in 11 

Table 1. 12 

• In Filter Simulation 3, feature selection by sPLS-DA was performed in order to identify the 13 

most relevant descriptors among the 32 variables listed in Table 1. 14 

For each of the three simulations, two classification models were calculated, one using the AS 15 

training set and one using the RS training set. 16 

 17 

Single Filters Differences Ratios Products Sums 

R1150 
R1200 
R1250 
R1400 
R11502 
R12002 
R12502 
R14002 

R1200-R1150 
R1250-R1200 
R1400-R1250 
R1400-R1200 
R1400-R1150 
R1250-R1150 

R1150/R1200 
R1150/R1250 
R1150/R1400 
R1200/R1250 
R1200/R1400 
R1250/R1400 

R1150*R1200 
R1150*R1250 
R1150*R1400 
R1200*R1250 
R1200*R1400 
R1250*R1400 

R1150+R1200 
R1150+R1250 
R1150*R1400 
R1200+R1250 
R1200+R1400 
R1250+R1400 

Table 1. List of the 32 descriptors considered. 18 

 19 
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2.3.4 PLS-DA and sPLS-DA 1 

PLS-DA [34] is a classification method based on the application of PLS regression to classification 2 

purposes. In PLS-DA the Y matrix is composed by as many columns as the number of existing 3 

classes, where each column is a binary class vector, reporting the 1 value if the corresponding row 4 

(object) belongs to the class, and 0 otherwise. The matrix of descriptors (X) is therefore regressed 5 

against the Y binary matrix, and the outcome of the PLS model is a matrix containing the regression 6 

coefficients which are used to predict new samples. The Y predictions for each object with respect 7 

to each class are continuous values, therefore a threshold based on Bayesian statistics [46] has to be 8 

set separately for each class model (i.e. for the estimate of each class vector), so that objects whose 9 

predicted value for a given class is higher than the threshold are attributed to that class, while 10 

objects leading to predictions lower than the threshold are not assigned to the class. 11 

Sparse PLS-DA [7, 36] is an extension of PLS-DA in which a penalty function is applied to the 12 

model parameters in order to constrain some coefficients to be equal to zero, i.e., to induce sparsity 13 

on the model coefficients. In particular, sparsity is induced on the PLS loadings, and consequently 14 

on the regression coefficients used to predict unknown samples. Therefore, thanks to the sPLS-DA 15 

approach it is possible to perform both classification and variable selection in a one-step procedure, 16 

by forcing to zero the coefficients of noisy or uninformative variables. 17 

In order to select the best sPLS-DA classification models, in addition to the number of latent 18 

variables (LVs) like for PLS-DA, also the number of variables to select for each component needs 19 

to be tuned. Therefore, in Filter Simulation 3, different sPLS-DA models were constructed using 20 

both AS training set and RS training set, and testing all the combinations between a number of LVs 21 

ranging from 1 to 5 and a number of variables to select for each component ranging from 2 to 32. 22 

For each training set, the best model was selected by keeping the classification error in cross-23 

validation as low as possible, while retaining at the same time the lowest possible number of 24 

variables and of LVs.  25 
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Both PLS-DA and sPLS-DA were calculated on autoscaled variables since the considered 1 

descriptors have different scales. The optimization of the classification models was performed using 2 

contiguous blocks cross-validation with 4 deletion groups, where each block contained the average 3 

spectra (for AS training set) or randomly selected spectra (for RS training set) of all the replicated 4 

and repeated images belonging to 6 batches (i.e., setting aside whole batches in the different 5 

deletion groups), as shown in Figure S-3 of Supplementary material. 6 

For all the simulations, the classification performances were defined using efficiency (EFF), which 7 

is the geometric mean between sensitivity (SENS) and specificity (SPEC), i.e.: 8 

 '(( = √!')! × !�'+ (4) 9 

where sensitivity is the percentage of objects of each class correctly retained by the class model and 10 

specificity is the percentage of objects of the other classes correctly rejected by the class model. 11 

Data analysis was performed using PLS_Toolbox (v. 7.5, Eigenvector Research Inc., USA) for 12 

PLS-DA, while sPLS-DA was computed with ad-hoc routines kindly provided by Dr. Ewa 13 

Szymanska and written in Matlab language (ver. 7.12, The Mathworks Inc., USA); further details 14 

can be found in Szymanska et al., 2015 [47]. The data were analyzed using a personal computer 15 

running with Windows 8.1-64 bit and equipped with an Intel Core® i7-3632QM CPU @ 2.20GHz 16 

processor and 6.00 GB RAM. 17 

  18 
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3 RESULTS AND DISCUSSION 1 

3.1 Filter Simulation 1 2 

The results obtained from the PLS-DA classification models built both using AS training set and RS 3 

training set and considering only the reflectance values of the 4 channels are reported in the first 4 

two columns of Table 2. Concerning calibration and cross validation, the PLS-DA model built 5 

using AS training set gives definitely best results than the one built with RS training set. However, 6 

AS training set and RS training set show comparable results for the test set of average spectra and 7 

RS training set gives better results when used to predict both test images at the pixel level. These 8 

differences are likely due to the fact that the variability among spectra belonging to the same class 9 

is much higher in RS training set than in AS training set. On the one hand, this led to worst results 10 

of RS training set in calibration and cross validation, but on the other hand it turned out to be useful 11 

for the predictions of the test images at the pixel-level. 12 

 13 

 
Filter Simulation 1 Filter Simulation 2 Filter Simu lation 3 

AS tr. set RS tr. set AS tr. set RS tr. set AS tr. set RS tr. set 

N° variables 4 4 32 32 4 4 

LVs 4 4 3 3 2 2 

EFFCAL  99.1 81.3 100.0 80.3 99.6 78.4 

EFFCV 97.3 79.9 99.3 78.7 97.3 78.0 

EFFTEST 94.0 94.9 97.5 100.0 98.3 100.0 

EFFIMG1  65.1 74.0 71.1 71.0 69.5 83.9 

EFFIMG2  83.9 92.2 84.3 92.1 85.6 93.1 

Table 2. Results obtained using AS training set and RS training set in filters simulation1, filter 14 

simulation 2 and filter simulation 3; the classification efficiency values are referred to the results in 15 

calibration (EFFCAL), cross-validation (EFFCV), prediction of the test set at the image-level 16 

(EFFTEST), and of test image 1 and test image 2 at the pixel-level (EFFIMG1 and EFFIMG2, 17 

respectively). 18 

 19 

In fact, the predicted image obtained when AS training set was used to classify test image 1 (Figure 20 

2.a), in which the pixels predicted as Arabica coffee are represented in red colour and the pixels 21 
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predicted as Robusta coffee are represented in green colour, shows that the classification 1 

performances are strongly influenced by the round shape of the beans. Actually, when dealing with 2 

the classification of objects using hyperspectral or multispectral imaging systems, the problem of 3 

the irregular shape of the samples is often present, since in practical applications the sample surface 4 

is not generally flat. This might be ascribed to a lower signal in the spectra or to the fact that the 5 

signal is mixed with the background signal. 6 

The same model applied to test image 2 gives a higher EFF value, but the problem of the shape still 7 

occurs (Figure 2.b). In the case of the beans belonging to Robusta coffee (group of beans on the 8 

right) the misclassified pixels can be found mainly in correspondence of the edges of the beans. 9 

Furthermore, considering the beans belonging to Arabica coffee, some of those beans are 10 

misclassified (Figure 2.b).  11 

Conversely, the shape effect is less evident when the same images are predicted with RS training set 12 

(Figures 2.c and 2.d). In particular, the results for test image 1 (Figure 2.c) show that one Robusta 13 

bean is clearly misclassified, and the same for some Arabica beans. Concerning test image 2, the 14 

major part of pixels is assigned to the correct class, even if some misclassifications occur at the 15 

edges of the beans (Figure 2.d). The differences in prediction on the test images of the two 16 

approaches are highlighted in Figure 2.e and Figure 2.f, which represent a difference image between 17 

the predictions made from AS training set and RS training set on the same image. In particular, the 18 

pixels correctly predicted with both approaches are represented in blue colour, the pixels 19 

misclassified with both approaches are represented in purple colour and those differently predicted 20 

(i.e., where only one of the two models have failed) are represented in yellow colour. 21 

 22 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

 

 1 

Figure 2. Filter simulation 1: predicted images of PLS-DA models built using AS training set (a, b) 2 

and RS training set (c, d), and difference images for test image 1 (e) and test image 2 (f). 3 

 4 

Moreover, Table S-1 (Supplementary material) reports the percentage of correctly predicted pixels 5 

of Arabica and Robusta classes for both the test images. While the percentage of correctly predicted 6 

pixels for Arabica Coffee does not depend significantly upon the considered training set, the 7 

percentage of correctly predicted pixels for Robusta coffee is much higher when RS training set is 8 

used. 9 

 10 

3.2 Filter Simulation 2 11 

In Filter Simulation 2, the PLS-DA models were calculated using all the 32 descriptors listed in 12 

Table 1; the results obtained with the AS and the RS training sets are reported in the third and 13 

fourth column of Table 2, respectively. Interestingly, for both the AS and RS training sets only 14 

three LVs have been selected. 15 

As observed in Filter Simulation 1, the classification model built using AS training set shows better 16 

performances in calibration and cross validation than the one built on RS training set. However, the 17 

model based on RS training set shows better results for the prediction both of test set and of test 18 

image 2. In particular, an EFF value equal to 100% is obtained when the classification model built 19 
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using RS training set is used to predict the test set. The performances in the prediction of test image 1 

1 are essentially the same in terms of efficiency values, but AS training set gives a higher 2 

percentage of Arabica pixels which are correctly predicted (76.8%), while RS training set gives a 3 

higher percentage of correctly predicted pixels for Robusta class (86.0%). 4 

Comparing the results obtained for Filter Simulation 2 with those of Filter Simulation 1, it can be 5 

observed that, for the models calculated using AS training set, the use of additional descriptors led 6 

to a general increase of the EFF values; conversely, for the models calculated using RS training set, 7 

Filter Simulation 2 led to slightly worse results, except for the prediction of the test set. 8 

Concerning the pixel-level predictions, Figures S-4.a and S-4.b (Supplementary material) report the 9 

predictions obtained using AS training set for test image 1 and test image 2, respectively. In both 10 

the images the problem of the round shape of the beans is less evident than in the corresponding 11 

predicted images obtained from Filter Simulation 1, even if many misclassifications still occur in 12 

correspondence to the edges and to the centre cut of the beans. Moreover, also the percentage of 13 

pixels correctly predicted generally increases from Filter Simulation 1 to Filter Simulation 2 for 14 

both test images mainly considering class Arabica. 15 

Concerning the model built using RS training set, Figures S-4.c and S-4.d (Supplementary material) 16 

report the predictions of test image 1 and test image 2, which look very similar to those obtained in 17 

Filter Simulation 1. 18 

The corresponding regression vectors have been reported in Figures 3.a and 3.b, respectively. For 19 

both the classification models, single reflectance values, sums and products have low influence, 20 

since the absolute values of the corresponding regression coefficients are small. The largest absolute 21 

values of the regression coefficients are instead observed for some differences and ratios; in 22 

particular, R1250-1200 and R1200/R1250 are the descriptors showing the highest contribution for 23 

both the models. More in general, the two regression vectors are quite similar to each other, 24 

suggesting that - independently of the considered training set - the information useful to 25 

discriminate between Arabica and Robusta coffee is found within the same subset of descriptors. 26 
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 1 

 2 

Figure 3. PLS-DA regression vectors of the classification models built on AS training set (a) 3 

and RS training set (b) considered in filter simulation 2; and regression vectors of sPLS-DA models 4 

calculated on AS training set (a) and RS training set (b) in filter simulation 3. 5 

 6 

 7 

3.3 Filter Simulation 3 8 

In order to better identify the most relevant descriptors involved in the discrimination between 9 

Arabica and Robusta coffee beans and to reduce the number of variables used in the classification 10 

models, feature selection by sPLS-DA was then applied both to AS and to RS training sets.  11 

Figure S-5 (Supplementary material) reports the response surfaces for AS and for RS training sets 12 

(Figures S-5.a and S-5.b, respectively) of the EFF values estimated in cross-validation as a function 13 

of the number of LVs and of the number variables selected for each LV. In both the cases, the 14 

optimal conditions were reached with 2 LVs and 2 variables for each component, which correspond 15 

to regression vectors including 4 selected variables, as reported in Figure 3.c for AS training set and 16 

in Figure 3.d for RS training set. Both sparse models converge on the selection of the three 17 

descriptors showing the highest absolute values of the corresponding regression coefficients, i.e., 18 
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R1250-R1200, R1400-R1200 and R1200/R1250; moreover, R1400-R1250 and R1400-R1150 are 1 

additionally selected in the sparse model built on AS training set and RS training set, respectively. 2 

The results of the sparse models are reported in the last two columns of Table 2. Similarly to the 3 

results of Filter Simulations 1 and 2, also for Filter Simulation 3 the EFF values obtained in 4 

calibration and in cross-validation for RS training set are lower than those obtained for AS training 5 

set, while higher performances have been obtained in prediction, both at the image-level and at the 6 

pixel-level. In particular, the use of the RS training set led to an EFF value equal to 100% for the 7 

prediction of the test set at the image-level; the corresponding sLV1 and sLV2 score plot is reported 8 

in Figure S-6 (Supplementary material) which shows a distinct separation of the samples belonging 9 

to Arabica and Robusta coffee species. 10 

In general, compared to the use of the 4 reflectance values of the filters (Filter Simulation 1), the 11 

selection by sPLS-DA of the most relevant descriptors allowed to obtain more parsimonious models 12 

(2 LVs instead of 4 LVs), and to gain a significant increase of the classification performances in 13 

prediction, in particular for the model calculated using the RS training set. 14 

As far as the prediction at the pixel-level is concerned, the comparison of the predicted images 15 

obtained from AS training set (Figures 4.a and 4.b for test image 1 and test image 2, respectively) 16 

and from RS training set (Figures 4.c and 4.d for test image 1 and test image 2, respectively) shows 17 

that the sparse model built using AS training set is much more sensitive to the round shape of the 18 

coffee beans, this fact being particularly evident in the case of test image 1. Moreover, in the 19 

prediction of test image 1 for both models more misclassifications occur for Arabica coffee beans 20 

(on the left) than for Robusta coffee beans (on the right). Indeed, for both models the percentage of 21 

correctly classified Robusta coffee pixels is greater than the percentage of correctly classified 22 

Arabica coffee pixels (Table S-1 in Supplementary material). 23 

As far as test image 2 is concerned, even if the overall classification of the beans is correct for both 24 

models, the sparse classification model built using RS training set is less sensitive to edge effects 25 

and to the round shape of the beans (Figure 4.d). This is also evident from the difference image 26 
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between the predictions made with AS training set and RS training set, reported in Figures 4.e and 1 

4.f, respectively: considering test image 1, one Robusta bean and four Arabica beans are always 2 

misclassified (purple colour), while the pixels differently predicted (yellow colour) are mainly 3 

ascribable to the fact that the model built using AS training set is more influenced by the shape of 4 

the beans. Conversely, in test image 2 the overall classification of the beans is correct for both 5 

classes; also in this case the differences are mainly due to a higher sensitivity to shape-related 6 

effects in the model built using AS training set, as it is also confirmed by the values reported in 7 

Table S-1 (Supplementary material). 8 

 9 

 10 

Figure 4. Filter simulation 3: predicted images of sPLS-DA models built using AS training set (a, 11 

b) and RS training set (c, d) and difference images for test image 1 (e) and test image 2 (f). 12 

 13 

In order to better investigate the influence of shape-related effects, the Hotellig’s T2 values and the 14 

Q residuals of the sPLS-DA models discussed in this Section have also been considered. Actually, 15 

the pixels falling outside the 95% confidence limits are mainly placed at the edges of the beans, as 16 

reported in Figure S-7 of Supplementary material for the sPLS-DA model calculated with RS 17 

training set. In this case, only a small percentage of pixels was detected as outlier, thus the 18 

elimination of those pixels would have not significantly increased the classification performances. 19 
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However, it has to be highlighted that the implementation of outlier statistics in the classification 1 

model could be considered for a further optimization, giving the possibility to detect also potential 2 

foreign objects, such as metals, stones, sticks or soil residuals. 3 

 4 

 5 

4 CONCLUSIONS 6 

This paper is aimed at investigating the issues concerning the implementation of a multispectral 7 

imaging system, starting from the outcome of spectral feature selection performed using a 8 

hyperspectral system, in order to discriminate between Arabica and Robusta coffee species. In 9 

particular, the simulations reported in the present work were done not only considering the single 10 

reflectance values of the filters, but also exploring systematically linear and non-linear relationships 11 

between bands, and selecting the relevant descriptors involved in the classification, which led to a 12 

significant increase of the classification performances in prediction.  13 

Moreover, attention was also paid to the proper construction of a representative training set by 14 

comparing two different approaches, which consisted in the use of average image spectra and of 15 

randomly selected spectra; the latter one led to better classification results, mostly in the case of 16 

predictions at the pixel-level, since it allowed to consider also the spatial variability within each 17 

image. 18 

In the specific case, the use of a representative training set of randomly selected spectra allowed to 19 

better account for the round shape of the green coffee beans, while the selection of the most 20 

effective combinations of channels allowed to explore the descriptors which better reflect the 21 

chemical differences between Arabica and Robusta green coffee.  22 

In particular, the proper combination of four NIR band-pass filters and the use of multivariate 23 

statistical analysis allowed to achieve classification performances comparable to those obtained 24 

with the hyperspectral data, i.e. considering the full NIR spectrum. Moreover, it has to be 25 

highlighted that the calculation of the 32 descriptors from the outputs of the band-pass filters and 26 
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the choice of the relevant ones involved in discrimination are conducted off-line during the 1 

optimization of the classification model. For the real-time implementation of the model only the 2 

four selected descriptors have to be calculated, which is much faster than acquiring and elaborating 3 

the whole spectrum (150 spectral variables) of the original hyperspectral imaging system. Based on 4 

these results, a filter-based multispectral imaging system can be easily implemented in order to 5 

obtain a fast and inexpensive tool suitable for on-line monitoring of green coffee, allowing to 6 

prevent counterfeits.  7 

In general, the proposed approach demonstrated the possibility of having a clear idea of the 8 

classification performances that can be reached using a multispectral system, much time before the 9 

system itself is actually constructed.  10 

 11 
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CAPTURES TO FIGURES 1 

Figure 1. Average spectra calculated from each image of the training samples with selected regions 2 

highlighted (a), Gaussian profiles of the 4 filters considered (b) and resulting reflectance 3 

values obtained from the average training spectra (c). 4 

Figure 2. Filter simulation 1: predicted images of PLS-DA models built using AS training set (a, b) 5 

and RS training set (c, d), and difference images for test image 1 (e) and test image 2 (f). 6 

Figure 3. PLS-DA regression vectors of the classification models built on AS training set (a) and 7 

RS training set (b) considered in filter simulation 2; and regression vectors of sPLS-DA 8 

models calculated on AS training set (a) and RS training set (b) in filter simulation 3. 9 

Figure 4. Filter simulation 3: predicted images of sPLS-DA models built using AS training set (a, 10 

b) and RS training set (c, d) and difference images for test image 1 (e) and test image 2 11 

(f). 12 
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Table 1. List of the 32 descriptors considered. 

Single Filters Differences Ratios Products Sums 

R1150 
R1200 
R1250 
R1400 
R11502 
R12002 
R12502 
R14002 

R1200-R1150 
R1250-R1200 
R1400-R1250 
R1400-R1200 
R1400-R1150 
R1250-R1150 

R1150/R1200 
R1150/R1250 
R1150/R1400 
R1200/R1250 
R1200/R1400 
R1250/R1400 

R1150*R1200 
R1150*R1250 
R1150*R1400 
R1200*R1250 
R1200*R1400 
R1250*R1400 

R1150+R1200 
R1150+R1250 
R1150*R1400 
R1200+R1250 
R1200+R1400 
R1250+R1400 
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Table 2. Results obtained using AS training set and RS training set in filters simulation1, filter 

simulation 2 and filter simulation 3; the classification efficiency values are referred to the 

results in calibration (EFFCAL), cross-validation (EFFCV), prediction of the test set at the 

image-level (EFFTEST), and of test image 1 and test image 2 at the pixel-level (EFFIMG1 

and EFFIMG2, respectively). 

 
Filter Simulation 1 Filter Simulation 2 Filter Simu lation 3 

AS tr. set RS tr. set AS tr. set RS tr. set AS tr. set RS tr. set 

N° variables 4 4 32 32 4 4 

LVs 4 4 3 3 2 2 

EFFCAL  99.1 81.3 100.0 80.3 99.6 78.4 

EFFCV 97.3 79.9 99.3 78.7 97.3 78.0 

EFFTEST 94.0 94.9 97.5 100.0 98.3 100.0 

EFFIMG1  65.1 74.0 71.1 71.0 69.5 83.9 

EFFIMG2  83.9 92.2 84.3 92.1 85.6 93.1 
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Highlights  

• Fast discrimination between Arabica and Robusta is important for coffee industry 

• Multispectral imaging can be very effective to this aim, but hard to implement 

• Multispectral data were simulated from HSI data and NIR band-pass filters 

• sPLS-DA was used for classification and selection of the relevant descriptors 

• Classification performances were evaluated both at image-level and at pixel-level 

 


