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ABSTRACT

Due to the differences in terms of both price andhlity, the availability of effective
instrumentation to discriminate between Arabica Rothusta coffee is extremely important. To this
aim, the use of multispectral imaging systems cagoidvide reliable and accurate real-time
monitoring at relatively low costs. However, in giiae the implementation of multispectral
imaging systems is not straightforward: the presemtk investigates this issue, starting from the
outcome of variable selection performed using aehypectral system. Multispectral data were
simulated considering four commercially availahleefs matching the selected spectral regions,
and used to calculate multivariate classificatioadels with Partial Least Squares-Discriminant

Analysis (PLS-DA) and sparse PLS-DA. Proper stigefpr the definition of the training set and



the selection of the most effective combinations spfectral channels led to satisfactory

classification performances (100% classificatidicefncy in prediction of the test set).

KEYWORDS
Green coffee; Multivariate classification; Hypersipal imaging; Multispectral imaging; Sparse

methods.
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1.INTRODUCTION

Hyperspectral imaging (HSI) systems have showedeatgotential for their application in food
control processes, being a fast and non-destrutdsteique able to handle different issues related
to quality evaluation and safety inspection of agjtural and food products [1 — 3]. The main
advantage of HSI is the possibility of couplingsd@&al point-wise spectroscopy with imaging
techniques, in order to obtain simultaneously spaind spectral information from a sample. In this
manner, a huge amount of spectral information ises®d from the surface of a sample in a
relatively short time and it is possible to provideeliable and accurate real-time monitoring at
different stages of the food processing chain [4].

Despite the advantages of this technique, two naiawbacks currently limit the direct
implementation of HSI into real-time systems foodocontrol: the high costs of HSI systems and
the extremely large amount of data that are acdumeshort times, implying high computational
loads which complicate the development of efficiantl fast applications [5, 6]. For these reasons,
most of the food related HSI research works havenbdirected towards the identification of
wavelengths relevant to the problem at hand, foth&r development of multispectral imaging
systems suitable for on line or portable devices4[37]. The advantages of multispectral imaging
systems over hyperspectral ones include the famtquisition times and the lower costs of
hyperspectral cameras [8]. Furthermore, multispéttichnology is easier to implement for on-line
applications, due to the higher resistance andlisyatif the optical components.

Starting from variable selection performed on hgpectral image data, a multispectral imaging
system can be implemented, at least in principfeusing the selected spectral regions [9 — 12].
However, adapting the outcomes of variable selegberformed on hyperspectral data to a filter-
based imaging system is not straightforward, amglnibt easy to maintain acceptable performances
after transferring results from a hyperspectralgimg system to a multispectral imaging one [10].

In fact, position and width of actually availabliers generally do not perfectly match the seleécte
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spectral regions. Moreover, in multispectral systemly a single “average” intensity value can be
measured for each selected spectral region, wimgilies that the useful information related to
spectral shape within the selected intervals is. |G the other hand, the limited number of
multispectral channels allows to easily expand niaenber of potentially useful descriptors by
calculating quantities derived from the single aferintensities, i.e., by introducing nonlinear and
interaction terms derived from the intensity valuesorder to improve the results [13]. In this
manner, it is possible to evaluate linear and mo@ak relationships between the different channels
and thus to emphasize small variations in the splestgnature which could be useful for the
problem at hand [14].

In this context, the present work is aimed at shgwthe feasibility of implementing a simulated
multispectral filter-based classification model fthre discrimination of green coffee samples
belonging to ArabicaCoffea arabica) and RobustaJoffea canephora) coffee species. Arabica and
Robusta coffee differ each other from chemical anglanoleptic properties. Chemical analysis
based on chromatography showed that Arabica and$looffee have differences in their content
in caffeine, cholorogenic acid, trigonelline, sterand amino acids [15, 16]. Furthermore, Arabica
coffee is considered of higher quality becauset®foetter taste and aroma and, therefore, it is
generally preferred by the consumers. On the dthed, Arabica coffee can be two to ten times
more expensive than Robusta coffee, which is lppsegiated and mainly used as filler in coffee
blends or in instant coffee production [17, 18].elto the significant differences in terms of both
price and quality, it is therefore important to remtly discriminate between the two coffee coffee
species in order to prevent the adulteration ohlggality Arabica coffee with cheaper and lower
guality Robusta coffee [19 - 22]. Therefore, theredct classification of green coffee beans of the
two species could allow to identify possible adat®ns or mislabelling at an early stage of the
processing chain.

Many different analytical techniques have been stigated in order to discriminate Arabica and

Robusta coffee species, includittd-Nuclear Magnetic Resonance (NMR) [2531C-NMR [24], 2-
4
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D electrophoresis [25], electronic nose and eledtraongue [26] among others. The use of so
many different analytical methods suggest that Imbde discrimination between Arabica and
Robusta species is a crucial aspect for coffeesimgu

However, the above mentioned methods are not $eifabfast characterization of large amounts
of products, e.g., by rapid in-line or on-line moning [19]; conversely, spectroscopic methods
represent a fast and non-destructive alternativeth@r more complex analytical techniques for
facing food authentication problems, being at thene time simple, fast, non-destructive and
reliable [27]. In particular, classical point-widdIR spectroscopy has been widely used to
discriminate Arabica and Robusta species, bothreamgcoffee [28, 29] and on roasted coffee [30,
31]. More recently, some research works have bésm reported where hyperspectral imaging
(HSI) is used to characterize these coffee sp§8&33].

The main aim of the present study is to investighteissues related to the implementation of a
multispectral imaging system starting from the oute of a variable selection/classification model
calculated on hyperspectral data [7]. In particuéamultispectral detection system was simulated
by considering four commercially available filtechiosen as those showing the best match with the
selected spectral regions. Then, Partial Least i®@quaiscriminant Analysis (PLS-DA) [6, 34, 35]
classification models were built considering ascdesors both the four channels alone and the four
channels together with their squared values andssuiifferences, products and ratios between
couples of channels. Moreover, variable selectignSparse Partial Least Squares Discriminant
Analysis (SPLS-DA) [7, 36] was also employed inardb identify the most relevant descriptors

and to further increase the performances of thesifleaation models.
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2.MATERIALS AND METHODS

2.1 Coffee samples

The green coffee samples of Arabica and Robusteiegpeonsidered in this study came from
different geographical areas and were provided hycal roasting company during a period of 6
months. In particular, each sample belonged tdfardnt batch and the samples were subjected to
different processing methods to separate the swed the fruit. Despite the different properties of
the samples, we focused on the discrimination betwArabica and Robusta coffee species,
regardless of processing method or of geograpbragih.

On the whole, 33 batches were considered in thesindl plant: 18 of Robusta and 15 of Arabica.
From each batch about 500 g of beans, sampledder 60 be as representative as possible of the
corresponding batch, were collected and stored seaed package. From each package, three
aliquots of 70 g of randomly selected beans wektertaand for each aliquot two repeated images
were acquired, shuffling the beans between theawguisitions. The same procedure was repeated
in a different day in order to check the day-to-dayiability. All the batches were acquired in
random order and the packages were sealed agaistaretl at room temperature between the
different acquisition days. Therefore, for eachchal2 hyperspectral images (= 2 measurement
sessions x 3 aliquots x 2 repeated acquisitions} wequired, obtaining a dataset composed by 396

hyperspectral images (33 batches x 12 images).

2.2 Image acquisition

The hyperspectral images were acquired using at@esKIR Spectral Scanner (DV Optic)
embedding a reflectance imaging based spectronggtecim N17E, coupled to a Xenics XEVA
2608 camera (320 x 256 pixels) and working in tB8-2700 nm spectral range with a spectral
resolution of 5 nm, with a total of 150 spectraachels. The images were acquired using a black

silicon carbide sandpaper sheet as background hwkicharacterized by a very low and constant
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reflectance spectrum [37], and in addition a 99%tevheramic tile reflectance standard and two
ceramic tiles with intermediate reflectance valwese included in the area of the images.

The raw data were converted into reflectance valisgsg an instrumental calibration based on the
high reflectance standard reference and on danemuf38]. Furthermore, in order to reduce the
variability among images over time, an additiomaérnal calibration was performed [6, 39], based
on the average reflectance values of the refleetat@ndard, of the two ceramic tiles and of the
black silicon carbide sandpaper.

Before further analysis, the pixels related to Iheck sandpaper background were removed from
each image using the following thresholding proceda preliminary evaluation of some sample
images allowed to identify the most discriminantvelangth by maximizing the Fisher ratio
between background spectra and sample spectrhisim&nner, at 1050 nm, all the pixels below

the threshold value of 0.1 reflectance units wdesliified as background and removed.

2.3 Data analysis
2.3.1 Data arrangement
The acquired hyperspectral images were used tdeckfierent hyperspectral datasets, which in
turn were converted into the corresponding multseéd datasets and then used for calculation and
validation of the classification models.
In particular, the 33 coffee batches were randaplit in 24 training batches (corresponding to 288
training set images), including 11 Arabica and Ib&sta coffee batches, and in 9 test batches (108
images), including 4 Arabica and 5 Robusta coftaeles.
Two different strategies were then consideredherdefinition of the training set:

- Average Spectra (AS): the average spectrum wasillaegdd for each training set image,

obtaining an AS training set including 288 spectra;
- Random spectra (RS): 50 spectra were randomly teeldoom each training set image,

obtaining a RS training set including 14400 spe@tra88 images x 50 spectra).
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Since each hyperspectral image is composed by dénbBousands of single-pixel spectra, AS
training set and RS training set represent twoerkfit approaches to build a reduced (but still
representative) training set from the huge amotidata contained in the original images.

On one hand, computing the average spectra frofmm legoerspectral image allows to drastically
reduce the number of objects, under the assumpt@nan average spectrum is representative of
the image as a whole. On the other hand, averairtge pixel-spectra contained in each image
implies loosing the information about the spat@ti&bility within each image. Therefore, keeping a
relatively limited number of randomly selected spedor each image was considered as a valid
compromise between reducing data size and (at peailyy) maintaining spatial variability related
information.

The classification performances of the two appreactvere evaluated in prediction both at the
image-level, i.e., considering each image on thelgyhand at the pixel-level, i.e., evaluating the
class assignment of each single image pixel. Itiquéar, an external test set consisting of the
average spectra of each image of the test sampssused to validate the classification models at
the image-level. Moreover, in order to validate thessification models also at the pixel-level and
to visually evaluate the classification performamd®o different test images (test image 1 and test
image 2) with different arrangement of the beansevawnsidered. The test images were obtained
by merging together one image of Arabica coffee and of Robusta coffee taken from the test
samples. In this manner, since each test imageaicsnbne image for each class, it was possible to
obtain a quantitative evaluation of the prediciity of the models at the pixel-level.

The hyperspectral datasets (AS training set, RRBiria set, test set and the two test images)
mentioned in this section were then converted miatispectral data following the procedure

described in below.
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2.3.2 FromHS selected spectral regions to multispectral data
Number and position of the channels to be consititmethe multispectral system were defined on
the basis of feature selection made by applyingsgpelassification methods to the AS training set
described in the previous section, as reportedalvid et al., 2015 [7]. Briefly, sparse methods
allow performing variable selection by forcing theodel coefficients related to noisy or
uninformative variables to be equal to zero, inaywhat it is possible to calculate a classifiaatio
model and to perform variable selection in a omg@-gtrocedure [40]. For the classification of
Arabica and Robusta green coffee two different spéased algorithms, i.e., sparse Principal
Component Analysis [41] coupled with k-Nearest Néigur [42] (SPCA+kNN) and sparse Partial
Least Squares Discriminant Analysis (SPLS-DA) [38&re applied to the average spectra of the
hyperspectral images. The relevance of the seleete@lengths, which are reported in Figure 1.a,
was confirmed by the fact that both sparse clasdibn methods converged to the selection of the
same narrow spectral regions. The evaluation dfetlregions showed that they essentially reflect
chemical composition differences between the twiteeovarieties, rather than physical effects. In
particular, the selected spectral regions wereteélto the C-H aromatic second overtone (1143
nm), to the C-H aliphatic second overtone (11955122n), and to the O-H first overtone of
aliphatic (1410 nm) and aromatic alcohol (1420 48]. In order to better evaluate the spectral
differences between Arabica and Robusta green eoffggure S-1 reports two sample spectra
belonging to the two coffee species and the coomdipg difference spectrum.
Starting from the outcome of variable selectionfgraned on hyperspectral data, the commercial
fillers showing the best match with the selectedcspl regions were then identified [44]; in
particular, four bandpass filters were selectedpsehcenter wavelengtlR\\WL), filter width at half
maximum FWHM) and peak transmissioRT) values listed below:

- Filter 1: CWL=1150 nm, FWHM=10 nm, PT=40%

- Filter 2: CWL=1200 nm, FWHM=10 nm, PT=40%

- Filter 3: CWL=1250 nm, FWHM=10 nm, PT=40%
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- Filter 4: CWL=1400 nm, FWHM=12 nm, PT=35%.
In order to mimic the output of a filter-based nspectral system, each reflectance spectrum of the
hyperspectral datasets (AS training set, RS trgiset, test set and the two test images) was then
used to estimate the reflectance values that woeilobtained by using the considered filters.
To this purpose, the Gaussian-shaped transmissafilepof each filter was calculated from the

corresponding filter properties as:

(A-cwL)?

1 -
Z(/l) = PT U_\/ﬁ e 202 (l)

where Z{) is the Gaussian transmission profile of the ffite a function of the wavelengthando
is the standard deviation of the Gaussian disiobytwhich is related t&-WWHM according to the

equation [45]:

FWHM
0= 3 V2Inz (2)

For each filter, the corresponding reflectance @altieach objedt belonging to the hyperspectral
datasets was then calculated according to the iequat

Ry = %37 Z(2) 5:(A) 3
where §(1) is the HSI spectrum of object while imin and Anax are the extreme values of the
spectral rage acquired with the hyperspectral cartiarour case}min = 955 nm andmax = 1700
nm).
This procedure is schematically represented inrgigy where Figure 1.a reports the spectra of AS
training set together with the selected spectrglores, Figure 1.b shows the Gaussian profiles
calculated by equation (1), and Figure 1.c reptivées4 discrete reflectance values calculated by

equation (3) for each spectrum of the AS trainieg s

10
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Figure 1. Average spectra calculated from each image ofrttieing samples with selected
regions highlighted (a), Gaussian profiles of thmdsidered filters (b) and resulting reflectance
values obtained from the average training specjra (
Therefore, from the original hyperspectral datasetgtaining 150 spectral variables, the
corresponding multispectral datasets containingadables were obtained, where each variable is
the reflectance value of a given multispectral clehnAs an example, Figure S-2 (Supplementary

material) shows the pseudocolor images obtained fite four considered channels for both test

image 1 and test image 2.
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2.3.3 Filter-based simulations
Starting from the multispectral datasets compoded wariables, three different simulations were
performed:

* In Filter Smulation 1 only the 4 reflectance values of the filters weoasidered for PLS-
DA classification.

* In Filter Smulation 2, since the low number of multispectral channdievwad expanding the
number of potentially useful descriptors by caltinig quantities derived from the outputs
of the different channels, PLS-DA classification dats were calculated including also
additional descriptors derived from the four refdexe values. In particular, the squared
reflectance value of each channel and differencatsos, products and sums between

couples of channels were calculated, obtainingsa#tawith the 32 descriptors listed in

12

13

14

15

16

17

18

19

Table 1.

* In Filter Smulation 3, feature selection by sPLS-DA was performed ireotd identify the

most relevant descriptors among the 32 variabd¢sdiin Table 1.

For each of the three simulations, two classifaratmodels were calculated, one using the AS

training set and one using the RS training set.

Single Filters Differences Ratios Products Sums
R1150 R1200-R1150 R1150/R1200 R1150*R1200 R1150+R1200
R1200 R1250-R1200 R1150/R1250 R1150*R1250 R1150+R1250
R1250 R1400-R1250 R1150/R1400 R1150*R1400 R1150*R1400
R1400 R1400-R1200 R1200/R1250 R1200*R1250 R1200+R1250
R115¢ R1400-R1150 R1200/R1400 R1200*R1400 R1200+R1400
R120¢ R1250-R1150 R1250/R1400 R1250*R1400 R1250+R1400
R125G
R140G

Table 1. List of the 32 descriptors considered.

12
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2.3.4 PLSDA and sPLSDA

PLS-DA [34] is a classification method based ondpplication of PLS regression to classification
purposes. In PLS-DA th¥ matrix is composed by as many columns as the numibexisting
classes, where each column is a binary class veejoorting the 1 value if the corresponding row
(object) belongs to the class, and 0 otherwise. mhgix of descriptorsX) is therefore regressed
against they binary matrix, and the outcome of the PLS modal msatrix containing the regression
coefficients which are used to predict new samplég. Y predictions for each object with respect
to each class are continuous values, thereforeeahtbld based on Bayesian statistics [46] has to be
set separately for each class model (i.e. for ghienate of each class vector), so that objects ehos
predicted value for a given class is higher tham ttireshold are attributed to that class, while
objects leading to predictions lower than the thoés are not assigned to the class.

Sparse PLS-DA [7, 36] is an extension of PLS-DAnhich a penalty function is applied to the
model parameters in order to constrain some coefiie to be equal to zero, i.e., to induce sparsity
on the model coefficients. In particular, sparsstynduced on the PLS loadings, and consequently
on the regression coefficients used to predict amknsamples. Therefore, thanks to the sPLS-DA
approach it is possible to perform both classifaraind variable selection in a one-step procedure,
by forcing to zero the coefficients of noisy or mimrmative variables.

In order to select the best sPLS-DA classificatoadels, in addition to the number of latent
variables (LVs) like for PLS-DA, also the numbenrwairiables to select for each component needs
to be tuned. Therefore, in Filter Simulation 3 feliént SPLS-DA models were constructed using
both AS training set and RS training set, andnigsaill the combinations between a number of LVs
ranging from 1 to 5 and a number of variables tectdor each component ranging from 2 to 32.
For each training set, the best model was seleayeldleeping the classification error in cross-
validation as low as possible, while retaining la¢ same time the lowest possible number of

variables and of LVs.

13
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Both PLS-DA and sPLS-DA were calculated on autestalariables since the considered
descriptors have different scales. The optimizatibtine classification models was performed using
contiguous blocks cross-validation with 4 deletgyoups, where each block contained the average
spectra (for AS training set) or randomly seledpdctra (for RS training set) of all the replicated
and repeated images belonging to 6 batches (e#ting aside whole batches in the different
deletion groups), as shown in Figure S-3 of Supplaary material.

For all the simulations, the classification perfamoes were defined using efficiend&FE), which

is the geometric mean between sensitivayNS) and specificity $PEC), i.e.:

EFF =+/SENS x SPEC (4)

where sensitivity is the percentage of objectsazheclass correctly retained by the class model and
specificity is the percentage of objects of thesottlasses correctly rejected by the class model.
Data analysis was performed using PLS_Toolbox (&, Eigenvector Research Inc., USA) for
PLS-DA, while sPLS-DA was computed withd-hoc routines kindly provided by Dr. Ewa
Szymanska and written in Matlab language (ver. 7Ttz Mathworks Inc., USA); further details
can be found in Szymanska et al., 2015 [47]. Thea dare analyzed using a personal computer
running with Windows 8.1-64 bit and equipped withlatel Core® i7-3632QM CPU @ 2.20GHz

processor and 6.00 GB RAM.

14
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3 RESULTS AND DISCUSSION

3.1 Filter Simulation 1

The results obtained from the PLS-DA classificatioodels built both using AS training set and RS
training set and considering only the reflectanakies of the 4 channels are reported in the first
two columns of Table 2. Concerning calibration amdss validation, the PLS-DA model built
using AS training set gives definitely best restiign the one built with RS training set. However,
AS training set and RS training set show comparedselts for the test set of average spectra and
RS training set gives better results when usedddigt both test images at the pixel level. These
differences are likely due to the fact that thealality among spectra belonging to the same class
is much higher in RS training set than in AS tnagnset. On the one hand, this led to worst results
of RS training set in calibration and cross valmat but on the other hand it turned out to be wisef

for the predictions of the test images at the pieet!.

Filter Simulation 1 Filter Simulation 2 Filter Simulation 3
AStr.set| RS tr. set| AStr. set| RS tr. set| AStr. set| RS tr. set
N° variables 4 4 32 32 4 4
LVs 4 4 3 3 2 2
EFFcaL 99.1 81.3 100.0 80.3 99.6 78.4
EFFcv 97.3 79.9 99.3 78.7 97.3 78.0
EFFTesT 94.0 94.9 97.5 100.0 98.3 100.0
EFF v 65.1 74.0 71.1 71.0 69.5 83.9
EFF vz 83.9 92.2 84.3 92.1 85.6 93.1

Table 2. Results obtained using AS training set and R®itrgiset in filters simulation1, filter
simulation 2 and filter simulation 3; the classitiion efficiency values are referred to the regults
calibration EFFcaL), cross-validationEFFcy), prediction of the test set at the image-level
(EFFtesT), and of test image 1 and test image 2 at thd-pexel (EFFyc1 andEFF ez,
respectively).

In fact, the predicted image obtained when AS ingiiset was used to classify test image 1 (Figure
2.a), in which the pixels predicted as Arabica eeffire represented in red colour and the pixels

15
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predicted as Robusta coffee are represented inngoedéour, shows that the classification
performances are strongly influenced by the rouraps of the beans. Actually, when dealing with
the classification of objects using hyperspectramailtispectral imaging systems, the problem of
the irregular shape of the samples is often presemte in practical applications the sample s@fac
is not generally flat. This might be ascribed ttower signal in the spectra or to the fact that the
signal is mixed with the background signal.

The same model applied to test image 2 gives a&hkgfF value, but the problem of the shape still
occurs (Figure 2.b). In the case of the beans peignto Robusta coffee (group of beans on the
right) the misclassified pixels can be found maimycorrespondence of the edges of the beans.
Furthermore, considering the beans belonging tobiBea coffee, some of those beans are
misclassified (Figure 2.b).

Conversely, the shape effect is less evident whersame images are predicted with RS training set
(Figures 2.c and 2.d). In particular, the resuttstést image 1 (Figure 2.c) show that one Robusta
bean is clearly misclassified, and the same foresémabica beans. Concerning test image 2, the
major part of pixels is assigned to the correctglaven if some misclassifications occur at the
edges of the beans (Figure 2.d). The differenceprediction on the test images of the two
approaches are highlighted in Figure 2.e and Figurevhich represent a difference image between
the predictions made from AS training set and R&iing set on the same image. In particular, the
pixels correctly predicted with both approaches apresented in blue colour, the pixels
misclassified with both approaches are represant@drple colour and those differently predicted

(i.e., where only one of the two models have fgike@ represented in yellow colour.
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TESTIMAGE 1 TEST IMAGE 2

Arabica l Robusta Arabica ’ Robusta

Predictions of model
from AS training set
(red = predicted as
Arabica; green =
predicted as Robusta)

Predictions of model
from RS training set
(red = predicted as
Arabica; green =
predicted as Robusta)

Difference between
AS and RS predictions
(blue = both correct;
purple = both
misclassified; yellow = o r ) RN

differently predicted) & A B . 5

Figure 2. Filter simulation 1predicted images of PLS-DA models built using A8rting set (a, b)
and RS training set (c, d), and difference imagesest image 1 (e) and test image 2 (f).

4

Moreover, Table S-1 (Supplementary material) reptre percentage of correctly predicted pixels
of Arabica and Robusta classes for both the teag@s. While the percentage of correctly predicted
pixels for Arabica Coffee does not depend signifiba upon the considered training set, the
percentage of correctly predicted pixels for Robugiffee is much higher when RS training set is

used.

3.2 Filter Simulation 2

In Filter Simulation 2, the PLS-DA models were cddded using all the 32 descriptors listed in
Table 1; the results obtained with the AS and tig&tRining sets are reported in the third and
fourth column of Table 2, respectively. Intereshndgor both the AS and RS training sets only
three LVs have been selected.

As observed in Filter Simulation 1, the classifieatmodel built using AS training set shows better
performances in calibration and cross validatiantthe one built on RS training set. However, the
model based on RS training set shows better refarltthe prediction both of test set and of test

image 2. In particular, aBFF value equal to 100% is obtained when the clasgiio model built

17
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using RS training set is used to predict the testThe performances in the prediction of test ienag
1 are essentially the same in terms of efficieneyues, but AS training set gives a higher
percentage of Arabica pixels which are correctigdmted (76.8%), while RS training set gives a
higher percentage of correctly predicted pixelsRobusta class (86.0%).

Comparing the results obtained for Filter Simulatwith those of Filter Simulation 1, it can be
observed that, for the models calculated usingralihg set, the use of additional descriptors led
to a general increase of tB€F values; conversely, for the models calculatedgu8i8 training set,
Filter Simulation 2 led to slightly worse resukéscept for the prediction of the test set.

Concerning the pixel-level predictions, Figures.8&-dnd S-4.b (Supplementary material) report the
predictions obtained using AS training set for iesage 1 and test image 2, respectively. In both
the images the problem of the round shape of tlaades less evident than in the corresponding
predicted images obtained from Filter Simulatioreden if many misclassifications still occur in
correspondence to the edges and to the centref ¢he deans. Moreover, also the percentage of
pixels correctly predicted generally increases frieitter Simulation 1 to Filter Simulation 2 for
both test images mainly considering class Arabica.

Concerning the model built using RS training sedufes S-4.c and S-4.d (Supplementary material)
report the predictions of test image 1 and tesgara which look very similar to those obtained in
Filter Simulation 1.

The corresponding regression vectors have beentegbm Figures 3.a and 3.b, respectively. For
both the classification models, single reflectamatues, sums and products have low influence,
since the absolute values of the correspondingessgn coefficients are small. The largest absolute
values of the regression coefficients are instebsewed for some differences and ratios; in
particular, R1250-1200 and R1200/R1250 are thergscs showing the highest contribution for
both the models. More in general, the two regressiectors are quite similar to each other,
suggesting that - independently of the considemaihihg set - the information useful to

discriminate between Arabica and Robusta cofféeusd within the same subset of descriptors.
18
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Figure 3. PLS-DA regression vectors of the classificatiordels built on AS training set (a)
and RS training set (b) considered in filter sintiola 2; and regression vectors of SPLS-DA models
calculated on AS training set (a) and RS trainieig(s) in filter simulation 3.

3.3 Filter Simulation 3

In order to better identify the most relevant dgsors involved in the discrimination between
Arabica and Robusta coffee beans and to reduceutmber of variables used in the classification
models, feature selection by sPLS-DA was then egdbth to AS and to RS training sets.

Figure S-5 (Supplementary material) reports thearese surfaces for AS and for RS training sets
(Figures S-5.a and S-5.b, respectively) of ER€& values estimated in cross-validation as a function
of the number of LVs and of the number variabldected for each LV. In both the cases, the
optimal conditions were reached with 2 LVs and #aldes for each component, which correspond
to regression vectors including 4 selected varglds reported in Figure 3.c for AS training set an
in Figure 3.d for RS training set. Both sparse nedmnverge on the selection of the three

descriptors showing the highest absolute valueth@fcorresponding regression coefficients, i.e.,

19



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

R1250-R1200, R1400-R1200 and R1200/R1250; mored®&400-R1250 and R1400-R1150 are
additionally selected in the sparse model builA&@training set and RS training set, respectively.
The results of the sparse models are reportedeinast two columns of Table 2. Similarly to the
results of Filter Simulations 1 and 2, also fortdtilSimulation 3 theEFF values obtained in
calibration and in cross-validation for RS trainset are lower than those obtained for AS training
set, while higher performances have been obtaimguiadiction, both at the image-level and at the
pixel-level. In particular, the use of the RS tragset led to aicFF value equal to 100% for the
prediction of the test set at the image-level,abeesponding sLV1 and sLV2 score plot is reported
in Figure S-6 (Supplementary material) which shawstinct separation of the samples belonging
to Arabica and Robusta coffee species.

In general, compared to the use of the 4 refleetaradues of the filters (Filter Simulation 1), the
selection by sPLS-DA of the most relevant descrgp#@ilowed to obtain more parsimonious models
(2 LVs instead of 4 LVs), and to gain a significamtrease of the classification performances in
prediction, in particular for the model calculatesing the RS training set.

As far as the prediction at the pixel-level is cermed, the comparison of the predicted images
obtained from AS training set (Figures 4.a andfdrltest image 1 and test image 2, respectively)
and from RS training set (Figures 4.c and 4.ddst image 1 and test image 2, respectively) shows
that the sparse model built using AS training sehuch more sensitive to the round shape of the
coffee beans, this fact being particularly evidenthe case of test image 1. Moreover, in the
prediction of test image 1 for both models moredhasssifications occur for Arabica coffee beans
(on the left) than for Robusta coffee beans (orrigji®). Indeed, for both models the percentage of
correctly classified Robusta coffee pixels is geeahan the percentage of correctly classified
Arabica coffee pixels (Table S-1 in Supplementasatarial).

As far as test image 2 is concerned, even if tleallclassification of the beans is correct fothbo
models, the sparse classification model built us®ytraining set is less sensitive to edge effects

and to the round shape of the beans (Figure 4ld¥ i$ also evident from the difference image
20
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between the predictions made with AS training sek RS training set, reported in Figures 4.e and
4.f, respectively: considering test image 1, onduta bean and four Arabica beans are always
misclassified (purple colour), while the pixelsfdiently predicted (yellow colour) are mainly

ascribable to the fact that the model built usirtg thaining set is more influenced by the shape of
the beans. Conversely, in test image 2 the oveladisification of the beans is correct for both

classes; also in this case the differences arelyndire to a higher sensitivity to shape-related
effects in the model built using AS training sed,iais also confirmed by the values reported in

Table S-1 (Supplementary material).

TESTIMAGE 1 TEST IMAGE 2

Arabica ’ Robusta Arabica I Robusta

Predictions of model
from AS training set
(red = predicted as
Arabica; green =
predicted as Robusta)

Predictions of model
from RS training set
(red = predicted as
Arabica; green =
predicted as Robusta)

Difference between
AS and RS predictions
(blue = both correct;
purple = both
misclassified; yellow =
differently predicted)

Figure 4. Filter simulation 3: predicted images of sPLS-DAduls built using AS training set (a,
b) and RS training set (c, d) and difference imdgesest image 1 (e) and test image 2 (f).
In order to better investigate the influence ofpgheelated effects, the Hotellig’'s Values and the
Q residuals of the sPLS-DA models discussed in3kistion have also been considered. Actually,
the pixels falling outside the 95% confidence Israire mainly placed at the edges of the beans, as
reported in Figure S-7 of Supplementary material thee sPLS-DA model calculated with RS
training set. In this case, only a small percentafgixels was detected as outlier, thus the

elimination of those pixels would have not sigrafitly increased the classification performances.
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However, it has to be highlighted that the impletagan of outlier statistics in the classification
model could be considered for a further optimizatigiving the possibility to detect also potential

foreign objects, such as metals, stones, sticksibresiduals.

4 CONCLUSIONS

This paper is aimed at investigating the issuex@wing the implementation of a multispectral
imaging system, starting from the outcome of spécteature selection performed using a
hyperspectral system, in order to discriminate leetwArabica and Robusta coffee species. In
particular, the simulations reported in the preseotk were done not only considering the single
reflectance values of the filters, but also explgrsystematically linear and non-linear relatiopshi
between bands, and selecting the relevant desipteolved in the classification, which led to a
significant increase of the classification perfono@s in prediction.

Moreover, attention was also paid to the properstrastion of a representative training set by
comparing two different approaches, which consistethe use of average image spectra and of
randomly selected spectra; the latter one led ttebelassification results, mostly in the case of
predictions at the pixel-level, since it alloweddonsider also the spatial variability within each
image.

In the specific case, the use of a representatameing set of randomly selected spectra allowed to
better account for the round shape of the greefeedbeans, while the selection of the most
effective combinations of channels allowed to explthe descriptors which better reflect the
chemical differences between Arabica and Robustargcoffee.

In particular, the proper combination of four NIRra-pass filters and the use of multivariate
statistical analysis allowed to achieve classifaratperformances comparable to those obtained
with the hyperspectral data, i.e. considering tb# NIR spectrum. Moreover, it has to be

highlighted that the calculation of the 32 desaniptfrom the outputs of the band-pass filters and
22
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the choice of the relevant ones involved in disaration are conducted off-line during the
optimization of the classification model. For trealrtime implementation of the model only the
four selected descriptors have to be calculated;iwis much faster than acquiring and elaborating
the whole spectrum (150 spectral variables) ofottiginal hyperspectral imaging system. Based on
these results, a filter-based multispectral imagggtem can be easily implemented in order to
obtain a fast and inexpensive tool suitable forlin@-monitoring of green coffee, allowing to
prevent counterfeits.

In general, the proposed approach demonstratedodBsibility of having a clear idea of the
classification performances that can be reachamyusimultispectral system, much time before the

system itself is actually constructed.

ACKNOWLEDGMENTS

The authors wish to thank Luigi Bellucci (Caffé Mwalri S.p.A) for providing the coffee samples

and technical support.

23



O 0 N o »n A W N

=
o

N
w N R

[
[0 I =N

R
00 N O

NN
= O

N NN
S W N

NN
a

NN
00

w N
o

w w
N =

w w
W

w W
a

w w
(e RN

B W
o v

A b Db
w N -

REFERENCES

[1] D. Lorente, N. Aleixos, J. Gdmez-Sanchis, Sb&w, O.L. Garcia-Navarrete, J. Blasco, Recent
advances and applications of hyperspectral imafginfjuit and vegetable quality assessment. Food
Bioprocess Tech. 5:4 (2012) 1121-1142.

[2] G. Elmasry, M. Kamruzzaman, D.W Sun, P. Alléninciples and applications of hyperspectral
imaging in quality evaluation of agro-food producssreview, CRC Cr. Rev. Food Sci. 52:11
(2012) 999-1023.

[3] A.A. Gowen, C. O'Donnell, P.J. Cullen, G. Downel.M. Frias, Hyperspectral imaging—an
emerging process analytical tool for food qualityl safety control. Trends Food Sci. Tech. 18:12
(2007) 590-598.

[4] J.M. Amigo, I. Marti, A. Gowen, A. Hyperspediranaging and chemometrics: a perfect
combination for the analysis of food structure, position and quality. In: F. Marini (Ed), Data
Handling in Science and Technology. Vol 28, 2048,3%3-370.

[5] C. Ferrari, G. Foca, A. Ulrici, Handling largkatasets of hyperspectral images: reducing data
size without loss of useful information, Anal. ChiActa 802 (2013) 29-39.

[6] C. Ferrari, G. Foca, R. Calvini, A. Ulrici, Ragxploration and classification of large
hyperspectral image datasets for early bruise tleteon apples, Chemometr. Intell. Lab. 146
(2015) 108-119.

[7] R. Calvini, A. Ulrici, J.M. Amigo, Practical coparison of sparse methods for classification of
Arabica and Robusta coffee species using nearr@trhyperspectral imaging, Chemometr. Intell.
Lab. 146 (2015) 503-511.

[8] D. Lorente, N. Aleixos, J. Gomez-Sanchis, Sb&w, O.L. Garcia-Navarrete, J. Blasco, Recent
advances and applications of hyperspectral imafginfyuit and vegetable quality assessment, Food
and Bioprocess Technology, 5:4 (2012) 1121-1142.

[9] P.M. Mehl, K. Chao, M. Kim, Y.R. Chen, Deteatiof defects on selected apple cultivars using
hyper spectral and multispectral image analysigl Apng. Agric. 18:2 (2002) 2109.

[10] W. Huang, J. Li, Q. Wang, L. Chen, Developmeh& multispectral imaging system for online
detection of bruises on apples, J. Food Eng. 1a65p62-71.

[11] O. Kleynen, V. Leemans, M.F. Destain, Devel@minof a multi-spectral vision system for the
detection of defects on apples, J. Food Eng. &00%) 41-49.

[12] J. Qin, T.F. Burks, X. Zhao, N. Niphadkar, M.Ritenour, Development of a two-band
spectral imaging system for real-time citrus cardegection. J. Food Eng. 108:1 (2012) 87-93.

[13] M.O. Ngadi, L. Liu, Hyperspectral image proseg techniques, In: D.W. Sun (Ed.),
Hyperspectral imaging for food quality analysis aodtrol, 2010, pp 99-127.

[14] B. Park, K.C. Lawrence, W.R. Windham, D.P. 8mPerformance of hyperspectral imaging
system for poultry surface fecal contaminant detect). Food Eng. 75:3 (2006) 340-348.

[15] M.J. Martn, F. Pablos, A.G. Gonzalez, Discrimination betweeabica and robusta green
coffee varieties according to their chemical conmpws Talanta 46:6 (1998) 1259-1264.

[16] F. Carrera, M. Le6n-Camacho, F. Pablos, A.@nfalez, Authentication of green coffee
varieties according to their sterolic profile, An@him. Acta 370:2 (1998) 131-139.

[17] C. Sanz, L. Maeztu, M.J. Zapelena, J. Bello,CId, Profiles of volatile compounds and
sensory analysis of three blends of coffee: infbgeof different proportions of Arabica and Robusta
and influence of roasting coffee with sugar, J. 5obd Agr. 82:8 (2002) 840-847.

24



O 00N O v b~ W N =

=
= O

=
w N

[ Y
o u s

[ =
0 0

N NN
N = O

N NN
u b~ W

NN
N O

w NN
o VU

w w w
w N -

w W w
o Ul b

w w
00

A bW
= O O

&5 B~ b
W N

[18] R.C. Alves, S. Casal, M.R. Alves, M.B. OlivajrDiscrimination between arabica and robusta
coffee species on the basis of their tocopherdilpsy Food Chem. 114 (2009) 295-299.

[19] R.M. El-Abassy, P. Donfack, A. Materny, Digoination between Arabica and Robusta green
coffee using visible micro Raman spectroscopy ahenmmetric analysis, Food Chem. 126:3
(2011) 1443-1448.

[20] R. Garrett, B.G. Vaz, A.M.C. Hovell, M.N. Eber, C.M. Rezende, Arabica and Robusta
coffees identification of major polar compounds andantification of blends by direct-infusion
electrospray ionization-mass spectrometry. JouafaRgricultural and Food Chemistry, 60:17
(2012) 4253-4258.

[21] C. Martellossi, E.J. Taylor, D. Lee, G. GrasidP. Donini, DNA extraction and analysis from
processed coffee beans, Journal of Agriculturalfowh Chemistry, 53:22 (2005) 8432-8436.

[22] A.T. Toci, A. Farah, H.R. Pezza, L. Pezza, f€efadulteration: More than two decades of
research, Critical Reviews in Analytical Chemis#$;2 (2016) 83-92.

[23] Y.B. Monakhova, W. Ruge, T. Kuballa, M. I8, Winkelmann, B. Diehl, D.W. Lachenmeier,
Rapid approach to identify the presence of Arakitcd Robusta species in coffee using 1 H NMR
spectroscopy, Food Chem. 182 (2015) 178-184.

[24] F. Wei, K. Furihata, M. Koda, F. Hu, R. Kafb, Miyakawa, M. Tanokura-*C NMR-based
metabolomics for the classification of green coffeans according to variety and origin, J. Agr.
Food Chem. 60:40 (2012) 10118-10125.

[25] M. T. Gil-Agusti, N. Campostrini, L. Zolla, C. Ciambella, Dvernizzi, P.G. Righetti, Two
dimensional mapping as a tool for classificationgoéen coffee bean species, Proteomics 5:3
(2005) 710-718.

[26] S. Buratti, N. Sinelli, E. Bertone, A. Ventlie E. Casiraghi, F. Geobaldo, Discrimination
between washed Arabica, natural Arabica and Roladtaes by using near infrared spectroscopy,
electronic nose and electronic tongue analysiS¢iJ.Food Agr. 95:11 (2015) 2192-2200.

[27] E.K. Kemsley, S. Ruault, R.H. Wilson, Discrimtion between Coffea arabica and Coffea
canephora variant robusta beans using infraredrggeopy. Food Chem. 54:3 (1995) 321-326.

[28] J.R. Santos, M.C. Sarraguca, A.O. Rangel, Ldépes, Evaluation of green coffee beans
guality using near infrared spectroscopy: A quatitie approach. Food Chem. 135:3 (2012) 1828-
1835.

[29] A.J. Myles, T.A. Zimmerman, S.D. Brown, Traesfof multivariate classification models
between laboratory and process near-infrared speeters for the discrimination of green Arabica
and Robusta coffee beans. App. Spectrosc. 60: 162 98-1203.

[30] I. Esteban-Diez, J.M. Gonzalez-Saiz, C. P@afn evaluation of orthogonal signal correction
methods for the characterisation of arabica andstabcoffee varieties by NIRS, Anal. Chim. Acta
514:1 (2004) 57-67.

[31] I. Esteban-Diez, J.M. Gonzélez-Saiz, C. S&omzdalez, C. Pizarro, Coffee varietal
differentiation based on near infrared spectroscdpjanta, 71:1 (2007) 221-229.

[32] A.G. Fiore, R. Romaniello, G. Peri, C. SeveriQuality assessment of roasted coffee blends
by hyperspectral image analysis. In Proceeding2afd International Conference on Coffee
Science, Campinas, Brazil, 2008.

[33] A. Backhaus, F. Bollenbeck, U. Seiffert, Hitiiroughput quality control of coffee varieties
and blends by artificial neural networks and hypecsral imaging. In Proceedings of the 1st
International Congress on Cocoa, Coffee and Te€oTea, 2011.

25



O N o »n W N =

=
= O

[ N
B wWN

[
o U

[N
[o e BERN|

N B
o ©

N NN
w N -

NN
(92 I~

N NN
(eI N e)}

w N
o

w w w
w N -

w
D

[34] S. Chevallier, D. Bertrand, A. Kohler, P. Cooux, Application of PLS-DA in multivariate
image analysis, J. Chemometr. 20:5 (2006) 221.

[35] M.A.F. de la Ossa, C. Garcia-Ruiz, J.M. Amilyear infrared spectral imaging for the analysis
of dynamite residues on human handprints, Tald3a,(2014) 315-321.

[36] K.A. Lé Cao, S. Boitard, P. Besse, Sparse MEissriminant analysis: biologically relevant
feature selection and graphical displays for mialis problems, BMC bioinformatics, 12(1) (2011)
253.

[37] J. Burger, P. Geladi, Hyperspectral NIR imaggression part Il: dataset preprocessing
diagnostics, J. Chemometr. 20:3 (2006) 106-119.

[38] J. Burger, P. Geladi, Hyperspectral NIR imaggression part I: calibration and correction, J.
chemometr. 19:5 (2005) 355-363.

[39] A. Ulrici, S. Serranti, C. Ferrari, D. Cesa®, Foca, G. Bonifazi, Efficient chemometric
strategies for PET-PLA discrimination in recyclinglants using hyperspectral imaging,
Chemometr. Intell. Lab., 122 (2013) 31-39.

[40] P. Filzmoser, M. Gschwandtner, V. Todorov, Rew of sparse methods in regression and
classification with application to chemometricsChemometr. 26 (2012) 42-51.

[41] M.A. Rasmussen, R. Bro, A tutorial on the Lasgproach to sparse modelling, Chemometr.
Intell. Lab. 119 (2012) 21-31.

[42] T.M. Cover, P.E. Hart, Nearest neighbour patidassification, IEEE T. Inform. Theory, 13:1
(1967) 21-27.

[43] J.S. Shenk, J.J. Workman, M.O. Westerhaus liégpon of NIR spectroscopy to agricultural
products. In D.A. Burns, E.W. Ciurczak (Eds.), Haodk of Near Infrared Analysis, Third Edition,
Boca Raton: CRC Press, 2008, pp. 347-386.

[44] NIR Bandpass & Laser Line Filters: 700 - 1650n Center Wavelength. URL
http://www.thorlabs.de/newgrouppage9.cfm?objectgrad=1000 . Accessed 19.08.15.

[45] M. Calderisi, A. Ulrici, S. Sinisalo, J. Uadil R. Seeber, Simulation of an experimental
database of infrared spectra of complex gaseousuras for detecting specific substances. The
case of drug precursors. Sensor. Actuat. B: Ché&3(2014) 806-814.

[46] N.F. Pérez, J. Ferré, R. Boqué, Calculatiorihef reliability of classification in discriminant
partial least-squares binary classification, Chemionintell. Lab. 95:2 (2009) 122-128.

[47] E. Szymanska, E. Brodrick, M. Williams, A.Naldes, H.J. Van Manen, L.C.M Buydens, Data
size reduction strategy for the classification mddth and air samples using multicapillary column-
ion mobility spectrometry, Analytical Chemistry 812015) 869-875.

26



10

11

12

13

CAPTURES TO FIGURES

Figure 1. Average spectra calculated from each image ofrtieing samples with selected regions
highlighted (a), Gaussian profiles of the 4 filtemnsidered (b) and resulting reflectance

values obtained from the average training specjta (

Figure 2. Filter simulation 1predicted images of PLS-DA models built using A8ring set (a, b)

and RS training set (c, d), and difference imagesest image 1 (e) and test image 2 (f).

Figure 3. PLS-DA regression vectors of the classificationdele built on AS training set (a) and
RS training set (b) considered in filter simulat®nand regression vectors of sSPLS-DA

models calculated on AS training set (a) and RiBitrg set (b) in filter simulation 3.

Figure 4. Filter simulation 3predicted images of SPLS-DA models built using A8ning set (a,

b) and RS training set (c, d) and difference imdgedest image 1 (e) and test image 2

(f).

27



Tablel. Listof the 32 descriptors considered.

Single Filters Differences Ratios Products Sums
R1150 R1200-R1150 R1150/R1200 R1150*R1200 R1150+R1200
R1200 R1250-R1200 R1150/R1250 R1150*R1250 R1150+R1250
R1250 R1400-R1250 R1150/R1400 R1150*R1400 R1150*R1400
R1400 R1400-R1200 R1200/R1250 R1200*R1250 R1200+R1250
R1150° R1400-R1150 R1200/R1400 R1200*R1400 R1200+R1400
R1200° R1250-R1150 R1250/R1400 R1250*R1400 R1250+R1400
R1250°

R1400?




Table 2.

simulation 2 and filter simulation 3; the classification efficiency values are referred to the
results in calibration (EFFca), cross-validation (EFFcy), prediction of the test set at the
image-level (EFFtesr), and of test image 1 and test image 2 at the pixel-level (EFFmc1

and EFF v, respectively).

Results obtained using AS training set and RS training set in filters simulationl, filter

Filter Simulation 1

Filter Simulation 2

Filter Simulation 3

AStr.set| RS tr. set| AS tr. set| RS tr. set| AStr. set| RS tr. set
N° variables 4 4 32 32 4 4
LVs 4 4 3 3 2 2
EFFcaL 99.1 81.3 100.0 80.3 99.6 78.4
EFFcv 97.3 79.9 99.3 78.7 97.3 78.0
EFFresT 94.0 94.9 97.5 100.0 98.3 100.0
EFFivc1 65.1 74.0 71.1 71.0 69.5 83.9
EFF G2 83.9 92.2 84.3 92.1 85.6 93.1
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TEST IMAGE 1

TEST IMAGE 2
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Highlights

Fast discrimination between Arabica and Robustaisimportant for coffee industry
Multispectral imaging can be very effective to this aim, but hard to implement
Multispectral datawere simulated from HSI data and NIR band-pass filters
SPLS-DA was used for classification and selection of the relevant descriptors

Classification performances were evaluated both at image-level and at pixel-level



