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Riassunto

L’argomento principale di questa tesi è lo studio di semigruppi di transizione di una classe di

equazioni differenziali stocastiche non lineari in spazi di Hilbert separabili e di dimensione in-

finita. Più precisamente consideriamo semigruppi di transizione associati alla soluzione mild

generalizzata di equazioni di Kolmogorov stocastiche con dato inziale in uno spazio di Hilbert

X separabile di dimensione infinita e con drift perturbato da una funzione non lineare definita

su un sottoinsieme di X. La teoria dei semigruppi di transizione associati a queste equazioni

differenziali stocastiche si è sviluppata a partire dagli anni ottanta e le sue basi sono esposte in

tre libri di G. Da Prato e J. Zabczyk.

Nel primo capitolo di questa tesi richiamiamo preliminari di analisi funzionale, analisi infinito

dimensionale, probabilità, teoria dei semigruppi, processi Markoviani di Wiener e di Ornstein-

Uhlenbeck necessari per definire il contesto in cui lavoreremo. Nel capitolo due definiamo

l’equazione differenziale stocastica e il semigruppo di transizione associato, che sono i due prin-

cipali protagonisti di questa tesi. In condizioni molto generali, studiamo l’esistenza e l’unicità

della soluzione mild generalizzata dell’equazione differenziale stocastica. Nel capitolo tre tratti-

amo alcune proprietà di regolarizzazione del semigruppo. Nel capitolo quattro dimostriamo una

disuguaglianza logaritmica di Harnack e alcune sue conseguenze. Nel capitolo cinque mostriamo

l’esistenza e l’unicità di una misura invariante di probabilità ν per il semigruppo di transizione.

Inoltre dimostriamo che il semigruppo di transizione è unicamente estendibile ad un semigruppo

fortemente continuo nello spazio L2(X, ν), e che il suo generatore infinitesimale N2 è la chiusura

di un operatore di tipo Ornstein-Uhlenbeck perturbato. Nel capitolo sei studiamo la regolarità

di Sobolev del dominio di N2, dimostriamo alcune disuguaglianze di Sobolev logaritmiche e di

Poincaré e un risultato di ipercontrattività per il semigruppo. Nel capitolo sette consideriamo

sia problemi stazionari che di evoluzione in un aperto O di X, definendo il corrispondente semi-

gruppo arrestato o semigruppo di Dirichlet, di cui studiamo il generatore infinitesimale nello

spazio L2(O, ν).



Abstract

The main topic of this thesis is the study of transition semigroups of a class of nonlinear stochastic

evolutin equations in an infinite dimensional separable Hilbert space. More precisely, we con-

sider transition semigroups associated to the generalized mild solutions of stochastic Kolmogorov

equations with initial data in an infinite dimensional separable Hilbert space X and with the drift

perturbed by a nonlinear function defined on a subset of X. The theory of transition semigroups

associated to such stochastic differential equations was developed starting from 1980s, an account

of this theory is presented in three books by G. Da Prato and J. Zabczyk. In the first chapter of

this thesis we recall some preliminaries about functional analysis, infinite dimensional analysis,

probability, semigroup theory, Wiener, Ornstein-Uhlenbeck and Markovian processes necessary

to define the framework in which we work. In chapter two we define the stochastic differential

equation and its transition semigroup, which are the main objects studied in this thesis. Under

rather general conditions, we study existence and uniqueness of the generalized mild solution of

the stochastic differential equation. In chapter three we discuss some smoothing properties of

the semigroup. In chapter four we prove a logarithmic Harnack inequality and some of its conse-

quences. In chapter five we show existence and uniqueness of a probability invariant measure ν

for the transition semigroup. We also show that the transition semigroup is uniquely extendable

to a strongly continuous semigroup in the space L2(X, ν), whose infinitesimal generator N2 is the

closure, in this space, of a perturbed Ornstein-Uhlenbeck type operator. In chapter six we study

the Sobolev regularity of the domain of N2, we prove some logarithmic Sobolev and Poincaré

inequalities, and a hypercontractivity result for the transition semigroup. In chapter seven we

consider stationary and evolution equations in an open set O of X, defining the stopped semi-

group or Dirichlet semigroup associated to it, and studying the infinitesimal generator of such

semigroup in the space L2(O, ν).
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Introduction

This thesis is devoted to Markov transition semigroups associated to stochastic evolution equa-

tions on infinite dimensional Hilbert spaces.

The history of Markov transition semigroups began in the early twentieth century when, on

one side, M. Smoluchowski, A. Einstein and P. Langevin studied the Brownian particle velocity

and, on the other side, A. A. Markov attempted to describe mathematically the phenomenon of

the Brownian motion. Markov focused on a property of Brownian motion that informally can

be described as follows: the past and the future are conditionally independent given present,

for every possible value of the present. Einstein and Langevin used two different approaches to

study the Brownian particle velocity. Einstein started from a Fokker–Planck equation describing

the time evolution of the probability density function of the position of a particle. Langevin had

the idea to describe the velocity of a Brownian particle by a process which is a solution of the

first prototype of a stochastic equation. In the 1930’s this process was studied in detail by the

two physicists from whom it took its name: L. Ornstein and G. E. Uhlenbeck.

Einstein and Langevin had not the mathematical theory developed years later by K. Itô and

A. N. Kolmogorov, however they were able to describe the Brownian motion law and to conclude

that its trajectories are not functions of bounded variation. In 1923 N. Wiener gave the first

correct mathematical construction of the Brownian motion which was also the first construction

of a Markov process with continuous trajectories.

Markov processes and stochastic differential equations theories were developed between the

1930s and 1950s by Doeblin, Doob, Feller, Itô, Lévy, Kolmogorov and many other ones. These

theories are the connection between Einstein’s and Langevin’s approaches and, more in generally,

between stochastic equations and parabolic partial differential equations.

In the 1960’s the first studies about infinite dimensional stochastic equations began. L. Gross ,

Yu. L. Dalecḱıi and P. Malliavin introduced Hilbert space valued Wiener and Ornstein–Uhlenbeck

processes and investigated some classes of deterministic parabolic equations for functions of in-

finitely many variables.

We now present a modern mathematical formalization of the problems discussed above.

Let X be a separable Hilbert space equipped with the norm ‖·‖ and inner product 〈·, ·〉. Let

A : Dom(A) ⊆ X → X be the infinitesimal generator of a strongly continuous semigroup etA

(see Subsection 1.4.1) and let R : X → X be a bounded linear operator. Let {W (t)}t≥0 be a

X-cylindrical Wiener process on a probability space (Ω,F,P) (see Subsection 1.7.3). We consider



CONTENTS 7

the following infinite dimensional version of the Langevin equation{
dX(t, x) = AX(t, x)dt+RdW (t), t > 0;

X(0, x) = x.
(1)

Under suitable hypotheses on A and R, for any x ∈ X, (1) has unique mild solution, namely a

process {X(t, x)}t≥0 such that for any t ≥ 0

X(t, x) = etAx+WA(t), WA(t) :=

(∫ t

0

e(t−s)ARdW (s)

)
, P-a.s., (2)

see Section 1.8. {X(t, x)}t≥0 is a X valued Ornstein-Uhlenbeck process.

Let f : X → X be a smooth enough function, we consider the function u : [0,+∞) × X → X

defined by

u(t, x) := E[f(X(t, x))] :=

∫
Ω

f(X(t, x)(ω))P(dω), x ∈ X, t ≥ 0.

Under suitable hypotheses (e.g. [42, Chapter 6] and [43, Section 9.3]), u solves the following

infinite dimensional version of the Fokker-Planck equation considered by Einstein
du

dt
(t, x) = 1

2Tr[R2∇2u(t, x)] + 〈Ax,∇u(t, x)〉, x ∈ Dom(A), t ≥ 0,

u(0, x) = f(x),
(3)

where ∇2u(t, x) and ∇u(t, x) are the Fréchet Hessian and Fréchet Gradient of the function

u(t, ·) : X→ X.

For f ∈ Bb(X) (the space of bounded and Borel measurable functions from X to R), the

family of operators defined by

(T (t)f)(x) := u(t, x) = E[f(X(t, x))], x ∈ X, t ≥ 0, (4)

is a semigroup and it is called Markov transition semigroup associated to (1) (see Section 1.9),

it is known as the Ornstein-Uhlenbeck semigroup.

It is possible to prove that, for any t ≥ 0, the law µt of WA(t) is a Gaussian measure of mean

0 and covariance operator

Qt :=

∫ t

0

esARR∗esA
∗
ds, (5)

see Subsection 1.6.2 for the definition of Gaussian measures on (X,B(X)). Via change of variables,

one sees that the Ornstein-Uhlenbeck semigroup (4) has the Mehler representation

(T (t)f)(x) :=

∫
X

f(etAx+ y)µt(dy), x ∈ X, t ≥ 0. (6)

We note that, if X = Rn with n ∈ N, A ≡ 0 and R =
√

2IX in (5) and (6), then T (t) is the heat
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semigroup and (3) reads as
du

dt
(t, x) = ∆u(t, x), x ∈ Rn, t ≥ 0,

u(0, x) = ϕ(x), x ∈ Rn,

where ∆u(t, x) is the Laplacian of the function u(t, ·) : X→ X.

In this thesis we will study the transition semigroup of a nonlinear version of the Langevin

equation (1). More precisely let F : Dom(F ) ⊆ X → X be a smooth enough function. We will

consider the transition semigroup P (t) associated to the nonlinear stochastic differential equation{
dX(t, x) = (AX(t, x) + F (X(t, x)))dt+RdW (t), t > 0;

X(0, x) = x.
(7)

Due to the nonlinearity of (7), P (t) does not have a Mehler formula similar to (6).

The study of stochastic partial differential equations (SPDEs) was devoloped from 1960s (see

[26]). The stochastic versions of many classic PDEs that had been studied are: reaction–diffusion,

wave, beam, Burgers, Musiela, Navier–Stokes, Kardar–Parisi–Zhang, Kuramoto–Sivashinsky,

Cahn–Hilliard, Landau–Lifshitz–Gilbert, etc. These SPDEs were studied with different ap-

proaches: the semigroups approach (Da Prato and Zabczyk, see [43]), the variational approach

(Pardoux, Krylov and Rozovskii, see [71]) and the random field approach (Walsh, see [98]). In my

thesis I study some stochastic reaction–diffusion type equations in a separable Hilbert space and

theirs corresponding transition semigroups, using the Da Prato and Zabczyk approach presented

in the books [20, 41, 42, 43].

Now we describe in detail the contents of the thesis. Except for Chapter 1., the final section

of all other chapters is devoted to bibliographic comments and examples.

Chapter 1. This chapter is devoted to the preliminary results that we will use in the next

chapters. In Section 1.3 we recall some basic definitions and results about dissipative mappings.

Section 1.4 is devoted to the semigroups theory, in Section 1.5 we state some basic definitions

and results about spectral theory of compact operators. Sections 1.6 and 1.7 are devoted to

Gaussian measures and Wiener processes in Hilbert spaces, respectively. In Section 1.8 we define

an integration with respect to a Wiener process and we state some properties of the stochastic

convolution process {WA(t)}t≥0 defined in (2). Section 1.9 is devoted to the theory of Markov

processes and in Section 1.10 we recall some results about the Ornstein-Uhlenbeck semigroup

given by (6). Finally in Section 1.11 we present a regularizing sequence for dissipative functions

from X into itself.

Chapter 2. In this chapter we study the solution of (7) via the approach introduced in [20,

Chapters 6 and 7] and [43, Section 7.2]. In particular we investigate the case where F : Dom(F ) ⊆
X → X and A : Dom(A) ⊆ X → X satisfy some dissipativity conditions. This framework covers

a large class of reaction diffusion systems (see [20, Chapters 6 and 7]). If Dom(F ) = X, for any

x ∈ X it is possible to consider the mild solution of (7), namely a process {X(t, x)}t≥0 that
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satisfies

X(t, x) = etAx+

∫ t

0

e(t−s)AF (X(s, x))ds+

∫ t

0

e(t−s)ARdW (s), P-a.s. (8)

However, if Dom(F ) ⊂ X is a proper subset of X, (8) may not make sense for every x ∈ X. Hence

we need a more general notion of solution to avoid the problem of Dom(F ). We follow idea of [20,

Chapters 6 and 7] and [43, Section 7.2] assuming that there exists a Banach space E ⊆ Dom(F )

densely and continuously embedded in X such that F|E : E → E is locally Lipschitz continuous.

Then, under suitable hypotheses, it is possible to prove that for any x ∈ E, the SPDE (7) has

a unique mild solution {X(t, x)}t≥0 such that its trajectories take values in E. Then, exploiting

the density of E, one proves that for any x ∈ X there exists a process {X(t, x)}t≥0, such that

lim
n→∞

sup
t∈[0,T ]

‖X(·, xn)−X(·, x)‖ = 0, ∀ T > 0, P-a.s. (9)

for any sequence {xn}n∈N ⊆ E converging to x and X(t, xn) being the unique mild solution of

(7) with initial datum xn. We call the limit {X(t, x)}t≥0 in (9) generalized mild solution of (7).

Moreover we provide some useful estimates for the moments of the generalized mild solution

{X(t, x)}t≥0. Later we will prove that the family of operators {P (t)}t≥0 defined by

(P (t)ϕ)(x) := E[ϕ(X(t, x))], ϕ ∈ Bb(X), x ∈ X, t ≥ 0 (10)

is the transition semigroup associated to (2.0.1), we simply denote it by P (t). In this chapter we

work in the general framework of [43, Sections 7.2], and in such general framework we provide

several useful estimates, generalizing the ones of [20, Chapters 6-7] and [30, Chapters 4].

Chapter 3. In this chapter, under suitable hypotheses, we study some regularizing properties

of the transition semigroup P (t) given by (10). In [14, 61] the authors consider equation (7) with

F = RG, for some G : X → X Lipschitz continuous. Let Lipb(X) be the space of bounded and

Lipschitz continuous functions from X to R. They prove that

P (t)(Bb(X)) ⊆ Lipb(X), t > 0.

whenever

etA(X) ⊆ Q1/2
t (X), t > 0, (11)

where Qt is defined in (5). The main novelty of this chapter is to study the same SPDE considered

in [14, 61] in the case where (11) is not verified. Specifically, we assume that the part of A in the

separable Hilbert space

HR := (R(X),
〈
R−1(·), R−1(·)

〉
) (12)

(see Subsection 1.2.5) generates a strongly continuous semigroup and we prove that for any t > 0,

x ∈ X, h ∈ HR and ϕ ∈ Bb(X), we have

|P (t)ϕ(x+ h)− P (t)ϕ(x)| ≤ K(t)
∥∥R−1h

∥∥.



CONTENTS 10

where K(·) : (0,+∞)→ (0,+∞) is continuous and for small t

K(t) ≈ k√
t
,

for some k > 0.

Chapter 4. This chapter is devoted to prove a logarithmic Harnack-type inequality for the

transition semigroup P (t) defined in (10). The first formulation of the Harnack inequality dates

back to 1887, it can be found in his seminal paper [66], and concerns positive harmonic functions.

Over the years, these types of inequalities have been studied by many other authors, such as J.

Moser, J. Serrin, N.S. Trudinger, J. Hadamard, B. Pini, D. G. Aronson. E. De Giorgi and J.

Nash. A possibility to get the Harnack-type inequality in an infinite dimensional setting consists

in replacing a classical formulation to the dimension-free logarithmic Harnack Inequality (LHI)

first introduced by F.-Y. Wang in [99] for the study of diffusion semigroups on Riemannian

manifolds. In this chapter we generalize the results of [38, 93]. To be more precise, in the same

spirit as Chapter 3., we prove a (LHI) type inequality along HR (see (12)), namely

|P (t)ϕ(x+ h)|p ≤ P (t)|ϕ(x)|pec(t)‖R
−1h‖2 , t > 0, x ∈ X, h ∈ HR; (13)

for any bounded and Borel measurable function ϕ : X → R, any p > 1 and some continuous

function c : (0,+∞) → R. In [38] the authors assume that the operator R in (7) has bounded

pseudo-inverse. Instead in [93] the perturbation F in the SPDE (7) is assumed to be Lipschitz

continuous and dissipative along HR. In this chapter R−1 is not assumed bounded. In Section

4.1 we prove (13) in the case where the perturbation F is Lipschitz continuous. In Section 4.2

we will prove (13) in the case where F : Dom(F ) ⊆ X → X satisfies a dissipativity hypothesis

along HR.

Chapter 5. In this chapter we study existence and uniqueness of a invariant measure for P (t),

and a core for the extension to L2(X, ν) of the transition semigroup P (t) defined in (10). Adding

some assumptions to those considered in Chapter 2., we prove that P (t) has a unique invariant

measure ν and we show that it is uniquely extendable to a strongly continuous semigroup Pp(t)

in Lp(X, ν), for any p ≥ 1. We denote by N2 the infinitesimal generator of P2(t). We prove in a

more general setting the results previously proved in some specific cases in [11, Section 3], [31],

[30, Sections 3.5 and 4.6] and [42, Section 11.2.2]. More precisely, we prove that N2 is the closure

in L2(X, ν) of the following second order Kolmogorov operator

N0ϕ(x) :=
1

2
Tr[R2∇ϕ(x)] + 〈Ax+ F0(x),∇ϕ(x)〉, ϕ ∈ ξA(X), x ∈ Dom(A),

where

ξA(K) := span{real and imaginary parts of the functions x 7→ ei〈x,h〉K |h ∈ Dom(A∗)}.
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and

F0(x) =

F (x) x ∈ E,

0 x ∈ X\E,

where E is the separable Banach space used in Chapter 2 to construct the generalized mild

solution. To do this the fact that ν(E) = 1 is essential, and to prove such equality we use the

estimates of the moments of the mild geralized solution given in Chapter 2.

Chapter 6. In this chapter we describe the domain of N2. As expected, we shall prove that

the domain of N2 is embedded in suitable Sobolev spaces. In [30, Section 3.6.1] and [32] the

authors assume that R in (7) has a continuous pseudo-inverse (see Subsection 1.2.5) and work

with the Sobolev space W 1,2(X, ν) defined as the domain of the closure in L2(X, ν) of the Fréchet

gradient operator ∇ : ξA(X) ⊆ L2(X, ν) → L2(X, ν;X). We emphasize that this case presents

no significant differences in defining and studying Sobolev spaces compared to the case when

R = IX. In [5, 16, 17, 59] the authors assume that R = Q1/2, where Q is a positive, self-adjoint

and trace class operator, and F = −Q∇U where U : X→ R is a Fréchet differentiable and convex

function, such that ∇U is Lipschitz continuous. They consider the Sobolev space W 1,2
Q1/2(X, ν)

defined as the closure in L2(X, ν) of the operator Q1/2∇ : ξA(X) ⊆ L2(X, ν) → L2(X, ν;X). We

underline that, if F = −Q∇U , then the invariant measure ν is a weighted Gaussian measure and

N2 is the self-adjoint operator associated to the quadratic form

G(ϕ,ψ) =

∫
X

〈Q1/2∇ϕ,Q1/2∇ψ〉dν, ϕ, ψ ∈W 1,2
Q1/2(X, ν).

Conversely, if F is not of that form, then N2 is not necessarily associated to a quadratic form.

We stress that, in the infinite dimensional case, the Sobolev spaces W 1,2(X, ν) and W 1,2
Q1/2(X, ν)

have not equivalent norms.

In this chapter we consider the same framework of Chapter 3., namely the perturbation F

in (7) is equal to RG for some Lipschitz continuous and Fréchet differentiable G : X → X, and

R ∈ L(X) is non-negative. We prove that Dom(N2) is contained in the Sobolev space W 1,2
R (X, ν)

defined as the domain of the closure of the operator

R∇ : ξA ⊆ L2(X, ν)→ L2(X, ν,X).

Moreover we prove that the transition semigroup P (t) and its invariant measure ν satisfy a log-

arithmic Sobolev and Poincaré inequalities, and a hypercontractivity property.

Chapter 7. Let O be an open set of X and let Bb(O) be the space of bounded and Borel

measurable functions from O to R. In Section 7 we consider the Dirichlet semigroup

PO(t)ϕ(x) := E
[
ϕ(X(t, x))I{ω∈Ω : τx(ω)>t}

]
, ϕ ∈ Bb(O), x ∈ O, t > 0

where {X(t, x)}t≥0 is the generalized mild solution of (7) studied in Chapter 2., and τx is the
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stopping time defined by

τx = inf{s > 0 : X(s, x) ∈ Oc}.

We prove that ν is sub-invariant for PO(t); therefore PO(t) is uniquely extendable to a strongly

continuous semigroup PO
p (t) in Lp(O, ν), for any p ≥ 1. We denote by M2 the infinitesimal

generator of PO
2 (t). In this chapter we extend to a nonlinear case some results proved in [33]

in the case where F = 0 in (7). We consider only the case where F is a gradient perturbation,

namely it has a potential. In this case the invariant measure ν is a weighted Gaussian measure

and it is possible to associate a quadratic form Q2 to N2. Under some additional hypotheses

there exists a quadratic form Q2 on W 1,2
R (X, ν) such that∫

X

(N2ϕ)ψdν = Q2(ϕ,ψ) = −1

2

∫
〈R∇ϕ,R∇ψ〉dν, ∀ϕ ∈ Dom(N2), ψ ∈W 1,2

R (X, ν).

After we consider the Sobolev space W̊ 1,2
R (X, ν) of the functions u : O → R such that their null

extension û belongs to W 1,2
R (X, ν), and the quadratic form QO

2 on W̊ 1,2
R (O, ν) defined by

QO
2 (ϕ,ψ) = Q2(ϕ̂, ψ̂), ∀ϕ,ψ ∈ W̊ 1,2

R (O, ν).

In this chapter we prove that the infinitesimal generator M2 of PO
2 (t) is the operator NO

2 asso-

ciated with QO
2 , namely

Dom(NO
2 ) := {ϕ ∈ W̊ 1,2

R (O, ν) : ∃β ∈ L2(O, ν) s.t.

∫
O

βψdν = QO
2 (β, ψ) ∀ψ ∈ W̊ 1,2

R (X, ν)}

NO
2 ϕ = β, ϕ ∈ Dom(NO

2 ).



Chapter 1

Preliminaries

1.1 Notations

Let K1 and K2 be two real Banach spaces equipped with the norm ‖·‖K1
and ‖·‖K2

respectively.

We denote by B(K1) the family of the Borel subsets of K1 and by Bb(K1;K2) the set of the

bounded and Borel measurable functions from K1 to K2. When K2 = R we simply write Bb(K1).

We denote by L(K1,K2) the space of the linear bounded operators from K1 to K2, if K1 = K2 we

simply write L(K1). We denote by IK1
the identity operator on K1. Let A : Dom(A) ⊂ K1 → K1

be a linear operator and let E ⊂ K1 be another Banach space. The part AE of A in E is defined

as

Dom(AE) := {x ∈ Dom(A) ∩ E : Ax ∈ E}, AEx := Ax, x ∈ Dom(AE).

We denote by Cb(K1;K2) the set of the continuous bounded functions from K1 to K2. If K2 = R
we simply write Cb(K1).

Let f : K1 → K2, we say that f is Fréchet differentiable at the point x ∈ K1, if there exists

Lx ∈ L(K1,K2) such that

lim
‖h‖K1

→0

‖f(x+ h)− f(x)− Lxh‖K2

‖h‖K1

= 0.

When it exists, the operator Lx is unique and it is called Fréchet derivative of f at the point

x ∈ K1. We set Df(x) := Lx. We say that f is twice Fréchet differentiable at the point x ∈ K1

if the map Df : K1 → L(K1,K2) is Fréchet differentiable at the point x ∈ K1, hence the second

order Fréchet derivative of f at the point x ∈ K1 is the Fréchet derivative D(Df)(x) of Df at

the point x ∈ K1. We set D2f(x) = D(Df)(x) For any x ∈ K1, D(Df)(x) is a linear bounded

operator from K1 to L(K1,L(K1,K2)) and there exists a unique bilinear form bx : K1×K1 → K2

such that

(D2f(x)h)k = bx(h, k), h, k ∈ K1,

we still denote bx by D2f(x). For any k ∈ N, in analogous way, we can define the notion of

k-Fréchet differentiability of a function f and we denote by Dkf(x) its k-Fréchet derivative at

the point x ∈ K1. We denote by Ckb (K1;K2), k ∈ N ∪ {∞} the set of the k-times Fréchet
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differentiable functions from K1 to K2 with bounded derivatives up to the order k. If K2 = R
we simply write Ckb (K1).

Let f : K1 → K2. We say that f is Gateaux differentiable at the point x ∈ K1 if there exists

Tx ∈ L(K1,K2) such that for any h ∈ K1 we have

lim
t→0

‖f(x+ th)− f(x)− tTxh‖K2

t
= 0, (1.1.1)

Txh is called Gateaux derivative of f at the point x ∈ K1 along h ∈ K1 and we denote it by

DGΦ(x)h.

Proposition 1.1.1 (Fact 1.13(b), p. 8 [86]). If the limit in (1.1.1) exists uniformly for h ∈ K1

such that ‖h‖K2
≤ 1 then f is Fréchet differentiable at x ∈ K1.

Let H be a Hilbert space equipped with the inner product 〈·, ·〉H , if f ∈ C1
b (H) then, for

every x ∈ H there exists a unique kx ∈ H such that for every h ∈ H

Df(x)(h) = 〈h, kx〉H ,

kx is called Fréchet gradient of f at the point x ∈ H and we denote it by ∇f(x). Moreover if

f ∈ C2
b (H) then, for any x ∈ H, there exists a unique Qx ∈ L(H) such that, for any h, k ∈ H

we have

D2f(x)(h, k) = 〈Qxh1, h2〉H ,

Qx is called Fréchet Hessian of f at the point x ∈ H and we denote it by ∇2f(x).

1.2 Linear operators

In this section we recall some basic definitions and results about the theory of linear operators.

Let K be a Banach space equipped with the norm ‖·‖K.

1.2.1 Closed operators

Let A : Dom(A) ⊂ K → K be a linear operator. We say that A is closed if for any sequence

{xn}n∈N ⊂ Dom(A) such that xn → x and Axn → y we have x ∈ Dom(A) and y = Ax. We say

that A is closable if for any {xn}n∈N ⊂ Dom(A) such that xn → 0 and Axn → y we have y = 0.

In this case we define the closure of A in the following way

Dom(A) := {x ∈ X | ∃{xn}n∈N ⊂ Dom(A) | xn → x, {Axn}n∈N converges in K},

Ax = lim
n→+∞

Axn, x ∈ Dom(A).

Let T > 0, A : Dom(A) ⊂ X → X be a closed operator. Let f : [0, T ] → Dom(A), if both f
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and Af are Bochner integrable in [0, T ], then∫ T

0

f(t)dt ∈ Dom(A), A

∫ T

0

f(t)dt =

∫ T

0

Af(t)dt.

1.2.2 Adjoint

Let A : Dom(A) ⊂ K→ K be a linear operator such that Dom(A) is dense in K. The adjoint of

A is defined as the operator A∗ : Dom(A∗) ⊂ K∗ → K∗ such that

Dom(A∗) := {l ∈ K∗ : ∃k > 0 : |l(Ax)| ≤ k‖x‖K, ∀x ∈ Dom(A)},

l(Ax) = (A∗l)(x), ∀x ∈ Dom(A), ∀l ∈ Dom(A∗).

If K is a Hilbert space and after the canonical identification of K and K∗, we say that A is a

self-adjoint operator when A = A∗.

1.2.3 Resolvent

We still denote by K the complexification of K. Let A : Dom(A) ⊂ K→ K be a linear operator.

We define the resolvent set of A as

ρ(A) := {λ ∈ C : (A− λI) : Dom(A)→ K is bijective and its inverse is bounded}.

Instead σ(A) := C\ρ(A) is called spectrum of A. The elements λ ∈ σ(A) such that (A − λI) is

not injective are called eigenvalues and the elements x ∈ Dom(A) such that Ax = λx are called

eigenvectors associated to the eigenvalues. We denote by σp(A) the set of eigenvalues of A and

it is called point (or punctual) spectrum. Moreover for any λ ∈ ρ(A) we can define the resolvent

of A in the following way

R(λ,A) = (A− λI)−1.

1.2.4 Square root and positive operators

Let A : Dom(A) ⊂ K→ K be a linear operator. If there exists a unique operator B : Dom(B) ⊂
X → X such that Dom(B2) = Dom(A) and A = B2 then we call B square root of A and we

denote it by
√
A. Clearly a general linear operator may not have a square root.

We assume that K is a Hilbert space equipped with the inner product 〈·, ·〉K. Let T ∈ L(K).

We say that T is non-negative (positive) if for every x ∈ Dom(T ) \ {0}

〈Tx, x〉 ≥ 0 (> 0).

In an anologous way we define the non-positive (negative) operators. We have the following basic

results about non-negative and bounded operators.

Proposition 1.2.1. Let T ∈ L(K) be a non-negative operator.
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1. T is a self-adjoint operator.

2. If G ∈ L(K) is non-negative and G and T commute then GT is a non-negative operator.

3. T has a unique square root
√
T . Moreover

(a) if G commutes with T then G commutes with
√
T ,

(b) if T is bjective then
√
T is bjective.

Let T ∈ L(K). It easy to see that T ∗T is a non-negative operator, so we can define the

absolute value of T in the following way,

|T | :=
√
T ∗T (1.2.1)

1.2.5 Pseudo-inverse

We conclude this section defining the notion of pseudo-inverse for an operator T ∈ L(K). We

refer to [71, Appendix C].

Definition 1.2.2. Let T ∈ L(K). The pseudo inverse of T is defined as

T−1 :=
(
T|Ker(T )⊥

)−1

where Ker(T )⊥ is the orthogonal of Ker(T ). In an equivalent way we can define the pseudo

inverse of T as the operator that associates to x ∈ T (K) the element of minimum norm in

T−1({x}).

It is easy to see that the pseudo-inverse T−1 : T (K)→ Ker(T )⊥ is a linear operator and the

space HT := T (K) is an Hilbert space with the inner product

〈x, y〉T :=
〈
T−1x, T−1y

〉
K
, x, y ∈ T (K).

Moreover if {ek}k∈N is an orthonormal basis of Ker(T )⊥ then {Tek}k∈N is an orthonormal basis

of HT := T (K).

1.3 Dissipative mappings

We recall some basic results about subdifferentials and dissipative maps. We refer to [20, Ap-

pendix A], [27] and [43, Appendix D] for the results of this section. Let K be a separable Banach

space. For any x ∈ K, we define the subdifferential ∂‖x‖K of ‖·‖K at x ∈ K as

∂‖x‖ := {x∗ ∈ K∗ | ‖x+ y‖K ≥ ‖x‖K + x∗(y), ∀ y ∈ K}.

Moreover ∂‖x‖K is close and convex and for any x 6= 0 we have

∂‖x‖ = {x∗ ∈ K∗ | K 〈x, x∗〉K∗ = ‖x‖K, ‖x
∗‖K∗ = 1}.
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Let [t0, t1] ⊂ [0,+∞) and let u : [t0, t1] → K be a differentiable function. Then the function

γ := ‖u‖K : [t0, t1]→ [0,+∞) is left-differentiable at any t0 ∈ [t0, t1] and

d−γ

dt
(t0) := lim

h→0−

γ(t0 + h)− γ(t0)

h
= min{E 〈u′(t0), x∗〉E∗ : x∗ ∈ ∂‖u(t0)‖K}. (1.3.1)

Moreover, let b ∈ R and let g : [t0, t1]→ [0,+∞) be a continuous function. If

d−γ

dt
(t) ≤ bγ(t) + g(t),

then, for any t ∈ [t0, t1], we have

γ(t) ≤ eb(t−t0)γ(t0) +

∫ t

t0

eb(t−s)g(s)ds, t ∈ [t0, t1]. (1.3.2)

Definition 1.3.1. A map f : Dom(f) ⊆ K → K is said to be dissipative if, for any α > 0 and

x, y ∈ Dom(f), we have

‖x− y − α(f(x)− f(y))‖K ≥ ‖x− y‖K (1.3.3)

If f is a linear operator, f(x) = Ax (1.3.3) reads as

‖(λI−A)x‖K ≥ λ‖x‖K, ∀λ > 0, x ∈ Dom(A)

We say that f is m-dissipative if the range of λI − f is the whole space K for some λ > 0 (and

so for all λ > 0).

Using the notion of subdifferential we have the following useful charaterization for the dissi-

pative maps.

Proposition 1.3.2. Let f : Dom(f) ⊆ K → K. f is dissipative if and only if, for any x, y ∈
Dom(f) there exists z∗ ∈ ∂‖x− y‖ such that

K 〈f(x)− f(y), z∗〉K∗ ≤ 0. (1.3.4)

If K is a Hilbert space (1.3.4) becomes

〈f(x)− f(y), x− y〉K ≤ 0.

1.4 Semigroups theory

In this subsection we recall some basic definitions and results of the semigroups theory, we refer

to [53, 54, 73]. Let K be a Banach space. From here on we will use the notation T (t) to denote a

semigroup of linear bounded operators {T (t)}t>0, namely a family {T (t) : t ≥ 0} ⊆ L(K) such

that

T (0) = IK, T (t+ s) = T (t)T (s), ∀t, s ≥ 0.
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1.4.1 Strongly continuous semigroups

Let T (t) be a semigroup on K. We say that T (t) is strongly continuous if for any x ∈ K the

function T (·)x : [0,+∞)→ K is continuous. In this case we define the infinitesimal generator of

T (t) as the operator A : Dom(A) ⊂ K→ K defined by

Dom(A) :=

{
x ∈ K : ∃ lim

t→0

T (t)x− x
t

}
, Ax = lim

t→0

T (t)x− x
t

.

Sometimes we denote by etA the semigroup T (t). Let M ≥ 1 and w ∈ R. We denote by G(M,w)

the set of the strongly continuous semigroups T (t) such that

‖T (t)‖L(K) ≤Mewt, t ≥ 0.

Moreover if M = 1 and w ≤ 0 we say that T (t) is a contraction semigroup.

We state one of the most important results about strongly continuous semigroups.

Theorem 1.4.1 (Hille-Yosida). Let A : Dom(A) ⊂ K → K be a linear operator. A is the

infinitesimal generator of a strongly continuous semigroup belonging to G(M,w) if and only if

the following conditions are verified:

1. Dom(A) is dense.

2. {λ ∈ R : λ > w} ⊂ ρ(A).

3. ‖R(λ,A)‖L(K) ≤
M

(λ−w)k
, k ∈ N, λ > w.

Remark 1.4.2. If Dom(A) is not dense in K and the points 2-3 of the Hille–Yosida Theorem

hold true, then we can consider the space K0 = Dom(A). By the Hille–Yosida theorem, the part

of A in K0 generates a strongly continuous semigroup on K0.

We state some useful properties of the strongly continuous semigroup.

Proposition 1.4.3. Let T (t) be a strongly continuous semigroup on K and let A : Dom(A) ⊂
K→ K be its infinitesimal generator.

1. For any x ∈ Dom(A) and t ≥ 0 we have AT (t)x = T (t)Ax.

2. For any x ∈ Dom(A) the function T (·)x : [0 +∞) → K is differentiable and
dT (t)x

dt
=

AT (t)x, for any t > 0.

3. For any x ∈ X we have limn→+∞ nR(n,A)x = x.

Now we recall some results in the case where the operator A is dissipative. The first one is

the the Lumer-Phillips theorem.

Proposition 1.4.4.

1. Let A : Dom(A) ⊂ K→ K be a linear and dissipative operator such that Dom(A) is dense.

The closure A of A is the infinitesimal generator of a strongly continuous and contraction

semigroup if and only if (λI−A)(K) is dense in K for some λ > 0.
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2. Let A : Dom(A) ⊂ K → K be the infinitesimal generator of a strongly continuous and

contraction semigroup. Then A is dissipative.

1.4.2 Analytic semigroups

Now we introduce the analytic semigroups. We consider the complexification of K, and we still

denote it by K.

Let A : Dom(A) ⊆ K→ K be a linear operator. We say that A is a sectorial operator if there

exist M > 0, η0 ∈ R and θ0 ∈ (π/2, π] such that

S0 := {λ ∈ C | λ 6= η0, |arg(λ− η0)| < θ0} ⊆ ρ(A);

‖R(λ,A)‖L(K) ≤
M

|λ− η0|
, ∀λ ∈ S0. (1.4.1)

We call analytic semigroup generated by A the semigroup etA defined by

etA :=

∫
γr,η+w

etλR(λ,A)dλ, (1.4.2)

where r > 0, η ∈ (π2 , η0) and

γ := {λ ∈ C : |arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C : |arg λ| ≥ η, |λ| = r}.

Due to the analyticity of et(·)R(·, A), (1.4.2) is independent of r and η.

We state some properties of analytic semigroups.

Proposition 1.4.5. Let A : Dom(A) ⊆ K → K be sectorial operator. Then the family of

operators defined in (1.4.2) is a semigroup on K, that satisfies the following properties.

1. There exists M0 > 0 such that for any t > 0

∥∥etA∥∥
L(K)

≤M0e
η0t, (1.4.3)

where η0 is the constant in (1.4.1).

2. For any t > 0 and k ∈ N
etA(K) ⊆ Dom(Ak). (1.4.4)

Moreover for every ε > 0 there exists Cε,k > 0 such that

∥∥tkAketA∥∥
K
≤ Cε,ke(η0+ε)t, t > 0. (1.4.5)

3. For any x ∈ Dom(A)

lim
n→+∞

nR(n,A)x = x. (1.4.6)

4. Setting f(t) = etA, we have

f ∈ C∞((0,+∞),L(K)). (1.4.7)
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Moreover f (k)(t) = Akf(t), for any t > 0 and k ∈ N.

Remark 1.4.6. If A is non positive, then, by (1.4.5) for any α ≥ 0 and ε > 0 there exists

Cε,α > 0 such that ∥∥tα(−A)αetA
∥∥
K
≤ Cε,αe(η0+ε)t, t > 0.

1.4.3 Semigroups on Bb(K)

We recall some basic definitions about the semigroups defined on Bb(K). Let T (t) be a semigroup

on Bb(K).

1. We say that T (t) is non-negative if for any non-negative valued ϕ ∈ Bb(K) and for any

t ≥ 0, T (t)ϕ has non-negative values.

2. We say that T (t) is Feller, if for any t ≥ 0 we have

T (t) (Cb(K)) ⊆ Cb(K).

3. We say that T (t) is Strong Feller, if for any t > 0 we have

T (t) (Bb(K)) ⊆ Cb(K).

4. We say that T (t) is contractive, if for any t ≥ 0 and ϕ ∈ Bb(K) we have

‖T (t)ϕ‖∞ ≤ ‖ϕ‖∞.

5. Let µ be a probability measure on (K,B(K)). We say that µ is invariant for T (t) if, for

any ϕ ∈ Cb(K) and t ≥ 0, we have∫
K

T (t)ϕ(x)ν(dx) =

∫
K

ϕ(x)ν(dx).

1.5 Compact operators

Compact operators are very important tools when working in infinite dimension. In this thesis

we will apply it to the study of Gaussian measures on infinite dimensional Hilbert spaces. We

refer to the following books for a more extensive treatment of the theory of compact operators

and its application [51, 89, 90].

Let K and Y be two separable Hilbert spaces equipped with inner products 〈·, ·〉K and 〈·, ·〉Y
respectively. We denote by ‖·‖K and ‖·‖Y the norms induced by 〈·, ·〉K and 〈·, ·〉Y respectively.

Definition 1.5.1. Let T ∈ L(K,Y). We say that T is compact if, for any bounded M ⊆ X,

the subset T (M) ⊂ Y is relatively compact. Equivalently, for any sequence {xn}n∈N ⊆ X, the

sequence {Txn}n∈N ⊂ Y has a converging subsequence. We denote by L∞(K,Y) the space of

compact operators from K to Y, if K = Y we simply write L∞(K).

We have the following basic results about compact operators.
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Proposition 1.5.2. Let T ∈ L(K).

1. T is compact if and only if T ∗ is compact.

2. T is compact if and only if it maps weakly converging sequences into norm converging

sequences.

Now we recall one of the most important theorem for self-adjoint and compact operators.

Theorem 1.5.3. Let T ∈ L∞(K) be a self-adjoint operator. We denote by σp(T ) the set of

eigenvalues of T . The following statements hold.

1. For any λ ∈ σp(T ) such that λ 6= 0, the eigenspace Kλ with eigenvalue λ is finite dimen-

sional.

2. σp(T ) ⊆ R is not empty and it is at most numerable.

3. σp(T ) has at most one accumulation point which can only be 0.

4. ‖T‖L(K) = sup{|λ| : λ ∈ σp(T )}.

5. There exists an orthonormal basis of K consisting of eigenvectors of T .

Proposition 1.5.4. Let T ∈ L(K) be a self-adjoint operator. T is compact if and only if there

exist an orthonormal basis {ek}k∈N of K and a sequence {λk}k∈N ⊂ R converging to 0 such that

Tx =
∑
k∈N

λk〈x, ek〉ek, x ∈ K,

where the series converging in L(K). In this case {ek}k∈N and {λk}k∈N are the eigenvectors and

the eigenvalues of T respectively.

By Theorem 1.5.3, σp(T ) is finite if and only if the range of T is a finite dimensional space.

In general the range of T is not dense in K.

Corollary 1.5.5. Let T ∈ L∞(K) be a self-adjoint and injective operator. Then the range of T

is dense in K.

1.5.1 Hilbert–Schmidt operators

Now we introduce the Hilbert–Schmidt operators.

Definition 1.5.6. Let T ∈ L∞(K,Y) and let {ek}k∈N be an orthonormal basis of K. We say

that T is a Hilbert–Schmidt operator if

‖T‖L2(K,Y) :=

√∑
k∈N
‖Tek‖2Y < +∞.

The norm ‖·‖L2(K,Y) does not depend on the choice of the basis of X. We denote by L2(K,Y)

the space of the Hilbert–Schmidt operators from K to Y, if Y = K we set L2(K,K = L2(K)
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In the case where T is self-adjoint we have the following characterization for the Hilbert–

Schmidt operators.

Proposition 1.5.7. Let T ∈ L∞(K) be a self-adjoint operator. T ∈ L2(K) if and only if∑
k∈N

λ2
k < +∞,

where {λk}k∈N are the eigenvalues of T . Moreover

‖T‖L2(K,Y) =

√∑
k∈N

λ2
k.

1.5.2 Trace class operators

Finally we define the trace class (or nuclear) operators.

Definition 1.5.8. Let T ∈ L∞(K). We say that T is a trace class (or nuclear) operator if one

of the following equivalent conditions are verified.

1. There exists an orthonormal basis {ek}k∈N of K such that∑
k∈N
〈|T |ek, ek〉 < +∞. (1.5.1)

In this case the sum in (1.5.1) does not depend on the choice of the basis, and it is denoted

by Tr[T ] (Trace of T ).

2. The operator
√
|T | defined in (1.2.1) is a Hilbert–Schmidt operator.

Moreover

Tr[T ] =
∥∥∥√|T |∥∥∥2

L2(K)
.

Also for the trace class operator we have a useful charaterization in the self-adjoint case.

Proposition 1.5.9. Let T ∈ L∞(K) be a self-adjoint operator. T is a trace class operator if

and only if ∑
k∈N
|λk| < +∞,

where {λk}k∈N are the eigenvalues of T . Moreover

Tr[T ] =
∑
k∈N
|λk| ∈ R.

1.6 Gaussian measures and Random Gaussian variables

In this section we introduce the notion of Gaussian measure on a infinite dimensional separable

Banach space. We refer to [12] for a detailed overview of this topic. Before introducing the

Gaussian measures we need to recall some standard notations from probability theory.
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Let (Ω,F,P) be a complete probability space and let K be a separable Banach space equipped

with the norm ‖·‖K. Let ξ : (Ω,F,P) → (K,B(K)) be a random variable, namely a measurable

function. We call law of ξ the probability measure on (K,B(K)) defined by

L (ξ)(B) := P ◦ ξ−1(A) := P(ξ−1(A)) = P({ω ∈ Ω : ξ(ω) ∈ A}), A ∈ B(K).

Sometimes we will use the notation ξ ∼ γ to indicate that the random variable ξ has law γ. We

denote

E[ξ] :=

∫
Ω

ξ(w) P(dω) =

∫
K

x L (ξ)(dx)

the expectation of ξ with respect to P. If γ is a probability measure on (K,B(K)) we denote by

γ̂ its Fourier transform, namely

γ̂(l) :=

∫
K

eil(x)γ(dx), l ∈ K∗.

We define the support of γ as the closed subset S ⊂ K such that S ⊂ V for any V ∈ B(K) such

that γ(V ) = 1.

Let γ1 and γ2 be two probability measures on (K,B(K)). We say that γ1 is absolutely

continuous with respect to γ2 if γ2(B) = 0 implies that γ1(B) = 0, for any B ∈ B(K). If γ1 is

absolutely continuous with respect to γ2 and viceversa we say that γ1 and γ2 are equivalent. We

say that γ1 and γ2 are singular if there exists B ∈ B(K) such that γ1(B) = 0 and γ2(B) = 1.

Let γ1 and γ2 be two probability measures on (K,B(K)), if γ1 is absolutely continuous

with respect to γ2, then, by the Radon–Nykodym, theorem there exists a unique non-negative

ρ : K→ R non-negative such that

γ1(dx) = ρ(x)γ2(dx).

The function ρ is called density (or Radon–Nykodym derivative) of γ1 with respect to γ2. If also

γ2 is absolutely continuous with respect to γ1, then ρ is positive and

γ2(dx) =
1

ρ(x)
γ1(dx).

Now we introduce the notion of Gaussian measure on (K,B(K)). We recall that a probability

measure γ is a nondegenerate Gaussian measure on (R,B(R)) if there exist m ∈ R and σ > 0

such that

γ(A) =
1√
2π

∫
A

e
|x−m|2

2σ2 dx, A ∈ B(R).

Instead we say that γ is a degenerate Gaussian measure on (R,B(R)) if there exist m ∈ R such

that

γ(A) = δm(A), A ∈ B(R),
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where δm(·) is the Dirac measure defined by

δm(A) =

1, m ∈ A

0, m 6∈ A.

Definition 1.6.1. Let γ be a probability measure on (K,B(K)). We say that γ is a Gaussian

measure if for any l ∈ K∗ the probability measure γ◦l−1 on (R,B(R)) is a Gaussian measure. We

say that γ is a nondegenerate Gaussian measure if for any l ∈ K∗ such that l 6= 0 the probability

measure γ ◦ l−1 is a nondegenerate Gaussian measure.

Definition 1.6.2. Let ξ : (Ω,F,P) → (K,B(K)) be a random variable. We say that ξ is a

Gaussian random variable if for any l ∈ K∗ the random variable l(ξ) is a real Gaussian random

variable. We say that ξ is a nondegenerate Gaussian random variable if for any l ∈ K∗ such that

l 6= 0 the random variable l(ξ) is a real nondegenerate Gaussian random variable.

Now we define the notions of mean and covariance for a Gaussian measure.

Proposition 1.6.3. Let γ be a Gaussian measure on (K,B(K)). We consider the applications

aγ : K∗ → R and Bγ : K∗ ×K∗ → R defined by

aγ(l) :=

∫
R
l(x)γ(dx), l ∈ K∗,

Bγ(l1, l2) :=

∫
R

(l1(x)− aγ(l1))(l2(x)− aγ(l2))γ(dx) l1, l2 ∈ K∗.

aγ is linear and continuous and it is called mean of γ. Bγ is bilinear, symmetric, non-negative

and continuous and it is called covariance of γ. We say that γ is centered if aγ(·) ≡ 0.

Remark 1.6.4. Let ξ : (Ω,F,P) → (K,B(K)) be a Gaussian random variable such that ξ ∼ γ.

For any l ∈ K∗, we have that l(ξ) is a real gaussian random variable with mean aγ(l) and variance

Bγ(l, l). In particular ξ is a nondegenerate Gaussian random variable if and only if Bγ(l, l) 6= 0

for any l ∈ K∗.

Since K is separable, as in finite dimensional case we have a characterization for the Gaussian

measures via their Fourier transforms.

Proposition 1.6.5. Let γ be a probability measure on (K,B(K)). γ is Gaussian if and only

if there exist aγ : K∗ → R linear and continuous and Bγ : K∗ × K∗ → R bilinear, symmetric,

non-negative and continuous such that

γ̂(l) = eiaγ(l)− 1
2Bγ(l,l), l ∈ K∗.

Now we state the following theorem which ensures that even in infinite dimension the Gaussian

measures have finite moments of every order.

Theorem 1.6.6 (Fernique). Let γ be a centered Gaussian measure on (K,B(K)).

Then there exists α > 0 such that ∫
K

eα‖x‖
2
Kγ(dx) < +∞. (1.6.1)
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1.6.1 The reproducing Kernel and the Cameron–Martin theorem

Let γ be a Gaussian measure on (K,B(K)). It is easy to see that K∗ is contained in L2(K, γ)

and that the map j : K∗ → L2(K, γ) defined by

j(l) = l − aγ(l), l ∈ K∗,

is continuous.

Definition 1.6.7. The reproducing kernel of γ is the space defined by

K∗γ := j(K∗)
L2(K,γ)

.

It is not difficult to prove that aγ and Bγ can be continuously extended to K∗γ . Moreover for

any l ∈ K∗γ we have

γ̂ = e
− 1

2‖l‖
2
L2(K,γ) .

Now we define the operator Rγ : K∗γ → (K∗)′ by

Rγ(l)(g) = 〈l, g − aγ(g)〉, l ∈ K∗γ , g ∈ K∗.

Using the fact that K is separable, it is possible to prove that for any l ∈ K∗γ there exists a unique

xl ∈ K such that

Rγ(l)(g) = g(xl), g ∈ K∗.

Hence, from here on, we identify Rγ(l) with the element xl ∈ K and we write

Rγ(l)(g) = g(Rγ(l)), g ∈ K∗.

Definition 1.6.8. The Cameron–Martin space of the measure γ is the space defined by

Hγ := {h ∈ K : ‖h‖Hγ < +∞}, ‖h‖Hγ := sup{l(h) : l ∈ K∗, ‖j(l)‖L2(K,γ) ≤ 1}.

Proposition 1.6.9. Let h ∈ K. Then h ∈ Hγ if and only if there exists ĥ ∈ K∗γ such that

h = Rγ(ĥ), and in this case

‖h‖Hγ = ‖ĥ‖L2(K,γ).

Therefore Rγ is an isometry from K∗γ to Hγ and Hγ is a Hilbert space equipped with the inner

product

〈h, k〉Hγ :=
〈
ĥ, k̂
〉
L2(K,γ)

.

The space Hγ is called Cameron–Martin space of γ.

Let h ∈ K. We define the probability measure

γh(B) = γ(B − h), B ∈ B(K).

In the finite dimensional case it is easy to see that γh and γ are equivalent. However in the infinite
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dimensional case this is not true, in general. The Cameron-Martin theorem shows exactly for

which h ∈ K this fact occurs.

Theorem 1.6.10. If h ∈ Hγ , then γ and γh are equivalent, and we have

γh = e
ĥ− 1

2‖h‖
2
Hγ γ.

If h 6∈ Hγ , then γ and γh are singular.

1.6.2 The Hilbert case

In this subsection we focus on the particular case where K is a separable Hilbert space. We refer

to the books [43, 71] for a more detailed overview of this topic.

Let K be a separable Hilbert space equipped with the inner product 〈·, ·〉K. Let γ be a

Gaussian measure on (K,B(K)) with mean aγ and covariance Bγ . By the Riesz representation

theorem we can identify K with K∗. There exists a ∈ K and a non-negative operator Q ∈ L(K)

such that

aγ(l) = 〈l, a〉, l ∈ K,

Bγ(l1, l2) = 〈Ql1, l2〉, l1, l2 ∈ K.

We have the following characterization for the Gaussian measures and for their Cameron-Martin

spaces.

Proposition 1.6.11. Let γ be a probability measure on (K,B(K)). γ is Gaussian if and only if

there exist a ∈ R and a linear, non-negative and trace class operator Q : K→ K such that

γ̂(x) = e〈x,a〉−
1
2‖Q1/2x‖2 , x ∈ K.

In this case we use the notation γ ∼ N(a,Q).

We fix a ∈ K and a non-negative and trace class operator Q. By Theorem 1.5.3, there exists

an orthonormal basis {ek}k∈N of K such that

λkek = Qek, k ∈ N,

where {λk}k∈N are the eigenvalues of Q. In particular, since Q is non-negative then λk ≥ 0 for

any k ∈ N. So we have a useful characterization for the random Gaussian variables, as follows.

Proposition 1.6.12. Let ξ : (Ω,F,P) → (K,B(K)) be a random variable. ξ ∼ N(a,Q) if and

only if

ξ =
∑
k∈N

βk
√
λkek + a, (1.6.2)

where {βk}k∈N are independent real Gaussian random variables with mean 0 and variance 1. The

series in (1.6.2) converges in L2((Ω,F,P), (K,B(K))). Moreover we have

E[〈ξ, u〉] = 〈m,u〉, u ∈ K,
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E[〈ξ − a, u〉〈ξ − a, v〉] = 〈Qu, v〉, u, v ∈ K,

E[‖ξ − a‖2K] = Tr[Q].

We also have a characterization of the Cameron–Martin space.

Proposition 1.6.13. Let γ ∼ N(a,Q). Then the Cameron-Martin space of γ has the following

characterization

Hγ = Q1/2(K), 〈h, k〉Hγ =
〈
Q−

1
2h,Q−

1
2 k
〉
, k, h ∈ Hγ ,

where Q−1/2 is the pseudo-inversa of Q−1/2, see Subsection 1.2.5.

Let γ ∼ N(a,Q). The next properties follow from the spectral decomposition of Q.

1. For any α < inf{ 1
2λk

: k ∈ N}, (1.6.1) is verified.

2. {λ1/2
k ek}k∈N is an orthonormal basis of the Cameron-Martin space Hγ = Q1/2(K).

3. The Cameron-Martin space Hγ has finite dimension ⇔ the set σp(Q) of the eigenvalues of

Q is finite.

4. The Cameron-Martin space Hγ is dense in X ⇔ λk > 0 for any k ∈ N ⇔ Q is positive ⇔
γ is a nondegenerate Gaussian measure.

5. If Q is positive then supp (γ) = K and

K∗γ :=

{
f : K→ R : f(x) =

∑
k∈N
〈x−m, ek〉λ1/2

k

}
,

where the series
∑
k∈N 〈x−m, ek〉λ

1/2
k converges in Lp(K, γ), for any p ≥ 1. Moreover

Hγ :=

{
x ∈ K :

∑
k∈N
〈x, ek〉λ−1

k < +∞

}
.

The next result is a generalization of the Cameron-Martin theorem.

Theorem 1.6.14 (Feldman-Hajek). Let γ1 = N(m1, Q1) and γ2 = N(m2, Q2) be two Gaussian

measures on (K,B(K)). γ1 and γ2 are equivalent if and only if the following conditions are

verified.

1. H := Q
1/2
1 (K) = Q

1/2
2 (K).

2. m1 −m2 ∈ H

3. (Q
−1/2
1 Q

1/2
2 )(Q

−1/2
1 Q

1/2
2 )∗ − I is a Hilbert–Schmidt operator on H

K
.
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1.6.3 Integration by part formula

In this section we will show that it is possible to associate an integration by part formula to any

Gaussian measure on a separable infinite dimensional Hilbert space K. We refer to [42, Chapters

9-10].

Let K be a separable Hilbert space equipped with the inner product 〈·, ·〉K. Let Q ∈ L(K)

be a positive and trace class operator. Let {ek}k∈N be orthonormal basis of K consisting of

eigenvectors of Q, and let {λk}k∈N be the corresponding eigenvalues. Let µ be the Gaussian

measure on (K,B(K)) with mean 0 and covariance operator Q. Let ξ(K) be the subspace of

C∞b (K) spanned by the exponential functions of the form

ϕ(x) = e〈x,h〉K , h ∈ K.

Proposition 1.6.15. Let ϕ,ψ ∈ ξ(K). Then for any k ∈ N and x ∈ K we have∫
K

(
∂ϕ

∂ek

)
(x)ψ(x)µ(dx) +

∫
K

ϕ(x)

(
∂ψ

∂ek

)
(x)µ(dx) =

1

λk

∫
K

xkϕ(x)ψ(x)µ(dx), (1.6.3)

where
∂ϕ

∂ek
(x) = 〈∇ϕ(x), ek〉K,

∂ψ

∂ek
(x) = 〈∇ψ(x), ek〉K and xk = 〈x, ek〉K.

Definition 1.6.16. Let {gk}k∈N be an arbitrary orthonormal basis of K. For any k ∈ N, we

denote by FCkb (K) the set of functions f : K → R such that, for some n ∈ N, there exists a

function ϕ ∈ Ckb (Rn) such that for all x ∈ K

f(x) = ϕ(〈x, g1〉, . . . , 〈x, gn〉).

We call maps of this type cylindrical functions. We denote by FCkb (K;K) the linear span of the

functions x→ v(x)y with v ∈ FCkb (K) and y ∈ K.

It is also possible to define the integration by part formula (1.6.3) on the space FC1
b(K) (see,

for example, [34, 35]). It is easy to prove that ξ(K) is dense in Lp(K, µ) for any p ≥ 1, so we

have the following result.

Proposition 1.6.17. Let R ∈ L(K) such that Ker(R) = {0} and Q1/2(K) ⊂ R(K). Then the

operator

R∇ : ξ(K) ⊆ L2(K, µ)→ L2(K, µ,K).

is closable. The Sobolev W 1,2
R (K, µ) is defined as domain of its closure.

In the next chapters of this thesis we will see that it is possible to define Sobolev spaces even

with respect to non-Gaussian measures.

1.7 Wiener Processes

In this section we will introduce the notion of Wiener process with values in a infinite dimensional

Hilbert space. We refer to [41, 71] for the results in this section.

Before we recall some basic notions about the theory of stochastic process.
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1.7.1 Basic definitions

We fix a probability space (Ω,F,P), a separable Banach space K equipped with the norm ‖·‖K
and an interval I of R.

A K-valued stochastic process defined on (Ω,F,P) is a family {Y (t)}t∈I of random variables

Y (t) : (Ω,F,P)→ (K,B(K)). Now we are going to define what we mean by the law of a process.

We consider a K-valued stochastic process {Y (t)}t∈I . Let KI be the space of all functions from

I to K. Let n ∈ N and let Sn be the set of τ := (t1, ..., tn) ∈ In such that ti 6= tj for any i 6= j.

Let Gn be the σ-field generated by the sets B1 × ... × Bn where B1, ..., Bn ∈ B(K). We denote

by CI the σ-field generated by the cylindrical sets C(τ,B) defined by

C(τ,B) := {f ∈ KT : (f(t1), ..., f(tn)) ∈ B},

where n ∈ N, τ := (t1, ..., tn) ∈ Sn and B ∈ Gn. It is possible to prove that the map T :

(Ω,F,P)→ (KI ,CI) defined by

T (ω) := Y (·)(ω).

is measurable, so

P ◦T −1(C(τ,B)) := P({ω ∈ Ω : (Y (t1)(ω), ..., Y (tn)(ω)) ∈ B}), C(τ,B) ∈ CI ,

is a probability measure on (KI ,CT ). The measure P◦T −1 is called law of the process {Y (t)}t∈I .

Let {Y (t)}t∈I be a K-valued process on (Ω,F,P) we say that {Y (t)}t∈I is continuous (right

continuous) if the map Y (·) : [0,+∞)→ K is P-a.s. continuous (right continuous). For p ≥ 1, we

say that {Y (t)}t∈I is p-integrable if, for any t ∈ I, we have

E[‖Y (t)‖pK] < +∞.

A filtration on (Ω,F,P) is a family of σ-field {F}t∈I such that Fs ⊆ Ft ⊆ F for any 0 ≤ s ≤ t,
and we call (Ω,F, {F}t∈I ,P) filtered probability space. We say that a filtration {F}t∈I is complete

if

� N ⊂ F0, where N is the set of the elements A ∈ F such that P(A) = 0.

We say that a complete filtration {F}t∈I is normal if

� for any t > 0, we have Ft = ∩s>tFs.

A filtered probability space (Ω,F, {F}t∈I ,P) is normal (complete) if {F}t∈I is normal (complete).

Let {F}t∈I be a filtration on (Ω,F,P) and let {Y (t)}t∈I be a K-valued stochastic process

defined on (Ω,F,P) we say that {Y (t)}t∈I is adapted to {F}t∈I if

� Y (t) is Ft-measurable for any t ∈ I,

in this case we say that {Y (t)}t∈I is a K-valued stochastic process defined on the filtered proba-

bility space (Ω,F, {F}t∈I ,P). We say that {Y (t)}t∈I is predictable in I if Y (·)(·) : (I×Ω,FI)→
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(K,B(K)) is measurable where FI is the σ-field generated by the sets

(s, t]× F, s, t ∈ I, s < t, F ∈ Fs.

Let {Y (t)}t∈I be a K-valued stochastic process defined on (Ω,F,P), then there always exists

a complete filtration {Ft}t∈I on (Ω,F,P) such that {Y (t)}t∈I is adapted to {Ft}t∈I . Indeed it is

sufficient to consider the filtration {Ft}t∈I defined by

Ft := σ(N ∪ F0
t ), F0

t := σ(Y (s) : s ≤ t), (1.7.1)

this filtration is called natural filtration of {Y (t)}t≥0. Let {Y1(t)}t∈I e {Y2(t)}t∈I be two K-

valued processes defined on the complete filtered probability space (Ω,F, {F}t∈I ,P). We say that

{Y1(t)}t∈I is a version (or a modification) of {Y2(t)}t∈I if, for any t ∈ I we have

Y1(t) = Y2(t), P-a.s.

1.7.2 Q-Wiener process

We fix a probability space (Ω,F,P) and a separable Hilbert space K equipped with the inner

product 〈·, ·〉K . Let Q ∈ L(K) be a non negative and trace operator.

Definition 1.7.1. A K-valued Q-Wiener process {W (t)}t≥0 defined on (Ω,F,P) is a K-valued

process defined on (Ω,F,P) that verifies the following conditions.

(i) W (0) = 0

(ii) For any n ∈ N and 0 ≤ t1 < t2 < · · · < tn the random variables W (t1), W (t2)−W (t1),. . . ,

W (tn)−W (tn−1) are independent.

(iii) W (t)−W (s) ∼ N(0, (t− s)Q) for any 0 ≤ s ≤ t.

(iv) {W (t)}t≥0 is continuous.

We show a useful characterization of K-valued Q-Wiener process.

Proposition 1.7.2. Let Q ∈ L(K) be a non-negative trace class operator. A K-valued process

{W (t)}t≥0 defined on (Ω,F,P) is a K-valued Q-Wiener process defined on (Ω,F,P) if and only

if

{W (t)}t≥0 =

{∑
k∈N

√
λkβk(t)ek

}
t≥0

, (1.7.2)

where ek and λk are the eigenvectors and eigenvalues of Q respectively, and {βk(t)}t≥0 are

independent real Brownian motions. The series in (1.7.2) converges in

L2((Ω,F,P), C([0, T ],K)), for any T > 0.

We say that {W (t)}t≥0 is a K-valued Q-Wiener process defined on a filtered probability space

(Ω,F, {Ft}t≥0,P) if {W (t)}t≥0 is a K-valued Q-Wiener process defined on (Ω,F,P) and

1. {W (t)}t≥0 is adapted to {Ft}t≥0;
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2. σ(W (t)−W (s)) is independent of Fs for any 0 ≤ s ≤ t.

It is not difficult to prove the following proposition.

Proposition 1.7.3. Let {W (t)}t≥0 be a K-valued Q-Wiener process defined on (Ω,F,P). Then

the natural filtration of {W (t)}t≥0 defined as in (1.7.1) is normal and {W (t)}t≥0 is a K-valued

Q-Wiener process defined on a filtered probability space (Ω,F, {Ft}t≥0,P).

We stress that the series in (1.7.2) converges in L2((Ω,F,P), C([0, T ],K)) since the inclusion

Q1/2(K) ⊂ K defines a Hilbert–Schmidt embedding from Q1/2(K) to K. In the next subsection

we will be interested in the case where Q is not a trace class operator and therefore Q1/2 is not

a Hilbert–Schmidt operator.

1.7.3 Cylindrical Wiener processes

Let Q ∈ L(K) be a non-negative operator. We have seen in Subsection 1.2.5 that the pseudo

inverse Q−1/2 of Q1/2 defines a Hilbert space (K0, 〈, 〉0) in the following way

K0 = Q1/2(K), 〈h, k〉0 =
〈
Q−1/2h,Q−1/2k

〉
, h, k ∈ K0.

Moreover let {ek}k∈N be an orthonormal basis of Ker(Q1/2)⊥.

Then {gk}k∈N = {Q1/2ek}k∈N is an orthonormal basis of K0. Let {αk}k∈N ⊂ R be a sequence of

positive numbers such that
∑
k∈N α

2
k < +∞. Then the operator J : K0 → K defined by

Jx :=
∑
k∈N

αk〈x, gk〉0gk, x ∈ K0, (1.7.3)

is a Hilbert–Schmidt operator. Let J∗ be the adjoint of J and let J ′ be the operator defined by

J∗ identifying K and K0 with their dual spaces. We consider operator Q1 = JJ ′ : K → K. By

the definition, Q1 is a non-negative and a trace class operator. As before we consider the Hilbert

space defined by the pseudo inverse of Q
1/2
1

K1 := Q
1/2
1 (K),

〈
Q
−1/2
1 h,Q

−1/2
1 k

〉
1
, h, k ∈ K1.

Proposition 1.7.4. The operator J is an isometry from (K0, 〈, 〉0) to (K1, 〈, 〉1). Moreover, let

{{βk(t)}t≥0 : k ∈ N} be independent real Brownian motions. The process {W (t)}t≥0 defined by

W (t) :=
∑
k∈N

βk(t)Jgk,

is a K-valued Q1-Wiener process. The series converges in L2((Ω,F,P), C([0, T ],K)), for any

T > 0.

Remark 1.7.5. Equivalently, Proposition (1.7.4) states that the series{∑
k∈N

βk(t)Q1/2ek

}
t≥0

,



1.8. Integration with respect to a Wiener process 32

converges in L2((Ω,F,P), C([0, T ],K′)),

for any T > 0, where K′ is the Hilbert space (K, ‖J(·)‖K). Hence {W (t)}t≥0 is a K′-valued

Q-Wiener process.

Definition 1.7.6. We call K-valued generalized Q-Wiener process the K-valued Q1-Wiener pro-

cess of Proposition 1.7.4. If Q = IX we use the expression ”K-cylindrical Wiener process”.

Clearly if {W (t)}t≥0 is a K-valued generalized Q-Wiener process such that Q is trace class then

{W (t)}t≥0 is a K-valued Q-Wiener process, since we can take J = IK.

Remark 1.7.7. Some authors use the expression ”K-cylindrical Q-Wiener process”, also for the

K-valued generalized Q-Wiener process, see for example [71]. We refer to [6, 91] for an overview

of cylindrical processes.

1.8 Integration with respect to a Wiener process

We fix a separable Hilbert space (K, ‖·‖K, 〈, 〉K) and a K-valued generalized Q-Wiener process

{W (t)}t≥0 defined on a normal filtered probability space (Ω,F, {Ft}t≥0,P). In this section we

define an integration with respect to {W (t)}t≥0 first in the case where Q ∈ L(K) is non-negative

and trace class and after in the case where Q is not a trace class operator, we recall that

K0 := Q1/2(K), 〈k, h〉0 :=
〈
Q−1/2k,Q−1/2h

〉
, h, k ∈ K0 (1.8.1)

First of all we have to recall some basic notions from the probability theory.

Proposition 1.8.1. Let ξ ∈ L1((Ω,F,P), (K,B(K))) be a random variable and let G be a σ-

field contained in F. Then there exists a unique (up to modifications) random variable Z ∈
L1((Ω,G,P), (K,B(K))) such that∫

A

ξ(ω)P(dω) =

∫
A

Z(ω)P(dω), ∀ A ∈ G.

The random variable Z is called conditional expectation of ξ with respect to G an it is denoted by

E[ξ|G].

Now we define the notion of martingale.

Definition 1.8.2. Let {Y (t)}t≥0 be a K-valued stochastic process defined on (Ω,F, {Ft}t≥0,P)

(so {Y (t)}t≥0 is adapted to the filtration). We say that {Y (t)}t≥0 is a K-valued martingale (with

respect to {F(t)}t≥0) if the following two conditions are verified.

1. E[‖Y (t)‖K] < +∞, for any t ≥ 0.

2. For any 0 ≤ s ≤ t we have

E[Y (t)|Fs] = Y (s).

We define a space that will be fundamental in the construction of stochastic integral
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Definition 1.8.3. Let T > 0. We denote by (M2
T , ‖·‖M2

T
) the Banach space of the continuous

and square integrable K-martingales Y := {Y (t)}t∈[0,T ], such that

‖Y ‖M2
T

: E[ sup
t∈[0,T ]

‖Y (t)‖2K]1/2.

It is possible to prove that {W (t)}t≥0 belongs to M2
T . Now we have all the tools to define the

stochastic integral.

1.8.1 Stochastic integral when Q is a trace class operator

We assume that the operator Q is non-negative and trace class. We refer to [41, Section 4.2] and

[71, Section 2.3] for a detailed study about this argument. We define a set of processes for which

the stochastic integral is well defined.

Definition 1.8.4. Let T > 0. We denote by ΞT the set of L(K)-valued processes {φ(t)}t≥0 of

the form

φ(t) = φi, t ∈ (ti, ti+1], i = 1, ..., n.

where n ∈ N, 0 = t1 < ... < tn = T and φi is a L(K)-valued random variable Fti-measurable,

for any i = 1, ..., n.

We fix T > 0. For any {φ(t)}t∈[0,T ] ∈ ΞT we consider the process {I(φ)(t)}t∈[0,T ] defined by

I(φ)(t) :=

∫ t

0

φ(s)dW (s) :=

n−1∑
k=0

φi (W (min(ti+1, t))−W (min(ti, t))) , t ∈ [0, T ]. (1.8.2)

Proposition 1.8.5. For any {φ(t)}t∈[0,T ] ∈ ΞT the process I(φ) := {I(φ)(t)}t∈[0,T ] defined in

(1.8.2) belongs to M2
T and

‖I(φ)‖M2
T

= ‖I(φ)‖T := E

[∫ T

0

‖φ(s)‖2L0
2(K)ds

] 1
2

= E

[∫ T

0

Tr[φ(s)Qφ(s)∗]ds

] 1
2

,

where L0
2(K) := L2(K0,K) and K0 is the Hilbert space defined in (1.8.1). Moreover the map

I : Ξ→M2
T is an isometry.

I can be extended to the closure ΞT of ΞT . The extension of I is an isometry and it is the

unique continuous extension of I. In the next proposition we characterize Ξ.

Proposition 1.8.6. We denote by N2
W ([0, T ], L0

2(K)) the closure of Ξ, namely the set of processes

φ := {φ(t)}t∈[0,T ] such that φ := {φ(t)}t∈[0,T ] is predictable and

‖φ‖T < +∞.

For any φ ∈ N2
W ([0, T ],L0

2(K)) the stochastic integral∫ t

0

φ(s)dW (s),
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is well defined and it belongs to M2
T .

1.8.2 Stochastic integral when Q is not a trace class operator

We assume that the operator Q is non-negative. We refer to [41, Section 4.2] and [71, Section

2.5] for a detailed study about this argument.

We fix a sequence of positive numbers {αk}k∈N ⊂ R such that
∑
k∈N α

2
k < +∞. Let J be

the isometry defined in (1.7.3) using {αk}k∈N. In Subsection 1.7.3 we have defined {W (t)}t≥0

as the K-valued Q1-Wiener process {W1(t)}t≥0, where Q1 = JJ ′. Let K0 := Q1/2(K) and

K1 := Q
1/2
1 (K) be the Hilbert spaces defined in subsection 1.7.3. It is easy to prove that

L ∈ L0
2(K) := L2(K0,K)⇔ L ◦ J−1 ∈ L1

2(K) := L2(K1,K).

Hence, let T > 0, for any φ ∈ N2
W ([0, T ],L0

2(K)) we define the stochastic integral with respect to

{W (t)}t≥0 by ∫ t

0

φ(s)dW (s) =

∫ t

0

φ(s) ◦ J−1dW1(s), t ∈ [0, T ]. (1.8.3)

It is possible to prove that the definition of stochastic integral does not depend on the choice of

{αk}k∈N. Indeed it is possible to prove that the right hand side of (1.8.3) does not depend on

the choice of {αk}k∈N . Moreover the stochastic integral (1.8.3) belongs to M2
T .

1.8.3 Properties of stochastic integral

We assume that the operator Q is non-negative. We summarize some useful properties of stochas-

tic integral. We refer to [41, Chapter 4] and [71, Chapter 2] for a detailed study about this

argument.

Proposition 1.8.7. Let T > 0.

1. For any φ ∈ N2
W ([0, T ],L0

2(K)) we have

E

[∥∥∥∥∫ t

0

φ(s)dW (s)

∥∥∥∥2

K

]
= E

[∫ t

0

‖φ(s)‖2L0
2(K)ds

]
= E

[∫ t

0

Tr[φ(s)Qφ(s)∗]ds

]
, t ∈ [0, T ].

2. For any φ ∈ N2
W ([0, T ],L0

2(K)), and p > 0 there exists cp > 0 such that we

E

[
sup
r∈[0,t]

∥∥∥∥∫ r

0

φ(s)dW (s)

∥∥∥∥p
K

]
≤ cpE

[∫ t

0

‖φ(s)‖2L0
2(K)ds

]p/2

= cpE
[∫ t

0

Tr[φ(s)Qφ(s)∗]ds

]p/2
, t ∈ [0, T ].

It is also possible to prove a Itô formula.
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Theorem 1.8.8. For T > 0 and x ∈ K, consider the process {X(t, x)}t∈[0,T ] defined by

X(t, x) := x+

∫ t

0

ϕ(s)ds+

∫ t

0

φ(s)dW (s), t ∈ [0, T ],

where φ ∈ N2
W ([0, T ],L0

2(K)) and {ϕ(t)}t∈[0,T ] is a predictable K-valued process such that ϕ(t) ∈
L1((Ω,Ft,P), (K,B(K))).

If F : [0, T ]×K→ K is twice Fréchet differentiable then

F (t,X(t, x)) = F (0, x) +

∫ t

0

〈Fx(s,X(s, x)), φ(s)dW (s)〉+

+

∫ t

0

[Ft(s,X(s)) + 〈Fx(s,X(s)), ϕ(s)〉] ds

+
1

2

∫ t

0

Tr[Fxx(s,X(s, x))φ(s)Qφ(s)∗]ds

where Ft =
∂F

∂t
, Fx =

∂F

∂x
and Fxx =

∂2F

∂x2
.

By Propositions 1.7.2 and 1.7.4, for any t ≥ 0 we know that

W (t) =

{∑
k∈N

βk(t)Q1/2ek

}
t≥0

, P-a.s. (1.8.4)

where {{βk(t)}t≥0 : k ∈ N} are independent real Brownian motions, {ek}k∈N is an orthonormal

basis of K. The series in (1.8.4) converges in L2((Ω,F,P), C([0, T ], U)), with U = K if Q is

trace class or U = K′ (see Remark 1.7.5) if Q is not trace class. Let T > 0. For any φ ∈
N2
W ([0, T ],L0

2(K)) and h ∈ K we denote by∫ t

0

〈φ(s)h, dW (s)〉 :=
∑
k∈N

∫ t

0

〈
φ(s)h,Q1/2ek

〉
dβk(s), t ≥ 0.

1.8.4 The stochastic convolution

We assume that the operator Q is non-negative. We refer to [41, Chapter 5].

We fix one and for all R ∈ L(K). Let A be the infinitesimal generator of a strongly continuous

semigroup etA on K. We consider the stochastic convolution process {WA(t)}t≥0 defined by

WA(t) :=

∫ t

0

e(t−s)ARdW (s), t ≥ 0.

For t > 0 set

{φt(s)}s∈[0,t] := {e(t−s)AR}s∈[0,t],

so the stochastic convolution is well defined if for any t ≥ 0 we have

E
[∫ t

0

‖φt(s)‖2L0
2(K)

]
=

∫ t

0

∥∥esAR∥∥2

L0
2(K)

ds =

∫ t

0

Tr[esARQR∗esA
∗
]ds < +∞.
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Since φt(s) depends on t we can not claim that the process {WA(t)}t≥0 is a martingale with

continuous trajectories. However the process {WA(t)}t≥0 has some useful features, as the next

propositions shows.

Proposition 1.8.9. Let T > 0 and assume that∫ t

0

Tr[esARQR∗etA
∗
]ds < +∞.

Then the following statements are verified.

(i) The process {WA(t)}t∈[0,T ] is Gaussian, predictable and continuous in mean

square, namely for any t0 ∈ [0, T ] and for any sequence {tn}n∈N converging to t0 we have

lim
n→∞

E[‖WA(tn)−WA(t0‖2K ] = 0.

(ii) For any t ∈ [0, T ], the random variable WA(t) is Gaussian with mean 0 and covariance

operator Qt, where

Qt :=

∫ t

0

esARQR∗esA
∗
ds.

(iii) The trajectories of the process {WA(t)}t∈[0,T ] belongs to L2([0, T ],K) P-a.s.. Moreover the

law of the process {WA(t)}t∈[0,T ] is the Gaussian measure on L2([0, T ],K) with mean 0 and

covariance operator QT , where for any ϕ ∈ L2([0, T ],K)

QTϕ(t) :=

∫ T

0

(∫ min(s,t)

0

e(t−r)ARQR∗e(s−r)A∗dr

)
ds, t ∈ [0, T ].

(iv) For any p > 1 there exists cp such that

sup
t∈[0,T ]

E [‖WA(t)‖pK] ≤ cp

(∫ T

0

Tr[esARQR∗esA
∗
]ds

)p/2
< +∞.

In some cases, for every T > 0, {WA(t)}t∈[0,T ] has Gaussian law even on C([0, T ],K).

Proposition 1.8.10. Let T > 0 and assume that∫ T

0

Tr[esARQR∗etA
∗
]ds < +∞.

Let M ⊆ K be a separable Banach space densely and continuously embedded in K such that

for P-a.a. ω ∈ Ω the function WA(·)(ω) belongs to C([0, T ],M). Then the trajectories of the

process {WA(t)}t∈[0,T ] belongs to C([0, T ],M) P-a.s. and {WA(t)}t∈[0,T ] has Gaussian law on

C([0, T ],M). Moreover

E[ sup
t∈[0,T ]

‖WA(t)‖pE ] < +∞, ∀p ≥ 1.

We refer to [78, Remark 3.4] for a proof of Proposition 1.8.10. In the case where M = K we

have a sufficient condition to ensure the continuity of {WA(t)}t≥0.
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Proposition 1.8.11. Let T > 0. If there exists η ∈ (0, 1) such that∫ T

0

1

sη
Tr[esARQR∗etA

∗
]ds < +∞,

then for P-a.a. ω ∈ Ω the function WA(·)(ω) belongs to C([0, T ],K).

In [20, Chapter 6] and [41, Chapter 5] the authors present some explicit cases where

{WA(t)}t≥0 is continuous.

1.9 The Markov processes

In this section we recall some basic definitions and results about the Markov processes. We refer

to this books [42, 41, 43, 48, 49, 95] for a complete overview.

Let K be a separable Banach space. We denote by P(K) the set of all Borel probability

measures on K. Let (Ω,F, {Ft}t≥0,P) be a normal filtered probability space, throughout this

section we will consider processes defined on (Ω,F, {Ft}t≥0,P).

Definition 1.9.1. We call transition function on K a function P on [0,+∞)×K×B(E) such

that

1. P(t, x, ·) ∈P(K), for any t ≥ 0, x ∈ E;

2. P(t, ·,Γ) ∈ Bb(K), for any t ≥ 0 and Γ ∈ B(E);

3. for any t, s ≥ 0, x ∈ E and Γ ∈ B(K) we have

P(t+ s, x,Γ) =

∫
Γ

P(t, y,Γ)P(s, x, dy); (1.9.1)

4. P(0, x,Γ) = IΓ(x), for any x ∈ E and Γ ∈ B(K).

We call P(t, x, ·) transition probabilities and (1.9.1) Chapman–Kolmogorov equation.

Let P be a transition function. Using P we define a family of linear operators {P (t)}t≥0

acting on Bb(K) in the following way

P (t)f(x) :=

∫
K

f(y)P(t, x, dy), (1.9.2)

by (1.9.1), {P (t)}t≥0 is a semigroup on Bb(K).

Definition 1.9.2. {P (t)}t≥0 is called Markov transition semigroup (or simply transition semi-

group) associated to the Markov function P

Theorem 1.9.3 (Theorem 2.1 of [48]). Let T (t) be a contraction semigroup on Bb(K). This two

statements are equivalent.

� There exists a Markovian transition function T on K such that T (t) is the transition semi-

group of T.
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� T (t)f ≥ 0 is a non-negative values function for any non-negative values function f and

t ≥ 0.

In this thesis we consider the following definition of Markov process

Definition 1.9.4. Let {X(t)}t≥0 be a K-valued process, let P be a transition function and let

{P (t)}t≥0 be the semigroup associated to P as in (1.9.2). We say {X(t)}t≥0 is the homogeneous

Markov process with transition function P if, for any t, s ≥ 0 and f ∈ Bb(K) we have

E[f(X(t+ s))|Fs] = P (t)(f(X(s))), P-a.s.

In this case P (t) is called transition semigroup associated to {X(t)}t≥0. When the process

{X(t)}t≥0 is the solution of a stochastic equation we say that P (t) is the transition semigroup

associated to the equation.

Remark 1.9.5. The process {X(t)}t≥0 of Definition 1.9.4 satisfies the following Markov prop-

erty: for any t, s ≥ 0 and Γ ∈ B(K) we have

E
[
I{ω∈Ω :X(t+s)(ω)∈Γ}|Fs

]
= E

[
I{ω∈Ω :X(t+s)(ω)∈Γ}|σ(X(s))

]
.

Now we state a useful result to prove the existence and uniqueness of an invariant measure

for a transition semigroup. First of all we need to define a notion of convergence for measures.

Definition 1.9.6. Let {µn}n∈N ⊆P(K) and µ ∈P(K). We say that {µn}n∈N narrow converges

to µ (µn →∗ µ) if, for any ϕ ∈ Cb(K), we have

lim
n→+∞

|〈ϕ, µn〉∗ − 〈ϕ, µ〉∗| = 0.

where

〈ϕ, µ〉∗ :=

∫
K

ϕ(x)µ(dx).

Moreover we call Narrow topology (τ∗(K)) the coarsest topology on the space P(K) such that,

for any f ∈ Cb(K), the function µ→
∫
K
fdµ is continuous.

Before proceeding we make some remarks on narrow topology.

Remark 1.9.7.

1. If K has infinite dimension then Cb(K)∗ does not coincide with P(K), however P(K) can

be identified with a convex subset of the unitary ball of Cb(K)∗. In particular the narrow

topology τ∗(K) coincides with the weak* topology on Cb(K)∗. We stress that sometimes the

weak* topology is just called weak topology.

2. Let D be a countable and dense subset of K. The space of all the convex combinations of

Dirac measures δx such that x ∈ D is narrow dense in P(K).

We refer to [3, Section 5.1] for a more detailed overview about the Narrow topology. Let P a

homogeneous transition function on K. As we defined the transition semigroup P (t) on Bb(K),

we also define a semigroup on P(K).
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Definition 1.9.8. For any t ≥ 0 and µ ∈P(K), we set

U(t)µ(Γ) :=

∫
K

Pt(y,Γ)µ(dy), Γ ∈ B(K),

The semigroups P (t) and U(t) are related by

〈P (t)ϕ, µ〉∗ = 〈ϕ,U(t)µ〉∗, t ≥ 0, ϕ ∈ Bb(K), µ ∈P(K).

Definition 1.9.9. Let µ ∈P(K). We say that µ is invariant for P (t) if for any t ≥ 0 we have

U(t)µ = µ,

namely ∫
K

P (t)ϕ(x)µ(dx) =

∫
K

ϕ(x)µ(dx), ϕ ∈ Cb(K).

We have the following useful result about existence and uniqueness of an invariant measure

for P (t) (see [43, Proposition 11.4 and Remark 11.6]).

Proposition 1.9.10. Assume that P (t) is a Feller semigroup. Let ν ∈P(K) such that for any

x ∈ K we have

U(t)δx →∗ ν, as t→ +∞,

where δx is the Dirac measure in x. Then ν is the unique invariant measure of P (t).

A very significant case is when a transition function is associated with a process that is a

solution of a particular stochastic differential equation. In the next section we will present a

basic example.

1.10 The Ornstein–Uhlenbeck case

In this section we will introduce the Ornstein–Uhlenbeck semigroup. We refer to [74] for an

overview in the finite dimensional case and we refer to [75] for an overview in the infinite dimen-

sional case.

1.10.1 The Ornstein–Uhlenbeck semigroup in spaces of

continuous functions

Let K be a separable Hilbert space. Let {W (t)}t≥0 be a K-cylindrical Wiener process defined

on a normal filtered probability space (Ω,F, {Ft}t≥0,P). Let A be the infinitesimal generator of

a strongly continuous semigroup etA on K and let R ∈ L(K) be a positive operator, such that

for any t > 0 we have ∫ t

0

Tr[etAR2etA
∗
dt] < +∞. (1.10.1)
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We consider the stochastic differential equation{
dX(t, x) = AX(t, x)dt+RdW (t), t > 0;

X(0, x) = x ∈ K.
(1.10.2)

It is well known that, for any x ∈ K, (1.10.2) has a unique mild solution, namely a process

{X(t, x)}t≥0 such that, for any t > 0,it verifies

X(t, x) = etAx+WA(t), P-a.s.

where {WA(t)}t≥0 is the stochastic convolution process defined by

WA(t) :=

∫ t

0

esARdW (s), t > 0.

Moreover, by the uniqueness of {X(t, x)}t≥0, it is possible to prove that the random variables

X(t, x) define a Markov transition function (see Definition 1.9.1). We call Ornstein–Uhlenbeck

semigroup the transition semigroup associated to {X(t, x)}t≥0, namely

T (t)f(x) = E[f(X(t, x))] =

∫
Ω

f(X(t, x)(ω))P(dω)

=

∫
K

f(y)L (X(t, x))(dy), t ≥ 0, x ∈ K, f ∈ Bb(K), (1.10.3)

Since, for any t ≥ 0, WA(t) is Gaussian measure of mean 0 and covariance operator

Qtx :=

∫ t

0

esAR2esA
∗
x,

then, via a change of variable, the semigroup (1.10.3) has the following Mehler representation

T (t)f(x) =

∫
K

f(etAx+ y)N(0, Qt)(dy), f ∈ Bb(K), x ∈ K. (1.10.4)

We remark that due to the Mehler representation, it is possible to define the semigroup (1.10.4)

also on the space Bb(K;K).

It is well known in literature that T (t) is not strongly continuous in Bb(K) and even in the space

of bounded and uniformly continuous functions. For a detailed study of the semigroup T (t) in

spaces of continuous functions with weighted sup-norms, we refer to [18, 19], [30, Section 2.8.3]

and [40, Section 2]. We are more interested in its behaviour with respect to the mixed topology.

For an in-depth study of the mixed topology we refer to [62]. In this section we list the results

[62] that will be useful to our aims. Consider the Banach space

Cb,2(K) :=

{
f : K→ R

∣∣∣∣∣x 7→ f(x)

1 + ‖x‖2K
belongs to Cb(K)

}
.
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endowed with the norm

‖f‖b,2 := sup
x∈K

(
|f(x)|

1 + ‖x‖2K

)
, f ∈ Cb,2(K).

Theorem 1.10.1.

(i) A sequence {φn}n∈N ⊆ Cb,2(K) converges with respect to the mixed topology to φ ∈ Cb,2(K)

if, and only if,

sup
n∈N
‖φn‖b,2 < +∞,

and, for any compact set K ⊆ K,

lim
n→+∞

sup
x∈K

(|φn(x)− φ(x)|) = 0.

(ii) The semigroup T (t) defined in (1.10.3) is strongly continuous on Cb,2(K) with respect to

the mixed topology.

We also state a charaterization for the uniform convergence on compact sets, that will be

useful next.

Proposition 1.10.2. A sequence {ϕn}n∈N ⊆ Cb(K) is uniformly convergent on every compact

subset of K to a function ϕ ∈ Cb(K) if, and only if, {ϕn}n∈N is pointwise convergent to ϕ and

the family {ϕn |n ∈ N} is such that, for any x0 ∈ K and ε > 0 there exists δ := δ(x0, ε) > 0 such

that, for any n ∈ N and x ∈ K with ‖x− x0‖K ≤ δ we have |ϕn(x)− ϕn(x0)| ≤ ε.

Definition 1.10.3. We denote by Lb,2 the infinitesimal generator, with respect to the mixed

topology, of the semigroup T (t) in Cb,2(K).

Therefore the domain of Lb,2 is defined by

Dom(Lb,2) :=

{
ϕ ∈ Cb,2(K)

∣∣∣∣∃ lim
t→0

T (t)ϕ− ϕ
t

with respect to the mixed topology

}
.

By Theorem 1.10.1, we obtain the following charaterization of Dom(Lb,2).

Proposition 1.10.4. A function ϕ ∈ Cb,2(K) belongs to Dom(Lb,2) if, and only if, there exists

ψ ∈ Cb,2(K) such that

(i) for any compact subset K of K,

lim
t→0

sup
x∈K

(
T (t)ϕ(x)− ϕ(x)

t
− ψ(x)

)
= 0;

(ii) supt∈(0,1][t
−1‖T (t)ϕ− ϕ‖b,2] < +∞.

In this case Lb,2ϕ = ψ.
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The action of Lb,2 is known on a space of smooth functions.

ξA(K) := span{real and imaginary parts of the functions x 7→ ei〈x,h〉K |h ∈ Dom(A∗)}.
(1.10.5)

We remark that ξA(K) is a subset of the space FC∞b (K). Indeed for ϕ ∈ ξA(K) there exist

m,n ∈ N, a1, . . . , am, b1, . . . , bn ∈ R and

h1, . . . , hm, k1, . . . , kn ∈ A∗ such that

ϕ(x) =

m∑
i=1

ai sin(〈x, hi〉) +

n∑
j=1

bj cos(〈x, kj〉).

Proposition 1.10.5. Lb,2 is the closure in Cb,2(K), endowed with the mixed topology, of the

operator L0 defined as

L0ϕ(x) :=
1

2
Tr[C∇2ϕ(x)] + 〈x,A∗∇ϕ(x)〉K, x ∈ K, ϕ ∈ ξA(K). (1.10.6)

We have also the following result about the resolvent of Lb,2.

Proposition 1.10.6. For any λ > 0 and ϕ ∈ Cb,2(K), the improper Riemann integral

J(λ)ϕ :=

∫ +∞

0

e−λtT (t)ϕdt,

is well defined. Moreover, for every λ > 0, the operator

J(λ) : (Cb,2(K), τM )→ (Cb,2(K), τM )

is continuous (here τM denotes the mixed topology), and J(λ)ϕ = R(λ, Lb,2)ϕ.

We remark that, by [62, Remark 4.3], Theorem 1.10.1 and Proposition 1.10.6, the operator

Lb,2 is the weak infinitesimal generator of the semigroup T (t) on Cb,2(K) in the sense of [18, 19].

By this fact we can use the following approximation result.

Proposition 1.10.7 (Propositions 2.5 and 2.6 of [40]). Let ϕ ∈ Dom(Lb,2) ∩ C1
b (K). There

exists a family {ϕn1,n2,n3,n4
|n1, n2, n3, n4 ∈ N} ⊆ ξA(K) such that for every x ∈ K

lim
n1→+∞

lim
n2→+∞

lim
n3→+∞

lim
n4→+∞

ϕn1,n2,n3,n4
(x) = ϕ(x);

lim
n1→+∞

lim
n2→+∞

lim
n3→+∞

lim
n4→+∞

∇ϕn1,n2,n3,n4
(x) = ∇ϕ(x);

lim
n1→+∞

lim
n2→+∞

lim
n3→+∞

lim
n4→+∞

Lb,2ϕn1,n2,n3,n4
(x) = Lb,2ϕ(x).

Furthermore there exists a positive constant Cϕ such that, for any n1, n2, n3, n4 ∈ N and x ∈ K,

it holds

|ϕn1,n2,n3,n4
(x)|+ ‖∇ϕn1,n2,n3,n4

(x)‖
K

+ |Lb,2ϕn1,n2,n3,n4
(x)| ≤ Cϕ(1 + ‖x‖2K). (1.10.7)

For a proof we refer to [30, Section 2.8.3] or [40, Section 2]. See also [36, Section 8].
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1.10.2 The invariant measure of the Ornstein-Uhlenbeck semigroup

Until here we discussed the behavior of the Ornstein-Uhlenbeck semigroup in spaces of continuous

functions. In this subsection we are interested in its behavior in Lp spaces, with p ≥ 1. In the

finite dimensional case the Ornstein-Uhlenbeck semigroup has been studied in Lp spaces with

respect to both the Lebesgue measure and to its invariant measure. In the infinite dimensional

case we can only consider the latter. We refer to [41, 42] for the results in this subsection.

We set in the same framework of the previous subsection, and we assume that there exist

w > 0 and M > 0 such that ∥∥etA∥∥
L(K)

≤Me−wt, t ≥ 0.

Proposition 1.10.8. The following statements are equivalent.

(i) supt≥0 Tr[Qt] < +∞

(ii) T (t) has unique invariant measure µ = N(0, Q∞) where

Q∞ =

∫ ∞
0

esARR∗esA
∗
.

Now we can extend the Ornstein-Uhlenbeck semigroup in Lp(K, µ), for any p ≥ 1.

Proposition 1.10.9. T (t) is uniquely extendable to a strongly continuous and contraction semi-

group Tp(t) in Lp(K, µ), for any p ≥ 1. Moreover the infinitesimal generator L2 of T2(t) is the

closure in L2(K, µ) of operator L0 defined in (1.10.6).

We assume that Ker(R) = {0} and Q
1/2
∞ (K) ⊂ R(K).

Proposition 1.10.10. T2(t) is self-adjoint in L2(K, µ) if and only if one of the following con-

ditions is verified.

(i) Q∞e
tA∗ = etAQ∞.

(ii) RetA
∗

= etAR.

In that case Q∞ = − 1
2A
−1C and∫

K

ψL2ϕdµ = −1

2

∫
K

〈
C1/2∇ϕ,C1/2∇ψ

〉
K
dµ, ϕ, ψ ∈W 1,2

R (K, µ),

where W 1,2
R (K, µ) is the Sobolev space defined in Proposition 1.6.17.

1.11 Regularizing sequence for dissipative functions

In this section we introduce a useful regularizing sequence for dissipative functions. We refer

to [20, Appendix A] and [43, Appendix D] for the results in this section. Let K be a separable

Banach space and let F : Dom(F ) ⊆ K → K be a possibly non linear function. We assume
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that there exists ζF ∈ R such that F − ζF I is m-dissipative. For any δ > 0 and x ∈ K, let

Jδ(x) ∈ Dom(F ) be the unique solution of

y − δ(F (y)− ζF y) = x. (1.11.1)

The existence of Jδ(x), for every x ∈ K and δ > 0, is guaranteed by the m-dissipativity of F . We

define Fδ : K→ K as

Fδ(x) := F (Jδ(x)), x ∈ K, δ > 0.

Lemma 1.11.1. The following statements hold.

lim
δ→0
‖Jδ(x)− x‖K = 0, x ∈ Dom(F ). (1.11.2)

For any 0 < δ < |ζF |−1, the function Fδ − ζF IK is dissipative on K. Moreover for any δ > 0 it

holds

‖Jδ(x)− x‖K ≤δ‖F (x)− ζFx‖K, x ∈ Dom(F ); (1.11.3)

‖Fδ(x)‖K ≤ (3 + δ|ζF |)(‖F (x)‖K + ‖x‖K), x ∈ Dom(F ); (1.11.4)

and

‖Fδ(x1)− Fδ(x2)‖K ≤
(

2

δ
+ |ζF |

)
‖x1 − x2‖K , x1, x2 ∈ K. (1.11.5)

Proof. We apply [41, Proposition 5.5.3] to the function G : Dom(F ) ⊆ K→ K

G(x) := F (x)− ζFx, x ∈ Dom(F ). (1.11.6)

Throughout the proof we let Gδ(x) := G(Jδ(x)) for any x ∈ K and δ > 0, where Jδ(x) is defined

in (1.11.1). We remark that (1.11.2) follows by [41, Proposition 5.5.3(iii)], while (1.11.3) follows

by [20, Proposition A.2.2(4)]. Moreover for any δ > 0, Gδ is dissipative on K and

‖Fδ(x)‖K ≤ ‖G(x)‖K, x ∈ Dom(F );

‖Gδ(x1)−Gδ(x2)‖K ≤
2

δ
‖x1 − x2‖K , x1, x2 ∈ K.

Now we show that Fδ − ζF IK is dissipative in K. Let α > 0, δ < |ζF |−1 and x1, x2 ∈ K. By

(1.11.1) and (1.11.6) we have

‖x1 − x2 − α[Fδ(x1)− ζFx1 − Fδ(x2) + ζFx2]‖K
=‖x1 − x2 − α[Fδ(x1)− ζF [Jδ(x1)− δGδ(x1)]− Fδ(x2) + ζF [Jδ(x2)− δGδ(x2)]]‖K
=‖x1 − x2 − α[Gδ(x1)− ζF δGδ(x1)−Gδ(x2) + ζF δGδ(x2)]‖K
=‖x1 − x2 − α(1− δζF )[Gδ(x1)−Gδ(x2)]‖K ≥ ‖x1 − x2‖K,
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and so Fδ − ζF IK is dissipative on K.

Now we show (1.11.5). By (1.11.6), for any x1, x2 ∈ K and δ > 0

‖Fδ(x1)− Fδ(x2)‖K ≤ ‖Gδ(x1)−Gδ(x2)‖K + |ζF |‖Jδ(x1)− Jδ(x2)‖K

≤
(

2

δ
+ |ζF |

)
‖x1 − x2‖K.

This conclude the proof of (1.11.5).

We concludes by proving (1.11.4). By (1.11.3), (1.11.6) for any x ∈ K and δ > 0 it holds

‖Fδ(x)‖K ≤ ‖F (x)‖K + ‖Fδ(x)− F (x)‖K
≤ ‖F (x)‖K + ‖Gδ(x)−G(x)‖K + |ζF |‖Jδ(x)− x‖K
≤ ‖F (x)‖K + ‖Gδ(x)‖K + ‖G(x)‖K + δ|ζF |‖G(x)‖K
≤ ‖F (x)‖K + (2 + δ|ζF |)‖G(y)‖K
≤ (3 + δ|ζF |)(‖F (x)‖+ |ζ2|‖x‖K).

So (1.11.4) holds true.

The following corollary is an immediate consequence of the Lemma 1.11.1.

Corollary 1.11.2. Let E be a separable Banach space continuously embedded in K such that

F (E∩Dom(F )) ⊂ E. Then the function F|E∩Dom(F ) : E∩Dom(F )→ E verifies all the statements

of the Lemma 1.11.1 with F = F|E∩Dom(F ), K = E and Dom(F ) = E ∩Dom(F ).

Now we assume that K is a separable Hilbert space. We introduce a further regularization,

through a smoothing Ornstein-Uhlenbeck semigroup, corresponding to the choice R = I, A =

− 1
2Q
−1 in (1.10.4), with Q positive and trace class. For every δ, s > 0 and x ∈ K, we define

Fδ,s(x) :=

∫
K

Fδ(y + esAx)N(0, Qs)(dy), (1.11.7)

where Qs = Q(I−e2sA). By (1.11.7), for any δ, s > 0 and x, z ∈ K, Fδ,s(x) is Lipschitz continuous

and

〈Fδ,s(x)− Fδ,s(z), x− z〉K ≤ ζ2‖x− z‖
2
K .

For any δ > 0 and x ∈ K we have

lim
s→0
‖Fδ,s(x)− F (x)‖

K
= 0. (1.11.8)

By the same arguments using in [43, Theorem 9.26], for any s, δ > 0, Fδ,s is Frechét differen-

tiable.

Proposition 1.11.3. Assume that the following hypotheses are verified.

1. There exists a separable Banach space E ⊂ Dom(F ) continuously embedded in K such that

F (E) ⊂ E. Moreover F|E : E → E is continuous, F − ζF IE is m-dissipative on E, and
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there exist M > 0 and m ∈ N such that

‖F (x)‖E ≤M(1 + ‖x‖mH), x ∈ E. (1.11.9)

2. There exists a probability measure ν on (K,B(K)) such that ν(E) = 1 and it has finite

moments of every order with respect the norm of E.

Then

lim
δ→0

lim
s→0
‖Fδ,s − F‖L2(K,ν) = 0.

Proof. For any δ > 0, Fδ is Lipschitz continuous, so there exists Cδ such that

‖F (x)‖K ≤ Cδ(1 + ‖x‖K), x ∈ K,

hence, for any δ > 0, s ≥ 0 and T > 0 we have

Fδ,s ≤ Cδ
(

1 +

∫
K

‖y‖N(0, Qs)(dy) + ‖x‖
)
, x ∈ K. (1.11.10)

By (1.11.8), (1.11.10) and applying the dominated convergence theorem for any δ > 0 we have

lim
s→0
‖Fδ,s − Fδ‖L2(K,ν) = 0. (1.11.11)

By Corollary 1.11.2 (see (1.11.2)), the continuity of F|E : E → E and the fact that E is

continuously embedded in K we have

lim
δ→0
‖Fδ(x)− F (x)‖K = 0, x ∈ E. (1.11.12)

By (1.11.4), (1.11.9), (1.11.12) and the dominated convergence theorem we have

lim
δ→0
‖Fδ − F‖L2(K,ν) = 0. (1.11.13)

Finally by (1.11.11) and (1.11.13) we obtain the statement.



Chapter 2

The transition semigroup

In this chapter we will study the nonlinear SPDEs (Stochastic Partial Differential Equations)

and the associated transition semigroups that will be the main object of study of this thesis.

In contrast with the case of linear SPDEs, that give rise to Ornstein-Uhlenbeck semigroups (see

Sections 1.10), the transition semigroup has not a simple representation formula such as (1.10.4).

We follow the approach of the books [20, 41, 42, 43].

Let X be a real separable Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. Let {W (t)}t≥0

be a X-cylindrical Wiener process defined on a normal filtered probability space (Ω,F, {Ft}t≥0,P).

Let R ∈ L(X), let A : Dom(A) ⊆ X→ X be the infinitesimal generator of a strongly continuous

semigroup etA on X. Let F : Dom(F ) ⊆ X→ X (possibly non linear). We introduce the SPDE{
dX(t, x) =

(
AX(t, x) + F (X(t, x))

)
dt+RdW (t), t > 0;

X(0, x) = x ∈ X.
(2.0.1)

This type of SPDE is widely studied in the literature, see for example [1, 10, 11, 20, 28, 30, 31,

32, 37, 43, 41, 55, 62, 78, 85]. In this thesis we focus on the case of dissipative systems, where A

and F satisfy a joint dissipativity condition (see Hypotheses 2.1.1(iv)).

If Dom(F ) = X, for any x ∈ X it is possible to consider the solution of the mild form of

(2.0.1), namely a process {X(t, x)}t≥0 that satisfies

X(t, x) = etAx+

∫ t

0

e(t−s)AF (X(s, x))ds+WA(t), P-a.s. (2.0.2)

where {WA(t)}t>0 is the stochastic convolution process defined by

WA(t) :=

∫ t

0

e(t−s)ARdW (s).

However, if Dom(F ) ⊂ X is a proper subset of X, (2.0.2) may not make sense for every x ∈ X.

Hence we need a more general notion of solution. Around the nineties S. Cerrai G. Da Prato

and J. Zabczyk used the notion of generalized mild solution to avoid the problem of Dom(F ).

The idea to construct a generalized mild solution is to assume that there exists a Banach space

E ⊆ Dom(F ) densely and continuously embedded in X such that F|E : E → E is locally Lipschitz



2.1. The mild solution for x belonging to E 48

continuous. Then, under suitable Hypotheses 2.1.1, it is possible to prove that for any x ∈ E,

the SPDE (2.0.1) has a unique mild solution {X(t, x)}t≥0 such that its trajectories take values

in E. After, exploiting the density of E, one proves that for any x ∈ X there exists a process

{X(t, x)}t≥0, such that

lim
n→∞

‖X(·, xn)−X(·, x)‖C([0,T ],X) = 0, ∀ T > 0, P-a.s. (2.0.3)

for any sequence {xn}n∈N ⊆ E converging to x and X(t, xn) is the unique mild solution of

(2.0.1), with initial datum xn. We call the limit {X(t, x)}t≥0 in (2.0.3) generalized mild solution

of (2.0.1).

Under suitable assumptions, in Section (2.1) we will prove that (2.0.1) has a unique mild

solution, for any x ∈ E. In Section (2.2) we will prove that (2.0.1) has a unique generalized mild

solution {X(t, x)}t≥0, for any x ∈ X, and we will define the transition semigroup

P (t)ϕ(x) := E[ϕ(X(t, x))], ϕ ∈ Bb(X), x ∈ X, t > 0.

In Section 2.3 we recall some standard results about the space regularity of the mild solution

in the case where F : X→ X is Frechét differentiable and Lipschitz continuous. Finally in Section

(2.4) we will comment our hypotheses in view of results already known in the literature.

2.1 The mild solution for x belonging to E

Our hypotheses in this subsection are the following.

Hypotheses 2.1.1.

(i) R ∈ L(X).

(ii) There exists a Banach space E ⊆ Dom(F ) which is Borel measurable, densely and contin-

uously embedded in X and invariant for F , namely F (E) ⊆ E.

(iii) A generates a strongly continuous semigroup etA on X and AE (the part of A in E) generates

an analytic semigroup etAE on E.

(iv) There exists ζ ∈ R such that

(a) A+ F − ζI is dissipative in X;

(b) AE + F|E − ζI is dissipative in E.

(v) For any T > 0, we have ∫ T

0

Tr[esARR∗esA
∗
]ds < +∞.

Moreover the process {WA(t)}t≥0 is continuous.

(vi) There exist M > 0 and m ∈ N such that

‖F (x)‖E ≤M(1 + ‖x‖mE ), x ∈ E.
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(vii) F|E : E → E is locally Lipschitz continuous on E, namely F|E is Lipschitz continuous on

bounded sets of E.

Remark 2.1.2.

1. Hypotheses 2.1.1(vi) or 2.1.1(vii) imply that F|E maps bounded sets of E into bounded sets

of E, and so, since E is continuously embedded in X, F maps bounded sets of E into

bounded sets of X.

2. Hypothesis 2.1.1(vii) does not imply that F : Dom(X) ⊆ X → X is continuous, however it

implies that F|E : E → X is continuous.

Remark 2.1.3. By Proposition 1.8.10 and Hypotheses 2.1.1(ii-v-vi), for any T > 0 and p ≥ 1

we have

E[ sup
t∈[0,T ]

‖F (WA(t))‖pE + sup
t∈[0,T ]

‖WA(t)‖pE ] < +∞.

E[ sup
t∈[0,T ]

‖F (WA(t))‖p + sup
t∈[0,T ]

‖WA(t)‖p] < +∞.

Now we define rigorously the notion of mild solution and the Banach spaces in which we will

construct it [20, Section 6.2]).

Definition 2.1.4. For any x ∈ E we call mild solution of (2.0.1) any E-valued process

{X(t, x)}t≥0 such that, for any t ≥ 0, we have

X(t, x)(ω) = etAx+

∫ t

0

e(t−s)AF (X(s, x)(ω))ds+WA(t)(ω), P-a.s., (2.1.1)

Moreover we say that the mild solution of (2.0.1) is unique if whenever two E-valued process

{X1(t, x)}t≥0, {X2(t, x)}t≥0 satisfy (2.1.1), {X1(t, x)}t≥0 is a version of {X2(t, x)}t≥0.

Definition 2.1.5.

1. Let I be an interval contained in R and p ≥ 1. We denote by Kp(I) the space of progressive

measurable K-valued processes {Y (t)}t∈I endowed with the norm

‖{Y (t)}t∈I‖pKp(I) := sup
t∈I

E[‖Y (t)‖pK].

2. Let I be an interval contained in R and p ≥ 1. We denote by Cp(I,K) the space of K-valued

continuous processes {Y (t)}t∈I ∈ PCb(I,K) endowed with the norm

‖{Y (t)}t∈I‖pCp(I,K) := E[sup
t∈I
‖Y (t)‖pK].

Before starting the construction of the generalized mild solution, we should recall two in-

equalities that we will use frequently. The first on is

ab ≤ (q − 1)(εa)q/(q−1)

q
+

(b/ε)q

q
, ∀a, b, ε > 0, q > 1. (2.1.2)
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If K is a Banach space for every h1, h2 ∈ K and r ≥ 1 it holds

‖h1 − h2‖rK ≥ 21−r‖h1‖rK − ‖h2‖rK. (2.1.3)

To prove that, for any x ∈ E, the SPDE (2.0.1) has a unique mild solution

{X(t, x)}t≥0 we exploit an approximating problem. For simplicity, from here on we still denote

by A the part of A in E. For any x ∈ E and large n ∈ N, we introduce the approximating

problem {
dXn(t, x) =

(
AXn(t, x) + F (Xn(t, x))

)
dt+RdW (t), t > 0;

Xn(0, x) = nR(n,A)x.
(2.1.4)

Remark 2.1.6. By Hypotheses 2.1.1(iii), etA verifies (1.4.1) with some constant η0 ∈ R. Hence

R(n,A) is defined only for n > η0. Hence if η0 ≥ 1, then we consider (2.1.5) only for n > η0.

Now we are going to prove that, for any x ∈ E and large n ∈ N the SPDE (2.1.4) has a unique

mild solution {Xn(t, x)}t≥0 ∈ Cp([0, T ], E), for any p ≥ 1 and T > 0 (see Definition (2.1.5)). To

do this we consider the equation
dYn
dt

(t, x) = AYn(t, x) + F (Yn(t, x) +WA(t)), t > 0;

Yn(0, x) = nR(n,A)x.
(2.1.5)

If we show that, for any x ∈ E and large n ∈ N, equation (2.1.5) has a unique mild solution

{Yn(t, x)}t≥0 ∈ Cp([0, T ], E), for any p ≥ 1 and T > 0, then by Remark 2.1.3, the process

{Xn(t, x)}t≥0 defined by

Xn(t, x) := Yn(t, x) +WA(t), P-a.s., (2.1.6)

is the unique mild solution of (2.1.4) in Cp([0, T ], E), for any p ≥ 1 and T > 0.

Proposition 2.1.7. Assume that Hypotheses 2.1.1 hold true. For any x ∈ E and large n ∈ N
problem (2.1.5) has a unique mild solution {Yn(t, x)}t≥0 ∈ Cp([0, T ], E), for any p ≥ 1 and

T > 0. Moreover there exists a sequence of processes {{Yn,k(t, x)}t≥0}k∈N such that

t→ Yn,k(t, x) ∈ C1([0, T ], E) ∩ C([0, T ],Dom(A)), ∀T > 0, ∀k ∈ N, P-a.s.

lim
k→+∞

‖Yn,k(·, x)− Yn(·, x)‖C([0,T ],E) = 0, lim
k→+∞

‖on,k(x)‖C([0,T ],E) = 0, ∀T > 0 P-a.s. (2.1.7)

where

on,k(t, x) =
dYn,k
dt

(t, x)−AYn,k(t, x)− F (Yn,k(t, x) +WA(t)), P-a.s. (2.1.8)

In addition for any p ≥ 1 there exist Cp := Cp(ζ) > 0 and κp := κp(ζ) ∈ R such that for any

x ∈ E, large n ∈ N and t > 0

‖Yn(t, x)‖p ≤ Cp
(
eκpt‖x‖p +

∫ t

0

eκp(t−s)‖F (WA(s))‖pds
)
, P-a.s. (2.1.9)



2.1. The mild solution for x belonging to E 51

‖Yn(t, x)‖pE ≤ Cp
(
eκpt‖x‖pE +

∫ t

0

eκp(t−s)‖F (WA(s))‖pEds
)

P-a.s. (2.1.10)

Proof. We prove the statements for a fixed large n ∈ N and x ∈ E. By Hypotheses 2.1.1(v),

the trajectories of the process {WA(t)}t≥0 are continuous P-a.s. In this proof we work pathwise,

and we will denote by wA(·) a fixed arbitrary trajectory of {WA(t)}t≥0. We fix T > 0 and we

consider the equation
dyn
dt

(t, x) = Ayn(t, x) + F (yn(t, x) + wA(t)), t ∈ [0, T ];

yn(0, x) = nR(n,A)x,
(2.1.11)

and the operator V in the space C([0, T ];E) defined by

V (y)(t) := etAnR(n,A)x+

∫ t

0

e(t−s)AF (y(s) + wA(s))ds, y ∈ C([0, T ], E), t ∈ [0, T ].

Let R > M0‖x‖E supt∈[0,T ] e
tη0 . By (1.4.3), (1.4.7), Remark 2.1.6 and the local lipschitzianity of

F , for any y, z ∈ C([0, T ], E) such that ‖y‖C([0,T ],E), ‖z‖C([0,T ],E) ≤ R , we have

‖V (y)‖C([0,T ];E) ≤M0‖x‖E sup
t∈[0,T ]

etη0 +M0 sup
t∈[0,T ]

‖F (y(t) + wA(t))‖E sup
t∈[0,T ]

∫ t

0

e(t−s)η0ds

‖V (y)− V (z)‖C([0,T ],E) ≤ LRM0‖y − z‖C([0,T ],E) sup
t∈[0,T ]

∫ t

0

e(t−s)η0ds.

where M0 and η0 are the constants in Remark 2.1.6 and LR > 0 is the Lipschitz constant of

F on the ball BE(0, R). By Remark (2.1.2) for T0 ∈ [0, T ] small enough V (B(0, R)) ⊆ B(0, R)

and V is a contraction in B(0, R) where B(0, R) is the ball in C([0, T0], E) with center 0 and

radius R. Hence by the contraction mapping theorem the problem (2.1.11) has a unique mild

solution yn,T0(·, x) ∈ B(0, R). To prove that there exists a global solution yn,T of (2.1.11) in

C([0, T ], E) it is sufficient to prove an estimate for ‖yn,T0(·, x)‖C([0,T0],E) independent of T0. By

[73, Proposition 4.1.8] yn,T0(·, x) is the strong solution of
dvn
dt

(t, x) = Avn(t, x) + F (yn,T0(t, x) + wA(t)), t ∈ [0, T0];

vn(0, x) = nR(n,A)x,

namely there exists a sequence {yn,k,T0(·, x)}k∈N ⊆ C1([0, T0], E) ∩C([0, T0],Dom(A)) such that

lim
k→+∞

‖yn,k,T0
(·, x)− yn,T0

(·, x)‖C([0,T0],E) = 0,

lim
k→+∞

∥∥∥∥dyn,k,T0

dt
(·, x)−Ayn,k,T0

(·, x)− F (yn,T0
(·, x) + wA(·))

∥∥∥∥
C([0,T0],E)

= 0. (2.1.12)

For any t ∈ [0, T0], x ∈ E and n, k ∈ N we set

on,k,T0
(t, x) =

dyn,k,T0

dt
(t, x)−Ayn,k,T0

(t, x)− F (yn,k,T0
(t, x) + wA(t)),
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hence we have

‖on,k,T0(t, x)‖E ≤
∥∥∥∥dyn,k,T0

dt
(t, x)−Ayn,k,T0(t, x)− F (yn,T0(t, x) + wA(t))

∥∥∥∥
E

+ ‖F (yn,T0
(t, x) + wA(t))− F (yn,k,T0

(t, x) + wA(t))‖E

≤
∥∥∥∥dyn,k,T0

dt
(t, x)−Ayn,k,T0(t, x)− F (yn,T0(t, x) + wA(t))

∥∥∥∥
E

+ LR‖yn,T0
(t, x)− yn,k,T0

(t, x)‖E ,

and so, by (2.1.12), for any large n ∈ N we obtain

lim
k→+∞

‖on,k,T0(x)‖C([0,T0],E) = 0, P-a.s.

Let x ∈ E, p ≥ 1, k, n ∈ N and t ∈ [0, T0]. By (1.3.1)-(2.1.8) and Hypotheses 2.1.1(iv), there

exists y∗ ∈ ∂‖yn,k(t, x)‖E , such that

1

p

d−‖yn,k,T0(t, x)‖pE
dt

≤ ‖yn,k,T0(t, x)‖p−1
E E 〈Ayn,k,T0(t, x), y∗〉E∗

+ ‖yn,k,T0
(t, x)‖p−1

E E 〈F (yn,k,T0
(t, x) + wA(t)), y∗〉E∗

+ ‖yn,k,T0
(t, x)‖p−1

E E 〈on,k,T0
(t, x), y∗〉E∗

= ‖yn,k,T0
(t, x)‖p−1

E E 〈Ayn,k,T0
(t, x), y∗〉E∗

+ ‖yn,k,T0(t, x)‖p−1
E E 〈F (yn,k,T0(t, x) + wA(t))− F (wA(t)), y∗〉E∗

+ ‖yn,k,T0
(t, x)‖p−1

E E 〈F (wA(t)), y∗〉E∗
+ ‖yn,k,T0

(t, x)‖p−1
E E 〈on,k,T0

(t, x), y∗〉E∗
≤ ζ‖yn,k,T0

(t, x)‖pE
+ ‖yn,k,T0(t, x)‖p−1

E

(
‖F (wA(t))‖E + ‖on,k,T0(t, x)‖E

)
. (2.1.13)

We claim that there exists C1 := C1(ζ, p) such that

1

p

d−‖yn,k,T0(t, x)‖pE
dt

≤ C1‖yn,k,T0(t, x)‖pE +
1

p

(
‖F (wA(t))‖E + ‖on,k,T0(t, x)‖E

)p
. (2.1.14)

Indeed for p = 1, (2.1.14) is verified with C1 = ζ, instead, for p > 1, applying (2.1.2) in (2.1.13)

with a = ‖yn,k,T0
(t, x)‖p−1

E , b =
(
‖F (wA(t))‖E + ‖on,k,T0

(t, x)‖E
)
, q = p and ε = 1 we obtain

1

p

d−‖yn,k,T0
(t, x)‖pE

dt
≤ (ζ +

p− 1

p
)‖yn,k,T0

(t, x)‖pE

+
1

p

(
‖F (wA(t))‖E + ‖on,k,T0(t, x)‖E

)p
,

and so (2.1.14) is verified with C1 = ζ + p−1
p . By (1.3.2), (1.4.1), Remark 2.1.6 and (2.1.14) we

get

‖yn,k,T0
(t, x)‖pE ≤ e

pC1t‖x‖pE +

∫ t

0

epC1(t−s)(‖F (wA(t))‖E + ‖on,k,T0
(t, x)‖E)pds,
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and letting k → +∞, by (2.1.7),

‖yn,T0(t, x)‖pE ≤ e
pC1t‖x‖pE +

∫ t

0

epC1(t−s)‖F (wA(t))‖pEds. (2.1.15)

By Remark 2.1.3 and recalling that T0 ∈ [0, T ], for any t > 0 we obtain

‖yn,T0(t, x)‖pE ≤ ‖x‖
p
E +

1

pC1
(epC1t − 1) sup

t∈[0,T ]

‖F (wA(t))‖pE . (2.1.16)

and so there exists a global solution yn,T of (2.1.11) in C([0, T ], E). The uniqueness of yn,T

follows immediately by (2.1.16), the local lipschitzianity of F and the Gronwall inequality.

We have proved that, for any T > 0 the equation (2.1.5), has a unique mild solution yn,T ∈
C([0, T ], E). We consider the continuous function yn(·, x) : [0,+∞)→ E defined by

yn(·, x)|[0,T ] = yn,T (·, x), ∀ T > 0.

Exploiting [73, Proposition 4.1.8] (as we have already done for yn,T0
) for any T > 0, there exists

a sequence {yn,k,T0
(·, x)}k∈N ⊆ C1([0, T ], E) ∩ C([0, T ],Dom(A)) such that

lim
k→+∞

‖yn,k(·, x)− yn(·, x)‖C([0,T ],E) = 0, lim
k→+∞

‖on,k(x)‖C([0,T ],E) = 0, ∀ P-a.s.

where

on,k(t, x) =
dyn,k
dt

(t, x)−Ayn,k(t, x)− F (yn,k(t, x) + wA(t)), P-a.s.

Moreover yn(·, x) verifies (2.1.15), for any p ≥ 1 and t > 0. The process {Yn(t, x)}t≥0 whose

trajectories are the functions y(·, x) verifies the statements of the proposition. Uniqueness follows

by (2.1.15), local lipschitzianity of F and the Gronwall inequality. Estimates (2.1.9) follows in

exactly the same way as (2.1.10) using the inner product of X instead of the duality product of

E and E∗.

Remark 2.1.8. If etA is strongly continuous also on E, then it is possible to replace the initial

datum nR(n,A)x by x, in (2.1.4).

By Remark 2.1.3, (2.1.3) (with h1 = Xn(t, x), h2 = WA(t) and r = p) and Proposition 2.1.7

we obtain immediately the following result.

Proposition 2.1.9. Assume that Hypotheses 2.1.1 hold true. For any large n ∈ N and x ∈ E the

process {Xn(t, x)}t≥0, defined in (2.1.6), is the unique mild solution of (2.1.4) in Cp([0, T ], E),

for any p ≥ 1 and T > 0. In addition, for any p ≥ 1, large n ∈ N, x ∈ E and t > 0, we have

‖Xn(t, x)‖p ≤ C ′p
(
eκpt‖x‖p +

∫ t

0

eκp(t−s)‖F (WA(s))‖pds+ ‖WA(t)‖p
)
, P-a.s. (2.1.17)

‖Xn(t, x)‖pE ≤ C
′
p

(
eκpt‖x‖pE +

∫ t

0

eκp(t−s)‖F (WA(s))‖pEds+ ‖WA(t)‖pE

)
, P-a.s. (2.1.18)

where C ′p := max
(
2p−1Cp, 2

p−1
)
, and Cp, κp are the constants of Proposition 2.1.7.

Now we prove a convergence result for {Xn(t, x)}t≥0.
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Theorem 2.1.10. Assume that Hypotheses 2.1.1 hold true. For any x ∈ E, there exists

{X(t, x)}t≥0 ∈ Cp((0, T ], E) ∩ Cp([0, T ],X), for any p ≥ 1 and T > 0, such that

lim
n→+∞

‖Xn(·, x)−X(·, x)‖C([0,T ],X) = 0, ∀ T > 0, P-a.s., (2.1.19)

lim
n→∞

‖Xn(·, x)−X(·, x)‖C([ε,T ],E) = 0, ∀ 0 < ε ≤ T, P-a.s. (2.1.20)

For any p ≥ 1, let C ′p be the constant of Proposition 2.1.9 and let κp be the constants of Propo-

sition 2.1.7. For any p ≥ 1, x ∈ E and t > 0, we have

‖X(t, x)‖p ≤ C ′p
(
eκpt‖x‖p +

∫ t

0

eκp(t−s)‖F (WA(s))‖pds+ ‖WA(t)‖p
)
, P-a.s. (2.1.21)

‖X(t, x)‖pE ≤ C
′
p

(
eκpt‖x‖pE +

∫ t

0

eκp(t−s)‖F (WA(s))‖pEds+ ‖WA(t)‖pE

)
, P-a.s. (2.1.22)

Moreover there exists a constant η ∈ R such that, for any x, y ∈ E and t > 0, we have

‖X(t, x)−X(t, y)‖ ≤ eηt‖x− y‖, P-a.s., (2.1.23)

‖X(t, x)−X(t, y)‖E ≤ e
ηt‖x− y‖E , P-a.s. (2.1.24)

Proof. As in the proof of Proposition 2.1.7 we work pathwise, so we denote by yn,k(·, x), yn(·, x)

and wA(·) fixed trajectories of the processes {Yn,k(t, x)}t≥0, {Yn(t, x)}t≥0 and {WA(t)}t∈[0,T ]

respectively.

We begin to prove (2.1.19) for a fixed T > 0. Let x ∈ E, k, n ∈ N, t ∈ [0, T ]. We define

zn,k(t, x) := yn,k(t, x) + wA(t), n, k ∈ N.

We stress that zn,k(t, x)−zm,k(t, x) = yn,k(t, x)−ym,k(t, x), for any n,m ∈ N. For any n,m ∈ N,

by (2.1.8), we have

1

2

d‖zn,k(t, x)− zm,k(t, x)‖2

dt
≤ 〈A(zn,k(t, x)− zm,k(t, x)), zn,k(t, x)− zm,k(t, x)〉

+ 〈F (zn,k(t, x))− F (zm,k(t, x)), zn,k(t, x)− zm,k(t, x)〉

+ 〈on,k(t, x)− om,k(t, x), zn,k(t, x)− zm,k(t, x)〉.

By Hypotheses 2.1.1(iv) we have

1

2

d‖zn,k(t, x)− zm,k(t, x)‖2

dt
≤ ζ‖zn,k(t, x)− zm,k(t, x)‖2

+ ‖on,k(t, x)− om,k(t, x)‖‖zn,k(t, x)− zm,k(t, x)‖.

By (2.1.2) (with ε = 1 and q = 2) we have

1

2

d‖zn,k(t, x)− zm,k(t, x)‖2

dt
≤ (ζ +

1

2
)‖zn,k(t, x)− zm,k(t, x)‖2
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+
1

2
(‖on,k(t, x)‖+ ‖om,k(t, x)‖)2.

We set H1 = ζ + 1
2 . By (1.3.2) we obtain

‖zn,k(t, x)− zm,k(t, x)‖2 ≤ e2H1t‖(nR(n,A)−mR(m,A))x‖

+

∫ t

0

e−2H1(t−s)(‖on,k(t, x)‖+ ‖om,k(t, x)‖)2ds.

Letting k → +∞, by (2.1.7) and Remark 2.1.2 we have

‖zn(t, x)− zm(t, x)‖2 ≤ e2H1t‖(nR(n,A)−mR(m,A))x‖.

where

zn(t, x) = Xn(t, x)(w) = yn(t, x) + wA(t).

By (1.4.6), we obtain that, for any T > 0 and x ∈ E, the sequence {zn(·, x)}n∈N is a Cauchy

sequence in C([0, T ],X) and we denote by zT (·, x) ∈ Cb([0, T ],X) its limit. A continuous function

z(·, x) : [0,+∞)→ X such that

z(·, x)|[0,T ] := zT (·, x), ∀ T > 0, (2.1.25)

is well defined. So the process {X(t, x)}t≥0, whose trajectories are the functions z(·, x), veri-

fies (2.1.19). (2.1.17) and (2.1.19) yields (2.1.21) and, by Remark 2.1.3 and (2.1.21), we have

{X(t, x)}t≥0 ∈ Cp([0, T ],X) for any p ≥ 1 and T > 0.

Now we prove (2.1.20) for fixed ε, T > 0. By (2.1.18), for any x ∈ E, there exists R :=

R(x, T ) > 0 such that for any large n ∈ N and t ∈ [ε, T ] we have

‖zn(t, x)‖E ≤ R.

Let L := L(x, T ) > 0 be the Lipschitz constant of F on BE(0, R). So, for any x ∈ E, large

n,m ∈ N and t ∈ [ε, T ], by (1.4.4) Remark 2.1.6 we have

‖zn(t, x)− zm(t, x)‖E ≤
∥∥(nR(n,A)−mR(m,A))etAx

∥∥
E

+M0L

∫ t

0

etη0‖zn(s, x)− zm(s, x)‖Eds.

Hence, by the Gronwall inequality, there exists K2 := K2(x, T ) > 0 such that

‖zn(t, x)− zm(t, x)‖E ≤ K2

∥∥(nR(n,A)−mR(m,A))etAx
∥∥
E
. (2.1.26)

Letting m,n → +∞ in (2.1.26), by (1.4.6) we obtain that, for any T > 0, ε > 0 and x ∈ E,

the sequence {zn(·, x)}n∈N is a Cauchy sequence in C([ε, T ], E) and, since E is continuously

embedded in X, its limit is the same in C([0, T ],X). So the function defined in (2.1.25) is

continuous from (0,+∞) to E and the process {X(t, x)}t≥0, which verifies (2.1.19), verifies

also (2.1.20). (2.1.18) and (2.1.20) yield (2.1.22), and by Remark 2.1.3 and (2.1.22), we have
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{X(t, x)}t≥0 ∈ Cp((0, T ], E).

Now we prove (2.1.23). Let T > 0 and x, y ∈ E. For any, t ∈ [0, T ], k, n ∈ N, by (2.1.8) we

have

1

2

d‖zk,n(t, x)− zk,n(t, y)‖2

dt
≤ 〈A(zk,n(t, x)− zk,n(t, y)), zk,n(t, x)− zk,n(t, y)〉

+ 〈F (zk,n(t, x) + wA(t))− F (zk,n(t, y) + wA(t)), zk,n(t, x)− yk,n(t, y)〉

+ 〈ok,n(t, x)− ok,n(t, y), zk,n(t, x)− zk,n(t, y)〉

and by Hypotheses 2.1.1(iv) we obtain

1

2

d‖zk,n(t, x)− zk,n(t, y)‖2

dt
≤ζ‖zk,n(t, x)− zk,n(t, y)‖2

+ ‖ok,n(t, x)− ok,n(t, y)‖‖zk,n(t, x)− zk,n(t, y)‖.

By (2.1.2)(with ε = 1 and q = 2) we have

d‖zk,n(t, x)− zk,n(t, y)‖2

dt
≤ 2η‖zk,n(t, x)− zk,n(t, y)‖2 +

1

2
‖ok,n(t, x)− ok,n(t, y)‖2, (2.1.27)

where η = ζ + 1
2 . By 1.3.2 and letting k → +∞ we obtain

‖zn(t, x)− zn(t, y)‖2 ≤ e2ηt‖x− z‖2.

Taking the square root and letting n→ +∞, by (2.1.19) we obtain

‖z(t, x)− z(t, y)‖ ≤ eηt‖x− y‖, t ∈ [0, T ], x, y ∈ E

for any T > 0 and for P-a.a trajectory of {X(t, x)}t≥0, so (2.1.23) is verified. Finally (2.1.24)

follows from (2.1.20) using similar arguments.

We make some remarks about possible variations of Theorem 2.1.10.

Corollary 2.1.11. If the constant ζ in Hypotheses 2.1.1(iv) is negative, then the constants κp

and η are negative.

Proof. Applying (2.1.2) with ε = ζ if ζ ∈ (0, 1], or with ε = 1/ζ if ζ > 1, we obtain that the

constants C1 of (2.1.14) and η of (2.1.27) are negative.

Remark 2.1.12. If in addition the semigroup generated by the part of A in E is strongly con-

tinuous we can take ε = 0 in (2.1.20), and {X(t, x)}t≥0 ∈ Cp([0, T ], E), for any p ≥ 1 and

T > 0.

Let x ∈ E and let {X(t, x)}t≥0 be the process defined in Theorem 2.1.10. Now we prove that

it is the unique mild solution of(2.0.1).

Theorem 2.1.13. Assume that Hypotheses 2.1.1 hold true. For any x ∈ E, the process

{X(t, x)}t≥0 is the unique mild solution of the SPDE (2.0.1) in Cp([0, T ],X) ∩Cp((0, T ], E), for

any p ≥ 1 and T > 0.
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Proof. We begin to prove uniqueness. Let x ∈ E and let

{X1(t, x)}t≥0, {X2(t, x)}t≥0 ∈ Cp((0, T ], E), for any p ≥ 1 and T > 0, be two mild solution of

(2.0.1). For any 0 < t ≤ T , by Remark 2.1.6, we have

‖X1(t, x)−X2(t, x)‖E ≤M0

∫ t

0

e(t−s)η0‖F (X1(t, x))− F (X2(t, x))‖Eds, P-a.s.

Since {X1(t, x)}t≥0, {X2(t, x)}t≥0 ∈ Cp((0, T ], E), with p ≥ 1, then

sup
t∈[0,T ]

‖X1(t, x)‖E , sup
t∈[0,T ]

‖X2(t, x)‖E < +∞, P-a.s.

so by the local lipschitzianity of F , there exists L := L(x, T ) > 0 such that

‖X1(t, x)−X2(t, x)‖E ≤M0L

∫ t

0

e(t−s)η0‖X1(t, x)−X2(t, x)‖Eds, P-a.s.

and by the Gronwall inequality we obtain

X1(t) = X2(t), P-a.s.

for any t ∈ [0, T ] and T > 0, and so we have the uniqueness.

Now we prove that, for any x ∈ E, the process {X(t, x)}t≥0 is the mild solution of (2.0.1).

Let T > 0 and large n ∈ N. We recall that, for any t ∈ [0, T ], we have

Xn(t, x) := Yn(t, x) +WA(t), P-a.s.

hence, by Proposition 2.1.7

Xn(t, x) = etAnR(n,A)x+

∫ t

0

e(t−s)AF (Xn(s, x))ds+WA(t), P-a.s. (2.1.28)

By (1.4.3), Remarks 2.1.2-2.1.2, (2.1.22), (2.1.20) and the dominated convergence theorem, we

have

lim
n→+∞

∥∥∥∥∫ t

0

e(t−s)A (F (Xn(s, x))− F (X(s, x))) ds

∥∥∥∥
E

= 0, P-a.s.,

so, letting n→ +∞ in (2.1.28), by (1.4.6) we have

X(t, x) = etAx+

∫ t

0

e(t−s)AF (X(s, x))ds+WA(t) P-a.s.

for any t ∈ [0, T ] and T > 0.

2.2 Generalized mild solution and transition

semigroup

Now we exploit the density of E in X to define a process {X(t, x)}t≥0 for any x ∈ X.
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Proposition 2.2.1. Assume that Hypotheses 2.1.1 hold true. For any x ∈ X there exists a

unique process {X(t, x)}t≥0 ∈ Cp([0, T ], E), for any p ≥ 1 and T > 0, such that

lim
n→+∞

‖X(·, xn)−X(·, x)‖C([0,T ],X) = 0, ∀ T > 0, P-a.s., (2.2.1)

where {xn}n∈N ⊆ E converges to x and {X(t, xn)} is the unique mild solution of (2.0.1) with

initial datum xn. In addition, for any p ≥ 1, x, y ∈ X and t > 0, we have

‖X(t, x)‖p ≤ C ′p
(
eκpt‖x‖p +

∫ t

0

eκp(t−s) (‖F (WA(s))‖p + ‖WA(s)‖p) ds+ ‖WA(t)‖p
)
, (2.2.2)

‖X(t, x)−X(t, y)‖ ≤ eηt‖x− y‖, P-a.s., (2.2.3)

where κp is the constant of Proposition 2.1.7, C ′p is the constant of Proposition 2.1.9 and η is

the constant of Theorem 2.1.10. Moreover, for any x ∈ X, p ≥ 1 and T > 0 we have

lim
n→+∞

‖{X(t, xn)}t≥0 − {X(t, x)}t≥0‖pCp([0,T ],X) = 0. (2.2.4)

Proof. Since E is dense in X, for any x ∈ X there exists a sequence {xm}m∈N ⊆ E such that

lim
m→+∞

‖xm − x‖ = 0.

We consider the sequence of mild solutions {{X(t, xm)}t∈[0,T ]}m∈N ⊆ Cp([0, T ],X), for any p ≥ 1

and T > 0, given by Theorem 2.1.13. We have

{{X(t, xn)}t≥0}n∈N ⊆ C([0, T ],X), P-a.s.

Moreover by (2.1.23), for any T > 0 and n1, n2 ∈ N, we have

lim
n1,n2→+∞

‖X(·, xn1
)−X(·, xn2

)‖C([0,T ],X) = 0, P-a.s.

So there exists a unique process {X(t, x)}t≥0 ∈ PC([0, T ],X) (see Definition 2.1.5) that veri-

fies (2.2.1). By (2.2.1) the process {X(t, x)}t≥0 verifies (2.2.2), (2.2.3) and, by Remark 2.1.3,

{X(t, x)}t≥0 ∈ Cp([0, T ],X), for any p ≥ 1 and T > 0. Finally (2.2.3) yields (2.2.4).

Definition 2.2.2. For any x ∈ X we call generalized mild solution of (2.0.1) the limit

{X(t, x)}t≥0 of Corollary 2.2.1.

Until now we have shown that

1. for any x ∈ E the SPDE (2.0.1) has a unique mild solution {X(t, x)}t≥0 ∈ Cp((0, T ], E) ∩
Cp([0, T ],X), for any p ≥ 1 and for any T > 0, in the sense of Definition 2.1.4;

2. for any x ∈ X the SPDE (2.0.1) has a unique generalized mild solution

{X(t, x)}t≥0 ∈ Cp([0, T ],X), for any p ≥ 1 and for any T > 0, in the sense of Definition

2.2.2. In particular if x ∈ E then the generalized mild solution of (2.0.1) is the mild solution

of (2.0.1).
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So we define the following families of operators.

Definition 2.2.3. For every t > 0 we set

P (t)ϕ(x) := E[ϕ(X(t, x))] =

∫
Ω

ϕ(X(t, x)(ω))P(dω) ϕ ∈ Bb(X), x ∈ X,

where {X(t, x)}t≥0 is the unique generalized mild solution of (2.0.1). Similarly we set

PE(t)ϕ(x) := E[ϕ(X(t, x))] =

∫
Ω

ϕ(X(t, x)(ω))P(dω) ϕ ∈ Bb(E), x ∈ E,

where {X(t, x)}t≥0 is the unique mild solution of (2.0.1).

By the same arguments of [43][Proposition 9.14 and Corollary 9.15] and taking into account

(2.1.24) and (2.2.3), we get the following result.

Proposition 2.2.4. {P (t)}t≥0 and {PE(t)}t≥0 are two contraction positive and Feller semi-

groups on Bb(X) and Bb(E) respectively.

Proof. We prove the statements for P (t), the proof for {PE(t)}t≥0 is the same. By uniqueness

of the generalized mild solution {X(t, x)}t≥0, for any t, s ≥ 0 we have

X(t+ s, x) = X(t,X(s, x)), P-a.s.

So, for any ϕ ∈ Bb(X) and x ∈ X, we have

P (t+ s)ϕ(x) = E [ϕ(X(t+ s, x))] = E [E [ϕ(X(t,X(s, x))|X(s, x)]] , (2.2.5)

where we denote by E [ϕ(X(t,X(s, x))|X(s, x)] the conditional expectation of the random variable

ϕ(X(t,X(s, x)) with respect to random variable X(s, x). We denote by σ (X(s, x)) the σ-algebra

generated by X(s, x). If we prove that, for any ϕ ∈ Bb(X) and ξ ∈ L1((Ω,P),X) measurable with

respect to σ (X(s, x)), we have

E [ϕ(X(t, ξ))|ξ] = P (t)ϕ(ξ),P-a.s., (2.2.6)

then by (2.2.5) we obtain that P (t) is a semigroup, namely

P (t+ s)ϕ(x) = E [E [ϕ(X(t,X(s, x))|X(s, x)]] = E [P (t)ϕ(X(s, x))] = P (t)P (s)ϕ(x).

We begin to prove (2.2.6) for a simple function ξ, namely

ξ(ω) =

n∑
i=1

xiIΓi(ω), ω ∈ Ω,

where n ∈ N, x1, ..xn ∈ X and {Γ1, ...,Γn} ⊆ σ(X(s, x)) is a partition of Ω. In this case (2.2.6)

becomes

E [ϕ(X(t, ξ))|ξ] (ω) =

n∑
i=1

E [ϕ(X(t, xi))IΓi |ξ = xi] (ω).
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X(t, xi) is independent of σ(X(s, x)) and Γi is measurable with respect to σ(X(s, x)), for any

i = 1, ..., n. Then by [68, Theorem 23.5-23.6] we obtain

E [ϕ(X(t, ξ))|ξ] (ω) =

n∑
i=1

E [ϕ(X(t, xi))IΓi |ξ = xi] (ω)

=

n∑
i=1

P (t)ϕ(xi)IΓi(ω) = P (t)ϕ(ξ(ω)).

Since ξ belongs to L1((Ω,P),X) and it is measurable with respect to σ(X(s, x)), then there exists

a sequence {ξn}n∈N of simple functions such that

lim
n→+∞

E[‖ξn − ξ‖] = lim
n→+∞

∫
Ω

‖ξn(ω)− ξ(ω)‖P(dω) = 0.

Hence there exists a subsequence of {ξn}n∈N converging to ξ in X P-a.s.. So, since (2.2.6) is

verified for simple functions, then it is verified for a general ξ ∈ L1(Ω,P). Hence (2.2.5) is

verified and P (t) is a semigroup. By the integral expression of P (t) we see that P (t) is positive

and contractive and, by (2.2.3) the semigroup is also Feller.

Since E is continuously embedded in X, for any f ∈ Cb(X) the restriction fE of f to E belongs

to Cb(E). So by Theorem 1.9.3 and Proposition 2.2.4, we have the following result.

Corollary 2.2.5. {P (t)}t≥0 and {PE(t)}t≥0 are the transition semigroups associated to the

generalized mild solution and to the mild solution of (2.0.1) in the sense of Definition 1.9.4.

Moreover for any t ≥ 0, ϕ ∈ Bb(X) and x ∈ E we have

P (t)ϕ(x) = PE(t)ϕ(x).

2.3 The Gateaux derivative of the mild solution

In this section we assume that the following additional hypotheses hold.

Hypotheses 2.3.1. Assume that Hypotheses 2.1.1 hold true with Dom(F ) = X = E and that

F : X→ X is Fréchet differentiable and Lipschitz continuous.

Now recall a standard result about the Gateaux differentiability of the mild solution of (2.0.1).

Theorem 2.3.2 (Theorem 9.8 of [43]). Assume that Hypotheses 2.3.1 hold true. The map

x 7→ X(·, x) is Gateaux differentiable as a function from X to Xp([0, T ]). For every x, h ∈ X, the

process {DGX(t, x)h}t≥0 is the unique mild solution of{
d
dtSx(t, h) =

(
A+ DF (X(t, x))

)
Sx(t, h), t > 0;

Sx(0, h) = h.
(2.3.1)

By Hypotheses 2.1.1(iv-b) and an easy calculation, for any t > 0 and x, h ∈ X, we have

〈A+ DF (x)h, h〉 ≤ ζ2‖h‖2. (2.3.2)
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Proposition 2.3.3. Assume that Hypotheses 2.3.1 hold true. For any t > 0 and x, h ∈ X, it

holds

‖DGX(t, x)h‖ ≤ eζt‖h‖,

where ζ is the constant appearing in Hypotheses 2.1.1(iv).

Proof. We assume that {DGX(t, x)h}t≥0 is the strict solution of (2.3.1), otherwise we can ap-

proximate as in Proposition 2.1.7. We scalarly multiply both members of (2.3.1) by DGX(t, x)h.

In the left hand side we obtain〈
d

dt
DGX(t, x)h,DGX(t, x)h

〉
=

1

2

d

dt
‖DGX(t, x)h‖2.

In the right hand side, by (2.3.2), we get

〈
(A+ DF (X(t, x)))DGX(t, x)h,DGX(t, x)h

〉
≤ ζ
∥∥DGX(t, x)h

∥∥2
.

Hence we obtain d
dt‖D

GX(t, x)h‖2 ≤ 2ζ
∥∥DGX(t, x)h

∥∥2
, and so by the Gronwall inequality∥∥DGX(t, x)h

∥∥2 ≤ e2ζt‖h‖2.

2.4 Remarks and examples

The results presented in this chapter are contained in the paper [9]. We make some remarks

about Hypotheses 2.1.1. In [43, Sections 7.2] the authors prove existence and uniqueness of the

generalized mild solution of (2.0.1) in many settings that include our own. However, they do not

provide estimates like those in Theorem 2.1.10. Instead in [30, Chapters 4] and [20, Chapters

6-7] the authors prove some estimates like those in Theorem 2.1.10, but in a specific context (in

the same context, see [21, 22] for the case of multiplicative noise and [24] for the nonautonomous

case). Hypotheses 2.1.1 cover the case presented in [20, Chapters 6] (see [20, Section 6.1] for the

definition of F , A and C). Let O be an open set of Rn, with n ≤ 3 and let λ be the Lebesgue

measure. In the case where X = L2(O, λ) and E = C(O), in [20, Section 6.1] and [43, Section

5.5] the authors provide an overview of the operators A and R that satisfy Hypotheses 2.1.1.

Concerning the perturbation F , in [30, Chapters 4] and [20, Chapters 6-7] the authors assume

that F is a Nemytskii operator. In the next subsection we will present an example of F that it

is not of this type but it verifies Hypotheses 2.1.1.

2.4.1 Infinite dimensional polynomial

We recall the notion of infinite dimensional polynomial (see [25, 47, 82]). For every n ∈ N, we say

that a map V : Xn → X is n-multilinear if it is linear in each variable separately. A n-multilinear

map V is said to be symmetric if

V (x1, . . . , xn) = V (xσ(1), . . . , xσ(n)), (2.4.1)
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for any permutation σ of the set {1, . . . , n}. We say that a function Pn : X→ X is a homogeneous

polynomial of degree n ∈ N if there exists a n-multilinear symmetric map B such that for every

x ∈ X

P (x) = V (x, . . . , x). (2.4.2)

We consider the function F : X→ X defined by

F (x) := Pn(x) + ζ2x,

where x ∈ X, ζ2 ∈ R and Pn is a homogeneous polynomial of degree n such that,

〈V (h, x, . . . , x), h〉 ≤ 0, (2.4.3)

where V is the n-multilinear map defined by (2.4.2). By [25, Theorem 3.4], there exists d > 0

such that

‖F (x)‖ ≤ d(1 + ‖x‖n), x ∈ X. (2.4.4)

Moreover, for any x, h ∈ X, we have

DPn(x)h = nV (h, x, . . . , x),

and so, by (2.4.3), for any x, y ∈ X, we obtain

〈F (x)− F (y), x− y〉 ≤ ζ2‖x− y‖2. (2.4.5)

Let us consider a particular case. Let E = X = L2([0, 1], λ). Let K ∈ L2([0, 1]4) and assume

that K is symmetric ((2.4.1)). Let

[P3(f)](ξ) :=

∫ 1

0

∫ 1

0

∫ 1

0

K(ξ1, ξ2, ξ3, ξ)f(ξ1)f(ξ2)f(ξ3)dξ1dξ2dξ3 (2.4.6)

for f ∈ L2([0, 1]). P is a homogeneous polynomial of degree three on L2([0, 1]) (see [47, Exercise

1.73]). (2.4.3) holds whenever K has negative values. Indeed observe that, for f1, f2, f3 ∈
L2([0, 1]),

B(f1, f2, f3) =

∫ 1

0

∫ 1

0

∫ 1

0

K(ξ1, ξ2, ξ3, ξ)f1(ξ1)f2(ξ2)f3(ξ3)dξ1dξ2dξ3,

and for f, h ∈ L2([0, 1])

〈B(h, f, f), h〉 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

K(ξ1, ξ2, ξ3, ξ)f(ξ1)f(ξ2)h(ξ3)h(ξ)dξ1dξ2dξ3dξ.
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A standard argument allows to deduce that 〈B(h, f, f), h〉 = 0 if, and only if, f = 0 a.e. or h = 0

a.e. So by the continuity of 〈B(h, f, f), h〉 with respect to h (for a fixed f) and the fact that

〈B(−h, f, f),−h〉 = 〈B(h, f, f), h〉,

the claim follows. Similarly it is possible to consider a general infinite dimensional polynomial of

odd degree n ∈ N.



Chapter 3

Regularization results

Let X be a separable Hilbert space.

Let T (t) be a semigroup on Bb(X). We say that T (t) is a strong Feller semigroup if for any

t > 0 we have

T (t) (Bb(X)) ⊆ Cb(X).

Let A be the infinitesimal generator of a strongly continuous semigroup etA on X and let R ∈ L(X)

satisfy (1.10.1). If T (t) is the Ornstein-Uhlenbeck semigroup defined by the Mehler formula

T (t)f(x) :=

∫ t

0

f(y)N(etAx,Qt), Qt :=

∫ t

0

esARR∗esA
∗
, t > 0, f ∈ Bb(X),

In [43, Section 9.4] the authors show that T (t) is a strong Feller semigroup if and only if

etA(X) ⊆ Q1/2
t (X), t > 0. (3.0.1)

Let G : X→ X be a Lipschitz continuous function and let {W (t)}t≥0 be a X-cylindrical Wiener

process defined on a normal filtered probability space (Ω,F, {Ft}t≥0,P). In [14, 61] the authors

consider the transition semigroup defined by

P (t)f(x) := E[f(X(t, x))], t > 0, f ∈ Bb(X), (3.0.2)

where {X(t, x)}t≥0 is the unique mild solution of the SPDE{
dX(t, x) =

(
AX(t, x) +RG(X(t, x))

)
dt+RdW (t), t > 0;

X(0, x) = x ∈ X.
(3.0.3)

Using the Girsanov theorem, they prove that, if 3.0.1 holds then P (t) is a strong Feller semigroup.

If we take that A = − 1
2 IX and R = Q1/2 where Q is a positive and trace class operator, then

condition (3.0.1) is not verified. In that case it is known that T (t) is not strong Feller but T (t)

regularizes only along Q1/2(X). In particular for any T > 0 there exists KT > 0 such that, for



65

any t ∈ [0, T ], x ∈ X, h ∈ Q1/2(X) and ϕ ∈ Bb(X), we have

|T (t)ϕ(x+ h)− T (t)ϕ(x)| ≤ KT√
t

∥∥∥Q−1/2h
∥∥∥‖ϕ‖∞

In this chapter we study the regularity properties of the semigroup P (t) defined in (3.0.2) not

assuming that (3.0.1) holds, in particular we will show that, under suitable conditions, P (t)

regularizes along R(X).

Now we specify the hypotheses under which we will work.

Hypotheses 3.0.1. We assume that the following conditions hold true.

(i) R ∈ L(X) is non-negative.

(ii) A is the infinitesimal generator of a strongly continuous semigroup etA on X and there exists

wX ∈ R such that

〈Ax, x〉 ≤ −wX‖x‖2, x ∈ Dom(A).

(iii) G : X→ X is a Lipschitz continuous function, with Lipschitz constant LG.

(iv) There exists η ∈ (0, 1) such that, for any T > 0, we have∫ T

0

1

tη
Tr[etAR2etA

∗
]dt < +∞.

By Hypotheses 3.0.1(ii-iii), for any x, y ∈ X, we have

〈Ax−Ay +RG(x)−RG(y), x− y〉 ≤ ζX‖x− y‖2, ζX = wX + ‖R‖L(X)LG.

Moreover by 3.0.1(iv) and Proposition 1.8.11, Hypotheses 2.1.1(v) are verified, so Hypotheses

3.0.1 implies Hypotheses 2.1.1 (with E = X). We can apply Theorem 2.1.13 (with E = X)

and obtain that, for any x ∈ X, the SPDE (3.0.3) has a unique mild solution {X(t, x)}t≥0 ∈
Cp([0, T ],X), for any T > 0 and p ≥ 1. Hence the semigroup P (t) given by (3.0.2) is well defined.

We now present the hypothesis that will replace the condition (3.0.1). By the results of

Subsection 1.2.5 the following Hilbert space is well defined.

Definition 3.0.2. We denote by (HR, 〈·, ·〉R) the separable Hilbert space defined by

HR := R(X), ‖x‖R :=
∥∥R−1x

∥∥, 〈x, y〉R :=
〈
R−1x,R−1y

〉
, x, y ∈ HR,

where R−1 is the pseudo inverse of R.

Hypotheses 3.0.3. Assume that Hypotheses 3.0.1 hold true, that AR (the part of A in HR)

generates a strongly continuous semigroup in HR, and that there exists wR ∈ R such that, for

any h ∈ Dom(AR), we have

〈Ah, h〉R ≤ wR‖h‖
2
R.

Under Hypotheses 3.0.3 we are going to prove that for any for any t > 0, x ∈ X, h ∈ HR and

ϕ ∈ Bb(X), we have

|P (t)ϕ(x+ h)− P (t)ϕ(x)| ≤ K(t)‖h‖R. (3.0.4)
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where K(·) : (0,+∞)→ (0,+∞) is continuous and for small t

K(t) ≈ k√
t
,

for some k > 0. To prove (3.0.4) we will not use the Girsanov theorem, but we will exploit a

technique similar to the one presented in [43, Section 9.4.2] or [85]. A fundamental step in this

technique is to prove a Bismut–Elworthy–Li formula for the semigroup P (t). To do that, we need

to study some properties of the mild solution in the space HR.

3.1 The HR-differentiability

First of all we show some properties of the Hilbert space HR.

Proposition 3.1.1. HR is Borel measurable and continuously embedded in X. Moreover, for

any h ∈ HR, we have

‖h‖ ≤ ‖R‖L(X)‖h‖R, (3.1.1)

‖R‖L(HR) = sup
{h∈HR : ‖h‖R=1}

‖Rh‖R ≤ ‖R‖L(X). (3.1.2)

Proof. (3.1.1) and (3.1.2) follow immediately by the assumption R ∈ L(X). To prove that HR

is Borel measurable it is enough to observe that if {gk}k∈N is an orthonormal basis of Ker(R)⊥

then

HR =

{
x ∈ X

∣∣∣∣∣
+∞∑
k=1

〈x,Rgk〉R < +∞

}

=
⋃
m∈N

⋂
n∈N

{
x ∈ X

∣∣∣∣∣
n∑
k=1

〈x,Rgk〉R ≤ m

}
.

For every m,n ∈ N the set {x ∈ X |
∑n
k=1〈x, gk〉R ≤ m} is closed, since the maps x 7→ 〈x,Rgk〉R

are continuous for every k ∈ N.

Now we specify the regularity properties along HR that are of interest for us.

Definition 3.1.2.

(i) Let Φ : X → R be a measurable function. We say that Φ is HR-Lipschitz if there exists

C > 0 such that for every x ∈ X and h ∈ HR

‖Φ(x+ h)− Φ(x)‖R ≤ C‖h‖R. (3.1.3)

We denote by LipHR(X) the sets of Borel measurable, HR-Lipschitz functions, and by

Lipb,HR(X) the subset of LipHR(X) consisting of bounded functions. We call HR-Lipschitz

constant of Φ the infimum of all the constants C > 0 verifying (3.1.3).

(ii) Let Φ : X→ X be a Borel measurable function. We say that Φ is HR-differentiable at x ∈ X,
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if the function ϕx : HR → X defined as

ϕx(h) := Φ(x+ h)− Φ(x)

is HR-valued and there exists L ∈ L(HR) such that for every h ∈ HR

lim
‖h‖R→0

∥∥∥∥ 1

‖h‖R
ϕx(h)− Lh

∥∥∥∥
R

= 0.

When it exists, the operator L is unique and we set ∇RΦ(x) := L.

(iii) Let Φ : X→ R be a Borel measurable function. We say that Φ is HR-differentiable at x ∈ X,

if there exists L ∈ H∗R such that

lim
‖h‖R→0

|Φ(x+ h)− Φ(x)− Lh|
‖h‖R

= 0.

When it exists, the operator L is unique and we set DRΦ(x) := L. Since L ∈ H∗R, then

there exists k ∈ HR such that Lh = 〈h, k〉R for any h ∈ HR. We set ∇RΦ(x) := k and we

call it HR-gradient of Φ at x ∈ X. For any k ≥ 2, in the same way we define the k-times

HR-differentiable functions and we denote by ∇kRΦ(x) their k-derivative. We denote by

CkHR(X) the space of k-times HR-differentiable functions from X to R and by Ckb,HR(X) the

space of bounded and k-times HR-differentiable functions from X to R.

(iv) Let Φ : X → X be a Borel measurable function. We say that a function Φ is HR-Gateaux

differentiable at x ∈ X if for every h ∈ HR there exists εx,h > 0 such that the function

ϕx,h : (−εx,h, εx,h)→ X defined as

ϕx,h(r) := Φ(x+ rh)− Φ(x)

is HR-valued and there exists L ∈ L(HR) such that for every h ∈ HR

lim
r→0

∥∥∥∥1

r
ϕx,h(r)− Lh

∥∥∥∥
R

= 0. (3.1.4)

We observe a relationship between Fréchet differentiability and HR-differentiability.

Proposition 3.1.3. Let Φ : X → R. If Φ is Fréchet differentiable at x ∈ X, then it is HR-

differentiable at x and

∇Rϕ(x) = R2∇ϕ(x).

Proof. By the Fréchet differentiability of Φ at x we have

lim
‖h‖→0

|Φ(x+ h)− Φ(x)−DΦ(x)h|
‖h‖

= 0.
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By (3.1.1) we have ‖h‖ → 0 whenever ‖h‖R → 0, and

0 ≤ lim
‖h‖R→0

|Φ(x+ h)− Φ(x)−DΦ(x)h|
‖h‖R

= lim
‖h‖R→0

|Φ(x+ h)− Φ(x)−DΦ(x)h|
‖h‖

‖h‖
‖h‖R

≤‖R‖L(X) lim
‖h‖R→0

|Φ(x+ h)− Φ(x)−DΦ(x)h|
‖h‖R

= 0

Moreover, for every x ∈ X and h ∈ HR, we have

〈∇Rϕ(x), h〉R = DRϕ(x)h = Dϕ(x)h = 〈∇ϕ(x), h〉

= 〈R∇ϕ(x), Rh〉R = 〈R2∇ϕ(x), h〉R,

hence ∇Rϕ(x) = R2∇ϕ(x).

We assume that Hypotheses 3.0.3 hold true and that G is Fréchet differentiable.

Let {X(t, x)}t≥0 be the mild solution of (3.0.3). By Theorem 2.3.2, the map x 7→ X(·, x) is

Gateaux differentiable as a function from X to Xp([0, T ]), for any T > 0. Moreover for every

x, h ∈ X, the process {DGX(t, x)h}t≥0 is the unique mild solution of{
d
dtSx(t, h) =

(
A+RDG(X(t, x))

)
Sx(t, h), t > 0;

Sx(0, h) = h.
(3.1.5)

We are going to show that the mild solution is HR-differentiable.

Proposition 3.1.4. Assume that Hypotheses 3.0.3 hold true and that G is Fréchet differentiable.

Then for any x ∈ X, h ∈ HR and t > 0, we have

‖DGX(t, x)h‖R ≤ eζRt‖h‖R, P-a.s.

where ζR := wR + ‖R‖L(X)LG. Moreover for every t > 0, the map x 7→ X(t, x) is P-a.s.. HR-

Gateaux differentiable and for any x ∈ X and h ∈ HR its HR-Gateaux derivative along h ∈ HR

is DGX(t, x)h.

Proof. All estimates in this proof should be understood to be true P-a.s. By Hypotheses 3.0.3

and Definition 3.0.2, for any x ∈ X and h ∈ HR we have

〈[A+R∇G(x)]h, h〉R ≤ ζR‖h‖
2
R, (3.1.6)

where ζR := wR + ‖R‖L(X)LG. Since the map t ∈ [0,+∞) → X(t, x) ∈ X is continuous P-a.s.

then t ∈ [0,+∞)→ RDG(X(t, x)) ∈ HR is continuous P-a.s., so we can study (3.1.5) in HR. For

any x ∈ X, h ∈ HR and t > 0, we scalarly multiply both members of (3.1.5) by DGX(t, x)h. In

the left hand side we obtain〈
d

dt
DGX(t, x)h,DGX(t, x)h

〉
R

=
1

2

d

dt
‖DGX(t, x)h‖2R.
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In the right hand side, by (2.3.2) we get

〈
(A+ DF (X(t, x)))DGX(t, x)h,DGX(t, x)h

〉
R
≤ ζR

∥∥DGX(t, x)h
∥∥2

R
.

Hence we obtain d
dt‖D

GX(t, x)h‖2R ≤ 2ζR
∥∥DGX(t, x)h

∥∥2

R
, and so by the Gronwall inequality∥∥DGX(t, x)h

∥∥2

R
≤ e2ζRt‖h‖2R.

By Hypotheses 3.0.3, for any x ∈ X, h ∈ HR and r, t > 0 we get∥∥∥∥X(t, x+ rh)−X(t, x)

r
−DGX(t, x)h

∥∥∥∥
R

≤
∫ t

0

∥∥∥∥G(X(s, x+ rh))−G(X(s, x))

r
−DG(X(s, x))DGX(s, x)h

∥∥∥∥ds,
hence, since x → X(t, x) is Gateaux differentiable and G is Lipschitz continuous and Frechét

differentiable, by the dominated convergence theorem we have

lim
r→0

∥∥∥∥X(t, x+ rh)−X(t, x)

r
−DGX(t, x)h

∥∥∥∥
R

= 0.

Remark 3.1.5. It is possible to assume (3.1.6) as Hypothesis in order to avoid ζR depending on

the Lipschitz constant of G.

Corollary 3.1.6. Assume that Hypotheses 3.0.3 hold true and G is Frechét differentiable. If

g : X→ R is a function belonging to C1
b (X) and h ∈ HR, then for any x ∈ X and t ≥ 0

((DG
R(g ◦X))(t, x))h =

〈
(∇Rg) (X(t, x)),DGX(t, x)h

〉
R
.

Proof. Since g ∈ C1
b (X), by Proposition 3.1.3, g is also HR differentiable, then for every x ∈ X

and h ∈ HR

g(x+ εh) = g(x) + ε〈∇Rg(x), h〉R + o(ε) ε→ 0.

We define for x ∈ X, h ∈ HR, t ≥ 0 and ε > 0

Kε(t, x, h) := X(t, x+ εh)−X(t, x)− εDGX(t, x)h = X(t, x+ h)−X(t, x)− εDGX(t, x)h.

By Proposition 3.1.4, for any T > 0 we have supt∈[0,T ] E[‖Kε(·, x, h)‖2R] = o(ε), when ε goes to

zero. Hence for ε→ 0

g
(
X(t, x+ εh)

)
= g
(
X(t, x) + εDGX(t, x)h+Kε(t, x, h)

)
= g
(
X(t, x) + ε(DGX(t, x)h+ ε−1Kε(t, x, h)

)
= g(X(t, x)) +

〈
(∇Rg)(X(t, x)), εDGX(t, x)h+Kε(t, x, h)

〉
R

+ o(ε)

= g(X(t, x)) + ε
〈
(∇Rg)(X(t, x)),DGX(t, x)h

〉
R

+ 〈(∇Rg)(X(t, x)),Kε(t, x, h)〉R + o(ε).
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So for ε→ 0 we get

0 ≤ E
[∣∣g(X(t, x+ εh)

)
− g(X(t, x))− ε

〈
(∇Rg)(X(t, x)),DGX(t, x)h

〉
R

∣∣2]
≤ sup
t∈[0,T ]

E
[∣∣g(X(t, x+ εh)

)
− g(X(t, x))− ε

〈
(∇Rg)(X(t, x)),DGX(t, x)h

〉
R

∣∣2]
= sup
t∈[0,T ]

E
[
|〈(∇Rg)(X(t, x)),Kε(t, x, h)〉R|

2
]

+ o(ε)

≤
(

sup
x∈X
‖DRg(x)‖L(R)

)(
sup
t∈[0,T ]

E
[
‖Kε(t, x, h)‖2R

])
+ o(ε)

=

(
1 + sup

x∈X
‖DRg(x)‖L(HR)

)
o(ε)

This implies that ((DG
R(g ◦ X))(t, x))h =

〈
(∇Rg) (X(t, x)),DGX(t, x)h

〉
R

P-a.s., and the proof

is concluded.

3.2 The Bismut–Elworthy–Li formula

Now we prove a variant of the Bismut–Elworthy–Li formula.

Proposition 3.2.1. Assume that Hypotheses 3.0.3 hold true and that G ∈ C2
b (X,X). Let ϕ ∈

C2
b (X). For every x ∈ X, h ∈ HR and t ≥ 0

〈∇RP (t)ϕ(x), h〉R =
1

t
E
[
ϕ(X(t, x))

∫ t

0

〈
DGX(s, x)h,RdW (s)

〉
R

]
. (3.2.1)

Furthermore

|〈∇RP (t)ϕ(x), h〉R|
2 ≤ 1

t2
‖ϕ‖2∞E

[∫ t

0

∥∥DG
RX(s, x)h

∥∥2

R
ds

]
. (3.2.2)

Proof. (3.2.2) is a standard consequence of (3.2.1) and the Itô isometry (see [84, Lemma 3.1.5])

so we will only show (3.2.1). By [85, Lemma 2.3], for any ϕ ∈ C2
b (X), t > 0 and x ∈ X we have

ϕ(X(t, x)) = P (t)ϕ(x) +

∫ t

0

〈∇P (t− s)ϕ(X(s, x)), RdW (s)〉. (3.2.3)

By Proposition 3.1.3, (3.2.3) becomes

ϕ(X(t, x)) = P (t)ϕ(x) +

∫ t

0

〈∇RP (t− s)ϕ(X(s, x)), RdW (s)〉R. (3.2.4)

For any h ∈ HR, we consider the process{∫ t

0

〈
DGX(s, x)h,RdW (s)

〉
R

}
t≥0

. (3.2.5)
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Multiplying both sides of (3.2.4) by (3.2.5) and taking the expectations we get

E
[
ϕ(X(t, x))

∫ t

0

〈
DGX(s, x)h,RdW (s)

〉
R

]
=E
[
P (t)ϕ(x)

∫ t

0

〈
DGX(s, x)h,RdW (s)

〉
R

]
+E
[∫ t

0

〈∇RP (t− s)ϕ(X(s, x)), RdW (s)〉R
∫ t

0

〈
DGX(s, x)h,RdW (s)

〉
R

]
.

Since R : X → HR is continuous, then {RW (t)}t≥0 is a HR-cylindrical Wiener process (see [43,

Remark 5.1]). By Proposition 3.1.4 for every t ∈ [0, T ] and h ∈ HR∫ t

0

E
[
‖DGX(s, x)h‖2R

]
ds < +∞,

and so by [52, Remark 2], the process {
∫ t

0

〈
DGX(s, x)h,RdW (s)

〉
R
}t≥0 is a martingale. Hence

for every t ∈ [0, T ], x ∈ X and h ∈ HR

E
[
P (t)ϕ(x)

∫ t

0

〈
DGX(s, x)h,RdW (s)

〉
R

]
= 0.

We recall that since L2(Ω,F,P) is a Hilbert space, then for every ξ1, ξ2 ∈ L2(Ω,F,P) we have

E[ξ1ξ2] =
1

4
E
[
|ξ1 + ξ2|2

]
− 1

4
E
[
|ξ1 − ξ2|2

]
. (3.2.6)

Let Φ(s) := ∇RP (t − s)ϕ(X(s, x)) and Γ(s) := DGX(s, x)h. We apply (3.2.6) with ξ1 =∫ t
0
〈Φ(s), RdW (s)〉R and ξ2 =

∫ t
0
〈Γ(s), RdW (s)〉R and using the Itô isometry we get

E
[∫ t

0

〈Φ, RdW 〉R
∫ t

0

〈Γ, RdW 〉R

]
=

1

4
E

[(∫ t

0

〈Φ + Γ, RdW 〉R

)2
]
− 1

4
E

[(∫ t

0

〈Φ− Γ, RdW 〉R

)2
]

=
1

4
E
[∫ t

0

‖Φ + Γ‖2Rds
]
− 1

4
E
[∫ t

0

‖Φ− Γ‖2Rds
]

= E
[∫ t

0

〈Φ,Γ〉Rds
]
.

Hence by (3.1.6), with g = P (t− s)ϕ we obtain

E
[∫ t

0

〈(∇RP (t− s)ϕ)(X(s, x)), RdW (s)〉α
∫ t

0

〈
DGX(s, x)h,RdW (s)

〉
R

]
=E
[∫ t

0

〈
(∇RP (t− s)ϕ)(X(s, x)),DGX(s, x)h

〉
R
ds

]
=E

[∫ t

0

DG
R(((P (t− s)ϕ) ◦X)(s, x))hds

]

=

∫ t

0

(
DG
RE
[
(P (t− s)ϕ ◦X)(s, x)

])
hds.



3.3. HR regularity for the transition semigroup 72

By the very definition of P (t) we know that E[(P (t − s)ϕ ◦ X)(s, x)] = (P (s)P (t − s)ϕ)(x) =

P (t)ϕ(x). Recalling that P (t)ϕ belongs to C2
b (X), so that it is also is HR-differentiable, it holds

DG
RP (t)ϕ(x) = DRP (t)ϕ(x). So we conclude

E
[
ϕ(X(t, x))

∫ t

0

〈
DGX(s, x)h,RdW (s)

〉
R

]
=

∫ t

0

〈∇RP (t)ϕ(x), h〉Rds

= t〈∇RP (t)ϕ(x), h〉R.

3.3 HR regularity for the transition semigroup

The last step before proving the main result of this Chapter is the following Lemma.

Lemma 3.3.1. Assume that Hypotheses 3.0.3 hold true and that G ∈ C2
b (X;X). For every t > 0,

x ∈ X, h ∈ HR and ϕ ∈ C2
b (X)

|P (t)ϕ(x+ h)− P (t)ϕ(x)| ≤ K(t)‖ϕ‖∞‖h‖R, (3.3.1)

where

K(t) :=


√
ζ−1
R (eζRt−1)

t , ζR 6= 0

1√
t
. ζR = 0.

(3.3.2)

Proof. Taking into account Proposition 3.1.4 and (3.2.2) we obtain the gradient estimate

‖∇RP (t)ϕ(x)‖R ≤ K(t)‖ϕ‖∞, t ∈ (0, T ], x ∈ X. (3.3.3)

Let x ∈ X and h ∈ HR. By the mean value theorem there exists ch ∈ (0, 1) such that

P (t)ϕ(x+ h)− P (t)ϕ(x) = 〈∇RP (t)ϕ(x+ chh), h〉.

So, by (3.3.3), the thesis follows.

Now we prove the main result of this chapter.

Theorem 3.3.2. Assume that Hypotheses 3.0.3 hold true. For every t > 0, x ∈ X, h ∈ HR and

ϕ ∈ Bb(X)

|P (t)ϕ(x+ h)− P (t)ϕ(x)| ≤ K(t)‖ϕ‖∞‖h‖R,

where K(t) is defined in (3.3.2).

Proof. As a first step, we prove that (3.3.1) is verified for ϕ ∈ C2
b (X) if F satisfies Hypotheses

3.0.3.

Since G is Lipschitz continuous, it is possible to construct a sequence {G(n)}n∈N ⊆ C2
b (X;X)

(see [85, Lemma 2.5]) such that the functions G(n) are Lipschitz continuous with Lipschitz con-
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stants less or equal than LG, and

lim
n→+∞

‖G(n)(h)−G(h)‖ = 0, h ∈ X.

We consider the transitions semigroup

P (n)(t)ϕ(x) := E
[
ϕ(X(n)(t, x))

]
, ϕ ∈ Cb(X),

where X(n)(t, x) is the mild solution of{
dXn(t, x) =

(
AX(t, x) +RG(n)(X(t, x))

)
dt+RdW (t), t > 0;

X(0, x) = x.

Fix ϕ ∈ C2
b (X). Then by (3.3.1) for every x ∈ X, h ∈ HR, T > 0 and t ∈ (0, T ], we get

|P (n)(t)ϕ(x+ h)− P (n)(t)ϕ(x)| ≤ K(t)‖ϕ‖∞‖h‖R.

By [85, Theorem A.1] there exists a subsequence {X(nk)(t, x)}k∈N such that, as k goes to infinity

X(nk)(t, x)→ X(t, x),

where the convergence is almost sure with respect to P. Since ϕ is bounded and continuous, then

P (nk)(t)ϕ(x) = E
[
ϕ(X(nk)(t, x))

]
→ E

[
ϕ(X(t, x))

]
= P (t)ϕ(x).

So for every x ∈ X, h ∈ HR, T > 0 and t ∈ (0, T ], we get

|P (n)(t)ϕ(x+ h)− P (n)(t)ϕ(x)| ≤ K(t)‖ϕ‖∞‖h‖R.

As second step we show that since (3.3.1) is verified for ϕ ∈ C2
b (X) then it also holds for ϕ ∈ Bb(X).

We recall that by [103, Theorem 5.4], if ϕ ∈ Cb(X) then there exists a sequence {ϕn}n∈N ⊆ C2
b (X)

such that, for every x ∈ X,

lim
n→+∞

ϕn(x) = ϕ(x), ‖ϕn‖∞ ≤ ‖ϕ‖∞, ∀n ∈ N.

So for every x ∈ X, h ∈ HR, T > 0 and t ∈ (0, T ], we get

|P (n)(t)ϕ(x+ h)− P (n)(t)ϕ(x)| ≤ K(t)‖ϕ‖∞‖h‖R.

Observe that by the dominated convergence theorem P (t)ϕn(x+ h) and P (t)ϕn(x) converge to

P (t)ϕ(x+ h) and P (t)ϕ(x), respectively. Therefore (3.3.1) is verified also for ϕ ∈ Cb(X).

By the Riesz representation theorem and (3.3.1), for every x ∈ X, h ∈ HR and t ∈ (0, T ],

we have the following estimate for the total variation of the finite measure L (X(x + h, t)) −
L (X(x, t))
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Var
(
L (X(t, x+ h))−L (X(t, x))

)
:= sup

ϕ∈Cb(X)
‖ϕ‖∞≤1

∣∣∣∣∫
X

ϕd

(
L
(
X(t, x+ h)

)
−L

(
X(t, x)

))∣∣∣∣
= sup
ϕ∈Cb(X)
‖ϕ‖∞≤1

∣∣∣∣∫
X

ϕdL
(
X(t, x+ h)

)
−
∫
X

ϕdL
(
X(t, x)

)∣∣∣∣
= sup
ϕ∈Cb(X)
‖ϕ‖∞≤1

∣∣∣E[ϕ(X(t, x+ h))
]
− E

[
ϕ(X(t, x))

]∣∣∣
= sup
ϕ∈Cb(X)
‖ϕ‖∞≤1

|P (t)ϕ(x+ h)− P (t)ϕ(x)| ≤ K(t)‖h‖R.

Let ϕ ∈ Bb(X). Then for t ∈ (0, T ], x ∈ X and h ∈ HR

|P (t)ϕ(x+ h)− P (t)ϕ(x)| =
∣∣∣∣∫

X

ϕd
(
L
(
X(t, x+ h)

)
−L

(
X(t, x)

))∣∣∣∣
≤ ‖ϕ‖∞K(t)‖h‖R.

Remark 3.3.3. We stress that, for small t > 0

K(t) ≈ c√
t
,

where c > 0 and K(t) is defined in (3.3.2).

3.3.1 Strong-Feller case

Let P (t) the transition semigroup associated to stochastic equation{
dX(t, x) =

(
AX(t, x) + F (X(t, x))

)
dt+RdW (t), t > 0;

X(0, x) = x ∈ X,
(3.3.4)

where A and R verify Hypotheses 3.0.1 and F : X → X is a Lipschitz continuous function with

Lipschitz constant LF .

In this subsection we replace Hypotheses 3.0.3 by the following condition.

Hypotheses 3.3.4. There exist ε ∈ R, Kε > 0 and γ ∈ (0, 1/2) such that

etA(X) ⊆ R(X), ‖R−1etA‖L(X) ≤ Kεe
εtt−γ , t > 0.

We remark that Hypotheses 3.3.4 implies (3.0.1) (see [43, Corollary 9.30]). By Hypotheses 3.3.4

it is possible to prove that for any t ≥ 0 we have

P (t) (Bb(X)) ⊆ Lipb(X). (3.3.5)
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As in Section 3.2 we assume that F ∈ C2
b (X). By Theorem 2.3.2 and Proposition 2.3.3, for

any T > 0, the map x 7→ {X(t, x)}t∈[0,T ] is Gateaux differentiable as a map from X to X2([0, T ])

and, for any x, y ∈ X, it holds

‖DGX(t, x)y‖ ≤ eζXt‖y‖, t ≥ 0,

where ζX = wX + LF . Let T > 0, t ∈ [0, T ], x, h ∈ X, we have

∥∥R−1DGX(t, x)h
∥∥ ≤ ‖R−1etAh‖+

∫ t

0

‖R−1e(t−s)ADF (X(s, x))DGX(s, x)h‖ds

≤ Kεe
εtt−γ‖h‖+KεLF ‖R‖L(X)‖h‖R

∫ t

0

e(ζX+ε)s

(t− s)γ
ds

= Kεe
εtt−γ‖h‖+KεLF ‖R‖L(X)‖h‖R

∫ t

0

e(ζX+ε)(t−s)

sγ
ds. (3.3.6)

Let 0 < t0 < min(1, t), by (3.3.6), we have

‖R−1DGX(t, x)h‖R ≤ Kεe
εtt−γ‖h‖+KεLF ‖R‖L(X)‖h‖Re

(ζX+ε)t

(∫ t0

0

1

sγ
ds+

∫ t

t0

e−(ζX+ε)sds

)
≤
(
Kεe

εtt−γ +KεLF ‖R‖L(X)

(
e(ζX+ε)t

1− γ
+
e(ζX+ε)(t−t0) − 1

ζX + ε

))
‖h‖,

hence, for any T > 0 there exists K : (0, T ]→ (0,+∞) such that, for any t ∈ (0, T ] and x, h ∈ X

‖R−1DGX(t, x)h‖R ≤ K(t)‖h‖. (3.3.7)

Moreover for small t > 0

K(t) ≈ ct−γ ,

for some c > 0.

Due to (3.3.7), in the proof of Proposition 3.2.1 we can multiply (3.2.3) by{∫ t

0

〈
R−1DGX(s, x)h, dW (s)

〉}
t≥0

instead of (3.2.5), and so we obtain that for every ϕ ∈ C2
b (X), x, h ∈ X and t ≥ 0

〈∇P (t)ϕ(x), h〉 =
1

t
E
[
ϕ(X(t, x))

∫ t

0

〈
R−1DGX(s, x)h, dW (s)

〉]
. (3.3.8)

Hence using (3.3.7), (3.3.8) and the same arguments used in [43, Section 9.4.2], we conclude that

(3.3.5) holds.

3.4 Remarks and examples

This chapter is a reworked version of [10]. In such a paper we have considered a special case in

which A and R were powers of the same trace class and positive operator, and the perturbation
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RG was replaced by a more general perturbation F . In particular we assumed that F was just

HR-Lipschitz and not Lipschitz continuous.

Moreover we suggest that it is possible to generalize Theorem 3.3.2 even in another way. We

consider the SPDE{
dX(t, x) =

(
AX(t, x) + F (X(t, x))

)
dt+RdW (t), t > 0;

X(0, x) = x ∈ X.

where A and R verify Hypotheses 3.0.3. Instead F verifies Hypotheses 2.1.1,

F (HR) ⊂ HR ⊂ E (where E is the Banach space of Hypotheses 2.1.1) and there exists ζF such

that

〈F (x)− F (y), x− y〉R ≤ ζF ‖x− y‖
2
R, x, y ∈ HR.

By approximating F with the approximating sequence defined in Subsection 1.11 and proving

that [85, Lemma 2.3] is also verified for these approximations we think that it is possible to

obtain a result analogous to Theorem 3.3.2.

In [20, Chapters 6-7] the author studies the strong Feller properties in the case where the

perturbation F is not defined on the whole space X. However in this work more restrictive

hypotheses on A and R (see [20, Hypotheses 6.1]) than those in [14] (see (3.0.1)) are assumed.

In particular the author assumes that A is a non positive operator, R is a positive operator and

that there exists ε < 1 such that

Dom(Aε) ⊆ R(X).

In [57, 58, 77, 78] the authors work in a separable Banach space with a Schauder basis, and

they study a problem similar to ours. They define the following differential operator.

Definition 3.4.1. Let f : X→ R be a continuous function, the R-directional derivative

∇Rf(x; y) at a point x ∈ X in the direction y ∈ X is defined as:

∇Rf(x; y) := lim
s→0

f(x+ sRy)− f(x)

s
,

provided that the limit exists and the map y 7→ ∇Rf(x; y) belongs to X∗.

The authors of [57, 58, 77, 78], using the Girsanov theorem, prove that, for every ϕ ∈ Bb(X),

the function P (t)ϕ admits R-directional derivatives in along every y ∈ X.In this chapter we

obtain a HR Lipschitzianity result, instead, in [57, 58, 77, 78], the authors cannot achieve a

similar result, with Definition 3.4.1. As we already said in the introduction Hypotheses 3.0.3

cover the case where A = − 1
2 IX and R = Q1/2 where Q is a positive and trace class operator. In

Subsection 3.4.1 we will show an interesting example that is included the case just mentioned.

Instead in Subsection 3.4.2 we will present a suitable choice of A and R which simplifies the

checking of the Hypotheses 3.0.3.

3.4.1 A classical example

Consider the space X = L2([0, 1], dξ) where dξ denotes the Lebesgue measure on [0, 1] and let

Q : L2([0, 1], dξ)→ L2([0, 1], dξ) be covariance operator of the Wiener measure on L2([0, 1], dξ),
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namely the positive and self-adjoint operator defined as

Qf(ξ) =

∫ 1

0

max {ξ, η}f(η)dη.

If R = Q1/2, it is known that HR is the space W 1,2
0 ([0, 1], dξ). Moreover the norm ‖·‖R is

equivalent to the norm

‖f‖W 1,2
0 ([0,1],dξ) := ‖f ′‖L2([0,1],dξ).

For all these results see [12, Remark 2.3.13 and Lemma 2.3.14]. Let G : L2([0, 1], dξ) →
L2([0, 1], dξ) defined by choosing x1, . . . , xn ∈ L2([0, 1], dξ) and a function f : [0, 1] × Rn → R,

(ξ, y1, . . . , yn) 7→ f(ξ, y1, . . . , yn) and setting

(G(g))(ξ) := f

(
ξ,

∫ 1

0

g(η)x1(η)dη, . . . ,

∫ 1

0

g(η)xn(η)dη

)
.

Assume that x1, . . . , xn are orthonormal and for every i = 1, . . . , n

f,
∂f

∂ξ
,
∂f

∂yi
are bounded and continuous on [0, 1]× Rn;

f(0, y1, . . . , yn) = 0, for every y1, . . . , yn ∈ R.

Then G(L2([0, 1], dξ)) ⊆W 1,2
0 ([0, 1], dξ), since

(G(g))(0) = f

(
0,

∫ 1

0

g(η)x1(η)dη, . . . ,

∫ 1

0

g(η)xn(η)dη

)
= 0

and

(G(g))′(ξ) =
∂f

∂ξ

(
ξ,

∫ 1

0

g(η)x1(η)dη, . . . ,

∫ 1

0

g(η)xn(η)dη

)
≤
∥∥∥∥∂f∂ξ

∥∥∥∥
∞
.

Moreover for g1, g2 ∈ L2([0, 1], dξ)

‖G(g1)−G(g2)‖2L2([0,1],dξ)

=

∫ 1

0

∣∣∣∣f(ξ,∫ 1

0

g1x1dη, . . . ,

∫ 1

0

g1xndη

)
− f

(
ξ,

∫ 1

0

g2x1dη, . . . ,

∫ 1

0

g2xndη

)∣∣∣∣
≤ n2 sup

i=1,...,n

{∥∥∥∥∂f∂ξ
∥∥∥∥2

∞
,

∥∥∥∥ ∂f∂yi
∥∥∥∥2

∞

}
n∑
i=1

∣∣∣∣∫ 1

0

(g1 − g2)xidη

∣∣∣∣2

≤ n2 sup
i=1,...,n

{∥∥∥∥∂f∂ξ
∥∥∥∥2

∞
,

∥∥∥∥ ∂f∂yi
∥∥∥∥2

∞

}
‖g1 − g2‖2L2([0,1],dξ).

Let P (t) be the transition semigroup associated to stochastic differential equation{
dX(t, x) =

(
− 1

2X(t, x) + F (X(t, x))
)
dt+Q1/2dW (t), t ∈ (0, T ];

X(0, x) = x ∈ X,
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by Theorem 3.3.2, for every t > 0, x ∈ L2([0, 1], dξ), h ∈W 1,2
0 ([0, 1], dξ) and ϕ ∈ Bb(X) we have

|P (t)ϕ(x+ h)− P (t)ϕ(x)| ≤ K(t)‖ϕ‖∞‖h‖W 1,2
0 ([0,1],dξ),

where K(t) is defined in (3.3.2).

We emphasize that we have assumed as Q the covariance operator of the Wiener measure on

L2([0, 1], dξ), but we could consider any Q such that Q(L2([0, 1], dξ)) ⊆ W 1,2
0 ([0, 1], dξ), where

W 1,2
0 ([0, 1], dξ) is the set of the real-valued functions f defined on [0, 1] such that f is absolutely

continuous, f ′ ∈ L2([0, 1], dξ) and f(0) = 0.

3.4.2 A suitable choice of A and R

Let Q be a positive and compact operator. For α, β ≥ 0 we set A = −(1/2)Q−β : Qβ(X) ⊆ X→ X

and R = Qα. Let {ek}k∈N be an orthonormal basis of X consisting of eigenvectors of Q, and let

{λk}k∈N be the eigenvalues associated with {ek}k∈N. Since Q is a compact and positive operator,

there exists k0 ∈ N such that 0 < λk ≤ λk0 , for any k ∈ N. Without loss of generality we assume

k0 = 1. Hence, for any x ∈ Qβ(X), we have

〈Ax, x〉 =

+∞∑
k=1

−1

2
λ−βk 〈x, ek〉

2 ≤ −1

2
λ−β1 ‖x‖

2
. (3.4.1)

Moreover, since Q is a compact and positive operator, Dom(A) = Qβ(X) is dense in X, so

A generates a strongly continuous contraction semigroup in X. Let Aα be the part of A in

Hα := HQα , we recall that

Dom(Aα) := {x ∈ Qα(X) ∩Qβ(X) : Ax ∈ Qα(X)}.

By (3.4.1), for any x ∈ Dom(Aα), we have

〈Ax, x〉α = 〈Q−αAx,Q−αx〉 = 〈AQ−αx,Q−αx〉 ≤ −λ−β1 ‖Q−αx‖2 = −1

2
λ−β1 ‖x‖

2
α. (3.4.2)

Since Qα+β(X) is dense in X and Q−α is a closed operator in X, then Qα+β(X) is dense in

Hα, moreover Qα+β(X) = Dom(Aα). Hence A generates a strongly continuous and contraction

semigroup in Hα. We refer to [43, Section 5.4-5.5] for a study of Hypothesis 3.0.1(iv).

In this setting, we stress that by [73, Proposition 2.1.1], the Hypotheses 3.3.4 are verified

when β > 2α.



Chapter 4

Logarithmic Harnack inequalities

for transition semigroups

The first formulation of the Harnack inequality dates back to 1887 and can be found in his seminal

paper [66], and concerns positive harmonic functions. After some partial extensions, the most

important contribution is due to J. Moser [79] which proved the Harnack inequality for positive

(weak) solutions of uniformly elliptic linear equations with bounded coefficients in variational

form. Moser also stresses the usefulness of such kind of estimates to deduce regularity results,

such as the local hölderianity of the solutions. The further passage towards non-linear elliptic

equations was made first by J. Serrin [94] and then by N.S. Trudinger [97] a few years later, and

is based on Moser’s approach.

The first parabolic version of the Harnack inequality is proved separately from J. Hadamard

[65] and B. Pini [87] for positive solutions of the heat equation. Many years later this kind of

estimates have been extended to positive solutions of more general linear parabolic equations by

Moser himself [80]. Hence the extension to almost linear parabolic equations was due to D. G.

Aronson and J. Serrin [7] and N.S. Trudinger [97]. Differently from the elliptic case, however,

the case of operators with non-linear coefficients turned out to be more difficult and remained

unresolved for a long time. In this direction we refer to [45, 46] where an intrinsic Harnack type

inequality was proved for solutions of a large class of nonlinear equations and for operators with

nonlinear coefficients. The techniques used in these latter results were inspired by the method

of E. De Giorgi and J. Nash (see [44, 83]) to show boundedness and regularity for certain classes

of functions (the so-called De Giorgi classes), which contain in particular the solutions of some

elliptic equations.

We refer to [69] and the reference therein for a more in-depth analysis of the Harnack inequal-

ity. In all the quoted results, the formulation of the Harnack inequality allows to compare the

values of a positive solution of some elliptic or parabolic differential equation, at two different

points. All these Harnack inequalities are dimension-dependent and thus they cannot pass to

infinite dimension. A possibility to get the Harnack-type inequality in an infinite dimensional

setting consists in replacing the classical formulation to the dimension-free logarithmic Harnack

Inequality (LHI) firtst introduced by F.-Y. Wang in [99] for the study of diffusion semigroups on
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a Riemannian manifold M . It reads as

(P (t)f)α(x) ≤ (P (t)fα)(x)ec(t)ρ(x,y), t > 0, x, y ∈M (4.0.1)

which holds true for any positive and Borel bounded function f , any α > 1 and some continuous

function c(t). Here ρ is a Riemannian metric on M . Also in the infinite dimensional setting, this

kind of inequality has been used to obtain a lot of results, like some regularizing effects of the

semigroup (see, for example, [38, Proposition 4.1], [92, Corollary 1.2] and [101, Corollary 7.3.14])

as well as some hyperboundedness properties for the semigroup {P (t)}t≥0 (see, for example, [92]

and [100]). We refer to [101] and the reference therein for a discussion of this inequality and its

consequences.

Let X be a real separable Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. Let {W (t)}t≥0

be a X-cylindrical Wiener process defined on a normal filtered probability space (Ω,F, {Ft}t≥0,P).

Let R ∈ L(X), let A : Dom(A) ⊆ X→ X be the infinitesimal generator of a strongly continuous

semigroup etA on X. Let F : Dom(F ) ⊆ X→ X (possibly non linear). We introduce the SPDE{
dX(t, x) =

(
AX(t, x) + F (X(t, x))

)
dt+RdW (t), t > 0;

X(0, x) = x ∈ X.
(4.0.2)

Under suitable hypotheses (4.0.2) has unique generalize mild solution, we denote by P (t) the

transition semigroup associated to 4.0.2 (see Chapter 2). The aim of this chapter consists in

proving a (LHI) similar to (4.0.1), for P (t). To be more precise, in the same spirit as Chapter 3,

we will prove a (LHI) type inequality along HR (see Definition), namely

|P (t)ϕ(x+ h)|p ≤ P (t)|ϕ(x)|pec(t)‖R
−1h‖2 , t > 0, x ∈ X, h ∈ R(X); (4.0.3)

for any bounded and Borel measurable function ϕ : X → R, any p > 1 and some continuous

function c : (0,+∞)→ R. In Section 4.1 we will prove (4.0.3) in the case where the perturbation

F of SPDE (2.0.1) is Lipschitz continuous. In Section 4.2 we will prove (4.0.3) in the case

where F : Dom(F ) ⊆ X → X satisfies a dissipativity hypothesis in HR. The key tool we

use to prove the (LHI) (4.1.16) and (4.2.9) in both cases is an approximation method. In the

Lipschitz continuous case the approximants which allow us to get our estimate are suitable finite

dimensional semigroups which satisfy suitable gradient estimates (see Subsection 4.1.6). On

the other hand, the dissipative case is solved by using a double approximation procedure which

consider a finite dimensional approximation of the Yosida approximants (see Subsection 4.2.1).

Finally in Section 4.3 we will comment the results of this chapter in view of results already

known in the literature. Moreover we will present some consequences of (4.0.3) and some exam-

ples of semigroups which satisfy (4.0.3).

4.1 Logarithmic Harnack inequality: the Lipschitz contin-

uous case

In this section we assume the following hypotheses.
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Hypotheses 4.1.1.

(i) R ∈ L(X) is non-negative.

(ii) A : Dom(A) ⊆ X→ X generates a strongly continuous semigroup etA on X and there exists

wX ∈ R such that A− wXIX is dissipative.

(iii) There exists η ∈ (0, 1), such that for any t > 0 we have∫ t

0

1

sη
Tr[e2sAR2]ds < +∞. (4.1.1)

(iv) F : X → X is a Fréchet differentiable and Lipschitz continuous function with Lipschitz

constant LF .

By Hypotheses 4.1.1(ii-iv), for any for any x, h ∈ X

〈[A+ DF (x)]h, h〉 ≤ ζX‖h‖2, ζX := wX + LF . (4.1.2)

By Hypotheses 4.1.1, Theorem 2.1.13 (with X = E) and Proposition 2.2.4, the stochastic

partial differential equation (4.0.2) admits a unique mild solution {X(t, x)}t≥0 and the family of

operators {P (t)}t≥0 defined as

P (t)ϕ(x) := E[ϕ(X(t, x))], x ∈ X, t ≥ 0, ϕ ∈ Bb(X),

is a semigroup. Moreover by Theorem 2.3.2 and Proposition 2.3.3, for any T > 0, the map

x 7→ {X(t, x)}t∈[0,T ] is Gateaux differentiable as a map from X to X2([0, T ]) and, for any x, y ∈ X,

its Gateaux derivative is the unique mild solution of{
dYx(t, y) = [A+ DF (X(t, x))]Yx(t, y)dt, t > 0;

Yx(0, y) = y,
(4.1.3)

namely, for every x, y ∈ X the process {DGX(t, x)y}t≥0 satisfies the mild form of (4.1.3)

DGX(t, x)y = etAy +

∫ t

0

e(t−s)ADF (X(s, x))DGX(s, x)yds, t ≥ 0. (4.1.4)

Furthermore, by Proposition 2.3.3, for every x, y ∈ X it holds

‖DGX(t, x)y‖ ≤ eζXt‖y‖, t ≥ 0. (4.1.5)

4.1.1 HR-regularity

To study the HR-regularity of the mild solution, we need some additional hypotheses.

Hypotheses 4.1.2. Assume that Hypotheses 4.1.1 hold true. Moreover AR (the part of A in

HR) generates a strongly continuous semigroup etAR in HR and one of the following conditions

hold true:
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1. There exist ε ∈ R, Kε > 0 and γ ∈ (0, 1) such that

etA(X) ⊆ R(X), ‖R−1etA‖L(X) ≤ Kεe
εtt−γ .

2. There exists wR ∈ R such that AR−wRIHR is dissipative in HR, moreover F = RG, where

G : X → R is a Fréchet differentiable and Lipschitz continuous function with Lipschitz

constant LG.

Since AR generates a strongly continuous semigroup etAR in HR, then there exists w0 ∈ R
and K0 > 0 such that

‖etAR‖L(HR) ≤ K0e
w0t. (4.1.6)

The following proposition gives us information about the HR differentiability of the mild

solution.

Proposition 4.1.3. Assume that Hypotheses 4.1.2 hold true. For any T > 0 there exists a

constant CT := CT (A,R, F ) > 0 such that for every t ∈ [0, T ], x ∈ X and h ∈ HR

‖DGX(t, x)h‖R ≤ CT ‖h‖R, P-a.s. (4.1.7)

Moreover for every t > 0, the map x 7→ X(t, x) is P-a.s.. HR-Gateaux differentiable and for any

x ∈ X and h ∈ HR its HR-Gateaux derivative along h ∈ HR is DGX(t, x)h.

Proof. We already know that the statements hold under Hypotheses 4.1.2(1), by Proposition

3.1.4. So it is sufficient consider the case where Hypotheses 4.1.2(2) hold. All the calculations in

this proof will hold P-a.e. Let T > 0, t ∈ [0, T ], x ∈ X and h ∈ HR. By (4.1.4) we have

‖DGX(t, x)h‖R ≤ ‖e
tARh‖R +

∫ t

0

‖R−1e(t−s)ADF (X(s, x))DGX(s, x)h‖ds

By the Lipschitz continuity of F , Hypotheses 4.1.2(1), (4.1.5) and (4.1.6) we have

‖DGX(t, x)h‖R ≤ K0e
w0t‖h‖R +KεLF ‖R‖L(X)‖h‖R

∫ t

0

e(ζX+ε)s

(t− s)γ
ds

= K0e
w0t‖h‖R +KεLF ‖R‖L(X)‖h‖R

∫ t

0

e(ζX+ε)(t−s)

sγ
ds. (4.1.8)

Let 0 < t0 < min(1, t), by (4.1.8), we have

‖DGX(t, x)h‖R ≤ K0e
w0t‖h‖R +KεLF ‖R‖L(X)‖h‖Re

(ζX+ε)t

(∫ t0

0

1

sγ
ds+

∫ t

t0

e−(ζX+ε)sds

)
≤
[
K0e

w0t +KεLF ‖R‖L(X)

(
e(ζX+ε)t

1− γ
+
e(ζX+ε)(t−t0) − 1

ζX + ε

)]
‖h‖R
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So (4.1.7) is verified with

CT := sup
t∈[0,T ]

{
K0e

wRt +KεLF ‖R‖L(X)

(
t0e

(ζX+ε)t

1− γ
+
e(ζX+ε)(t−t0) − 1

ζX + ε

)}
.

Now we prove the moreover part of the proposition. First of all we prove that for any fixed t > 0,

x ∈ X and h ∈ HC , the function ϕx,h : R→ X defined as

ϕx,h(r) := X(t, x+ rh)−X(t, x),

is HC-valued. Some standard calculations give

ϕx,h(r) = retAh+

∫ t

0

e(t−s)A[F (X(s, x+ rh))− F (X(s, x))
]
ds, r > 0.

for every r ∈ [0, t], it holds

‖ϕx,h(r)‖R =

∥∥∥∥retARh+

∫ t

0

e(t−s)A[F (X(s, x+ rh))− F (X(s, x))
]
ds

∥∥∥∥
R

≤ ‖retARh‖R +

∥∥∥∥∫ t

0

e(t−s)A[F (X(s, x+ rh))− F (X(s, x))
]
ds

∥∥∥∥
R

≤ rK0e
w0t‖h‖R +

∫ t

0

∥∥e(t−s)A[F (X(s, x+ rh))− F (X(s, x))
]∥∥
R
ds

≤ rK0e
w0t‖h‖R +

∫ t

0

∥∥R−1e(t−s)A[F (X(s, x+ rh))− F (X(s, x))
]∥∥ds

≤ rK0e
w0t‖h‖R +

∫ t

0

‖R−1e(t−s)A‖L(X)‖F (X(s, x+ rh))− F (X(s, x))‖ds,

By (2.1.23) and Hypotheses 4.1.2(ii-1) we have

‖ϕx,h(r)‖R ≤ rK0e
w0t‖h‖R + r‖h‖

∫ t

0

Kεe
ε(t−s)(t− s)−γds

≤ rK0e
w0t‖h‖R + rKε‖h‖

(
t1−γ

1− γ

)
sup
s∈[0,t]

(esε).

So ϕx,h is R(X)-valued.

Since DX(t, x) ∈ L(HR) for every x ∈ X and t > 0, to conclude the proof we just need to

check that (3.1.4) holds. Let x ∈ X, h ∈ R(X) and t, r > 0. Then

E
[∥∥∥∥1

r
ϕx,h(r)−DGX(t, x)h

∥∥∥∥
R

]
= E

[∥∥∥∥∫ t

0

R−1e(t−s)A
(
F (X(s, x+ rh))− F (X(s, x))

r
−DF (X(s, x))DGX(s, x)h

)
ds

∥∥∥∥] .
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By Hypotheses 4.1.2(1) we obtain

E
[∥∥∥∥1

r
ϕx,h(r)−DGX(t, x)h

∥∥∥∥
R

]
≤ Kε

∫ t

0

eε(t−s)

(t− s)γ
E
[∥∥∥∥F (X(s, x+ rh))− F (X(s, x))

r
−DF (X(s, x))DGX(s, x)h

∥∥∥∥] ds.
Recalling that F is Fréchet differentiable and Lipschitz continuous, recalling (2.1.23) and γ ∈
(0, 1), we apply the Dominated Convergence theorem and we get

lim
r→0

E
[∥∥∥∥1

r
ϕx,h(r)−DGX(t, x)h

∥∥∥∥
R

]
= 0,

which concludes the proof.

Remark 4.1.4. If we assume that there exists ζ < 0 verifying (4.1.2) then the computations of

Proposition 4.1.3 yield that there exists C > 0 such that CT ≤ C, for any T > 0.

4.1.2 Finite dimensional approximating

A key tool to prove the (LHI) stated in Theorem 4.1.9 is a finite-dimensional approximation

procedure which allows us to approximate the transition semigroup {P (t)}t≥0 by means of a

sequence of transition semigroups {Pn(t)}t≥0 associated to suitable finite-dimensional stochastic

differential equations. The idea of such approximation comes from [38]. Here, for the sake of

completeness and to point out the minimal assumptions needed for such kind of procedure, we

recall it and we provide a proof of the main approximation result (Proposition 4.1.6).

We need one more assumption.

Hypotheses 4.1.5. Assume that HR is dense in X and that there exists a sequence of A-invariant

and R-invariant finite dimensional subspaces Xn ⊆ Dom(AR) such that
⋃∞
n=1 Xn is dense in HR.

Hypotheses 4.1.5 hold true for instance, if A is a self-adjoint positive operator and R admits a

continuous inverse R−1 ∈ L(X) or if A and R are simultaneously diagonalizable.

In view of Hypothesis 4.1.5 we can consider {ek}k∈N ∈ Dom(AR) such that for any n ∈ N

Xn = span{e1, . . . , en},

and the family {ek | k ∈ N} is an orthonormal basis of HR. Further, let πn : X → Xn be

the orthogonal projection with respect to (X, 〈·, ·〉), for any n ∈ N we define An : X → Xn,

Rn : X→ Xn and Fn : X→ Xn by

An := πnAπn(= Aπn), Rn := πnRπn(= Rπn) and Fn := πnFπn

Now, fix n ∈ N and consider{
dXn(t) = [AnXn(t) + Fn(Xn(t))]dt+RndWn(t), t > 0,

Xn(0) = x ∈ Xn.
(4.1.9)
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Here Wn(t) := πnW (t) =
∑n
k=1〈W (t), ek〉ek.

It is straightforward to see that An, Rn and Fn satisfy Hypotheses 4.1.1. Moreover, being R

an injective operator it follows that Rn is bijective hence RnXn = Xn for any n ∈ N. Therefore,

fixed x ∈ Xn, by Theorem 2.1.13 we can deduce existence and uniqueness of a mild solution

{Xn(t, x)}t≥0 of (4.1.9) and consequently well-posedness for the associated transition semigroup

defined for f ∈ Bb(Xn) as

Pn(t)f(x) := E[f(Xn(t, x))], t > 0, x ∈ Xn. (4.1.10)

We recall that for any n ∈ N and ϕ ∈ C2
b (Xn) we have

lim
t→0

P (t)ϕ(x)− ϕ(x)

t
= Nnϕ(x), x ∈ Xn,

where

Nnϕ(x) =
1

2
Tr[R2

nD
2ϕ(x)] + 〈Anx+ Fn(x), Dϕ(x)〉. (4.1.11)

Now we are able to state the main finite-dimensional approximation result.

Proposition 4.1.6. Assume that Hypotheses 4.1.2 and 4.1.5 hold true. For any f ∈ Cb(X),

t ≥ 0 and x ∈ Xn0
, for some n0 ∈ N, it holds

lim
n→+∞

Pn(t)f(x) = P (t)f(x).

Proof. Let {X(t, x)}t≥0 be the unique mild solution of (4.0.2). For any t ≥ 0, we set Z(t) :=

X(t) −WA(t), where {WA(t)}t≥0 is the stochastic convolution process. For any fixed x ∈ Xn0

the process {Z(t)}t≥0 is the unique mild solution of{
dZ(t) = (AZ(t) + F (Z(t) +WA(t)))dt, t > 0;

Z(0) = x,

and it satisfies

E

[
sup
t∈[0,T ]

‖Z(t)‖2
]
< +∞

Since

E

[
sup
t∈[0,T ]

‖WA(t)‖2
]
< +∞,

by the dominated convergence theorem it is easy to see that πnWA(t) converges to WA(t) in

L2(Ω,P), as n tends to infinity.

Setting Wn(t) := πnW (t) and

WAn(t) :=

∫ t

0

e(t−s)AnRndWn(s), t ≥ 0,
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then the process Zn(t) := Xn(t, x)−WAn(t) (n ≥ n0) satisfies{
dZn(t) = (AnZn(t) + Fn(Zn(t) +WAn(t)))dt, t > 0;

Zn(0) = x.

Now we split the proof in two steps. In the first one we show that WAn(t)−WA(t) converges to

0 in L2((Ω,F,P); (X,B(X))) and that, consequently ‖Zn(t)‖ is uniformly bounded with respect

to n. In the second one we complete the proof.

S tep 1. Using that etA|Xn
= etAn for every t ≥ 0 we write

WA(s)−WAn(s) =

∫ s

0

e(s−r)A(R− πnRπn)dW (r), s ∈ [0, T ].

By the Itô formula we obtain

E(‖WA(s)−WAn(s)‖2) =

∫ s

0

∥∥∥e(s−r)A(R− πnRπn)
∥∥∥2

L(X)
dr

and since the integrand converges to zero as n → ∞ uniformly with respect to r ∈ (0, s),

by the dominated convergence theorem we get the claim. Now, scalarly multiplying dZn(t) =

(AnZn(t)+Fn(Zn(t)+WAn(t)))dt by Zn(t) and using the Hypotheses 4.1.1 with A and F replaced

by An and Fn we deduce

1

2

d

dt
‖Zn(t)‖2 =〈AnZn(t) + Fn(Zn(t) +WAn(t)), Zn(t)〉

=〈AnZn(t) + Fn(Zn(t) +WAn(t))± Fn(WAn(t)), Zn(t)〉

≤ζX‖Zn(t)‖2 + 〈Fn(WAn(t)), Zn(t)〉

≤
(
ζX +

1

2

)
‖Zn(t)‖2 +

1

2
‖Fn(WAn(t))‖2

≤
(
ζX +

1

2

)
‖Zn(t)‖2 +M2−1

(
1 + ‖WAn(t)‖2

)
, t > 0.

The Gronwall lemma and the uniform boundedness of ‖WAn(t)‖ with respect to n allows to

deduce that ‖Zn(t)‖ is uniformly bounded with respect to n.

S tep 2. To conclude the proof we show that Zn(t)−Z(t) converges to 0 in L2((Ω,F,P); (X,B(X)))

as n → ∞. This will imply that Xn(t, x) converges to X(t, x) in L2((Ω,F,P); (X,B(X))) as

n→∞, by (4.1.10) we will conclude. By Hypothesis 4.1.5 we have

d(Z(t)− Zn(t)) = (AZ(t)−AnZn(t) + F (X(t, x))− Fn(Xn(t, x)))dt

= (A(Z(t)− Zn(t)) + F (X(t, x))− Fn(Xn(t, x)))dt, t > 0;

so, scalarly multiplying by Z(t)− Zn(t) we get

1

2

d

dt
‖Z(t)− Zn(t)‖2 =〈(A(Z(t)− Zn(t)) + F (X(t, x))− Fn(Xn(t, x))), Z(t)− Zn(t)〉

=〈(A(Z(t)− Zn(t)) + F (Z(t) +WA(t))
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− Fn(Zn(t) +WAn(t))), Z(t)− Zn(t)〉.

Adding and subtracting F (Zn(t) + WA(t)) and F (Zn(t) + WAn(t)) and using Hypotheses 4.1.1

we obtain

1

2

d

dt
‖Z(t)− Zn(t)‖2 ≤ ζX‖Z(t)− Zn(t)‖2

+ 〈F (Zn(t) +WA(t))− F (Zn(t) +WAn(t)), Z(t)− Zn(t)〉

+ 〈F (Zn(t) +WAn(t))− πnF (Zn(t) +WAn(t)), Z(t)− Zn(t)〉

≤ ζX‖Z(t)− Zn(t)‖2

+ ‖F (Zn(t) +WA(t))− F (Zn(t) +Wn(t))‖‖Z(t)− Zn(t)‖

+ ‖(IdX − πn)F (Zn(t) +WAn(t))‖‖Z(t)− Zn(t)‖

≤ ζX‖Z(t)− Zn(t)‖2 + LF ‖WA(t)−WAn(t)‖‖Z(t)− Zn(t)‖

+
1

2
‖(IdX − πn)F (Zn(t) +WAn(t))‖2 +

1

2
‖Z(t)− Zn(t)‖2

≤ (ζX + 1)‖Z(t)− Zn(t)‖2 +
1

2
L2
F ‖WA(t)−WAn(t)‖2

+
1

2
‖(IdX − πn)F (Zn(t) +WAn(t))‖2.

where in the last two lines we have used the Young inequality. Integrating over [0, t], we obtain

1

2
‖Z(t)− Zn(t)‖2

≤
∫ t

0

(
ζX +

1

2

)
‖Z(s)− Zn(s)‖2 + ‖F (X(s))− F (Xn(s))‖2 + ‖(1− πn)F (Xn(s))‖2ds

≤
∫ t

0

(
ζX +

1

2
+ 2L2

F

)
‖Z(s)− Zn(s)‖2 + 2L2

F ‖WA(s)−Wn(s)‖2 + ‖(1− πn)F (Xn(s))‖2ds.

Applying again the Gronwall lemma we obtain

‖Z(t)− Zn(t)‖2 ≤L2
F e

2(ζX+1)t

∫ t

0

‖WA(s)−WAn(s)‖2ds

+ e2(ζX+1)t

∫ t

0

‖(IdX − πn)F (Zn(s) +WAn(s))‖2ds (4.1.12)

and using the results in Step 1 we infer that the right hand side of (4.1.12) vanishes as n→∞,

concluding the proof.

We point out that the assumption of R-invariance of Xn can be dropped in order to prove

Proposition 4.1.6. However it is essential to apply the results in the previous sections to the

finite-dimensional approximating operators. Indeed, assuming Hypotheses 4.1.5, it is easy to see

that if A,R and F satisfy Hypotheses 4.1.2(1) then An, Rn and Fn satisfy them as well with the

same constants. So all the results of the previous sections hold true even for the mild solution of

(4.1.9) and for the semigroup in (4.1.10). In particular for every h ∈ HRn

‖DGXn(t, x)h‖Rn ≤ CT ‖h‖Rn , for x ∈ Xn and P-a.e., (4.1.13)



4.1. Logarithmic Harnack inequality: the Lipschitz continuous case 88

where CT is the constant given by Proposition 4.1.3.

4.1.3 Proof of the LHI

The next result is a gradient estimate which is interesting in its own, and it is a fundamental

tool to prove Theorem 4.1.9.

Theorem 4.1.7. Assume that Hypotheses 4.1.2 and 4.1.5 hold true. Then for every ϕ ∈ C1
b (X)

and T > 0 it holds that P (t)ϕ is Fréchet differentiable and we have

‖DRP (t)ϕ(x)‖R ≤ CT (P (t)‖DRϕ‖R)(x), x ∈ X, t ∈ [0, T ], (4.1.14)

and

‖DRnPn(t)ϕ(x)‖Rn ≤ CT (P (t)‖DRnϕ‖Rn)(x) x ∈ X, t ∈ [0, T ], (4.1.15)

where CT is the constant given by Proposition 4.1.3.

Proof. We only prove estimate (4.1.14) since (4.1.15) can be obtained similarly using (4.1.13)

instead of (4.1.7). If ϕ belongs to C1
b (X), then, by (4.1.5), Corollary 3.1.6 and [86, Fact 1.13(b),

p. 8], P (t)ϕ is also Fréchet differentiable. Using Proposition 3.1.3 we get that P (t)ϕ is HR-

Fréchet differentiable. By Proposition 4.1.3 and Corollary 3.1.6 for every T > 0 t ∈ [0, T ], x ∈ X

and h ∈ HR we have

〈DRP (t)ϕ(x), h〉R = 〈DRE[ϕ(X(t, x)), h〉R
= E

[
〈DRϕ(X(t, x)),DGX(t, x)h〉R

]
≤ E

[
‖DRϕ(X(t, x))‖R‖DGX(t, x)h‖R

]
≤ CT ‖h‖R(P (t)‖DRϕ‖R)(x).

Now (4.1.14) follows by a standard argument.

We recall a version of the monotone class theorem that we will use in the next proof.

Theorem 4.1.8 (Theorem 6.3 of [89]). Let M be a class of bounded functions from a set Ω to

R and let H be a vector space of functions such that M ⊆ H. If

(i) M is closed under multiplication, i.e. if f, g ∈M, then fg ∈M;

(ii) H contains the constant functions;

(iii) for any sequence {fn}n∈N ⊆ H such that if

0 ≤ f1 ≤ f2 ≤ f3 ≤ · · ·

and the pointwise limit f of {fn}n∈N is bounded, then f belongs to H;

then H contains all bounded σ(M)-measurable functions from Ω to R, where

σ(M) := {f−1(B) |B ∈ B(X), f ∈M}.
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We have all the results we need to prove Theorem 4.1.9.

Theorem 4.1.9. Assume that Hypotheses 4.1.2 and 4.1.5 hold true, then for any T > 0, ϕ ∈
Bb(X), t ∈ [0, T ], x ∈ X, h ∈ HR and p > 1 it holds

|(P (t)ϕ)(x+ h)|p ≤ (P (t)|ϕ|p)(x) exp

(
pC2

T

t(p− 1)
‖h‖2R

)
, (4.1.16)

where CT is the constant given by Proposition 4.1.3.

Proof. Fix n, n0 ∈ N with n > n0 and x, h ∈ Xn0
. We claim that estimate (4.1.16) holds true

with P (t), C, X and ϕ replaced respectively by Pn(t), Cn, Xn and f ∈ FC2
b (X) with positive

infimum. To this aim, fix ε > 0 and f ∈ FC2
b (X) be such that infx∈X f(x) > ε. We set

gn(r, x) := Pn(r)f(x), x ∈ Xn0 , r ≥ 0,

We note that the function gn : [0, T ]× Xn0
→ R belongs to C1,2([0, T ]× Xn0

) and solves{
Drgn(r, x) = Nngn(r, x), r > 0;

gn(0, x) = f(x),

where Nn is the operator defined by (4.1.11). Moreover gn(r, x) ≥ ε for any r ≥ 0 and x ∈ Xn0

(see [72, Theorem 1.2.5]). Now fix t > 0 and consider the function

Gn(r) := (Pn(t− r)gpn(r, ·))
(
x+ rt−1h

)
, r ∈ [0, t], x, h ∈ Xn0

.

For the sake of simplicity we let ψh(r) := x+ rt−1h. We differentiate the map r 7→ ln(G(r)).

d

dr
lnGn(r) = (Gn(r))−1Pn(t− r)

(
−Nng

p
n(r, ·) +Drg

p
n(r, ·)

)
(ψh(r))

+ (tGn(r))−1〈DPn(t− r)gpn(ψh(r)), h〉.

where we used that the semigroup and its generator commute on smooth functions. A straight-

forward computation yields that

−Nngpn +Drg
p
n = −p(p− 1)gp−2

n ‖C1/2
n Dgn‖2Xn

whereas by estimate (4.1.15) we infer

〈DPn(t− r)gpn,n0
(r, ψh(r)), h〉 = 〈RnDPn(t− r)gpn,n0

(r, ψh(r)), Rnh〉

≤ CT ‖Rnh‖XnPn(t− r)
[
pgp−1
n,n0

(r, ·)‖RnDgn,n0
(r, ·)‖Xn

]
(ψh(r)).

Hence we obtain

d

dr
lnG(r) ≤ 1

G(r)
Pn(t− r)[−p(p− 1)gpn,n0

(r, ·)(−v2 + βv)](ψh(r))
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where

v := g−1
n (r, ψh(r))‖RnDg(r, ψh(r))‖Xn , β :=

CT
t(p− 1)

‖Rnh‖Xn .

The elementary inequality a2 − ab + 4−1b2 ≥ 0 which holds true for any a, b ∈ R allows us to

estimate −v2 + βv ≤ β2 and, consequently, by the positivity of Pn(t), we get

d

dr
lnG(r) ≤

pC2
T ‖Rnh‖2Xn

t2(p− 1)G(r)
Pn(t− r)[gpn,n0

(r, ·)](ψh(r)) =
pC2

T

t2(p− 1)
‖Rnh‖2Xn .

whence, integrating from 0 to t with respect to r we obtain

|(Pn(t)f)(x+ h)|p ≤ (Pn(t)|f |p)(x) exp

(
pC2

T

t(p− 1)
‖h‖2Rn

)
, t > 0,

for any f ∈ FC2
b (X) with positive infimum, x, h ∈ Xn. The estimate above continues to hold

replacing f by |f | for a general f ∈ FC2
b (X). This can be obtained approximating pointwise the

function |f | by the sequence fn = (f2 + n−1)1/2 and using the dominated convergence theorem.

Further, the Jensen inequality yields that

|(Pn(t)f)(x+ h)|p ≤ (Pn(t)|f |p)(x) exp

(
pC2

T

t(p− 1)
‖h‖2Rn

)
, t > 0,

for any f ∈ FC2
b (X), x ∈ Xn. Proposition 4.1.6 and the fact that ‖h‖Rn converges to ‖h‖R for

any h ∈ HR as n→∞ imply that

|(P (t)f)(x+ h)|p ≤ (P (t)|f |p)(x) exp

(
pC2

T

t(p− 1)
‖h‖2R

)
, t > 0, (4.1.17)

for any f ∈ FC2
b (X) and x, h ∈

⋃
i∈N Xi (recall that R

1/2
n Xn = Xn for any n ∈ N). Since FC2

b (X)

is dense in Cb(X) with respect to the mixed topology (see [62, Lemma 2.6 and Theorem 4.1(b)]),

then (4.1.17) is verified for any f ∈ Cb(X).

Now we claim that estimate (4.1.17) can be extended to any x ∈ X and h ∈ HR. To this aim,

thanks to Hypothesis 4.1.5 we can consider two sequences (xn)n∈N and (hm)m∈N belonging to⋃
i∈N Xi converging respectively to x in X and h in HR as n,m→∞ (recall that, by Hypotheses

4.1.5, HR is dense in X). Writing (4.1.17) with x and h being replaced by xn and hm we deduce

|(P (t)f)(xn + hm)|p ≤ (P (t)|f |p)(xn) exp

(
pC2

T

t(p− 1)
‖hm‖2R

)
, t > 0, f ∈ Cb(X).

By the continuity of the map x 7→ P (t)f(x), we get the claim.

Finally, we let M = Cb(X) and let H be the biggest closed vector space in (Bb(X), ‖ · ‖∞) whose

elements satisfy estimate (4.1.17) for any x ∈ X and h ∈ HC . Observe that the hypotheses

of Theorem 4.1.8 are satified ((iii) follows by the monotone convergence theorem) and so we

conclude that (4.1.17) holds true for any f ∈ Bb(X) as well.
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4.2 Logarithmic Harnack inequality: the dissipative case

The aim of this section is proving some (LHI) when no hypotheses of global Lipschitzianity for

F is done but only some m-dissipativity along HR. The main tool is again an approximation

procedure this time using the Yosida approximants.

Hypotheses 4.2.1. Assume that Hypotheses 2.1.1 hold true, R is non-negative and there exists

ζF ∈ R such that F − ζF IX is m-dissipative.

Remark 4.2.2. Since F − ζF IX : X→ X is dissipative then by Hypotheses 2.1.1(iv) there exists

ζA ∈ R such that A− ζAIX is dissipative.

Under Hypotheses 2.1.1, by Propositions 2.2.1 2.2.4 and Corollary 2.2.5, for any x ∈ X, the

SPDE (4.0.2) has unique generalized mild solution {X(t, x)}t≥0, we denote by P (t) the transition

semigroup associated to (4.0.2).

4.2.1 The Yosida approximating

Let {Fδ}δ>0 be the Yosida approximations of F defined in Proposition 1.11.1. For every δ > 0

and x ∈ X the we consider the SPDE{
dXδ(t, x) =

[
AXδ(t, x) + Fδ(Xδ(t, x))

]
dt+RdW (t), t > 0;

Xδ(0, x) = x.
(4.2.1)

by Theorem 2.1.13 (with X = E) and Lemma 1.11.1, (4.2.1) has a unique mild solution

{Xδ(t, x)}t≥0. Moreover by (2.1.22) and (1.11.4), for any p ≥ 1 there exists Cp, κp > 0 such that,

for any δ > 0, x ∈ E and t > 0 we have P-a.e.

‖Xδ(t, x)‖pE ≤ Cp
(
e−κpt‖x‖pE + ‖WA(t)‖pE +

∫ t

0

e−κp(t−s) (‖F (WA(s))‖pE + ‖WA(s)‖pE) ds

)
.

(4.2.2)

We denote by Pδ(t) the transition semigroup associated to (4.2.1).

The following proposition is the approsimation result we need to prove Theorem 4.2.9.

Proposition 4.2.3. If Hypotheses 2.1.1 hold true, then for any T > 0, ϕ ∈ Cb(X) and x ∈ E

lim
δ→0

sup
t∈[0,T ]

‖Xδ(t, x)−X(t, x)‖E = 0, P-a.s.; (4.2.3)

lim
δ→0
|Pδ(t)ϕ(x)− P (t)ϕ(x)| = 0, t > 0. (4.2.4)

Proof. First of all let us observe that (4.2.4) immediately follows by (4.2.3). Therefore we just

prove (4.2.3). To this aim we start pointing out that (4.2.2) implies that the function (t, x) 7→
‖Xδ(t, x)‖E , as a map from [0, T ] × E into R, is bounded by a positive constant C = C(T, x)

independent of δ. This fact, together with estimates (4.2.2) and (1.11.3) implies that for any
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δ > 0, x ∈ E and T > 0

K(T, x) := sup
t∈[0,T ]

(‖Jδ(Xδ(t, x))‖E + ‖Xδ(t, x)‖E + ‖X(t, x)‖E) < +∞ (4.2.5)

and K(T, x) is independent of δ.

Now if L := L(x, T ) > 0 denotes the Lipschitz constant of the restriction of F to the ball

B(0,K(T, x)) (see Hypotheses 2.1.1(iii)), then we have

‖Fδ(Xδ(t, x))− F (X(t, x))‖E = ‖F (Jδ(Xδ(t, x)))− F (X(t, x))‖E
≤ L‖Jδ(Xδ(t, x))−X(t, x)‖E
≤ L‖Jδ(Xδ(t, x))−Xδ(t, x)‖E + L‖Xδ(t, x)−X(t, x)‖E . (4.2.6)

By (1.11.3), (4.2.5) and (4.2.6) we can conclude that

‖Fδ(Xδ(t, x))− F (X(t, x))‖E ≤ δM
′ + L‖Xδ(t, x)−X(t, x)‖E . (4.2.7)

for some positive M ′ = M ′(K,M,L,m, ζF ). Thus, by using the definition of mild solution and

estimate (4.2.7) we obtain

‖Xδ(t, x)−X(t, x)‖E ≤ δM0M
′
∫ t

0

e(t−s)η0ds+M0L

∫ t

0

e(t−s)η0‖Xδ(t, x)−X(t, x)‖Eds.

Applying the Gronwall lemma we complete the proof.

Let HR := R(X) be the Hilbert space defined in Section 3.1, as announced we need an

additional assumption of dissipativity on F .

Hypotheses 4.2.4. Assume that Hypotheses 4.2.1 hold true, that F (Dom(F ) ∩HR) ⊆ HR and

F|HR − ζF IdHR is m-dissipative, where F|HR : Dom(F|HR ) = Dom(F ) ∩HR ⊆ HR → HR.

By Corollary 1.11.2 we have the following result

Corollary 4.2.5. Assume that Hypotheses 4.2.4 hold true. For any 0 < δ < |ζF |−1
, Fδ − ζF IX

is dissipative as a function from HR to HR.

4.2.2 Proof of the LHI

We want to prove a result similar to Theorem 4.1.9, to do so we need an approximating sequence

as the one in Proposition 4.1.6 and an estimate similar to (4.1.15). However to prove this estimate

we have to assume a stronger hypothesis than Hypotheses 4.1.5.

Hypotheses 4.2.6. HR is dense in X. There exists a basis {ek}k of HR consisting of eigenvec-

tors of A, moreover R is diagonalizable with respect to this basis.

Remark 4.2.7. Hypotheses 4.2.6 imply Hypotheses 4.1.5, indeed we can set

Xn := span{e1, ..., en}.
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We assume that Hypotheses 4.2.4 and 4.2.6 hold. For any 0 < δ < |ζF |−1
and n ∈ N, let Pδ,n

be the transition semigroup of equation{
dXδ,n(t) =

(
AnXδ,n(t) + Fδ,n(Xδ,n(t))

)
dt+RndWn(t), t > 0,

Xδ,n(0) = z.
(4.2.8)

See Section 4.1.2 for the definitions of An, Rn and Fn.

Lemma 4.2.8. Assume Hypotheses 4.2.4 and 4.2.6 hold true. For any 0 < δ < |ζF |−1
, n ∈ N,

t > 0, f ∈ FC1
n,b(X) (see Remark 1.6.16) and x ∈ Xn we have

‖DRnPδ,n(t)f(x)‖Rn ≤ etζRPδ,n(t)(‖DRnf‖Rn)(x),

where ζR = ζA + ζF (see Hypotheses 4.2.1 and Remark 4.2.2).

Proof. We fix n ∈ N and 0 < δ < |ζF |−1
. Let {Xn(t, x)}t≥0 and {Yn(t, y)}t≥0 be the mild

solutions of (4.2.8) with initial datum x and y respectively. We assume that {X(t, x)}t≥0 and

{Y (t, y)}t≥0 are strict solutions of (4.2.8), otherwise we proceed as in Proposition 2.1.7 approxi-

mating them by means of a sequence of more regular processes. For any t ≥ 0 we have

d‖X(t, x)− Y (t, y)‖2Rn = 〈A (X(t, x)− Y (t, y)) , X(t, x)− Y (t, y)〉Rn
+ 〈Fn(X(t, x))− Fn(Y (t, y)), X(t, x)− Y (t, y)〉Rn .

Xn is finite dimensional space and the operators A and R are diagonalizable with respect to the

same basis, so they commute. Hence by Hypotheses 4.2.1 and Remark 4.2.2 for any t ≥ 0 we

have

d‖X(t, x)− Y (t, y)‖2Rn ≤ ζR‖X(t, x)− Y (t, y)‖2Rn ,

where ζR = ζA + ζF . By the Gronwall inequality, for any t ≥ 0 and x, y ∈ Xn we obtain

‖X(t, x)− Y (t, y)‖Rn ≤ e
tζR‖x− y‖2Rn .

Therefore, for any f ∈ FC1
n,b(X), t ≥ 0 and x ∈ Xn we have

‖DRnPδ,n(t)f(x)‖Rn = lim sup
y→x

|Pδ,n(t)f(x)− Pδ,n(t)f(y)|
‖x− y‖Rn

= lim sup
y→x

(
|Pδ,n(t)f(x)− Pδ,n(t)f(y)|
‖X(t, x)− Y (t, y)‖Rn

)(
‖X(t, x)− Y (t, y)‖Rn

‖x− y‖Rn

)
≤ etζRPδ,n(t)‖DRnf(x)‖Rn .

We now have all the results we need to prove Theorem 4.2.9.
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Theorem 4.2.9. Assume that Hypotheses 4.2.4 and 4.2.6 hold true. Then for any ϕ ∈ Bb(X),

t > 0, x ∈ X and p > 1 we have

|(P (t)ϕ)(x+ h)|p ≤ (P (t)|ϕ|p) exp

(
pe2tζR

t(p− 1)
‖h‖2R

)
, h ∈ HR ∩ E. (4.2.9)

Proof. Using Lemma 4.2.8 by the same proof of Theorem 4.1.9 we obtain

|(Pδ(t)ϕ)(x+ h)|p ≤ (Pδ(t)|ϕ|p)(x) exp

(
pe2tζR

t(p− 1)
‖h‖2R

)
. (4.2.10)

for any 0 < δ < |ζF |−1
, p > 1, t > 0, ϕ ∈ Cb(X), x ∈ X and h ∈ HR. Now, using formula (4.2.4)

and letting δ → 0 in (4.2.10) we get

|(P (t)ϕ)(x+ h)|p ≤ (P (t)|ϕ|p)(x) exp

(
pe2tζR

t(p− 1)
‖h‖2R

)
. (4.2.11)

for any p > 1, t > 0, ϕ ∈ Cb(X), x ∈ E and h ∈ HR ∩ E. Using the fact that E is densely

embedded in X and the continuity of P (t)ϕ we can extend estimate (4.2.11) to any x ∈ X. Finally,

using the monotone class theorem as in the proof of Theorem 4.1.9 we complete the proof.

Remark 4.2.10. We point out that if HR ∩ E is dense in HR, then the (LHI) in (4.2.9) holds

true for any h ∈ HR.

4.3 Remarks and examples

This chapter is a reworked version of [4]. Estimates like (4.0.1) for the transition semigroups of

equations similar to (4.0.2) can be found for instance in [38, 56, 67, 76, 93, 102]. In all the quoted

papers two different sets of assumptions for A,F and R are made in order to get inequalities like

(4.0.1).

In [38, 102, 67, 76] it is required that R admits continuous and bounded linear inverse. In

[67, 76] it is assumed that RR∗ is invertible, while in [56] the authors restrict themselves to

consider as R the identity operator.

In [93] it is not assumed that R−1 is linear and bounded. However the function F is Lipschitz

continuous and it satisfies the following dissipativity type condition:

〈F (x)− F (y), R−2(x− y)〉 ≤ ζ‖R−1(x− y)‖, x− y ∈ R(X).

for some ζ ∈ R.

In this chapter it is never assumed that R−1 is linear and bounded. Moreover in Subsection

4.2.2 we proved the same result in [93] without assuming that F is Lipschitz continuous, so, in

this sense, this chapter generalizes the results contained in [38, 56, 67, 76, 93, 102].

Now we will see some consequences of the logaritmic Harnack inequalities and some examples

of A, R and F that verify our hypotheses.
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4.3.1 Consequences of the logaritmic Harnack inequalities

We start by stating and proving some classical consequences of the (LHI) for which we refer to

[93, Corollary 1.2] and [101, Section 1.3.1]. In this subsection we assume that P (t) has a invariant

probability measure µ. Sufficient conditions that guarantee the existence of such a measure can

be found in the next chapter (Theorem 5.1.3) or in [20, Chapter 8], [41, Chapter 6] and [43,

Chapter 11]. In this case, for any p ≥ 1, P (t) is uniquely extendable to a strongly continuous

and contraction semigroup in Lp(X, µ) =: Lpµ (see Section 5.1), we still denote it by P (t). For

simplicity we write µ(f) to denote
∫
X
fdµ.

Corollary 4.3.1. Assume that Hypotheses 4.2.4 and 4.2.6 hold true.

(i) For any positive f ∈ Bb(X), t > 0, x ∈ X and h ∈ HR ∩ E

[P (t)(ln f)](x+ h) ≤ lnP (t)f(x) +
e2tζR

t
‖h‖2R. (4.3.1)

(ii) For every f ∈ Bb(X) and x ∈ X it holds

lim
‖h‖R→0
h∈HR∩E

P (t)f(x+ h) = P (t)f(x). (4.3.2)

(iii) The following entropy-cost inequality holds true

µ((P ∗(t)f) ln(P ∗(t)f)) ≤ e2tζR

t
W (fµ, µ)2,

for any positive function f ∈ Bb(X) such that µ(f) = 1. Here {P ∗(t)}t≥0 is the adjoint

semigroup of {P (t)}t≥0 in L2
µ and W denotes the L2-Wasserstein distance with respect to

the cost function (x, y) 7→ ‖x− y‖R, namely for any two probability measure µ1, µ2 on X

W (µ1, µ2)2 := inf

{∫
X×X

‖x− y‖2Cπ(dx, dy)

∣∣∣∣π ∈ C (µ1, µ2)

}
,

where C (µ1, µ2) is the set of all the couplings of µ1 and µ2 and we let ‖x− y‖C = +∞, if

x− y does not belong to HR ∩ E.

Proof. A proof of (i) can be found in [101, Section 1.3.1]. We now prove (ii). It suffices to

prove (4.3.2) for a non-negative function f ∈ Bb(X). Indeed the general case can be obtained

writing f = f+ − f−, being f+ and f− the positive and the negative part of f . So, let us fix a

non-negative function f and for any ε > 0 we set fε := 1 + εf . Recalling that r ≤ ln(1 + r) + r2

for any r ≥ 0 we get for every x ∈ X

ln fε(x) = ln(1 + εf(x)) ≥ εf(x)− ε2f2(x) ≥ εf(x)− ε2‖f‖2∞. (4.3.3)

Now applying (4.3.1) to fε, using (4.3.3) and dividing by ε we get for every x ∈ X and h ∈ HR∩E

P (t)f(x+ h)− ε‖f‖2∞ ≤
1

ε
lnP (t)(1 + εf(x)) +

e2tζR

εt
‖h‖2R. (4.3.4)
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Taking the supremum limit as ‖h‖R → 0 with h ∈ HR ∩ E and then letting ε→ 0 we get

lim sup
‖h‖R→0
h∈HR∩E

P (t)f(x+ h) ≤ P (t)f(x).

Recalling that ln(1 + r) ≤ r for any r > −1 and arguing as above we get that for any ε > 0,

x ∈ X and h ∈ HR ∩ E

P (t)

(
1 + εf(x)

ε

)
− e2tζR

εt
‖h‖2R ≤

1

ε
lnP (t)(1 + εf(x− h)) ≤ P (t)f(x− h).

Taking the infimum limit as ‖h‖R → 0 with h ∈ HR ∩ E and then letting ε→ 0 we get

P (t)f(x) ≤ lim inf
‖h‖R→0
h∈HR∩E

P (t)f(x− h). (4.3.5)

Since HR ∩ E is a linear space then applying (4.3.5) to −h we get

P (t)f(x) ≤ lim inf
‖h‖R→0
h∈HR∩E

P (t)f(x+ h). (4.3.6)

By (4.3.4) and (4.3.6) we get (4.3.2).

Now a standard argument allows us to prove (iii) for a bounded Borel and positive function

f with µ(f) = 1. Writing (4.3.1) with P ∗(t)f in place of f , we get

[(P (t)f)(lnP ∗(t)f)](x) ≤ ln(P (t)P ∗(t)f(y)) +
e2tζR

t
‖x− y‖2R (4.3.7)

for any t > 0, x, y ∈ X such that x− y ∈ HR ∩ E. Integrating both sides of (4.3.7) with respect

to π ∈ C (fµ, µ) we get

µ((P ∗(t)f)(lnP ∗(t)f)) ≤ µ(lnP (t)P ∗(t)f) +
e2tζR

t

∫
X×X

‖x− y‖2Rπ(dx, dy).

To conclude it is sufficient to observe that the Jensen inequality yields that

µ(lnP (t)P ∗(t)f) ≤ lnµ(P (t)P ∗(t)f) = lnµ(f) = 0,

whence the claim.

Remark 4.3.2. We stress that Corollary 4.3.1 remains true (with the constant e2tζR replaced

by C2
T ) if we assume that the hypotheses of Theorem 4.1.9 hold true.

Another classical consequence of (LHI) is a hypercontractivity type estimate for the semigroup

P (t) in Lpµ. Such estimate relies on the Hölder inequality and some integrability conditions with

respect to µ of some exponential functions.

Corollary 4.3.3. Assume that the hypotheses of Theorem 4.1.9 hold true. If, in addition there
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exists ε > 0 such that ∫
X

∫
X

eε‖x−y‖
2
Rµ(dx)µ(dy) < +∞, (4.3.8)

then, for any p ≥ 2, there exists t0 > 0 and a positive constant C such that

‖P (t)f‖Lpµ ≤ C‖f‖L2
µ

(4.3.9)

for any t ≥ t0 and any f ∈ L2
µ.

Proof. Let us consider f ∈ L2
µ and ϑ ∈ (1, 2). By (4.1.16) we deduce that for any t > 0∫

X

|P (t)f |2ϑ(x)µ(dx) =

∫
X

∫
X

|P (t)f |2ϑ(x)µ(dx)µ(dy)

=

∫
X

∫
X

|P (t)f(x)|ϑ(|P (t)f(x)|2)ϑ/2µ(dx)µ(dy)

≤
∫
X

∫
X

|P (t)f(x)|ϑ(P (t)f2(y))ϑ/2e
ϑC2
T
t ‖x−y‖

2
Rµ(dx)µ(dy)

=:

∫
X

∫
X

h(x, y)g(x, y)µ(dx)µ(dy),

where h(x, y) := |P (t)f(x)|ϑ(P (t)f2(y))ϑ/2 and g(x, y) := e
ϑC2
T
t ‖x−y‖

2
R . Applying the Hölder

inequality with respect to the measure µ⊗ µ we get∫
X

∫
X

h(x, y)g(x, y)µ(dx)µ(dy) ≤ ‖h‖
L

2/ϑ
µ⊗µ
‖g‖

L
2/(2−ϑ)
µ⊗µ

.

Now, the invariance of µ and the contractivity of P (t) in L2
µ allow us to estimate

‖h‖
L

2/ϑ
µ⊗µ

= ‖P (t)f‖ϑL2
µ
‖f‖ϑL2

µ
≤ ‖f‖2ϑL2

µ
.

Moreover, being

‖g‖2/(2−ϑ)

L
2/(2−ϑ)
µ⊗µ

=

∫
X

∫
X

e
2ϑ

2−ϑ
C2
T
t ‖x−y‖

2
Rµ(dx)µ(dy) =: C(ϑ, t)

condition (4.3.8) ensures that there exists t > 0 such that C(ϑ, t) < +∞ for any t ≥ t and any

ϑ ∈ (1, 2). Consequently

‖P (t)f‖L2ϑ
µ
≤ (C(ϑ, t))

2−ϑ
4ϑ ‖f‖L2

µ
.

i.e., P (t) maps L2
µ into L2ϑ

µ for t ≥ t. Since ϑ > 1, P (t) actually improves summability of

the initial datum when t ≥ t. To go further we use the semigroup law. Indeed, if f ∈ L2
µ,

then P (t)f ∈ L2ϑ
µ , i.e. |P (t)f |ϑ ∈ L2

µ. Using again the first part of the proof, we deduce that

P (t)|P (t)f |ϑ ∈ L2ϑ
µ for t ≥ t. Since, by the Jensen inequality and the positivity of P (t) we can

estimate

+∞ > ‖P (t)|P (t)f |ϑ‖2ϑL2ϑ
µ

=

∫
X

|P (t)|P (t)f |ϑ|2ϑdµ
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≥
∫
X

|P (t)|P (t)f ||2ϑ
2

dµ

=

∫
X

(P (t)|P (t)f |)2ϑ2

dµ

≥
∫
X

|P (t)P (t)f |2ϑ
2

dµ

=

∫
X

|P (t+ t)f |2ϑ
2

dµ, t ≥ t

we infer that P (t) maps L2
µ into L2ϑ2

µ for any t ≥ 2t. Iterating this procedure we can prove that

for any p > 2 there exists t0 = t0(p) > 0 such that P (t) maps L2
µ into Lpµ for any t ≥ t0 and

estimate (4.3.9) holds true.

Remark 4.3.4. Note that the result in Corollary 4.3.3 continue to hold true if we assume that

the hypotheses of Theorem 4.2.9 (with constant ζR < 0) hold and that (4.3.8) is satisfied with

ε = 1.

4.3.2 An example in L2([0, 1], λ)

Hypotheses 4.1.2(2) and 4.1.5 are verified in the case considered in Subsection 3.4.2. Now we

present some examples that satisfy the other sets of Hypotheses.

Let X = L2([0, 1], λ) where λ is the Lebesgue measure. Let −Q−1 be the realization of the

second order derivative in L2([0, 1], λ) with Dirichlet boundary condition. Hence Q is a positive

and trace class operator. Let A = −(1/2)Q−β and R = Qα, with α, β ≥ 0 such that (4.1.1)

is verified. The constant λ1 in (3.4.1) and (3.4.2) is equal to π−2 and A generates a strongly

continuous analytic semigroup etA such that

∥∥etA∥∥
L(X)

≤ e− 1
2π

2t, t ≥ 0.

see [30, Chapter 4]. Moreover by Proposition [73, Proposition 2.1.1], if α < β then (4.1.2)(1)

is verified with γ = α
β and ε = 0. Since Q is a trace class operator then Hypotheses 4.1.5 are

verified.

4.3.3 Infinite dimensional polynomial

Let E = X = L2([0, 1], λ) and A and R as in Subsection 4.3.2 with α = 1
2 and β > 1

2 . Since

α = 1
2 and −Q−1 is be the realization in L2([0, 1], λ) of the second order derivative with Dirichlet

boundary condition, then HR = W 1,2
0 ([0, 1], λ) where λ is the Lebesgue measure and (4.1.1) is

verified. We take F as in Subsection 2.4.1. In addition we assume that K has weak derivative

with respect to the fourth variable, such that

∂K

∂ξ
∈ L2([0, 1]4, λ).
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Let f ∈ W 1,2([0, 1], λ) we have F (f) = P3(f) + ζ2f ∈ W 1,2([0, 1], λ)(see (2.4.6)) and its weak

derivative is

(F (f))′ =

∫ 1

0

∫ 1

0

∫ 1

0

∂K

∂ξ
(ξ1, ξ2, ξ3, ξ)f(ξ1)f(ξ2)f(ξ3)dξ1dξ2dξ3 + ζ2f

′. (4.3.10)

If we assume that (∂K/∂ξ) ∈ L2([0, 1]4, λ) is symmetric (see (2.4.1)) and it has negative value,

then by (4.3.10), (2.4.4) and (2.4.5) are verified in W 1,2([0, 1], λ). Hence Hypotheses 4.2.4 is

verified. Clearly, by the choice of A and R, Hypotheses 4.2.6 is verified, so Theorem 4.2.9 can be

applied.

4.3.4 A reaction-diffusion system

Assume that X = L2([0, 1], λ) (where λ is the Lebesgue measure), E = C([0, 1]), A is the real-

ization in L2([0, 1], λ) of the second order derivative operator with Dirichlet boundary condition

and R = IX. In order to define the function F we consider a decreasing function ϕ ∈ C1(R) such

that

|ϕ′(ξ)| ≤ d1(1 + |ξ|m), ξ ∈ R,

for some constants d1 > 0 and m ∈ N. Let ζF > 0. We set

[F (f)](ξ) =

{
ϕ(f(ξ))− ζF

2 f(ξ)2, f ∈ C([0, 1]), ξ ∈ [0, 1];

0, otherwise.

By [20, Section 6.1, Lemma 6.1.2 and Lemma 8.2.1] and [43, Example D.7] it follows that Hy-

potheses 4.2.4 are verified. Finally, taking into account that −A−1 is a positive and trace class

operator and R = IX we can conclude that Hypotheses 4.1.5 are verified too and so Theorem

4.2.9 can be applied.



Chapter 5

Behavior in Lp type spaces

In this chapter, under Hypotheses 2.1.1, we study the transition semigroup P (t) (see Definition

2.2.3) in Lp type spaces, with p ≥ 1.

As in the Ornstein–Uhlenbeck case, the best setting are the spaces Lp(X, ν) where ν is an

invariant measure of P (t). Indeed, it is easy to see that if P (t) has an invariant measure ν, then

it is extendable to a strongly continuous contraction semigroup Pp(t) in Lp(X, ν), for every p ≥ 1.

Particular attention will be paid to the case p = 2. Denoting by N2 the infinitesimal generator of

P2(t) we will find out a core of regular functions (the space ξA(X) defined in (1.10.5)) on which

N2 has an explicit expression as a perturbation of the operator defined in (1.10.6)

N0ϕ(x) := L0ϕ(x) + 〈F0(x),∇ϕ(x)〉, ϕ ∈ ξA(X), x ∈ X, (5.0.1)

where

F0(x) =

F (x) x ∈ E,

0 x ∈ X\E.

Preliminarily, we prove that ν(E) = 1 and ν has finite moments of every order.

5.1 Existence and Uniqueness of the invariant measure

In this Section we are going to prove that the semigroup P (t) has a unique invariant measure ν

verifying some useful properties. To do this we need an additional hypothesis.

Hypotheses 5.1.1. Assume that Hypotheses 2.1.1 hold true. Moreover we assume that the

constant ζ in Hypothesis 2.1.1(iv) is negative and that

sup
t≥0

E[‖WA(t)‖pE ] < +∞, ∀ p ≥ 1. (5.1.1)

By Hypotheses 2.1.1(vi) and (5.1.1) we have

Σp,E := sup
t≥0

E[‖F (WA(t))‖pE + ‖WA(t)‖pE ] < +∞, ∀ p ≥ 1,



5.1. Existence and Uniqueness of the invariant measure 101

and, since E is continuously embedded in X, we have

Σp,X := sup
t≥0

E[‖F (WA(t))‖p + ‖WA(t)‖p] < +∞, ∀ p ≥ 1.

For any p ≥ 1 we set

Σp := max{Σp,X,Σp,E}. (5.1.2)

By (2.1.22), (2.2.2), (5.1.2) and Corollary 2.1.11 we obtain the following result.

Proposition 5.1.2. Assume that Hypotheses 5.1.1 hold true and let {X(t, x)}t≥0 be the gener-

alized mild solution of (2.0.1). If x ∈ X then {X(t, x)}t≥0 ∈ Xp([0,∞)), for any p ≥ 1, if x ∈ E
then {X(t, x)}t≥0 ∈ Ep([0,∞)), for any p ≥ 1; (see Definition 2.1.5). In particular, for any

p ≥ 1, there exists Kp := Kp(Σp, C
′
p) (where C ′p is the constant of Theorem 2.1.9), such that

E[‖X(t, x)‖p] ≤ Kp(1 + eκpt‖x‖p), ∀ t > 0,∀ x ∈ X, (5.1.3)

E[‖X(t, x)‖pE ] ≤ Kp(1 + eκpt‖x‖pE), ∀ t > 0,∀ x ∈ E.

where κp < 0 is the constant of Proposition 2.1.7.

The semigroups P (t) and PE(t) are two transition semigroups. In particular the transition

probabilities of PE(t) are determined by the unique mild solution of (2.0.1) in the following way,

pEt (x, ·) = L (X(t, x))(·), t ≥ 0, x ∈ E.

The transition probabilities pt(x, ·) of P (t) are determined in the same way by the unique gener-

alized mild solution of (2.0.1). Moreover, by the definition of generalized mild solution, for any

x ∈ E and t ≥ 0 we have pt(x, ·) = pEt (x, ·), so we denote both by pt(x, ·).

Theorem 5.1.3. Assume that Hypotheses 5.1.1 hold true. There exists ν ∈ P(X) such that it

is the unique invariant measure of both semigroups PE(t) and P (t). Moreover ν(E) = 1 and it

satisfies ∫
X

‖x‖pν(dx) < +∞, ∀ p ≥ 1, (5.1.4)

∫
E

‖x‖pEν(dx) < +∞, ∀ p ≥ 1. (5.1.5)

Moreover we have

lim
t→+∞

P (t)ϕ(x) =

∫
X

ϕ(y)ν(dy), ϕ ∈ Cb(X), x ∈ X, (5.1.6)

lim
t→+∞

P (t)ϕ(x) =

∫
E

ϕ(y)ν(dy), ϕ ∈ Cb(E), x ∈ E. (5.1.7)

Proof. To prove existence and uniqueness of the invariant measures ν and νE of P (t) and PE(t)
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respectively we exploit similar arguments to [43, Theorems 11.33-11.34].

We begin to prove that PE(t) has a unique invariant measure. By [43, Proposition 11.1], for

any x ∈ E and t ∈ [0, T ], we have

U(t)δx :=

∫
X

pt(x, ·)δx(dx) = L (X(t, x)).

Since PE(t) is Feller, by Proposition 1.9.10, if there exists νE ∈P(E) such that, for any x ∈ E,

we have

U(t)δx := L (X(t, x))→∗ νE , as t→ +∞, (5.1.8)

then νE is the unique invariant measure of PE(t). To prove (5.1.8) we consider the SPDE (2.0.1)

with an arbitrary s ∈ R instead of 0 as initial time. Let {W ′(t)}t≥0 be another X-cylindrical

Wiener process independent of {W (t, x)}t≥0. For any t ∈ R we define the process

Ŵ (t) :=

W (t) t ≥ 0

W ′(−t) t < 0.

For any s ∈ R and x ∈ X, we consider the SPDE{
dX(t, s, x) =

(
AX(t, s, x) + F (X(t, s, x))

)
dt+ CdŴ (t), t ≥ s,

X(s, s, x) = x,
(5.1.9)

We emphasize that the method used to prove Theorem 2.1.13 and to define the generalized mild

solution (see Corollary 2.2.1) also works by replacing the initial time 0 by an arbitrary s ∈ R.

Hence, for any x ∈ X and s ∈ R, the SPDE (5.1.9) has a unique generalized mild solution

{X(t, s, x)}t≥0. Moreover, as in Proposition 5.1.2, for any p ≥ 1 we have the following estimates

in X

E[‖X(t, s, x)‖pE ] ≤ Kp(1 + eκp(t−s)‖x‖pE), t ≥ s, x ∈ X

E[‖X(t, s, x)−X(t, s, z)‖] ≤ eη(t−s)‖x− z‖, t ≥ s, x, z ∈ X,

and the following in E

E[‖X(t, s, x)‖pE ] ≤ Kp(1 + eκp(t−s)‖x‖pE), t ≥ s, x ∈ E (5.1.10)

E[‖X(t, s, x)−X(t, s, z)‖E ] ≤ eη(t−s)‖x− z‖, t ≥ s, x, z ∈ E (5.1.11)

where κp is the constant of Proposition 2.1.7, η is the constant of Proposition 2.1.10 and Kp is

the constant of Proposition 5.1.2. By Corollary 2.1.11 the constants η and κ are negative.

Now we prove that there exists a random variable ξ ∈ L2((Ω,P), E), such that, for any x ∈ E,

we have

lim
s→+∞

E
[
‖X(0,−s, x)− ξ‖2E

]
= 0, (5.1.12)

and after we will prove that the law of ξ is the measure νE that verifies (5.1.8).

We can assume that {X(t, s, x)}t≥s is a strict solution of (5.1.9), otherwise we approximate it
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as in Proposition 2.1.7. For P-a.a. ω ∈ Ω, for any x ∈ E, s ∈ R, t ≥ s and h ∈ [s, t], taking into

account (1.3.1) and by Hypotheses 2.1.1(iv), there exist z∗ ∈ ∂(‖X(t, s, x)(ω)−X(t, h, x)(ω)‖E)

such that

1

2

d−‖X(t, s, x)−X(t, h, x)‖E
dt

= E 〈A(X(t, s, x)−X(t, h, x)), z∗〉E∗

+ E 〈F (X(t, s, x))− F (X(t, h, x)), z∗〉E∗
≤ −ζ‖X(t, s, x)(ω)−X(t, h, x)(ω)‖E .

By (1.3.2), taking the expectation we obtain

E
[
‖X(t, s, x)−X(t, h, x)‖2E

]
≤ e−4ζ(t−h)E

[
‖X(h, s, x)− x‖2E

]
≤ 2e−4ζ(t−h)(E

[
‖X(h, s, x)‖2E

]
+ ‖x‖2E),

and so

E
[
‖X(t, s, x)−X(t, h, x)‖2E

]
≤ e−4ζ(t−h)Cx, (5.1.13)

where Cx := 2 supr≥s

(
E
[
‖X(r, s, x)‖2E

])
+ 2‖x‖2E is finite by (5.1.10). For any x ∈ X, by

(5.1.13), when t goes to +∞ the family {X(0,−t, x)}t≥0 is Cauchy in

L2((Ω,F,P), (E,B(E))), namely

lim
s,t→+∞

E
[
‖X(0,−t, x)−X(0,−s, x)‖2E

]
= 0

Since L2((Ω,P), E) is complete, then {X(0,−t, x)}t≥0 converges in L2((Ω,P), E) and by (5.1.11)

its limit does not depend on x, so (5.1.12) is verified. Let νE = L (ξ), where ξ is the random

variable that verifies (5.1.12). We prove that it verifies (5.1.8). Since {W ′(t)}t≥0 and {W (t)}t≥0

are X-cylindrical Wiener processes; they have the same law, and so, for any x ∈ E and t ≥ 0, we

have

L (X(t, x)) = L (X(0,−t, x)).

Let ϕ ∈ Cb(E). For any x ∈ X, t ≥ 0, we have∫
X

ϕ(y)pt(x, dy) =

∫
X

ϕ(y)L (X(t, x))(dy) =

∫
X

ϕ(y)L (X(0,−t, x))(dy)

=

∫
Ω

ϕ(X(0,−t, x)(ω))P(dω).

Since ϕ ∈ Cb(E), by (5.1.12) and the dominated convergence theorem we have

lim
t→+∞

∫
X

ϕ(y)pt(x, dy) = lim
t→+∞

∫
Ω

ϕ(X(0,−t, x)(ω))P(dω)

=

∫
Ω

ϕ(ξ(ω))P(dω) =

∫
X

ϕ(y)νE(dy), (5.1.14)

hence (5.1.8) is verified and so, by Proposition 1.9.10, the measure νE is the unique invariant

measure of the transition semigroup PE(t). (5.1.7) follows immediately by the definition of
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transition semigroup PE(t) and (5.1.14). Now we prove (5.1.5). For p ≥ 1 and b > 0 we have∫
E

‖y‖pE
1 + b‖y‖pE

pt(x, dy) ≤
∫
E

‖y‖pEpt(x, dy) = E[‖X(t, x)‖pE ].

Then, by (5.1.3), (5.1.7) and the monotone convergence theorem, we conclude∫
X

‖y‖pEν
E(dy) = lim

b→0
lim

t→+∞

∫
E

‖y‖pE
1 + b‖y‖pE

pt(x, dy) < +∞.

In the same way, we can prove that the semigroup P (t) has a unique invariant measure ν that

verifies (5.1.4) and (5.1.6).

[13, Lemma 2.1.1] claim that

B(E) = {E ∩B : B ∈ B(X)},

so the measure ν′ defined by

ν′(Γ) = νE(Γ ∩ E), Γ ∈ B(X),

is a Borel measure. Let f ∈ Cb(X). Taking into account Corollary 2.2.5 and that νE is the

invariant measure of PE(t) we have∫
X

P (t)f(x)ν′(dx) =

∫
E

(P (t)f)(x)νE(dx) =

∫
E

f(x)νE(dx) =

∫
X

f(x)ν′(dx),

hence ν′ is invariant for the semigroup P (t). By the uniqueness we conclude ν = ν′.

Remark 5.1.4. Theorem 5.1.3 yields that ν(H) = 1, for any H ⊆ X satisfying Hypotheses 5.1.1

(see the example of subsection 5.4 ).

Remark 5.1.5. In some specific settings it is possible to prove Theorem 5.1.3 replacing the

condition ζ < 0 by other hypotheses on F (e.g. [20, Chapter 8]).

Now, thanks to the invariance of ν, we can prove that the transition semigroup P (t) is uniquely

extendable to a contraction strongly continuous semigroup Pp(t) in Lp(X, ν), for any p ≥ 1.

We recall a couple of inequalities that follow immediately from the Hölder and Jensen in-

equalities. For every ϕ,ψ ∈ Bb(X), t > 0, p, q ∈ [1,∞], such that 1/p+ 1/q = 1 (with the usual

convention that if p = 1, then q =∞, and viceversa) and for any convex function f : R→ R we

have

|P (t)ϕψ| ≤ (P (t)|ϕ|q)1/q(P (t)|ψ|p)1/p; (5.1.15)

(f ◦ P (t))ϕ ≤ P (t)(f ◦ ϕ); (5.1.16)

Proposition 5.1.6. The transition semigroup P (t) is uniquely extendable to a contraction

strongly continuous semigroup Pp(t) in Lp(X, ν), for any p ≥ 1.



5.2. Behavior on ξA(X) 105

Proof. Let p ≥ 1. By (5.1.16) and the invariance of ν, for any ϕ ∈ Cb(X) we have

‖P (t)ϕ‖pLp(X,ν) =

∫
X

|P (t)ϕ|pdν ≤
∫
X

P (t)(|ϕ|p)dν ≤
∫
X

|ϕ|pdν = ‖ϕ‖pLp(X,ν). (5.1.17)

We know that, for any ϕ ∈ Cb(X) and x ∈ X

lim
t→0+

P (t)ϕ(x) = ϕ(x),

so by the dominated convergence theorem we have

lim
t→0+

‖P (t)ϕ− ϕ‖Lp(X,ν) = 0 (5.1.18)

We recall that Cb(X) is dense in Lp(X, ν). Observe that if {ϕn}n∈N ⊆ Cb(X) converges to ϕ

in Lp(X, ν), then for any t ≥ 0 the sequence {P (t)ϕn}n∈N is Cauchy in Lp(X, ν). Indeed, by

(5.1.17), we have

‖P (t)ϕn − P (t)ϕm‖Lp(X,ν) ≤ ‖ϕn − ϕm‖Lp(X,ν).

Hence the transition semigroup P (t) is uniquely extendable to a semigroup Pp(t) in Lp(X, ν). By

(5.1.17) and (5.1.18), Pp(t) is contractive and strongly continuous.

Definition 5.1.7. We denote by N2 the infinitesimal generator of P2(t).

Remark 5.1.8. In a similar way, it is possible to prove that the semigroup PE(t) is uniquely

extendable to a strongly continuous semigroup PE2 (t) in L2(E, ν). In the rest of this paper we will

not study PE2 (t) but only P2(t). However it is possible to prove a result analogous to Theorem

5.3.3 for PE2 (t) (see [23]).

5.2 Behavior on ξA(X)

In this section we study the behavior of N2 on the space ξA(X) defined in (1.10.5). In particular

we will prove that N2 coincides with N0 (defined in (5.0.1)) on ξA(X).

Remark 5.2.1. In this section we will study the behaviour of N0 in L2(X, ν), hence is not

significant how we define F in X\E, since by Theorem 5.1.3, ν(E) = 1.

For every ϕ ∈ ξA(X), there exist m,n ∈ N, a1, . . . , am, b1, . . . , bn ∈ R and

h1, . . . , hm, k1, . . . , kn ∈ A∗ such that

ϕ(x) =

m∑
i=1

ai sin(〈x, hi〉) +

n∑
j=1

bj cos(〈x, kj〉).

Easy computations give for x ∈ X

N0ϕ(x) =

m∑
i=1

ai

(
〈x,Ahi〉+ 〈F0(x), hi〉 −

1

2
‖Rhi‖

)
sin(〈x, hi〉)
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+

n∑
j=1

bj

(
〈x,Akj〉+ 〈F0(x), kj〉 −

1

2
‖Rkj‖

)
cos(〈x, kj〉),

moreover by Hypothesis 2.1.1(vi) and Theorem 5.1.3 we have∫
X

‖F0(x)‖pdν(x) < +∞, ∀ p ≥ 1, (5.2.1)

and so N0ϕ belongs to L2(X, ν).

Proposition 5.2.2. Assume that Hypotheses 5.1.1 hold true. N0 is closable in L2(X, ν) and its

closure N0 is dissipative in L2(X, ν). Moreover N2 is an extension of N0, namely Dom(N0) ⊆
Dom(N2) and

N0ϕ = N2ϕ, ϕ ∈ Dom(N0). (5.2.2)

Proof. By Theorem 2.1.13, for any x ∈ E, the trajectories of {X(t, x)}t≥0 take values in E. So

by [30, Proof of Theorem 3.19], for any ϕ ∈ ξA(X) and x ∈ E, we have

P2(t)ϕ(x) = E[ϕ(X(t, x))] = ϕ(x) + E
[∫ t

0

N0ϕ(X(s, x))ds

]
= ϕ(x) +

∫ t

0

P (s)N0ϕ(X(s, x))ds, (5.2.3)

and so

lim
t→0

P2(t)ϕ(x)− ϕ(x)

t
= N0ϕ(x). (5.2.4)

To obtain (5.2.2) we need to prove that

lim
t→0

∫
X

∥∥∥∥P2(t)ϕ(x)− ϕ(x)

t
−N0ϕ(x)

∥∥∥∥2

ν(dx) = 0, ∀ ϕ ∈ ξA(X). (5.2.5)

We recall the Vitali convergence theorem (see [60, Theorem 2.24]): (5.2.5) is verified if and only

if the following three conditions are verified.

1. There exists B ∈ B(X) such that ν(B) = 1 and {P (t)ϕ(x)−ϕ(x)
t }t≥0 converges for any x ∈ B.

2. For any ε > 0 there exists Γ ∈ B(X) such that ν(Γ) < +∞ and

1

t2

∫
(X−Γ)

|P (t)ϕ(x)− ϕ(x))|2ν(dx) ≤ ε ∀ t > 0.

3. For any ε > 0 there exists δ > 0 such that whenever Γ ∈ B(X) with ν(Γ) < δ we have

1

t2

∫
Γ

|P (t)ϕ(x)− ϕ(x))|2ν(dx) ≤ ε ∀ t > 0.

By (5.2.4) and ν(E) = 1, (1) is verified. Since ν is a probability measure then (3) implies (2). We

prove (3). We fix ε > 0. Since N0ϕ ∈ L2(X, ν), there exists δ > 0 such that whenever Γ ∈ B(X)

with ν(Γ) < δ, then ∫
Γ

|N0ϕ(x)|2ν(dx) < ε.
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Recalling that ν(E) = 1, by the Hölder inequality, the invariance of P (t) with respect to ν and

(5.2.3) we have

1

t2

∫
Γ

|P (t)ϕ(x)− ϕ(x))|2ν(dx) =
1

t2

∫
Γ∩E
|P (t)ϕ(x)− ϕ(x))|2ν(dx)

=

∫
Γ∩E

∣∣∣∣∫ t

0

P (s)N0ϕ(x)
ds

t

∣∣∣∣2ν(dx)

≤ 1

t

∫ t

0

(∫
Γ∩E
|P (s)(N0ϕ)(x)|2ν(dx)

)
ds

≤ 1

t

∫ t

0

(∫
Γ∩E

P (s)(|N0ϕ|2)(x)ν(dx)

)
ds

=
1

t

∫ t

0

(∫
Γ∩E
|N0ϕ(x)|2ν(dx)

)
ds =

1

t

∫ t

0

εds = ε.

Hence, by the Vitali convergence theorem, we obtain (5.2.5) and so (5.2.2). In particular, since

ν is the invariant measure of P2(t), for any ϕ ∈ ξA(X), we have∫
X

N0ϕdν =

∫
E

N2ϕdν = 0. (5.2.6)

Moreover by standard calculations we obtain

N0ϕ
2(x) = 2ϕ(x)N0ϕ(x) + ‖R∇ϕ(x)‖2.

Hence integrating with respect to ν and exploiting (5.2.6) we get∫
X

(N0ϕ(x))ϕ(x)ν(dx) = −1

2

∫
X

‖R∇ϕ(x)‖2ν(x), ∀ ϕ ∈ ξA(X),

so, since ξA(X) is dense in L2(X, ν), N0 is closable in L2(X, ν) and its closure N0 is dissipative

in L2(X, ν).

We conclude this subsection with a useful criterium to check ff a function ϕ : X→ R belongs

to Dom(N0).

Lemma 5.2.3. Assume that Hypotheses 5.1.1 hold true. If ϕ ∈ Dom(Lb,2) ∩ C1
b (X), then ϕ ∈

Dom(N0) and

N0ϕ(x) = Lb,2ϕ(x) + 〈F0(x),∇ϕ(x)〉, x ∈ X;

where Lb,2 is the operator introduced in Theorem 1.10.1.

Proof. By Proposition 1.10.7 a family {ϕn1,n2,n3,n4 |n1, n2, n3, n4 ∈ N} ⊆ ξA(X) exists such that,

for any x ∈ X,

lim
n1→+∞

lim
n2→+∞

lim
n3→+∞

lim
n4→+∞

N0ϕn1,n2,n3,n4(x) = Lb,2ϕ(x) + 〈F (x),∇ϕ(x)〉.

whenever ϕ ∈ Dom(Lb,2) ∩ C1
b (X). By (1.10.7), there exists a constant Cϕ, such that for any
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x ∈ E
|N0ϕn1,n2,n3,n4

(x)| = |N0ϕn1,n2,n3,n4
(x)| ≤ Cϕ(1 + ‖x‖m+2

)(1 + ‖F (x)‖2),

so, since ν(E) = 1, by (5.2.1), (5.1.4) and the Dominated Convergence theorem we obtain the

statement.

5.3 A core for N2

To prove the main results of this chapter we need an additional hypothesis and a general result

about closed operators. Since we were unable to find an appropriate reference in the literature

we provide its proof.

Hypotheses 5.3.1. Assume that Hypotheses 5.1.1 hold true and that there exists a constant

ζ2 ∈ R such that F − ζ2IX : Dom(F ) ⊂ X→ X is m-dissipative.

Proposition 5.3.2. Let Y be a Banach space and let B1 : Dom(B1) ⊆ Y → Y and B2 :

Dom(B2) ⊆ Y → Y be two, possibly unbounded, operators. If

(i) B1 is an extension of B2, namely Dom(B2) ⊆ Dom(B1) and, for any x ∈ Dom(B2), it

holds B2x = B1x;

(ii) there exists a dense subset D of Y such that, for some λ > 0, R(λ,B1) and R(λ,B2) are

well defined, and R(λ,B1)(D) ⊆ Dom(B2);

then Dom(B1) = Dom(B2) and B1 = B2.

Proof. For any x ∈ D

x = (IY λ−B1)R(λ,B1)x = λR(λ,B1)x−B1R(λ,B1)x.

By the fact that R(λ,B1)(D) ⊆ Dom(B2) and that B1 is an extension of B2, it follows

x = λR(λ,B1)x−B2R(λ,B1)x = (IY λ−B2)R(λ,B1)x,

hence, for any x ∈ D, we have R(λ,B2)x = R(λ,B1)x. So by the density of D in Y , for any

x ∈ Y , we have shown that R(λ,B2)x = R(λ,B1)x. Recalling that the domain of an operator

coincides with the range of its resolvent, we get the thesis.

Now we prove the main result of this chapter.

Theorem 5.3.3. Assume that Hypotheses 5.3.1 hold true. N2 is the closure in L2(X, ν) of the

operator N0, defined in (5.0.1). In particular ξA(X) is a core for N2.

Proof. By Proposition 5.3.2, to prove Theorem 5.3.3 it is sufficient to show that there exists a

dense subset D of L2(X, ν) such that

R(λ,N2)(D) ⊆ Dom(N0).
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We split the proof in two steps. In the first step we assume that F is Gateaux differentiable and

Lipschitz continuous, and we show that we can take C1
b (X) as the set D. In the second step we

show that, in the general case, the set (λIX −N2)(Dom(N0)) is dense in L2(X, ν) and it can be

chosen as the set D. Throughout the proof we let X(t, x) be the mild solution of (2.0.1).

Step 1. Assume that F is Gateaux differentiable and Lipschitz continuous. For f ∈ C1
b (X) and

λ > 0, consider the function ϕ defined as

ϕ(x) := R(λ,N2)f(x) =

∫ +∞

0

e−λsP (s)f(x)ds, x ∈ X.

We want to show that ϕ is Gateaux differentiable. We start by proving that for any h ∈ X

the following limit exists

lim
δ→0

ϕ(x+ δh)− ϕ(x)

δ
= lim
δ→0

∫ +∞
0

e−λs
(∫

Ω
(f(X(s, x+ δh))− f(X(s, x)))P(dω)

)
ds

δ
. (5.3.1)

Since f ∈ C2
b (X) and, for any t ≥ 0 X(t, ·) : X → X is Gateaux differentiable P-a.s., then

it is sufficient to prove that the dominated convergence theorem is applicable in (5.3.1). By

Proposition 2.3.3 and Corollary 3.1.6 we have

lim
δ→0

1

δ
[f(X(t, x+ δh))− f(X(t, x))] =

〈
∇f(X(t, x)),DGX(t, x)h

〉
.

Furthermore for δ ∈ R it holds

1

|δ|
|f(X(t, x+ δh))− f(X(t, x))| = 1

|δ|

∣∣∣∣∣
∫ δ

0

〈
∇f(X(t, x+ sh)),DGX(t, x+ sh)h

〉
ds

∣∣∣∣∣
≤ e−ζt‖∇f‖∞‖h‖.

For any x, h ∈ X we set

Lh := lim
δ→0

1

δ
ϕ(x+ δh)− ϕ(x)

, we have

|Lh| = lim
δ→0

1

|δ|

∣∣∣∣∫ +∞

0

e−λs(P (s)f(x+ δh)− P (s)f(x))ds

∣∣∣∣
≤ lim
δ→0

1

|δ|

∫ +∞

0

e−λsE[|f(X(s, x+ δh))− f(X(s, x))|]ds

= lim
δ→0

1

|δ|

∫ +∞

0

e−λsE

[∣∣∣∣∣
∫ δ

0

〈
∇f(X(s, x+ rh)),DGX(s, x+ rh)h

〉
dr

∣∣∣∣∣
]
ds

≤ ‖∇f‖∞‖h‖
∫ +∞

0

e−(λ+ζ)sds =
1

λ+ ζ
‖∇f‖∞‖h‖,

so ϕ is Gateaux differentiable. Using Proposition 1.1.1 it is also possible to prove that ϕ is

Fréchet differentiable, and so

‖∇ϕ‖∞ ≤
1

λ+ ζ
‖∇f‖∞. (5.3.2)
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We are going to check the conditions of Proposition 1.10.4 to obtain that ϕ belongs to

Dom(Lb,2). We begin to check (i) of Proposition 1.10.4. Let Z(t, x) be the mild solution of

(2.0.1) with F = 0, we have

Z(t, x) = X(t, x)−
∫ t

0

e(t−s)AF (X(s, x))ds.

Then, for every x ∈ X, we have

T (t)ϕ(x)− ϕ(x)

t
=

E[ϕ(Z(t, x))− ϕ(x)]

t

=
1

t
E
[
ϕ

(
X(t, x)−

∫ t

0

e(t−s)AF (X(s, x))ds

)
− ϕ(x)

]
. (5.3.3)

By the Taylor formula we have

ϕ

(
X(t, x)−

∫ t

0

e(t−s)AF (X(s, x))ds

)
= ϕ(X(t, x))

−
〈
∇ϕ(X(t, x)),

∫ t

0

e(t−s)AF (X(s, x))ds

〉
+ o

(
E
[∥∥∥∥∫ t

0

e(t−s)AF (X(s, x))ds

∥∥∥∥])
so in the right hand side of (5.3.3), we obtain

T (t)ϕ(x)− ϕ(x)

t
=
P (t)ϕ(x)− ϕ(x)

t
− 1

t
E
[〈
∇ϕ(X(t, x)),

∫ t

0

e(t−s)AF (X(s, x))ds

〉]
+

1

t
o

(
E
[∥∥∥∥∫ t

0

e(t−s)AF (X(s, x))ds

∥∥∥∥]),
hence for any x ∈ X, we have

lim
t→0

1

t
(T (t)ϕ(x)− ϕ(x)) = N2ϕ(x)− 〈∇ϕ(x), F (x)〉. (5.3.4)

Now let K be a compact subset of X. Since, in this step, we have assume that F is Lipschitz

continuous, by (5.1.3), we get

lim
t→0

sup
x∈K

1

t
o

(
E
[∥∥∥∥∫ t

0

e(t−s)AF (X(s, x))ds

∥∥∥∥]) = 0.

We set for t > 0 and x ∈ X

∆t(x) :=
P (t)ϕ(x)− ϕ(x)

t
, Rt(x) :=

1

t
E
[〈
∇ϕ(X(t, x)),

∫ t

0

e(t−s)AF (X(s, x))ds

〉]
.

We recall that for every t ≥ 0

P (t)ϕ = P (t)

∫ +∞

0

e−λsP (s)fds = eλt
∫ +∞

t

e−λsP (s)fds.
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Let x0 ∈ K. Since f ∈ C1
b (X) we know that for every ε > 0 there exists δ > 0 such that

|f(x)− f(x0)| ≤ ε, whenever ‖x− x0‖ ≤ δ. Now let ‖x− x0‖ ≤ δ

|∆t(x)−∆t(x0)| = 1

t
|P (t)ϕ(x)− ϕ(x)− P (t)ϕ(x0) + ϕ(x0)|

=
1

t

∣∣∣∣e−λt ∫ +∞

t

e−λsP (s)(f(x)− f(x0))ds+

∫ +∞

0

e−λsP (s)(f(x0)− f(x))ds

∣∣∣∣
=

1

t

∣∣∣∣∣(e−λt − 1)

∫ +∞

t

e−λsP (s)(f(x)− f(x0))ds

+

∫ t

0

e−λsP (s)(f(x0)− f(x))ds

∣∣∣∣∣
≤ e−λt − 1

t

∫ +∞

t

e−λsP (s)εds+
1

t

∫ t

0

e−λsP (s)εds

≤ ε
(
e−λt − 1

t

∫ +∞

t

e−λsds+
1

t

∫ t

0

e−λsds

)
= εe−λt

1− e−λt

λt
≤ ε,

and so

|∆t(x)−∆t(x0)| ≤ ε. (5.3.5)

We observe that by the Lipschitz continuity of F there exists C > 0 such that for every x ∈ X,

it holds ‖F (x)‖ ≤ C(1 + ‖x‖). Furthermore by Corollary 2.1.11, (2.2.3) and (5.3.2), for every

t > 0, the functions x 7→ ∇ϕ(X(t, x)) and x 7→ F (X(t, x)) are continuous uniformly with respect

to t ∈ [0, T ]. So for every t ∈ [0, T ], x0 ∈ K and ε > 0 there exists δ := δ(ε, x0) > 0 such that

whenever ‖x− x0‖ ≤ δ it holds

max {‖∇ϕ(X(t, x))−∇ϕ(X(t, x0))‖, ‖F (X(t, x))− F (X(t, x0))‖} ≤ ε.

By the Jensen inequality and (5.1.3) we can write

|Rt(x)−Rt(x0)| = 1

t

∣∣∣∣∣E
[〈
∇ϕ(X(t, x)),

∫ t

0

e(t−s)AF (X(s, x))ds

〉]

− E
[〈
∇ϕ(X(t, x0)),

∫ t

0

e(t−s)AF (X(s, x0))ds

〉]∣∣∣∣∣
=

1

t

∣∣∣∣∣E
[〈
∇ϕ(X(t, x))−∇ϕ(X(t, x0)),

∫ t

0

e(t−s)AF (X(s, x))ds

〉]

+ E
[〈
∇ϕ(X(t, x0)),

∫ t

0

e(t−s)A(F (X(s, x))− F (X(s, x0)))ds

〉]∣∣∣∣∣
≤ 1

t
E
[
‖∇ϕ(X(t, x))−∇ϕ(X(t, x0))‖

∥∥∥∥∫ t

0

e(t−s)AF (X(s, x))ds

∥∥∥∥]
+

1

t
E
[
‖∇ϕ(X(t, x0))‖

∥∥∥∥∫ t

0

e(t−s)A(F (X(s, x))− F (X(s, x0)))ds

∥∥∥∥]
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≤ Cε

t

∫ t

0

E[1 + ‖X(s, x)‖]ds+
‖∇ϕ‖∞

t
E
[∫ t

0

‖F (X(s, x))− F (X(s, x0))‖ds
]
,

so that by (5.1.3) there exists a constant C1 > 0 such that

|Rt(x)−Rt(x0)| ≤ εC1(1 + ‖x‖+ ‖∇ϕ‖∞). (5.3.6)

Hence by Proposition 1.10.2, (5.3.4), (5.3.6) and (5.3.5) we have

lim
t→0

sup
x∈K

∣∣∣∣1t (T (t)ϕ(x)− ϕ(x))−N2ϕ(x)− 〈∇ϕ(x), F (x)〉
∣∣∣∣ = 0,

and so we have checked (i) of Proposition 1.10.4. Using similar arguments also condition (ii) of

Proposition 1.10.4 is verified since ϕ ∈ C1
b (X) and we have assumed F to be Lipschitz continuous

in this first step. So by Proposition 1.10.4, ϕ ∈ Dom(Lb,2), in particular

Lb,2ϕ = N2ϕ− 〈∇ϕ, F 〉,

and

λϕ− Lb,2ϕ− 〈∇ϕ, F 〉 = f.

So ϕ ∈ Dom(Lb,2) ∩ C1
b (X) and, by Lemma 5.2.3, we conclude that ϕ ∈ Dom(N0) and

N0ϕ = Lb,2ϕ+ 〈∇ϕ, F 〉.

Step 2. Let {Fδ,s | δ, s > 0} be the regularizing family of F defined in Section 1.11. Let

f ∈ C1
b (X). For any δ, s > 0, we set

ϕδ,s(x) :=

∫ +∞

0

e−λtPδ,s(t)f(x)dt, x ∈ X,

where Pδ,s(t) is the transition semigroup of the equation{
dX(t, x) =

(
AX(t, x) + Fδ,s(X(t, x))

)
dt+RdW (t), t > 0;

X(0, x) = x.

In Section 1.11 we have seen that, for any δ, s > 0, the function Fδ,s is Lipschitz continuous and

Fδ,s − ζ2I is dissipative. Hence by Step 1, for any δ, s > 0, we have ϕδ,s ∈ Dom(N0) and

λϕδ,s − Lb,2ϕδ,s − 〈∇ϕδ,s, Fδ,s〉 = f.

So

λϕδ,s −N0ϕδ,s = f + 〈∇ϕδ,s, Fδ,s − F 〉,

and recalling that N2 is an extension of N0 in L2(X, ν)

λϕδ,s −N2ϕδ,s = f + 〈∇ϕδ,s, Fδ,s − F 〉,
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where the equality holds in L2(X, ν). Hence noticing that estimate (5.3.2) does not depend on δ

and on s and by Proposition 1.11.3 yields that

lim
δ→0

lim
s→0

(λIX −N2)ϕδ,s = f, in L2(X, ν).

Since ϕδ,s ∈ Dom(N0), by the density of C1
b (X) in L2(X, ν) we get the density of (λIX −

N2)(Dom(N0)) in L2(X, ν).

5.4 Remarks and examples

The results presented in this chapter are contained in the paper [9]. The results in this chapter

are known in the literature just in some specific cases. We have proved them under general

assumptions. Theorem 5.3.3 extends the results contained in [11, Section 3], [31], [30, Sections

3.5 and 4.6] and [42, Section 11.2.2]. For a study of an analogous problem in L2(E, ν) in the

case of a multiplicative noise we refer to [23]. In Subsection (5.4.1) we will present a reaction-

diffusion system that verifies the hypotheses of Theorem 5.3.3. In Subsection 5.4.2 we will show

an interesting application of the Theorem 5.1.3.

5.4.1 A reaction-diffusion system

Let X = L2([0, 1], λ) where λ is the Lebesgue measure and let E = C([0, 1]). Let A be the

realization in L2([0, 1]) of the second order derivative with Dirichlet boundary condition and set

R = IX.

We define the function F . Let ϕ ∈ C1(R) be a decreasing function, such that there exist

d1 > 0 and m ∈ N satisfying

|ϕ′(y)| ≤ d1(1 + |y|m), y ∈ R.

Let ζ2 > 0. We set

F (f(y)) = ϕ(f(y))− ζ2f(y), f ∈ C([0, 1]), y ∈ [0, 1].

By [20, Section 6.1] Hypotheses 2.1.1(iii), 2.1.1(v) are verified, in particular Hypothesis 2.1.1(iv)

is verified with constant ζ = −ζ2. By [20, Lemma 8.2.1] condition (5.1.1) of Hypotheses 5.1.1 is

verified. By the definition of F , Hypotheses 2.1.1(ii) are verified. By (7.4.2) Hypotheses 2.1.1(vi)

and 2.1.1(vii) are verified. By [43, Example D.7] and standard calculations Hypotheses 2.1.1(iv)

are verified. So all the hypotheses of Theorem 5.1.3 are verified, so ν(C([0, 1])) = 1, where ν is

the invariant measure of the transition semigroup P (t) associated to the generalized mild solution

of (2.0.1).

Moreover also the Hypotheses of Theorem 5.3.3 are verified, so the infinitesimal generator of

P (t) in L2(X, ν) is the closure in L2(X, ν) of the operator

N0ψ(f) =
1

2
Tr[∇2ψ(f)] +

〈
f
′′

+ ϕ(f)− ζ2f,∇ψ(f)
〉
, ψ ∈ ξA(X),
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where f ∈ C2([0, 1]) and f(0) = f(1) = 0.

5.4.2 An application of Theorem 5.1.3

Now present a particular case of the example in Subsection 2.4.6. Let X = L2([0, 1], λ) and

E = W 1,2([0, 1], λ). We assume that A = − 1
2 IX. Let B the realization of the second order

derivative in X with Dirichlet boundary conditions. We recall that B is negative operator,

Dom((−B)
1
2 ) = W 1,2

0 ([0, 1], λ) and (−B)−γ is a trace class operator, for any γ > 1
2 (see [30,

Section 4.1]). Let β > 2 and set R = (−B)−β . Then

‖WA(t)‖2W 1,2([0,1],λ) =

∥∥∥∥(−B)1/2

∫ t

0

e−
1
2 (t−s)B−β/2dW (s)

∥∥∥∥
L2([0,1],λ)

=

∥∥∥∥∫ t

0

e−
1
2 (t−s)(−B)(1−β)/2dW (s)

∥∥∥∥
L2([0,1],λ)

,

and so by [43, Theorems 4.36 and 5.11], Hypotheses 2.1.1(v) and condition (5.1.1) of Hypotheses

5.1.1 are verified. Let F be as in Section 4.3.3, so for any f ∈W 1,2([0, 1], λ) we have

F (f) =

∫ 1

0

∫ 1

0

∫ 1

0

K(ξ1, ξ2, ξ3, ξ)f(ξ1)f(ξ2)f(ξ3)dξ1dξ2dξ3 + ζ2f,

(F (f))′ =

∫ 1

0

∫ 1

0

∫ 1

0

∂K

∂ξ
(ξ1, ξ2, ξ3, ξ)f(ξ1)f(ξ2)f(ξ3)dξ1dξ2dξ3 + ζ2f

′,

with ζ2 < −1/2. Hence, by the same arguments of Subsection 4.3.3, the hypotheses of Theorem

5.1.3 are verified and so ν(W 1,2([0, 1], λ)) = 1.

Moreover also the Hypotheses of Theorem 5.3.3 are verified, so the infinitesimal generator of

the transition semigroup P (t) of (2.0.1) in L2(X, ν) is the closure in L2(X, ν) of the operator

N0ψ(f) =
1

2
Tr[∇2ψ(f)]

+

〈(
ζ2 −

1

2

)
f +

∫ 1

0

∫ 1

0

∫ 1

0

K(ξ1, ξ2, ξ3, ξ)f(ξ1)f(ξ2)f(ξ3)dξ1dξ2dξ3,∇ψ(f)

〉
,

where ψ ∈ ξA(X) and f ∈ L2([0, 1], λ).



Chapter 6

Sobolev spaces

In the previous chapter we have shown that, under suitable hypotheses, the transition semigroup

P (t) is uniquely extendable to a strongly continuous and contraction semigroup P2(t) in L2(X, ν),

where ν is the unique invariant measure of P (t). The main goal of this chapter is to define a

suitable Sobolev space which contain the domain of infinitesimal generator N2 of P2(t). In

chapters 3 and 4 we have studied regularity property of the transition semigroup along the

directions given by the diffusion operator R. Again, we will see that it is the diffusion operator

that will determine the Sobolev space that we are going to define.

We work in the same framework of chapter 3. Let X be a real separable Hilbert space with

inner product 〈·, ·〉 and norm ‖·‖ and let {W (t)}t≥0 be a X-cylindrical Wiener process defined on

a normal filtered probability space (Ω,F, {Ft}t≥0,P). We consider the SPDE{
dX(t, x) =

(
AX(t, x) +RG(X(t, x))

)
dt+RdW (t), t > 0;

X(0, x) = x,
(6.0.1)

and the following hypotheses.

Hypotheses 6.0.1. Assume that Hypotheses 3.0.3 hold true and that the following conditions

are verified.

(i) G ∈ C1(X,X) and there exists ζ > 0 such that

〈(A+RDG(x))h, h〉 ≤ −ζ‖h‖2, x, h ∈ X, (6.0.2)

〈(A+RDG(x))h, h〉R ≤ −ζ‖h‖
2
R, x ∈ X, h ∈ HR. (6.0.3)

(ii) For any p ≥ 1 we have

sup
t≥0

E[‖WA(t)‖p] < +∞.

Remark 6.0.2. (6.0.2) and (6.0.3) are verified if the constants wX and wR in Hypotheses 3.0.1

and 3.0.3 are negative and min(|wX|, |wR|) > ‖R‖L(X)LG, where LG is the Lipschitz constant of

G.
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For any x ∈ X, by Theorem 2.1.13 (with X = E) the SPDE (3.0.3) has unique mild solution

{X(t, x)}t≥0 ∈ Cp([0, T ],X), for any T > 0 and p ≥ 1. Let P (t) be the transition semigroup

associated to (6.0.1).

By Theorem 5.1.3 (with X = E) the semigroup P (t) has unique invariant measure ν with

finite moments of every order. As we have seen in Section 5.1, P (t) is uniquely extendable to

a strongly continuous semigroup P2(t) on L2(X, ν), whose infinitesimal generator is denoted by

N2. By Theorem 5.3.3 N2 is the closure in L2(X, ν) of the second order Kolmogorov operator

defined by

N0ϕ(x) := L0ϕ(x) + 〈F (x),∇ϕ(x)〉, ϕ ∈ ξA(X), x ∈ X,

where the operator L0 and the space ξA(X) are defined in (1.10.6) and (1.10.5) respectively.

First of all in Section 6.1 we define the Sobolev space W 1,2
R (X, ν) and W 2,2

R (X, ν) related

to a “natural” derivative operator associated to R. In Section 6.2 we prove that Dom(N2) ⊆
W 1,2
R (X, ν) and, under some additional hypotheses, Dom(N2) ⊆ W 2,2

R (X, ν). In Section 6.3 we

will prove that the logarithmic Sobolev inequality and the Poincaré inequality hold in the space

W 1,2
R (X, ν), and we will see some of their consequences.

6.1 Closability of ∇R

In this section we introduce the Sobolev spaces we will use throughout the rest of the chapter. In

order to do so we need some preliminary results. Let (HR, 〈, 〉R) be the Hilbert space of Definition

3.0.2.

If Hypotheses 6.0.1 hold true then, by Proposition 3.1.4, for every t > 0 the map x 7→ X(t, x)

is P-a.e. HR-Gateaux differentiable and for any x ∈ X and h ∈ HR its HR-Gateaux derivative

along h ∈ HR is DGX(t, x)h, where {DGX(t, x)h}t≥0 is the unique mild solution of (3.1.5).

Using (6.0.3) as in the proof of Proposition 2.3.3, for any t > 0, x ∈ X and h ∈ HR we obtain

∥∥DGX(t, x)h
∥∥
R
≤ e−ζt‖h‖R.

So the following result follows in the same way of Theorem 4.1.7.

Lemma 6.1.1. Assume that Hypotheses 6.0.1 hold true. For every ϕ ∈ C1
b (X) it holds

‖∇RP2(t)ϕ(x)‖2R ≤ e−2ζtP2(t)‖∇Rϕ(x)‖2R, t > 0, x ∈ X. (6.1.1)

Lemma 6.1.2. Assume that Hypotheses 6.0.1 hold true. Let ϕ,ψ ∈ ξA(X). Then the product

ϕψ belongs to ξA(X) and

N2(ϕψ) = ϕN2ψ + ψN2ϕ+ 〈R∇ϕ,R∇ψ〉 = ϕN2ψ + ψN2ϕ+ 〈∇Rϕ,∇Rψ〉R. (6.1.2)

Furthermore whenever ϕ ∈ Dom(N2) and g ∈ C2
b (R), we have∫

X

(g′ ◦ ϕ)N2ϕdν = −
∫
X

(g′′ ◦ ϕ)‖R∇ϕ‖2dν. (6.1.3)



6.1. Closability of ∇R 117

Proof. The fact that ϕψ belongs to ξA(X) and (6.1.2) follows by direct calculations. We recall

that N2u = N0u whenever u ∈ ξA(X) (Theorem 5.3.3). Now we prove (6.1.3). We start by

showing that if ψ belongs to Dom(N2) then∫
X

ψN2ψdν = −1

2

∫
X

‖∇Rψ‖2Rdν. (6.1.4)

To prove (6.1.4) it is enough to recall that ν is invariant. Indeed by (6.1.2) we have for ϕ ∈ ξA(X)

0 =

∫
X

N2ϕ
2dν =

∫
X

(
2ϕN2ϕ+ ‖∇Rϕ‖2R

)
dν.

Since ξA(X) is a core for N2, by (6.1.4) and the Young inequality, it follows that

∇R : ξA(X) ⊆ Dom(N2)→ L2(X, ν;HR), ϕ 7→ ∇Rϕ,

is continuous and, consequently, it can be continuously extended to all Dom(N2) (endowed with

the graph norm). We shall still denote by ∇R its extension. So (6.1.4) follows by a standard

density argument. (6.1.3) follows by the dominated convergence theorem to get .

The next result will be useful to prove the closability of the gradient operator (Proposition

6.1.4) and the Poincaré inequality (Proposition 6.3.5).

Lemma 6.1.3. Assume that Hypotheses 6.0.1 hold true. Let ϕ ∈ ξA(X). It holds∫
X

|P2(t)ϕ|2dν +

∫ t

0

∫
X

‖∇RP2(s)ϕ‖2Rdνds =

∫
X

|ϕ|2dν. (6.1.5)

Proof. For every ϕ ∈ ξA(X) and x ∈ X we have

d

ds
(P2(s)ϕ)(x) = N2(P2(s)ϕ)(x), s > 0. (6.1.6)

Multiplying both sides of (6.1.6) by P2(s)ϕ, integrating on X with respect to ν, and taking into

account (6.1.4), we find ∫
X

d

ds
|P2(s)ϕ|2dν = −

∫
X

‖∇RP2(s)ϕ‖2Rdν. (6.1.7)

Now the thesis follows integrating (6.1.7) with respect to s from 0 to t.

We now can prove the closability of the derivative operators ∇R and ∇2
R (see Definition 3.1.2)

that we will use to define the Sobolev spaces W 1,2
R (X, ν) and W 2,2

R (X, ν).

Proposition 6.1.4. Assume that Hypotheses 6.0.1 hold true and let HR be the space of Hilbert–

Schmidt operators on HR. The operators ∇R : ξA(X) ⊆ L2(X, ν)→ L2(X, ν;HR) and (∇R,∇2
R) :

ξA(X) ⊆ L2(X, ν) → L2(X, ν;HR) × L2(X, ν;HR) are closable, where HR is the space of the

Hilbert–Schmidt operators on HR.
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Proof. We assume that {ϕn}n∈N ⊆ ξA(X) is a sequence such that

L2(X, ν)- lim
n→+∞

ϕn = 0; (6.1.8)

L2(X, ν;HR)- lim
n→+∞

∇Rϕn = Ψ,

for some Ψ ∈ L2(X, ν,HR). By (6.1.5), the strong continuity of P2(t) and (6.1.8), we have

lim
n→+∞

∫ t

0

∫
X

‖∇RP2(s)ϕn‖2Rdνds = lim
n→+∞

(∫
X

|ϕn|2dν −
∫
X

|P2(t)ϕn|2dν
)

= 0 (6.1.9)

We also claim that

lim
n→+∞

∫ t

0

∫
X

‖∇RP2(s)ϕn‖2Rdνds =

∫ t

0

∫
X

∥∥E[(DGX(t, x))∗Ψ(X(t, x))
]∥∥2

R
ν(dx)ds. (6.1.10)

Indeed by Corollary 3.1.6 we have

∇RP2(t)ϕn(x) = E
[
(DGX(t, x))∗∇Rϕn(X(t, x))

]
.

Observe that∫ t

0

∫
X

∥∥E[(DGX(s, x))∗∇Rϕn(X(s, x))
]
− E

[
(DGX(t, x))∗Ψ(X(s, x))

]∥∥2

R
ν(dx)ds

≤
∫ t

0

∫
X

e−2ζs‖E[∇Rϕn(X(s, x))−Ψ(X(s, x))]‖2Rν(dx)ds

≤
∫ t

0

∫
X

e−2ζs(P2(s)‖∇Rϕn −Ψ‖2R)(x)ν(dx)ds.

Recalling that ν is invariant for P2(t) we have

0 ≤ lim sup
n→+∞

∫ t

0

∫
X

∥∥E[(DGX(s, x))∗∇Rϕn(X(s, x))
]
− E

[
(DGX(s, x))∗Ψ(X(s, x))

]∥∥2

R
ν(dx)ds

≤ lim sup
n→+∞

∫ t

0

∫
X

e−2ζs‖∇Rϕn(x)−Ψ(x)‖2Rν(dx)ds = 0.

This proves (6.1.10). Combining (6.1.9) and (6.1.10) we get∫ t

0

∫
X

∥∥E[(DGX(s, x))∗Ψ(X(s, x))
]∥∥2

R
ν(dx)ds = 0.

So for a.e. s ∈ (0, t) (with respect to the Lebesgue measure) it holds∫
X

∥∥E[(DGX(s, x))∗Ψ(X(s, x))
]∥∥2

R
ν(dx) = 0. (6.1.11)

To be more precise we denote by A the subset with measure zero of (0, t), such that in (0, t) \A
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(6.1.11) does not hold. For s ∈ A, by the monotone convergence theorem, we have

0 =

∫
X

∥∥E[(DGX(s, x))∗Ψ(X(s, x))
]∥∥2

R
ν(dx)

=

∫
X

+∞∑
i=1

∣∣〈E[(DGX(s, x))∗Ψ(X(s, x))
]
, hi
〉
R

∣∣2ν(dx)

=

+∞∑
i=1

∫
X

∣∣E[〈(DGX(s, x))∗Ψ(X(s, x)), hi
〉
R

]∣∣2ν(dx)

=

+∞∑
i=1

∫
X

∣∣E[〈Ψ(X(s, x)),DGX(s, x)hi
〉
R

]∣∣2ν(dx).

So for s ∈ A and i ∈ N ∫
X

∣∣E[〈Ψ(X(s, x)),DGX(s, x)hi
〉
R

]∣∣2ν(dx) = 0.

Now observe that for s ∈ A and i ∈ N we have

0 ≤‖P2(s)(〈Ψ(·), hi〉R)‖
L2(X,ν)

= ‖E[〈Ψ(X(s, ·)), hi〉R]‖
L2(X,ν)

=‖E[〈Ψ(X(s, ·)), hi〉R]‖
L2(X,ν)

−
∥∥E[〈Ψ(X(s, ·)),DGX(s, ·)hi

〉
R

]∥∥
L2(X,ν)

≤
∥∥E[〈Ψ(X(s, ·)), hi〉R]− E

[〈
Ψ(X(s, ·)),DGX(s, ·)hi

〉
R

]∥∥
L2(X,ν)

=
∥∥E[〈Ψ(X(s, ·)), hi −DGX(s, ·)hi

〉
R

]∥∥
L2(X,ν)

.

By the continuity of s 7→ DGX(s, ·) and the dominated convergence theorem we get that for

every i ∈ N,

‖〈Ψ(·), hi〉R‖L2(X,ν) = 0.

By a standard argument we get Ψ(x) = 0 for ν-a.e x ∈ X. This proves the closability of

∇R : ξA(X) ⊆ L2(X, ν)→ L2(X, ν;HR).

Let FC2
b(X;X) be the set given by Definition 1.6.16). By similar arguments to those used

above we have that

DR : FC2
b(X;X) ⊆ L2(X, ν;X)→ L2(X, ν;HR)

is closable. The closability of (∇R,∇2
R) : ξA(X) ⊆ L2(X, ν) → L2(X, ν;HR) × L2(X, ν;HR)

follows by the fact that ∇2
R = DR∇R.

We are now able to define the Sobolev spaces we will use throughout the rest of the chapter.

Definition 6.1.5. We define the Sobolev spaces W 1,2
R (X, ν) and W 2,2

R (X, ν) as the domains of

the closure of the operators ∇R : ξA(X) ⊆ L2(X, ν) → L2(X, ν;HR) and (∇R,∇2
R) : ξA(X) ⊆

L2(X, ν)→ L2(X, ν;HR)×L2(X, ν;HR) respectively. They are endowed with the graph norms of

the closure of such operators. We still denote by ∇R and ∇2
R the closures of operators ∇R and

∇2
R.

Remark 6.1.6. If G ≡ 0 in (6.0.1) then the Sobolev space W 1,2
R (X, ν) coincides with the Sobolev

space defined in Proposition 1.6.17.
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6.2 Maximal Sobolev regularity

Now we can study the Sobolev regularity of the domain of N2. The following theorem states that

Dom(N2) is continuously embedded in W 1,2
R (X, ν).

Theorem 6.2.1. Assume that Hypotheses 6.0.1 hold true. Let λ > 0 and f ∈ L2(X, ν), we set

u := R(λ,N2)f =

∫ +∞

0

e−λtP (t)fdt.

The function u belongs to W 1,2
R (X, ν) and

‖u‖L2(X,ν) ≤
1

λ
‖f‖L2(X,ν); ‖∇Ru‖L2(X,ν;HR) ≤

√
2

λ
‖f‖L2(X,ν).

If for any ϕ ∈ Dom(N2) and ψ ∈W 1,2
R (X, ν) it holds∫

X

ψN2ϕdν = −1

2

∫
X

〈∇Rϕ,∇Rψ〉Rdν, (6.2.1)

then for every λ > 0 and f ∈ L2(X, ν), the function u belongs to W 2,2
R (X, ν) and

‖∇2
Ru‖L2(X,ν;HR) ≤ 2

√
2‖f‖L2(X,ν),

where HR is the space of the Hilbert–Schmidt operators on HR.

Proof. Since ξA(X) is a core for N2, then a sequence {un}n∈N ⊆ ξA(X) exists such that un

converges to a function u in L2(X, ν) and

L2(X, ν)- lim
n→+∞

λun −N2un = f.

Let fn := λun−N2un. Multiplying by un, integrating with respect to ν and using (6.1.3) we get∫
X

fnundν = λ

∫
X

u2
ndν −

∫
X

unN2undν = λ

∫
X

u2
ndν +

1

2

∫
X

‖∇Run‖2Rdν.

By the Cauchy–Schwarz inequality we get

‖un‖L2(X,ν) ≤
1

λ
‖fn‖L2(X,ν); ‖∇Run‖L2(X,ν;HR) ≤

√
2

λ
‖fn‖L2(X,ν).

Since {un}n∈N and {fn}n∈N converge to u and f , respectively, in L2(X, ν) we get

‖u‖L2(X,ν) = lim
n→+∞

‖un‖L2(X,ν) ≤ lim
n→+∞

1

λ
‖fn‖L2(X,ν) =

1

λ
‖f‖L2(X,ν).

Moreover

‖∇Run −∇Rum‖L2(X,ν;HR) ≤
√

2

λ
‖fn − fm‖L2(X,ν),

then {∇Run}n∈N is a Cauchy sequence in L2(X, ν;HR). By the closability of ∇R in L2(X, ν)
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(Proposition 6.1.4) it follows that u ∈W 1,2
R (X, ν) and

L2(X, ν;HR)- lim
n→+∞

∇Run = DRu.

Therefore

‖∇Ru‖L2(X,ν;HR) = lim
n→+∞

‖∇Run‖L2(X,ν;HR) ≤ lim
n→+∞

√
2

λ
‖fn‖L2(X,ν) =

√
2

λ
‖f‖L2(X,ν).

Now we prove the moreover part of the statement. Let {hn}n∈N be an orthonormal basis of

HR. Using (5.0.1), we differentiate the equality λun−N2un = fn along hj direction, we multiply

the result by 〈∇Ru, hj〉R, sum over j and finally integrate over X with respect to ν. We obtain

λ

∫
X

‖∇Run‖2Rdν −
∫
X

〈∇Run, A∇Run〉Rdν +
1

2

∫
X

‖∇2
Run‖2HR

dν

−
∫
X

〈R2∇G∇Run,∇Run〉Rdν =

∫
X

〈∇Rfn,∇Run〉Rdν.

Recalling that 〈(A+RDG(x))h, h〉R ≤ −ζ‖h‖2R for every x ∈ X and h ∈ HR we have

(λ+ ζ)

∫
X

‖∇Run‖2Rdν +
1

2

∫
X

‖∇2
Run‖2HR

dν ≤
∫
X

〈∇Rfn,∇Run〉Rdν.

Finally we have

1

2

∫
X

‖∇2
Run‖2HR

dν ≤
∫
X

〈∇Rfn,∇Run〉Rdν. (6.2.2)

By (6.2.1), (6.2.2), the Cauchy–Schwarz inequality and (6.1.2) we have

1

2

∫
X

‖∇2
Run‖2HR

dν ≤
∫
X

〈∇Rfn,∇Run〉Rdν = −2

∫
X

fnN2undν

= −2

∫
X

fn(λun − fn)dν ≤ 4

∫
X

f2
ndν.

So we get

‖∇2
Run‖L2(X,ν;HR) ≤ 2

√
2‖fn‖L2(X,ν).

We remark that

‖∇2
Run −∇2

Rum‖L2(X,ν;HR) ≤ 2
√

2‖fn − fm‖L2(X,ν),

then {∇2
Run}n∈N is a Cauchy sequence in L2(X, ν;HR). By the closability of (∇R,∇2

R) in L2(X, ν)

it follows that u ∈W 2,2
R (X, ν) and

L2(X, ν;HR)- lim
n→+∞

∇2
Run = ∇2

Ru.

Therefore

‖∇2
Ru‖L2(X,ν;HR) = lim

n→+∞
‖∇2

Run‖L2(X,ν;HR) ≤ lim
n→+∞

2
√

2‖fn‖L2(X,ν) = 2
√

2‖f‖L2(X,ν),
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and {un}n∈N converges to u in W 2,2
R (X, ν).

Remark 6.2.2. If G = R∇U for some suitable function U : X → R then condition 6.2.1 is

verified (see [39, 40]).

6.3 Poincaré and Logarithmic Sobolev inequalities

Logarithmic Sobolev inequalities are important tools in the study of Sobolev spaces with respect

to non-Lebesgue measures. This is due to the fact that they are the counterpart of the Sobolev

embeddings which in general fail to hold when the Lebesgue measure is replaced by other mea-

sures, as for example the Gaussian one. In this section we also collect some consequences of the

logarithmic Sobolev inequality (6.3.1). To do this we need an additional hypothesis.

Hypotheses 6.3.1. Assume that Hypotheses 6.0.1 hold true and that there exists an orthonormal

basis {ek}k∈N of X contained in Dom(A).

In this section we will use a technique that needs lowerly bounded functions ϕ : X→ R. The

space ξA(X) does not contain such functions, so we will work in the larger space FC1
b(X) (see

Remark 1.6.16) which contains them.

Now we are ready to prove that the measure ν satisfies a logarithmic Sobolev inequality. We

apply the Deuschel and Stroock method (see [50]).

Theorem 6.3.2. Assume that Hypotheses 6.3.1 hold true. For p ≥ 1 and ϕ ∈ FC1
b(X), the

following inequality holds:∫
X

|ϕ|p ln |ϕ|pdν ≤
(∫

X

|ϕ|pdν
)

ln

(∫
X

|ϕ|pdν
)

+
p2

2ζ

∫
X

|ϕ|p−2‖∇Rϕ‖2Rχ{ϕ 6=0}dν. (6.3.1)

Furthermore for every ϕ ∈W 1,2
R (X, ν) it holds∫

X

|ϕ|2 ln |ϕ|2dν ≤
(∫

X

|ϕ|2dν
)

ln

(∫
X

|ϕ|2dν
)

+
2

ζ

∫
X

‖∇Rϕ‖2Rχ{ϕ6=0}dν. (6.3.2)

Proof. We split the proof in two parts. In the first part we prove that the claim holds when ϕ

satisfies some additional conditions and in the second part we show (6.3.1) in its full generality.

Step 1. Here we prove (6.3.1) for functions ϕ in FC1
b(X) such that

c ≤ ϕ ≤ 1,

for some c > 0. We consider the function

H(t) :=

∫
X

(P2(t)ϕp) ln(P2(t)ϕp)dν, t ≥ 0.

which is well defined thanks to the contractivity and the positivity preserving property of P2(t).

Our aim is to find a lower bound for the derivative of H. Observe that by the invariance of
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ν and (6.1.3) we have

H ′(t) =

∫
X

(N2P2(t)ϕp) ln(P2(t)ϕp)dν +

∫
X

N2P2(t)ϕpdν

= −
∫
X

1

P2(t)ϕp
‖∇RP2(t)ϕp‖2Rdν ≥ −e−2ζt

∫
X

1

P2(t)ϕp
P2(t)‖∇Rϕp‖2Rdν

≥ −e−2ζt

∫
X

1

P2(t)ϕp
(P2(t)‖∇Rϕp‖R)2dν.

By (5.1.15) we have P2(t)‖∇Rϕp‖R ≤ [P2(t)(‖∇Rϕp‖2Rϕ−p)]1/2(P2(t)ϕp)
1/2

. Hence we deduce

H ′(t) ≥ −e−2ζt

∫
X

P2(t)
‖∇Rϕp‖2R

ϕp
dν

= −e−2ζt

∫
X

‖∇Rϕp‖2R
ϕp

dν = −e−2ζtp2

∫
X

ϕp−2‖∇Rϕ‖2Rdν.

Integrating from 0 to +∞ and using (5.1.6) we get∫
X

ϕp lnϕpdν ≤
(∫

X

ϕpdν

)
ln

(∫
X

ϕpdν

)
+
p2

2ζ

∫
X

ϕp−2‖∇Rϕ‖2Rdν.

Step 2. Now, for any ϕ ∈ FC1
b(X), consider the sequence {ϕn}n∈N ⊂ FC1

b(X) defined by

ϕn = (1 + ‖ϕ‖∞)−1
√
ϕ2 + n−1. Step 1 yields∫

X

ϕpn ln(ϕpn)dν ≤
(∫

X

ϕpndν

)
ln

(∫
X

ϕpndν

)
+
p2

2ζ

∫
X

ϕp−2
n ‖∇Rϕn‖2Rdν. (6.3.3)

Observing that there exists a positive constant cn,p such that cn,p ≤ ϕpn ≤ 1 for any n ∈ N and

using the fact that the function x 7→ x|lnx| is bounded in (0, 1], by the dominated convergence

theorem the left hand side of (6.3.3) converges to

(1 + ‖ϕ‖∞)−p
∫
X

|ϕ|p ln
[
(1 + ‖ϕ‖∞)−p|ϕ|p

]
dν,

and the first term in the right hand side of (6.3.3) converges to(
(1 + ‖ϕ‖∞)−p

∫
X

|ϕ|pdν
)

ln

( ∫
X
|ϕ|pdν

(1 + ‖ϕ‖∞)p

)
.

Since ‖∇Rϕn‖R ≤ (1+‖ϕ‖∞)−1‖∇Rϕ‖R for every n ∈ N, by the monotone convergence theorem

if p ∈ [1, 2), and by the dominated convergence theorem otherwise, we obtain

lim
n→+∞

∫
X

ϕn
p−2‖∇Rϕn‖2Rdν = (1 + ‖ϕ‖∞)−p

∫
X

|ϕ|p−2‖∇Rϕ‖2Rχ{ϕ6=0}dν.

So the statement follows letting n to infinity in (6.3.3).

Let ϕ ∈W 1,2
R (X, ν) then there exists a sequence {ϕn}n∈N ⊆ FC1

b(X) such that

lim
n→+∞

‖ϕn − ϕ‖W 1,2
R (X,ν).
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By standard arguments there exist a sub-sequence {ϕnk}k∈N such that for a.a. x ∈ X

lim
k→+∞

ϕnk(x) = ϕ(x), lim
k→+∞

∇Rϕnk(x) = ∇Rϕ(x).

By the Fatou lemma we obtain∫
X

|ϕ|2 ln |ϕ|2dν ≤ lim inf
k→+∞

∫
X

|ϕnk |
2

ln |ϕnk |
2
dν

≤ lim inf
k→+∞

[(∫
X

|ϕnk |2dν
)

ln

(∫
X

|ϕnk |2dν
)

+
2

ζ

∫
X

‖∇Rϕnk‖
2
Rχ{ϕnk 6=0}dν

]
≤
(∫

X

|ϕ|2dν
)

ln

(∫
X

|ϕ|2dν
)

+
2

ζ

∫
X

‖∇Rϕ‖2Rχ{ϕ6=0}dν,

and so we get (6.3.2).

By [63, 64], the logarithmic Sobolev inequality is equivalent to a hypercontractivity type

estimate.

Proposition 6.3.3. Assume that Hypotheses 6.3.1 hold true. Let t > 0 and q, r ∈ (1,+∞) be

such that r ≤ (q − 1)e2ζt + 1. The operator Pq(t) maps Lq(X, ν) in Lr(X, ν) and for every t > 0

and ϕ ∈ Lq(X, ν) we have

‖Pq(t)ϕ‖Lr(X,ν) ≤ ‖ϕ‖Lq(X,ν). (6.3.4)

Proof of Proposition 6.3.3. Let ϕ ∈ FC1
b(X), have positive infimum, and let r(t) := (q−1)e2ζt+1.

We recall that Pq(t)ϕ = P2(t)ϕ, for any ϕ ∈ FC1
b(X) and t > 0. For s ≥ 0 we set

G(s) :=

(∫
X

(P2(s)ϕ)r(s)dν

)1/r(s)

=: (R(s))
1/r(s)

and we prove that G(s) is a non-increasing function. Before proceeding we want to recall that

P2(s) maps FC1
b (X) into W 1,2

R (X, ν) ∩ L∞(X, ν). This guarantees that all the integrals we are

going to write in the following calculations are well defined and finite. By (6.1.3) we obtain

R′(s) = r′(s)

∫
X

(P2(s)ϕ)r(s) ln(P2(s)ϕ)dν − r(s)(r(s)− 1)

∫
X

(P2(s)ϕ)r(s)−2‖∇RP2(s)ϕ‖2Rdν.

(6.3.5)

Taking into account (6.3.5), if we set u(s) := P2(s)ϕ and we differentiate G, we get

G′(s) =
r′(s)

r(s)
∫
X

(u(s))r(s)dν

∫
X

(u(s))r(s) ln(u(s))dν

− r(s)− 1∫
X

(u(s))r(s)dν

∫
X

(u(s))r(s)−2‖∇Ru(s)‖2Rdν −
r′(s)

r2(s)
ln

(∫
X

(u(s))r(s)dν

)
Since r′(s) ≥ 0 we can apply (6.3.1) to get

G′(s) ≤ (G(s))1−r(s)
(
r′(s)

2ζ
− r(s) + 1

)∫
X

(P2(s)ϕ)r(s)−2‖∇RP2(s)ϕ‖2Rdν = 0.
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This proves that G is a decreasing function, namely G(0) ≥ G(t) for every t > 0. So we have for

every r ≤ r(t) and ϕ ∈ FC1
b(X)

‖Pq(t)ϕ‖Lr(X,ν) ≤ ‖P2(t)ϕ‖Lr(t)(X,ν) ≤ ‖ϕ‖Lq(X,ν).

By the same density argument used in the last part of Proof of Theorem 6.3.2, we obtain (6.3.4)

for a general ϕ ∈ Lq(X, ν).

An interesting consequence of Proposition 6.3.3 is an improvement of positivity property for

the semigroup P2(t).

Corollary 6.3.4. Assume that Hypotheses 6.3.1 hold true. For any t > 0 the semigroup P2(t)

is positivity improving, meaning that it maps a ν-a.e. non-negative function in a ν-a.e. positive

function.

Proof. The proof is classical and we just sketch it. By [81, Theorem 1.7] and the classical reverse

Hölder and Minkowski inequalities for p < 1 it is possible to prove a reverse hypercontratcivity

estimate such as that of [15, Section 2]. This is enough to obtain positivity improving, see [15,

Theorem 2.1].

Another classical inequality that follows from (6.1.1) is the Poincaré inequality.

Theorem 6.3.5. Assume that Hypotheses 6.3.1 hold true. If ϕ ∈W 1,2
R (X, ν), then

∫
X

∣∣∣∣ϕ− ∫
X

ϕdν

∣∣∣∣2dν ≤ 1

2ζ

∫
X

‖∇Rϕ‖2Rdν. (6.3.6)

Proof. We just show the theorem for ϕ ∈ ξA(X), the general case follows by a standard approx-

imation argument. Letting t go to infinity in (6.1.5), using (6.1.1) and the invariance of ν we

get ∫
X

|ϕ|2dν −
∣∣∣∣∫

X

ϕdν

∣∣∣∣2 =

∫ +∞

0

∫
X

‖∇RP2(s)ϕ‖2Rdνds

≤
∫ +∞

0

e−2ζs

∫
X

P2(s)‖∇Rϕ‖2Rdνds

=

(∫ +∞

0

e−2ζsds

)(∫
X

‖∇Rϕ‖2Rdν
)

=
1

2ζ

∫
X

‖∇Rϕ‖2Rdν.

Recalling that
∫
X

∣∣ϕ− ∫
X
ϕdν

∣∣2dν =
∫
X
|ϕ|2dν −

∣∣∫
X
ϕdν

∣∣2 we get the thesis.

The Poincaré inequality has many interesting consequences. Here we just state two of them

which are relevant to the study of the semigroup P2(t) and of its generator N2 in L2(X, ν). The

next result gives us the convergence rate of P2(t)ϕ to
∫
X
ϕdν in L2(X, ν) when t goes to infinity.
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Corollary 6.3.6. Assume that Hypotheses 6.3.1 hold true. If ϕ ∈ L2(X, ν), then∥∥∥∥P2(t)ϕ−
∫
X

ϕdν

∥∥∥∥
L2(X,ν)

≤ e−ζt‖ϕ‖L2(X,ν).

Proof. Let f ∈ Dom(N2), we set G(s) :=
∫
X

∣∣P2(s)ϕ−
∫
X
ϕdν

∣∣2dν. Using both (6.3.6) and

(6.1.3) we get

G′(s) =
d

ds

∫
X

∣∣∣∣P2(s)ϕ−
∫
X

ϕdν

∣∣∣∣2dν = 2

∫
X

(P2(s)ϕ)(N2P2(s)ϕ)dν

= −
∫
X

‖∇RP2(s)ϕ‖2Rdν ≤ −2ζ

∫
X

∣∣∣∣P2(s)ϕ−
∫
X

P2(s)ϕdν

∣∣∣∣2dν
= −2ζ

∫
X

∣∣∣∣P2(s)ϕ−
∫
X

ϕdν

∣∣∣∣2dν = −2ζG(s).

Thus G(t) ≤ e−2ζtG(0), which means

∫
X

∣∣∣∣P2(t)ϕ−
∫
X

ϕdν

∣∣∣∣2dν ≤e−2ζt

∫
X

∣∣∣∣ϕ− ∫
X

ϕdν

∣∣∣∣2dν
=e−2ζt

∫
X

|ϕ|2dν −
∣∣∣∣∫

X

ϕdν

∣∣∣∣2dν
≤e−2ζt

∫
X

|ϕ|2dν.

Finally, since Dom(N2) is dense in L2(X, ν), we obtain the statement.

The next proposition gives us a spectral gap for the operator N2. We refer to [42, Proposition

10.5.1] for the proof.

Proposition 6.3.7. If Hypotheses 6.3.1 hold true, then σ(N2) \ {0} ⊆ {λ ∈ C | Reλ ≤ −ζ}.

6.4 Remarks and examples

The results presented in this chapter are contained in the paper [10]. Results similar to the ones

of Theorems 6.3.2 and 6.3.5 are present in the literature only in specific settings. In [5, 16, 17]

and in [42, Section 12] the authors assume that F = −DU where U : X→ R is a convex function

with Lipschitz continuous derivative and R = IX or R = Q1/2, where Q is a positive, self-adjoint

and trace class operator. In [30, Section 3.6], [32] and [42, Section 11] the authors consider a

Lipschitz continuous function F and R = IX. In [70] the authors assume hypotheses similar to

the ones of this chapter, but they work in a finite dimensional setting.

The search for Sobolev regularity of domain of N2 and of logarithmic Sobolev and Poincaré

inequalities have already been done by various authors in the infinite dimensional setting. In

[30, Section 3.6.1] and [32] the authors assume that R has a continuous inverse and work with

the Sobolev space W 1,2(X, ν) defined as the domain of the closure in L2(X, ν) of the standard

Fréchet gradient operator ∇ : ξA(X) ⊆ L2(X, ν)→ L2(X, ν;X). We emphasize that the case when

R has a continuous inverse presents no significant differences in defining and studying Sobolev
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spaces compared to the case when R = IX. In [16] and [59] the authors assume that R = Q1/2,

where Q is a positive trace class operator, and G = −Q1/2∇U where U : X → R is a Fréchet

differentiable and convex function, such that ∇U is Lipschitz continuous. They consider the

Sobolev space W 1,2
Q (X, ν) defined as the closure in L2(X, ν) of the operator Q1/2∇ : ξA(X) ⊆

L2(X, ν) → L2(X, ν;X). We underline that, if G = −Q1/2∇U , then the invariant measure ν is

the weighted Gaussian measure

ν(dx) =
e−U∫

X
e−Uµ(dx)

µ(dx), µ ∼ N(0, Q),

and N2 is the self-adjoint operator associated to the quadratic form

G(ϕ,ψ) =

∫
X

〈Q1/2∇ϕ,Q1/2∇ψ〉dν, ϕ, ψ ∈W 1,2
Q (X, ν).

Conversely, if G is not of that form, then N2 is not necessarily associated to a quadratic form. In

this chapter we have revised the methods of the above mentioned papers, to avoid the conditions

R−1 ∈ L(X) or G = −Q1/2∇U .

We conclude this section with an explicit example where Hypotheses 6.3.1 are verified.

6.4.1 An example in L2([0, 1], λ)

Let X = L2([0, 1], λ) where λ is the Lebesgue measure. Let −Q−1 be the realization of the second

order derivative with Dirichlet boundary condition in L2([0, 1], λ). Hence Q is a positive trace

class operator. Let A = −(1/2)Q−β and R = Qα, with α, β ≥ 0 as in Subsection 3.4.2. We refer

to subsection 3.4.2 for remarks about the hypotheses on A and R. The constant λ1 in (3.4.1) and

(3.4.2) is equal to π−2 (see [30, Chapter 4]). Since G is Lipschitz continuous, it easy to see that

F = RG is Lipschitz continuous with Lipschitz constant ‖R‖LG. Moreover due to the choice of

R we have ‖R‖LG ≤ π−2αLG and so

〈RDG(x)h, h〉 ≤ π−2αLG‖h‖2, x, h ∈ X,

〈RDG(x)h, h〉R ≤ π
−2αLG‖h‖2R, x ∈ X, h ∈ HR.

If we assume LG < (1/2)π2α+β then the conditions (6.0.2) and (6.0.3) are verified and so the

hypotheses of Theorems 6.2.1, 6.3.2 and 6.3.5 hold true.



Chapter 7

Dirichlet semigroup associated to

a dissipative gradient systems

Assume that Hypotheses 5.3.1 hold true and let ν be the probability measure of Theorem 5.1.3.

Let O ⊆ X be an open set such that ν(O) > 0. We consider the Dirichlet semigroup associated

to the SPDE (2.0.1), defined by

PO(t)ϕ(x) := E
[
ϕ(X(t, x))I{τx>t}

]
:=

∫
Ω

ϕ(X(t, x))I{τx>t}dP, ϕ ∈ Bb(O),

where X(t, x) is the generalized mild solution of the SPDE (2.0.1) and τx is the stopping time

defined by

τx = inf{t > 0 : X(t, x) ∈ Oc}. (7.0.1)

Now we prove that ν is subinvariant for PO(t).

Proposition 7.0.1. Assume that Hypotheses 5.3.1 hold true. For any ϕ ∈ Bb(O), t > 0, we

have ∫
O

(PO(t)ϕ)2dν ≤
∫
O

ϕ2dν.

Proof. Let

ϕ̂(x) =

ϕ(x) x ∈ O,

0 x ∈ Oc,

then, by the Hölder inequality, we have

(PO(t)ϕ)2 ≤ E[ϕ2(X(t, x))I{τx≥t}] ≤ E[ϕ̂2(X(t, x))I{τx≥t}] = P (t)(ϕ̂2).

Since ν is invariant for P (t) and P (t) is non-negative (see definition at beginning of Section 1.4),

then we conclude∫
O

(PO(t)ϕ)2dν ≤
∫
O

P (t)(ϕ̂2)dν ≤
∫
X

P (t)(ϕ̂2)dν =

∫
X

ϕ̂2dν =

∫
O

ϕ2dν.
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By Proposition 7.0.1, proceeding as in Proposition 5.1.6, the semigroup PO(t) is uniquely ex-

tendable to a strongly continuous semigroup PO
2 (t) in L2(O, ν).

Remark 7.0.2. By the same arguments PO(t) is uniquely extendable to a strongly continuous

semigroup Lp(O, ν), for any p ≥ 1.

Definition 7.0.3. We denote by M2 the infinitesimal generator of PO
2 (t).

In this chapter, under some additional hypotheses, we will characterize M2 using a technique

of [8, 33]. This technique requires that it is possible to associate a quadratic form to the operator

N2 (see Definition 5.1.7). Hence we restrict to the case where F is a gradient perturbation,

namely it has a potential. In this case the invariant measure ν is a weighted Gaussian measure.

In Section 7.1 we recall some known results that guarantee that it is possible in this case to define

the Sobolev space W 1,2
R (X, ν) and to associate a quadratic form Q2 to N2 (see Definition 5.1.7),

namely∫
X

(N2ϕ)ψdν = Q2(ϕ,ψ) = −1

2

∫
〈R∇ϕ,R∇ψ〉dν, ∀ϕ ∈ Dom(N2), ψ ∈W 1,2

R (X, ν).

see for example [2, 5, 16, 17, 29, 34, 35, 36, 39, 40, 59]. Due to this, proceeding as in [33, Section

3], we will consider a suitable space W̊ 1,2
R (X, ν) of the functions u : O → R such that their null

extension û belongs to W 1,2
R (X, ν), and the quadratic form QO

2 on W̊ 1,2
R (O, ν) defined by

QO
2 (ϕ,ψ) = Q2(ϕ̂, ψ̂), ∀ϕ,ψ ∈ W̊ 1,2

R (O, ν).

In Section7.3 we are going to prove the main result of this chapter.

Theorem 7.0.4. Assume that Hypotheses 7.1.2 hold true. Then the infinitesimal generator M2

of PO
2 (t) is the operator NO

2 associated with QO
2 , namely

Dom(NO
2 ) := {ϕ ∈ W̊ 1,2

R (O, ν) : ∃β ∈ L2(O, ν) s.t.

∫
O

βψdν = QO
2 (β, ψ) ∀ψ ∈ W̊ 1,2

R (X, ν)}

NO
2 ϕ = β, ϕ ∈ Dom(NO

2 ).

7.1 The Sobolev spaces

We begin by stating some additional assumptions about the operators A and R in the SPDE

(2.0.1).

Hypotheses 7.1.1. Assume that Hypotheses 5.3.1 hold true and the following conditions hold

true.

(i) R is non-negative.

(ii) A : Dom(A) ⊂ X→ X is self-adjoint and there exist w > 0 and M > 0 such that

∥∥etA∥∥
L(X)

≤Me−wt, t ≥ 0.



7.1. The Sobolev spaces 130

(iii) R(Dom(A)) ⊆ Dom(A), and ARx = RAx for any x ∈ Dom(A).

Under Hypotheses 7.1.1 the operator

Q∞ =

∫ ∞
0

etAR2etA
∗
dt

is a positive and trace class operator. Let µ ∼ N(0, Q∞) and let W 1,2
R (X, µ) be the Sobolev space

given by Definition 6.1.5 (with G ≡ 0 in (6.0.1)).

Hypotheses 7.1.2. Assume that Hypotheses 5.1.1 and 7.1.1 hold true and that there exists a

lower semicontinuous function U : X→ R such that

1. ‖x‖2e−2U ∈ L1(X, µ) and e−2U ∈W 1,2(X, µ);

2. F = −R2∇U .

Under Hypotheses 7.1.2 the SPDE (2.0.1) becomes{
dX(t, x) =

(
AX(t, x)−R2∇U(X(t, x))

)
dt+RdW (t), t ∈ [0, T ];

X(0, x) = x ∈ X,

the operator (5.0.1) reads as

N0ϕ(x) :=
1

2
Tr[R2∇2ϕ(x)] + 〈x,A∗∇ϕ(x)〉 − 〈R∇U(x),∇ϕ(x)〉, ϕ ∈ ξA(X), x ∈ X,

Moreover the following results are verified.

Proposition 7.1.3. Assume that Hypotheses 7.1.2 hold true.

1. The invariant measure ν of P (t) has the form

ν(dx) =
e−2U(x)

B
µ(dx), B :=

∫
X

e−2U(x)µ(dx).

2. The operator

R∇ : ξA(X) ⊆ L2(X, ν)→ L2(X, ν,X)

is closable, and we denote by W 1,2
R (X, ν) its domain.

3. For any ϕ ∈W 1,2
R (X, ν) and ψ ∈ Dom(N2) we have∫

X

(N2ψ)ϕdν = Q2(ϕ,ψ) := −1

2

∫
X

〈R∇ϕ,R∇ψ〉dν.

We refer to [40, Sections 3-4] or [39] for a proof. Similarly to [33, Section 2], we define the

following space.

Definition 7.1.4. We denote by W̊ 1,2
R (O, ν) the space of the functions u : O −→ R such the

extension û : X→ R defined by

û(x) =

u(x) x ∈ O

0 x ∈ Oc
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belongs to W 1,2
R (O, ν).

Remark 7.1.5. If R is positive then Q∞ is positive and µ is non-degenerate Gaussian measure.

Hence ν is non-degenerate and so ν(O) > 0 for any O ∈ B(X).

Now we define a quadratic form on W̊ 1,2
R (O, ν).

Definition 7.1.6. We denote by QO
2 the quadratic form

QO
2 (ϕ,ψ) := −1

2

∫
X

〈
R∇ϕ̂, R∇ψ̂

〉
dν, ϕ, ψ ∈ W̊ 1,2

R (O, ν).

Moreover, we denote by NO
2 the self-adjoint dissipative operator associated to QO

2 , namely

Dom(NO
2 ) := {ϕ ∈ W̊ 1,2

R (O, ν) : ∃β ∈ L2(O, ν) s.t.

∫
O

βψdν = QO
2 (β, ψ) ∀ψ ∈ W̊ 1,2

R (X, ν)},

NO
2 ϕ = β, ϕ ∈ Dom(NO

2 ).

In section 7.3 we shall prove Theorem 7.0.4 using the following procedure. For λ > 0 and

f ∈ L2(O, ν), we consider the equation with unknown ϕ ∈ W̊ 1,2
R (O, ν),

λ

∫
O

ϕvdν −QO
2 (ϕ, v) =

∫
O

fvdν, v ∈ W̊ 1,2
R (O, ν). (7.1.1)

Since the quadratic form −QO
2 is continuous, nonnegative, coercive and symmetric, by the Lax–

Milgram Theorem for every λ > 0 and f ∈ L2(O, ν) there exists a unique solution ϕ ∈ W̊ 1,2
R (O, ν)

of (7.1.1). By definition of NO
2 , for every λ > 0 and f ∈ L2(O, ν), we have

R(λ,NO
2 )f = ϕ,

where ϕ is the unique solution of (7.1.1). In Subsection 7.3, we will prove that

R(λ,M2) = R(λ,NO
2 ),

which yields Theorem 7.0.4.

Remark 7.1.7. We stress that in the trivial case, where O = X, Theorem 7.0.4 follows from

Theorem 5.3.3 and Proposition 7.1.3.

7.2 The approximating semigroups

In this section we define and study the Feynman-Kac approximating semigroups for the semigroup

PO
2 . For ε > 0 we define

1. the set

Oε := {x ∈ O | d(x,Oc) > ε}; (7.2.1)

2. the function

Vε(x) :=

(
1

ε
d(x,Oε)

)
∧ 1, x ∈ X. (7.2.2)
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We note that V ∈ Cb(X), V ≡ 0 on Oε and V ≡ 1 on Oc;

3. the semigroup

P ε(t)ϕ(x) = E
[
ϕ(X(t, x))e−

1
ε

∫ t
0
Vε(X(s,x))ds

]
, ϕ ∈ Bb(X), x ∈ X,

where {X(t, x)}t≥0 is the mild solution of the SPDE (2.0.1).

First we prove that P ε(t) is uniquely extendable to a strongly continuous semigroup in L2(X, ν).

Lemma 7.2.1. For any ϕ ∈ Cb(X) we have

‖P ε(t)ϕ‖L2(X,ν) ≤ ‖ϕ‖L2(X,ν).

Proof. By the Hölder inequality and the fact that V is nonnegative on X,

|P ε(t)ϕ(x)|2 ≤ E[ϕ2(X(t, x))e−
2
ε

∫
X
Vε(X(s,x))ds] ≤ P (t)(ϕ2)(x), x ∈ X.

Hence, since ν is invariant for P (t), we have∫
X

|P ε(t)ϕ(x)|2ν(dx) ≤
∫
X

P (t)(ϕ2)(x)ν(dx) ≤
∫
X

ϕ2(x)ν(dx).

By Lemma (7.2.1) and the same procedure using in the proof of the Proposition 5.1.6, the

semigroup P ε(t) is uniquely extendable in L2(X, ν) to a strongly continuous and contraction

semigroup P ε2 (t).

Definition 7.2.2. We denote by N ε
2 the infinitesimal generator of P ε2 (t).

We recall that N2 is both the closure of the operator N0 in L2(X, ν) and the infinitesimal

generator of P2(t) (see Subsection 5.3).

Proposition 7.2.3. Let λ > 0 and f ∈ L2(X, ν). Then the equation

λϕε −N2ϕε +
1

ε
Vεϕε = f (7.2.3)

has a unique solution ϕε ∈ Dom(N2). Moreover the following estimates are verified.

‖ϕε‖2L2(X,ν) ≤
1

λ2
‖f‖2L2(X,ν). (7.2.4)

‖R2∇ϕε‖2L2(X,ν,X) ≤
2

λ
‖f‖L2(X,ν). (7.2.5)∫

Ocε

Vεϕ
2
εdν ≤

ε

λ
‖f‖2L2(X,ν). (7.2.6)

Proof. By Proposition 7.1.3, N2 is maximal dissipative. Let G : L2(X, ν) → L2(X, ν) be the

operator defined by

Gϕ :=
1

ε
Vε · ϕ,
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then −G is dissipative. So the operator K : Dom(N2)→ L2(X, ν), defined by

Kϕ := N2ϕ−Gϕ

is maximal dissipative. Therefore (7.2.3) has a unique solution ϕε ∈ Dom(N2) and (7.2.4) is

verified. Multiplying both sides of (7.2.3) by ϕε, integrating over X, and taking into account

(7.1.3), we obtain

λ‖ϕε‖2L2(X,ν) +
1

2
‖R∇ϕε‖2L2(X,ν) +

1

ε

∫
Ocε

Vεϕ
2
εdν =

∫
X

fϕεdν.

By the Hölder inequality
∫
X
|fϕε|dν ≤ ‖f‖L2(X,ν)‖ϕε‖L2(X,ν) and, by estimate (7.2.4), we obtain∫

X
|fϕε|dν ≤ 1

λ‖f‖
2
L2(X,ν). Then

1

2
‖R∇ϕε‖2L2(X,ν) +

1

ε

∫
Ocε

Vεϕ
2
εdν ≤

1

λ
‖f‖2L2(X,ν).

which yields (7.2.5) and (7.2.6).

Now we characterize N ε
2 the infinitesimal generator of P ε2 (t).

Proposition 7.2.4. For any ε > 0, we have Dom(N ε
2) = Dom(N2) and

N ε
2ϕ = N2ϕ−

1

ε
Vεϕ, ∀ϕ ∈ Dom(N2). (7.2.7)

Proof. First we prove that Dom(N2) ⊂ Dom(N ε
2). We begin to show that ξA(X) ⊂ Dom(N ε

2).

Let ϕ ∈ ξA(X). For any x ∈ X and h > 0, we have

P ε2 (h)ϕ(x)− ϕ(x) = P2(h)ϕ(x)− ϕ(x) + E[(e−
1
ε

∫ h
0
Vε(X(s,x))ds − 1)ϕ(X(h, x))]. (7.2.8)

Dividing both sides of (7.2.8) by h > 0 we obtain

P ε2 (h)ϕ(x)− ϕ(x)

h
=
P2(h)ϕ(x)− ϕ(x) + E[(e−

1
ε

∫ h
0
Vε(X(s,x))ds − 1)ϕ(X(h, x))]

h
.

By Theorem 5.3.3, we know that

lim
h→0

P2(h)ϕ− ϕ
h

= N2ϕ, in L2(X, ν) (7.2.9)

Since the generalized mild solution X(·, x) is continuous P-a.s. (see Theorem 2.1.13 and Definition

2.1.5), then the functions r −→ Vε(X(r, x)) and r −→ ϕ(X(r, x)) are paths continuous, and so,

recalling that Vε ∈ Cb(X), for any x ∈ X we have

lim
h→0

E[(e−
1
ε

∫ h
0
Vε(X(s,x))ds − 1)ϕ(X(h, x))]

h
= −1

ε
Vε(x)ϕ(x).
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Hence, noting that

(e−
1
ε

∫ h
0
Vε(X(s,x))ds − 1)ϕ(X(h, x))

h
≤

(1− e− 1
εh)‖ϕ‖∞
h

, P-a.s.

by the Dominated Convergence theorem it follows that

lim
h→0

E[(e−
1
ε

∫ h
0
Vε(X(s,·))ds − 1)ϕ(X(h, ·))]

h
= −1

ε
Vε(·)ϕ(·), in L2(X, ν). (7.2.10)

So by (7.2.9) and (7.2.10) we obtain

N ε
2ϕ = lim

h→0

P ε(h)ϕ− ϕ
h

= N2ϕ−
1

ε
Vεϕ, in L2(X, ν).

Then, for any ϕ ∈ ξA(X), we have ϕ ∈ D(N ε
2) and

N ε
2ϕ = N2ϕ−

1

ε
Vεϕ.

Let now ϕ ∈ Dom(N2). By Theorem 5.3.3, ξA(X) is a core for N2, so we can take a sequence

(ϕn)n∈N ⊂ ξA(X) such that

lim
n→+∞

ϕn = ϕ, lim
n→+∞

N2ϕn = N2ϕ, in L2(X, ν).

Since Vε is bounded, we have

lim
n→+∞

1

ε
Vεϕn =

1

ε
Vεϕ in L2(X, ν).

Hence

lim
n→+∞

N ε
2ϕn = lim

n→+∞
N2ϕn −

1

ε
Vεϕn = N2ϕ−

1

ε
Vεϕ, in L2(X, ν).

Then, for any ϕ ∈ Dom(N2), we have ϕ ∈ Dom(N ε
2) and (7.2.7) holds.

Finally we prove that Dom(N ε
2) ⊂ Dom(N2). For any ϕ ∈ Dom(N ε

2), let ϕε be the unique

solution of (7.2.3) with f = λϕε−N ε
2ϕε. Then, by Proposition 7.2.3, ϕε ∈ Dom(N2) ⊂ Dom(N ε

2).

Moreover R(λ,N ε
2)f = ϕε = ϕ and this concludes the proof.

Finally we prove that the semigroups P ε2 (t) approximate PO
2 (t) in L2(O, ν).

Proposition 7.2.5. For any f ∈ L2(O, ν) and t > 0, we have

lim
ε→0

(P ε2 (t)f̂)|O = PO
2 (t)f in L2(O, ν), (7.2.11)

and, for any λ > 0,

lim
ε→0

(R(λ,N ε
2)f̂)|O = R(λ,M2)f in L2(O, ν), (7.2.12)

where f̂ is defined in Definition 7.1.4.
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Proof. We split the proof in two steps. As a first step we prove that for any ϕ ∈ Cb(X) we have

lim
ε→0
‖P ε2 (t)ϕ− PO

2 (t)(ϕ|O)‖L2(O,ν) = 0. (7.2.13)

And as a second step we prove the statement of Proposition.

Step 1. Let ϕ ∈ Cb(X). First of all we prove that

lim
ε→0

P ε2 (t)ϕ(x) = PO
2 (t)(ϕ|O)(x) x ∈ O, t > 0. (7.2.14)

Fixed x ∈ O we consider the stopping time τx defined in (7.0.1). Let t > 0; we define the sets

Ω1 = {τx > t} = {w ∈ Ω | X(s, x)(w) ∈ O, ∀s ∈ [0, t)},

Ω2 = {τx ≤ t} = {w ∈ Ω | ∃s0 ∈ (0, t] | X(s0, x)(w) ∈ Oc}.

Clearly Ω = Ω1 ∪ Ω2 and Ω1,Ω2 are disjoint. We have

P ε2 (t)ϕ(x) =

∫
Ω1

ϕ(X(t, x))e−
1
ε

∫ t
0
Vε(X(s,x))dsdP +

∫
Ω2

ϕ(X(t, x))e−
1
ε

∫ t
0
Vε(X(s,x))dsdP. (7.2.15)

We study separately the two integrals in the right hand side of (7.2.15). On Ω1, X(s, x) ∈ O, for

any s ∈ [0, t), and then, by definition of Vε (see 7.2.2), there exist ε0 > 0, such that

Vε(X(s, x)) = 0, ∀ε < ε0, ∀s ∈ [0, t).

So

lim
ε→0

∫
Ω1

ϕ(X(t, x))e−
1
ε

∫ t
0
Vε(X(s,x))dsdP =

∫
Ω1

ϕ(X(t, x))dP. (7.2.16)

On Ω2, by the fact that the generalized mild solution X(t, x) ∈ PC([0,+∞),X) (see Theorem

2.1.13 and Definition 2.1.5), we know that, for P-a.a. (almost all) w ∈ Ω2, there exists s0(w) ∈
(0, t] such that

X(s0(w), x)(w) ∈ ∂O,

where ∂O is the boundary of O. Then by definition of Vε, there exists δ(w) > 0 such that

Vε(X(s, x))(w) ≥ 1

2
, ∀s ∈ [s0(w)− δ(w), s0(w)].

So, for the second summand of equation (7.2.15), for P-a.a. w ∈ Ω2, we have

lim
ε→0

e−
1
ε

∫ t
0
Vε(X(s,x))(w)ds ≤ lim

ε→0
e−

δ(w)
2ε = 0. (7.2.17)

Therefore by (7.2.17) and the Dominated Convergence theorem, we have

lim
ε→0

∫
Ω2

ϕ(X(t, x))e−
1
ε

∫ t
0
Vε(X(s,x))dsdP = 0. (7.2.18)

Hence, (7.2.16) and (7.2.18) yield (7.2.14). Moreover, for each x ∈ O, we have

|P ε2 (t)(ϕ̂)(x)|, |PO
2 (t)(ϕ|O)(x)| ≤ ‖ϕ‖∞. Then, by (7.2.14) and the Dominated Convergence the-
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orem, (7.2.13) is verified.

Step 2. Let f ∈ L2(O, ν); we prove (7.2.11) . We recall that Cb(X) is dense in L2(X, ν), so there

exists a sequence (fn) ⊂ Cb(X) such that, for any large n ∈ N,

‖f̂ − fn‖L2(X,ν) ≤
1

n
.

In particular

‖f − fn|O‖L2(O,ν) = ‖f̂ − fn‖L2(X,ν) ≤
1

n
. (7.2.19)

Therefore

‖P ε2 (t)f̂ − PO
2 (t)f‖L2(O,ν) ≤ ‖PO

2 (t)(f − fn|O)‖L2(O,ν)+‖P ε2 (t)(f̂ − fn)‖L2(O,ν)

+‖P ε2 (t)fn − PO
2 (t)fn|O‖L2(O,ν).

By Lemma 7.2.1 and Proposition 7.0.1, we have

‖P ε2 (t)f̂ −PO
2 (t)f‖L2(O,ν) ≤ ‖f − fn|O‖L2(O,ν) + ‖f̂ − fn‖L2(O,ν) + ‖P ε2 (t)fn−PO

2 (t)fn|O‖L2(O,ν).

Letting ε → 0 and n → +∞, the first and the second summand go to zero by (7.2.19), and the

third summand goes to zero by Step 1. We recall the following identity in L2(X, ν)

R(λ,N ε
2)f̂ =

∫ +∞

0

e−λtP ε2 (t)f̂dt,

taking the restriction to O of both sides and using (7.2.11) we obtain (7.2.12).

7.3 Proof of Theorem 7.0.4

Finally we prove Theorem 7.0.4.

Proof of Theorem 7.0.4. First we prove that Dom(M2) ⊆ W̊ 1,2
R (O, ν). For ε > 0, ϕ ∈ Dom(M2),

λ > 0 and f = λϕ−M2ϕ we set

ϕε = R(λ,N ε
2)f̂ .

By Proposition 7.2.4, ϕε is the unique solution of (7.2.3), with f replaced by f̂ . Moreover, by

Proposition 7.2.3(7.2.4-7.2.5), the W 1,2
R (X, ν)-norm of ϕε is bounded by a constant independent

of ε. Therefore there exists a sub-sequence (ϕεk) weakly convergent in W 1,2
R (X, ν) to a function

φ. We have to prove that φ = ϕ̂, namely φ|O = ϕ and φ|Oc = 0. By Proposition 7.2.5(7.2.12),

we know that

lim
k→+∞

‖ϕ− ϕεk|O‖L2(O,ν) = 0,

so that φ|O = ϕ. Since ϕεk weakly converges to φ in W 1,2
R (X, ν), then it weakly converges to φ

in L2(O, ν). Recalling that Vεk ≡ 1 in Oc (see (7.2.2)) and using (7.2.6), we obtain

‖φ‖2L2(Oc,ν) =

∫
Oc
φ2dν = lim sup

k→+∞

∫
Oc
ϕεkφ dν ≤ lim sup

k→+∞

(∫
Oc
ϕ2
εk
Vεkdν

) 1
2
(∫

Oc
φ2Vεkdν

) 1
2
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≤ lim
k→+∞

(εk
λ

) 1
2 ‖f‖L2(H,ν)

(∫
Oc
φ2Vεkdν

) 1
2

= 0,

and so φ|Oc = 0. Therefore, φ = ϕ̂ ∈W 1,2
R (X, ν), so that ϕ ∈ W̊ 1,2

R (O, ν).

Finally we prove that ϕ is a solution of (7.1.1). Fixed v ∈ W̊ 1,2
R (O, ν) and k ∈ N, we multiply

both members of (7.2.7) by v̂ and we integrate over X\(O\Oεk). Since Vεk v̂ ≡ 0 on X\(O\Oεk),

we have

λ

∫
X\(O\Oεk )

ϕεk v̂ dν +
1

2

∫
X\(O\Oεk )

〈R∇ϕεk , R∇v̂〉 dν =

∫
X\(O\Oεk )

f̂ v̂ dν.

Recalling the definition of Oεk (see (7.2.1)), letting k → +∞, we obtain

λ

∫
X

ϕ̂v̂ dν +
1

2

∫
X

〈R∇ϕ̂, R∇v̂〉 dν =

∫
X

f̂ v̂ dν,

and so we conclude that ϕ satisfies (7.1.1). We recall that, by the Lax-Milgram theorem, the

weak solution of (7.1.1) is unique and so, for any λ > 0 and f ∈ L2(O, ν), we have

R(λ,M2)f = R(λ,NO
2 )f,

and so Theorem 7.0.4 is proved.

7.4 Remarks and examples

The results presented in this chapter are contained in the paper [9].

We could have used the same method to prove Theorem 7.0.4 even in the case of closed

domain K as in [33] instead of an open set O. If we had considered a closed domain K (with

ν(K) > 0), we could have used a single potential V not dependent to ε. However, we should

have defined differently the stopping time τx to take account of the value of functions at ∂K (the

boundary of K).

We stress that the semigroup PO(t) is associated to a Dirichlet problem (see [33] for the

Ornstein-Uhlenbeck case). Indeed, for any λ > 0 and f ∈ L2(O, ν), we consider the Dirichlet

problem {
λϕ−NO

2 ϕ = f, on O,

0, on ∂O.
(7.4.1)

The problem (7.1.1) is a weak formulation of (7.4.1), and the spaces W̊ 1,2
R (O, ν) are the natural

spaces in which to set the problem. In particular, by Theorem 7.0.4, the function

ϕ = R(λ,NO
2 )f

is the unique weak solution of (7.4.1).

Theorem 7.0.4 generalizes the result of [33, Section 3] proved for F = 0. For a study of an

analogous problem in the case where X is a separable Banach space and F = 0 we refer to [8],
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instead we refer to [88, 96] for other types of problems about the stopped semigroup. Now we

present an interesting reaction-diffusion system that verifies the hypotheses of Theorem 7.0.4.

7.4.1 A reaction-diffusion gradient system

Let X = L2([0, 1], λ) where λ is the Lebesgue measure and let E = C([0, 1]). Let A be the

realization in L2([0, 1]) of the second order derivative with Dirichlet boundary condition and let

R = IX. By [20, Section 6.1] Hypotheses 2.1.1(iii), 2.1.1(v) and 7.1.1 are verified. By [20, Lemma

8.2.1] condition (5.1.1) of Hypotheses 5.1.1 is verified.

Now we define the function F . Let ϕ ∈ C2(R) be a function such that ϕ′ is increasing, and

there exist d1, d2 > 0 and an m ∈ N such that

|ϕ′(y)| ≤ d1(1 + |y|m), y ∈ R; (7.4.2)

|ϕ′′(y)| ≤ d2(1 + |y|m−1
), y ∈ R; . (7.4.3)

Let ζ2 > 0. We consider the function φ : R→ R defined by

φ(y) = ϕ(y) +
ζ2
2
y2,

and the function U : X→ R defined by

U(f) =


∫ 1

0
φ(f(x)), f ∈ E,

+∞, f 6∈ E.

In this case the operator of Hypotheses 7.1.1 is Q∞ = A−1. Let µ ∼ N(0, Q∞). By [34,

Proposition 5.2], U ∈W 1,p
R (X, µ), for any p ≥ 1, and

∇U(f)(x) = φ′ ◦ f(x) = ϕ(f(x)) + ζ2f(x), ∀f ∈ E = C([0, 1]), x ∈ [0, 1].

We set F = −∇U , and we recall that we have taken R = IX. Hence Hypotheses 2.1.1(ii) are

verified. By (7.4.2) and (7.4.3) Hypotheses 2.1.1(vi) and 2.1.1(vii) are verified. By [43, Example

D.7] and standard calculations Hypotheses 2.1.1(iv) are verified with ζ = −ζ2. Therefore all the

hypotheses of Theorem 5.1.3 are verified, so ν(C([0, 1])) = 1, where ν is the invariant measure

of the transition semigroup associated to the generalize mild solution of (2.0.1). Finally, by the

definition of φ and the Fernique theorem, the hypotheses of Theorem 7.0.4 are verified.

It is also possible to consider an operator A that verifies Hypotheses 2.1.1(iv)(a) with ζ1 <

0(see [43, Example 11.36]), in this way we can take ζ2 < 0.
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[93] Röckner, M., Wang, F.-Y. Log-Harnack inequality for stochastic differential equations in

Hilbert spaces and its consequences, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13

(2010), 27–37.

[94] Serrin, J. On the Harnack inequality for linear elliptic equations, J. Analyse Math. 4

(1955/56), 292–308.

[95] Sharpe M. General theory of markov processes, Academic Press, Cambridge, 1982.

[96] A. Talarczyk Dirichlet problem for parabolic equations on Hilbert spaces, Studia Math. 141

(2000), 109–142.

[97] Trudinger, N.S., On Harnack type inequalities and their application to quasilinear elliptic

equations, Commun. Pure Appl. Math. 20 (1967), 721–747.

[98] Walsh J. B., An introduction to stochastic partial differential equations, Ecole d’Ete de

Probabilites de Saint-Flour XIV. Lecture Notes in Math. 1180, 265–439, SpringerVerlag,

1986.

[99] Wang, F.-Y. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds,

Probab. Theory Related Fields 109 (1997), 417–424.

[100] Wang, F.-Y. Equivalence of dimension-free Harnack inequality and curvature condition,

Integral Equations Operator Theory 48 (2004), 547–552.

[101] Wang, F.-Y. Harnack inequalities for stochastic partial differential equations, SpringerBriefs

in Mathematics, Springer, New York, 2013.

[102] Wang, F.-Y., Yuan, C. Harnack inequalities for functional SDEs with multiplicative noise

and applications, Stochastic Process. Appl. 121 (2011), 2692–2710.

[103] Zabczyk, J.: Parabolic equations on Hilbert spaces. In Da Prato, G. (eds.) Stochastic PDE’s

and Kolmogorov equations in infinite dimensions (Cetraro, 1998), pp. 117–213. Springer,

Berlin (1999)


