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Abstract. 

The paper focuses on the calculation of the effective viscoelastic properties of a short fiber 

reinforced composite. The orientation distribution of the fibers is described by a scatter parameter, 

varying from perfectly aligned fibers to randomly oriented ones. Both matrix and fibers are 

assumed to be isotropic. The viscoelastic behavior is described using fraction-exponential 

operators of Scott Blair-Rabotnov. Results are obtained in closed form. 
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1. Introduction.  

The present paper is motivated mostly by needs in development of synthetic fiber reinforced 

concrete (see review of Yin et al., 2015) that attracted attention of researchers when it was shown 

that surface treatment of synthetic fibers may significantly increase the bond strength with the 

concrete matrix (Di Maida et al., 2015; Radi et al., 2015). To the best of our knowledge, no 

analytical model that describes the mechanical behavior of such materials has been proposed. In 

the text to follow, we calculate effective viscoelastic properties of a material reinforced with short 

fibers accounting for the orientation distribution of the fibers that may vary from perfectly aligned 

to randomly oriented ones. Both the matrix and the fibers are assumed to be isotropic. The 

viscoelasticity is described using fraction-exponential operators of Scott Blair-Rabotnov that allow 

explicit closed form results. 

 Viscoelastic properties of reinforced composites are studied from first quarter of XX century 

and from the very beginning it was proposed to use elastic-viscoelastic analogy to obtain the 

solution. Implementation of various homogenization techniques in this approach is a 



straightforward way. Nguyen and Pastor (1993) implemented homogenization tools to determine 

the mechanical viscoelastic characteristics of unidirectional continuous fiber composites. Luciano 

and Barbero (1995) consider periodic composite with linear viscoelastic matrix and elastic fibers. 

The results were obtained in the form of triple infinite series. Shibuya (1997) considered hexagonal 

array of elastic transversely isotropic fibers embedded in linear viscoelastic isotropic matrix and 

evaluated effective creep compliance of the composite. Sevostianov et al (1998) applied the 

homogenization technique to drying ceramics that they modelled as a composite material with 

viscoelastic phases. Using effective field method, they were able to model dynamics of the 

properties variation in the technological process. Viet and Pastor (1998) used self-consistent 

scheme to predict moduli of a fiber reinforced composite. Viscoelastic properties of the 

constituents were described using complex representation. The authors also provided comparison 

with experimental data. 

 Mercier et al (2012) discussed homogenization of linear viscoelastic and non-linear 

viscoplastic composite materials. The authors compared two homogenization schemes based on 

the Mori-Tanaka method coupled with the additive interaction law or coupled with a concentration 

law based on translated fields. In particular, they showed a good agreement between these two 

methods. Klasztorny and Wilczynski (2000) considered a viscoelastic isotropic polymer matrix 

and elastic monotropic fibres. Viscoelastic properties were described using Mittag-Leffler 

fractional exponential functions. The authors also developed and verified an iterative optimization 

procedure for theoretical prediction of the viscoelastic constants of the composite  

 Kondo and Takiguchi (2002) studied the creep behavior of continuous fiber reinforced 

unidirectional composites by using the finite element method. They assumed that the fibers are 

made of a linearly elastic and transversely isotropic material and that the matrix is isotropic, 

linearly elastic and nonlinearly viscoelastic. They also compared their results with experimental 

data. Kim and Muliana (2010) used FEM technique together with analytical micromechanical 

approach to predict effective properties of hybrid composites consisting of unidirectional short-

fiber reinforcements and a matrix system, which is composed of solid spherical particle tillers 

dispersed in a homogeneous polymer constituent. A combined Schapery's viscoelastic integral 

model and Valanis's endochronic viscoplastic model has been used for the polymer constituent, 

while the particle and fiber constituents has been assumed linear elastic. 



 Sejnoha and Zeman (2002) and Sejnoha et al. (2004) considered nonlinear viscoelastic 

response of fibrous graphite-epoxy composite systems with random distribution of fibers within a 

transverse plane section of the composite aggregate. The matrix was assumed to be viscoelastic 

and the fibers showed elastic behavior. Aboudi (2004) derived macroscopic constitutive equations 

that model the response of multiphase materials undergoing finite deformations in which any phase 

behaves as a rubber-like thermoviscoelastic material. He modeled the thermoviscoelastic effects 

by a free-energy function which is given by a sum of a long-term contribution - that is based on 

the entropic elasticity for thermoelastic polymers - plus a non-equilibrium part which characterizes 

the viscoelastic (dissipative) mechanism. For calculation of the effective properties of the 

composite, micromechanical homogenization technique was used. Dubouloz Monnet et al. (2006) 

used homogenization methods combined with 2D image processing to predict the reinforcement 

effect of polymers by particulates as well as unidirectional fibers in dependence on temperature. 

 Abdessamad et al (2007, 2009) used the Kelvin-Voigt model of viscoelasticity with rapidly 

oscillating space and time dependent coefficients to describe periodic viscoelastic composites 

solidifying under a heating process. Amosov et al (2013) extended this approach to account for 

chemical processes. Dutra et al (2010) used Mori-Tanaka scheme to predict effective properties of 

fiber reinforced concrete and validated the model with experimental data. Andrianov et al (2011) 

applied asymptotic homogenization techniques to the analysis of viscoelastic-matrix fibrous 

composites with square-lattice reinforcement. The authors mentioned, however, that their 

approach requires a computationally intense solution. Andrianov et al (2012) used similar 

technique to calculate effective properties of viscoelastic composite materials with fibres of 

diamond-shaped cross-section. Pyatigorets and Mogilevskaya (2011) proposed a computational 

approach for calculation of the effective transverse mechanical properties of unidirectional fiber-

reinforced composites with linear viscoelastic matrix and elastic fibers. The effective properties 

are found from the assumption that the viscoelastic stresses at the distances far away from the 

cluster are the same as those from a single equivalent inhomogeneity. Hoang-Duc and Bonnet 

(2014) recently obtained a series solution for the homogenization problem of a linear viscoelastic 

periodic incompressible composite. The terms of the Neumann series in their paper appear as 

decoupled, containing geometry dependent terms and viscoelastic properties dependent terms that 

are polynomial fractions whose inverse Laplace transforms are provided explicitly. 



The main challenge appearing in using elastic-viscoelastic analogy is to obtain analytical 

formulas for inverse Laplace transform. This difficulty constitutes the main reason to use the 

oversimplified dashpot-spring models. Unfortunately, the simplest models are not sufficiently 

flexible to match experimental data for real materials. An alternative approach has been proposed 

by Scott Blair and Coppen (1939, 1943) (experimentally) and by Rabotnov (1948) (theoretically). 

They suggested to use fraction-exponential operators that, on one hand can describe experimental 

data of real materials with sufficient accuracy and, on the other hand, allow inverse Laplace 

transforms in explicit analytical form. Detailed description of the approach is given, for example, 

in the books of Rabotnov (1977) and Gorenflo et al. (2014). As mentioned by Brenner and Suquet 

(2013), a major issue in the evaluation of the overall properties of viscoelastic composites is the 

description of the interaction between elastic and viscous deformation mechanisms within the 

material. Fractional-differential operators automatically yield solution for this problem in explicit 

form (Di Paola et al, 2013). 

 Another challenge that has never been addressed even for purely elastic materials is orientation 

distribution of fibers. Usually, they are assumed to be perfectly aligned or randomly oriented. 

However, it is usually inapplicable for short fiber reinforced materials (Figure 1).  

 Recently, Sevostianov and Levin (2015) introduced creep and relaxation contribution tensors 

that allow one to describe the effect of inhomogeneities on the overall viscoelastic properties in a 

unified way and thus, to extend any of known micromechanical scheme from elastic materials to 

viscoelastic ones. In the present work, we use their results to calculate effective viscoelastic 

properties of short fiber reinforced composites with preferentially oriented fibers. The orientation 

scatter describes, as limiting cases, strictly parallel and perfectly randomly orientations. The 

overall properties are calculated here in the framework of non-interaction approximation that 

besides being rigorous at small concentration of inhomogeneities, serves as a basic building block 

for various homogenization schemes (see Sevostianov and Kachanov, 2013).  

 

2. Background material. 

2.1. Property contribution tensors are used in the context of homogenization problems to describe 

contribution of a single inhomogeneity into the property of interest – elasticity, thermal or 

electrical conductivity, diffusion coefficient etc. In the context of the effective elastic properties, 

one can use compliance contribution tensor of an inhomogeneity H that gives the extra strain 



produced by introduction of the inhomogeneity into the otherwise uniform stress field or stiffness 

contribution tensor N that gives the extra stress due to inhomogeneity when it is placed into the 

otherwise uniform strain field.  

 Compliance contribution tensors have been first introduced in the context of pores and cracks 

by Horii and Nemat-Nasser (1983) (see also detailed discussion in the book of Nemat-Nasser and 

Hori, 1993). Components of this tensor were calculated for 2-D pores of various shape and 3-D 

ellipsoidal pores in isotropic material by Kachanov et al (1994). For general case of elastic 

inhomogeneities, these tensors were calculated for ellipsoidal shapes by Sevostianov and 

Kachanov (1999, 2002). Sevostianov et al (2005) calculated components of this tensor for a 

spheroidal inhomogeneity embedded in a transversely-isotropic material. For reader’s 

convenience, we provide below a brief description of the property contribution tensors 

 We first consider a homogeneous elastic material (matrix), with the compliance and stiffness 

tensors 0
S  and 0C  assumed to be isotropic. It contains an inhomogeneity, of volume ( )1V , of a 

different elastic material with the compliance and stiffness tensors 1
S  and 1

C . The contribution 

of the inhomogeneity to the overall strain, per representative volume V  (the extra strain, as 

compared to the homogeneous matrix) is given by the fourth-rank tensor H  – the compliance 

contribution tensor of the inhomogeneity – defined by  

 
( )

= σHε :
V

V 1

                     (2.1) 

where σ  is the “remotely applied” stress field, that, in absence of the inhomogeneity, would have 

been uniform within its site (“homogeneous boundary conditions”, Hashin, 1983); a colon denotes 

contraction over two indices. Similarly, the stiffness contribution tensor N, dual to H, can be 

introduced:  

 
( )

= εNσ :
V

V 1

                   (2.2) 

where 
ε  is the “remotely applied” strain.  

 For the ellipsoidal inhomogeneity, the fourth-order tensors H and N can be expressed in terms 

of elastic contrast and fourth-order Hill’s tensors P and Q that describe the effects of shape of the 

inhomogeneity:  
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(i.e. effects of elastic contrast and shape of the inhomogeneity can be separated for ellipsoidal 

shapes). The fourth-order Hill's (1965) tensor P is the integral over volume of the inhomogeneity 

from the second gradient of Green’s tensor in terms of Green's tensor and tensor Q  is related to

P  as follows (Walpole, 1966):  

 ( )00
rsklmnrsmnklijmnijkl CPJCQ −=               (2.4) 

Here, ( ) 2kjilljikijklJ +=  and the inverse of symmetric (with respect to ji   and lk  ) 

fourth-order tensor Xijkl
−1

 is defined by Xijmn
−1

Xmnkl ijklmnklijmn JXX == −1 .  

 For a spheroidal inhomogeneity with semi-axes 213 aa;a =  embedded in an isotropic matrix, it is 

convenient to use representation of these tensors in terms of standard tensor basis 
( ) ( )61 ,...,TT  (see 

Appendix A for detail): 
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so that finding out these tensors reduces to calculation of factors kp , kq , kh  and kn . The following 

relations for coefficients pi, qi  take place (see, for example, Sevostianov and Kachanov, 2002): 
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and shape factor g  is expressed in terms of the spheroid’s aspect ratio   as follows  
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In the case of a strongly prolate spheroid ( 213 aaa = ), the in  factors of the N - tensor are:  
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where  
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We will use these relations to calculate relaxation contribution tensors and effective viscoelastic 

properties of a composite reinforced with short fibers. 

 

2.2. Elastic-viscoelastic analogy in terms of fraction-exponential operators. 

To describe viscoelastic behavior, we use the most general form of the governing equation in the 

form of Stieltjes convolution 
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t

klijklklijklij d,xtt,xCt,x

0

          (2.11) 

where ij  and kl  are the strain and the stress tensors, respectively, ijklC  is a fourth rank tensor 

of instantaneous elastic stiffness and ( )tijkl  is time dependent forth rank tensor (the creep kernel) 

satisfying the fading memory principle ( ) 0→ tijkl  as t → . We consider isotropic materials and 

take into account that the volume change during the deformation is a purely elastic process, 

whereas viscoelastic effects are reflected in the deviatoric operator. Then expression (3.1) takes 

the following form  
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where K  is the elastic bulk modulus of the material and 
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The most widely used approach to solve similar problems for linear viscoelastic materials consists 

in using Laplace (or other integral) transform (see, for example, Christensen, 1982):  

( ) ( )


−=

0

te dttfpf p .         (2.14) 

Then, relation (2.11) may be rewritten as 

( ) ( ) ( )ppSp klijklij  =          (2.15) 

and thus solution for viscoelastic problem can be obtained from the corresponding elastic solution 

by using inverse Laplace transform. The main challenge of this approach is that only simplest 

kernels in (2.11) (for example, exponential ones) allow explicit analytical inversion. In other cases, 

solutions for viscoelastic problems can be obtained only numerically. For most materials, however, 

the simplest exponential kernels do not fit experimental data properly. 

 Scott Blair and Coppen (1939, 1943) and Rabotnov (1948) independently proposed to use 

fraction-exponential functions  
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for kernels in viscoelastic operators that allow explicit analytical solution using Laplace transform 

and, at the same time, are sufficiently general to provide a good agreement with the experimental 

data. To satisfy the fading memory principle, the following restrictions on the parameters entering 

(2.16) have to be satisfied: 

 0 ;  01 −                 (2.17) 

Operator with such a kernel acts onto constant function c  as follows: 
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where ( )zM  is the Mittag-Lefler’s function (Gorenflo et al, 2014):  
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which decreases monotonically from 1 to 0 so that  
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For an isotropic material, the shear (or deviatoric) operator of relaxation can be written in terms of 

Scott Blair –Rabotnov (SBR) kernel (2.18) as 
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This formula, in particular, clarifies the physical meaning of parameter  - it is inverse of the 

relaxation time  to the power 1 +  taken with negative sign: 
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From (2.20) and (2.21) it follows that  
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where   is the shear modulus at →t , 0  is the instantaneous shear modulus and max  is the 

maximal shear strain. Therefore, the viscoelastic shear behavior of materials is described by four 

parameters: 0 ,  ,   (or  ), and  . Since in the processes of creep and relaxation the shear 

modulus is a decreasing function of time (  0 ), we have 

 0  .                   (2.24) 

 For  = 0 , the kernel of SBR operator is reduced to the ordinary exponential function. In this 

case it describes the properties of standard viscoelastic material (Kelvin material) representing 

combination of two springs with stiffnesses 1E  and 2E , and a dashpot of viscosity  : 
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The convenience of the introduced operators with the Rabotnov’s kernels is that the algebra of 

these operators is well developed (see Rabotnov, 1977). In particular, we have 
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Laplace transform of the Rabotnov’s kernel has the following form:  
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Therefore, if the elastic solution can be represented as a rational function of parameter 
+= 1px , 

then its inverse Laplace transform can be obtained analytically in explicit form.  

 

3. Relaxation contribution tensor of a viscoelastic short fiber. 

We now discuss the case of a linear viscoelastic material containing a single viscoelastic fiber and 

derive expression for the tensor describing the contribution of this fiber into overall relaxation 

process. We assume that viscoelastic properties of the matrix material are relevant under shear 

loading only (i.e. its response to the hydrostatic loading is completely elastic). The viscoelastic 

shear operators can be written in the form (2.12) with kernel (2.16). Now, the average, over 

representative volume element (RVE) V  stress ( )t,xij  can be represented as a sum  
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where the first two terms represent viscoelastic deformation of the matrix material described by 

(2.12), ( )t,xkl  is remotely applied strain (in absence of inhomogeneities, it would have been 

uniform in V ), and ( )t,xij  is the extra (average over V ) stress due to the presence of the 

inhomogeneity.  

 The materials are assumed to be linear viscoelastic, hence ( )txij ,  is related to applied strain 

through a linear operator:  
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where *
ijklN  is a fourth-rank tensor relaxation contribution operator of the inhomogeneity and 

0
ijklN  is its instantaneous value. This operator is dual to the creep contribution operator discussed 

by Sevostianov and Levin (2015) and by Sevostianov et al (2015) in the context of pores and cracks 

in viscoelastic material. In the case of multiple fibers, the extra relaxation due to their presence is 

given by 
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               (3.3) 

If the matrix material is described using SBR operators, expressions for components of *
ijklN   in 

the framework of non-interacting inhomogeneities can be obtained using Laplace transform, 

expressions (2.26), (2.27) and results for elastic stiffness contribution tensors outlined in Section 

2. Indeed, Laplace transform for operator 
*  with kernel ( ) ( )tt ,0  Э= , according to (2.27) 

is 
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Strictly speaking, Poisson’s ratio entering 0  in expressions (2.7) and (2.9) is also an operator. It 

leads to significant complication of formulas for viscoelastic properties of composites (may be, 

beyond the practical applicability). Rabotnov (1977) proposed to treat Poisson’s ratio as a constant. 

Sevostianov et al (2015) checked this hypothesis comparing exact solutions with those obtained 

by assuming a constant Poisson’s ratio. They considered the following two values of the Poisson’s 

ratio: 
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corresponding to the instantaneous Poisson’s ratio and its value as →t , respectively. Their 

results show that even 0  gives good agreement (better than 5%). Using   reduces the 

disagreement to less than 2% along entire interval of time. Rabotnov (1977) suggested to use 

( ) 20 +  as a constant Poisson’s ratio. This value, however, does not produce noticeable 

improvement of the approximation as compared to  . In the following formulas, we use the 

values of the Poisson’s ratios of both matrix and inhomogeneities at →t . 



Following the idea of elastic-viscoelastic analogy, we treat the expressions (2.9) as ones in 

Laplace space and take their inverse Laplace transforms. We start by replacing the elastic constants 

0  and   in (2.9) and (2.10) by the Laplace transforms of the corresponding operators. Then, we 

can find Laplace transform of relaxation contribution operator  
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As an example, we illustrate the entire procedure for deriving the expression for the 

operator 
*n1  
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Using SBR operators and introducing the notation 
−= 1px , one can re-write (3.7) as 
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where 
0
0  and 

0
1  are the instantaneous shear moduli of the matrix and the fibers, respectively. It 

yields the following expression for the denominator of (3.6)  
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Thus 
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The right hand side of (3.10) can now be represented as 
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Where 
)1(

1x and )1(
2x  are the opposites of the roots of the equation 0)(1 =xF . Adding )(0 p  to this 

expression yields.  
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Operation of partial fractions then gives  
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Taking inverse Laplace transform, we obtain  
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In the same manner all other coefficients are derived. Details of the derivation are given in the 

Appendix B.  
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Expressions (3.15)-(3.16) give the explicit representation of the components of relaxation 

contribution operator *
ijklN  of a spheroidal short fiber in terms of tensor basis (A.1). These 



formulas serve as the basic building block for calculation of the effective viscoelastic properties 

of fiber reinforced composites. 

 

4. Calculation of the effective properties of short fiber reinforced composites accounting for 

fibers orientation. 

We now consider a set of spheroidal fibers that tend to be aligned with 3x -axis with certain 

orientation scatter. For multiple fibers, their combined effect (3.3) is described by 

 ( ) ( ) εNσ :
1

, *








= 

i

ii tV
V

tx .              (4.1) 

Note that summation in the latter equation can be replaced by integration over orientations. 

Following Sevostianov and Kachanov (2000), we describe the orientation distribution by the 

following function, containing the scatter parameter  : 

 ])1[(
2

1
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 


 −− ++= eeP               (4.2) 

where   is the angle between fiber axis and 3x -axis. Parameter   characterizes the sharpness of 

the peak at 2 =  and the extent of the scatter; the extreme cases of the fully random and 

perfectly parallel fibers correspond to 0=  and = , respectively. The effective elastic moduli 

are relatively insensitive to the exact form of a function that has the above-mentioned features. 

The particular form (4.2) is chosen to keep the calculations, related to averaging over orientations, 

simple.  

 Figure 2a shows dependence of P  on   for several values of   and the orientation patterns 

that correspond to these values. For readers convention, Figure 2b shows dependence of P  on   

for several values of   (i.e. change in probability to get fibers of specific orientation as   

increases). Now, the following two tensors have to be averaged over the orientation of fibers: 
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where 
( )p

m  is a unit vector along the p-th fiber that has the following components in spherical 

coordinate system: ( ) 321 cossinsinsincos, eeem  ++= . This operation is equivalent 

to averaging of basic tensors 
( )iT  given by (A.1) over orientation of vectors 

)( p
m : 
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and components of tensor basis 
( )iT  are given in Appendix A by (A.1). Functions ( )ig  are shown 

in Fig 3.  

Finally, one can write the following formulas for the effective viscoelastic properties of a short 

fiber reinforced composite (with arbitrary orientation of the fibers) in the framework of non-

interaction approximation: 
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where operators ( )tn*
i  are given by (3.15) and (3.16). Equations (4.7) represent effective elastic 

relaxation operators for a viscoelastic material reinforced with viscoelastic short fibers having 

orientation distribution (4.2). 
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Appendix A. Tensor basis in the space of transversely isotropic fourth rank tensors. 

Representation of certain transversely isotropic tensors in terms of the tensor basis. 

We outline a convenient technique of analytic inversion and multiplication of 4th rank tensors. It is 

based on expressing tensors in “standard” tensor bases (see Kunin, 1983; Walpole, 1984; and Kanaun 

and Levin, 2008). In the case of the transversely isotropic elastic symmetry, the following basis is 

most convenient (it differs slightly from the one used by Kanaun and Levin, 2008): 
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  (A.1) 

where jiijij mm−=  and 332211 eeem mmm ++=  is a unit vector along the axis of transverse 

symmetry. 

 These tensors form the closed algebra with respect to the operation of (non-commutative) 

multiplication (contraction over two indices): 

 ( ) ( )( ) ( ) ( )  pqklijpqijkl TTTT :   (A.2) 

The inverse of any fourth rank tensor X , as well as the product YX:  of two such tensors are readily 

found in the closed form, as soon as the representation in the basis  
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are established. Indeed:  

 a) inverse tensor 1−
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 ( ) ( ) ( ) ( ) ( ) ( )615

5

44332

2

161 241

2

TTTTTTX



++



−



−+



=− X

X

XX

X

X
  (A.4) 

where ( )43612 XXXX −= . 

 b) product of two tensors YX:  (tensor with ijkl  components equal to mnklijmnYX ) is  
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General transversely isotropic fourth-rank tensor, being represented in this basis 



  ijkl = mTijkl
m  

has the following components: 

 1 = 1111 +1122( ) 2; 2 = 21212 ;  3 = 1133 ;  4 = 3311 ;  (A.6) 

  5 = 41313 ; 33336 =  

Utilizing (A.6) one obtains the following representations: 

 • Tensor of elastic compliances of the isotropic material = m
ijklmijkl TsS  has the following 

components 
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 • Tensor of elastic stiffness of the isotropic material by = m
ijklmijkl TcC  has components 

 31 /Kc += ; 22 =c ; 3243 /Kcc −== ; 45 =c ; 346 /Kc += .  (A.8) 

 • Symmetric isomers of the unit fourth rank tensor are represented in the form 
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Appendix B. Derivation of the expressions for components of the relaxation contribution 

tensor. 

The other components )( pni
 can be obtained by the same way as it was done in the Section 3 for 

)(1 pn . The results can be written as 
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Here 
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The quantities 
)(i

kx ( 2,1=k ) are the roots of the quadratic equations 
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Inverse Laplace transform applied to (B.1) yields 
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Somewhat lengthier derivation is required for )t(n*
6 . First, according to (2.9), we can represent 

)p(n6  as a sum 
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where  
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First of the expressions (B.17) allows the following representation; 
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Finally, 
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After some algebra, we can rewrite (B.16) as 
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Inverse Laplace transform yields 
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Figure captions 

 

Figure 1. Optical micrographs showing orientation distribution of fibers: (a)  -Al2O3 fibers 

reinforced aluminum alloy (from Kang et al, 2002); (b)  polypyrrole-coated amorphous silica 

short fibers reinforced polyvinylidene fluoride matrix (from Arenhart et al, 2015). 

 

Figure 2. (a) Dependence of the orientation distribution function P  on angle   at several 

values of   and the corresponding fiber orientation patterns; (b) dependence of P  on scatter 

parameter   for several values of the angle  . 

 

Figure 3. Dependence of functions ( )ig  on the scatter parameter. 

 


