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On a Caginalp phase-field system with two
temperatures and memory

M. Conti, S. Gatti, A. Miranville and R. Quintanilla

Abstract. The Caginalp phase-field system has been proposed in [4] as
a simple mathematical model for phase transition phenomena. In this
paper, we are concerned with a generalization of this system based on
the Gurtin-Pipkin law with two temperatures for heat conduction with
memory, apt to describe transition phenomena in nonsimple materi-
als. The model consists of a parabolic equation governing the order pa-
rameter which is linearly coupled with a nonclassical integrodifferential
equation ruling the evolution of the thermodynamic temperature of the
material. Our aim is to construct a robust family of exponential attrac-
tors for the associated semigroup, showing the stability of the system
with respect to the collapse of the memory kernel. We also study the
spatial behavior of the solutions in a semi-infinite cylinder, when such
solutions exist.
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1. Introduction

We are interested in this paper in the study of the following variant of the
Caginalp phase-field system1:ut −∆u+ f(u) = ϕ−∆ϕ,

ϕt −∆ϕt −
∫ ∞

0

k(s)∆ϕ(t− s) ds = −ut,
(1.1)

subject to homogeneous Dirichlet boundary conditions

u|∂Ω = 0, ϕ|∂Ω = 0

1Here and below, all physical parameters are set equal to one.
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(here, Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω) and with
initial data

u(0) = u0 and ϕ(−t) = ϕ0(−t), t ≥ 0.

The original Caginalp phase-field system reads

ut −∆u+ f(u) = θ, (1.2)

θt −∆θ = −ut. (1.3)

It has been proposed in [4] as a simple mathematical model for phase tran-
sition phenomena, such as melting-solidification phenomena (e.g. ice). The
two unknown functions u and θ are, respectively, the order parameter and
the relative temperature (relative to the equilibrium melting temperature) of
the system occupying the volume Ω, while the nonlinearity f is the deriva-
tive of a double-well potential F . System (1.2)–(1.3) has been much studied
from a mathematical point of view (see e.g. [1, 2, 3, 8, 9, 10, 24, 26, 29, 30,
31, 32, 40, 49, 56]). This system can be derived by introducing the (total
Ginzburg–Landau) free energy

Ψ =

∫
Ω

(1

2
|∇u|2 + F (u)− uθ − 1

2
θ2
)

dx.

Then, the evolution equation for the order parameter u is given by

ut = −DΨ

Du
, (1.4)

where D
Du denotes the variational derivative with respect to u. Next, denoting

by q the heat flux, the evolution of the enthalpy

H = u+ θ,

is ruled out by the energy equation

Ht = ∇ · q. (1.5)

Equations (1.2)-(1.3) then follow from (1.4)-(1.5), assuming the classical
Fourier law for heat conduction,

q = −∇θ. (1.6)

Now, a major drawback of the Fourier heat law is the infinite speed of prop-
agation of thermal disturbances, deemed physically unreasonable and called
paradox of heat conduction (see [11]). Thus, several alternatives to (1.6) have
been proposed in order to derive more realistic models: in particular, the Cagi-
nalp phase-field system, supplemented with either the Maxwell-Cattaneo law
or other constitutive laws for the heat flux coming from thermomechanics,
has been studied by several authors, see e.g. [13, 38, 39, 41, 42, 43, 44, 46].

Still also the type III heat conduction theory, as well as the classical
Fourier one, suffers from some theoretical drawbacks (see [28]) which are
overcome by (1.1).

A different approach to heat conduction has been proposed in the Six-
ties in [5, 6, 7], where it was observed that two temperatures are involved in
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the definition of the entropy, namely the conductive temperature θ, influenc-
ing the heat conduction contribution, and the thermodynamic temperature
ϕ, appearing in the heat supply part. For time-independent models, these
two temperatures coincide in absence of heat supply. Nonetheless, they are
in general different in the time dependent framework, although no heat is
supplied to the system: for instance, this happens in non-simple materials. In
that case, the two temperatures are related by the (linearized) law

θ = ϕ−∆ϕ.

Accordingly, equation (1.2) reads

ut −∆u+ f(u) = θ = ϕ−∆ϕ. (1.7)

The Caginalp phase-field system with two temperatures has been stud-
ied in [20] for the classical Fourier law, in [47] for the type III thermomechan-
ics theory (see [33]) with two temperatures recently proposed in [53] (see also
[21]), and in [48] for the theory of two-temperature-generalized thermoelas-
ticity proposed in [55] and based on the Maxwell-Cattaneo law

q + τqt = −∇ϕ, (1.8)

where τ > 0 is a given relaxation parameter. In fact, our model is a general-
ization of the one studied in [55] which is obtained for the particular choice
of the exponential kernel.

In this paper, we continue the study initiated in [15] of a theory of two
temperatures with memory, where the classical Fourier law is substituted by
the Coleman-Gurtin (if a > 0) or Gurtin-Pipkin law (if a = 0) for the heat
flux, namely (see [12, 34])

q(t) = −a∇ϕ(t)−
∫ ∞

0

k(s)∇ϕ(t− s) ds, a ∈ [0, 1),

based on the key assumption that the evolution of q is influenced by the
past history of the temperature gradient, through a suitable (nonnegative)
summable memory kernel k of total mass 1−a which characterizes the mem-
ory properties of the material. In that case, the evolution law (1.5) for the
enthalpy

H = θ + u = ϕ−∆ϕ+ u

becomes

ϕt(t)−∆ϕt(t)− a∆ϕ(t)−
∫ ∞

0

k(s)∆ϕ(t− s) ds = −ut(t), t > 0. (1.9)

Collecting (1.7) and (1.9), we arrive at the following systemut −∆u+ f(u) = ϕ−∆ϕ,

ϕt −∆ϕt − a∆ϕ−
∫ ∞

0

k(s)∆ϕ(t− s) ds = −ut,
(1.10)

and, taking a = 0, we end up with (1.1).
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In the first part of the paper, we consider the family of problems (1.1)
in which the memory kernel k is replaced by the rescaled kernel

kε(s) =
1

ε
k
(s
ε

)
,

for every ε ∈ (0, 1], namelyut −∆u+ f(u) = ϕ−∆ϕ,

ϕt −∆ϕt −
∫ ∞

0

kε(s)∆ϕ(t− s) ds = −ut,
(1.11)

subject to the same initial and boundary conditions.
Well-posedness and regularity results for (1.11) have been obtained in

[15]. Furthermore, the existence of the global attractor (see, e.g, [50, 54]), as
well as its upper semicontinuity with respect to ε, have also been established.
The latter gives results concerning the stability of the system with respect
to the ”collapse” of the memory kernel as ε→ 0. Indeed, kε converges in the
distributional sense to the Dirac mass of weight one at the origin; in turn,
(1.11) formally collapses as ε→ 0 into the ”limiting” system{

ut −∆u+ f(u) = ϕ−∆ϕ,

ϕt −∆ϕt −∆ϕ = −ut.
(1.12)

Note however that lower semicontinuity results on the global attractor are
not known.

Our main result establishes the existence of a family of exponential at-
tractors Eε for the corresponding semigroups, which is robust (i.e. both upper
and lower semicontinuous) with respect to ε, see Section 5. In particular, we
prove that Eε is close (in the sense of the symmetric Hausdorff semidistance)
to E0, the exponential attractor of (1.12). This means that the longtime dy-
namics of the two models become closer and closer as ε → 0, so that the
formal limit is now rigorously justified.

In the second part of the paper, we are interested in the study of the
spatial behavior of the solutions. Spatial decay estimates for partial differ-
ential equations are related to the Saint-Venant principle which is both a
mathematical and a thermomechanical aspect which has deserved much at-
tention in the last years (see [35] and the references therein). Such studies
describe how the influence of the perturbations on a part of the boundary
is damped for the points which are far away from the perturbations. Spatial
decay estimates for elliptic [22], parabolic [36, 37], hyperbolic [23] and/or
combinations of such [52] have been obtained in the last years. However, as
far as nonlinear equations are concerned, such a knowledge is limited (see
[41, 42, 43, 45, 46]).

What is usual is to consider a semi-infinite cylinder whose finite end is
perturbed and see what happens when the spatial variable goes to infinity.
However, we do not study the existence of solutions to this problem; in fact,
this does not seem to be an easy task (see, e.g., [45]). We thus assume the
existence of solutions and then only study the spatial asymptotic behavior
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in that case. More precisely, we obtain a Phragmén-Lindelöf alternative, i.e.,
either a growth or a decay estimate.

2. Assumptions and Functional Setting

The nonlinearity

We assume that f ∈ C3(R) satisfies f(0) = 0 along with the dissipation
conditions

inf
u∈R

f ′(u) > −∞ (2.1)

and
f(u)u ≥ c1F (u)− c2 ≥ −c3, ∀u ∈ R, (2.2)

for some c1 > 0, c2, c3 ≥ 0, having defined F (u) =
∫ u

0
f(y)dy.

The memory kernel

k is a nonnegative summable function of total mass equal to 1, having the
explicit form

k(s) =

∫ ∞
s

µ(y) dy.

Here, µ ∈ L1(R+) is a nonincreasing, nonnegative, absolutely continuous
function satisfying, for some δ > 0,

µ′(s) + δµ(s) ≤ 0, ∀s > 0. (2.3)

Note that the exponential kernel k(s) = e−δs complies with all the assump-
tions, nonetheless µ might be unbounded at the origin. In what follows, we
set κ :=

∫∞
0
µ(s) ds.

Remark 2.1. For the rescaled memory kernels µε defined by

µε(s) = −k′ε(s) =
1

ε2
µ
(s
ε

)
,

condition (2.3) implies

µ′ε(s) +
δ

ε
µε(s) ≤ 0, ∀s > 0. (2.4)

We also remark that ∫ ∞
0

µε(s) ds =
κ

ε
. (2.5)

Functional spaces.

We denote by (H, 〈·, ·〉, ‖ · ‖) the space L2(Ω) endowed with the standard
scalar product and norm. Let −∆ be the Dirichlet operator with domain

D(−∆) = H2(Ω) ∩H1
0 (Ω)

and let us denote
A := −∆ + I.

For σ ∈ R, we introduce the scale of (compactly) nested Hilbert spaces

Hσ = D(A
σ
2 )
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with inner products and norms

〈w, v〉σ = 〈Aσ
2w,A

σ
2 v〉, ‖w‖σ = ‖Aσ

2w‖.

We omit the superscript σ whenever it equals zero. The symbol 〈·, ·〉 also
stands for the duality product between Hσ and its dual space H−σ. Note
that, by the Poincaré inequality, the following equivalence holds

λ0‖w‖21 ≤ ‖∇w‖2 ≤ ‖w‖21,

for some λ0 ∈ (0, 1) which is independent of w ∈ H1.
We also introduce the so-called memory spaces

Mσ
ε = L2

µε(R
+; Hσ), 〈η, ξ〉Mσ

ε
=

∫ ∞
0

µε(s)〈η(s), ξ(s)〉σds,

and we denote by 2

Tεη = −η′, D(Tε) =
{
η ∈M2

ε : η′ ∈M2
ε, η(0) = 0

}
,

the infinitesimal generator of the strongly continuous semigroup of right
translations on the memory space M2

ε.

Finally, we denote by

Hσε = H2σ+2 ×H2σ+2 ×M2σ+2
ε

the hierarchy of the extended phase spaces, endowed with the natural scalar
product. Again, we omit the superscript σ whenever it equals zero. In par-
ticular,

Hε = H2 ×H2 ×M2
ε and H1

ε = H4 ×H4 ×M4
ε.

The reformulated problem

As in [15], we first reformulate the problem in the history framework proposed
by Dafermos in [18]. To this aim, we introduce for t ≥ 0 and s > 0 the
integrated past history η = ηt(s) of the variable ϕ, formally defined as

ηt(s) =

∫ s

0

ϕ(t− y) dy.

Accordingly, the second equation in (1.11) translates into the systemAϕt −
∫ ∞

0

µε(s)∆η(s) ds = −ut,

ηt = Tεη + ϕ,

in the two unknowns ϕ = ϕ(t) and η = ηt(s), with corresponding initial data

ϕ(0) = ϕ0 and η0(s) = η0(s) :=

∫ s

0

ϕ0(−y) dy.

We refer the readers to [16, 17] for more details on this approach.

2Here η′ denotes the derivative of η with respect to the internal variable s.
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In summary, the model under investigation reads
ut −∆u+ f(u) = Aϕ,

Aϕt −
∫ ∞

0

µε(s)∆η(s) ds = −ut,

ηt = Tεη + ϕ,

(2.6)

for t > 0, in the unknown variables (u(t), ϕ(t), ηt), supplemented with Dirich-
let boundary conditions and initial conditions at t = 0

(u(0), ϕ(0), η0) = (u0, ϕ0, η0). (2.7)

Notation

Throughout the paper c, c′ > 0 stand for generic constants and Q(·) for
a nonnegative increasing function allowed to vary within a same line and
only influenced by the structural data of the problem. In particular, they are
independent of ε.

3. The dissipative semigroups Sε(t)

The initial value problem (2.6)-(2.7) has been studied in [15] for any given
initial datum (u0, ϕ0, η0) ∈ Hε, where it is shown to possess a unique global
solution (u(t), ϕ(t), ηt) such that

(u, ϕ, η) ∈ L∞(R+;Hε),

and

ut ∈ L∞(R+; H) ∩ L2(R+; H1), ϕt ∈ L2(R+; H2).

Besides, the third component ηt of the solution fulfills the explicit rep-
resentation formula

ηt(s) =

{
u(t)− u(t− s), 0 < s ≤ t,
η0(s− t) + u(t)− u0, s > t.

Accordingly, for every fixed ε ∈ [0, 1], the map

Sε(t) : Hε → Hε, t ≥ 0,

acting by the formula

Sε(t)(u0, ϕ0, η0) = (u(t), ϕ(t), ηt)

defines a dynamical system, or semigroup on Hε. In this section we recall a
number of results proved in [15] on the continuity and energy properties of
Sε(t).

Theorem 3.1. Let z1, z2 ∈ Hε be given and set Sε(t)zi = (ui(t), ϕi(t), η
t
i).

Then, there exists c = c(‖zi‖Hε) > 0 independent of ε and of the particular
choice of zi such that

‖Sε(t)z1 − Sε(t)z2‖Hε ≤ cect‖z1 − z2‖Hε , ∀t ≥ 0. (3.1)
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In particular, the semigroup Sε(t) is strongly continuous. Furthermore, for
every t > 0,

‖∂tu1(t)− ∂tu2(t)‖2 +

∫ t

0

(‖∇∂tu1(s)−∇∂tu2(s)‖2 (3.2)

+ ‖A∂tϕ1(s)−A∂tϕ2(s)‖2)ds (3.3)

≤ cect‖z1 − z2‖2Hε .

Theorem 3.2. There exist ω > 0 and K ′ ≥ 0, independent of ε, such that

‖Sε(t)z‖2Hε + ‖∂tuε(t)‖2 ≤ Q(‖z‖Hε)e−ωt +K ′, ∀t ≥ 0, (3.4)

and ∫ ∞
0

(
‖∇∂tuε(t)‖2 + ‖A∂tϕε(t)‖2

)
dt ≤ Q(‖z‖Hε), (3.5)

for every z ∈ Hε. In particular, K ′ = 0 if f satisfies (2.2) with c2 = c3 = 0.

Remark 3.3. It is worth noticing that the above theorem prescribes in partic-
ular the exponential decay of the solutions to the linear model, corresponding
to f ≡ 0.

The main results from [15] concerning the longterm behavior of Sε(t)
are collected in the two following theorems. The first says that the semigroup
Sε(t) is dissipative.

Theorem 3.4. For every ε ∈ [0, 1], the semigroup Sε(t) possesses a bounded
absorbing set Bε ⊂ Hε. Namely, for any bounded set B ⊂ Hε, ∃t0 = t0(B)
such that

Sε(t)B ⊂ Bε, ∀t ≥ t0.
Besides, Bε is bounded and its size in Hε is independent of ε.

Indeed, this is a straightforward consequence of Theorem 3.2, since it is
enough to set

Bε = {z ∈ Hε : ‖z‖Hε ≤ R0},
for R0 large enough (independent of ε).

The next result shows that Sε(t) has an exponentially attracting set,
which is a bounded set of H1

ε. This is established in the proof of [15, Theorem
5.1].

Theorem 3.5. There exists r1 > 0, ω1 > 0 and M1 > 0 such that the ball

B1
ε = {z ∈ H1

ε : ‖z‖H1
ε
≤ r1}

is an exponentially attracting set for Sε(t), i.e.

distHε(Sε(t)Bε, B
1
ε ) ≤M1e−

ω1
2 t, ∀t ≥ 0,

for every ε ∈ [0, 1].



Caginalp phase-field system 9

4. Further Dissipativity

In this section we deepen the asymptotic study of the semigroup showing the
existence of a compact family of exponentially attracting sets for Sε(t), see
Theorem 4.3 below. Indeed, it is weel known since [51] that the embedding
H1
ε ⊂ Hε is not compact, due to the presence of the memory component.

The first step in this direction is proving that the semigroup is dissipa-
tive also when acting on H1

ε.

Lemma 4.1. There exist ϑ > 0, R1 > 0, and a positive function Q1(·) such
that

‖Sε(t)z‖H1
ε
≤ Q1(r)e−ϑt +R1, ∀t ≥ 0,

whenever ‖z‖H1
ε
≤ r, for every ε ∈ [0, 1].

Proof. We first observe that, since ‖z‖H1
ε
≤ r implies ‖z‖Hε ≤ r, owing to

(3.4), we have

‖f(u(t))‖2 + ‖f ′(u(t))‖2 + ‖f ′′(u(t))‖L∞ ≤ Q(‖u(t)‖2) ≤ Q(r), ∀t ≥ 0.
(4.1)

Besides, by Theorem 3.4, we find t0 = t0(r) such that

‖Sε(t)z‖Hε ≤ R0, t ≥ t0. (4.2)

In turn, by (3.5), we also get∫ ∞
t0

‖∇ut(s)‖2ds ≤ c, t ≥ t0, (4.3)

where here and along the proof, the generic constant c > 0 might depend on
R0 but is independent on r.

To improve our dissipativity estimates we consider a formal argument
which can be rigorously justified within a standard Galerkin scheme. The
product of system (2.6) by (∆2ut,∆

2Aϕ,−∆3Aη) in H × H × L2
µε(R

+,H)
yields

‖∆ut‖2 +
1

2

d

dt
‖∇∆u‖2 = 〈Aϕ,∆2ut〉 − 〈f(u),∆2ut〉,

1

2

d

dt
‖∆Aϕ‖2 −

∫ ∞
0

µε(s)〈∆η(s),∆2Aϕ〉ds = −〈∆2Aϕ, ut〉,

1

2

d

dt
‖∆η‖2M∗ε −

1

2

∫ ∞
0

µ′ε(s)‖∆η(s)‖2∗ds = −
∫ ∞

0

µε(s)〈∆η(s),∆2Aϕ〉ds,

where

‖v‖2∗ = ‖∇v‖2 + ‖∆v‖2.
Note that ‖ ·‖∗ is equivalent to ‖ ·‖2 in H2. Hence, denoting byM∗ε the space
M2

ε endowed with the equivalent norm

‖η‖2M∗ε =

∫ ∞
0

µε(s)‖η(s)‖2∗ds,



10 M. Conti, S. Gatti, A. Miranville and R. Quintanilla

the functional

E1(t) =
1

2

(
‖∇∆u(t)‖2 + ‖∆Aϕ(t)‖2 + ‖∆ηt‖2M∗ε

)
satisfies the basic energy inequality

d

dt
E1 +

1

2
‖∆ut‖2 −

1

2

∫ ∞
0

µ′ε(s)‖∆η(s)‖2∗ds ≤ Q(r), (4.4)

having estimated

|〈f(u),∆2ut〉| ≤ ‖∆f(u)‖‖∆ut‖ ≤ Q(r) +
1

2
‖∆ut‖2

in light of (4.1). Next, we formally differentiate in time the first equation in
(2.6), getting

utt −∆ut + f ′(u)ut = Aϕt

which we multiply by ∆2ut, and we consider the product of the second equa-
tion in (2.6) by ∆2Aϕt,

1

2

d

dt
‖∆ut‖2 + ‖∇∆ut‖2 + 〈f ′(u)ut,∆

2ut〉 = 〈Aϕt,∆2ut〉,

‖∆Aϕt‖2 −
∫ ∞

0

µε(s)〈∆2η(s),∆Aϕt〉ds = −〈Aϕt,∆2ut〉.

Adding the results and owing to (2.5), we easily see that

1

2

d

dt
‖∆ut‖2 +

1

2
‖∇∆ut‖2 +

1

2
‖∆Aϕt‖2 ≤

κ

2ε
‖∆η‖2M∗ε +Q(r)‖∇ut‖2, (4.5)

having observed that

〈f ′(u)ut,∆
2ut〉 ≤ Q(r)‖∇ut‖‖∇∆ut‖,

and∫ ∞
0

µε(s)〈∆2η(s),∆Aϕt〉ds ≤
1

2
‖∆Aϕt‖2 +

1

2

(∫ ∞
0

µε(s) ds

)
‖∆η‖2M∗ε .

Now note that, in view of (2.4), we have

δ

ε
‖∆η‖2M∗ε ≤ −

∫ ∞
0

µ′ε(s)‖∆η(s)‖2∗ds. (4.6)

As a consequence, the energy functional

Θ(t) = E1(t) +
γ

2
‖∆ut‖2

(here γ > 0 is to be chosen) satisfies in particular

d

dt
Θ +

1

2ε
(δ − κγ)‖∆η‖2M∗ε ≤ Q(r)(1 + ‖∇ut‖2).

Thus, provided that γ < δ/κ, owing to (3.5), we deduce that

Θ(t) ≤ Θ(0) +Q(r)(1 + t) ≤ Q(r)(1 + t), t ≥ 0.

Now we note that by comparison in the first equation of (2.6)

‖u(t)‖4 ≤ ‖ut(t)‖2 + ‖f(u(t))‖2 + ‖ϕ(t)‖4. (4.7)
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Therefore, we see that

‖Sε(t)z‖H1
ε
≤ Q(r)(t+ 1), t ≥ 0.

In particular, this yields

‖Sε(t)z‖H1
ε
≤ Q(r), t ∈ [0, t0]. (4.8)

Let us now take any t ≥ t0. We consider the functional

Ψ1(t) = −
∫ ∞

0

µ?ε(s)〈∆Aηt(s),∆Aϕ(t)〉ds,

where µ?ε(s) = µε(s?)χ(0,εs?](s) + µε(s)χ(εs?,∞](s), µ? : R+ → [0,∞) being

defined as3

µ?(s) = µ(s?)χ(0,s?](s) + µ(s)χ(s?,∞](s),

and s∗ > 0 is fixed in order to satisfy∫ ∞
s?

µ(s)ds ≥ 3

4
κ.

Reasoning as in [15, Theorem 3.1], due to (4.2) for t ≥ t0, we end up with

d

dt
Ψ1 +

ν

ε
‖∆Aϕ‖2 ≤ 1

2
‖∆ut‖2−

c

ε

∫ ∞
0

µ′ε(s)‖∆η(s)‖2∗ds+
c

ε
‖∆η‖2M∗ε , (4.9)

for some ν > 0. We introduce the further functional

Λ1(t) = Θ(t) + %εΨ1(t) + %‖∆u(t)‖2,
for some given % ∈ (0, 1/2). Note that, by multiplying the equation for u by
∆2u, thanks to (4.2), we have

1

2

d

dt
‖∆u‖2 + ‖∇∆u‖2 = −〈∆f(u),∆u〉+ 〈∆Aϕ,∆u〉 ≤ ν

2
‖∆Aϕ‖2 + c.

Taking into account (4.4), (4.5) and (4.9), we are thus led to

d

dt
Λ1 + %‖∇∆u‖2 +

1

2

(
1− %

)
‖∆ut‖2

+
ν%

2
‖A∆ϕ‖2 −

(1

2
− c%

) ∫ ∞
0

µ′ε(s)‖∆η(s)‖2∗ds

≤ c(1 + ‖∇ut‖2) + (c%+
γκ

2ε
)‖∆η‖2M∗ε .

Invoking (4.6), it is apparent that, properly choosing % and γ, we end up with
the inequality

d

dt
Λ1 + ν1Λ1 +

1

4
‖∆ut‖2 ≤ c(1 + ‖∇ut‖2), t ≥ t0,

for some ν1 > 0. An application of the Gronwall Lemma on [t0, t] provides,
in view of (4.3),

Λ1(t) ≤ Λ1(t0)e−ν1(t−t0) + c, t ≥ t0,

3Using µ? instead of µ is needed when µ is unbounded at the origin (see [51]).
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which, owing to (4.8) for t = t0 and (4.7), implies

‖Sε(t)z‖2H1
ε
≤ Q(r)e−ν1(t−t0) + c, t ≥ t0.

Collecting this last inequality and (4.8) the proof is completed. �

4.1. Compact exponentially attracting set

Due to the lack of compactness of the embedding H1
ε ⊂ Hε, we need to

introduce a Banach space Wε which is compactly embedded in the phase
space. This is done following [27, Proposition 5.4], where it is shown that

Kε = {η ∈M4
ε, ∂sη ∈M2

ε, η(0) = 0,

sup
x≥1

x

∫ ∞
εx

µε(s)‖η(s)‖22 ds <∞} ⊂M4
ε,

with norm

‖η‖2Kε = ‖η‖2M4
ε

+ ε2‖∂sη‖2M2
ε

+ sup
x≥1

x

∫ ∞
εx

µε(s)‖η(s)‖22 ds,

is continuously embedded in M4
ε. Besides, its closed balls are closed in M2

ε

and the compact embedding

Kε bM2
ε

holds. As a consequence, the product space

Wε = H4 ×H4 ×Kε ⊂ H1
ε

is compactly embedded in Hε. We also recall a suitable formulation of [25,
Lemma 5.2], which is crucial when working in Kε.

Lemma 4.2. Let η0 ∈ Kε. Assume that η satisfies the Cauchy problem{
∂tη = Tεη + ϕ,

η0 = η0,

on (0, T ), for some T > 0. Then, ηt ∈ Kε and

‖ηt‖2Kε ≤ 2(t+ 2)e−δt‖η0‖2Kε + c‖ϕ(t)‖24, ∀t ∈ (0, T ).

The main result of this section is the following

Theorem 4.3. There exists % > 0 such that

Bε = {z ∈ Wε : ‖z‖Wε
≤ %}

is exponentially attracting for Sε(t), with an attraction rate independent of
ε, namely

distHε(Sε(t)Bε,Bε) ≤Me−κt, ∀t ≥ 0,

for some M,κ > 0 independent of ε. Furthermore, Bε absorbs itself in a finite
time t% ≥ 0 (independent of ε).
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Proof. We need a number of steps.

Step I. We first note that the analogous of Lemma 4.1 holds, replacing H1
ε

with Wε, namely there exist ϑ2 > 0, R2 > 0, and a positive function Q2(·)
such that

‖Sε(t)z‖Wε ≤ Q2(r)e−ϑ2t +R2, ∀t ≥ 0,

whenever ‖z‖Wε ≤ r, for every ε ∈ [0, 1].

Indeed, this is a simple application of Lemma 4.2, recalling the inclusion

‖z‖H1
ε
≤ ‖z‖Wε

.

Step II. There is r2 > 0 such that the ball of Wε with radius r2 attracts the
set B1

ε found in Theorem 3.5, with an attraction rate independent of ε.

To this aim let z = (u0, ϕ0, η0) ∈ B1
ε be given. We decompose

Sε(t)z = (u(t), ϕ(t), ηt) = (0, 0, ψt) + (u(t), ϕ(t), ξt),

where {
∂tψ = Tεψ,

ψ0 = η0,

{
∂tξ = Tεξ + ϕ(t),

ξ0 = 0.

We readily get from µ′ + δµ ≤ 0 the exponential decay

‖ψt‖2M4
ε
≤ Q(r1)e−δt.

Now, observe that, from Lemma 4.1,

‖Sε(t)z‖H1
ε
≤ Q1(r1), ∀t ≥ 0.

Then, by comparison,

‖ξt‖M4
ε
≤ Q(r1).

An application of Lemma 4.2, noting that here the initial datum is null, yields

‖ξt‖Kε ≤ Q(r1) ⇒ ‖(u(t), ϕ(t), ξt)‖Wε ≤ Q(r1).

Therefore, the thesis follows setting r2 = Q(r1).

Step III. We now choose % strictly greater than r2 and R2 and we define

Bε = {z ∈ Wε : ‖z‖Wε
≤ %}.

Since ρ > r2, it is clear that Bε exponentially attracts B1
ε at a uniform rate

with respect to ε. Now we prove that Bε absorbs itself in a finite time. Indeed,
having in mind Step I, we choose t% > 0 such that

Q2(%)e−ϑ2t +R2 ≤ %, ∀t ≥ t%.
This implies that

‖Sε(t)z‖Wε ≤ %, ∀t ≥ t%,
whenever ‖z‖Wε

≤ %, hence

Sε(t)Bε ⊂ Bε, ∀t ≥ t%,
as claimed.
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Step IV. Owing to the transitivity of the exponential attraction and to the
(uniform with respect to ε) continuity of Sε(t), we infer from the fact that
Bε exponentially attracts the attracting ball B1

ε ⊂ H1
ε that the basin of

attraction is the absorbing set Bε, hence the whole phase space.

�

5. Robust exponential attractors

We report here a suitable version of the main abstract result from [16, The-
orem A.2] (see also [19]), ensuring the existence of robust exponential at-
tractors for Sε(t). In order to make this statement precise, we introduce the
lifting map Lε : H0 → Hε defined as

Lε(u, ϕ) =

{
(u, ϕ, 0), ε > 0,

(u, ϕ), ε = 0,

and the projection onto the first two components of Hε, namely P : Hε →
H2 ×H2 acting as P(a, b, c) = (a, b).

Theorem 5.1. Assume that

(H0) there exist R > 0 and t? > 0, both independent of ε, and a family of
closed sets Bε ⊂ BHε(R) such that

Sε(t)Bε ⊂ Bε, ∀t ≥ t?,

and Bε is exponentially attracting in Hε, with an attraction rate inde-
pendent of ε.

Assume furthermore that there exist Λj ≥ 0, λ ∈ [0, 1
2 ), α ∈ (0, 1] and a con-

tinuous increasing function Σ : [0, 1]→ [0,∞) with Σ(0) = 0 (all independent
of ε) such that the following conditions hold.

(H1) The map Sε = Sε(t
?) satisfies, for every z1, z2 ∈ Bε,

Sεz1 − Sεz2 = Lε(z1, z2) +Kε(z1, z2),

where

‖Lε(z1, z2)‖Hε ≤ λ‖z1 − z2‖Hε ,

‖Kε(z1, z2)‖Wε ≤ Λ1‖z1 − z2‖Hε .

(H2) There holds

‖Snε z − LεSn0 Pz‖Hε ≤ Λn2 Σ(ε), ∀z ∈ Bε, ∀n ∈ N.

(H3) There holds

‖Sε(t)z − LεS0(t)Pz‖Hε ≤ Λ3Σ(ε), ∀z ∈ Bε, ∀t ∈ [t?, 2t?].
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(H4) The map

z 7→ Sε(t)z : Bε → Bε
is Lipschitz continuous, with a Lipschitz constant independent of t ∈
[t?, 2t?] and of ε. Here, Bε is endowed with the metric topology of Hε.

(H5) The map

(t, z) 7→ Sε(t)z : [t?, 2t?]× Bε → Bε
is Hölder continuous of exponent α (with a constant that may depend
on ε). Again, Bε is endowed with the metric topology of Hε.

Then there exists a family of compact sets Eε ⊂ Bε, called exponential attrac-
tors, such that

Sε(t)Eε ⊂ Eε, ∀t ≥ 0,

with the following additional properties.

• Eε attracts Bε with an exponential rate which is uniform with respect to
ε, that is,

distHε
(
Sε(t)Bε, Eε

)
≤M1e

−κt, ∀t ≥ 0,

for some κ > 0.
• The fractal dimension of Eε is uniformly bounded with respect to ε, that

is,

dimHε [Eε] ≤M2.

• There holds

distsym
Hε

(
Eε,LεE0

)
≤M3[Σ(ε)]τ ,

for some τ ∈ (0, 1].

The positive constants κ, τ and Mj are independent of ε and can be explicitly
calculated.

We now proceed with the verification of the assumptions of the theorem.

5.1. Proof of (H0)

Set

Bε = Bε
given by Theorem 4.3. Note that Bε is closed in Hε. To start with, take
t? > tρ to be possibly increased so that (H1) holds true.

5.2. Proof of (H1)

For any given z1, z2 ∈ Bε, we decompose the difference of the solutions as

Sε(t)z1 − Sε(t)z2 = Lε(t)(z1 − z2) +Kε(t)(z1, z2),

where

Lε(t)z = (v(t), χ(t), ξt) and Kε(t)(z1, z2) = (w(t), ψ(t), ζt)
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solve the problems 

vt −∆v = Aχ,

Aχt −
∫ ∞

0

µε(s)∆ξ(s) ds = −vt,

ξt = Tεξ + χ,

Lε(0)z = z,

(5.1)

and 

wt −∆w + f(u1)− f(u2) = Aψ,

Aψt −
∫ ∞

0

µε(s)∆ζ(s) ds = −wt,

ζt = Tεζ + ψ,

Kε(0)(z1, z2) = 0,

(5.2)

where Sε(t)zi = (ui(t), ϕi(t), η
t
i). Note that Lε(t)z is a semigroup, since it

is the solving operator of (2.6) corresponding to f ≡ 0. Thus, in light of
Theorem 3.2 and Remark 3.3, we have the exponential decay of Lε(t)z,

‖Lε(t)(z1 − z2)‖2Hε ≤ c e−ωt‖z1 − z2‖2Hε , ∀t ≥ 0, (5.3)

where, here and along this section, c ≥ 0 denotes any constant possibly
depending on the size of Bε. Owing to the continuous dependence estimate
(3.1), this immediately yields

‖Kε(t)(z1, z2)‖2Hε ≤ c ect‖z1 − z2‖2Hε , ∀t ≥ 0. (5.4)

Furthermore, the following higher-order estimates hold true for Kε(t)(z1, z2):

Theorem 5.2. There exists c > 0, depending on the size of Bε, such that, for
every t ≥ 0, we have

‖Kε(t)(z1, z2)‖H3×H4×L2
µε

(R+;H4) ≤ c ect‖z1 − z2‖Hε .

Besides, setting Kε(t)(z1, z2) = (w(t), ψ(t), ζt),

sup
t≥0

∫ t+1

t

(
‖wt(s)‖22 +

1

ε
‖∆ζ(s)‖2M∗ε

)
ds ≤ c ect‖z1 − z2‖2Hε .

Proof. Along the proof, we perform formal computations which can be rig-
orously justified within a standard Galerkin scheme. The product of system
(5.2) by (∆2wt,∆

2Aψ,−∆3Aζ) in H×H× L2
µε(R

+,H) yields

‖∆wt‖2 +
1

2

d

dt
‖∇∆w‖2 = 〈Aψ,∆2wt〉 − 〈f(u1)− f(u2),∆2wt〉,

1

2

d

dt
‖∆Aψ‖2 −

∫ ∞
0

µε(s)〈∆ζ(s),∆2Aψ〉ds = −〈∆2Aψ,wt〉,

1

2

d

dt
‖∆ζ‖2M∗ε −

1

2

∫ ∞
0

µ′ε(s)‖∆ζ(s)‖2∗ds = −
∫ ∞

0

µε(s)〈∆ζ(s),∆2Aψ〉ds.

Hence, defining

E1(t) =
1

2

(
‖∇∆w(t)‖2 + ‖∆Aψ(t)‖2 + ‖∆ζt‖2M∗ε

)
,
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we obtain the basic inequality

d

dt
E1 +

1

2
‖∆wt‖2 −

1

2

∫ ∞
0

µ′ε(s)‖∆ζ(s)‖2∗ds ≤ c‖u1 − u2‖22, (5.5)

having used

|〈f(u1)−f(u2),∆2wt〉| ≤ ‖∆f(u1)−∆f(u2)‖‖∆wt‖ ≤ c‖u1−u2‖22+
1

2
‖∆wt‖2,

in light of Theorem 3.2. We now introduce the functional

Ψ1(t) = −
∫ ∞

0

µ?ε(s)〈∆Aζt(s),∆Aψ(t)〉ds,

where µ?ε : R+ → [0,∞) is defined as in the proof of Lemma 4.1. Reasoning
as above, it is easy to check that we end up with

d

dt
Ψ1 +

ν

ε
‖∆Aψ‖2 ≤ 1

2
‖∆wt‖2−

c

ε

∫ ∞
0

µ′ε(s)‖∆ζ(s)‖2∗ds+
c

ε
‖∆ζ‖2M∗ε , (5.6)

for some ν > 0. We introduce the further functional

Λ1(t) = E1(t) + ε%Ψ1(t) + %‖∆w(t)‖2,

for some given % ∈ (0, 1/2). Note that, by multiplying the equation for w by
∆2w, thanks to (5.4), we have

1

2

d

dt
‖∆w‖2 + ‖∇∆w‖2 = −〈∆f(u1)−∆f(u2),∆w〉+ 〈∆Aψ,∆w〉

≤ ν

2
‖∆Aψ‖2 + c‖u1 − u2‖22.

Taking into account (5.5) and (5.6), we are thus led to

d

dt
Λ1 + %‖∇∆w‖2 +

1

2

(
1− %

)
‖∆wt‖2 +

ν%

2
‖A∆ψ‖2

−
(1

2
− c%

) ∫ ∞
0

µ′ε(s)‖∆ζ(s)‖2∗ds

≤ c‖u1 − u2‖22 +
c

ε
%‖∆ζ‖2M∗ε .

Invoking (4.6), it is apparent that we can properly choose % to get the in-
equality

d

dt
Λ1 + ν1Λ1 +

1

4
‖∆wt‖2 +

c

ε
‖∆ζ‖2M∗ε ≤ c‖u1 − u2‖22,

for some ν1 > 0. Since Λ1(0) = 0, an application of the Gronwall Lemma and
an integration in time complete the proof. �

Remark 5.3. Note that

‖Kε(t)(z1, z2)‖H1
ε
≤ c ect‖z1 − z2‖Hε .

This is readily seen by differentiating the first equation in (5.2) with respect
to time,

wtt −∆wt + f ′(u1)ut + [f ′(u1)− f ′(u2)]u2t = Aψt,
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and multiplying the result by ∆2wt:

1

2

d

dt
‖∆wt‖2 + ‖∇∆wt‖2

= 〈f ′′(u1)∂tu1∇u+ f ′′(u1)∂tu∇u2 + [f ′′(u1)− f ′′(u2)]∂tu2∇u2,∇∆wt〉
+ 〈f ′(u1)∇ut + (f ′(u1)− f ′(u2))∇∂tu2,∇∆wt〉+ 〈Aψt,∆2wt〉.

Then, multiplying the second equation in (5.2) by ∆2wt, the last term above
reads

〈Aψt,∆2wt〉 =

∫ ∞
0

µε(s)〈∆ζ(s),∆2wt〉ds− ‖∆wt‖2,

leading to

1

2

d

dt
‖∆wt‖2 + ‖∇∆wt‖2 + ‖∆wt‖2

= 〈f ′′(u1)∂tu1∇u+ f ′′(u1)∂tu∇u2 + [f ′′(u1)− f ′′(u2)]∂tu2∇u2,∇∆wt〉
+ 〈f ′(u1)∇ut + (f ′(u1)− f ′(u2))∇∂tu2,∇∆wt〉

+

∫ ∞
0

µε(s)〈∆ζ(s),∆2wt〉ds

≤ 1

2
‖∇∆wt‖2 + c(‖ut‖21 +

1

ε
‖∆ζ‖2M∗ε )

+ c(1 + ‖∂tu1‖21 + ‖∂tu2‖21)‖u1 − u2‖22.

Then Theorem 3.1 and the integral inequality in Theorem 5.2 allow to con-
clude that

‖wt(t)‖2 ≤ cect‖z1 − z2‖Hε , t ≥ 0,

hence the elliptic equation −∆w = −f(u1) + f(u2) +Aψ−wt ∈ H2 gives the
desired bound in H4.

Owing to (5.3), (5.4), Remark 5.3 and Lemma 4.2, it is readily seen
that, for t? large enough independent of ε, Lε(z1, z2) = Lε(t

?)(z1 − z2) and
Kε(z1, z2) = Kε(t

?)(z1, z2) satisfy (H1).

5.3. Proof of (H2)− (H4)

The sufficient conditions (H2)-(H3) with Σ(ε) = 8
√
ε follow directly from [15].

Indeed, Theorem 6.1 therein reads as follows:

Theorem 5.4. Let ε > 0 and T > 0. For any z ∈ Hε such that ‖z‖Hε ≤ R,
there holds

‖PSε(t)z − S0(t)Pz‖H2×H2 ≤ QT (R) 8
√
ε, ∀t ∈ [0, T ], (5.7)

where QT (·) depends on T . Besides, for any t ≥ 0,

‖ηtε‖M2
ε
≤ ‖η0‖M2

ε
e−δt/4ε +Q(R)

√
ε. (5.8)

In turn, (H4) is a straightforward consequence of Theorem 3.1.
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5.4. Proof of (H5)

Owing to Theorem 3.1, we accomplish our purpose by the Hölder inequality
once we prove that, for any z ∈ Bε, the solution Sε(t)z = (u(t), ϕ(t), ηt)
satisfies ∫ 2t?

t?
(‖ut(s)‖22 + ‖ϕt(s)‖22 + ‖ηt(s)‖2M2

ε
)ds ≤ c

ε
. (5.9)

Recalling that Sε(t)Bε ⊂ Bε for t ≥ t?, we integrate (4.4) over [t?, 2t?]:
taking into account (2.4), we bound the first term in (5.9). In a similar way,
multiplying the second equation in (2.6) by Aϕt and exploiting (3.4), we
obtain

‖Aϕt‖2 = −〈ut, Aϕt〉+

∫ ∞
0

µε(s)〈∆η(s), Aϕt(s)〉ds ≤
1

2
‖Aϕt‖2 +

c

ε
,

so that a further integration in time leads to the control of the second term in
(5.9). Finally, the control in the memory variable is obtained differentiating
in time the third equation in (2.6) with the usual estimates, relying on the
integral estimate on ‖ϕt‖22.

Remark 5.5. It is worth recalling that the global attractors Aε, whose ex-
istence follows from Theorem 4.3 (see also [15, Theorem 5.1]), are invariant
sets contained in each compact attracting set. In particular, Aε ⊂ Eε, so that
the fractal dimension of Aε is uniformly bounded with respect to ε. We can
note that, in [15], only the upper semicontinuity at ε = 0 of the family of
global attractors {Aε}ε≥0 has been established. Namely,

lim
ε→0

distHε
(
Aε,LεA0

)
= 0.

In particular, there is no explicit estimate in terms of ε here, contrary to the
above family of exponential attractors for which we have a full continuity
result.

6. Spatial behavior of solutions

In this section, we study the spatial behavior of the solutions of system (1.11)
in the semi-infinite cylinder R = (0,∞) ×D, where D is a two-dimensional
bounded domain which is smooth enough to allow the use of the divergence
theorem. We supplement the equations with the following boundary condi-
tions

u = ϕ = 0, on (0,∞)× ∂D × (0, T ), (6.1)

u(0, x2, x3, t) = h(x2, x3, t), ϕ(0, x2, x3, t) = m(x2, x3, t) on {0}×D×(0, T ),
(6.2)

where T > 0 is a given final time, and null initial conditions

u|t=0 = ϕ|t≤0 = 0 on R. (6.3)

As far as the nonlinear term f is concerned, we assume that there exists
a positive constant d such that

f(s)s+ ds2 ≥ 0, and F (s) + ds2 ≥ 0,
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where F is as above. In particular, it is clear that the function f(s) = s3 − s
satisfies these conditions. Actually, any function of the form f(s) = a|s|ks−bs,
a, k > 0, is admissible.

Our aim is to obtain an alternative of Phragmén-Lindelöf type, mean-
ing that the solutions decrease (resp., grow) in a negative (resp., positive)
exponential way with respect to the spatial variable.

In view of this, we first introduce the functional

Fω(z, t) =

∫ t

0

∫
D(z)

exp(−2ωs)
(
u,1(s)us(s) + ϕ(s)

∫ ∞
0

µ(τ)ηs,1(τ)dτ
)

dads,

where D(z) = {x ∈ R, x1 = z} and ω is an arbitrary positive constant to be
fixed later; here

vs = ∂v/∂s and v,1 = ∂v/∂x1.

There holds, owing to the boundary and initial conditions and the di-
vergence theorem,

Fω(z + h, t)− Fω(z, t) =

∫ t

0

∫
R(z,z+h)

exp(−2ωs)Wdxds,

where R(z, z + h) = {x ∈ R, z < x1 < z + h} and

W =uiu,is + u2
s + f(u)us + (ϕs −∆ϕs)(ϕ−∆ϕ)

+

∫ ∞
0

µ(τ)ηs,i(τ)ϕ,i(s)dτ +

∫ ∞
0

µ(τ)∆ηs(τ)∆ϕ(s)dτ.

Therefore,

W =
d

ds

(
1

2
|∇u|2 + F (u) +

1

2
(ϕ−∆ϕ)2

)
+

d

ds

(
1

2

∫ ∞
0

µ(τ)(ηs,i(τ)ηs,i(τ) + ∆ηs(τ)∆ηs(τ))dτ

)
− 1

2

∫ ∞
0

µ′(τ)(ηs,i(τ)ηs,i(τ) + ∆ηs(τ)∆ηs(τ))dτ + |us|2.
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We then obtain

Fω(z + h, t)− Fω(z, t)

=
exp(−2ωt)

2

∫
R(z,z+h)

(
|∇u|2 + 2F (u) + (ϕ−∆ϕ)2

+

∫ ∞
0

µ(s)(ηt,i(s)η
t
,i(s) + ∆ηt(s)∆ηt(s))ds

)
dx

+

∫ t

0

∫
R(z,z+h)

exp(−2ωs)
(
|us|2 −

1

2

∫ ∞
0

µ′(τ)(ηs,i(τ)ηs,i(τ)

+ ∆ηs(τ)∆ηs(τ))dτ
)

dxds

+ ω

∫ t

0

∫
R(z,z+h)

exp(−2ωs)
(
|∇u|2 + 2F (u) + (ϕ−∆ϕ)2

+

∫ ∞
0

µ(τ)(ηs,i(τ)ηs,i(τ) + ∆ηs(τ)∆ηs(τ))dτ
)

dxds

and a direct differentiation gives

∂Fω(z, t)

∂z
=

exp(−2ωt)

2

∫
D(z)

(
|∇u|2 + 2F (u) + (ϕ−∆ϕ)2

+

∫ ∞
0

µ(s)(ηt,i(s)η
t
,i(s) + ∆ηt(s)∆ηt(s))ds

)
da

+

∫ t

0

∫
D(z)

exp(−2ωs)
(
|us|2

− 1

2

∫ ∞
0

µ′(τ)(ηs,i(τ)ηs,i(τ) + ∆ηs(τ)∆ηs(τ))dτ
)

dads

+ ω

∫ t

0

∫
D(z)

exp(−2ωs)
(
|∇u|2 + 2F (u) + (ϕ−∆ϕ)2

+

∫ ∞
0

µ(τ)(ηs,i(τ)ηs,i(τ) + ∆ηs(τ)∆ηs(τ))dτ
)

dads.

Next, we introduce the functional

Gω(z, t) =

∫ t

0

∫
D(z)

exp(−2ωs)u,1udads.

It is easy to see that

Gω(z + h, t)−Gω(z, t) =
exp(−2ωt)

2

∫
R(z,z+h)

|u|2dx

+

∫ t

0

∫
R(z,z+h)

exp(−2ωs)(|∇u|2 + f(u)u− (ϕ−∆ϕ)u+ ωu2)dxds.
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Furthermore

∂Gω(z, t)

∂z
=

exp(−2ωt)

2

∫
D(z)

|u|2da

+

∫ t

0

∫
D(z)

exp(−2ωs)(|∇u|2 + f(u)u− (ϕ−∆ϕ)u+ ωu2)dads.

We finally set

Hω(z, t) =

∫ t

0

∫
D(z)

exp(−2ωs)ϕ,1ϕdads,

so that

∂Hω(z, t)

∂z
=

∫ t

0

∫
D(z)

exp(−2ωs)(|∇ϕ|2 + ϕ∆ϕ)dads.

Let φ be a positive constant to be fixed and set

Jω = Fω + φGω + 2ωHω.

Noting that

∂Jω(z, t)

∂z
=

exp(−2ωt)

2

∫
D(z)

Σ1da+

∫ t

0

∫
D(z)

exp(−2ωs)Σ2dads,

where

Σ1 = |∇u|2 + 2F (u) + (ϕ−∆ϕ)2

+φu2 +

∫ ∞
0

µ(s)(ηt,i(s)η
t
,i(s) + ∆ηt(s)∆ηt(s))ds

and

Σ2 = u2
s + φ(|∇u|2 + f(u)u− (ϕ−∆ϕ)u)

+ ω(|∇u|2 + 2F (u) + ϕ2 + 2|∇ϕ|2 + (∆ϕ)2 + φu2)

+ ω

∫ ∞
0

µ(τ)(ηs,i(τ)ηs,i(τ) + ∆ηs(τ)∆ηs(τ))dτ

− 1

2

∫ ∞
0

µ′(τ)(ηs,i(τ)ηs,i(τ) + ∆ηs(τ)∆ηs(τ))dτ.

we can choose φ large enough to guarantee that

φu2 + 2F (u) ≥ 0

and

φf(u)u+ω(ϕ2+(∆ϕ)2)−φ(ϕ−∆ϕ)u+φωu2+2ωF (u) ≥ C0(ϕ2+(∆ϕ)2+u2),

where C0 is a positive constant. Indeed, the first condition is clear and the
second one follows from the fact that the determinants of the leading minors
of the matrix φω − 2ωd− φd −φ2

φ
2

−φ2 ω 0
φ
2 0 ω


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are positive if φ and ω are large enough. We thus deduce the existence of a
positive constant C1 such that

Σ2 ≥ C1

(
u2
s + ϕ2 + |∇ϕ|2 + (∆ϕ)2 + u2 + |∇u|2 +

∫ ∞
0

µ(τ)ηs,i(τ)ηs,i(τ)dτ
)

The next step consists in obtaining an estimate on |Jω| in terms of the
spatial derivative of Jω. We note that we can find positive constants C2, ...,
C5 such that

|u,1us| ≤ C2Σ2,

|ϕ
∫ ∞

0

µ(τ)ηs,1(τ)dτ | ≤ C3Σ2,

|φu,1u| ≤ C4Σ2,

and
|2ωϕϕ,1| ≤ C5Σ2.

There thus exists a positive constant C6 = C2 + ...+ C5 such that

|Jω| ≤ C6
∂Jω
∂z

,

for every z and t positive.
This inequality is classical and yields a Phragmén-Lindelöf alternative.

More precisely, if there exists z0 ≥ 0 such that Jω(z0, t) > 0, then the solution
satisfies the estimate

Jω(z, t) ≥ Jω(z0, t) exp(C−1
6 (z − z0)), z ≥ z0. (6.4)

This estimate gives information in terms of the measure defined in the cylin-
der. Indeed, it follows that

exp(−2ωt)

2

∫
R(0,z)

Σ1dx+

∫ t

0

∫
R(0,z)

exp(−2ωs)Σ2dxds

tends to infinity exponentially fast, where R(0, z) = {x ∈ R, x1 ≤ z}. On
the contrary, when Jω(z, t) ≤ 0, for every z ≥ 0, it follows that the solution
decays and we can obtain an estimate of the form

−Jω(z, t) ≤ −Jω(0, t) exp(−C−1
6 z), z ≥ 0.

This inequality implies that Jω(z, t) tends to zero as z goes to infinity. Fur-
thermore in view of this estimate, it is clear that

Eω(z, t) ≤ Eω(0, t) exp(−C−1
6 z), z ≥ 0,

where

Eω(z, t) =
exp(−2ωt)

2

∫
R(z)

Σ1dx+

∫ t

0

∫
R(z)

exp(−2ωs)Σ2dxds,

and R(z) = {x ∈ R, x1 > z}. Setting finally

Eω(z, t) =
1

2

∫
R(z)

Σ1dx+

∫ t

0

∫
R(z)

Σ2dxds,

we can state the
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Theorem 6.1. Let (u, ϕ) be a smooth solution of the problem defined by system
(1.11), the boundary conditions (6.1)-(6.2) and the initial conditions (6.3).
Then, either this solution satisfies the growth estimate (6.4) or it satisfies the
decay estimate

Eω(z, t) ≤ Eω(0, t) exp(2ωt− C−1
6 z), z ≥ 0,

where the energies Eω and Eω are defined above.

It is worth noting that the argument even works in the relaxed case that
we assume that µ(s) ≥ 0 and µ′(s) ≤ 0.
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asintotico di soluzioni di equazioni paraboliche” financed by INdAM.

References

[1] S. Aizicovici, E. Feireisl, Long-time stabilization of solutions to a phase-field
model with memory. J. Evol. Eqns. 1 (2001), 69–84.

[2] S. Aizicovici, E. Feireisl, F. Issard-Roch, Long-time convergence of solutions to
a phase-field system. Math. Methods Appl. Sci. 24 (2001), 277–287.

[3] D. Brochet, X. Chen, D. Hilhorst, Finite dimensional exponential attractors
for the phase-field model. Appl. Anal. 49 (1993), 197–212.

[4] G. Caginalp, An analysis of a phase field model of a free boundary. Arch.
Rational Mech. Anal. 92 (1986), 205–245.

[5] P. J. Chen, M. E. Gurtin, On a theory of heat involving two temperatures. J.
Appl. Math. Phys. (ZAMP) 19 (1968), 614–627.

[6] P. J. Chen, M. E. Gurtin, W. O. Williams, A note on non-simple heat conduc-
tion. J. Appl. Math. Phys. (ZAMP) 19 (1968), 969–970.

[7] P. J. Chen, M. E. Gurtin, W. O. Williams, On the thermodynamics of non-
simple materials with two temperatures. J. Appl. Math. Phys. (ZAMP) 20
(1969), 107112.

[8] L. Cherfils, A. Miranville, Some results on the asymptotic behavior of the Cagi-
nalp system with singular potentials. Adv. Math. Sci. Appl. 17 (2007), 107–129.

[9] L. Cherfils, A. Miranville, On the Caginalp system with dynamic boundary
conditions and singular potentials. Appl. Math. 54 (2009), 89–115.
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