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Abstract

The Prize-collecting Steiner Tree Problem (PCSTP) is a well-known problem in

graph theory and combinatorial optimization. It has been successfully applied

to solve real problems such as fiber-optic and gas distribution networks design.

In this work, we concentrate on its application in biology to perform a func-

tional analysis of genes. It is common to analyze large networks in genomics to

infer a hidden knowledge. Due to the NP-hard characteristics of the PCSTP,

it is computationally costly, if possible, to achieve exact solutions for such huge

instances. Therefore, there is a need for fast and efficient matheuristic algo-

rithms to explore and understand the concealed information in huge biological

graphs. In this study, we propose a matheuristic method based on clustering

algorithm. The main target of the method is to scale up the applicability of the

currently available exact methods to large graph instances, without loosing too

much on solution quality. The proposed matheuristic method is composed of a

preprocessing procedures, a heuristic clustering algorithm and an exact solver

for the PCSTP, applied on sub-graphs. We examine the performance of the pro-

posed method on real-world benchmark instances from biology, and compare its

results with those of the exact solver alone, without the heuristic clustering.

We obtain solutions in shorter execution time and with negligible optimality
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gaps. This enables analyzing very large biological networks with the currently

available exact solvers.

Keywords: Prize-collecting Steiner Tree Problem (PCSTP); Combinatorial

Optimization (CO); Matheuristics (M); Genomics (G)

1. Introduction

The Steiner Tree Problem (STP) is a well-know problem in graph theory

and there exist different variants of the problem in the literature. The prize-

collecting Steiner Tree problem (PCSTP) is a generalization of the STP. Given

an undirected graph G = (V,E), where the vertices are labeled with prizes5

pj ≥ 0 and the edges are labeled with costs ce > 0, the goal is to identify a

sub-network G′ = (V ′, E′) which is also a tree. The target is to minimize the

sum of prizes of the vertices in V \V ′ and to minimize the total cost of the edges

in E′. Thus, the corresponding problem is equivalent to the minimization of the

following objective function, also known as Goemans-Williamson minimization10

problem [16]:

GW (G′) = min
∑
e∈E′

ce +
∑
v �∈V ′

pv (1)

The STP and the PCSTP have a wide range of applications, mainly in the

design of utilities such as fiber optic networks and district heating networks.

Recently applications in biological networks have appeared [7]. The relation

between the PCSTP and genomic networks has been identified and it gathered15

the attention of researchers in [4]. Vertices and edges in these networks are given

a score by using gene expression profiling (GEP) experimental data. GEP [1]

measures the activity levels of thousands of genes simultaneously, and therefore

it is able to provide a global overview of biological functions at cellular level.

Genes have defined procedures to produce messenger RNAs (mRNA) [2]. A20

gene is considered to be active at a time if it produces mRNA, and passive

otherwise. Thus, GEP measures the activity of each gene at a given point in

time, and this can be related to the concurrent mRNA activities. In a gene
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interaction network, every vertex is a gene and every edge between two vertices

represents the genetic interaction between the two corresponding genes. Based25

on GEP data, each vertex in the network is given a prize, which is the mean

value of the differential expression of the corresponding gene [5]. The differential

expression is the amount of change in expression level of a gene in two different

experimental conditions, for instance, tumor tissue versus control tissue. Also,

each edge in the network is given a cost, which corresponds to the pairwise30

correlation level of the expression values of the corresponding gene pair [5].

After having evaluated all vertices and edges in the network, the PCTSP is

then used to detect a relevant sub-network (tree). In biologically terms, the

sub-network retrieve by the PCSTP has an important meaning [4], because

it corresponds to a portion of the interaction network where many genes are35

highly correlated in terms of their functions and play an important role in

the regulations of biological processes. Thus, the PCTSP can help to detect

connected neighborhoods in interaction networks where the genes belong to the

same biological pathways [5]. Based on these considerations, we develop in this

work computational approaches for identifying functions of proteins or genes40

in cancer genomics relying upon PCSTP solutions. To this end, we construct

gene-gene interaction networks by gathering information from genomic data. We

use raw microarray data, that are commonly used to quantify gene expressions

from different samples of tumor tissues and the corresponding control tissues.

Subsequently, we apply the PCSTP on the generated gene interaction networks45

to perform functional analysis.

In the application of PCSTP in genomics, it is possible to have very large

networks. Nevertheless, PCSTP has NP-hard characteristics. Thus, it is com-

putationally costly to find solutions for large instances in reasonable execution

time. Taking this fact into account, one needs an efficient and fast matheuristic50

algorithms to compute the PCSTP solution for large networks. At the same

time, we seek methods able to give high quality solutions for inferring the func-

tional biology. Solution quality and running time speed of the algorithm must

be considered simultaneously. In this study, we propose a matheuristic that
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allows the current state-of-the-art PCSTP methods to efficiently scale up on55

large instances in biological applications. The matheuristic is composed of a

preprocessing technique, a heuristic clustering algorithm and an exact solution

method for PCSTP, applied on sub-graphs. In this work, we develop a solution

strategy to efficiently solve the objective function in Eq. (1). The rest of the

work is organized as follows: In the next section we describe related work in the60

literature. In Section 3, we present the proposed matheuristic. The experimen-

tal studies of matheuristic are reported in Section 4. Our concluding remarks

and future work are delivered in the last section of the paper.

2. Related Work

The concept of the PCSTP was first introduced by Bienstock et al [6] and the65

authors contributed pioneering work by developing 3-approximation algorithm

to this research area. Several exact solution methodologies were proposed by

Ljubic et al [11] and [10]. In these studies, the authors formulated the problem

by employing the mixed integer linear programming and a brand-and-cut algo-

rithm was devised to solve the model. They have tested the performance of their70

methods on real-world benchmark instances. Besides, there are some very dis-

tinct studies in the stream of approximation and heuristic algorithms. Canuto

et al [14] introduced a multi-start local search heuristic with perturbations.

Goemans and Williamson [8] proposed a primal-dual 2-1/(n-1) approximation

algorithm with O(n3logn) running time performance. Another matheuristic75

approach was presented in Klau et al [18], in which the authors studied an

incorporation of integer programming into memetic algorithm. Lucena and Re-

sende [9] proposed a method to obtain a lower bound on the problem using

mixed integer linear programming.

Different versions of the PCSTP were analyzed by Johnson et al [16], and for80

the primal-dual 2-approximation algorithm a well-defined strong pruning rule

was developed. Klau et al [19] studied the fractional prize-collecting Steiner

tree problem on trees. They maximize the ratio of the vertex profits and the
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edge costs plus a fixed cost. Another version of the PCSTP known as the quota

problem was studied in Haouari and Chaouachi [20] and Haouari et al [20]. In85

this problem an additional quota constraint is inserted into the model to force

the total prize of the nodes selected in the tree to be above a predetermined

threshold Q. A further study on a quota problem was presented in Haouari et al

[22] by considering penalties - different from vertex prizes - for vertices that are

not covered by the output tree. Other related problems were finally discussed90

in Montemanni et al [23].

In the literature, the PCSTP has been successfully applied to similar bio-

logical networks to perform functional analysis in [3, 4, 5]. The focus in these

studies was to analyze the protein-protein interaction networks. As a result of

these studies, the authors have detected unknown and unreported functions for95

some proteins. Moreover, the authors have justified their computational find-

ings with experimental support from biological experiments. This suggests that

the output of PCSTP is very promising and indeed valuable when it is applied

to bio-genetical graphs.

Another PCSTP application was proposed in [17], in which a heuristic ap-100

proach was devised to handle huge biological networks. That implementation

targeted large networks with a restricted number of vertices with prizes pj > 0.

In contrast, this study focuses on large biological networks with some different

properties. It is common to encounter networks with these properties in ge-

nomics [5]. Basically, all vertices of the network have positive prizes. Since the105

generated network is based on genomics, it is highly possible that every gene has

non-zero mean value of differential expression. This implies that corresponding

vertex has positive prize pj > 0. Another difference of the targeted networks is

the ratio of vertex-prizes to the edge-costs. This ratio usually is not extremely

high. The final distinction is that pmax << Dmax, where pmax is the maximum110

prize among all vertices and Dmax is the maximum value in all-pairs shortest

path matrix. Very similar PCSTP application to networks with same properties

was proposed in [30]. The main difference is that a single-commodity flow mixed

integer linear programming (MILP) formulation of the PCSTP was considered
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there, where in this study we adopt a more efficient cut-based formulation. This115

study aims to use the state-of-the-art formulation.

3. Methodology

In this section, we present our matheuristic algorithm for PSCTP. The ap-

proach is composed of three distinct components: a preprocessing procedure,

a heuristic clustering algorithm, and any available exact method to solve the120

PCSTP separately on each cluster.

It is important to note that any exact state-of-the-art solution approach

can be incorporated into the proposed matheuristic. In this study, we use the

method proposed in Ljubic et al [10].

The main idea of the proposed matheuristic approach is to heuristically125

divide the giant graph into smaller graphs that can be solved separately, before

merging back the results. Solving a single large problem instance of PCSTP is

potentially computationally costly compared to solving possibly many smaller

problem components of that instance. Therefore, the “divide and conquer”

paradigm is adopted while designing the matheuristic.130

3.1. Preprocessing

The main target of preprocessing is to reduce the size of given network in-

stance by removing the vertices and edges with some specific properties in the

graph. The overall preprocessing we adopt after some preliminary experiments

is composed of two basic procedures, that are available in the literature [11].135

The main reason for choosing these procedures is they are simple and compu-

tationally efficient. There are some other more sophisticated procedures in the

literature, which require the calculation of all-pairs shortest paths repeatedly

[10]. Since this study focuses on large graphs, computing all-pairs shortest paths

continuously could be computationally expensive. We repeat these procedures140

until they fail to reduce the graph size further.

Degree-One Test : Consider a vertex i that has only one edge, to vertex

j. If pi < cij , then the vertex i is removed together with its edge. If pi > cij ,
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then the prize of vertex j becomes pj = pj + pi − cij , and vertex i is removed

together with its edge.145

Degree-Two Test : Consider a vertex i which has only two edges, to

vertices j and k respectively. If there is no edge between vertices j and k, an

edge is added with cost cjk = cij + cik - pi. In case there already exists such an

edge, then the cost of the edge is set to min(cjk, cij + cik − pi). Finally, vertex

i is removed from the graph together with its edges.150

3.2. A Divide and Conquer Heuristic Clustering

The proposed heuristic clustering algorithm separates input graph G into

independent portions of smaller graphs Gs according to minimization objective

function (1). At first, the algorithm groups vertices into clusters. Two vertices

are clustered together if the shortest path distance between them is smaller than155

the prize of one of the two vertices. Subsequently, smaller graphs are constructed

by considering all vertices belonging to same clusters. The heuristic clustering

uses the pre-calculated all-pairs shortest path matrix obtained by Johnson’s

algorithm [16].

The performance of heuristic clustering is highly dependent on the structure160

of input graph. The targeted graph instances in this study have particular

characteristics, as discussed in section 2. These make the clustering algorithm

practically suitable to be used on them.

The pseudocode of the heuristic clustering approach is provided in Algorithm

1. Before starting clustering, the algorithm computes all-pairs shortest path165

distance matrix D of graph G, where Dij is the shortest path distance between

the vertices i and j. The clustering of vertices is simply based on the comparison

of the shortest path distances against prizes. If the shortest path distance

between two vertices is smaller than the prize of one of these vertices, then those

two vertices are clustered together. More formally, vertices i and j are clustered170

together if they satisfy the clustering condition, which is Dij < pi or Dij < pj .

The heuristic starts by arbitrarily selecting a vertex i and permanently labeling

it with cluster identifier ID. Then, all the other vertices are analyzed one by
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one with respect to vertex i, and the vertices satisfying the clustering condition

are temporarily labeled with the same cluster identifier ID of vertex i, and put175

into set K. Afterward, one randomly selected vertex in K is removed from

that set and permanently labeled with the cluster identifier ID of vertex i. The

selected vertex is then analyzed with respect to the remaining unlabeled vertices

according to the clustering condition.” The vertices satisfying that condition

are temporarily labeled with the cluster identifier ID of vertex i, and inserted180

into K. The algorithm constructs the first cluster when the set of temporarily

labeled nodes K gets empty. At this stage, the input graph G is composed

of unlabeled and permanently labeled vertices. Then, the heuristic arbitrarily

selects one vertex from unlabeled vertices, and repeats the same procedures,

not considering at this stage the permanently labeled vertices. The algorithm185

terminates when all the nodes are permanently labeled. Clusters are obtained

by grouping together vertices with the same cluster identifier.

The application of Algorithm 1 on an example graph is shown in Figure 1.

In this figure, permanently labeled vertices are colored in red, and temporarily

labeled vertices are colored in yellow. The algorithm computes all-pairs short-190

est path distances in the initialization phase. These distances are shown on the

edges of the graph. The directed arcs show the steps of the algorithm at each

iteration in the figure. Note that the algorithm stores each temporary labeled

vertex in set K, and removes the vertex from that set when it is labeled as per-

manent. In the first iteration, the heuristic starts by arbitrarily selecting vertex195

a and permanently labels it, then it analyzes all the other vertices according

to the clustering condition. Vertex b satisfies this condition, so it is labeled as

temporary. Then, the heuristic selects vertex b and analyzes other unlabeled

nodes. Vertex c satisfies the clustering condition, therefore it is temporarily

labeled. In the next step, the algorithm selects vertex c, permanently labels it,200

and investigates other unlabeled nodes. At this step, there does not exists any

vertex satisfying the clustering condition and set K is empty, so the first iter-

ation of the algorithm is terminated. The heuristic determines the first cluster

G1 at the end of the first iteration. It is worthy to mention that the set of tem-
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Figure 1: Example of application of the clustering algorithm. Initialization. All-pairs shortest

path distance matrix D is calculated for given graph G. First iteration. The shortest path

distances from the selected vertex to all the other vertices are represented on the edges.

Permanently labeled vertices are colored in red, temporarily labeled vertices are colored in

yellow. The heuristic obtains the first cluster G1. Second iteration. The same procedure is

repeated, and the algorithm obtains clusters G2 and G3.

9



Algorithm 1 : Heuristic Clustering Algorithm

Require: undirected graph G=(V,E); all-pairs shortest path matrix D of G;

set S, K; vector C; int clusterID

Initizalize: S ← all vertices with p > 0,

clusterID ← 0, K ← ∅;

while S is not ∅ do

clusterID ← clusterID +1;

Randomly select and remove a vertex i from S, Ci ← clusterID;

for j ← 1 : |V | do
if (Dij < pi || Dij < pj) and Cj = 0 then

Cj ← clusterID ;

if pj > 0 then

K ← j and delete j from S;

end if

end if

end for

while K is not ∅ do

Randomly select and remove a vertex l from K, Cl ← clusterID;

for m← 1 : |V | do
if (Dlm < pl || Dlm < pm) and Cm = 0 then

Cm ← clusterID ;

if pm > 0 then

K ← m and delete m from S;

end if

end if

end for

end while

end while
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porary labeled vertices K only contains a single vertex at each step; however, it205

is not necessarily the case in general. Afterwards, the algorithm disregards the

permanently labeled vertices from computation, and continues with the second

iteration by arbitrarily selecting vertex d from the rest of the vertices, followed

by vertex e later on. The heuristic performs the same procedures and obtains

the clusters G2 and G3 at the end of the second iteration.210

The worst-case performance of the heuristic clustering is O(|V |4) and the

proof is straightforward.

3.3. Solving the PCSTP on the clusters

In the literature, there exist several MILPs and different techniques to solve

the PCSTP to optimality [11, 13]. The method proposed by Ljubic et al [10] is215

the most efficient one available to the best of our knowledge. In this study, we

employ this tool to solve the sub-graphs generated by means of the clustering

algorithm. The approach of [10] is based on a MILP and branch-and-cut. In the

following paragraphs, we provide our MILP formulation that is slightly different

from [10]. These differences mainly arise within the constraints of the model220

due to the properties of the targeted networks in this study.

The PCSTP sub-network Gs = (Vs, Es, cs, ps) is transformed into a Steiner

arborescence instance G′
s = (V ′

s , E
′
s, c

′
s), where V ′

s is formed by combining Vs

with artificial root vertex r. For every undirected edge (i, j) ∈ E, two directed

edges (i, j) and (j, i) are added to E′
s with the costs c′ij = cij − pj and c′ji =225

cji−pi, respectively, where cij is equal to cji. In addition, for every vertex in V ,

an edge (r, j) is added to E′
s from root vertex r with corresponding cost of −pj .

This transformation is illustrated with an example in Figure 2. The subsequent

goal is to find a final tree subgraph T = (Vt, Et) for the transformed Steiner

arborescence instance G′
s.230

The following model uses decision variables xij ∈ {0, 1} and yi ∈ {0, 1}
which are defined as follows:

11



Figure 2: The transformation of the PCSTP instance into the Steiner Arborescence instance.

xij =

{
1 if (i, j) ∈ Et,

0 otherwise
∀(i, j) ∈ E′

s235

yi =

{
1 if (i) ∈ Vt,

0 otherwise
∀(i) ∈ V ′

s

240

The following notation is also employed: S ⊂ V ′
s is a set of vertices, and

S′ = V ′
s/S is the complement of that set. The δ+(S) = {(i, j)|i ∈ S, j ∈ S′}

and δ−(S) = {(i, j)|i ∈ S′, j ∈ S} are two set of directed cuts induced by S and

S′, and x(A) =
∑

ij∈A xij .

It should be noted that the PCSTP has a feasible solution only if the root245

vertex has a single outgoing edge. Accordingly, the mathematical model for the

problem defined on the Steiner aborescence is [11]:

Minimize
∑

ij∈E′
s

c′ijxij +
∑
i∈V ′

s

pi (2)

s. t.
∑

ji∈E′
s

xij = yi ∀i ∈ V ′
s \ {r} (3)

x(δ−(S)) ≥ yi ∀i ∈ V ′
s (4)
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250

yr = 1 (5)

∑
ri∈E′

s

xri = 1 (6)

xrj ≤ 1− yi ∀i < j, i ∈ V ′
s (7)

xij + xji ≤ yi ∀i ∈ V ′
s \ r (8)

xij ∈ {0, 1}, yi ∈ {0, 1} ∀i ∈ V ′
s \ {r}, (i, j) ∈ E′

s (9)

255

The objective function (2) minimizes the sum of total edge costs in the solution

tree and the constant term. The role of the constant term in the objective func-

tion is for obtaining a consistent solution cost with respect to original PCSTP

instance. The constraint set (3) enforces every selected vertex to have one di-

rected incoming edge. Each vertex in a solution tree must have a directed path260

from artificial root vertex and this condition is ensured by the constraint set

(4). Constraint (5) maintains the root vertex to be included into final tree and

constraint (6) ensures the root to have a single outgoing edge. The following con-

straints are added in order to strengthen the model further. The constraint set

(7) creates a bijection between the solutions of PCSTP and arborescence prob-265

lem, and it eliminates a huge number of solutions for PCSTP that correspond

to same solution for arborescence problem. The constraint set (8) forces the

model to select one edge within the pair of directed edges between two vertices.

Finally, the constraint set (9) ensures that the decision variables are binary. The

interested reader may refer to [10] for further details and explanation about the270

solution approach.

13



4. Experimental Results

The matheuristic approach is evaluated on two different problem sets and is

compared to the exact method described in [10] (used already as an inner solver

by our approach) on those problem sets. We have re-implemented the whole275

approach discussed in [10]. In order to justify the correctness and performance

of our re-implementation, we have tested it as a preliminary step.

4.1. Results of our re-implementation of the exact approach [10]

We have re-implemented the approach discussed in [10] in C++ and have

employed the Boost Graph Library [27] for handling large graphs efficiently.280

IBM ILOG CPLEX 12.6 [28] was used as a MILP solver. The computational

studies have been performed on a server equipped with an Intel(R) Xeon(R)

CPU E5320 1.86GHz processors and 32 GB of shared memory. A single core

was used for the experiments. On the other hand, the experimental results

of [10] had been obtained on a Pentium IV 2.8 GHz computer with 2GB of285

memory, and by employing version 8.1 of ILOG CPLEX.

By employing our re-implementation, we have been able to reproduce the

same results for all the instances considered in [10]. For illustrative purposes,

we report the results for the Cologne I instances in Table 1, where a comparison

with findings reported in [10] is provided. The first column of the table contains290

instance names. The second and the third columns report the size of the in-

stances. The “DHEA [10] time(s)” column corresponds to the running time of

approach reported in [10]. The “DHEA time(s)” column contains the running

time of our re-implementation of the same approach.

It is difficult to compare the running times of the approaches fairly due295

to the usage of different machines, solvers and tools in the implementation.

The machines are comparable with a little disadvantage for our computer [26].

Taking this fact into account, we can argue that our re-implementation is a

little bit advantageous in running time. However, this certainly depend on the

upgraded version of CPLEX software and the usage of most recent libraries for300

graphs.
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Table 1: Results obtained by our re-implementation of the exact approach [10].

Instance V E DHEA [10] time(s) DHEA time(s)

i01M1 768 69077 2.9 3.0

i01M2 768 69077 487.8 167.3

i01M3 768 69077 1195.8 694.1

i02M1 769 69140 2.9 3.9

i02M2 769 69140 598.2 306.5

i02M3 769 69140 1810.9 813

i03M1 771 69100 3.1 5.0

i03M2 771 69100 326.8 110.3

i03M3 771 69100 755.9 603.9

i04M1 761 68907 2.8 1.3

i04M2 761 68907 22.6 9.3

i04M3 761 68907 77.7 26.2

i05M1 761 68934 2.8 1.0

i05M2 761 68934 122.9 60.6

i05M3 761 68934 399.4 325

4.2. Testing the matheuristic approach on real-life biological instances

The first set of instances used to evaluate the performance of our matheuris-

tic method is composed of real-world biological benchmark instances from the

literature. These medium sized protein-protein interaction graphs are taken305

from Dittrich et al [5] to perform computational analysis. These network in-

stances provide an important information for lyphoma cancer and the detailed

description about them can be found in [5].

The second set of instances has been generated by us based on gene expres-

sion profiling data of lymphoma cancer patients available in Gene Expression310

Omnibus repository1. In particular, this study focuses on Diffuse Large B-Cell

Lymphoma (DLBCL) cancer. There exist two DLBCL cancer types which are

an activated B cell (ABC) and the germinal center B cell (GCB). The target

is to identify signatures that are the group of genes relevant for cancer and

have discriminative effects in type classification. In order to achieve this goal,315

1http://www.ncbi.nlm.nih.gov/geo/
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Table 2: Preprocessing results of Dittrich et al [5] test instances.

Instance V E V’ E’ Preprocessing time(s)

HCMV 3863 29293 3102 28331 4.62

met mic1 3523 4345 1788 2731 1.54

met mic2 3514 4332 1472 2402 1.94

met mic3 2853 3335 881 1479 1.35

lymphoma 2034 7756 1563 7285 1.75

dros 001 5226 93394 4412 92580 32.07

dros 005 5226 93394 4412 92580 31.63

dros 0075 5226 93394 4412 92580 31.69

we have constructed gene-gene interaction graphs, where vertex j represents

gene j. The node prize is associated with the differential expression value of

two cancer types for each gene pj = |EABC − EGCB |, where EABC and EGCB

are equivalent to the mean of gene expression values of ABC and GCB cancer

patients for the corresponding gene, respectively. Edge-cost cij is associated320

with the correlation value rij of gene expression values between two genes i and

j. Each edge is added to the network if the corresponding correlation value

is bigger than some threshold value. We have chosen the threshold values as

rij = {0.5, 0.6, 0.7}. These instance are bigger than the previous ones in the

field, and they consist of graphs with upto 21049 vertices and 293113 edges. It325

is common to encounter networks with such sizes in genomics. These instances

can be made available to other researchers upon request.

We have applied the preprocessing techniques described in Section 3.1 on

each test instance before feeding it to the algorithms. Table 2 summarizes the

preprocessing results for the test instances discussed in [5]. The first column330

corresponds to the name of instances. The second and third columns report

the original size of input graphs. The fourth and fifth columns show the size of

the residual graphs after preprocessing. The last column contains the execution

time of the preprocessing procedures.

Table 3 reports the computational results for the instances described in [5].335

The first and second columns contain instance names and the objective value
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Table 3: Results of Dittrich et al [5] test instances with and without preprocessing.

With Preprocessing Without Preprocessing

Instance OPT DHEA(s) MATH(s) Clusters OPT-Gap(%) DHEA(s) MATH(s) Clusters OPT-Gap(%)

HCMV 7371.53 85.01 13.26 2429 0.000 154.94 12.18 2791 0.000

met mic1 11346.93 26.42 15.12 944 0.000 42.79 21.02 1749 0.000

met mic2 16250.24 14.81 4.96 900 0.424 22.07 3.91 1238 0.424

met mic3 16919.62 3.96 1.95 420 0.022 7.78 2.05 713 0.182

lymphoma 3341.89 3.44 3.03 950 0.000 2.85 2.64 1395 0.000

dros 001 8273.98 28136.72 7756.16 3143 0.056 30144.22 12058.76 3940 0.056

dros 005 8121.31 38278.76 34838.19 999 0.000 20130.25 29386.68 1567 0.000

dros 0075 8039.86 12725.58 9530.6 750 0.000 8036.81 10546.51 1277 0.000

of each optimal solution. We provide the results obtained by the proposed

matheuristic approach both with and without preprocessing. The “DHEA(s)”

column contains the running time data of the approach discussed in [10], and

it also includes the preprocessing time (if applied) in order to have a fair com-340

parison baseline. The “MATH(s)” column reports the execution time of the

matheuristic clustering approach (embedding the exact approach in [10] as an

inner solver). The number of clusters obtained by applying the procedure de-

scribed in Section 3.2 is indicated in the “Clusters” column for each instance.

The number of clusters also includes the clusters consisting of just a single ver-345

tex. The execution time for the matheuristic includes the preprocessing time

(if applied), the time consumed by the heuristic clustering algorithm, and the

total time needed to solve all the clusters with the method described in [10].

The “OPT-Gap(%)” column indicates the optimality gap percentage between

the solutions provided by the matheuristic method and the exact approach [10].350

The results show that the matheuristic method with preprocessing is able

to find solutions in shorter running times than DHEA. On the other hand,

optimality gaps are negligible, especially for bioinformatics practitioners. The

contribution of the preprocessing procedures to the total execution time data of

DHEA is favorable for all the instances except for the last two cases, where it355

is advantageous not to apply preprocessing for faster running times. For some

instances the matheuristic method without preprocessing is faster compared to
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Table 4: Presprocessing results of DLBCL test instances

Instance V E V’ E’ Preprocessing time(s)

GSE4732 2407 24392 1385 23370 5.67

GSE4475 13211 81023 4753 72565 162.39

GSE22470 13211 129103 5665 121557 234.90

GSE10172 13211 191646 13202 191637 2.99

GSE10846 21049 293113 3576 275640 1185.53

GSE19246 21049 126208 2567 107726 532.50

GSE31312 21049 166598 4800 150335 649.78

GSE23501 21049 142301 3535 124787 703.94

GSE19246g 42450 1001206 8070 966826 8163.01

GSE10846g 42450 1046485 12601 1016636 8289.28

GSE23501g 42450 1112354 14565 1084469 7617.63

the variant with preprocessing. Preprocessing is therefore not always convenient.

Overall optimality gaps are lower than 1 % for all test cases.

Table 4 summarizes the results of the preprocessing procedures on the sec-360

ond set of instances, , while Table 5 reports the complete results, using the

same format as in Table 3. For the first 8 instances of Table 5, a maximum

computation time of 50000 seconds is imposed. The results show that the

matheuristic clustering, both with and without preprocessing, is significantly

faster than standard DHEA. For DHEA, contribution of the preprocessing to365

total running time is significant on these large graphs and without preprocessing

it could not solve three instances within the time or memory limits. For the last

3 instances, we set the computational time limit to 100000 seconds since the

instances are much larger. DHEA was not able to solve these large instances,

either with or without preprocessing, due to time or memory limits. In these370

cases, apart from GSE23501g (where an upper bound of 12929.78 – anyway

worse than that provided by the matheuristic method – was found), DHEA was

not able to retrieve a feasible solution, while lower bounds were provided. These

lower bounds, together with the cost of the heuristic solutions provided by the

matheuristic approach are provided in column “OPT” for these instances. It375

is however important to observe that the gap between the available lower and
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Table 5: Results of DLBCL test instances with and without preprocessing.

With Preprocessing Without Preprocessing

Instance OPT DHEA(s) MATH(s) Clusters OPT-Gap(%) DHEA(s) MATH(s) Clusters OPT-Gap(%)

GSE4732 398.86 134.80 8.18 1241 0.839 253.44 6.25 2263 0.839

GSE4475 988.25 16344.49 218.52 4583 0.000 28855.08 231.73 13041 0.000

GSE22470 1006.45 42549.55 342.52 5504 0.009 ** 330.15 13050 0.009

GSE10172 354.82 30280.01 541.85 12375 0.108 ** 545.26 12384 0.108

GSE10846 1480.23 7021.58 1660.88 3052 0.070 18237.53 1481.27 20507 0.070

GSE19246 1641.12 5801.55 2803.58 734 0.008 * 4163.46 19216 0.008

GSE31312 3350.63 8312.06 2332.31 3659 0.022 24221.80 6165.62 19464 0.022

GSE23501 980.08 15301.89 844.08 3250 0.038 49239.31 692.40 20695 0.038

GSE19246g [9812.04; 9815.79] * 27125 5016 ≤0.038 ** 75790 40102 ≤0.038

GSE10846g [8914.83; 8946.50] * 24117 9055 ≤0.355 ** 70033 39061 ≤0.355

GSE23501g [12789.95; 12817.36] ** 61612 1245 ≤0.214 ** 97106 40089 ≤0.214

** Insufficient memory

* CPLEX run out of time

upper bounds is always below 0.4%).

Interestingly, the matheuristic method with and without preprocessing found

the same solutions for all test cases. For some instances the matheuristic method

without preprocessing is remarkably faster. An intuitive explanation can be the380

following one: graphs associated with biological networks present the properties

described in Section 2, and on those graphs the clustering algorithm (that is

significantly effective) tends to mimic the preprocessing itself, which is therefore

automatically incorporated into the main algorithm.

Finally, it is worth noting that optimality gaps for the matheuristic algo-385

rithm are always below 1%, in spite of faster execution times. Moreover, the

matheuristic method was able to provide solutions for 2 (large) instances, while

the exact solver was not.

5. Conclusions and Future Work

We have proposed a matheuristic approach for solving the PCSTP based on390

a clustering algorithm. The main purpose of the method is to scale up the ap-

plicability of the currently available exact methods to large instances, without

losing too much on solution quality. The proposed approach has been tested on
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real-world instances constructed by combining protein-protein interaction net-

works with data obtained from micro-array technology. In addition, we have395

also tested the overall matheuristic approach on networks generated from real

lymphoma data obtained again by micro-array technology. The performance

of the matheuristic approach has been compared with the state-of-the-art to

show the effectiveness of the heuristic clustering phase. On large graphs, the

matheuristic method has obtained solutions in shorter execution time with neg-400

ligible optimality gaps.

In this study, Ljubic et al [10] exact approach has been used as an inner

solver for the matheuristic method. For example, a recent study [29] reports a

new algorithm, which can bee seen as an updated version of previous approach.

As a future work, we are interested in testing such an updated method as an405

inner solver of the proposed matheuristic method.
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