
10/04/2024 07:09

Fast Run-Based Connected Components Labeling for Bitonal Images / Wonsang, Lee; Allegretti, Stefano;
Bolelli, Federico; Grana, Costantino. - (2021). (Intervento presentato al convegno Joint 10th International
Conference on Informatics, Electronics and Vision, ICIEV 2021 and 2021 5th International Conference on
Imaging, Vision and Pattern Recognition, icIVPR 2021 tenutosi a Kitakyushu, Fukuoka, Japan nel Aug 16-
20) [10.1109/ICIEVicIVPR52578.2021.9564149].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

Fast Run-Based Connected Components
Labeling for Bitonal Images

Wonsang Lee,1 Stefano Allegretti,2 Federico Bolelli,2 and Costantino Grana2

1 Department of Physics
Konkuk University, Korea
Email: attltb@gmail.com

2 Dipartimento di Ingegneria “Enzo Ferrari”
Università degli Studi di Modena e Reggio Emilia, Modena, Italy

Email: {name.surname}@unimore.it

Abstract—Connected Components Labeling (CCL) is a funda-
mental task in binary image processing. Since its introduction in
the sixties, several algorithmic strategies have been proposed to
optimize its execution time. Most CCL algorithms in literature,
including the current state-of-the-art, are designed to work on
an input stored with 1-byte per pixel, even if the most memory-
efficient format for a binary input only uses 1-bit per pixel.
This paper deals with connected components labeling on 1-
bit per pixel images, also known as 1bpp or bitonal images.
An existing run-based CCL strategy is adapted to this input
format, and optimized with Find First Set hardware operations
and a smart management of provisional labels, giving birth to
an efficient solution called Bit-Run Two Scan (BRTS). Then,
BRTS is further optimized by merging pairs of consecutive lines
through bitwise OR, and finding runs on this reduced data. This
modification is the basis for another new algorithm on bitonal
images, Bit-Merge-Run Scan (BMRS). When evaluated on a
public benchmark, the two proposals outperform all the fastest
competitors in literature, and therefore represent the new state-
of-the-art for connected components labeling on bitonal images.

Contribution—This paper introduces two new Connected Com-
ponents Labeling algorithms for bitonal images that significantly
improve the state-of-the-art, using Find First Set instructions.

Index Terms—Connected Components Labeling, Binary Image
Processing, Bitonal Images, Algorithms Optimization

I. INTRODUCTION

Connected Components Labeling, or CCL in short, is one
of the most important tasks in binary image processing. It
consists in assigning a unique label — usually an integer
number — to each object, where objects are identified as
connected groups of foreground (non-zero) pixels. Several
image processing and computer vision applications employ
connected components labeling as a pre- or post-processing
step [1], [2], [3], [4], [5], [6]. Given the importance of the
task, many works have been published in the last two decades
that address its runtime optimization, both for sequential [7],
[8], [9], [10], [11], [12] and parallel architectures [13], [14],
[15], [16], [17], [18].

As regards sequential architectures, the most significant
optimizations have proved to be the two-scan approach [19],
the use of union-find to resolve label equivalences [20],

0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0
1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1

1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1

0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1

0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0
1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1

(a)

0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0
1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1

1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1

0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1

0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0
1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1

(b)

0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0
1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1

1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1

0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1

0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0
1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1

(c)

0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0
1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1

1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1

0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1

0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0
1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1
0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1

(d)

Fig. 1. (a) Example rows to be merged into a single one by means of bitwise
OR. The image contains four connected components, which corresponds to
runs after the merge, whose result is reported in (b). (c) Example image with
five rows, that are merged into three rows in (d). Merged runs enclosed in the
red rectangle appear to be connected in (d), but original data in (c) show that
they are not. Best viewed in color.

decision trees [7], [21], the block-based scan mask [22], [23],
[24] and state prediction [25], [26].

The most memory-efficient format for storing binary images
uses only 1 bit for each pixel; these are noted as 1bpp images,
or bitonal images. Systems with limited resources can take the
most advantage from this representation; as an example, the
United States and many more countries adopted the bitonal
format as the legally recognized standard for electronic check
clearing. Working with bitonal images has the advantage of
considerably reducing the amount of memory accesses, wrt
images stored with one byte per pixel. However, the retrieval
of single pixel values requires bitwise operations that impact
on total execution time.

This paper addresses the problem of connected components
labeling on bitonal images. Our work starts from the ob-
servation that the combination of the bitonal image format
with Find First Set instructions allows to efficiently retrieve
consecutive blocks of connected pixels, also known as runs.
Find First Set (FFS), also called Count Leading Zeros, Bit
Scan Forward or Find Leftmost One, is a bitwise operation
that reports the position of the first bit set to 1 in a word,
counting from the least significant bit; this is an especially
efficient operation because it is implemented in hardware on
most recent architectures.

The run-based approach has been applied to CCL before,
by He et al. [27]. Their proposal, denoted as Run-Based Two-
Scan (RBTS), employs the typical two-scan approach, but
considers runs as the elementary units of connected compo-
nents, instead of single pixels or blocks. In this work, RBTS
is modified to work with bitonal input, and improved with
two more optimizations: FFS instructions, and a more efficient
method to store provisional labels. The resulting algorithm is
called Bit-Run Two Scan (BRTS).

Then, we noticed that runs computed on the bitwise OR
between consecutive rows directly correspond to connected
components in the original data (Fig. 1). This observation led
to the design of another new algorithm, Bit-Merge-Run Scan
(BMRS), which finds runs on the bitwise OR between pairs
of rows, also denoted as merged runs. This approach requires
a specific method to check connectivity between merged runs,
but approximately halves the number of runs to be computed.

The two proposals are evaluated on a public benchmark, and
compared to the fastest CCL algorithms available in literature.
Experimental results demonstrate that, when fed with bitonal
input, BRTS and BMRS outperform all the competitors, es-
tablishing the new state-of-the-art for connected components
labeling on bitonal images.

The rest of this paper is organized as follows. Section II
resumes the most important contributions on connected com-
ponents labeling; the CCL task is detailed in Section III,
alongside a description of the RBTS algorithm; Section IV
illustrates the two new proposals, which are evaluated in
Section V. Finally, in Section VI conclusions are drawn.

II. RELATED WORK

Originally introduced by Rosenfeld and Pfaltz [19], the
labeling of connected components has a very long history, full
of different strategies and proposals. Since its first appearance
in 1966, many works have shown algorithmic solutions to im-
prove runtime efficiency. Traditionally, the two-scan approach
is preferred by the fastest CCL algorithms. In the first scan,
each pixel is assigned a specific temporary label using a mask
of already visited pixels, and possible equivalences between
labels are noted. A representative label is then established
for each connected component, and substituted to provisional
labels in the second scan.

Various methods have been proposed to address the equiv-
alence of labels, among those the most commonly seen in
literature use some variations of union-find. The union-find

data structure, first applied to CCL by Dillencourt et al. [20],
provides two practical procedures for handling equivalence
classes: Find, which takes the representative label of an equiv-
alence class, and Union, which combines two equivalence
classes into one.

After the introduction of union-find, Wu et al. [7] provided
a significant improvement in the form of decision trees, to
reduce the average number of load/store operations during
the first scan of the input image. The resulting algorithm was
called Scan Array-based Union Find, or SAUF in short.

Following a totally different approach, He et al. [27]
published a run-based algorithm, which divides connected
components in chunks of consecutive foreground pixels (runs);
it shares the common two scan structure, but checks connec-
tivity between runs instead of single pixels or blocks. Another
run-based strategy is employed by Light Speed Labeling
(LSL) [10], which combines it with the Selkow’s automaton
to reduce the number of labels, and introduces a line-relative
labeling to simplify equivalence solving.

In 2010, Grana et al. [22] introduced another important
step forward, consisting of a 2×2 block-based approach. The
problem is modeled as a command execution metaphor: the
pixel values in the scan mask make up the rule, which is
linked to a set of equivalent actions in an OR-decision table.
Given the decision table, the algorithm can easily read all
the pixels inside the mask, recognize the rule, and find the
action to be performed in the appropriate column. In [21], a
dynamic programming approach was proposed to convert OR
decision tables into optimal binary decision trees, to minimize
the average number of pixels to be read when selecting the
correct action. The algorithm is called BBDT.

In 2014, He et al. [25] proved that the value of already
inspected pixels during the horizontal mask shift could be
summarized with a finite state machine. In [26], the knowledge
of already tested pixels is combined with the optimal decision
tree used in [7], resulting in a forest of reduced trees, one for
each possible previous pattern, which can be “predicted” in
the current mask shift. The algorithm is thus called PRED.

Following another approach, Bolelli et al. [28] noticed
several equivalent subtrees in the optimal decision tree of [21],
and managed to merge them together, obtaining a significant
reduction in machine code footprint and increasing instruction
cache hit-rate. Because the decision tree was changed into
a more generic Directed Rooted Acyclic Graph, the new
algorithm is denoted as DRAG. The last improvement of de-
cision tree-based algorithms is represented by Spaghetti [29],
where authors managed to combine the block-based mask
with state prediction and code compression: the resulting
algorithm, known as Spaghetti Labeling, was modeled as a
Directed Rooted Acyclic Graph with multiple entry points,
automatically generated without manual intervention.

III. PRELIMINARIES

In the following, the notation Ja, bK indicates the set of all
integers between a and b included:

Ja, bK = [a, b] ∩ Z

Be L = J0, H − 1K × J0,W − 1K a 2D rectangular lattice
of H rows and W columns, and I : L → {0, 1} a binary
image. Pixels with value 0 and 1 are respectively said to be
background (B) and foreground (F):

F(I) = {p ∈ L | I(p) = 1}

B(I) = {p ∈ L | I(p) = 0}

The 8-neighborhood of a pixel p = (pr, pc) is the set

N8(p) = {q ∈ L | max(|pr − qr|, |pc − qc|) ≤ 1},

i.e. the set containing p and the 8 pixels that share a side or
a vertex with it, when viewing them as small black or white
squares.

Two foreground pixels a and b are said to be connected if
there is a path of neighboring foreground pixels linking a to
b or, more formally:

∃{pi ∈ F(I) | p1 = a, pn+1 = b, pi+1 ∈ N8(Pi), i = 1, ..., n}

It is trivial to observe that pixel connectivity is reflexive,
symmetric and transitive, and therefore is an equivalence
relation, which splits F(I) in disjoint equivalence classes, also
known as connected components.

The aim of Connected Components Labeling (CCL) is to
define a function L : L → N0, which assigns a unique label
to each connected component, reserving label 0 for the whole
background.

Most CCL algorithms compute provisional labels for con-
nected components in intermediate steps, before finding the
definitive labels which form the final result L. Let D : N0 →
N0 be the function that associates each provisional label to
the corresponding definitive label. Two provisional labels l
and m are said to be equivalent, l ≡ m, if they correspond to
the same definitive label at the end of the labeling process,
i.e., l ≡ m ⇔ D(l) = D(m). It is easy to observe that
this is another equivalence relation, and therefore provisional
labels can be split into equivalence classes, each identified by
a representative label — usually the lowest one in the class.
Provisional labels are useful to model the common situation in
which two connected regions of the image are initially thought
to be separate CCs. When a connection is eventually found,
the two provisional labels reveal to be equivalent, and their
equivalence classes must be merged into one: this operation
is known as equivalence solving, or label solving. Several
label solving techniques and data structures exist: the most
commonly employed by CCL algorithms are Union-Find (UF),
Union-Find with Path Compression (UFPC) [7], Three Table
Array (TTA) [8], and interleaved Rem algorithm with SPlicing
(RemSP) [30].

Both functions I and L can be represented with multi-
dimensional arrays, usually stored in memory in row-major
order. The datatype chosen for L is usually the 32-bit integer
type, large enough for all the common image sizes. Instead, I
could theoretically use just one bit per pixel, even if the most
common representation of binary images uses one whole byte
per pixel.

A. Run-Based Two-Scan (RBTS)

The first of the two CCL algorithms proposed with this
paper, BRTS, is a special optimization of Run-Based Two-
Scan (RBTS), the run-based algorithm devised by He et al.
in [27], which is described in this section.

As the name suggests, the algorithm is built upon the
concept of run, which is a block of contiguous foreground
pixels in a row of L. It is clear that a run is always a subset
of a connected component, and that each connected component
can be split in a finite set of disjoint runs.

A run starting at pixel p = (r, cs) and ending with pixel
q = (r, ce) is denoted as ρ = r(r, cs, ce). The neighborhood
of a run is the union of the neighborhoods of all the pixels in
the run:

N8(ρ) =
⋃
p∈ρ
N8(p)

For ρ = r(r, cs, ce), this corresponds to:

N8(ρ) = Jr − 1, r + 1K× Jcs − 1, ce + 1K ∩ L

Moreover, we define the upper neighborhood of a run as the
part of the neighborhood in the upper row:

N∧
8 (ρ) = {r − 1} × Jcs − 1, ce + 1K ∩ L

The RBTS algorithm performs two scans of the input image
I: the first one scans pixels in the raster scan direction,
recording data for each run met, assigning provisional labels
to runs and recording equivalences; then, the second scan
replaces provisional labels with definitive ones.

During the first scan, when a run ρ = r(r, cs, ce) is
found, its upper neighborhood is checked for the presence of
connected runs, already recorded by the algorithm; S(ρ) is
the set of these runs. Three possibilities can arise for S(ρ):
(i) S(ρ) = ∅, ρ is assigned a new provisional label; (ii) S(ρ)
only contains one run σ, the label of σ is also given to ρ;
otherwise, (iii) in the case that S(ρ) contains multiple runs,
all of their labels are merged together, and the representative
one of the resulting equivalence class is finally assigned to ρ.
After the choice of the appropriate label l, the output image
L is updated so that L(p) = l,∀p ∈ ρ.

The second scan replaces the label assigned to each pixel
with the representative for the equivalence class, thus com-
pleting the labeling process. Optionally, this second scan can
be preceded by a flatten operation on the label solver, which
ensures that definitive labels are consecutive [7].

The first scan requires a method for finding the runs in the
upper neighborhood of each new run ρ. In order to accomplish
this, run metadata, consisting in start and end coordinates, are
recorded in a run queue. A run σ = r(r−1, h, t) is connected
to ρ = r(r, s, e) if h ≤ e+1 and t ≥ s−1; therefore, when the
raster scan reaches run ρ = r(r, s, e), any run σ = r(r−1, h, t)
with t < s−1 can no longer be part of the upper neighborhood
of any coming run, and its metadata cease to be useful. As a
consequence, the run queue can be implemented as a circular
buffer of size (W/2 + 2).

Algorithm 1 Runs retrieval algorithm used in BRTS and
BMRS, described as a coroutine. Parameters bits and
bit final are pointers to the start and one past the end of
the current row, and FFS is the FindFirstSet operation. Word
size is assumed to be 64 bits and incrementing a pointer moves
it to the next 64 bits.

1: coroutine FINDNEXTRUN(bits, bit final)
2: work bits← ∗bits
3: base← 0
4: bitpos← 0

5: loop
6: . Find first non empty word
7: while FFS(&bitpos, work bits) = 0 do
8: bits← bits+ 1
9: base← base+ 64

10: if bits ≥ bit final then . End of the row
11: return (0xFFFF, 0xFFFF)

12: work bits← ∗bits
13: start← base+ bitpos
14: work bits← ¬work bits ∧ (¬0LL� bitpos)

15: . Find ending position
16: while FFS(&bitpos, work bits) = 0 do
17: bits← bits+ 1
18: base← base+ 64
19: if bits = bit final then
20: bitpos← 0
21: work bits← ¬0LL
22: break
23: work bits← ¬(∗bits)
24: end← base+ bitpos
25: work bits← ¬work bits ∧ (¬0LL� bitpos)
26: yield (start, end)

IV. METHOD

This paper introduces two new CCL algorithms, specifically
designed for dealing with input in bitonal format, i.e., image I
is stored with only one bit per pixel, occupying approximately
(H ×W)/8 bytes. This is the most memory-efficient way to
store a binary image, and therefore represents a natural choice
of format. The two proposed algorithms are called Bit-Run
Two Scan (BRTS) and Bit-Merge-Run Scan (BMRS). In the
following, bits in a 64-bit word are supposed to be stored with
the leftmost pixel in the least significant bit and the rightmost
one in the most significant one. If the image uses an opposite
convention, one just needs to exchange Find First Set/Bit Scan
Forward instructions with Find Last Set/Bit Scan Reverse ones.

A. Bit-Run Two Scan (BRTS)

This algorithm, as the acronym may suggest, is a special op-
timization of RBTS, which has been described in the previous
section. The basic two-scan structure is inherited, together with
the run-based nature and the use of a label solving technique

1 1 1
1 1 1

1 1
1 1

1 1 1
1 1 1

1 1
1 1

1 1 1
1 1 1

1 1
1 1

(a)

1 1 1
1 1 1

1 1
1 1

1 1 1
1 1 1

1 1
1 1

(b)

Fig. 2. Examples of connectivity between two foreground pixels belonging
to consecutive rows. Foreground pixels in the upper (u) and lower (d) row
are denoted by 1, and squares filled with diagonal lines pattern are the added
bits in expression u ∨ u � 1 and d ∨ d � 1. The result of (u ∨ u �
1) ∧ (d ∨ d � 1) is non-zero for the three cases in (a), which are indeed
8-connected, and is zero for the two non-connected cases in (b).

for dealing with equivalence between provisional labels. The
main improvement concerns the method to retrieve runs while
scanning the input image, that in this case is stored in bitonal
format.

Start and end position of runs are retrieved by means of
Find First Set (FFS) instructions. Find First Set is a bitwise
operation that, given an unsigned machine word, designates
the position of the least significant bit set to one, counting
from the least significant bit. Most modern CPU instruction
set architectures provide FFS as a hardware operation, making
it an efficient way to find start and end positions of runs. The
run retrieval procedure is detailed in Algorithm 1.

Another optimization wrt RBTS is that provisional labels
are not written in L, until the second scan. Instead, provisional
labels are stored in an additional field of run metadata. In
this way, each label is written in memory only once per run,
instead of once per pixel, during the first scan. The downside
of this approach is increased memory occupancy; in fact, run
metadata must live until the end of the second scan, and so
they cannot be stored in a circular buffer, as in RBTS. Because
the worst case is that of alternate foreground and background
pixels in each row, the maximum number of runs is H ×
(W/2 + 1). Metadata for each run include the the start and
end columns, and the provisional label. For most real world
applications, coordinates can be stored with 16 bits each and
labels require 32 bits, so the total memory requirement for
metadata amounts to H × (W/2 + 1)× 8 ≈ 4HW bytes, the
same as the output image L. Total memory allocation for the
algorithm is summarized in Table I.

The second scan of BRTS writes definitive labels into
L, using the metadata previously saved, and checking the
correspondence between provisional and definitive labels with
the chosen label solving strategy. Differently from RBTS, this
correspondence is only checked once per run, instead of once
per pixel; for this reason, this second scan is faster than that
of RBTS.

B. Bit-Merge-Run Scan (BMRS)

The second proposal of this paper, Bit-Merge-Run Scan
(BMRS), is a modified version of BRTS. In a two-row binary
image I : J0, 1K × J0,W − 1K → {0, 1}, a bitwise OR
between the upper row and lower row yields connected chunks

Algorithm 2 Junction matrix filling algorithm used by BMRS.
Parameters junc and bits are pointers to junction matrix data
and image data; h and w are the image dimensions.

1: procedure FILLJUNCTIONMATRIX(junc, bits, h, w)
2: h merge← (h+ 1)/2
3: data width← (w + 63)/64
4: for i ∈ J0, h merge− 1K do
5: bits u← bits+ data width ∗ (2 ∗ i+ 1)
6: bits d← bits+ data width ∗ (2 ∗ i+ 2)
7: bits dest← junc+ data witdh ∗ i

8: u 0← bits u[0]
9: d 0← bits d[0]

10: bits dest[0]← (u 0 ∨ (u 0� 1)) ∧
(d 0 ∨ (d 0� 1))

11: for j ∈ J1, data widthK do
12: u← bits u[j]
13: u shl← u� 1
14: d← bits d[j]
15: d shl← d� 1
16: if bits u[j − 1] ∧ (1� 63) then
17: u shl← u shl ∨ 1
18: if bits d[j − 1] ∧ (1� 63) then
19: d shl← d shl ∨ 1
20: bits dest[j]← (u ∨ u shl) ∧ (d ∨ d shl)

of foreground pixels (runs) that correspond to connected
components in I: see the example in Fig. 1a and Fig. 1b.

The whole idea of BMRS is based on this property. A
bitwise OR is performed for every disjoint pair of consecutive
rows, and the result is saved in the merged input, which
requires approximately HW/16 bytes. Then, runs are found
on the merged bits; these runs will be referred to as merged
runs, in opposition to runs computed directly on the raw input.

Unfortunately, checking connectivity between merged runs
is not as easy as it is for simple runs. See Fig. 1c and Fig. 1d
as an example. The input image has five rows, which result in
three merged rows. Merged runs enclosed in the red rectangle
of Fig. 1d seem to be connected, but the corresponding
connected components are not. Therefore, we need a special
method for checking connectivity between merged runs, which
must take into account the bits of the original image.

Let R(r, cs, ce) = Jr, r + 1K × Jcs, ceK be the merged run
spanning rows r and r + 1 and columns from cs to ce. Two
runs P = R(r, s, e) and Σ = R(r − 2, h, t) must be checked
for connectivity if h ≤ e+1 and t ≥ s−1. If these conditions
are verified, the overlapping segment is delimited between
a = max(s, h) − 1 and b = min(e, t) + 1. Let u and d
be respectively the segments of row r − 1 and r between a
and b:

u = {r − 1} × Ja, bK (1)
d = {r} × Ja, bK (2)

As confirmed by the examples in Fig. 2, runs P and Σ are

Algorithm 3 Inline function used in BMRS for checking if
two merged runs are connected, after having pre-calculated the
junction matrix. Parameter flag bits points to the junction
data between the two lines, s and e mark the starting and
ending coordinates of merged runs overlapping.

1: function ISCONNECTED(flag bits, s, e)
2: s base← s/64
3: s bits← s mod 64
4: if s = e then
5: return flag bits[s base] ∧ (1� s bits)

6: e base← (e+ 1)/64
7: e bits← (e+ 1) mod 64
8: if s base = e base then
9: cutter ← (¬0LL� s bits)⊕ (¬0LL� e bits)

10: return flag bits[s base] ∧ cutter
11: for i ∈ Js base+ 1, e base− 1K do
12: if flag bits[i] then
13: return true
14: cutter s← ¬0LL� s bits
15: cutter e← ¬(¬0LL� e bits)
16: if flag bits[s base] ∧ cutter s then
17: return true
18: if flag bits[e base] ∧ cutter e then
19: return true
20: return false

connected iff the following operation gives a non-zero result
f , called junction flag:

f = (u ∨ (u� 1)) ∧ (d ∨ (d� 1))

Computing junction flags for each pair of runs that may
be connected is expensive; therefore, junction flags are pre-
calculated for all whole row pairs, and stored in the junction
matrix, which occupies as much data as the merged input.
The algorithm for building the junction matrix is described in
Algorithm 2. Then, Algorithm 3 details how junction flags can
be used to determine whether two runs are connected; it basi-
cally takes the segment of the junction matrix corresponding
to their intersection and checks whether it is non-zero.

The first scan of BMRS is very similar to that of BRTS, but
the input data considered by the raster scan consist of merged
rows, instead of the original bitonal image. Connectivity be-
tween the current merged run and merged runs in the previous
row is checked with the method just described.

The second scan of BMRS is more complex than that of
BRTS; in fact, the label of each merged run P must be
assigned to all of its foreground pixels, and this requires
reading the value of all pixels in the rectangle covered by
P , in order to find the foreground.

The memory requirements for both the proposed algorithms
are summarized in Table I.

V. EXPERIMENTAL RESULTS

The performance of the proposed algorithms has been eval-
uated using YACCLAB [28], [31], an open source benchmark-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

RBTS
BBDT

PRED
DRAG

Spaghetti

BRTS
BMRS

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan

0.02 0.02 0.02 0.02 0.02 0.03 0.03

0.50

0.15
0.21

0.16
0.13

0.06 0.05

0.06

0.09

0.06

0.09
0.10

0.12
0.10

0.58

0.26
0.29 0.27 0.25

0.21
0.18

(a) Fingerprints

 0

 0.2

 0.4

 0.6

 0.8

 1

RBTS
BBDT

PRED
DRAG

Spaghetti

BRTS
BMRS

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan

0.38 0.37 0.37 0.37 0.37 0.41 0.39

0.39

0.21
0.28 0.24

0.16 0.04
0.03

0.17

0.15

0.18

0.15

0.18

0.08
0.08

0.94

0.73

0.83
0.76

0.71

0.53 0.50

(b) 3dpes

 0

 2

 4

 6

 8

 10

 12

RBTS
BBDT

PRED
DRAG

Spaghetti

BRTS
BMRS

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan

5.64 5.64 5.64 5.64 5.64 6.02 5.87

4.97

2.55
3.38

2.82
1.98

0.41 0.36

2.08

2.15

2.11
2.15

2.37

1.45 1.44

12.69

10.34
11.13

10.61
9.99

7.88 7.67

(c) Tobacco800

 0

 0.1

 0.2

 0.3

 0.4

 0.5

RBTS
BBDT

PRED
DRAG

Spaghetti

BRTS
BMRS

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan

0.03

0.42

0.15

0.23

0.17
0.13 0.06

0.05

0.08

0.10

0.08

0.10

0.11

0.10

0.10

0.50

0.25

0.31
0.27

0.24

0.19
0.15

(d) Mirflickr

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

RBTS
BBDT

PRED
DRAG

Spaghetti

BRTS
BMRS

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan

1.42 1.42 1.42 1.42 1.42 1.52 1.48

1.73

0.74
1.08

0.83
0.61

0.20 0.16

0.52

0.54

0.53

0.54
0.61

0.44 0.51

3.67

2.70
3.03

2.79
2.64

2.16 2.15

(e) Medical

 0

 10

 20

 30

 40

 50

RBTS
BBDT

PRED
DRAG

Spaghetti

BRTS
BMRS

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan

20.33 20.34 20.35 20.34 20.34 22.26 21.95

22.97

9.98
14.11

11.03
7.88 2.27 1.97

7.65

8.57

7.81
8.57

9.20

7.69 7.76

50.95

38.89
42.27

39.94
37.42

32.22 31.68

(f) Xdocs

Fig. 3. Average run-time tests with steps in ms (lower is better) on an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with Windows 10.0.17134 (64 bit) OS
and MSVC 19.15.26730 compiler. All algorithms employ the UFPC label solver.

ing framework for Connected Components Labeling written in
C++. YACCLAB contains a large suite of real world datasets,
covering most fields where CCL is usually employed. Experi-
mental results discussed in the following were obtained on an
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with Windows
10.0.17134 (64 bit) OS and MSVC 19.15.26730 compiler. All
the algorithms have been compiled for x64 architecture with
optimizations enabled. YACCLAB includes an implementation
of all the main CCL algorithms published in recent literature,
for comparison with new proposals. BRTS and BMRS have
been compared to RBTS, BBDT, PRED, DRAG and Spaghetti,
all introduced in Section II. Among those, Spaghetti is the

current state-of-the-art. For a fair comparison, each algorithm
is provided with input data in its preferred format, i.e., 1-bit-
per-pixel for BRTS and BMRS, and 1-byte-per-pixel for all
the others. The label solver used by all algorithms is UFPC,
which achieves the best performance on average [31].

Fig. 3 reports bar charts of average execution times on
real world datasets. Because all the compared algorithms
employ a two-scan approach, time measures are divided into
memory allocation/deallocation, first scan and second scan,
for a more fine-grained comparison. Table II, instead, reports
average total times and standard deviations. Some datasets,
such as Tobacco800, contain images with a significant differ-

TABLE I
MEMORY REQUIREMENT OF BRTS AND BMRS, COMPARED TO THAT OF

SPAGHETTI. VALUES ARE EXPRESSED IN BYTES PER PIXEL, SO THE TOTAL
AMOUNT CAN BE OBTAINED MULTIPLYING THE VALUES BY W ×H .

Spaghetti BRTS BMRS

Output Image 4 4 4
Label Solver 1 1 1
Run Metadata - 4 2
Merged Input - - 1/16
Junction Matrix - - 1/16

Total 5 9 7+1/8

ence in resolution, causing high standard deviation in CCL
performance. In all datasets, RBTS is by far the slowest
algorithm; BBDT, PRED, DRAG and Spaghetti have similar
performance, with Spaghetti being always the best of the four;
BRTS and BMRS outperform all the competitors, and BMRS
is always the fastest. In particular, the speedup of BRTS and
BMRS wrt Spaghetti ranges from 1.16 to 1.34 and from 1.18
to 1.60 respectively. The overall improvement is greater on
datasets of small images (Fingerprints and Mirflickr), where
alloc/dealloc has the lowest impact on total execution time.
Comparing the original RBTS algorithm to BRTS, it is clear
that the first scan is the most optimized step, with an average
speedup of 9.3. This huge performance improvement is due
to the introduction of the FFS operation, which is available
as a hardware instruction on 64-bit words on the selected
test system, as long as in most modern CPU ISAs. The
same optimization also make BRTS faster than state-of-the-art
algorithms, which do not employ specific hardware operations
or compiler intrinsics. The other proposal, BMRS, furtherly
optimizes the first scan, approximately halving the amount of
runs to be scanned and processed. Moreover, in spite of using
two more data structures, the total memory needed by BMRS
is actually less than that required by BRTS, allowing a little
alloc/dealloc time saving.

Both the two proposals require more data structures than
state-of-the-art algorithms: the total amount of allocated mem-
ory is, for BRTS, almost twice that of Spaghetti, as can be seen
in Table I. However, the extra memory needed is only equal to
that of the output, and therefore does not represent an issue on
most systems. Moreover, as demonstrated by the experiments,
the impact of these additional allocations on execution time is
minimal.

Another possible downside of the new proposals is their
preferred bitonal input format. This can raise issues when
working with libraries which do not natively support it, such
as OpenCV as of today (release 4.5.2). If the input provided
to BRTS or BMRS is not bitonal, both algorithms must
begin with a conversion. Fig. 4 depicts average execution
times on the Medical dataset in this case: the input is 1-
byte-per-pixel for all the algorithms. As can be observed,
BRTS and BMRS perform worse than current state-of-the-
art. However, the bitonal format is the most memory-efficient
representation of binary images, and as such there are also

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

RBTS
BBDT

PRED
DRAG

Spaghetti

BRTS
BMRS

Ex
ec

ut
io

n
Ti

m
e

[m
s]

3.38

2.31

2.79

2.35
2.12

2.56 2.46

Fig. 4. Average run-time tests on the Medical dataset. The input image is
1-byte-per-pixel for all the algorithms: times of BRTS and BMRS include
the conversion to 1-bit-per-pixel format. Measured on an Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz with Windows 10.0.17134 (64 bit) OS and MSVC
19.15.26730 compiler. All algorithms employ the UFPC label solver.

some computer vision libraries that natively support it. An
example is Leptonica, an open-source image processing library
employed in several projects (e.g. tesseract OCR by Google).
When the input is in bitonal format, BRTS and especially
BMRS are the CCL algorithms of choice.

VI. CONCLUSION

Two new run-based CCL algorithms have been presented,
which employ Find First Set instructions to efficiently retrieve
runs from a bitonal input. Experiments conducted over a
collection of real world datasets demonstrate that both propos-
als outperform the fastest CCL algorithms in literature, thus
representing the new state-of-the-art for connecting compo-
nents labeling on bitonal images. The source code is available
in [32].

REFERENCES

[1] F. Uslu and A. A. Bharath, “A recursive Bayesian approach to describe
retinal vasculature geometry,” Pattern Recognition, vol. 87, pp. 157–169,
2019.

[2] I. H. Laradji, N. Rostamzadeh, P. O. Pinheiro, D. Vazquez, and
M. Schmidt, “Where are the Blobs: Counting by Localization with Point
Supervision,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 547–562.

[3] F. Pollastri, F. Bolelli, R. Paredes, and C. Grana, “Augmenting Data
with GANs to Segment Melanoma Skin Lesions,” Multimedia Tools and
Applications, vol. 79, no. 21-22, pp. 15 575–15 592, May 2019.

[4] H. V. Pham, B. Bhaduri, K. Tangella, C. Best-Popescu, and G. Popescu,
“Real time blood testing using quantitative phase imaging,” PloS one,
vol. 8, no. 2, p. e55676, 2013.

[5] L. Canalini, F. Pollastri, F. Bolelli, M. Cancilla, S. Allegretti, and
C. Grana, “Skin Lesion Segmentation Ensemble with Diverse Training
Strategies,” in International Conference on Computer Analysis of Images
and Patterns. Springer, 2019, pp. 89–101.

[6] F. Bolelli, G. Borghi, and C. Grana, “XDOCS: An Application to
Index Historical Documents,” in Italian Research Conference on Digital
Libraries (IRCDL). Springer, 2018, pp. 151–162.

[7] K. Wu, E. Otoo, and K. Suzuki, “Two Strategies to Speed up Con-
nected Component Labeling Algorithms,” Lawrence Berkeley National
Laboratory, Tech. Rep. LBNL-59102, 2005.

[8] L. He, Y. Chao, and K. Suzuki, “A Linear-Time Two-Scan Labeling
Algorithm,” in International Conference on Image Processing, vol. 5,
2007, pp. 241–244.

TABLE II
AVERAGE RUN-TIME TESTS IN MS, ± STANDARD DEVIATION. RESULTS HAVE BEEN OBTAINED ON AN INTEL(R) CORE(TM) I7-4790 CPU @ 3.60GHZ

WITH WINDOWS 10.0.17134 (64 BIT) OS AND MSVC 19.15.26730 COMPILER. ALL ALGORITHMS EMPLOY THE UFPC LABEL SOLVER. NOVEL
PROPOSALS ARE MARKED WITH A STAR.

RBTS BBDT PRED DRAG Spaghetti BRTS* BMRS*

Fingerprints 0.58± 0.20 0.26± 0.13 0.29± 0.14 0.27± 0.13 0.25± 0.12 0.21± 0.11 0.18± 0.09

3dpes 0.94± 0.17 0.73± 0.05 0.83± 0.06 0.76± 0.06 0.71± 0.05 0.53± 0.08 0.50± 0.06

Tobacco800 12.69± 7.78 10.34± 6.42 11.13± 6.90 10.61± 6.60 9.99± 6.20 7.88± 4.91 7.67± 4.87

Mirflickr 0.50± 0.26 0.25± 0.80 0.31± 0.10 0.27± 0.08 0.24± 0.08 0.19± 0.12 0.15± 0.06

Medical 3.67± 1.54 2.70± 1.14 3.03± 1.27 2.79± 1.18 2.64± 1.12 2.16± 0.96 2.15± 0.95

Xdocs 50.95± 5.39 38.89± 4.26 42.27± 4.66 39.94± 4.37 37.42± 4.11 32.22± 3.46 31.68± 3.70

[9] F. Bolelli, L. Baraldi, M. Cancilla, and C. Grana, “Connected Com-
ponents Labeling on DRAGs,” in International Conference on Pattern
Recognition (ICPR). IEEE, 2018, pp. 121–126.

[10] L. Lacassagne and B. Zavidovique, “Light speed labeling: efficient
connected component labeling on risc architectures,” Journal of Real-
Time Image Processing, vol. 6, no. 2, pp. 117–135, 2011.

[11] F. Bolelli, S. Allegretti, and C. Grana, “One DAG to Rule Them All,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
1–12, 2021.

[12] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao”, “The connected-
component labeling problem: A review of state-of-the-art algorithms,”
Pattern Recognition, vol. 70, pp. 25–43, 2017.

[13] S. Zavalishin, I. Safonov, Y. Bekhtin, and I. Kurilin, “Block Equiva-
lence Algorithm for Labeling 2D and 3D Images on GPU,” Electronic
Imaging, vol. 2016, no. 2, pp. 1–7, 2016.

[14] S. Allegretti, F. Bolelli, M. Cancilla, F. Pollastri, L. Canalini, and
C. Grana, “How does Connected Components Labeling with Decision
Trees perform on GPUs?” in Computer Analysis of Images and Patterns.
Springer, September 2019, pp. 39–51.

[15] D. P. Playne and K. Hawick, “A new algorithm for parallel connected-
component labelling on gpus,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 6, pp. 1217–1230, June 2018.

[16] S. Allegretti, F. Bolelli, M. Cancilla, and C. Grana, “Optimizing GPU-
Based Connected Components Labeling Algorithms,” in Third IEEE In-
ternational Conference on Image Processing, Applications and Systems
(IPAS), 2018.

[17] ——, “A Block-Based Union-Find Algorithm to Label Connected
Components on GPUs,” in Image Analysis and Processing - ICIAP 2019,
2019, pp. 271–281.

[18] S. Allegretti, F. Bolelli, and C. Grana, “Optimized Block-Based Algo-
rithms to Label Connected Components on GPUs,” IEEE Transactions
on Parallel and Distributed Systems, pp. 423–438, August 2019.

[19] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” Journal of the ACM, vol. 13, no. 4, pp. 471–494, Oct. 1966.

[20] M. B. Dillencourt, H. Samet, and M. Tamminen, “A General Approach
to Connected-Component Labeling for Arbitrary Image Representa-
tions,” Journal of the ACM, vol. 39, no. 2, pp. 253–280, 1992.

[21] C. Grana, M. Montangero, and D. Borghesani, “Optimal decision trees
for local image processing algorithms,” Pattern Recognition Letters,
vol. 33, no. 16, pp. 2302–2310, 2012.

[22] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized Block-based
Connected Components Labeling with Decision Trees,” IEEE Transac-
tions on Image Processing”, vol. 19, no. 6, pp. 1596–1609, 2010.

[23] W.-Y. Chang and C.-C. Chiu, “An efficient scan algorithm for block-
based connected component labeling,” in 22nd Mediterranean Confer-
ence of Control and Automation (MED). IEEE, 2014, pp. 1008–1013.

[24] W.-Y. Chang, C.-C. Chiu, and J.-H. Yang, “Block-based connected-
component labeling algorithm using binary decision trees,” Sensors,
vol. 15, no. 9, pp. 23 763–23 787, 2015.

[25] L. He, X. Zhao, Y. Chao, and K. Suzuki, “Configuration-Transition-
Based Connected-Component Labeling,” IEEE Transactions on Image
Processing”, vol. 23, no. 2, pp. 943–951, 2014.

[26] C. Grana, L. Baraldi, and F. Bolelli, “Optimized Connected Components
Labeling with Pixel Prediction,” in Advanced Concepts for Intelligent
Vision Systems (ACIVS). Springer, 2016, pp. 431–440.

[27] L. He, Y. Chao, and K. Suzuki, “A Run-Based Two-Scan Labeling
Algorithm,” IEEE Transactions on Image Processing, vol. 17, no. 5,
pp. 749–756, 2008.

[28] F. Bolelli, M. Cancilla, L. Baraldi, and C. Grana, “Towards reliable
experiments on the performance of Connected Components Labeling
algorithms,” Journal of Real-Time Image Processing, vol. 17, no. 2, pp.
229–244, February 2018.

[29] F. Bolelli, S. Allegretti, L. Baraldi, and C. Grana, “Spaghetti Label-
ing: Directed Acyclic Graphs for Block-Based Connected Components
Labeling,” IEEE Transactions on Image Processing, pp. 1999–2012,
October 2019.

[30] E. W. Dijkstra, A discipline of programming. Prentice-Hall Englewood
Cliffs, N.J, 1976.

[31] C. Grana, F. Bolelli, L. Baraldi, and R. Vezzani, “YACCLAB - Yet
Another Connected Components Labeling Benchmark,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). Springer,
December 2016, pp. 3109–3114.

[32] The YACCLAB Benchmark. Accessed on 2021-06-23. [Online].
Available: https://github.com/prittt/YACCLAB

