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On groups in which Engel sinks are cyclic

Cristina Acciarri and Pavel Shumyatsky

Abstract. For an element g of a group G, an Engel sink is a
subset E(g) such that for every x ∈ G all sufficiently long com-
mutators [x, g, g, . . . , g] belong to E(g). We conjecture that if G is
a profinite group in which every element admits a sink that is a
procyclic subgroup, then G is procyclic-by-(locally nilpotent). We
prove the conjecture in two cases – when G is a finite group, or a
soluble pro-p group.

1. Introduction

A group G is called an Engel group if for every x, g ∈ G the

equation [x, g, g, . . . , g] = 1 holds, where g is repeated in the com-

mutator sufficiently many times depending on x and g. (Through-

out the paper, we use the left-normed simple commutator notation

[a1, a2, a3, . . . , ar] = [...[[a1, a2], a3], . . . , ar].) Of course, any nilpotent

group is an Engel group. For finite groups the converse is also known

to be true: a finite Engel group is nilpotent by Zorn’s theorem [15].

Given arbitrary elements x, g in a group G, here and in what follows,

for any n ≥ 1, we will denote by [x,n g] the commutator of the form

[x, g, . . . , g
︸ ︷︷ ︸

n

].

Recently, groups that are ‘almost Engel’ in the sense of restrictions

on so-called Engel sinks were given some attention. An Engel sink of
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2 C. ACCIARRI AND P. SHUMYATSKY

an element g ∈ G is a set E(g) such that for every x ∈ G all sufficiently

long commutators [x, g, g, . . . , g] belong to E(g), that is, for every x ∈ G

there is a positive integer n(x, g) such that

[x,n g] ∈ E(g) for all n ≥ n(x, g).

Engel groups are precisely the groups for which we can choose E(g) =

{1} for all g ∈ G. In [5] finite, profinite, and compact groups in

which every element has a finite Engel sink were considered. It was

proved that compact groups with this property are finite-by-(locally

nilpotent). Similar result for linear groups was established in [9] (see

also [12] for a shorter proof). Recall that a group G is locally nilpotent

if every finitely generated subgroup of G is nilpotent. According to an

important theorem, due to Wilson and Zelmanov [14], a profinite group

is locally nilpotent if and only if it is Engel.

In [6] finite groups in which there is a bound for the ranks of the

subgroups generated by Engel sinks were considered. Recall that the

rank of a finite group is the minimum number r such that every sub-

group can be generated by r elements. It was shown that if G is a

finite group such that for every g ∈ G the Engel sink E(g) generates a

subgroup of rank r, then the rank of γ∞(G) is bounded in terms of r.

Here γ∞(G) stands for the intersection of all terms of the lower central

series of G.

The goal of this article is to establish some substantial evidence in

favor of the following conjecture.

Conjecture 1.1. Let G be a profinite group in which every element

admits an Engel sink that generates a procyclic subgroup. Then G is

procyclic-by-(locally nilpotent).

First, we consider finite groups in which all elements admit Engel

sinks generating cyclic subgroups.

Theorem 1.2. Let G be a finite group in which every element ad-

mits an Engel sink generating a cyclic subgroup. Then γ∞(G) is cyclic.
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Recall that a profinite group is a topological group that is isomor-

phic to an inverse limit of finite groups. The reader is referred to

textbooks [7] and [13] for background information on profinite groups.

In the context of such groups all the usual concepts of groups theory

are interpreted topologically. In particular, by a subgroup of a profi-

nite group we always mean a closed subgroup. The next result deals

with soluble pro-p groups in which every element admits an Engel sink

generating a procyclic subgroup.

Theorem 1.3. Let G be a soluble pro-p group in which every el-

ement admits an Engel sink generating a procyclic subgroup. Then G

has a normal procyclic subgroup K such that G/K is locally nilpotent.

In the next section we deal with the proof of Theorem 1.2. The

proof of Theorem 1.3 is given in Section 3.

2. Proof of Theorem 1.2

We start with a collection of well-known facts about coprime auto-

morphisms that we will use throughout the article. Given a group G

acted on by a group A we write CG(A) for the subgroup of fixed points

of A in G and [G,A] for the subgroup generated by all elements of the

form x−1xa, where x ∈ G and a ∈ A.

Lemma 2.1. Let A be a group of automorphisms of a finite group

G such that (|G|, |A|) = 1. Then

(i) G = CG(A)[G,A];

(ii) [G,A,A] = [G,A];

(iii) CG/N(A) = CG(A)N/N for any A-invariant normal subgroup

N of G;

(iv) If G is cyclic of prime-power order, then A is cyclic;

(v) If G is cyclic of 2-power order, then A = 1.

The assumption of coprimeness is unnecessary in the following lemma.

Lemma 2.2. Let G be a cyclic group. The group of automorphisms

of G is abelian.
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Recall that a normal subgroup N of a finite group G is a normal

p-complement (for a prime p) if N = Op′(G) and G/N is a p-group.

The well-known theorem of Frobenius states that G possesses a nor-

mal p-complement if and only if NG(H)/CG(H) is a p-group for every

nontrivial p-subgroup H of G (see [3, Theorem 7.4.5]).

Obviously, in a finite group G every element has the smallest Engel

sink, so throughout this section, we use the term Engel sink for the

minimal Engel sink, denoted by E(g), of an element g ∈ G.

Lemma 2.3. Let G be a finite group in which for each g ∈ G the

Engel sink E(g) generates a cyclic subgroup. Then G has a normal

2-complement.

Proof. Suppose that this is false. Then G has an element x of odd

order and a 2-subgroup H such that x normalizes but not centralizes

H . Let E = H ∩ E(x). Observe that x normalizes 〈E〉. In view of

Lemma 2.1(v), we deduce that x centralizes 〈E〉. Therefore for every

h ∈ H we have [h, x, x, . . . , x] = 1 if x is repeated in the commutator

sufficiently many times. In other words, x is Engel in the group H〈x〉

and we deduce that [H, x] = 1. This yields a contradiction. �

In view of the Feit-Thompson Theorem on solubility of groups of

odd order [2] the following corollary is straightforward.

Corollary 2.4. Let G be a finite group in which the Engel sink

E(g) generates a cyclic subgroup for each g ∈ G. Then G is soluble.

Recall that a group G is metanilpotent if it has a normal subgroup

N such that both N and G/N are nilpotent. It is easy to see that

a finite group G is metanilpotent if and only if γ∞(G) is nilpotent.

The next result is well known (see for example [1, Lemma 2.4] for the

proof).

Lemma 2.5. Let G be a finite metanilpotent group. Assume that

P is a Sylow p-subgroup of γ∞(G) and H is a Hall p′-subgroup of G.

Then P = [P,H ].
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We will now prove Theorem 1.2 under the additional assumption

that G is metanilpotent.

Lemma 2.6. Let G be a finite metanilpotent group in which for

each g ∈ G the Engel sink E(g) generates a cyclic subgroup. Then

γ∞(G) is cyclic.

Proof. Since γ∞(G) is nilpotent, it is sufficient to show that each

Sylow subgroup of γ∞(G) is cyclic. Thus, let P be a Sylow subgroup

of γ∞(G) for some prime p. In view of Lemma 2.5 we have P = [P,H ],

where H is a Hall p′-subgroup of G. Without loss of generality we can

assume that G = PH . Replacing if necessary P by P/Φ(P ) and H

by H/CH(P ), we can assume that P is an elementary abelian p-group

(a vector space over the field with p elements) on which the nilpotent

group H acts faithfully by linear transformations.

Taking into account that H is nilpotent, we note that E(h) = [P, h]

for each nontrivial h ∈ H . Therefore, if H = 〈g〉 is cyclic, then P =

E(g) is cyclic, too. Hence, we assume that H is noncyclic.

Suppose first that H contains a noncyclic abelian subgroup A.

Choose a nontrivial element a1 ∈ A. The cyclic subgroup [P, a1]

is A-invariant and, by Lemma 2.1(iv), the quotient A/CA([P, a1]) is

cyclic. In particular CA([P, a1]) 6= 1 so we choose a nontrivial element

a2 ∈ CA([P, a1]). Since a2 centralizes [P, a1], it follows that [P, a1][P, a2]

is not cyclic. Moreover, it is clear that a1 centralizes [P, a2]. Hence,

[P, a1][P, a2] ≤ [P, a1a2]. This shows that E(a1a2) is not cyclic, a con-

tradiction. Therefore all abelian subgroups of H are cyclic.

It follows (see for example [3, Theorem 4.10(ii), p. 199]) that H is

isomorphic to Q×C, where Q is a generalized quaternion group and C

is a cyclic group of odd order. Let a0 be the unique involution of H . It

is clear that a0 is contained in all maximal cyclic subgroups of H . Thus

we have [P, h] = [P, a0] for any h ∈ H and so [P,H ] = [P, a0]. Note

that [P, a0] is an H-invariant subgroup of order p. In view of Lemma

2.1(iv), note that H induces a cyclic group of automorphisms of [P, a0].
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We deduce that a0 acts trivially on [P, a0] and hence on P . This is a

final contradiction. It shows that P is cyclic, as required. �

Recall that the Fitting height of a finite soluble group G is the

minimum number h = h(G) such that G possesses a normal series

1 = G0 ≤ G1 ≤ · · · ≤ Gh = G all of whose factors are nilpotent. We

say that a system of subgroups P1, . . . , Pk of G is a tower of height k if

• Each subgroup Pi has prime-power order.

• Pj is normalized by Pi whenever 1 ≤ i ≤ j ≤ k.

• Pi+1 = γ∞(Pi+1Pi) for each i = 1, 2, . . . , k − 1.

Every finite soluble group of Fitting height h possesses a tower of height

h (see for example [11]).

We are now ready to prove the theorem on finite groups.

Proof of Theorem 1.2. Recall that G is a finite group in which

for each g ∈ G the Engel sink E(g) generates a cyclic subgroup. We

need to show that γ∞(G) is cyclic. By Corollary 2.4, the group G is

soluble. Suppose that the theorem is false and let G be a counter-

example of minimal order. Lemma 2.6 shows that h(G) ≥ 3.

Choose three subgroups P1, P2, P3 which form a tower of height 3.

Since P3 = γ∞(P3P2), because of Lemma 2.6 we conclude that P3 is

cyclic. By Lemma 2.2 the subgroup P2P1 induces an abelian group

of automorphisms of P3. Since P2 = γ∞(P2P1), we conclude that P2

acts on P3 trivially. In other words, P2 centralizes P3. In view of the

equality P3 = γ∞(P3P2) we have a contradiction. This completes the

proof. �

3. Proof of Theorem 1.3

Our purpose in this section is to prove Theorem 1.3. Given an

element g of a group G, for each n ≥ 1, we will denote by En(g) the

subgroup of G generated by all commutators of the form [x,n g], with

x in G.
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The next two results, whose proofs can be found in [10, Lemmas

2.1 and 2.2] respectively, state general facts about nilpotent groups and

Engel elements.

Lemma 3.1. Let G = H〈a〉, where H is a normal nilpotent sub-

group of class c and a is an n-Engel element. Then G is nilpotent with

class at most cn.

Lemma 3.2. For any positive integers c, n there exists an integer

f = f(c, n) with the following property. Let G = H〈a〉, where H is a

normal nilpotent subgroup of class c. Then γf(G) ≤ En(a).

Here and throughout the article γf(G) denotes the fth term of the

lower central series of G.

The following lemma concerns profinite groups and Engel elements.

Lemma 3.3. Let G = M〈a〉 be a profinite group with an abelian

normal subgroup M and an Engel element a. Then G is nilpotent.

Proof. For any nonnegative integer i set

Bi = {x ∈ M | [x, i a] = 1}.

Each set Bi is closed, and
⋃

i≥0Bi = M . By Baire’s Category Theorem

[4, p. 200] at least one of these sets has non-empty interior. Therefore

there exist an integer n, an element b in M and an open normal sub-

group N contained in M such that [y,n a] = 1 for any y ∈ bN . From

this we deduce that [x,n a] = 1 for any x in N . Since N is open in M ,

there exists a positive integer k such that [z, k a] ∈ N for any z ∈ M .

Thus [M,n+k a] = 1 and the result follows. �

Note that, for an element g of a group G, once a sink E(g) is chosen,

the subgroup 〈E(g)〉 generated by E(g) is also a sink for g. In the

remaining part of this article it will be convenient to use the term

“sink E(g) of g” meaning a subgroup containing all sufficiently long

commutators [x,i g] with x ∈ G.
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Lemma 3.4. Let G be a metabelian profinite group and let a be

an element of G. Then, for any choice of a sink E(a), there exists an

integer n such that En(a) ≤ E(a).

Proof. If E(a) is finite, then a is Engel in G. Set K = G′〈a〉. By

Lemma 3.3 the subgroup K is nilpotent and [G′,n−1 a] = 1, for some

integer n. Therefore [G,n a] = 1 and so En(a) ≤ E(a).

Assume that E(a) is infinite. Let E1 be the subgroup generated

by all commutators [x, a, . . . , a] ∈ E(a) such that x ∈ G′. Note that

E1 ≤ E(a) and E1 is a normal subgroup of G. Moreover a is Engel in

G/E1. In view of Lemma 3.3 the subgroup G′〈a〉 is nilpotent modulo

E1 and the result follows. �

Lemma 3.5. Let G be a metabelian profinite group and a ∈ G. For

each n ≥ 1 the subgroup En(a) is normal in G.

Proof. For any i ≥ 1, any g ∈ G′ and y ∈ G we have

[g, i a]
y = [gy, i a] and [g−1, i a] = [g, i a]

−1.

Moreover, for any x, y ∈ G, the equality [x, a]y = [xy, a][y, a]−1 holds.

We only need to prove the lemma with n ≥ 2 since for n = 1 the

result is well known even without the assumption that G is metabelian.

For arbitrary elements x, y ∈ G, by using the standard commutator

laws, write

[x,n a]
y = [[x, a]y,n−1 a] = [[xy, a][y, a]−1,n−1 a] = [xy,n a][y,n a]

−1.

The formula above shows that [x,n a]
y ∈ En(a) and the lemma follows.

�

We write Cn to denote the cyclic group of order n and Zp the addi-

tive group of p-adic integers. Recall that the group of automorphisms

of Zp is isomorphic to Zp ⊕ Cp−1 if p ≥ 3 and Z2 ⊕ C2 if p = 2 (see for

example [7, Theorem 4.4.7]). Note that all nontrivial subgroups of Zp

have finite index in Zp (see for example [8, Proposition and Corollary

1 at p. 23]).
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Lemma 3.6. Let G be a pro-p group and K a normal infinite pro-

cyclic subgroup of G. If a /∈ CG(K), then for any i ≥ 1, the subgroup

[K, i a] has finite index in K. In particular, if G is locally nilpotent,

then K is central in G.

Proof. Let α be the automorphism of K induced by the conjuga-

tion by the element a. Write R for the ring of the p-adic integers and

regard K as the additive group of R. There exists b ∈ R such that

xa = x · b, for each x ∈ K. Note that the subgroup [K,n a] consists of

elements of the form x · (b− 1)n, where x ranges over K. Moreover the

set {x · (b− 1)n | x ∈ K} is infinite for each n ≥ 1, since R has no zero

divisors. The lemma follows. �

We now can prove Theorem 1.3 in the particular case where G is

metabelian. The general case will require considerably more efforts.

Proposition 3.7. Let G be a metabelian pro-p group such that E(g)

can be chosen procyclic for each g in G. Then G has a normal procyclic

subgroup K such that G/K is locally nilpotent.

Proof. If G is Engel, then it is locally nilpotent and there is noth-

ing to prove. Assume that G is not Engel and let X be the set of

all non-Engel elements in G. In view of Lemmas 3.4 and 3.5 we can

assume that all E(g) are chosen procyclic and normal in G. Indeed,

by Lemmas 3.4 and 3.5, for each g in G there exists an integer n such

that En(g) is a normal subgroup in E(g), so we can take such En(g) as

the sink E(g) of g. In view of Lemma 3.6 each subgroup [E(x), i x] has

finite index in E(x) whenever x ∈ X .

Given a, b ∈ X , suppose first that E(a)∩E(b) = 1. On the one hand,

a acts on E(a) in such a way that, for any i ≥ 1, the subgroup [E(a), i a]

has finite index in E(a). On the other hand, a centralizes E(b), since

the intersection of the two sinks is trivial. A similar remarks applies

to b. Note that ab acts on E(a) ⊕ E(b) in the following way: it acts

as the element a on E(a) and as b on E(b). This implies that, for any

n, the subgroup En(ab) contains a subgroup, which is the direct sum
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of a finite index subgroup in E(a) and a finite index subgroup in E(b),

isomorphic to Zp ⊕ Zp. Thus E(ab) is not procyclic, a contradiction.

Hence, E(a) ∩ E(b) 6= 1, for any a, b ∈ X . Let K = E(a) for some

a ∈ X . We see that, for any g ∈ G, the image in G/K of the sink E(g)

is finite. Indeed, if g is Engel in G, then the claim is obvious. Otherwise

g ∈ X and the image of E(g) inG/K is isomorphic to E(g)/(E(a)∩E(g))

which is finite. It follows that G/K is Engel, hence locally nilpotent

by the Wilson-Zelmanov theorem. The proof is complete. �

Next, we consider another particular case of Theorem 1.3.

Lemma 3.8. Let G be a soluble pro-p group such that E(g) can be

chosen procyclic for each g in G. Assume that G has a normal nilpotent

subgroup M and a ∈ G such that G = M〈a〉. Then there exists n such

that En(a) is procyclic and normal in G. Moreover there exists i such

that γi(G) has finite index in En(a).

Proof. We argue by induction on the nilpotency class of M . If M

is abelian, then in view of Lemma 3.5 there exists n such that En(a)

is procyclic and normal in G. Since G/En(a) is nilpotent, the result

holds. Suppose that M is nonabelian and set Z = Z(M). By induction

assume that there is n such that L = ZEn(a) is normal in G and L/Z

is procyclic. Since L/Z is procyclic, the subgroup L is abelian. Now

looking at the action of 〈a〉 on L and using the fact that L is abelian,

Lemma 3.4 shows that if j is big enough, then the subgroup En+j(a)

is procyclic. By Lemma 3.2 there exists f such that γf(G) ≤ En+j(a).

Thus, γf(G) is a normal procyclic subgroup and so all subgroups of

γf(G) are normal in G. In particular, Ef(a) is normal and procyclic.

Since by Lemma 3.1 the factor-group G/Ef(a) is nilpotent, there exists

i such that γi(G) ≤ Ef (a). This completes the proof. �

In the sequel we will use, without mentioning explicitly, the follow-

ing fact: let H be a subgroup of a profinite group G and let x be an

element of G such that Hx ≤ H . Then Hx = H . This is because if
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Hx < H , then the inequality would also hold in some finite image of

G, which yields a contradiction.

The next result is a key observation that will be applied many times

throughout the proof of the main result.

Lemma 3.9. Let G be a profinite group and K a procyclic pro-p

subgroup of G such that K ∩Kx 6= 1 for each x ∈ G. Then K contains

a nontrivial subgroup L (of finite index) which is normal in G.

Proof. If K is finite, the result is obvious, so we assume that K

is infinite. Recall that K ∩ Kx has finite index in K for each x ∈ G.

For each i set

Si = {x ∈ G | K ∩Kx has index at most pi in K}.

The sets Si are closed. By Baire Category Theorem at least one of

these sets has non-empty interior. Therefore there is an open normal

subgroup N , an element d ∈ G, and a fixed p-power pi such thatK∩Kx

has index at most pi in K for every x ∈ dN . Let K0 = Kpi be the

subgroup of index pi in K. We see that N normalizes K0. Since N is

open, it follows that K0 has only finitely many conjugates in G. Let L

be their intersection. Obviously, L is normal in G. Since K0 ∩Kx
0 has

finite index in K0 for each x ∈ G, the subgroup L is nontrivial. �

Now we are ready to deal with the proof of Theorem 1.3. We

want to establish that if G is a soluble pro-p group such that E(g) can

be chosen procyclic for each g in G, then G has a normal procyclic

subgroup K such that G/K is locally nilpotent.

Proof of Theorem 1.3. The argument will be by induction on

the derived length of G. Set H = G′. By induction, H has a normal

procyclic subgroup K such that H/K is locally nilpotent.

Claim 1. H is locally nilpotent.

If K is finite, the claim holds. So we assume that K is infinite. It is

sufficient to show that H has a procyclic subgroup K0, which is normal
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in G, such that H/K0 is locally nilpotent. Indeed, once the existence

of such subgroup K0 is established, observe that K0 ≤ Z(H) because

G/CG(K0) embeds into Aut(Zp) which is abelian. Hence H is locally

nilpotent. Thus, assume that K is not normal in G.

For any x ∈ G the quotient H/Kx is locally nilpotent. If there

exists x such that Kx∩K = 1, then H , being isomorphic to a subgroup

H/K×H/Kx, must be locally nilpotent, as desired. Therefore we will

assume that Kx ∩K 6= 1 for any x ∈ G.

In view of Lemma 3.9 K contains a nontrivial subgroup L which is

normal in G. Since H/K is locally nilpotent and L has finite index in

K, it follows that H/L is locally nilpotent too. Moreover, since L is

normal in G, it follows that L is in the center of H and so H is locally

nilpotent. This establishes Claim 1.

Claim 2. Assume that G has a normal nilpotent subgroup M such

that G/M is nilpotent and finitely generated. Then G has a normal

procyclic subgroup M0 such that G/M0 is nilpotent.

Indeed, choose a1, . . . , as in G such that G = 〈M, a1, . . . , as〉. We

argue by induction on the nilpotency class of G/M and also use induc-

tion on s.

Assume first that G/M is abelian. The case s = 1 follows from

Lemma 3.8 so suppose that s ≥ 2. Let Vj = M〈aj〉, for 1 ≤ j ≤ s.

Observe that for each j the subgroup Vj is normal in G and, in view of

Lemma 3.8, there exists i(j) such that γi(j)(Vj) is procyclic. If for any

j the subgroup γi(j)(Vj) is finite (or trivial), then each Vj is nilpotent

and so G is nilpotent too. Thus we can assume that some γi(j)(Vj) are

procyclic infinite. Moreover, if for some j and k the subgroups γi(j)(Vj)

and γi(k)(Vk) are infinite and satisfy γi(j)(Vj) ∩ γi(k)(Vk) = 1, then we

get a contradiction. Indeed, set N = γi(j)(Vj)⊕ γi(k)(Vk) and consider

the action of ajak on N . Arguing as in the proof of Proposition 3.7, we

see that E(ajak) is not procyclic, since for any n the subgroup En(ajak)

contains a subgroup isomorphic to Zp⊕Zp. We therefore assume that all

infinite subgroups γi(j)(Vj) intersect pairwise nontrivially. In particular
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their intersection V is a nontrivial normal procyclic subgroup such that

G/V is nilpotent. This concludes the argument in the case where G/M

is abelian.

Next, suppose that G/M has nilpotency class at least two, so in

particular s is bigger than one. Let Wj = 〈aj〉HM , for 1 ≤ j ≤ s. Note

that any subgroupWj moduloM is a finitely generated subgroup, since

it is a subgroup of a finitely generated nilpotent group. Furthermore

Wj modulo M has nilpotency class smaller than the nilpotency class

of G/M , since it is generated by the image of H and aj . Thus, by

induction, anyWj has a normal procyclic subgroup Bj such thatWj/Bj

is nilpotent. So, there exists l(j) such that γl(j)(Wj) ≤ Bj . As in the

previous paragraph, if all Bj are finite (or trivial), then G is nilpotent.

If the infinite Bj intersect nontrivially, then the claim follows since their

intersection B is a nontrivial normal procyclic subgroup such that G/B

is nilpotent. Suppose that for some i, j the subgroups Bi and Bj are

infinite and Bi ∩ Bj = 1. Note that Claim 1 implies that both Bi and

Bj are centralized by H . Set N = Bi ⊕ Bj and look at the action

of aiaj on N . We see that for any n the subgroup En(aiaj) contains

a subgroup isomorphic to Zp ⊕ Zp. Thus E(aiaj) is not procyclic, a

contradiction. This concludes the proof of Claim 2.

Let R be the last nontrivial term of the derived series of G. By

induction on the derived length of G assume that for G/R the theorem

holds. Thus G has a normal subgroup S, containing R, such that S/R

is procyclic and G/S is locally nilpotent. Obviously, we can choose S

in such way that S ≤ H . Let a ∈ S such that S = R〈a〉. In view of

Claim 1, a is an Engel element. Thus applying Lemma 3.3 we deduce

that S is nilpotent.

Claim 3. Let a1, . . . , as ∈ G and set J = R〈a1, . . . , as〉. Then J

has a normal procyclic subgroup J0 such that J/J0 is nilpotent.

If J/R is nilpotent, then the claim follows from Claim 2. Assume

that J/R is not nilpotent. Set J1 = 〈J, a〉, where a is as above. Note
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that S ≤ J1 and J1/S is nilpotent since G/S is locally nilpotent. Hence,

again by Claim 2 there exists a normal procyclic subgroup N0 in J1 such

that J1/N0 is nilpotent. In particular JN0/N0 is nilpotent too, so we

can take J0 = J ∩N0. This concludes the proof of Claim 3.

We now embark on the final part of the proof of the theorem.

Assume that the group G is not locally nilpotent. Choose elements

a1, . . . , as ∈ G such that T = 〈a1, . . . , as〉 is not nilpotent. Recall that

S is a nilpotent normal subgroup of G such that G/S is locally nilpo-

tent. By Claim 2 the group ST has a normal procyclic subgroup K0

such that ST/K0 is nilpotent. Without loss of generality we assume

that there is a positive integer i0 such that K0 = γi0(ST ). Note that

K0 here must be infinite since T is not nilpotent. Moreover we can

replace K0 by S ∩K0 and simply assume that K0 ≤ S. Indeed, since

ST/K0 and ST/S are both nilpotent, we have γi(ST ) ≤ S ∩ K0, for

some positive integer i.

Given any finite subset Y of G, we write TY for the subgroup 〈Y, T 〉.

By Claim 2 the group STY has a normal procyclic subgroup KY such

that STY /KY is nilpotent. Again there is a positive integer iY such

that KY = γiY (STY ). Note that all subgroups KY are infinite and

have infinite intersection with K0. Indeed, any subgroup STY contains

ST , the subgroup ST is nilpotent modulo the intersection of KY with

K0, so if this intersection were trivial, then STY would be nilpotent, a

contradiction. As before, since G/S is locally nilpotent, we choose all

KY inside S.

Now choose an arbitrary element x ∈ G and set

Y (x) = {a1
x, . . . , as

x, a1, . . . , as}.

We see that KY (x) has infinite intersection with each of the subgroups

K0 and Kx
0 . Hence K0 ∩Kx

0 is nontrivial and this holds for any choice

of x ∈ G. Thus, by Lemma 3.9, K0 contains a nontrivial subgroup L0

which is normal in G.

Note that for any choice of a finite subset Y of G, the subgroup

L0 intersects KY by a finite index subgroup, since K0 intersects KY
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nontrivially and L0 has finite index in K0. Therefore every subgroup

TY is nilpotent modulo L0, since KY becomes finite modulo L0. Hence

G is locally nilpotent modulo L0 and this concludes the proof. �
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