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Profinite groups with restricted
centralizers of π-elements

Cristina Acciarri and Pavel Shumyatsky

Abstract. A group G is said to have restricted centralizers if for
each g in G the centralizer CG(g) either is finite or has finite index
in G. Shalev showed that a profinite group with restricted central-
izers is virtually abelian. Given a set of primes π, we take interest
in profinite groups with restricted centralizers of π-elements. It
is shown that such a profinite group has an open subgroup of the
form P × Q, where P is an abelian pro-π subgroup and Q is a
pro-π′ subgroup. This significantly strengthens a result from our
earlier paper.

1. Introduction

A group G is said to have restricted centralizers if for each g in G the
centralizer CG(g) either is finite or has finite index in G. This notion
was introduced by Shalev in [13] where he showed that a profinite
group with restricted centralizers is virtually abelian. We say that a
profinite group has a property virtually if it has an open subgroup with
that property. The article [3] handles profinite groups with restricted
centralizers of w-values for a multilinear commutator word w. The
theorem proved in [3] says that if w is a multilinear commutator word
and G is a profinite group in which the centralizer of any w-value is
either finite or open, then the verbal subgroup w(G) is virtually abelian.
In [1] we study profinite groups in which p-elements have restricted
centralizers, that is, groups in which CG(x) is either finite or open for
any p-element x. The following theorem was proved.
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Theorem 1.1. Let p be a prime and G a profinite group in which
the centralizer of each p-element is either finite or open. Then G has
a normal abelian pro-p subgroup N such that G/N is virtually pro-p′.

The present paper grew out of our desire to determine whether this
result can be extended to profinite groups in which the centralizer of
each π-element, where π is a fixed set of primes, is either finite or open.
As usual, we say that an element x of a profinite group G is a π-element
if the order of the image of x in every finite continuous homomorphic
image of G is divisible only by primes in π (see [10, Section 2.3] for a
formal definition of the order of a profinite group).

It turned out that the techniques used in the proof of Theorem 1.1
were not quite adequate for handling the case of π-elements. The basic
difficulty stems from the fact that (pro)finite groups in general do not
possess Hall π-subgroups.

In the present paper we develop some new techniques and establish
the following theorem about finite groups.

If π is a set of primes and G a finite group, write Oπ′
(G) for the

unique smallest normal subgroup M of G such that G/M is a π′-group.
The conjugacy class containing an element g ∈ G is denoted by gG.

Theorem 1.2. Let n be a positive integer, π be a set of primes,
and G a finite group such that |gG| ≤ n for each π-element g ∈ G. Let
H = Oπ′

(G). Then G has a normal subgroup N such that

(1) The index [G : N ] is n-bounded;
(2) [H,N ] = [H,H];
(3) The order of [H,N ] is n-bounded.

Throughout the article we use the expression “(a, b, . . .)-bounded”
to mean that a quantity is finite and bounded by a certain number
depending only on the parameters a, b, . . ..

The proof of Theorem 1.2 uses some new results related to Neu-
mann’s BFC-theorem [8]. In particular, an important role in the proof
is played by a recent probabilistic result from [2]. Theorem 1.2 pro-
vides a highly effective tool for handling profinite groups with restricted
centralizers of π-elements. Surprisingly, the obtained result is much
stronger than Theorem 1.1 even in the case where π consists of a single
prime.

Theorem 1.3. Let π be a set of primes and G a profinite group in
which the centralizer of each π-element is either finite or open. Then
G has an open subgroup of the form P×Q, where P is an abelian pro-π
subgroup and Q is a pro-π′ subgroup.
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Thus, the improvement over Theorem 1.1 is twofold – the result now
covers the case of π-elements and provides additional details clarifying
the structure of groups in question. Furthermore, it is easy to see that
Theorem 1.3 extends Shalev’s result [13] which can be recovered by
considering the case where π = π(G) is the set of all prime divisors of
the order of G.

We now have several results showing that if the elements of a certain
subset X of a profinite group G have restricted centralizers, then the
structure of G is very special. This suggests the general line of research
whose aim would be to determine which subsets of G have the above
property. At present we are not able to provide any insight on the
problem. Perhaps one might start with the following question:

Let n be a positive integer. What can be said about a profinite group G
such that if x ∈ G then CG(xn) is either finite or open?

Proofs of Theorems 1.2 and 1.3 will be given in Sections 2 and 3,
respectively.

2. Proof of Theorem 1.2

The following lemma is taken from [1]. If X ⊆ G is a subset of a
group G, we write 〈X〉 for the subgroup generated by X and 〈XG〉 for
the minimal normal subgroup of G containing X.

Lemma 2.1. Let i, j be positive integers and G a group having a
subgroup K such that |xG| ≤ i for each x ∈ K. Suppose that |K| ≤ j.
Then 〈KG〉 has finite (i, j)-bounded order.

If K is a subgroup of a finite group G, we denote by

Pr(K,G) =
|{(x, y) ∈ K ×G : [x, y] = 1}|

|K||G|
the relative commutativity degree of K in G, that is, the probability
that a random element of G commutes with a random element of K.
Note that

Pr(K,G) =

∑
x∈K |CG(x)|
|K||G|

.

It follows that if |xG| ≤ n for each x ∈ K, then Pr(K,G) ≥ 1
n
.

The next result was obtained in [2, Proposition 1.2]. In the case
where K = G this is a well known theorem, due to P. M. Neumann [9].

Proposition 2.2. Let ε > 0, and let G be a finite group having a
subgroup K such that Pr(K,G) ≥ ε. Then there is a normal subgroup
T ≤ G and a subgroup B ≤ K such that the indexes [G : T ] and [K : B],
and the order of the commutator subgroup [T,B] are ε-bounded.
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We will now embark on the proof of Theorem 1.2.
Assume the hypothesis of Theorem 1.2. Let X be the set of all

π-elements of G. Clearly, H = 〈X〉. Given an element g ∈ H, we write
l(g) for the minimal number l with the property that g can be written
as a product of l elements of X. The following result is straightforward
from [4, Lemma 2.1].

Lemma 2.3. Let K ≤ H be a subgroup of index m in H, and let
b ∈ H. Then the coset Kb contains an element g such that l(g) ≤ m−1.

Let m be the maximum of indices of CH(x) in H where x ∈ X.
Obviously, we have m ≤ n.

Lemma 2.4. For any x ∈ X the subgroup [H, x] has m-bounded
order.

Proof. Take x ∈ X. Since the index of CH(x) in H is at most m,
by Lemma 2.3, we can choose elements y1, . . . , ym in H such that l(yi) ≤
m− 1 and the subgroup [H, x] is generated by the commutators [yi, x],
for i = 1, . . . ,m. For any such i write yi = yi1 . . . yi(m−1), with yij ∈
X. Using standard commutator identities we can rewrite [yi, x] as a
product of conjugates in H of the commutators [yij, x]. Let {h1, . . . , hs}
be the conjugates in H of all elements from the set {x, yij | 1 ≤ i, j ≤
m}. Note that the number s here is m-bounded. This follows form
the fact that CH(x) has index at most m in H for each x ∈ X. Put
T = 〈h1, . . . , hs〉. Since [H, x] is contained in the commutator subgroup
T ′, it is sufficient to show that T ′ has m-bounded order. Observe that
the centre Z(T ) has index at most ms in T , since the index of CH(hi)
is at most m in H for any i = 1, . . . , s. Thus, by Schur’s theorem [11,
10.1.4], we conclude that the order of T ′ is m-bounded, as desired. �

Select a ∈ X such that |aH | = m. Choose b1, . . . , bm in H such
that l(bi) ≤ m − 1 and aH = {abi ; i = 1, . . . ,m}. The existence of the
elements bi is guaranteed by Lemma 2.3. Set U = CG(〈b1, . . . , bm〉).
Note that the index of U in G is n-bounded. Indeed, since l(bi) ≤ m−1
we can write bi = bi1 . . . bi(m−1), where bij ∈ X and i = 1, . . . ,m. By
the hypothesis the index of CG(bij) in G is at most n for any such
element bij. Thus, [G : U ] ≤ n(m−1)m.

The next result is somewhat analogous to [14, Lemma 4.5].

Lemma 2.5. If u ∈ U and ua ∈ X, then [H, u] ≤ [H, a].

Proof. Assume that u ∈ U and ua ∈ X. For each i = 1, . . . ,m
we have (ua)bi = uabi , since u belongs to U . We know that ua ∈ X so
taking into account the hypothesis on the cardinality of the conjugacy
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class of ua in H, we deduce that (ua)H consists exactly of the elements
uabi , for i = 1, . . . ,m. Thus, given an arbitrary element h ∈ H, there
exists b ∈ {b1, . . . , bm} such that (ua)h = uab and so uhah = uab. It
follows that [u, h] = aba−h ∈ [H, a], and the result holds. �

Lemma 2.6. The order of the commutator subgroup of H is n-
bounded.

Proof. Let U0 be the maximal normal subgroup of G contained
in U . Recall that, by the remark made before Lemma 2.5, U has n-
bounded index in G. It follows that the index [G : U0] is n-bounded as
well.

By the hypothesis a has at most n conjugates inG, say {ag1 , . . . , agn}.
Let T be the normal closure in G of the subgroup [H, a]. Note that the
subgroups [H, agi ] are normal in H, therefore T = [H, ag1 ] . . . [H, agn ].
By Lemma 2.4 each of the subgroups [H, agi ] has n-bounded order. We
conclude that the order of T is n-bounded.

Let Y = Xa−1∩U . Note that for any y ∈ Y the product ya belongs
to X. Therefore, by Lemma 2.5, for any y ∈ Y , the subgroup [H, y] is
contained in [H, a]. Thus,

[H,Y ] ≤ T.(1)

Observe that for any u ∈ U0 the commutator [u, a−1] = aua−1 lies
in Y and so

[H, [U0, a
−1]] ≤ [H,Y ].(2)

Since [U0, a
−1] = [U0, a], we deduce from (1) and (2) that

[H, [U0, a]] ≤ T.(3)

Since T has n-bounded order, it is sufficient to show that the derived
group of the quotient H/T has finite n-bounded order. We pass now
to the quotient G/T and for the sake of simplicity the images of G,
H,U, U0, X and Y will be denoted by the same symbols. Note that by
(1) the set Y becomes central in H modulo T . Containment (3) shows
that [U0, a] ≤ Z(H). This implies that if b ∈ U0 is a π-element, then
[b, a] ∈ Z(H) and the subgroup 〈a, b〉 is nilpotent. Thus the product
ba is a π-element too and so b ∈ Y . Hence, all π-elements of U0 are
contained in Y and, in view of (1), we deduce that they are contained
in Z(H).

Next we consider the quotient G/Z(H). Since the image of U0 in
G/Z(H) is a π′-group and has n-bounded index in G, we deduce that
the order of any π-subgroup in G/Z(H) is n-bounded. In particular,
there is an n-bounded constant C such that for every p ∈ π the order
of the Sylow p-subgroup of G/Z(H) is at most C. Because of Lemma
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2.1 for any p ∈ π each Sylow p-subgroup of G/Z(H) is contained in a
normal subgroup of n-bounded order. We deduce that all such Sylow
subgroups of G/Z(H) are contained in a normal subgroup of n-bounded
order. Since H is generated by π-elements, it follows that the order of
H/Z(H) is n-bounded. Thus, in view of Schur’s theorem [11, 10.1.4],
we conclude that |H ′| is n-bounded, as desired. �

We will now complete the proof of Theorem 1.2.

Proof. Assume first that H is abelian. In this case the set X
of π-elements is a subgroup, that is, X = H. By the hypothesis we
have |xG| ≤ n for any element x ∈ H and so the relative commutativity
degree Pr(H,G) of H in G is at least 1

n
. Thus, by virtue of Proposition

2.2, there is a normal subgroup T ≤ G and a subgroup B ≤ H such
that the indexes [G : T ] and [H : B], and the order of the commutator
subgroup [T,B] are n-bounded.

Since H is a normal π-subgroup and [G : H] is a π′-number, by the
Schur–Zassenhaus Theorem [5, Theorem 6.2.1] the subgroup H admits
a complement L in G such that G = HL and L is a π′-subgroup. Set
T0 = T ∩ L. Observe that the index [L : T0] is n-bounded since it is at
most the index of T in G. Thus we deduce that the index of HT0 is
n-bounded in G, as well.

We claim that the order of [H,T0] is n-bounded. Indeed, the
π′-subgroup T0 acts coprimely on the the abelian π-subgroup B1 =
B[B, T0], and so we have B1 = CB1(T0)× [B1, T0] ([7, Corollary 1.6.5]).
Note that [B1, T0] = [B, T0]. Since the oder of [B, T0] is n-bounded (be-
ing at most the order of [T,B]), we deduce that the index [B1 : CB1(T0)]
is n-bounded. In combination with the fact that [H : B] is n-bounded,
we obtain that the index [H : CB1(T0)] is n-bounded and so in particu-
lar [H : CH(T0)] is n-bounded. Since T0 acts coprimely on the abelian
normal π-subgroup H, we have H = CH(T0)× [H,T0]. Thus we obtain
that the order of the commutator subgroup [H,T0] is n-bounded, as
claimed. Let T1 = CT0([H,T0]) and remark that the index [T0 : T1]
of T1 in T0 is n-bounded too. Set N = HT1. From the fact that the
indexes [T0 : T1] and [G : HT0] are both n-bounded, we deduce that
the index of N in G is n-bounded, as well.

Note that N is normal in G since the image of N in G/H ∼= L
is isomorphic to T1 which is normal in L. Furthermore, we have
[H,T1, T1] = 1, since T1 = CT0([H,T0]). Hence by the standard prop-
erties of coprime actions we have [H,T1] = 1 ([7, Corollary 1.6.4]).
Therefore [H,N ] = 1. This proves the theorem in the particular case
where H is abelian.
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In the general case, in view of Lemma 2.6, the commutator subgroup
[H,H] is of n-bounded order. We pass to the quotient G = G/[H,H].
The above argument shows that G has a normal subgroup N of n-
bounded index such that H ≤ Z(N). Here Z(N) stands for the centre
of N . Let N be the inverse image of N . We have [H,N ] = [H,H] and
so N has the required properties. The proof is now complete. �

3. Proof of Theorem 1.3

We will require the following result taken from [1, Lemma 4.1].

Lemma 3.1. Let G be a locally nilpotent group containing an ele-
ment with finite centralizer. Suppose that G is residually finite. Then
G is finite.

Profinite groups have Sylow p-subgroups and satisfy analogues of
the Sylow theorems. Prosoluble groups satisfy analogues of the theo-
rems on Hall π-subgroups. We refer the reader to the corresponding
chapters in [10, Ch. 2] and [15, Ch. 2].

Recall that an automorphism φ of a group G is called fixed-point-
free if CG(φ) = 1, that is, the fixed-point subgroup is trivial. It is a
well-known corollary of the classification of finite simple groups that
if G is a finite group admitting a fixed-point-free automorphism, then
G is soluble (see for example [12] for a short proof). A continuous
automorphism φ of a profinite group G is coprime if for any open φ-
invariant normal subgroup N of G the order of the automorphism of
G/N induced by φ is coprime to the order of G/N . It follows that if
a profinite group G admits a coprime fixed-point-free automorphism,
then G is prosoluble. This will be used in the proof of Theorem 1.3.

Proof of Theorem 1.3. Recall that π is a set of primes and G
is a profinite group in which the centralizer of every π-element is either
finite or open. We wish to show that G has an open subgroup of the
form P × Q, where P is an abelian pro-π subgroup and Q is a pro-π′

subgroup.
Let X be the set of π-elements in G. Consider first the case where

the conjugacy class xG is finite for any x ∈ X. For each integer i ≥ 1
set

Si = {x ∈ X; |xG| ≤ i}.
The sets Si are closed. Thus, we have countably many sets which cover
the closed set X. By the Baire Category Theorem [6, Theorem 34] at
least one of these sets has non-empty interior. It follows that there is a
positive integer k, an open normal subgroup M , and an element a ∈ X
such that all elements in X ∩ aM are contained in Sk.
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Note that 〈aG〉 has finite commutator subgroup, which we will de-
note by T . Indeed, the subgroup 〈aG〉 is generated by finitely many
elements whose centralizer is open. This implies that the centre of
〈aG〉 has finite index in 〈aG〉, and by Schur’s theorem [11, 10.1.4], we
conclude that T is finite, as claimed.

Let x ∈ X ∩ M . Note that the product ax is not necessarily in
X. On the other hand, ax is a π-element modulo T . This is because
〈aG〉 becomes an abelian normal π-subgroup modulo T and the image
of ax in the quotient G/〈aG〉 is a π-element. In other words, there are
y ∈ X ∩ aM and t ∈ T such that ax = ty. Observe that t has an
open centralizer in G since t ∈ T . In fact [G : CG(t)] ≤ |T |. From
the equality ax = ty deduce that |xG| ≤ k2|T |. This happens for any
x ∈ X ∩M . Using a routine inverse limit argument in combination
with Theorem 1.2 we obtain that M has an open normal subgroup N
such that the index [M : N ] and the order of [H,N ] are finite. Here H
stands for the subgroup generated by all π-elements of M . Choose an
open normal subgroup U in G such that U ∩ [H,N ] = 1. Then U ∩M
is an open normal subgroup of the form P ×Q, where P is an abelian
pro-π subgroup and Q is a pro-π′ subgroup. This proves the theorem
in the case where all π-elements of G have open centralizers.

Assume now that G has a π-element, say b, of infinite order. Since
the procyclic subgroup 〈b〉 is contained in the centralizer CG(b), it fol-
lows that CG(b) is open inG. This implies that all elements ofX∩CG(b)
have open centralizers (because they centralize the procyclic subgroup
〈b〉). In view of the above CG(b) has an open subgroup of the form
P × Q, where P is an abelian pro-π subgroup and Q is a pro-π′ sub-
group and we are done.

We will therefore assume that G is infinite while all π-elements of G
have finite orders and there is at least one π-element, say d, such that
CG(d) is finite. The element d is a product of finitely many π-elements
of prime power order. At least one of these elements must have finite
centralizer. So without loss of generality we can assume that d is a
p-element for a prime p ∈ π.

Let P0 be a Sylow p-subgroup of G containing d. Since P0 is torsion,
we deduce from Zelmanov’s theorem [16] that P0 is locally nilpotent.
The centralizer CG(d) is finite and so in view of Lemma 3.1 the sub-
group P0 is finite. Choose an open normal pro-p′ subgroup L such that
L∩CG(d) = 1. Note that any finite homomorphic image of L admits a
coprime fixed-point-free automorphism (induced by the coprime action
of d on L). Hence L is prosoluble. Let K be a Hall π-subgroup of
L. Since any element in K has restricted centralizer, Shalev’s result
[13] shows that K is virtually abelian. We therefore can choose an
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open normal subgroup J in L such that J ∩K is abelian. If J ∩K is
finite then G is virtually pro-π′ and we are done. If J ∩K is infinite,
then all π-elements of J have infinite centralizers. This yields that all
π-elements of J have open centralizers in J and in view of the first
part of the proof, J has an open normal subgroup of the form P ×Q,
where P is an abelian pro-π subgroup and Q is a pro-π′ subgroup. This
establishes the theorem. �

References

[1] C. Acciarri, P. Shumyatsky, A stronger form of Neumann’s BFC-theorem,
Isr. J. Math. 242, 269–278 (2021). https://doi.org/10.1007/s11856-021-2133-1.

[2] E. Detomi, P. Shumyatsky, On the commuting probability for subgroups of
a finite group, Proceedings of the Royal Society of Edinburgh: Section A
Mathematics, 1–14 (2021). doi:10.1017/prm.2021.68.

[3] E. Detomi, M. Morigi, P. Shumyatsky, Profinite groups with restricted central-
izers of commutators, Proceedings of the Royal Society of Edinburgh, Section
A: Mathematics, 150(5) (2020), 2301–2321. doi:10.1017/prm.2019.17.

[4] G. Dierings, P. Shumyatsky, Groups with boundedly finite conjugacy classes
of commutators, Quarterly J. Math. 69(3) (2018), 1047–1051.

[5] D. Gorenstein, Finite Groups, Chelsea Publishing Company, New York, 1980.
[6] J. L. Kelley, General topology, Grad. Texts in Math., vol. 27, Springer, New

York, 1975.
[7] E. I. Khukhro, Nilpotent groups and their automorphisms, Berlin-New York,

de Gruyter, 1993.
[8] B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc.

(3) 29 (1954), 236–248.
[9] P. M. Neumann, Two combinatorial problems in group theory, Bull. Lond.

Math. Soc. 21 (1989), 456–458.
[10] L. Ribes, P. Zalesskii, Profinite Groups, 2nd edition, Springer Verlag, Berlin,

New York, 2010.
[11] D. J. S. Robinson, A course in the theory of groups, Second edition. Graduate

Texts in Mathematics, 80. Springer-Verlag, New York, 1996.
[12] P. Rowley, Finite groups admitting a fixed-point-free automorphism group, J.

Algebra, 174 (1995) 724–727.
[13] A. Shalev, Profinite groups with restricted centralizers. Proc. Amer. Math.

Soc. 122 (1994), 1279–1284.
[14] J. Wiegold, Groups with boundedly finite classes of conjugate elements, Proc.

Roy. Soc. London Ser. A 238 (1957), 389–401.
[15] J. S. Wilson, Profinite Groups, Clarendon Press, Oxford, 1998.
[16] E. I. Zelmanov, On periodic compact groups. Israel J. Math. 77, 83–95 (1992).



10 CRISTINA ACCIARRI AND PAVEL SHUMYATSKY

Cristina Acciarri: Dipartimento di Scienze Fisiche, Informatiche e
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