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Abstract: Stable palladium oxide nanoparticles were prepared in aqueous suspension with a very
simple procedure, by dissolving palladium nitrate in water at a concentration around 10−4 M.
UV-visible absorption spectroscopy was adopted to follow the formation of these nanoparticles,
which were characterized by TEM microscopy, along with XRD, XPS and Raman measurements. DFT
calculations allowed to interpret the Raman data and to clarify the species present at the surface
of the nanoparticles. The catalytic activity of the latter was evaluated by monitoring the reduction
of p-nitrophenol to p-aminophenol. This investigation paves the way to the use of these colloidal
nanoparticles in processes of heterogeneous catalysis, in particular those concerning the catalytic
degradation of aromatic derivatives that represent a serious danger for the environment as pollutants,
as in the case of p-nitrophenol.
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1. Introduction

Due to the optimal combination of activity and selectivity, palladium is one of the most used
transition metals for both homogeneous and heterogeneous catalysis of organic reactions [1,2].
In general, heterogeneous catalytic processes are preferred with respect to homogeneous ones due to
the higher yields and easier reusability of the catalytic material. Since heterogeneous catalysis is
based on processes taking place at the surface, the use of finely dispersed catalysts is often adopted
in order to reduce the amount of material and maximize its catalytic effect [3,4]. For this purpose,
palladium nanoparticles are widely used to catalyze organic reactions [5–14]. Similar to palladium,
palladium(II) oxide (PdO) has also found applications in many catalytic processes [15–18], but few
studies were carried out on the production of palladium oxide nanoparticles compared to the wide
range of works concerning metallic palladium particles [19–22]. A problem in obtaining colloidal
suspension of PdO nanoparticles derives from the agglomeration of them, so it was often necessary to
introduce surfactants or supporting materials that favored their stability. In this work, we propose a
simple method to obtain stable palladium oxide nanoparticles dispersed in water, without the need
of additives. The characteristics of the nanoparticles have been investigated by different techniques
and their catalytic activity has been evaluated by monitoring the reduction reaction of p-nitrophenol
to p-aminophenol.
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2. Materials and Methods

2.1. Materials

Palladium(II) nitrate (Pd(NO3)2, purity 95%) was furnished by BOC Sciences (Shirley, New York,
USA), p-nitrophenol (PNP, purity ≥ 99%) and sodium borohydride (NaBH4, purity 98%) by
Sigma-Aldrich (St. Louis, Missouri). Insoluble palladium oxide is spontaneously formed by the
dissolution of palladium nitrate in water, in the form of extremely small nanoparticles, as shown in
detail in the Results Section. A portion of the colloidal suspension was used to perform absorption,
ζ-potential and microscopy measurements, and another portion was ultra-centrifuged to obtain a
dark precipitate, which was rinsed in pure water for X-Ray diffraction (XRD), X-ray Photoelectron
Spectroscopy (XPS) and Raman investigation.

2.2. ζ-Potential

Analysis was performed with a Zetasizer Nano ZS90, Malvern Instruments (Malvern, UK).

2.3. Microscopy

Transmission electron microscopy (TEM, ) measurements were obtained by using a Philips EM
201 instrument (Philips Electronic Instruments, Amsterdam, The Netherlands) with an electron beam
emitted at 80 kV, after placing a drop of colloidal sample on a carbon–Cu grid.

2.4. Absorption

UV–visible absorption spectra were obtained in the 200–800 nm region by using a Cary 5
spectrophotometer (Varian, Palo Alto, CA, USA).

2.5. X-ray Diffraction

X-ray diffraction (XRD) was performed in a Bruker model D8 Advance diffractometer (Billerica,
MA, USA) after drop casting the centrifuged colloidal solution of PdO nanoparticles on a silicon
substrate. Data were presented after background subtraction. Resulting diffraction patterns were
analyzed with the dedicated DIFFRAC.EVA (Bruker, Version 3.0). Software automatically compared
the experimental data with the reference database, where the Power Diffraction Files (PDF)s are relative
to palladium oxide and palladium nitrate, PDF 85-0624 and PDF 01-0398, respectively.

2.6. X-ray Photoelectron Spectroscopy

XPS measurements were performed using a non-monochromatic Mg Kα x-ray source (1253.6 eV)
and a VSW HAC 5000 hemispherical electron energy analyzer operating in the constant-pass-energy
mode at Epas = 44 eV. The samples were prepared by dropping the centrifuged colloidal suspension on
soda-lime glass substrates. After drying, they were introduced in the ultra-high vacuum (UHV) system
via a loadlock under inert gas (N2) flux and kept in the introduction chamber overnight, allowing
the removal of volatile substances, as confirmed by the achieved pressure value (2 × 10−9 mbar), just
above the instrument base pressure. The obtained spectra were referenced to C 1s core peak at 284.8 eV
assigned to the adventitious carbon. The spectra were fitted using CasaXPS (software version 2.3.15)
after removal of a Shirley-type background.

2.7. Raman Scattering

Raman spectra of the bimetallic nanoparticles deposited on an aluminum plate were measured in
different points of the dried sample by using a Renishaw RM2000 micro-Raman instrument (Renishaw,
Wotton-under-Edge, UK), equipped with a diode laser emitting at 785 nm. Sample irradiation was
accomplished by using the 50x microscope objective of a Leica Microscope DMLM (Leica Microsystems,
Wetzlar, Germany). The backscattered Raman signal was fed into the monochromator through 40 µm
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slits and detected by an air-cooled CCD (2.5 cm−1 per pixel), filtered by a double holographic Notch
filters system. Spectra were calibrated with respect to a silicon wafer at 520 cm−1.

2.8. Density Functional Theory (DFT) Calculations

Density Functional Theory (DFT) calculations were carried out using the GAUSSIAN 09
package [23]. Optimized geometries were obtained at the DFT level of theory, employing the
widely adopted Becke 3-parameter hybrid exchange functional (B3) combined with the Lee–Yang–Parr
correlation functional (LYP) [24,25], along with the Lanl2DZ basis set and pseudopotential [26–28].
The latter was successfully used in the simulation of the Raman spectra of complexes containing
heavy metals [29–31]. All parameters were let free to relax and all calculations converged toward
optimized geometries corresponding to energy minima, as revealed by the lack of negative values
in the frequency calculation. A scaling factor of 0.98 for the calculated harmonic wavenumbers was
employed, as usually performed in calculations at this level of theory [32–36].

2.9. Catalysis Tests

NaBH4 was added to the aqueous solution of PNP (PNP concentration: 7µM; NaBH4 concentration:
3.6 mM). The NaBH4/PNP concentration ratio was about 500. The resulting solution was stirred for
30 s and observed by UV-vis absorption measurements for 30 min. Then, after adding a small amount
of the PdO colloid (Pd concentration: 5 µM), the same absorption measurements were performed.

3. Results

We have noted that, after dissolving Pd(NO3)2 in small amount (around 2 × 10−4 M concentration)
in water at room temperature, the aqueous solution progressively turned toward a marked yellowish
color. This evidence can be monitored by the UV-visible absorption spectrum, where a band grows
around 265 nm, with a pronounced tail in the visible region (Figure 1). However, after five hours from
the dissolution, no further changes in the absorption spectrum were detectable. The final pH of the
solution was ~4. The UV-visible absorption band around 265 nm can be confidently attributed to highly
dispersed palladium oxide [37,38]. Actually, the existence of nanoparticles in aqueous suspension has
also been demonstrated by TEM microscopy, after depositing drops of solution on a carbon-Cu grid
(see Figure 2).
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Figure 1. UV-vis absorption spectra of the aqueous sample of palladium nitrate, after different times
from the dissolution (optical path length (OPL) = 1 cm).

The TEM micrograph shows small nanoparticles (average diameter: 2.2 nm), which are mostly
monodispersed and quite similar in their shapes and dimensions. The zeta potential measurements
validate the stability of the colloidal dispersion, showing a peak at +35 mV.
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Figure 2. (a) Transmission electron microscopy (TEM) micrograph of the aqueous sample of palladium
nitrate, after deposition on carbon-Cu grid, and (b) particle size distribution.

A mechanism of formation of the palladium oxide nanoparticles can be proposed (Scheme 1).
When Pd(NO3)2 is dissolved in aqueous solution, insoluble PdO is spontaneously produced in the
water environment as small nanoparticles. The first step is the hydration of the palladium cation with
the formation of Pd(II) tetrahydrate [39–41]. This aquacomplex, through the formation of palladium
hydroxide, can give rise to PdO, which is the stoichiometry corresponding to the most stable form of
palladium oxide.
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Scheme 1. Proposed mechanism of formation of palladium oxide nanoparticles.

In order to find a confirmation to this hypothesis and to understand the nature of the metal
nanoparticles, we performed XRD, XPS and Raman measurements. By ultra-centrifuging a portion
of the aqueous suspension, a dark deposit was obtained, rinsed with pure water and deposited on a
silicon substrate for the XRD experiment (Figure 3) and on a glass substrate for both XPS (Figure 4)
and micro-Raman measurements (Figure 5).
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Figure 3. X-ray diffraction (XRD) of the centrifuged colloidal suspension, after drying on a silicon
substrate. Reference diffraction patterns of palladium(II) oxide (PdO) (blue segments) and palladium(II)
nitrate (Pd(NO3)2) (red segments) correspond to the Power Diffraction Files (PDF)s of palladium oxide
and palladium nitrate, respectively.
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Figure 3 shows the experimental diffraction pattern (black line), along with the reference diffraction
patterns of PdO (blue segments) and Pd(NO3)2 (red segments), corresponding to the Power Diffraction
Files (PDF)s of the XRD database. By comparing the experimental pattern with the two reference
patterns, it is possible to note that the experimental data are almost completely attributable to palladium
oxide and just a small amount of palladium nitrate can be recognized. It is probably due to trace of the
reactant solution. On the other side, a more thorough water cleaning is not recommended in order
to avoid the alteration or aggregation of the nanoparticles. Moreover, the pronounced width of the
peaks in the experimental diffraction pattern can be ascribable to the nature of the analyzed solid,
as a secondary proof of the nanoparticle presence.

The XPS spectrum of the Pd 3d transition region is reported in Figure 4. Due to spin-orbit coupling,
this transition results in two peaks: 3d5/2 and 3d3/2 at about 335 eV and 340 eV, respectively. Referring to
the 3d5/2 peak, it can be fit with two components: the first one predominant at 337.4 eV and the second
one minority at 339.0 eV. The peak at 337.4 eV can be confidently attributed to PdO, according to our
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previous investigations on palladium surfaces [42], even if an upshift is observed with respect to the
value of 336.9 eV. This shift, generally shown by nanoparticles with respect to the bulk [43], can be
explained on the basis of a quantic confinement. The other peak at 339.0 eV could be attributed to
Pd(OH)2, in analogy with that observed at 338.4 eV [42], or to a species of hydrate palladium oxide.
Raman measurements, along with DFT calculations, can provide useful information in this regard.

Figure 5 shows two Raman spectra of the deposited colloidal nanoparticles, representative of
different points of the sample, obtained with the micro-Raman apparatus. The intense band at 650 cm−1,
observed in both spectra, is attributable to PdO, according to the literature [44,45], whereas the shoulder
around 625 cm−1, with variable intensity depending on the irradiated points of the sample, could be
attributed to the minority species observed in the XPS spectrum. This secondary band can be correctly
assigned with the help of DFT calculations, which allow for collecting information on the species
observed in the Raman spectra.

As shown in Figure 6, for the PdO molecule, a band at 649 cm−1 is predicted by the DFT calculations,
fitting quite well with the Raman band observed at 650 cm−1, whereas for Pd(OH)2, the Raman band
occurring at 625 cm−1 is not reproduced, because the symmetric and antisymmetric stretching modes
of the Pd–O bonds are predicted at 567 and 517 cm−1, respectively. Instead, considering palladium
oxide coordinated to one water molecule, we calculated two bands at 625 and 647 cm−1, which fit well
with the bands observed in the Raman spectrum, which can be attributed to the PdO stretching mode
mixed with the H bending mode of the water molecule. Figure 6 also shows the optimized structures
of the species considered in the DFT calculations. The short hydrogen bond distance O – – – H–O–H
(1.631 Å) in the PdO/H2O complex, along with a significant negative charge-transfer from PdO to H2O
(–0.085 e), points to a form of palladium oxide strongly bound to water.
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Finally, we have evaluated the catalytic activity of our PdO nanoparticles by monitoring the
reduction of p-nitrophenol (PNP) in borohydride solution, which is only possible in the presence of an
appropriate catalyst [46] and represents a classical test for its efficiency [47–51]. By adding NaBH4,
the aqueous solution of PNP becomes alkaline and the absorption band of p-nitrophenolate occurs
at 400 nm in the absorption spectrum, which does not appreciably decrease in time. When, instead,
a small quantity of the colloidal suspension of PdO nanoparticle is added to the aqueous solution,
the peak at 400 nm decreases exponentially, while the absorption peak of p-aminophenol grows around
300 nm, as shown in Figure 7. This evidence points to a catalytic reduction of PNP by the effect of the
palladium oxide nanoparticles added to the aqueous solution.
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4. Conclusions

We proposed a very simple method to obtain stable palladium oxide nanoparticles dispersed
in water, without the aid of additional material, by dissolving palladium nitrate in water at a
concentration around 10−4 M. TEM microscopy showed the presence of very small nanoparticles, mostly
monodisperse, whose colloidal stability was also proven by zeta-potential measurements. The particle
characterization, performed with different techniques, such as UV absorption, XRD diffraction, XPS and
Raman spectroscopy, along with DFT calculations, allowed both to validate the mechanism of formation
of the nanoparticles and to identify their chemical composition. The colloidal nanoparticles are mostly
constituted by Pd(II) oxide, along with a minority species formed by PdO strongly coordinated to water.
These nanoparticles showed a marked catalytic activity, evaluated by monitoring the reduction of
p-nitrophenol to p-aminophenol. Hence, they can be usefully employed in processes of heterogeneous
catalysis, in particular those concerning the catalytic degradation of aromatic derivatives that represent
a serious danger for the environment as pollutants, as in the case of p-nitrophenol.
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